1
|
Kim KB, Sohn MS, Min S, Yoon JW, Park JS, Li J, Moon YK, Kang YC. Highly Selective and Reversible Detection of Simulated Breath Hydrogen Sulfide Using Fe-Doped CuO Hollow Spheres: Enhanced Surface Redox Reaction by Multi-Valent Catalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308963. [PMID: 38461524 DOI: 10.1002/smll.202308963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/19/2024] [Indexed: 03/12/2024]
Abstract
The precise and reversible detection of hydrogen sulfide (H2S) at high humidity condition, a malodorous and harmful volatile sulfur compound, is essential for the self-assessment of oral diseases, halitosis, and asthma. However, the selective and reversible detection of trace concentrations of H2S (≈0.1 ppm) in high humidity conditions (exhaled breath) is challenging because of irreversible H2S adsorption/desorption at the surface of chemiresistors. The study reports the synthesis of Fe-doped CuO hollow spheres as H2S gas-sensing materials via spray pyrolysis. 4 at.% of Fe-doped CuO hollow spheres exhibit high selectivity (response ratio ≥ 34.4) over interference gas (ethanol, 1 ppm) and reversible sensing characteristics (100% recovery) to 0.1 ppm of H2S under high humidity (relative humidity 80%) at 175 °C. The effect of multi-valent transition metal ion doping into CuO on sensor reversibility is confirmed through the enhancement of recovery kinetics by doping 4 at.% of Ti- or Nb ions into CuO sensors. Mechanistic details of these excellent H2S sensing characteristics are also investigated by analyzing the redox reactions and the catalytic activity change of the Fe-doped CuO sensing materials. The selective and reversible detection of H2S using the Fe-doped CuO sensor suggested in this work opens a new possibility for halitosis self-monitoring.
Collapse
Affiliation(s)
- Ki Beom Kim
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Myung Sung Sohn
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Sunhong Min
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Ji-Wook Yoon
- Department of Information Materials Engineering, Division of Advanced Materials Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Jin-Sung Park
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ju Li
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Young Kook Moon
- Department of Functional Ceramics, Ceramic Materials Division, Korea Institute of Materials Science (KIMS), Changwon, 51508, Republic of Korea
| | - Yun Chan Kang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
2
|
Miao Y, Zhong C, Bao S, Wei K, Wang W, Li N, Bai C, Chen W, Tang H. Impaired tryptophan metabolism by type 2 inflammation in epithelium worsening asthma. iScience 2024; 27:109923. [PMID: 38799558 PMCID: PMC11126962 DOI: 10.1016/j.isci.2024.109923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/16/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024] Open
Abstract
Previous researches indicate that tryptophan metabolism is critical to allergic inflammation and that indoleamine 2,3-dioxygenase 1 (IDO1), as a key enzyme, is known for its immunosuppressive properties. Therefore, we are aimed to explore whether tryptophan metabolism, especially IDO1, influences allergic asthma and clarify specific mechanism. With the analysis of clinical data, exploration in cell experiments, and verifying in HDM-induced asthma mice models, we finally found that in allergic asthma, low level of T1 cytokines along with high level of T2 cytokines inhibited the expression of IDO1 in airway epithelium, hampering the kynurenine pathway in tryptophan metabolism and decreasing the level of intracellular kynurenine (Kyn). As an endogenous ligand of aryl hydrocarbon receptor, Kyn regulated the expression of cystathionine-γ-lyase (CTH). Notably, in asthma models, enhancing either IDO1 or H2S relieved asthma, while inhibiting the activity of CTH exacerbated it. IDO1-Kyn-CTH pathway could be a potential target for treatment for allergic asthma.
Collapse
Affiliation(s)
- Yushan Miao
- Department of Respiratory and Critical Care Medicine, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
- Department of Respiratory and Critical Care Medicine, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Caiming Zhong
- Department of Respiratory and Critical Care Medicine, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
- Department of Respiratory and Critical Care Medicine, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Shujun Bao
- Department of Respiratory and Critical Care Medicine, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Kunchen Wei
- Department of Respiratory and Critical Care Medicine, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Wei Wang
- Department of Respiratory and Critical Care Medicine, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Na Li
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Chong Bai
- Department of Respiratory and Critical Care Medicine, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Wei Chen
- Department of Nephrology, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Hao Tang
- Department of Respiratory and Critical Care Medicine, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| |
Collapse
|
3
|
Yang B, To DTH, Resendiz Mendoza E, Myung NV. Achieving One Part Per Billion Hydrogen Sulfide (H 2S) Level Detection through Optimizing Composition and Crystallinity of Gold-Decorated Tungsten Trioxide (Au-WO 3) Nanofibers. ACS Sens 2024; 9:292-304. [PMID: 38215726 DOI: 10.1021/acssensors.3c01979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
As a common environmental pollutant and an important breath biomarker for several diseases, it is essential to develop a hydrogen sulfide gas sensor with a low-ppb level detection limit to prevent harmful gas exposure and allow early diagnoses of diseases in low-resource settings. Gold doped/decorated tungsten trioxide (Au-WO3) nanofibers with various compositions and crystallinities were synthesized to optimize H2S-sensing performance. Systematically experimental results demonstrated the ability to detect 1 ppb H2S with a response value (Rair/Rgas) of 2.01 using a 5 at % Au-WO3 nanofibers with average grain sizes of around 15 nm. Additionally, energy barrier difference of sensing materials in air and nitrogen (ΔEb) and power law exponent (n) were determined to be 0.36 eV and 0.7, respectively, at 450 °C indicating that O- is predominately ionic oxygen species and adsorption of O- significantly altered the Schottky barrier between the grain. Such quantitative analysis provides a comprehensive understanding of H2S detection mechanism.
Collapse
Affiliation(s)
- Bingxin Yang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame 46556, Indiana, United States
| | - Dung Thi Hanh To
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame 46556, Indiana, United States
| | - Emily Resendiz Mendoza
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame 46556, Indiana, United States
| | - Nosang V Myung
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame 46556, Indiana, United States
| |
Collapse
|
4
|
Bartman CM, Schiliro M, Nesbitt L, Lee KK, Prakash YS, Pabelick CM. Exogenous hydrogen sulfide attenuates hyperoxia effects on neonatal mouse airways. Am J Physiol Lung Cell Mol Physiol 2024; 326:L52-L64. [PMID: 37987780 PMCID: PMC11279744 DOI: 10.1152/ajplung.00196.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/16/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023] Open
Abstract
Supplemental O2 remains a necessary intervention for many premature infants (<34 wk gestation). Even moderate hyperoxia (<60% O2) poses a risk for subsequent airway disease, thereby predisposing premature infants to pediatric asthma involving chronic inflammation, airway hyperresponsiveness (AHR), airway remodeling, and airflow obstruction. Moderate hyperoxia promotes AHR via effects on airway smooth muscle (ASM), a cell type that also contributes to impaired bronchodilation and remodeling (proliferation, altered extracellular matrix). Understanding mechanisms by which O2 initiates long-term airway changes in prematurity is critical for therapeutic advancements for wheezing disorders and asthma in babies and children. Immature or dysfunctional antioxidant systems in the underdeveloped lungs of premature infants thereby heightens susceptibility to oxidative stress from O2. The novel gasotransmitter hydrogen sulfide (H2S) is involved in antioxidant defense and has vasodilatory effects with oxidative stress. We previously showed that exogenous H2S exhibits bronchodilatory effects in human developing airway in the context of hyperoxia exposure. Here, we proposed that exogenous H2S would attenuate effects of O2 on airway contractility, thickness, and remodeling in mice exposed to hyperoxia during the neonatal period. Using functional [flexiVent; precision-cut lung slices (PCLS)] and structural (histology; immunofluorescence) analyses, we show that H2S donors mitigate the effects of O2 on developing airway structure and function, with moderate O2 and H2S effects on developing mouse airways showing a sex difference. Our study demonstrates the potential applicability of low-dose H2S toward alleviating the detrimental effects of hyperoxia on the premature lung.NEW & NOTEWORTHY Chronic airway disease is a short- and long-term consequence of premature birth. Understanding effects of O2 exposure during the perinatal period is key to identify targetable mechanisms that initiate and sustain adverse airway changes. Our findings show a beneficial effect of exogenous H2S on developing mouse airway structure and function with notable sex differences. H2S donors alleviate effects of O2 on airway hyperreactivity, contractility, airway smooth muscle thickness, and extracellular matrix deposition.
Collapse
Affiliation(s)
- Colleen M Bartman
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Marta Schiliro
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Anesthesiology and Critical Care Medicine, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Lisa Nesbitt
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Kenge K Lee
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
5
|
Abolfazli S, Ebrahimi N, Morabi E, Asgari Yazdi MA, Zengin G, Sathyapalan T, Jamialahmadi T, Sahebkar A. Hydrogen Sulfide: Physiological Roles and Therapeutic Implications against COVID-19. Curr Med Chem 2024; 31:3132-3148. [PMID: 37138436 DOI: 10.2174/0929867330666230502111227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/19/2023] [Accepted: 02/10/2023] [Indexed: 05/05/2023]
Abstract
The COVID-19 pandemic due to severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) poses a major menace to economic and public health worldwide. Angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2) are two host proteins that play an essential function in the entry of SARS-- COV-2 into host cells. Hydrogen sulfide (H2S), a new gasotransmitter, has been shown to protect the lungs from potential damage through its anti-inflammatory, antioxidant, antiviral, and anti-aging effects. It is well known that H2S is crucial in controlling the inflammatory reaction and the pro-inflammatory cytokine storm. Therefore, it has been suggested that some H2S donors may help treat acute lung inflammation. Furthermore, recent research illuminates a number of mechanisms of action that may explain the antiviral properties of H2S. Some early clinical findings indicate a negative correlation between endogenous H2S concentrations and COVID-19 intensity. Therefore, reusing H2S-releasing drugs could represent a curative option for COVID-19 therapy.
Collapse
Affiliation(s)
- Sajad Abolfazli
- Student Research Committee, School of Pharmacy, Mazandaran University of Medical Science, Sari, Iran
| | - Nima Ebrahimi
- Student Research Committee, School of Pharmacy, Mashhad University of Medical Science, Mashhad, Iran
| | - Etekhar Morabi
- Student Research Committee, School of Pharmacy, Shahid Sadoughi University of Medical Science, Yazd, Iran
| | | | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey
| | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, United Kingdom of Great Britain and Northern Ireland
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Stoppa G, Nuvolone D, Petri D, Centi L, Nisticò F, Crocetti E, Barbone F, Voller F. Exposure to low levels of hydrogen sulphide and its impact on chronic obstructive pulmonary disease and lung function in the geothermal area of Mt. Amiata in Italy: The cross-sectional InVETTA study. PLoS One 2023; 18:e0293619. [PMID: 37910515 PMCID: PMC10619772 DOI: 10.1371/journal.pone.0293619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/17/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND The geothermal power plants for electricity production currently active in Italy are all located in Mt. Amiata area in the Tuscany region. A cross-sectional survey was conducted in the framework of the regional project "InVETTA-Biomonitoring Survey and Epidemiological Evaluations for the Protection of Health in the Amiata Territories", using objective measures of lung function to investigate the role of hydrogen sulphide (H2S) in affecting the respiratory health of the population living in this area. METHODS 2018 adults aged 18-70 were enrolled during 2017-2019. Home and workplace addresses of participants were geocoded. Dispersion modelling was used to evaluate the spatial variability of exposure to H2S from the geothermal power plants' emissions. We estimated average long-term historical exposure to H2S and more recent exposure indicators. Chronic Obstructive Pulmonary Disease (COPD) was defined according to the Global Initiative for Chronic Obstructive Lung Disease (GOLD). Multivariable logistic regressions were performed to investigate associations between outcome and exposure. RESULTS Our findings did not showed any evidence of an association between increasing H2S exposure and lung function impairments. Some risk reductions were observed: a -32.8% (p = 0.003) for FEV1<80% and a -51.7% (p = 0.001) risk decrease for FVC<80% were associated with interquartile increase (13.8 μg/m3) of H2S levels. CONCLUSION Our study provides no evidence that chronic exposure to low levels of H2S is associated with decrements in pulmonary function, suggesting that ambient H2S exposure may benefit lung function.
Collapse
Affiliation(s)
- Giorgia Stoppa
- Unit of Epidemiology, Regional Health Agency of Tuscany, Florence (FI), Italy
| | - Daniela Nuvolone
- Unit of Epidemiology, Regional Health Agency of Tuscany, Florence (FI), Italy
| | - Davide Petri
- Unit of Epidemiology, Regional Health Agency of Tuscany, Florence (FI), Italy
| | - Letizia Centi
- Health Agency of South-East Tuscany, Arezzo (AR), Italy
| | | | - Emanuele Crocetti
- Unit of Epidemiology, Regional Health Agency of Tuscany, Florence (FI), Italy
| | - Fabio Barbone
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Fabio Voller
- Unit of Epidemiology, Regional Health Agency of Tuscany, Florence (FI), Italy
| |
Collapse
|
7
|
Feng Y, Liu X, Wang Y, Du R, Mao H. Delineating asthma according to inflammation phenotypes with a focus on paucigranulocytic asthma. Chin Med J (Engl) 2023:00029330-990000000-00572. [PMID: 37185590 DOI: 10.1097/cm9.0000000000002456] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Indexed: 05/17/2023] Open
Abstract
ABSTRACT Asthma is characterized by chronic airway inflammation and airway hyper-responsiveness. However, the differences in pathophysiology and phenotypic symptomology make a diagnosis of "asthma" too broad hindering individualized treatment. Four asthmatic inflammatory phenotypes have been identified based on inflammatory cell profiles in sputum: eosinophilic, neutrophilic, paucigranulocytic, and mixed-granulocytic. Paucigranulocytic asthma may be one of the most common phenotypes in stable asthmatic patients, yet it remains much less studied than the other inflammatory phenotypes. Understanding of paucigranulocytic asthma in terms of phenotypic discrimination, distribution, stability, surrogate biomarkers, underlying pathophysiology, clinical characteristics, and current therapies is fragmented, which impedes clinical management of patients. This review brings together existing knowledge and ongoing research about asthma phenotypes, with a focus on paucigranulocytic asthma, in order to present a comprehensive picture that may clarify specific inflammatory phenotypes and thus improve clinical diagnoses and disease management.
Collapse
Affiliation(s)
- Yinhe Feng
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaoyin Liu
- West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yubin Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Rao Du
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hui Mao
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
8
|
Kiss H, Örlős Z, Gellért Á, Megyesfalvi Z, Mikáczó A, Sárközi A, Vaskó A, Miklós Z, Horváth I. Exhaled Biomarkers for Point-of-Care Diagnosis: Recent Advances and New Challenges in Breathomics. MICROMACHINES 2023; 14:391. [PMID: 36838091 PMCID: PMC9964519 DOI: 10.3390/mi14020391] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Cancers, chronic diseases and respiratory infections are major causes of mortality and present diagnostic and therapeutic challenges for health care. There is an unmet medical need for non-invasive, easy-to-use biomarkers for the early diagnosis, phenotyping, predicting and monitoring of the therapeutic responses of these disorders. Exhaled breath sampling is an attractive choice that has gained attention in recent years. Exhaled nitric oxide measurement used as a predictive biomarker of the response to anti-eosinophil therapy in severe asthma has paved the way for other exhaled breath biomarkers. Advances in laser and nanosensor technologies and spectrometry together with widespread use of algorithms and artificial intelligence have facilitated research on volatile organic compounds and artificial olfaction systems to develop new exhaled biomarkers. We aim to provide an overview of the recent advances in and challenges of exhaled biomarker measurements with an emphasis on the applicability of their measurement as a non-invasive, point-of-care diagnostic and monitoring tool.
Collapse
Affiliation(s)
- Helga Kiss
- National Koranyi Institute for Pulmonology, Koranyi F Street 1, 1121 Budapest, Hungary
| | - Zoltán Örlős
- National Koranyi Institute for Pulmonology, Koranyi F Street 1, 1121 Budapest, Hungary
| | - Áron Gellért
- National Koranyi Institute for Pulmonology, Koranyi F Street 1, 1121 Budapest, Hungary
| | - Zsolt Megyesfalvi
- National Koranyi Institute for Pulmonology, Koranyi F Street 1, 1121 Budapest, Hungary
| | - Angéla Mikáczó
- Department of Pulmonology, University of Debrecen, Nagyerdei krt 98, 4032 Debrecen, Hungary
| | - Anna Sárközi
- Department of Pulmonology, University of Debrecen, Nagyerdei krt 98, 4032 Debrecen, Hungary
| | - Attila Vaskó
- Department of Pulmonology, University of Debrecen, Nagyerdei krt 98, 4032 Debrecen, Hungary
| | - Zsuzsanna Miklós
- National Koranyi Institute for Pulmonology, Koranyi F Street 1, 1121 Budapest, Hungary
| | - Ildikó Horváth
- National Koranyi Institute for Pulmonology, Koranyi F Street 1, 1121 Budapest, Hungary
- Department of Pulmonology, University of Debrecen, Nagyerdei krt 98, 4032 Debrecen, Hungary
| |
Collapse
|
9
|
Zhu Z, Lian X, Bhatia M. Hydrogen Sulfide: A Gaseous Mediator and Its Key Role in Programmed Cell Death, Oxidative Stress, Inflammation and Pulmonary Disease. Antioxidants (Basel) 2022; 11:2162. [PMID: 36358533 PMCID: PMC9687070 DOI: 10.3390/antiox11112162] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/21/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
Hydrogen sulfide (H2S) has been acknowledged as a novel gaseous mediator. The metabolism of H2S in mammals is tightly controlled and is mainly achieved by many physiological reactions catalyzed by a suite of enzymes. Although the precise actions of H2S in regulating programmed cell death, oxidative stress and inflammation are yet to be fully understood, it is becoming increasingly clear that H2S is extensively involved in these crucial processes. Since programmed cell death, oxidative stress and inflammation have been demonstrated as three important mechanisms participating in the pathogenesis of various pulmonary diseases, it can be inferred that aberrant H2S metabolism also functions as a critical contributor to pulmonary diseases, which has also been extensively investigated. In the meantime, substantial attention has been paid to developing therapeutic approaches targeting H2S for pulmonary diseases. In this review, we summarize the cutting-edge knowledge on the metabolism of H2S and the relevance of H2S to programmed cell death, oxidative stress and inflammation. We also provide an update on the crucial roles played by H2S in the pathogenesis of several pulmonary diseases. Finally, we discuss the perspective on targeting H2S metabolism in the treatment of pulmonary diseases.
Collapse
Affiliation(s)
- Zhixing Zhu
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand
- Department of Internal Medicine (Pulmonary and Critical Care Medicine), The Second Clinical Medical School of Fujian Medical University, Quanzhou 362002, China
| | - Xihua Lian
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand
- Department of Internal Medicine (Pulmonary and Critical Care Medicine), The Second Clinical Medical School of Fujian Medical University, Quanzhou 362002, China
| | - Madhav Bhatia
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand
| |
Collapse
|
10
|
Wang R, Tang C. Hydrogen Sulfide Biomedical Research in China-20 Years of Hindsight. Antioxidants (Basel) 2022; 11:2136. [PMID: 36358508 PMCID: PMC9686505 DOI: 10.3390/antiox11112136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/19/2023] Open
Abstract
Hydrogen sulfide (H2S) is an important gasotransmitter that is produced by mammalian cells and performs profound physiological and pathophysiological functions. Biomedical research on H2S metabolism and function in China began 20 years ago, which pioneered the examination of the correlation of abnormal H2S metabolism and cardiovascular diseases. Over the last two decades, research teams in China have made numerous breakthrough discoveries on the effects of H2S metabolism on hypertension, atherosclerosis, pulmonary hypertension, shock, angiogenesis, chronic obstructive pulmonary disease, pain, iron homeostasis, and testicle function, to name a few. These research developments, carried by numerous research teams all over China, build nationwide research network and advance both laboratory study and clinical applications. An integrated and collaborative research strategy would further promote and sustain H2S biomedical research in China and in the world.
Collapse
Affiliation(s)
- Rui Wang
- Department of Biology, Faculty of Science, York University, Toronto, ON M3J 1P3, Canada
| | - Chaoshu Tang
- Department of Physiology and Pathophysiology, Peking University Health Science Centre, Beijing 100191, China
| |
Collapse
|
11
|
Fujiki R, Kawayama T, Furukawa K, Kinoshita T, Matsunaga K, Hoshino T. Daytime and Nighttime Visual Analog Scales May Be Useful in Assessing Asthma Control Levels Before and After Treatment. J Asthma Allergy 2022; 15:1549-1559. [PMID: 36320664 PMCID: PMC9618254 DOI: 10.2147/jaa.s381985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/17/2022] [Indexed: 12/01/2022] Open
Abstract
PURPOSE Few questionnaires evaluate daytime and nighttime symptoms separately, although these assessments could contribute to the improvement of disease control levels and prevention of future risks in asthma. The purpose of this retrospective study was to investigate whether daytime and nighttime visual analog scales (VAS) are useful in measuring the perception of symptoms, assessing disease control levels, and evaluating the treatment effects in asthma. PATIENTS AND METHODS Self-reporting asthma control tests (ACT) before and after treatment are standardized tests used to determine disease control levels. A multiple regression analysis was performed to determine the correlation between daytime and nighttime VAS and the characteristics of patients before treatment, as well as the changes in VAS and lung functions and fractional exhaled nitrogen oxide after treatment in 55 treatment-naïve symptomatic adult patients with asthma. RESULTS Both daytime (r = -0.57, P < 0.0001) and nighttime (r = -0.46, P < 0.0001) VAS correlated well with ACT scores, and there was a correlation between daytime and nighttime VAS (r = 0.33, P = 0.0148) before treatment. In addition, the changes in daytime (r = -0.65, P < 0.0001) and nighttime (r = -0.44, P < 0.0001) VAS were significantly associated with changes in the ACT scores. The multiple regression analysis (β [95% confidence interval]) revealed that improvements in the daytime (-2.33 [-4.55 to -0.11], P = 0.0405) and nighttime (-3.09 [-6.25 to 0.07], P = 0.0505) VAS were associated with an increased forced vital capacity after treatment, although there was no correlation between the VAS and characteristics before treatment. CONCLUSION Our study demonstrated that daytime and nighttime VAS were useful in assessing disease control levels and evaluating the treatment effects in asthma.
Collapse
Affiliation(s)
- Rei Fujiki
- Fujiki Medical and Surgical Clinic, Miyazaki, 880-2112, Japan
| | - Tomotaka Kawayama
- Division of Respirology, Neurology, and Rheumatology, Department of Medicine, Kurume University School of Medicine, Kurume, 830-0011, Japan,Correspondence: Tomotaka Kawayama, Division of Respirology, Neurology, and Rheumatology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan, Tel +81-924-31-7560, Fax +81-942-31-7703, Email
| | - Kyoji Furukawa
- Biostatistics Center, Kurume University School of Medicine, Kurume, 830-0011, Japan
| | - Takashi Kinoshita
- Division of Respirology, Neurology, and Rheumatology, Department of Medicine, Kurume University School of Medicine, Kurume, 830-0011, Japan
| | - Kazuko Matsunaga
- Division of Respirology, Neurology, and Rheumatology, Department of Medicine, Kurume University School of Medicine, Kurume, 830-0011, Japan
| | - Tomoaki Hoshino
- Division of Respirology, Neurology, and Rheumatology, Department of Medicine, Kurume University School of Medicine, Kurume, 830-0011, Japan
| |
Collapse
|
12
|
Jing Q, Gong C, Bian W, Tian Q, Zhang Y, Chen N, Xu C, Sun N, Wang X, Li C, Dou H, An Y, Liu S, Yu J, Wang L, Li P, Han S, Qian D, Liu B. Ultrasensitive Chemiresistive Gas Sensor Can Diagnose Asthma and Monitor Its Severity by Analyzing Its Biomarker H 2S: An Experimental, Clinical, and Theoretical Study. ACS Sens 2022; 7:2243-2252. [PMID: 35868028 DOI: 10.1021/acssensors.2c00737] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Asthma is a chronic disease characterized by recurrent attacks of breathlessness and wheezing, which vary in severity and frequency from person to person. H2S is considered as the biomarker of asthma. Here, an ultrasensitive chemiresistive H2S gas sensor based on a γ-Bi2MoO6-CuO heterostructure with a detection limit of 5 ppb has been fabricated. It can distinguish asthmatic patients from healthy people roughly by analyzing the exhaled breaths of 28 asthmatic patients and 28 healthy people, suggesting that the sensor can be used to assist physicians in the diagnosis of asthma. Pathologically, it is discovered by this sensor that with the relief of asthma, the concentration of H2S in one's exhaled breath gradually increases. This subtle concentration variation of H2S can be accurately detected, indicating that this sensor can be used in the asthma severity monitoring too. Physical models have been built by first-principles calculation to reveal the causes of the sensor's ultrasensitivity. The stable adsorption of H2S on the surface of CuO results in massive charge transferring and the appearance of the defect states, which play the major role in the ultrasensitivity of the sensor. Upon integrating this sensor with circuits, the cheap, smart, and portable H2S sensing device can be obtained, which can make asthmatic patients' access to this device easy and make the severity monitoring of asthma convenient, especially for children and the aged.
Collapse
Affiliation(s)
- Qiang Jing
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China.,Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chengyi Gong
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China
| | - Wengang Bian
- School of Materials Science and Engineering, Shandong University of Technology, 266 Xincun Xi Road, Zibo 255000, China
| | - Qingyin Tian
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China
| | - Yucai Zhang
- School of Materials Science and Engineering, Shandong University of Technology, 266 Xincun Xi Road, Zibo 255000, China
| | - Ning Chen
- Electrical and Electronic Engineering College, Shandong University of Technology, Zibo 255000, China
| | - Caixue Xu
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China
| | - Na Sun
- School of Materials Science and Engineering, Shandong University of Technology, 266 Xincun Xi Road, Zibo 255000, China
| | - Xin Wang
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China
| | - Chunjie Li
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China
| | - Hongrui Dou
- School of Materials Science and Engineering, Shandong University of Technology, 266 Xincun Xi Road, Zibo 255000, China
| | - Yunzhu An
- Electrical and Electronic Engineering College, Shandong University of Technology, Zibo 255000, China
| | - Shasha Liu
- Key Laboratory of Advanced Electronic Materials and Devices, School of Physics and Mathematics, Anhui Jianzhu University, Hefei 230601, China
| | - Jiangying Yu
- Key Laboratory of Advanced Electronic Materials and Devices, School of Physics and Mathematics, Anhui Jianzhu University, Hefei 230601, China
| | - Lipeng Wang
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou 256600, China
| | - Ping Li
- Key Laboratory of Advanced Electronic Materials and Devices, School of Physics and Mathematics, Anhui Jianzhu University, Hefei 230601, China
| | - Shasha Han
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou 256600, China
| | - Dong Qian
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bo Liu
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China
| |
Collapse
|
13
|
Shahzad AA, Mushtaq S, Waris A, Gilani SO, Alnuwaiser MA, Jameel M, Khan NB. A Low-Cost Device for Measurement of Exhaled Breath for the Detection of Obstructive Lung Disease. BIOSENSORS 2022; 12:409. [PMID: 35735555 PMCID: PMC9221323 DOI: 10.3390/bios12060409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 05/12/2023]
Abstract
Breath sensor technology can be used in medical diagnostics. This study aimed to build a device to measure the level of hydrogen sulfide, ammonia, acetone and alcohol in exhaled breath of patients as well as healthy individuals. The purpose was to determine the efficacy of these gases for detection of obstructive lung disease. This study was conducted on a total of 105 subjects, where 60 subjects were patients of obstructive lung disease and 45 subjects were healthy individuals. Patients were screened by means of the Pulmonary Function Test (PFT) by a pulmonologist. The gases present in the exhaled breath of all subjects were measured. The level of ammonia (32.29 ± 20.83 ppb), (68.83 ± 35.25 ppb), hydrogen sulfide (0.50 ± 0.26 ppm), (62.71 ± 22.20 ppb), and acetone (103.49 ± 35.01 ppb), (0.66 ± 0.31 ppm) in exhaled breath were significantly different (p < 0.05) between obstructive lung disease patients and healthy individuals, except alcohol, with a p-value greater than 0.05. Positive correlation was found between ammonia w.r.t Forced Expiratory Volume in 1 s (FEV1) (r = 0.74), Forced Vital Capacity (FVC) (r = 0.61) and Forced Expiratory Flow (FEF) (r = 0.63) and hydrogen sulfide w.r.t FEV1 (r = 0.54), FVC (r = 0.41) and FEF (r = 0.37). Whereas, weak correlation was found for acetone and alcohol w.r.t FEV1, FVC and PEF. Therefore, the level of ammonia and hydrogen sulfide are useful breath markers for detection of obstructive lung disease.
Collapse
Affiliation(s)
- Adil Ahmad Shahzad
- National University of Sciences and Technology (NUST), Islamabad, Pakistan; (A.A.S.); (A.W.); (S.O.G.)
| | - Shafaq Mushtaq
- Accidents and Emergency Department, Pakistan Institute of Medical Sciences, Islamabad 44000, Pakistan;
| | - Asim Waris
- National University of Sciences and Technology (NUST), Islamabad, Pakistan; (A.A.S.); (A.W.); (S.O.G.)
| | - Syed Omer Gilani
- National University of Sciences and Technology (NUST), Islamabad, Pakistan; (A.A.S.); (A.W.); (S.O.G.)
| | - Maha Abdallah Alnuwaiser
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Mohammed Jameel
- Department of Civil Engineering, College of Engineering, King Khalid University, Asir Abha, Saudi Arabia, P.O. Box: 960 - Postal Code: 61421;
| | - Niaz Bahadur Khan
- National University of Sciences and Technology (NUST), Islamabad, Pakistan; (A.A.S.); (A.W.); (S.O.G.)
| |
Collapse
|
14
|
Cirino G, Szabo C, Papapetropoulos A. Physiological roles of hydrogen sulfide in mammalian cells, tissues and organs. Physiol Rev 2022; 103:31-276. [DOI: 10.1152/physrev.00028.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
H2S belongs to the class of molecules known as gasotransmitters, which also includes nitric oxide (NO) and carbon monoxide (CO). Three enzymes are recognized as endogenous sources of H2S in various cells and tissues: cystathionine g-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST). The current article reviews the regulation of these enzymes as well as the pathways of their enzymatic and non-enzymatic degradation and elimination. The multiple interactions of H2S with other labile endogenous molecules (e.g. NO) and reactive oxygen species are also outlined. The various biological targets and signaling pathways are discussed, with special reference to H2S and oxidative posttranscriptional modification of proteins, the effect of H2S on channels and intracellular second messenger pathways, the regulation of gene transcription and translation and the regulation of cellular bioenergetics and metabolism. The pharmacological and molecular tools currently available to study H2S physiology are also reviewed, including their utility and limitations. In subsequent sections, the role of H2S in the regulation of various physiological and cellular functions is reviewed. The physiological role of H2S in various cell types and organ systems are overviewed. Finally, the role of H2S in the regulation of various organ functions is discussed as well as the characteristic bell-shaped biphasic effects of H2S. In addition, key pathophysiological aspects, debated areas, and future research and translational areas are identified A wide array of significant roles of H2S in the physiological regulation of all organ functions emerges from this review.
Collapse
Affiliation(s)
- Giuseppe Cirino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece & Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece
| |
Collapse
|
15
|
The Role of Exhaled Hydrogen Sulfide in the Diagnosis of Colorectal Adenoma. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2021; 2021:8046368. [PMID: 34900068 PMCID: PMC8654565 DOI: 10.1155/2021/8046368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/27/2021] [Accepted: 11/11/2021] [Indexed: 12/24/2022]
Abstract
Purpose Exhaled determination can detect metabolite hydrogen sulfide in the intestine. We aim to analyze the predictive value of hydrogen sulfide in the diagnosis of colorectal adenoma. Methods We recruited seventy patients diagnosed with colorectal adenoma as the observation group and sixty-six healthy subjects as the control group. The colorectal adenoma was diagnosed by colonoscopy at the Endoscopy Center of Huashan Hospital affiliated to Fudan University from June 2018 to November 2019. Exhaled gas was collected through the nose and mouth, respectively, and hydrogen sulfide in exhaled gas was determined according to the manufacturer's instructions. Results Receiver operating characteristic (ROC) curve was analyzed based on the exhaled data of the observation group and the control group. The ROC curve showed an area under ROC curve (AUC) 0.724 for nasal exhaled H2S, which had a diagnostic value. When nasal exhaled H2S was >13.3 part per billion (ppb), the sensitivity and the specificity of predicting colorectal adenoma were 57% and 78%, respectively. The exhaled H2S of the observation group was significantly different from that of the control group. The AUC value was 0.716 as a prognostic factor of colorectal adenoma. As exhaled H2S was >28.8 ppb, the sensitivity and the specificity of predicting colorectal adenoma were 63% and 77%, respectively. Conclusion Exhaled and nasal H2S determination has a predictive value for colorectal adenoma as a novel and noninvasive method. Therefore, it is worth conducting more research to analyze exhaled and nasal H2S.
Collapse
|
16
|
Pacitti D, Scotton CJ, Kumar V, Khan H, Wark PAB, Torregrossa R, Hansbro PM, Whiteman M. Gasping for Sulfide: A Critical Appraisal of Hydrogen Sulfide in Lung Disease and Accelerated Aging. Antioxid Redox Signal 2021; 35:551-579. [PMID: 33736455 DOI: 10.1089/ars.2021.0039] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hydrogen sulfide (H2S) is a gaseous signaling molecule involved in a plethora of physiological and pathological processes. It is primarily synthesized by cystathionine-β-synthase, cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase as a metabolite of the transsulfuration pathway. H2S has been shown to exert beneficial roles in lung disease acting as an anti-inflammatory and antiviral and to ameliorate cell metabolism and protect from oxidative stress. H2S interacts with transcription factors, ion channels, and a multitude of proteins via post-translational modifications through S-persulfidation ("sulfhydration"). Perturbation of endogenous H2S synthesis and/or levels have been implicated in the development of accelerated lung aging and diseases, including asthma, chronic obstructive pulmonary disease, and fibrosis. Furthermore, evidence indicates that persulfidation is decreased with aging. Here, we review the use of H2S as a biomarker of lung pathologies and discuss the potential of using H2S-generating molecules and synthesis inhibitors to treat respiratory diseases. Furthermore, we provide a critical appraisal of methods of detection used to quantify H2S concentration in biological samples and discuss the challenges of characterizing physiological and pathological levels. Considerations and caveats of using H2S delivery molecules, the choice of generating molecules, and concentrations are also reviewed. Antioxid. Redox Signal. 35, 551-579.
Collapse
Affiliation(s)
- Dario Pacitti
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Chris J Scotton
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Vinod Kumar
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, The University of Newcastle, Newcastle, Australia
| | - Haroon Khan
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, The University of Newcastle, Newcastle, Australia
| | - Peter A B Wark
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, The University of Newcastle, Newcastle, Australia
| | - Roberta Torregrossa
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, The University of Newcastle, Newcastle, Australia
| | - Philip M Hansbro
- Faculty of Science, Centre for Inflammation, Centenary Institute, University of Technology Sydney, Sydney, Australia
| | - Matthew Whiteman
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
17
|
Kaiser A, Torres Ceja E, Liu Y, Huber F, Müller R, Herr U, Thonke K. H 2S sensing for breath analysis with Au functionalized ZnO nanowires. NANOTECHNOLOGY 2021; 32:205505. [PMID: 33498025 DOI: 10.1088/1361-6528/abe004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This work presents a H2S selective resistive gas sensor design based on a chemical field effect transistor (ChemFET) with open gate formed by hundreds of high temperature chemical vapour deposition (CVD) grown zinc oxide nanowires (ZnO NW). The sensing ability of pristine ZnO NWs and surface functionalized ZnO NWs for H2S is analysed systematically. ZnO NWs are functionalized by deposition of discontinuous gold (Au) nanoparticle films of different thicknesses of catalyst layer ranging from 1 to 10 nm and are compared in their gas sensing properties. All experiments were performed in a temperature stabilized small volume compartment with adjustable gas mixture at room temperature. The results allow for a well-founded understanding of signal-to-noise ratio, enhanced response, and improved limit of detection due to the Au functionalisation. Comprehension and controlled application of the beneficial effects of Au catalyst on ZnO NWs allow for the detection of very low H2S concentrations down to 10 ppb, and a theoretically estimated 500 ppt in synthetic air at room temperature.
Collapse
Affiliation(s)
- Angelika Kaiser
- Institute of Quantum Matter/Semiconductor Physics Group, Ulm University, D-89069 Ulm, Germany
| | - Erick Torres Ceja
- Institute of Quantum Matter/Semiconductor Physics Group, Ulm University, D-89069 Ulm, Germany
| | - Yujia Liu
- Institute of Quantum Matter/Semiconductor Physics Group, Ulm University, D-89069 Ulm, Germany
| | - Florian Huber
- Institute of Quantum Matter/Semiconductor Physics Group, Ulm University, D-89069 Ulm, Germany
| | - Raphael Müller
- Institute of Quantum Matter/Semiconductor Physics Group, Ulm University, D-89069 Ulm, Germany
| | - Ulrich Herr
- Institute of Functional Nanosystems, Ulm University, D-89069 Ulm, Germany
| | - Klaus Thonke
- Institute of Quantum Matter/Semiconductor Physics Group, Ulm University, D-89069 Ulm, Germany
| |
Collapse
|
18
|
The Role of Hydrogen Sulfide in Respiratory Diseases. Biomolecules 2021; 11:biom11050682. [PMID: 34062820 PMCID: PMC8147381 DOI: 10.3390/biom11050682] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 02/08/2023] Open
Abstract
Respiratory diseases are leading causes of death and disability around the globe, with a diverse range of health problems. Treatment of respiratory diseases and infections has been verified to be thought-provoking because of the increasing incidence and mortality rate. Hydrogen sulfide (H2S) is one of the recognized gaseous transmitters involved in an extensive range of cellular functions, and physiological and pathological processes in a variety of diseases, including respiratory diseases. Recently, the therapeutic potential of H2S for respiratory diseases has been widely investigated. H2S plays a vital therapeutic role in obstructive respiratory disease, pulmonary fibrosis, emphysema, pancreatic inflammatory/respiratory lung injury, pulmonary inflammation, bronchial asthma and bronchiectasis. Although the therapeutic role of H2S has been extensively studied in various respiratory diseases, a concrete literature review will have an extraordinary impact on future therapeutics. This review provides a comprehensive overview of the effective role of H2S in respiratory diseases. Besides, we also summarized H2S production in the lung and its metabolism processes in respiratory diseases.
Collapse
|
19
|
Suzuki Y, Saito J, Munakata M, Shibata Y. Hydrogen sulfide as a novel biomarker of asthma and chronic obstructive pulmonary disease. Allergol Int 2021; 70:181-189. [PMID: 33214087 DOI: 10.1016/j.alit.2020.10.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/03/2020] [Accepted: 10/10/2020] [Indexed: 12/17/2022] Open
Abstract
Hydrogen sulfide (H2S) has recently been recognised as the third important gas-signalling molecule, besides nitric oxide and carbon monoxide. H2S has been reported to be produced by many cell types in mammalian tissues and organs throughout the actions of H2S-generating enzymes or redox reactions between the oxidation of glucose and element of sulfur. Although the pathological role of H2S has not yet been fully elucidated, accumulative data suggest that H2S may have biphasic effects. Briefly, it mainly has anti-inflammatory and antioxidant roles, although it can also have pro-inflammatory effects under certain conditions where rapid release of H2S in tissues occur, such as sepsis. To date, there have been several clinical studies published on H2S in respiratory disorders, including asthma and chronic obstructive pulmonary disease (COPD). According to previous studies, H2S is detectable in serum, sputum, and exhaled breath, although a gold standard method for detection has not yet been established. In asthma and COPD, H2S levels in serum and sputum can vary depending on the underlying conditions such as an acute exacerbation. Furthermore, sputum H2S in particular correlates with sputum neutrophils and the degree of airflow limitation, indicating that H2S has potential as a novel promising biomarker for neutrophilic airway inflammation for predicting current control state as well as future risks of asthma. In the future, concurrent measures of H2S with conventional inflammatory biomarkers (fractional exhaled nitric oxide, eosinophils etc) may provide more useful information regarding the identification of inflammatory phenotypes of asthma and COPD for personalised treatment.
Collapse
Affiliation(s)
- Yasuhito Suzuki
- Department of Pulmonary Medicine, Fukushima Medical University, School of Medicine, Fukushima, Japan
| | - Junpei Saito
- Department of Pulmonary Medicine, Fukushima Medical University, School of Medicine, Fukushima, Japan.
| | - Mitsuru Munakata
- Department of Pulmonary Medicine, Fukushima Medical University, School of Medicine, Fukushima, Japan
| | - Yoko Shibata
- Department of Pulmonary Medicine, Fukushima Medical University, School of Medicine, Fukushima, Japan
| |
Collapse
|
20
|
Ganguly A, Ofman G, Vitiello PF. Hydrogen Sulfide-Clues from Evolution and Implication for Neonatal Respiratory Diseases. CHILDREN (BASEL, SWITZERLAND) 2021; 8:213. [PMID: 33799529 PMCID: PMC7999351 DOI: 10.3390/children8030213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 11/17/2022]
Abstract
Reactive oxygen species (ROS) have been the focus of redox research in the realm of oxidative neonatal respiratory diseases such as bronchopulmonary dysplasia (BPD). Over the years, nitric oxide (NO) and carbon monoxide (CO) have been identified as important gaseous signaling molecules involved in modulating the redox homeostasis in the developing lung. While animal data targeting aspects of these redox pathways have been promising in treating and/or preventing experimental models of neonatal lung disease, none are particularly effective in human neonatal clinical trials. In recent years, hydrogen sulfide (H2S) has emerged as a novel gasotransmitter involved in a magnitude of cellular signaling pathways and functions. The importance of H2S signaling may lie in the fact that early life-forms evolved in a nearly anoxic, sulfur-rich environment and were dependent on H2S for energy. Recent studies have demonstrated an important role of H2S and its synthesizing enzymes in lung development, which normally takes place in a relatively hypoxic intrauterine environment. In this review, we look at clues from evolution and explore the important role that the H2S signaling pathway may play in oxidative neonatal respiratory diseases and discuss future opportunities to explore this phenomenon in the context of neonatal chronic lung disease.
Collapse
Affiliation(s)
- Abhrajit Ganguly
- Center for Pregnancy and Newborn Research, Department of Pediatrics, Section of Neonatal-Perinatal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (G.O.); (P.F.V.)
| | | | | |
Collapse
|
21
|
Schiliro M, Bartman CM, Pabelick C. Understanding hydrogen sulfide signaling in neonatal airway disease. Expert Rev Respir Med 2021; 15:351-372. [PMID: 33086886 PMCID: PMC10599633 DOI: 10.1080/17476348.2021.1840981] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Airway dysfunction leading to chronic lung disease is a common consequence of premature birth and mechanisms responsible for early and progressive airway remodeling are not completely understood. Current therapeutic options are only partially effective in reducing the burden of neonatal airway disease and premature decline of lung function. Gasotransmitter hydrogen sulfide (H2S) has been recently recognized for its therapeutic potential in lung diseases. AREAS COVERED Contradictory to its well-known toxicity at high concentrations, H2S has been characterized to have anti-inflammatory, antioxidant, and antiapoptotic properties at physiological concentrations. In the respiratory system, endogenous H2S production participates in late lung development and exogenous H2S administration has a protective role in a variety of diseases such as acute lung injury and chronic pulmonary hypertension and fibrosis. Literature searches performed using NCBI PubMed without publication date limitations were used to construct this review, which highlights the dichotomous role of H2S in the lung, and explores its promising beneficial effects in lung diseases. EXPERT OPINION The emerging role of H2S in pathways involved in chronic lung disease of prematurity along with its recent use in animal models of BPD highlight H2S as a potential novel candidate in protecting lung function following preterm birth.
Collapse
Affiliation(s)
- Marta Schiliro
- Departments of Anesthesiology, Mayo Clinic, Rochester, MN, USA
| | | | - Christina Pabelick
- Departments of Anesthesiology, Mayo Clinic, Rochester, MN, USA
- Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
22
|
Fuschillo S, Palomba L, Capparelli R, Motta A, Maniscalco M. Nitric Oxide and Hydrogen Sulfide: A Nice Pair in the Respiratory System. Curr Med Chem 2020; 27:7136-7148. [DOI: 10.2174/0929867327666200310120550] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/25/2020] [Accepted: 02/05/2020] [Indexed: 01/15/2023]
Abstract
Nitric Oxide (NO) is internationally regarded as a signal molecule involved in several
functions in the respiratory tract under physiological and pathogenic conditions. Hydrogen Sulfide
(H2S) has also recently been recognized as a new gasotransmitter with a diverse range of functions
similar to those of NO.
Depending on their respective concentrations, both these molecules act synergistically or antagonistically
as signals or damage promoters. Nevertheless, available evidence shows that the complex
biological connections between NO and H2S involve multiple pathways and depend on the site of
action in the respiratory tract, as well as on experimental conditions. This review will provide an
update on these two gasotransmitters in physiological and pathological processes.
Collapse
Affiliation(s)
- Salvatore Fuschillo
- Istituti Clinici Scientifici Maugeri IRCCS, Pulmonary Rehabilitation Division of the Telese Terme Institute, 82037 Telese Terme (BN), Italy
| | - Letizia Palomba
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino (PU), Italy
| | - Rosanna Capparelli
- Department of Agriculture, University of Naples “Federico II”, 80055 Portici, (NA), Italy
| | - Andrea Motta
- Institute of Biomolecular Chemistry, National Research Council, 80078 Pozzuoli (NA), Italy
| | - Mauro Maniscalco
- Istituti Clinici Scientifici Maugeri IRCCS, Pulmonary Rehabilitation Division of the Telese Terme Institute, 82037 Telese Terme (BN), Italy
| |
Collapse
|
23
|
Li L, Liu Y, Wang Q, Wang Z, Cui L, Xu Y, Guan K. Levels of nasal exhaled hydrogen sulfide in the general population and allergic rhinitis patients. J Clin Lab Anal 2020; 35:e23678. [PMID: 33615571 PMCID: PMC7957977 DOI: 10.1002/jcla.23678] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/08/2020] [Accepted: 11/22/2020] [Indexed: 12/11/2022] Open
Abstract
Background Objective measures used for the differential diagnosis and severity assessment of allergic rhinitis (AR) are still lacking. The involvement of hydrogen sulfide (H2S) in the development of AR indicates that nasal exhaled H2S (NeH2S) has potential as a biomarker to be used in AR patients. This study aimed to evaluate the application value of NeH2S measurement in the diagnosis and assessment of AR. Methods This study was a multi‐center cross‐sectional survey conducted in Northwestern China. Demographic information collection and rhinitis assessment were completed through questionnaires. The level of NeH2S and serum immunoglobulin E were measured. Results The level of NeH2S in general population ranged from 0 to 35 ppb, with a median value of 2 ppb. The NeH2S levels in seasonal allergic rhinitis (SAR) patients were significantly lower than those in general population (2 [1, 2.75] vs. 2 [2, 3] ppb; p = .023), and the NeH2S value of the SAR group tended to be lower than that of the non‐allergic rhinitis (NAR) group (2 [1, 2.75] vs. 2 [2, 3] ppb; p = .094). The subgroup of AR patients with symptoms lasting longer than 2 weeks per month had a lower NeH2S level compared with the subgroup of patients with symptoms lasting less than 2 weeks per month (2 [1, 2] vs. 2 [2, 3] ppb; p = .015). Conclusion This study described the distribution range of NeH2S levels in the general population. Further study with larger sample size was needed to clarify the relationship between NeH2S level and AR.
Collapse
Affiliation(s)
- Lisha Li
- Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment on Allergic Diseases, Department of Allergy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Yonglin Liu
- Department of Pediatrics, Shenmu Hospital, Shenmu, China
| | - Qiang Wang
- Department of Orthopedics, Shenmu Hospital, Shenmu, China
| | - Zixi Wang
- Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment on Allergic Diseases, Department of Allergy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Le Cui
- Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment on Allergic Diseases, Department of Allergy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Yingyang Xu
- Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment on Allergic Diseases, Department of Allergy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Kai Guan
- Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment on Allergic Diseases, Department of Allergy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| |
Collapse
|
24
|
Bartman CM, Schiliro M, Helan M, Prakash YS, Linden D, Pabelick C. Hydrogen sulfide, oxygen, and calcium regulation in developing human airway smooth muscle. FASEB J 2020; 34:12991-13004. [PMID: 32777143 PMCID: PMC7857779 DOI: 10.1096/fj.202001180r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/22/2022]
Abstract
Preterm infants can develop airway hyperreactivity and impaired bronchodilation following supplemental O2 (hyperoxia) in early life, making it important to understand mechanisms of hyperoxia effects. Endogenous hydrogen sulfide (H2 S) has anti-inflammatory and vasodilatory effects with oxidative stress. There is little understanding of H2 S signaling in developing airways. We hypothesized that the endogenous H2 S system is detrimentally influenced by O2 and conversely H2 S signaling pathways can be leveraged to attenuate deleterious effects of O2 . Using human fetal airway smooth muscle (fASM) cells, we investigated baseline expression of endogenous H2 S machinery, and effects of exogenous H2 S donors NaHS and GYY4137 in the context of moderate hyperoxia, with intracellular calcium regulation as a readout of contractility. Biochemical pathways for endogenous H2 S generation and catabolism are present in fASM, and are differentially sensitive to O2 toward overall reduction in H2 S levels. H2 S donors have downstream effects of reducing [Ca2+ ]i responses to bronchoconstrictor agonist via blunted plasma membrane Ca2+ influx: effects blocked by O2 . However, such detrimental O2 effects are targetable by exogenous H2 S donors such as NaHS and GYY4137. These data provide novel information regarding the potential for H2 S to act as a bronchodilator in developing airways in the context of oxygen exposure.
Collapse
Affiliation(s)
| | - Marta Schiliro
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
| | - Martin Helan
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
- Department of Anesthesiology and Intensive Care, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czech Republic
| | - Y. S. Prakash
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - David Linden
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Christina Pabelick
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
25
|
Dilek N, Papapetropoulos A, Toliver-Kinsky T, Szabo C. Hydrogen sulfide: An endogenous regulator of the immune system. Pharmacol Res 2020; 161:105119. [PMID: 32781284 DOI: 10.1016/j.phrs.2020.105119] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022]
Abstract
Hydrogen sulfide (H2S) is now recognized as an endogenous signaling gasotransmitter in mammals. It is produced by mammalian cells and tissues by various enzymes - predominantly cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3-MST) - but part of the H2S is produced by the intestinal microbiota (colonic H2S-producing bacteria). Here we summarize the available information on the production and functional role of H2S in the various cell types typically associated with innate immunity (neutrophils, macrophages, dendritic cells, natural killer cells, mast cells, basophils, eosinophils) and adaptive immunity (T and B lymphocytes) under normal conditions and as it relates to the development of various inflammatory and immune diseases. Special attention is paid to the physiological and the pathophysiological aspects of the oral cavity and the colon, where the immune cells and the parenchymal cells are exposed to a special "H2S environment" due to bacterial H2S production. H2S has many cellular and molecular targets. Immune cells are "surrounded" by a "cloud" of H2S, as a result of endogenous H2S production and exogenous production from the surrounding parenchymal cells, which, in turn, importantly regulates their viability and function. Downregulation of endogenous H2S producing enzymes in various diseases, or genetic defects in H2S biosynthetic enzyme systems either lead to the development of spontaneous autoimmune disease or accelerate the onset and worsen the severity of various immune-mediated diseases (e.g. autoimmune rheumatoid arthritis or asthma). Low, regulated amounts of H2S, when therapeutically delivered by small molecule donors, improve the function of various immune cells, and protect them against dysfunction induced by various noxious stimuli (e.g. reactive oxygen species or oxidized LDL). These effects of H2S contribute to the maintenance of immune functions, can stimulate antimicrobial defenses and can exert anti-inflammatory therapeutic effects in various diseases.
Collapse
Affiliation(s)
- Nahzli Dilek
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece
| | - Tracy Toliver-Kinsky
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland; Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
26
|
Mini P, Springer MA, Grace MR, Dennison GH, Tuck KL. A highly efficient red-emitting luminescent paper-based chemosensor for hydrogen sulfide. Chem Commun (Camb) 2020; 56:5605-5608. [PMID: 32342971 DOI: 10.1039/d0cc00745e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The first discrete bimetallic europium(iii)/copper(ii) complex for the fast, sensitive and selective luminescent detection of both aqueous and gaseous hydrogen sulfide has been developed. The chemosensor displayed an impressive response time of 30 seconds and a low theoretical limit of detection (100 ppb) for gaseous hydrogen sulfide.
Collapse
Affiliation(s)
- Parvathy Mini
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia.
| | | | - Michael R Grace
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia.
| | - Genevieve H Dennison
- Land Division, Defence Science and Technology Group, Fishermans Bend, Melbourne, Australia.
| | - Kellie L Tuck
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
27
|
Dorman DC. Use of Nasal Pathology in the Derivation of Inhalation Toxicity Values for Hydrogen Sulfide. Toxicol Pathol 2019; 47:1043-1048. [PMID: 31665998 DOI: 10.1177/0192623319878401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nasal pathology can play an important role in the risk assessment process. For example, olfactory neuron loss (ONL) is one of the most sensitive end points seen in subchronic rodent hydrogen sulfide (H2S) studies and has been used by several agencies to derive health-protective toxicity values. Alternative methods that rely on computational fluid dynamics (CFD) models to account for the influence of airflow on H2S-induced ONL have been proposed. The use of CFD models result in toxicity values that are less conservative than those obtained using more traditional methods. These alternative approaches rely on anatomy-based CFD models. Model predictions of H2S delivery (flux) to the olfactory mucosal wall are highly correlated with ONL in rodents. Three major areas of focus for this review include a brief description of nasal anatomy, H2S-induced ONL in rodents, derivation of a chronic inhalation reference concentration for H2S, and the use of CFD models to derive alternative toxicity values for this gas.
Collapse
Affiliation(s)
- David C Dorman
- Department of Molecular Biomedical Sciences, North Carolina State University, College of Veterinary Medicine, Raleigh, NC, USA
| |
Collapse
|
28
|
Barnig C, Bezema T, Calder PC, Charloux A, Frossard N, Garssen J, Haworth O, Dilevskaya K, Levi-Schaffer F, Lonsdorfer E, Wauben M, Kraneveld AD, Te Velde AA. Activation of Resolution Pathways to Prevent and Fight Chronic Inflammation: Lessons From Asthma and Inflammatory Bowel Disease. Front Immunol 2019; 10:1699. [PMID: 31396220 PMCID: PMC6664683 DOI: 10.3389/fimmu.2019.01699] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 07/08/2019] [Indexed: 12/15/2022] Open
Abstract
Formerly considered as a passive process, the resolution of acute inflammation is now recognized as an active host response, with a cascade of coordinated cellular and molecular events that promotes termination of the inflammatory response and initiates tissue repair and healing. In a state of immune fitness, the resolution of inflammation is contained in time and space enabling the restoration of tissue homeostasis. There is increasing evidence that poor and/or inappropriate resolution of inflammation participates in the pathogenesis of chronic inflammatory diseases, extending in time the actions of pro-inflammatory mechanisms, and responsible in the long run for excessive tissue damage and pathology. In this review, we will focus on how resolution can be the target for therapy in "Th1/Th17 cell-driven" immune diseases and "Th2 cell-driven" immune diseases, with inflammatory bowel diseases (IBD) and asthma, as relevant examples. We describe the main cells and mediators stimulating the resolution of inflammation and discuss how pharmacological and dietary interventions but also life style factors, physical and psychological conditions, might influence the resolution phase. A better understanding of the impact of endogenous and exogenous factors on the resolution of inflammation might open a whole area in the development of personalized therapies in non-resolving chronic inflammatory diseases.
Collapse
Affiliation(s)
- Cindy Barnig
- Department of Chest Disease, Strasbourg University Hospital, Strasbourg, France.,Equipe d'accueil 3072, University of Strasbourg, Strasbourg, France
| | | | - Philip C Calder
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,National Institute for Health Research Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, United Kingdom
| | - Anne Charloux
- Department of Chest Disease, Strasbourg University Hospital, Strasbourg, France.,Equipe d'accueil 3072, University of Strasbourg, Strasbourg, France
| | - Nelly Frossard
- UMR 7200 CNRS/Université de Strasbourg, Laboratoire d'Innovation Thérapeutique and LabEx MEDALIS, Faculté de Pharmacie, Strasbourg, France
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands.,Nutricia Research, Utrecht, Netherlands
| | - Oliver Haworth
- Biochemical Pharmacology, William Harvey Research Institute, Bart's School of Medicine and Queen Mary University of London, London, United Kingdom
| | - Ksenia Dilevskaya
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Francesca Levi-Schaffer
- Pharmacology and Experimental Therapeutics Unit, Faculty of Medicine, School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Evelyne Lonsdorfer
- Department of Chest Disease, Strasbourg University Hospital, Strasbourg, France.,Equipe d'accueil 3072, University of Strasbourg, Strasbourg, France
| | - Marca Wauben
- Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Aletta D Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands.,Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Anje A Te Velde
- Amsterdam UMC, Tytgat Institute for Liver and Intestinal Research, University of Amsterdam, AGEM, Amsterdam, Netherlands
| |
Collapse
|
29
|
Cystathionine γ-lyase deficiency enhances airway reactivity and viral-induced disease in mice exposed to side-stream tobacco smoke. Pediatr Res 2019; 86:39-46. [PMID: 30986815 PMCID: PMC6594876 DOI: 10.1038/s41390-019-0396-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/04/2019] [Accepted: 04/06/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Environmental tobacco smoke (ETS) is a known risk factor for severe respiratory syncytial virus (RSV) infections, yet the mechanisms of ETS/RSV comorbidity are largely unknown. Cystathionine γ-lyase regulates important physiological functions of the respiratory tract. METHODS We used mice genetically deficient in the cystathionine γ-lyase enzyme (CSE), the major H2S-generating enzyme in the lung to determine the contribution of H2S to airway disease in response to side-stream tobacco smoke (TS), and to TS/RSV co-exposure. RESULTS Following a 2-week period of exposure to TS, CSE-deficient mice (KO) showed a dramatic increase in airway hyperresponsiveness (AHR) to methacholine challenge, and greater airway cellular inflammation, compared with wild-type (WT) mice. TS-exposed CSE KO mice that were subsequently infected with RSV exhibited a more severe clinical disease, airway obstruction and AHR, enhanced viral replication, and lung inflammation, compared with TS-exposed RSV-infected WT mice. TS-exposed RSV-infected CSE KO mice had also a significant increase in the number of neutrophils in bronchoalveolar lavage fluid and increased levels of inflammatory cytokines and chemokines. CONCLUSION This study demonstrates the critical contribution of the H2S-generating pathway to airway reactivity and disease following exposure to ETS alone or in combination with RSV infection.
Collapse
|
30
|
Viegas J, Esteves AF, Cardoso EM, Arosa FA, Vitale M, Taborda-Barata L. Biological Effects of Thermal Water-Associated Hydrogen Sulfide on Human Airways and Associated Immune Cells: Implications for Respiratory Diseases. Front Public Health 2019; 7:128. [PMID: 31231626 PMCID: PMC6560203 DOI: 10.3389/fpubh.2019.00128] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/08/2019] [Indexed: 12/20/2022] Open
Abstract
Natural mineral (thermal) waters have been used for centuries as treatment for various diseases. However, the scientific background of such therapeutic action is mostly empiric and based on knowledge acquired over time. Among the various types of natural mineral waters, sulfurous thermal waters (STWs) are the most common type in the center of Portugal. STWs are characterized by high pH, poor mineralization, and the presence of several ions and salts, such as bicarbonate, sodium, fluoride, silica, and carbonate. Furthermore, these waters are indicated as a good option for the treatment of various illnesses, namely respiratory diseases (e.g., allergic rhinitis, asthma, and chronic obstructive pulmonary disease). From the sulfide species present in these waters, hydrogen sulfide (H2S) stands out due to its abundance. In healthy conditions, H2S-related enzymes (e.g., cystathionine β-synthase and cystathionine γ-lyase) are expressed in human lungs, where they have mucolytic, antioxidant, anti-inflammatory, and antibacterial roles, thus contributing to airway epithelium homeostasis. These roles occur mainly through S-sulfhydration, a post-translational modification through which H2S is able to change the activity of several targets, such as ion channels, second messengers, proteins, among others. However, in respiratory diseases the metabolism of H2S is altered, which seems to contribute somehow to the respiratory deterioration. Moreover, H2S has been regarded as a good biomarker of airway dysfunction and severity, and can be measured in serum, sputum, and exhaled air. Hence, in this review we will recapitulate the effects of STWs on lung epithelial-immune crosstalk through the action of its main component, H2S.
Collapse
Affiliation(s)
- Joana Viegas
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Ana Filipa Esteves
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Elsa M Cardoso
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.,FCS-Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.,Escola Superior da Saúde, IPG-Instituto Politécnico da Guarda, Guarda, Portugal
| | - Fernando A Arosa
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.,FCS-Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Marco Vitale
- DiMeC-Department of Medicine & Surgery, University of Parma, Parma, Italy.,FoRST-Fondazione per la Ricerca Scientifica Termale, Rome, Italy
| | - Luís Taborda-Barata
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.,NuESA-Health & Environment Study Group, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.,Department of Immunoallergology, CHUCB-Cova da Beira University Hospital Centre, Covilhã, Portugal
| |
Collapse
|
31
|
Revez JA, Killian KJ, O'Byrne PM, Boulet LP, Upham JW, Gauvreau GM, Ferreira MAR. Sputum cytology during late-phase responses to inhalation challenge with different allergens. Allergy 2018; 73:1470-1478. [PMID: 29337345 DOI: 10.1111/all.13415] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND In mouse models of allergic asthma, exposure to different allergens can trigger distinct inflammatory subtypes in the airways. We investigated whether this observation extends to humans. METHODS We compared the frequency of sputum inflammatory subtypes between mild allergic asthma subjects (n = 129) exposed to different allergens in inhalation challenge tests. These tests were performed using a standardized protocol as part of clinical trials of experimental treatments for asthma, prior to drug randomization. Five allergen types were represented: the house dust mites Dermatophagoides pteronyssinus and Dermatophagoides farinae, ragweed, grass, and cat. RESULTS Of 118 individuals with a sputum sample collected before allergen challenge (baseline), 45 (38%) had paucigranulocytic, 51 (43%) eosinophilic, 11 (9%) neutrophilic, and 11 (9%) mixed granulocytic sputum. Of note, most individuals with baseline paucigranulocytic sputum developed eosinophilic (48%) or mixed granulocytic (43%) sputum 7 hours after allergen challenge, highlighting the dynamic nature of sputum inflammatory subtype in asthma. Overall, there was no difference in the frequency of sputum inflammatory subtypes following challenge with different allergen types. Similar results were observed at 24 hours after allergen challenge. CONCLUSIONS Unlike reported in mice, in humans the sputum inflammatory subtype observed after an allergen-induced asthma exacerbation is unlikely to be influenced by the type of allergen used.
Collapse
Affiliation(s)
- J. A. Revez
- QIMR Berghofer Medical Research Institute; Brisbane QLD Australia
| | - K. J. Killian
- Division of Respirology; Department of Medicine; McMaster University; Hamilton ON Canada
| | - P. M. O'Byrne
- Division of Respirology; Department of Medicine; McMaster University; Hamilton ON Canada
| | - L.-P. Boulet
- Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval; Quebec City Canada
| | - J. W. Upham
- Translational Research Institute; University of Queensland; Brisbane QLD Australia
| | - G. M. Gauvreau
- Division of Respirology; Department of Medicine; McMaster University; Hamilton ON Canada
| | | |
Collapse
|
32
|
Szabo C, Papapetropoulos A. International Union of Basic and Clinical Pharmacology. CII: Pharmacological Modulation of H 2S Levels: H 2S Donors and H 2S Biosynthesis Inhibitors. Pharmacol Rev 2017; 69:497-564. [PMID: 28978633 PMCID: PMC5629631 DOI: 10.1124/pr.117.014050] [Citation(s) in RCA: 304] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Over the last decade, hydrogen sulfide (H2S) has emerged as an important endogenous gasotransmitter in mammalian cells and tissues. Similar to the previously characterized gasotransmitters nitric oxide and carbon monoxide, H2S is produced by various enzymatic reactions and regulates a host of physiologic and pathophysiological processes in various cells and tissues. H2S levels are decreased in a number of conditions (e.g., diabetes mellitus, ischemia, and aging) and are increased in other states (e.g., inflammation, critical illness, and cancer). Over the last decades, multiple approaches have been identified for the therapeutic exploitation of H2S, either based on H2S donation or inhibition of H2S biosynthesis. H2S donation can be achieved through the inhalation of H2S gas and/or the parenteral or enteral administration of so-called fast-releasing H2S donors (salts of H2S such as NaHS and Na2S) or slow-releasing H2S donors (GYY4137 being the prototypical compound used in hundreds of studies in vitro and in vivo). Recent work also identifies various donors with regulated H2S release profiles, including oxidant-triggered donors, pH-dependent donors, esterase-activated donors, and organelle-targeted (e.g., mitochondrial) compounds. There are also approaches where existing, clinically approved drugs of various classes (e.g., nonsteroidal anti-inflammatories) are coupled with H2S-donating groups (the most advanced compound in clinical trials is ATB-346, an H2S-donating derivative of the non-steroidal anti-inflammatory compound naproxen). For pharmacological inhibition of H2S synthesis, there are now several small molecule compounds targeting each of the three H2S-producing enzymes cystathionine-β-synthase (CBS), cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase. Although many of these compounds have their limitations (potency, selectivity), these molecules, especially in combination with genetic approaches, can be instrumental for the delineation of the biologic processes involving endogenous H2S production. Moreover, some of these compounds (e.g., cell-permeable prodrugs of the CBS inhibitor aminooxyacetate, or benserazide, a potentially repurposable CBS inhibitor) may serve as starting points for future clinical translation. The present article overviews the currently known H2S donors and H2S biosynthesis inhibitors, delineates their mode of action, and offers examples for their biologic effects and potential therapeutic utility.
Collapse
Affiliation(s)
- Csaba Szabo
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, Texas (C.S.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece (A.P.); and Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| | - Andreas Papapetropoulos
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, Texas (C.S.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece (A.P.); and Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| |
Collapse
|
33
|
Bazhanov N, Ansar M, Ivanciuc T, Garofalo RP, Casola A. Hydrogen Sulfide: A Novel Player in Airway Development, Pathophysiology of Respiratory Diseases, and Antiviral Defenses. Am J Respir Cell Mol Biol 2017; 57:403-410. [PMID: 28481637 PMCID: PMC5650090 DOI: 10.1165/rcmb.2017-0114tr] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/04/2017] [Indexed: 12/28/2022] Open
Abstract
Hydrogen sulfide (H2S) is a biologically relevant signaling molecule in mammals. Along with the volatile substances nitric oxide (NO) and carbon monoxide (CO), H2S is defined as a gasotransmitter. It plays a physiological role in a variety of functions, including synaptic transmission, vascular tone, angiogenesis, inflammation, and cellular signaling. The generation of H2S is catalyzed by cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE), and 3-mercaptopyruvate sulfurtransferase (3-MST). The expression of CBS and CSE is tissue specific, with CBS being expressed predominantly in the brain, and CSE in peripheral tissues, including lungs. CSE expression and activity are developmentally regulated, and recent studies suggest that CSE plays an important role in lung alveolarization during fetal development. In the respiratory tract, endogenous H2S has been shown to participate in the regulation of important functions such as airway tone, pulmonary circulation, cell proliferation or apoptosis, fibrosis, oxidative stress, and inflammation. In the past few years, changes in the generation of H2S have been linked to the pathogenesis of a variety of acute and chronic inflammatory lung diseases, including asthma and chronic obstructive pulmonary disease. Recently, our laboratory made the critical discovery that cellular H2S exerts broad-spectrum antiviral activity both in vitro and in vivo, in addition to independent antiinflammatory activity. These findings have important implications for the development of novel therapeutic strategies for viral respiratory infections, as well as other inflammatory lung diseases, especially in light of recent significant efforts to generate controlled-release H2S donors for clinical therapeutic applications.
Collapse
Affiliation(s)
| | | | | | - Roberto P. Garofalo
- Departments of Pediatrics and
- Microbiology and Immunology, and
- Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Texas
| | - Antonella Casola
- Departments of Pediatrics and
- Microbiology and Immunology, and
- Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
34
|
Yang CT, Chen L, Xu S, Day JJ, Li X, Xian M. Recent Development of Hydrogen Sulfide Releasing/Stimulating Reagents and Their Potential Applications in Cancer and Glycometabolic Disorders. Front Pharmacol 2017; 8:664. [PMID: 29018341 PMCID: PMC5623001 DOI: 10.3389/fphar.2017.00664] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 09/06/2017] [Indexed: 12/24/2022] Open
Abstract
As an important endogenous gaseous signaling molecule, hydrogen sulfide (H2S) exerts various effects in the body. A variety of pathological changes, such as cancer, glycometabolic disorders, and diabetes, are associated with altered endogenous levels of H2S, especially decreased. Therefore, the supplement of H2S is of great significance for the treatment of diseases containing the above pathological changes. At present, many efforts have been made to increase the in vivo levels of H2S by administration of gaseous H2S, simple inorganic sulfide salts, sophisticated synthetic slow-releasing controllable H2S donors or materials, and using H2S stimulating agents. In this article, we reviewed the recent development of H2S releasing/stimulating reagents and their potential applications in two common pathological processes including cancer and glycometabolic disorders.
Collapse
Affiliation(s)
- Chun-Tao Yang
- Affiliated Cancer Hospital and Institute, Key Laboratory of Protein Modification and Degradation in School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.,Department of Chemistry, Washington State University, Pullman, WA, United States
| | - Li Chen
- Affiliated Cancer Hospital and Institute, Key Laboratory of Protein Modification and Degradation in School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Shi Xu
- Department of Chemistry, Washington State University, Pullman, WA, United States
| | - Jacob J Day
- Department of Chemistry, Washington State University, Pullman, WA, United States
| | - Xiang Li
- Affiliated Cancer Hospital and Institute, Key Laboratory of Protein Modification and Degradation in School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Ming Xian
- Department of Chemistry, Washington State University, Pullman, WA, United States
| |
Collapse
|
35
|
Abstract
OBJECTIVES There is increasing interest in hydrogen sulfide as a marker of pathologic conditions or predictors of outcome. We speculate that as hydrogen sulfide is a diffusible molecule, if there is an increase in plasma hydrogen sulfide in sepsis, it may accumulate in the alveolar space and be detected in exhaled gas. We wished to determine whether we could detect hydrogen sulfide in exhaled gases of ventilated children and neonates and if the levels changed in sepsis. DESIGN Prospective, observational study. SETTING The study was conducted across three intensive care units, pediatric, neonatal and cardiac in a large tertiary children's hospital. PATIENTS We studied ventilated children and neonates with sepsis, defined by having two or more systemic inflammatory response syndrome criteria and one organ failure or suspected infection. A control group of ventilated non-septic patients was also included. INTERVENTION A portable gas chromatograph (OralChroma; Envin Scientific, Chester, United Kingdom) was used to measure H2S in parts per billion. MEASUREMENTS AND MAIN RESULTS A 1-2 mL sample of expired gas was taken from the endotracheal tube and analyzed. A repeat sample was taken after 30 minutes and a further single daily sample up to a maximum of 5 days or until the patient was extubated. WBC and C-reactive protein were measured around the time of gas sampling. Each group contained 20 subjects. Levels of H2S were significantly higher in septic patients (Mann Whitney U-test; p < 0.0001) and trended to control levels over five days. C- reactive protein levels were also significantly raised (p < 0.001) and mirrored the decrease in H2S levels. CONCLUSION Hydrogen sulfide can be detected in expired pulmonary gases in very low concentrations of parts per billion. Significantly higher levels are seen in septic patients compared with controls. The pattern of response was similar to that of C-reactive protein.
Collapse
|
36
|
Hatziefthimiou A, Stamatiou R. Role of hydrogen sulphide in airways. World J Respirol 2015; 5:152-159. [DOI: 10.5320/wjr.v5.i2.152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/04/2015] [Accepted: 03/09/2015] [Indexed: 02/06/2023] Open
Abstract
The toxicity of hydrogen sulfide (H2S) has been known for a long time, as it is prevalent in the atmosphere. However accumulative data suggest that H2S is also endogenously produced in mammals, including man, and is the third important gas signaling molecule, besides nitric oxide and carbon monoxide. H2S can be produced via non enzymatic pathways, but is mainly synthesized from L-cysteine by the enzymes cystathionine-γ-lyase, cystathionine-β-synthetase, cysteine amino transferase and 3-mercaptopyruvate sulfurtransferase (3MTS). The formation of H2S from D-cysteine via the enzyme D-amino acid oxidase and 3MTS has also been described. Endogenous H2S not only participates in the regulation of physiological functions of the respiratory system, but also seems to contribute to the pathophysiology of airway diseases such as chronic obstructive pulmonary disease, asthma and pulmonary fibrosis, as well as in inflammation, suggesting its possible use as a biomarker for these diseases. This review summarizes the different implications of hydrogen sulfide in the physiology of airways and the pathophysiology of airway diseases.
Collapse
|
37
|
Lim TK, Ko FWS, Thomas PS, Grainge C, Yang IA. Year in review 2014: Chronic obstructive pulmonary disease, asthma and airway biology. Respirology 2015; 20:510-8. [PMID: 25682705 DOI: 10.1111/resp.12488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 01/14/2015] [Indexed: 12/01/2022]
Affiliation(s)
- Tow Keang Lim
- Department of Medicine, National University Hospital, Singapore
| | | | | | | | | |
Collapse
|
38
|
Yuan S, Patel RP, Kevil CG. Working with nitric oxide and hydrogen sulfide in biological systems. Am J Physiol Lung Cell Mol Physiol 2014; 308:L403-15. [PMID: 25550314 DOI: 10.1152/ajplung.00327.2014] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Nitric oxide (NO) and hydrogen sulfide (H2S) are gasotransmitter molecules important in numerous physiological and pathological processes. Although these molecules were first known as environmental toxicants, it is now evident that that they are intricately involved in diverse cellular functions with impact on numerous physiological and pathogenic processes. NO and H2S share some common characteristics but also have unique chemical properties that suggest potential complementary interactions between the two in affecting cellular biochemistry and metabolism. Central among these is the interactions between NO, H2S, and thiols that constitute new ways to regulate protein function, signaling, and cellular responses. In this review, we discuss fundamental biochemical principals, molecular functions, measurement methods, and the pathophysiological relevance of NO and H2S.
Collapse
Affiliation(s)
- Shuai Yuan
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, Louisiana; and
| | - Rakesh P Patel
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Christopher G Kevil
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, Louisiana; and
| |
Collapse
|