1
|
Zubiaur M, Terrón-Camero LC, Gordillo-González F, Andrés-León E, Barroso-del Jesús A, Canet-Antequera LM, Pérez Sánchez-Cañete MM, Martínez-Blanco Á, Domínguez-Pantoja M, Botia-Sánchez M, Pérez-Cabrera S, Bello-Iglesias N, Alcina A, Abadía-Molina AC, Matesanz F, Zumaquero E, Merino R, Sancho J. CD38 deficiency leads to a defective short-lived transcriptomic response to chronic graft-versus-host disease induction, involving purinergic signaling-related genes and distinct transcriptomic signatures associated with lupus. Front Immunol 2025; 16:1441981. [PMID: 39995666 PMCID: PMC11847871 DOI: 10.3389/fimmu.2025.1441981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 01/20/2025] [Indexed: 02/26/2025] Open
Abstract
This study aimed to elucidate the transcriptomic signatures and dysregulated pathways associated with the autoimmune response in Cd38-/- mice compared to wild-type (WT) mice within the bm12 chronic graft-versus-host disease (cGVHD) lupus model. We conducted bulk RNA sequencing on peritoneal exudate cells (PECs) and spleen cells (SPC) at two and four weeks following adoptive cell transfer. We also analyzed cells from healthy, untreated mice. These analyses revealed a sustained upregulation of a transcriptional profile of purinergic receptors and ectonucleotidases in cGVHD WT PECs, which displayed a coordinated expression with several type I interferon-stimulated genes (ISGs) and with key molecules involved in the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) signaling pathway, two hallmarks in the lupus pathology. A second purinergic receptor transcriptomic profile, which included P2rx7 and P2rx4, showed a coordinated gene expression of the components of the NLRP3 inflammasome with its potential activators. These processes were transcriptionally less active in cGVHD Cd38-/- PECs than in WT PECs. We have also shown evidence of a distinct enrichment in pathways signatures that define processes such as Ca2+ ion homeostasis, cell division, phagosome, autophagy, senescence, cytokine/cytokine receptor interactions, Th17 and Th1/Th2 cell differentiation in Cd38-/- versus WT samples, which reflected the milder inflammatory and autoimmune response elicited in Cd38-/- mice relative to WT counterparts in response to the allogeneic challenge. Last, we have shown an intense metabolic reprogramming toward oxidative phosphorylation in PECs and SPC from cGVHD WT mice, which may reflect an increased cellular demand for oxygen consumption, in contrast to PECs and SPC from cGVHD Cd38-/- mice, which showed a short-lived metabolic effect at the transcriptomic level. Overall, these findings support the pro-inflammatory and immunomodulatory role of CD38 during the development of the cGVHD-lupus disease.
Collapse
Affiliation(s)
- Mercedes Zubiaur
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine “López-Neyra” (IPBLN), Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | | | | | | | | | | | | | - África Martínez-Blanco
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine “López-Neyra” (IPBLN), Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Marilú Domínguez-Pantoja
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine “López-Neyra” (IPBLN), Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - María Botia-Sánchez
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine “López-Neyra” (IPBLN), Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Sonia Pérez-Cabrera
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine “López-Neyra” (IPBLN), Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Nerea Bello-Iglesias
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine “López-Neyra” (IPBLN), Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Antonio Alcina
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine “López-Neyra” (IPBLN), Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Ana-Clara Abadía-Molina
- Department of Biochemistry, Molecular Biology and Immunology III, School of Medicine, University of Granada (UGR), Granada, Spain
| | - Fuencisla Matesanz
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine “López-Neyra” (IPBLN), Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Esther Zumaquero
- Department of Microbiology, University of Alabama at Birmingham (UAB), Birmingham, AL, United States
| | - Ramón Merino
- Department of Cell and Molecular Signaling, Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), University of Cantabria (UC) and CSIC, Santander, Spain
| | - Jaime Sancho
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine “López-Neyra” (IPBLN), Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| |
Collapse
|
2
|
Scholl JN, Weber AF, Dias CK, Lima VP, Grun LK, Zambonin D, Anzolin E, Dos Santos Dias WW, Kus WP, Barbé-Tuana F, Battastini AMO, Worm PV, Figueiró F. Characterization of purinergic signaling in tumor-infiltrating lymphocytes from lower- and high-grade gliomas. Purinergic Signal 2024; 20:47-64. [PMID: 36964277 PMCID: PMC10828327 DOI: 10.1007/s11302-023-09931-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/06/2023] [Indexed: 03/26/2023] Open
Abstract
Malignant gliomas are highly heterogeneous glia-derived tumors that present an aggressive and invasive nature, with a dismal prognosis. The multi-dimensional interactions between glioma cells and other tumor microenvironment (TME) non-tumoral components constitute a challenge to finding successful treatment strategies. Several molecules, such as extracellular purines, participate in signaling events and support the immunosuppressive TME of glioma patients. The purinergic signaling and the ectoenzymes network involved in the metabolism of these extracellular nucleotides are still unexplored in the glioma TME, especially in lower-grade gliomas (LGG). Also, differences between IDH-mutant (IDH-Mut) versus wild-type (IDH-WT) gliomas are still unknown in this context. For the first time, to our knowledge, this study characterizes the TME of LGG, high-grade gliomas (HGG) IDH-Mut, and HGG IDH-WT patients regarding purinergic ectoenzymes and P1 receptors, focusing on tumor-infiltrating lymphocytes. Here, we show that ectoenzymes from both canonical and non-canonical pathways are increased in the TME when compared to the peripheral blood. We hypothesize this enhancement supports extracellular adenosine generation, hence increasing TME immunosuppression.
Collapse
Affiliation(s)
- Juliete Nathali Scholl
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | - Augusto Ferreira Weber
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | - Camila Kehl Dias
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | - Vinícius Pierdoná Lima
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | - Lucas Kich Grun
- Programa de Pós-Graduação Em Pediatria E Saúde da Criança, Escola de Medicina, PUCRS, Porto Alegre, RS, Brazil
| | - Diego Zambonin
- Departamento de Neurocirurgia, Hospital Cristo Redentor, Porto Alegre, Brazil
| | - Eduardo Anzolin
- Departamento de Neurocirurgia, Hospital Cristo Redentor, Porto Alegre, Brazil
| | | | | | - Florencia Barbé-Tuana
- Programa de Pós-Graduação Em Biologia Celular E Molecular, Escola de Ciências da Saúde E da Vida, PUCRS, Porto Alegre, RS, Brazil
| | - Ana Maria Oliveira Battastini
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | - Paulo Valdeci Worm
- Departamento de Neurocirurgia, Hospital Cristo Redentor, Porto Alegre, Brazil
- Departmento de Cirurgia, Universidade Federal de Ciências da Saúde de Porto Alegre, Rio Grande Do Sul, Porto Alegre, Brazil
| | - Fabrício Figueiró
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil.
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil.
| |
Collapse
|
3
|
Tao Y, Wang J, Lyu X, Li N, Lai D, Liu Y, Zhang X, Li P, Cao S, Zhou X, Zhao Y, Ma L, Tao T, Feng Z, Li X, Yang F, Zhou H. Comprehensive Proteomics Analysis Identifies CD38-Mediated NAD + Decline Orchestrating Renal Fibrosis in Pediatric Patients With Obstructive Nephropathy. Mol Cell Proteomics 2023; 22:100510. [PMID: 36804530 PMCID: PMC10025283 DOI: 10.1016/j.mcpro.2023.100510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/28/2023] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Obstructive nephropathy is one of the leading causes of kidney injury and renal fibrosis in pediatric patients. Although considerable advances have been made in understanding the pathophysiology of obstructive nephropathy, most of them were based on animal experiments and a comprehensive understanding of obstructive nephropathy in pediatric patients at the molecular level remains limited. Here, we performed a comparative proteomics analysis of obstructed kidneys from pediatric patients with ureteropelvic junction obstruction and healthy kidney tissues. Intriguingly, the proteomics revealed extensive metabolic reprogramming in kidneys from individuals with ureteropelvic junction obstruction. Moreover, we uncovered the dysregulation of NAD+ metabolism and NAD+-related metabolic pathways, including mitochondrial dysfunction, the Krebs cycle, and tryptophan metabolism, which led to decreased NAD+ levels in obstructed kidneys. Importantly, the major NADase CD38 was strongly induced in human and experimental obstructive nephropathy. Genetic deletion or pharmacological inhibition of CD38 as well as NAD+ supplementation significantly recovered NAD+ levels in obstructed kidneys and reduced obstruction-induced renal fibrosis, partially through the mechanisms of blunting the recruitment of immune cells and NF-κB signaling. Thus, our work not only provides an enriched resource for future investigations of obstructive nephropathy but also establishes CD38-mediated NAD+ decline as a potential therapeutic target for obstruction-induced renal fibrosis.
Collapse
Affiliation(s)
- Yuandong Tao
- Department of Pediatric Urology, Senior Department of Pediatrics, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China; National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China
| | - Jifeng Wang
- Laboratory of Proteomics & Key Laboratory of Protein and Peptide Pharmaceuticals Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xuexue Lyu
- Medical School of Chinese PLA, Beijing, China
| | - Na Li
- Laboratory of Proteomics & Key Laboratory of Protein and Peptide Pharmaceuticals Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Dong Lai
- Department of Urology, The Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yuanyuan Liu
- Department of Dermatology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xingyue Zhang
- Department of Dermatology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Pin Li
- Department of Pediatric Urology, Senior Department of Pediatrics, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China; National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China
| | - Shouqing Cao
- Department of Urology, The Third Medical Center of Chinese PLA General Hospital, Beijing, China; College of Graduate, Hebei North University, Zhangjiakou, China
| | - Xiaoguang Zhou
- Department of Pediatric Urology, Senior Department of Pediatrics, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yang Zhao
- Department of Pediatric Urology, Senior Department of Pediatrics, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lifei Ma
- Department of Pediatric Urology, Senior Department of Pediatrics, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Tian Tao
- Department of Pediatric Urology, Senior Department of Pediatrics, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhichun Feng
- National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China
| | - Xiubin Li
- Department of Urology, The Third Medical Center of Chinese PLA General Hospital, Beijing, China.
| | - Fuquan Yang
- Laboratory of Proteomics & Key Laboratory of Protein and Peptide Pharmaceuticals Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Huixia Zhou
- Department of Pediatric Urology, Senior Department of Pediatrics, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China; National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China; Medical School of Chinese PLA, Beijing, China.
| |
Collapse
|
4
|
Sharma A, Chabloz S, Lapides RA, Roider E, Ewald CY. Potential Synergistic Supplementation of NAD+ Promoting Compounds as a Strategy for Increasing Healthspan. Nutrients 2023; 15:nu15020445. [PMID: 36678315 PMCID: PMC9861325 DOI: 10.3390/nu15020445] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Disrupted biological function, manifesting through the hallmarks of aging, poses one of the largest threats to healthspan and risk of disease development, such as metabolic disorders, cardiovascular ailments, and neurodegeneration. In recent years, numerous geroprotectors, senolytics, and other nutraceuticals have emerged as potential disruptors of aging and may be viable interventions in the immediate state of human longevity science. In this review, we focus on the decrease in nicotinamide adenine dinucleotide (NAD+) with age and the supplementation of NAD+ precursors, such as nicotinamide mononucleotide (NMN) or nicotinamide riboside (NR), in combination with other geroprotective compounds, to restore NAD+ levels present in youth. Furthermore, these geroprotectors may enhance the efficacy of NMN supplementation while concurrently providing their own numerous health benefits. By analyzing the prevention of NAD+ degradation through the inhibition of CD38 or supporting protective downstream agents of SIRT1, we provide a potential framework of the CD38/NAD+/SIRT1 axis through which geroprotectors may enhance the efficacy of NAD+ precursor supplementation and reduce the risk of age-related diseases, thereby potentiating healthspan in humans.
Collapse
Affiliation(s)
- Arastu Sharma
- Laboratory of Extracellular Matrix Regeneration, Department of Health Sciences and Technology, Institute of Translational Medicine, ETH Zürich, 8603 Schwerzenbach, Switzerland
- AVEA Life AG, Bahnhofplatz, 6300 Zug, Switzerland
| | | | - Rebecca A. Lapides
- Department of Dermatology, University Hospital of Basel, 4031 Basel, Switzerland
- Robert Larner, MD College of Medicine at the University of Vermont, Burlington, VT 05405, USA
| | - Elisabeth Roider
- Department of Dermatology, University Hospital of Basel, 4031 Basel, Switzerland
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
- Maximon AG, Bahnhofplatz, 6300 Zug, Switzerland
| | - Collin Y. Ewald
- Laboratory of Extracellular Matrix Regeneration, Department of Health Sciences and Technology, Institute of Translational Medicine, ETH Zürich, 8603 Schwerzenbach, Switzerland
- Correspondence:
| |
Collapse
|
5
|
Zeng F, Zhang J, Jin X, Liao Q, Chen Z, Luo G, Zhou Y. Effect of CD38 on B-cell function and its role in the diagnosis and treatment of B-cell-related diseases. J Cell Physiol 2022; 237:2796-2807. [PMID: 35486480 DOI: 10.1002/jcp.30760] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/28/2022] [Accepted: 04/20/2022] [Indexed: 11/09/2022]
Abstract
CD38 is a multifunctional receptor and enzyme present on the surface of B lymphocytes, which can induce B lymphocytes proliferation and apoptosis by crosslinking related cytokines to affect the function of B cells, thus affecting immune regulation in humans and promoting tumorigenesis. The level of CD38 expression in B cells has become an important factor in the clinical diagnosis, treatment, and prognosis of malignant tumors and other related diseases. Therefore, studying the relationship between CD38 expression on the surface of B cells and the occurrence of the disease is of great significance for elucidating its association with disease pathogenesis and the clinical targeted therapy. In this paper, we review the effects of CD38 on B-cell activation, proliferation, and differentiation, and elaborate the functional role and mechanism of CD38 expression on B cells. We also summarize the relationship between the level of CD38 expression on the surface of B cells and the diagnosis, treatment, and prognosis of various diseases, as well as the potential use of targeted CD38 treatment for related diseases. This will provide an important theoretical basis for the scientific research and clinical diagnosis and treatment of B-cell-related diseases.
Collapse
Affiliation(s)
- Feng Zeng
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jiani Zhang
- Senile Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xi Jin
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Zhifang Chen
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Gengqiu Luo
- Department of Pathology, Xiangya Hospital, Basic School of Medicine, Central South University, Changsha, Hunan, China
| | - Yanhong Zhou
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
6
|
Barrientos-Robledo SG, Cebada-Ruiz JA, Rodríguez-Alba JC, Baltierra-Uribe SL, Díaz Y Orea MA, Romero-Ramírez H. CD38 a biomarker and therapeutic target in non-hematopoietic tumors. Biomark Med 2022; 16:387-400. [PMID: 35195042 DOI: 10.2217/bmm-2021-0575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The type II transmembrane glycoprotein CD38 has recently been implicated in regulating metabolism and the pathogenesis of multiple conditions, including aging, inflammation and cancer. CD38 is overexpressed in several tumor cells and microenvironment tumoral cells, associated to migration, angiogenesis, cell invasion and progression of the disease. Thus, CD38 has been used as a progression marker for different cancer types as well as in immunotherapy. This review focuses on describing the involvement of CD38 in various non-hematopoietic cancers.
Collapse
Affiliation(s)
- Susana G Barrientos-Robledo
- Laboratorio de Inmunología Experimental, Benemérita Universidad Autónoma de Puebla, Facultad de Medicina, Puebla, Mexico
| | - Jorge A Cebada-Ruiz
- Laboratorio de Inmunología Experimental, Benemérita Universidad Autónoma de Puebla, Facultad de Medicina, Puebla, Mexico
| | - Juan C Rodríguez-Alba
- Unidad de Citometría de Flujo, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | - Shantal L Baltierra-Uribe
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Maria A Díaz Y Orea
- Laboratorio de Inmunología Experimental, Benemérita Universidad Autónoma de Puebla, Facultad de Medicina, Puebla, Mexico
| | - Héctor Romero-Ramírez
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados, Mexico City, Mexico
| |
Collapse
|
7
|
CD38 Correlates with an Immunosuppressive Treg Phenotype in Lupus-Prone Mice. Int J Mol Sci 2021; 22:ijms222111977. [PMID: 34769406 PMCID: PMC8584421 DOI: 10.3390/ijms222111977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023] Open
Abstract
CD38 is a transmembrane glycoprotein expressed by T-cells. It has been reported that patients with systemic lupus erythematosus (SLE) showed increased CD38+CD25+ T-cells correlating with immune activation and clinical signs. Contrariwise, CD38 deficiency in murine models has shown enhanced autoimmunity development. Recent studies have suggested that CD38+ regulatory T-cells are more suppressive than CD38− regulatory T-cells. Thus, we have suggested that CD38 overexpression in SLE patients could play a role in regulating immune activation cells instead of enhancing it. This study found a correlation between CD38 with FoxP3 expression and immunosuppressive molecules (CD69, IL-10, CTLA-4, and PD-1) in T-cells from lupus-prone mice (B6.MRL-Faslpr/J). Additionally, B6.MRL-Faslpr/J mice showed a decreased proportion of CD38+ Treg cells regarding wild-type mice (WT). Furthermore, Regulatory T-Cells (Treg cells) from CD38-/- mice showed impairment in expressing immunosuppressive molecules and proliferation after stimulation through the T-cell receptor (TCR). Finally, we demonstrated an increased ratio of IFN-γ/IL-10 secretion in CD38-/- splenocytes stimulated with anti-CD3 compared with the WT. Altogether, our data suggest that CD38 represents an element in maintaining activated and proliferative Treg cells. Consequently, CD38 could have a crucial role in immune tolerance, preventing SLE development through Treg cells.
Collapse
|
8
|
Regulatory B Cells Involvement in Autoimmune Phenomena Occurring in Pediatric Graves' Disease Patients. Int J Mol Sci 2021; 22:ijms222010926. [PMID: 34681587 PMCID: PMC8536076 DOI: 10.3390/ijms222010926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/23/2021] [Accepted: 10/05/2021] [Indexed: 12/15/2022] Open
Abstract
Graves’s disease is the most common type of autoimmune hyperthyroidism. Numerous studies indicate different factors contributing to the onset of the disease. Despite years of research, the exact pathomechanism of Graves’ disease still remains unresolved, especially in the context of immune response. B cells can play a dual role in autoimmune reactions, on the one hand, as a source of autoantibody mainly targeted in the thyroid hormone receptor (TSHR) and, on the other, by suppressing the activity of proinflammatory cells (as regulatory B cells). To date, data on the contribution of Bregs in Graves’ pathomechanism, especially in children, are scarce. Here, we investigated the frequencies of Bregs before and during a methimazole therapy approach. We reported higher Foxp3+ and IL-10+ Breg levels with CD38- phenotype and reduced numbers of CD38 + Foxp3 + IL-10+ in pediatric Graves’ patients. In addition, selected Breg subsets were found to correlate with TSH and TRAb levels significantly. Noteworthy, certain subpopulations of Bregs were demonstrated as prognostic factors for methimazole therapy outcome. Our data demonstrate the crucial role of Bregs and their potential use as a biomarker in Graves’ disease management.
Collapse
|
9
|
Martínez-Blanco Á, Domínguez-Pantoja M, Botía-Sánchez M, Pérez-Cabrera S, Bello-Iglesias N, Carrillo-Rodríguez P, Martin-Morales N, Lario-Simón A, Pérez-Sánchez-Cañete MM, Montosa-Hidalgo L, Guerrero-Fernández S, Longobardo-Polanco VM, Redondo-Sánchez S, Cornet-Gomez A, Torres-Sáez M, Fernández-Ibáñez A, Terrón-Camero L, Andrés-León E, O'Valle F, Merino R, Zubiaur M, Sancho J. CD38 Deficiency Ameliorates Chronic Graft- Versus-Host Disease Murine Lupus via a B-Cell-Dependent Mechanism. Front Immunol 2021; 12:713697. [PMID: 34504495 PMCID: PMC8421681 DOI: 10.3389/fimmu.2021.713697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 07/30/2021] [Indexed: 11/22/2022] Open
Abstract
The absence of the mouse cell surface receptor CD38 in Cd38−/− mice suggests that this receptor acts as a positive regulator of inflammatory and autoimmune responses. Here, we report that, in the context of the chronic graft-versus-host disease (cGVHD) lupus inducible model, the transfer of B6.C-H2bm12/KhEg(bm12) spleen cells into co-isogenic Cd38−/− B6 mice causes milder lupus-like autoimmunity with lower levels of anti-ssDNA autoantibodies than the transfer of bm12 spleen cells into WT B6 mice. In addition, significantly lower percentages of Tfh cells, as well as GC B cells, plasma cells, and T-bet+CD11chi B cells, were observed in Cd38−/− mice than in WT mice, while the expansion of Treg cells and Tfr cells was normal, suggesting that the ability of Cd38−/− B cells to respond to allogeneic help from bm12 CD4+ T cells is greatly diminished. The frequencies of T-bet+CD11chi B cells, which are considered the precursors of the autoantibody-secreting cells, correlate with anti-ssDNA autoantibody serum levels, IL-27, and sCD40L. Proteomics profiling of the spleens from WT cGVHD mice reflects a STAT1-driven type I IFN signature, which is absent in Cd38−/− cGVHD mice. Kidney, spleen, and liver inflammation was mild and resolved faster in Cd38−/− cGVHD mice than in WT cGVHD mice. We conclude that CD38 in B cells functions as a modulator receptor that controls autoimmune responses.
Collapse
Affiliation(s)
- África Martínez-Blanco
- Department of Cellular Biology and Immunology, Institute of Parasitology and Biomedicine López-Neyra (IPBLN), Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Marilú Domínguez-Pantoja
- Department of Cellular Biology and Immunology, Institute of Parasitology and Biomedicine López-Neyra (IPBLN), Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - María Botía-Sánchez
- Department of Cellular Biology and Immunology, Institute of Parasitology and Biomedicine López-Neyra (IPBLN), Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Sonia Pérez-Cabrera
- Department of Cellular Biology and Immunology, Institute of Parasitology and Biomedicine López-Neyra (IPBLN), Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Nerea Bello-Iglesias
- Department of Cellular Biology and Immunology, Institute of Parasitology and Biomedicine López-Neyra (IPBLN), Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Paula Carrillo-Rodríguez
- Department of Cellular Biology and Immunology, Institute of Parasitology and Biomedicine López-Neyra (IPBLN), Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | | | | | | | | | | | | | | | - Alberto Cornet-Gomez
- Department of Cellular Biology and Immunology, Institute of Parasitology and Biomedicine López-Neyra (IPBLN), Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - María Torres-Sáez
- Department of Cellular Biology and Immunology, Institute of Parasitology and Biomedicine López-Neyra (IPBLN), Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | | | | | | | - Francisco O'Valle
- Department of Pathology, Faculty of Medicine, University of Granada (UGR), Granada, Spain
| | - Ramón Merino
- Department of Molecular and Cellular Signalling, Instituto de Biomedicina y de Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas-Universidad de Cantabria (CSIC-UC), Santander, Spain
| | - Mercedes Zubiaur
- Department of Cellular Biology and Immunology, Institute of Parasitology and Biomedicine López-Neyra (IPBLN), Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Jaime Sancho
- Department of Cellular Biology and Immunology, Institute of Parasitology and Biomedicine López-Neyra (IPBLN), Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| |
Collapse
|
10
|
Wang H, Fang K, Yan W, Chang X. T-Cell Immune Imbalance in Rheumatoid Arthritis Is Associated with Alterations in NK Cells and NK-Like T Cells Expressing CD38. J Innate Immun 2021; 14:148-166. [PMID: 34428762 DOI: 10.1159/000516642] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 04/18/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND CD38+ NK (CD3- CD16+ CD38+ CD56+) cells were increased in rheumatoid arthritis (RA), which suppressed Treg cell differentiation. This study explored how CD38+ NK cells regulated CD4+ T-cell differentiation into Treg cells in RA. METHODS Proportions of CD38+ NK cells and their counterpart CD38+ NK-like T (CD3+ CD16+ CD38+ CD56+) cells were measured in RA and rats with collagen-induced arthritis (CIA). CD38+ NK cells and CD38+ NK-like T cells were cocultured with CD4+ T cells, respectively. RESULTS A significantly increased proportion of CD38+ NK cells and a decreased proportion of CD38+ NK-like T cells were detected in RA and CIA blood and synovial fluids. When CD4+ T cells were cocultured with CD38+ NK cells, mammalian target of rapamycin (mTOR) signaling was activated, and Th1/Th2 and Th17/Treg ratios were increased. When CD38+ NK cells were pretreated with anti-CD38 antibody, Treg cell proportion was increased, and Th1/Th2 and Th17/Treg ratios were decreased. CD38+ NK-like T cells showed the opposite results. CD38+ NK cells and CD38+ NK-like-T cells activated differential gene expressions and pathways in CD4+ T cells and initiated Th1 and Th2 cell differentiation by differential gene nodes. CONCLUSIONS This study suggest that the high CD38+ NK cell proportion and low CD38+ NK-like T cell proportion in RA suppress Treg cell differentiation by stimulating mTOR signaling in CD4+ T cells, which consequentially disturbs the immune tolerance.
Collapse
Affiliation(s)
- Hongxing Wang
- Medical Research Center of The Affiliated Hospital of Qingdao University, Qingdao, China.,Clinical Laboratory of Qilu Hospital, Shandong University, Jinan, China
| | - Kehua Fang
- Clinical Laboratory of The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Weining Yan
- Joint Surgery Department of The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaotian Chang
- Medical Research Center of The Affiliated Hospital of Qingdao University, Qingdao, China.,Qingdao Engineering Technology Center for Major Disease Marker, Qingdao, China
| |
Collapse
|
11
|
CD38 and Regulation of the Immune Response Cells in Cancer. JOURNAL OF ONCOLOGY 2021; 2021:6630295. [PMID: 33727923 PMCID: PMC7936891 DOI: 10.1155/2021/6630295] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 12/26/2022]
Abstract
Cancer is a leading cause of death worldwide. Understanding the functional mechanisms associated with metabolic reprogramming, which is a typical feature of cancer cells, is key to effective therapy. CD38, primarily a NAD + glycohydrolase and ADPR cyclase, is a multifunctional transmembrane protein whose abnormal overexpression in a variety of tumor types is associated with cancer progression. It is linked to VEGFR2 mediated angiogenesis and immune suppression as it favors the recruitment of suppressive immune cells like Tregs and myeloid-derived suppressor cells, thus helping immune escape. CD38 is expressed in M1 macrophages and in neutrophil and T cell-mediated immune response and is associated with IFNγ-mediated suppressor activity of immune responses. Targeting CD38 with anti-CD38 monoclonal antibodies in hematological malignancies has shown excellent results. Bearing that in mind, targeting CD38 in other nonhematological cancer types, especially carcinomas, which are of epithelial origin with specific anti-CD38 antibodies alone or in combination with immunomodulatory drugs, is an interesting option that deserves profound consideration.
Collapse
|
12
|
Luo Y, Luo F, Zhang K, Wang S, Zhang H, Yang X, Shang W, Wang J, Wang Z, Pang X, Feng Y, Liu L, Xie H, Feng G, Li J. Elevated Circulating IL-10 Producing Breg, but Not Regulatory B Cell Levels, Restrain Antibody-Mediated Rejection After Kidney Transplantation. Front Immunol 2021; 11:627496. [PMID: 33584730 PMCID: PMC7877339 DOI: 10.3389/fimmu.2020.627496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/07/2020] [Indexed: 11/13/2022] Open
Abstract
Background Antibody-mediated rejection (AMR) occupies a major position for chronic rejection after kidney transplantation. Regulatory B cell (Breg) has been reported to have an inhibitory immune function, which contributes to the resistance for AMR. Methods A nested case–control study for nine healthy donors, 25 stable (ST) patients, and 18 AMR patients was performed to determine the type of Breg in maintaining immune tolerance and preventing AMR. Results Compared to the ST group, circulating interleukin (IL)-10+ Bregs, but not Bregs, significantly decreased. The receiver operating characteristic (ROC) curve analysis revealed that rather than the circulating Bregs, decreased circulating IL-10+ Breg levels were positively associated with AMR. However, kidney B cell and IL-10 infiltration was significantly increased in the AMR group with high expression of C-X-C motif chemokine 13 (CXCL13). In addition, circulating IL-10+ Bregs, rather than Bregs, remained higher than those at pre-operation, during the 90-day post-operation in immune homeostasis. Conclusion The circulating IL-10+ Breg levels are more appropriate measures for assessing the resistance of AMR after kidney transplantation.
Collapse
Affiliation(s)
- Yongsheng Luo
- Kidney Transplantation Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Feifei Luo
- Biotherapy Research Center, Fudan University, Shanghai, China.,Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Kuanxin Zhang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shilei Wang
- Kidney Transplantation Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haojie Zhang
- Kidney Transplantation Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xianlei Yang
- Kidney Transplantation Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenjun Shang
- Kidney Transplantation Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junxiang Wang
- Kidney Transplantation Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhigang Wang
- Kidney Transplantation Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinlu Pang
- Kidney Transplantation Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yonghua Feng
- Kidney Transplantation Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lei Liu
- Kidney Transplantation Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongchang Xie
- Kidney Transplantation Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guiwen Feng
- Kidney Transplantation Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinfeng Li
- Kidney Transplantation Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
13
|
Piedra-Quintero ZL, Wilson Z, Nava P, Guerau-de-Arellano M. CD38: An Immunomodulatory Molecule in Inflammation and Autoimmunity. Front Immunol 2020; 11:597959. [PMID: 33329591 PMCID: PMC7734206 DOI: 10.3389/fimmu.2020.597959] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022] Open
Abstract
CD38 is a molecule that can act as an enzyme, with NAD-depleting and intracellular signaling activity, or as a receptor with adhesive functions. CD38 can be found expressed either on the cell surface, where it may face the extracellular milieu or the cytosol, or in intracellular compartments, such as endoplasmic reticulum, nuclear membrane, and mitochondria. The main expression of CD38 is observed in hematopoietic cells, with some cell-type specific differences between mouse and human. The role of CD38 in immune cells ranges from modulating cell differentiation to effector functions during inflammation, where CD38 may regulate cell recruitment, cytokine release, and NAD availability. In line with a role in inflammation, CD38 appears to also play a critical role in inflammatory processes during autoimmunity, although whether CD38 has pathogenic or regulatory effects varies depending on the disease, immune cell, or animal model analyzed. Given the complexity of the physiology of CD38 it has been difficult to completely understand the biology of this molecule during autoimmune inflammation. In this review, we analyze current knowledge and controversies regarding the role of CD38 during inflammation and autoimmunity and novel molecular tools that may clarify current gaps in the field.
Collapse
Affiliation(s)
- Zayda L. Piedra-Quintero
- School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Zachary Wilson
- School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
- Biomedical Science Undergraduate Program, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Porfirio Nava
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados (CINVESTAV), México City, México
| | - Mireia Guerau-de-Arellano
- School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, United States
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
- Department of Neuroscience, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
14
|
Ran Z, Yue-Bei L, Qiu-Ming Z, Huan Y. Regulatory B Cells and Its Role in Central Nervous System Inflammatory Demyelinating Diseases. Front Immunol 2020; 11:1884. [PMID: 32973780 PMCID: PMC7468432 DOI: 10.3389/fimmu.2020.01884] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/13/2020] [Indexed: 12/15/2022] Open
Abstract
Regulatory B (Breg) cells represent a population of suppressor B cells that participate in immunomodulatory processes and inhibition of excessive inflammation. The regulatory function of Breg cells have been demonstrated in mice and human with inflammatory diseases, cancer, after transplantation, and particularly in autoinflammatory disorders. In order to suppress inflammation, Breg cells produce anti-inflammatory mediators, induce death ligand-mediated apoptosis, and regulate many kinds of immune cells such as suppressing the proliferation and differentiation of effector T cell and increasing the number of regulatory T cells. Central nervous system Inflammatory demyelinating diseases (CNS IDDs) are a heterogeneous group of disorders, which occur against the background of an acute or chronic inflammatory process. With the advent of monoclonal antibodies directed against B cells, breakthroughs have been made in the treatment of CNS IDDs. Therefore, the number and function of B cells in IDDs have attracted attention. Meanwhile, increasing number of studies have confirmed that Breg cells play a role in alleviating autoimmune diseases, and treatment with Breg cells has also been proposed as a new therapeutic direction. In this review, we focus on the understanding of the development and function of Breg cells and on the diversification of Breg cells in CNS IDDs.
Collapse
Affiliation(s)
- Zhou Ran
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Luo Yue-Bei
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zeng Qiu-Ming
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yang Huan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
15
|
Calabretta E, Carlo-Stella C. The Many Facets of CD38 in Lymphoma: From Tumor-Microenvironment Cell Interactions to Acquired Resistance to Immunotherapy. Cells 2020; 9:E802. [PMID: 32225002 PMCID: PMC7226059 DOI: 10.3390/cells9040802] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/19/2020] [Accepted: 03/25/2020] [Indexed: 12/13/2022] Open
Abstract
The CD38 antigen is expressed in several hematological malignancies, and the anti-CD38 monoclonal antibodies Daratumumab and Isatuximab have an established role in the therapy of multiple myeloma. However, data on the therapeutic utility of CD38 targeting in other lymphoid malignancies are limited. In chronic lymphocytic leukemia, the prognostic significance of CD38 expression is well accepted, and preclinical studies on the use of Daratumumab in monotherapy or combination therapy have demonstrated considerable efficacy. In other lymphoproliferative disorders, preclinical and clinical data have not been as compelling; however, CD38 overexpression likely contributes to resistance to checkpoint inhibitors, prompting numerous clinical trials in Hodgkin and non-Hodgkin lymphoma to investigate whether blocking CD38 enhances the efficacy of checkpoint inhibitors. Furthermore, due to its widespread expression in hematological tumors, CD38 represents an attractive target for cellular therapies such as CAR-T cells. The present review discusses current knowledge of CD38 expression and its implications in various lymphoid malignancies. Furthermore, it addresses current and future therapeutic perspectives, with a particular emphasis on the significance of CD38 interaction with immune cells of the tumor microenvironment. Lastly, results of ongoing studies using anti-CD38 antibodies will be reviewed.
Collapse
Affiliation(s)
- Eleonora Calabretta
- Department of Oncology and Hematology, Humanitas Cancer Center, Humanitas Clinical and Research Center, Rozzano, 20089 Milano, Italy;
| | - Carmelo Carlo-Stella
- Department of Oncology and Hematology, Humanitas Cancer Center, Humanitas Clinical and Research Center, Rozzano, 20089 Milano, Italy;
- Department of Biomedical Sciences, Humanitas University, Rozzano, 20089 Milano, Italy
| |
Collapse
|
16
|
Is There a Future for Anti-CD38 Antibody Therapy in Systemic Autoimmune Diseases? Cells 2019; 9:cells9010077. [PMID: 31892266 PMCID: PMC7016693 DOI: 10.3390/cells9010077] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/17/2019] [Accepted: 12/23/2019] [Indexed: 12/14/2022] Open
Abstract
CD38 is a type II glycoprotein highly expressed on plasmablasts, short-lived and long-lived plasma cells, but weakly expressed on other lymphoid cells, myeloid cells and non-hematopoietic cells. This expression pattern makes CD38 an interesting target for a targeted therapy aiming to deplete antibody-producing plasma cells. We present data suggesting that anti-CD38 therapy may be effective for the prevention at the preclinical stage and for the treatment of established autoimmune diseases, such as systemic lupus erythematosus, systemic sclerosis, Sjögren’s syndrome and anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis. Given the high unmet need for efficacious disease-modifying treatment in these diseases, studies are warranted to determine if anti-CD38 antibody-based therapies may delay or prevent the disease progression of systemic autoimmune diseases.
Collapse
|
17
|
Morandi F, Airoldi I, Marimpietri D, Bracci C, Faini AC, Gramignoli R. CD38, a Receptor with Multifunctional Activities: From Modulatory Functions on Regulatory Cell Subsets and Extracellular Vesicles, to a Target for Therapeutic Strategies. Cells 2019; 8:E1527. [PMID: 31783629 PMCID: PMC6953043 DOI: 10.3390/cells8121527] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/11/2022] Open
Abstract
CD38 is a multifunctional cell surface protein endowed with receptor/enzymatic functions. The protein is generally expressed at low/intermediate levels on hematological tissues and some solid tumors, scoring the highest levels on plasma cells (PC) and PC-derived neoplasia. CD38 was originally described as a receptor expressed by activated cells, mainly T lymphocytes, wherein it also regulates cell adhesion and cooperates in signal transduction mediated by major receptor complexes. Furthermore, CD38 metabolizes extracellular NAD+, generating ADPR and cyclic ADPR. This ecto-enzyme controls extra-cellular nucleotide homeostasis and intra-cellular calcium fluxes, stressing its relevance in multiple physiopathological conditions (infection, tumorigenesis and aging). In clinics, CD38 was adopted as a cell activation marker and in the diagnostic/staging of leukemias. Quantitative surface CD38 expression by multiple myeloma (MM) cells was the basic criterion used for therapeutic application of anti-CD38 monoclonal antibodies (mAbs). Anti-CD38 mAbs-mediated PC depletion in autoimmunity and organ transplants is currently under investigation. This review analyzes different aspects of CD38's role in regulatory cell populations and how these effects are obtained. Characterizing CD38 functional properties may widen the extension of therapeutic applications for anti-CD38 mAbs. The availability of therapeutic mAbs with different effects on CD38 enzymatic functions may be rapidly translated to immunotherapeutic strategies of cell immune defense.
Collapse
Affiliation(s)
- Fabio Morandi
- Laboratory of Stem Cell and Cell Therapy, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (I.A.); (D.M.)
| | - Irma Airoldi
- Laboratory of Stem Cell and Cell Therapy, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (I.A.); (D.M.)
| | - Danilo Marimpietri
- Laboratory of Stem Cell and Cell Therapy, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (I.A.); (D.M.)
| | - Cristiano Bracci
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino, 10126 Torino, Italy; (C.B.); (A.C.F.)
- CeRMS, University of Torino, 10126 Torino, Italy
| | - Angelo Corso Faini
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino, 10126 Torino, Italy; (C.B.); (A.C.F.)
| | - Roberto Gramignoli
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, SE-171 77 Stockholm, Sweden;
| |
Collapse
|
18
|
Immune checkpoint molecules. Possible future therapeutic implications in autoimmune diseases. J Autoimmun 2019; 104:102333. [DOI: 10.1016/j.jaut.2019.102333] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023]
|
19
|
Sakkas LI, Daoussis D, Mavropoulos A, Liossis SN, Bogdanos DP. Regulatory B cells: New players in inflammatory and autoimmune rheumatic diseases. Semin Arthritis Rheum 2019; 48:1133-1141. [PMID: 30409417 DOI: 10.1016/j.semarthrit.2018.10.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/06/2018] [Accepted: 10/09/2018] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Regulatory B cells (Bregs) are a new subset of B cells with immunoregulatory functions, mainly through IL-10 production. Bregs suppress inflammatory Th1 and Th17 differentiation and induce Tregs suppressing autoimmune diseases. The aim of the study was to review the literature related to Bregs in autoimmune rheumatic diseases (ARDs). METHODS A literature review of publications in PUBMED published in English was performed using the relevant combinations of terms. RESULTS All relevant publications are discussed. Overall, recent studies in rheumatic diseases found Bregs to be decreased in ANCA-associated vasculitides (AAV) and in systemic sclerosis (SSc), particularly in SSc-associated lung fibrosis. In AAV Bregs levels are negatively correlated with autoantibody levels whereas in SSc this association is less clear but there is an inverse association with Th1 and Th17 cells. In rheumatoid arthritis (RA), Bregs were decreased, particularly in RA-associated lung fibrosis. In psoriatic arthritis IL-10 + Bregs are decreased and inversely associated with Th1 and Th17 cells. In systemic lupus erythematosus (SLE), the role of Bregs is unclear. In experimental diseases, when Bregs were expanded ex-vivo, they ameliorated established disease. CONCLUSION Bregs appear to be a new player in the pathogenesis of ARDs, and may offer a new strategy for therapeutic intervention.
Collapse
Affiliation(s)
- Lazaros I Sakkas
- Department of Rheumatology and clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa 41 110, Greece.
| | - Dimitrios Daoussis
- Division of Rheumatology, Department of Internal Medicine, University of Patras, Rio, Patras, Greece
| | - Athanasios Mavropoulos
- Department of Rheumatology and clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa 41 110, Greece
| | - Stamatis-Nick Liossis
- Division of Rheumatology, Department of Internal Medicine, University of Patras, Rio, Patras, Greece
| | - Dimitrios P Bogdanos
- Department of Rheumatology and clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa 41 110, Greece
| |
Collapse
|
20
|
Hu XX, Wu YJ, Zhang J, Wei W. T-cells interact with B cells, dendritic cells, and fibroblast-like synoviocytes as hub-like key cells in rheumatoid arthritis. Int Immunopharmacol 2019; 70:428-434. [PMID: 30856393 DOI: 10.1016/j.intimp.2019.03.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/15/2019] [Accepted: 03/05/2019] [Indexed: 12/19/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory synovitis-based systemic disease characterized by invasive joint inflammation and synovial hyperplasia, which can lead to arthrentasis and defunctionalization. Previous research has shown that T cells, B cells, dendritic cells (DCs), and fibroblast-like synoviocytes (FLSs) play vital roles in the regulation of RA. Both T follicular helper (Tfh) cells and helper T (Th) 17 cells play immunomodulatory roles in RA. Moreover, interleukin-23 (IL-23), and IL-17 are vital to the pathogenesis of RA. T cells behave as a hub, in that B cells, DCs, and FLSs can interact with T cells to inhibit their activation and interfere with the process of RA. T cells cooperate with B cells, DCs, and FLSs to maintain the stability of the immune system under physiological conditions. However, under pathological conditions, the balance is disrupted, and the interaction of T cells with other cells may intensify disease progression. This review focuses on the interaction of T cells with B cells, DCs, and FLSs in different tissues and organs of RA patients and animal models, and highlight that the interplay between immune cells may underline the unique function of T cells and the application prospect of targeting T cell treatment for RA.
Collapse
Affiliation(s)
- Xiao-Xi Hu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Yu-Jing Wu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Jing Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China.
| |
Collapse
|
21
|
Salazar A, Casanova-Méndez I, Pacheco-Quito M, Velázquez-Soto H, Ayala-Balboa J, Graue-Hernández EO, Serafín-López J, Jiménez-Martínez MC. Low Expression of IL-10 in Circulating Bregs and Inverted IL-10/TNF-α Ratio in Tears of Patients with Perennial Allergic Conjunctivitis: A Preliminary Study. Int J Mol Sci 2019; 20:1035. [PMID: 30818819 PMCID: PMC6429471 DOI: 10.3390/ijms20051035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 02/12/2019] [Accepted: 02/22/2019] [Indexed: 12/18/2022] Open
Abstract
Allergic conjunctivitis (AC) is one of the most common ophthalmological disorders seen in clinical practice. Growing evidence from recent years suggests that a subset of IL-10-expressing B cells is involved in inflammatory allergic diseases. In this study, we aimed to evaluate the potential involvement of blood Bregs cells in perennial allergic conjunctivitis (PAC), and interleukins (IL)-1β, IL-6, IL-8, IL-10, and IL-12, and tumor necrosis factor (TNF)-α, were measured in tear samples and compared with healthy controls (HC) using flow cytometry. Non-significant differences in CD19⁺IL-10⁺ cell frequency between PAC patients and healthy controls (HC) were observed. Nevertheless, when we analyzed the mean fluorescence intensity (MFI) of IL-10 on CD19⁺CD38Lo/Med/Hi-gated cells, we observed a significant decrease in MFI in all Bregs subsets in PAC patients. Additionally, tear cytokines showed 2.8 times lower levels of IL-10 than TNF-α in PAC patients when compared to HC. Our findings demonstrate an immunological dysregulation in patients with allergic conjunctivitis, characterized by the low expression of IL-10 in circulating CD19⁺CD38⁺ Bregs subsets and an inverted tear IL-10/TNF-α ratio, promoting a local pro-inflammatory microenvironment. These findings highlight the novel pathologic changes involved in ocular allergic diseases. Understanding systemic and local mechanisms will aid the design of immunomodulating therapeutics at different levels.
Collapse
Affiliation(s)
- Alberto Salazar
- Departamento de Inmunología, ENCB, Instituto Politécnico Nacional, 11340 Ciudad de México, Mexico.
- Department of Immunology and Research Unit, Institute of Ophthalmology "Conde de Valenciana Foundation", 06800 Mexico City, Mexico.
| | - Israel Casanova-Méndez
- Department of Immunology and Research Unit, Institute of Ophthalmology "Conde de Valenciana Foundation", 06800 Mexico City, Mexico.
| | - Michele Pacheco-Quito
- Cornea and Refractive Surgery Department, Institute of Ophthalmology "Conde de Valenciana Foundation", 06800 Mexico City, Mexico.
| | - Henry Velázquez-Soto
- Department of Immunology and Research Unit, Institute of Ophthalmology "Conde de Valenciana Foundation", 06800 Mexico City, Mexico.
| | - Julio Ayala-Balboa
- Department of Immunology and Research Unit, Institute of Ophthalmology "Conde de Valenciana Foundation", 06800 Mexico City, Mexico.
| | - Enrique O Graue-Hernández
- Cornea and Refractive Surgery Department, Institute of Ophthalmology "Conde de Valenciana Foundation", 06800 Mexico City, Mexico.
| | - Jeanet Serafín-López
- Departamento de Inmunología, ENCB, Instituto Politécnico Nacional, 11340 Ciudad de México, Mexico.
| | - María C Jiménez-Martínez
- Department of Immunology and Research Unit, Institute of Ophthalmology "Conde de Valenciana Foundation", 06800 Mexico City, Mexico.
- Department of Biochemistry, Faculty of Medicine, National Autonomous University of Mexico. P.O. Box 70159, 04510 Mexico City, Mexico.
| |
Collapse
|
22
|
Regulatory B and T lymphocytes in multiple sclerosis: friends or foes? AUTOIMMUNITY HIGHLIGHTS 2018; 9:9. [PMID: 30415321 PMCID: PMC6230324 DOI: 10.1007/s13317-018-0109-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/17/2018] [Indexed: 12/12/2022]
Abstract
Current clinical experience with immunomodulatory agents and monoclonal antibodies in principle has established the benefit of depleting lymphocytic populations in relapsing–remitting multiple sclerosis (RRMS). B and T cells may exert multiple pro-inflammatory actions, but also possess regulatory functions making their role in RRMS pathogenesis much more complex. There is no clear correlation of Tregs and Bregs with clinical features of the disease. Herein, we discuss the emerging data on regulatory T and B cell subset distributions in MS and their roles in the pathophysiology of MS and its murine model, experimental autoimmune encephalomyelitis (EAE). In addition, we summarize the immunomodulatory properties of certain MS therapeutic agents through their effect on such regulatory cell subsets and their relevance to clinical outcomes.
Collapse
|
23
|
The Role of CD38 on the Function of Regulatory B Cells in a Murine Model of Lupus. Int J Mol Sci 2018; 19:ijms19102906. [PMID: 30257456 PMCID: PMC6213330 DOI: 10.3390/ijms19102906] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 12/14/2022] Open
Abstract
Previous work from our group has shown that Cd38-/- mice develop a milder pristane-induced lupus disease than WT or Art2-/- counterparts, demonstrating a new role for CD38 in promoting aberrant inflammation and lupus-like autoimmunity via a Transient Receptor Potential Melastatin 2 (TRPM2)-dependent apoptosis-driven mechanism. In this study we asked whether CD38 may play a role in the expression and function of regulatory B cells (IL-10-producing B cells or B10 cells). In pristane-treated mice the frequency of spleen CD19⁺CD1dhiCD5⁺ B cells, which are highly enriched in B10 cells, was significantly increased in Cd38-/- splenocytes compared to WT, while the frequency of peritoneal plasmacytoid dendritic cells (pDCs), which are major type I Interferon (IFN) producers, was greatly diminished. The low proportion of pDCs correlated with lower amounts of IFN-α in the peritoneal lavage fluids of the Cd38-/- mice than of WT and Art2-/- mice. Functional ex vivo assays showed increased frequencies of IL-10-producing B cells in Cd38-/- splenocytes than in WT upon stimulation with an agonist anti-CD40 mAb. Overall these results strongly suggest that Cd38-/- mice are better suited than WT mice to generate and expand regulatory B10 cells following the appropriate stimulation.
Collapse
|