1
|
Xiong L, Huang YX, Mao L, Xu Y, Deng YQ. Targeting gut microbiota and its associated metabolites as a potential strategy for promoting would healing in diabetes. World J Diabetes 2025; 16:98788. [DOI: 10.4239/wjd.v16.i5.98788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 01/03/2025] [Accepted: 03/05/2025] [Indexed: 04/25/2025] Open
Abstract
Impaired healing of diabetic wounds is one of the most important complications of diabetes, often leading to lower limb amputations and incurring significant economic and psychosocial costs. Unfortunately, there are currently no effective prevention or treatment strategies available. Recent research has reported that an imbalance in the gut microbiota, known as dysbiosis, was linked to the onset of type 2 diabetes, as well as the development and progression of diabetic complications. Indeed, the gut microbiota has emerged as a promising therapeutic approach for treating type 2 diabetes and related diseases. However, there is few of literatures specifically discussing the relationship between gut microbiota and diabetic wounds. This review aims to explore the potential role of the gut microbiota, especially probiotics, and its associated byproducts such as short chain fatty acids, bile acids, hydrogen sulfide, and tryptophan metabolites on wound healing to provide fresh insights and novel perspectives for the treatment of chronic wounds in diabetes.
Collapse
Affiliation(s)
- Ling Xiong
- Department of Dermatology & STD, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Ya-Xin Huang
- Department of Dermatology & STD, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Lan Mao
- Department of Dermatology & STD, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Yong Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Yong-Qiong Deng
- Department of Dermatology & STD, Chengdu Integrated TCM & Western Medicine Hospital, Chengdu 610000, Sichuan Province, China
- Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, Sichuan Province, China
| |
Collapse
|
2
|
Chen J, He Z, Dai X, Lin S, Liu J, Ye X. New insights into pyroptosis in pemphigus: from cellular structure to therapeutic targeting. An Bras Dermatol 2025:S0365-0596(25)00027-3. [PMID: 40102153 DOI: 10.1016/j.abd.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/16/2024] [Accepted: 07/28/2024] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND Pemphigus is an autoimmune blistering disease where autoantibodies target desmoglein (Dsg) antigens on keratinocytes, triggering the p38 MAPK pathway, Dsg internalization, desmosomal dissolution, and keratinocyte apoptosis, are essential for blister formation. Recent research indicates keratinocyte pyroptosis may exacerbate acantholysis and delay wound healing. Current treatments, including corticosteroids and immunosuppressants, are effective but have significant side effects, such as prolonged wound healing and increased infection risk. Understanding these inflammatory processes is crucial for developing effective treatments for pemphigus. METHODS The authors conducted a comprehensive review of the literature, analyzing recent findings regarding the upregulation of pyroptosis-related proteins in pemphigus. RESULTS The present findings highlight a significant upregulation of pyroptosis-related proteins, which play a crucial role in the inflammatory response and blister formation characteristic of pemphigus. Key proteins such as cytokines IL-1β, IL-18, High Mobility Group Box-1 (HMGB1), and Parkin, along with NOD-like receptors and P2×7 receptors, were identified as pivotal in facilitating pyroptosis. The study also discusses potential therapeutic approaches targeting these proteins to modulate the disease pathway effectively. STUDY LIMITATIONS This study aimed to investigate the role of pyroptosis in the pathogenesis of pemphigus, focusing on its potential as a novel therapeutic target. CONCLUSIONS Pyroptosis significantly contributes to the pathogenesis of pemphigus and presents a promising target for therapy. Targeting specific molecules involved in the pyroptosis pathway offers the potential for developing more precise and less toxic treatments, allowing the shift from traditional therapies towards targeted therapeutic strategies.
Collapse
Affiliation(s)
- Jiazhen Chen
- Guangzhou Dermatology Hospital, Guangzhou, Guangdong, China; Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zezhi He
- Guangzhou Dermatology Hospital, Guangzhou, Guangdong, China; Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiangnong Dai
- Guangzhou Dermatology Hospital, Guangzhou, Guangdong, China; Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Sifan Lin
- Guangzhou Dermatology Hospital, Guangzhou, Guangdong, China; Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiahui Liu
- Guangzhou Dermatology Hospital, Guangzhou, Guangdong, China; Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xingdong Ye
- Guangzhou Dermatology Hospital, Guangzhou, Guangdong, China; Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Huang Z, Lu T, Lin J, Ding Q, Li X, Lin L. Exploring Causal Relationships Between Gut Microbiota, Inflammatory Cytokines, and Inflammatory Dermatoses: A Mendelian Randomization Study. Clin Cosmet Investig Dermatol 2025; 18:579-592. [PMID: 40099043 PMCID: PMC11912934 DOI: 10.2147/ccid.s496091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 01/16/2025] [Indexed: 03/19/2025]
Abstract
Background Some studies have established a link between gut microbiota, inflammatory proteins, and inflammatory dermatoses. However, the mediating role of inflammatory proteins in the gut-skin axis remains unclear. Methods Data on inflammatory proteins and gut microbiota were drawn from the GWAS catalog and MiBioGen consortium, with inflammatory skin disease data provided by the FinnGen consortium. Using genome-wide association studies (GWAS), we performed linkage disequilibrium score regression (LDSC) to assess genetic correlations and conducted a two-step Mendelian Randomization (MR) analysis to investigate circulating inflammatory proteins as potential mediators between gut microbiota and inflammatory dermatoses. Results MR analysis identified 38 gut microbiota and 23 inflammatory proteins associated with inflammatory skin diseases. After false discovery rate (FDR) correction, four gut microbiota taxa-Eubacterium fissicatena, Bacteroidaceae, Allisonella, and Bacteroides, remained statistically significant (OR = 1.32, 95% CI: 1.16-1.50, adjusted P = 0.007; OR = 2.25, 95% CI: 1.48-3.42, adjusted P = 0.026; OR = 1.42, 95% CI: 1.18-1.70, adjusted P = 0.014; OR = 2.25, 95% CI: 1.48-3.42, adjusted P = 0.013), with only IL-18R1 significantly associated with eczema (OR = 1.05, 95% CI: 1.03-1.08, adjusted P = 0.017). Further mediation analysis showed that IL-15RA mediated 11% of the pathway between Veillonellaceae and eczema, while FGF19 mediated 6% of the pathway between genus LachnospiraceaeUCG001 and psoriatic arthritis. Conclusion These findings provide potential targets for therapeutic interventions in inflammatory skin diseases.
Collapse
Affiliation(s)
- Zirui Huang
- Department of Dermatology, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Tao Lu
- Department of Dermatology, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Jiahua Lin
- Department of Dermatology, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Qike Ding
- Department of Dermatology, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Xiaoting Li
- Department of Dermatology, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Lihong Lin
- Department of Dermatology, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| |
Collapse
|
4
|
Brigida M, Saviano A, Petruzziello C, Manetti LL, Migneco A, Ojetti V. Gut Microbiome Implication and Modulation in the Management of Recurrent Urinary Tract Infection. Pathogens 2024; 13:1028. [PMID: 39770288 PMCID: PMC11677343 DOI: 10.3390/pathogens13121028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/10/2024] [Accepted: 11/17/2024] [Indexed: 01/11/2025] Open
Abstract
Urinary tract infections (UTIs) are one of the most common bacterial infections, affecting more than 150 million people each year in the world. UTIs have grown exponentially in the last few years. They represent a major load for both individuals and society. The highest incidence (about 55-60%) concerns women. Many pathogens are involved in UTIs, most of which are derived from the gut. Recent studies, together with recent diagnostic techniques (such as quantitative culture of urine or next-generation sequencing), have improved the knowledge of microbial communities in the urinary tract. It turned out that gut dysbiosis is strictly involved in the pathogenesis of UTIs. In particular, the human gut is the natural habitat for Escherichia coli (E. coli), the main bacterium responsible for UTIs. The overgrowth of E. coli pathogenic strains represents a risk factor for them. Furthermore, the human gut microbiota acts as a "global reservoir" for genes conferring resistance to clinically relevant antibiotics, thus influencing the treatment of UTIs. In addition, differently from the past, the idea of a sterile urinary environment has been replaced by the characterization of a urinary microbiome. The aim of our review is to explore recent studies on the association between gut microbiota and urinary microbiome and to summarize the current knowledge about the effects of interactions between gut and urinary microbial communities in the pathogenesis of UTIs, considering UTIs more as a "gut disease" and not only a urinary disease and providing new insight into the therapeutic options such as the use of probiotics.
Collapse
Affiliation(s)
- Mattia Brigida
- Gastroenterology Department, Policlinico Tor Vergata, 00133 Rome, Italy
| | - Angela Saviano
- Emergency Department, Ospedale Policlinico A. Gemelli, 00168 Rome, Italy
| | - Carmine Petruzziello
- Emergency Department, Ospedale San Carlo di Nancy, GVM Care & Research, 00165 Rome, Italy
| | - Luca Luigi Manetti
- Emergency Department, Ospedale San Carlo di Nancy, GVM Care & Research, 00165 Rome, Italy
| | - Alessio Migneco
- Emergency Department, Ospedale Policlinico A. Gemelli, 00168 Rome, Italy
| | - Veronica Ojetti
- Internal Medicine Department, San Carlo di Nancy Hospital, GVM Care & Research, 00165 Rome, Italy
- Department of Internal Medicine, UniCamillus International University of Health Sciences, 00131 Rome, Italy
| |
Collapse
|
5
|
Ueda E, Matsunaga M, Fujihara H, Kajiwara T, Takeda AK, Watanabe S, Hagihara K, Myowa M. Temperament in Early Childhood Is Associated With Gut Microbiota Composition and Diversity. Dev Psychobiol 2024; 66:e22542. [PMID: 39237483 DOI: 10.1002/dev.22542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 07/15/2024] [Accepted: 08/09/2024] [Indexed: 09/07/2024]
Abstract
Temperament is a key predictor of human mental health and cognitive and emotional development. Although human fear behavior is reportedly associated with gut microbiome in infancy, infant gut microbiota changes dramatically during the first 5 years, when the diversity and composition of gut microbiome are established. This period is crucial for the development of the prefrontal cortex, which is involved in emotion regulation. Therefore, this study investigated the relationship between temperament and gut microbiota in 284 preschool children aged 3-4 years. Child temperament was assessed by maternal reports of the Children's Behavior Questionnaire. Gut microbiota (alpha/beta diversity and genera abundance) was evaluated using 16S rRNA sequencing of stool samples. A low abundance of anti-inflammatory bacteria (e.g., Faecalibacterium) and a high abundance of pro-inflammatory bacteria (e.g., Eggerthella, Flavonifractor) were associated with higher negative emotionality and stress response (i.e., negative affectivity, β = -0.17, p = 0.004) and lower positive emotionality and reward-seeking (i.e., surgency/extraversion, β = 0.15, p = 0.013). Additionally, gut microbiota diversity was associated with speed of response initiation (i.e., impulsivity, a specific aspect of surgency/extraversion, β = 0.16, p = 0.008). This study provides insight into the biological mechanisms of temperament and takes important steps toward identifying predictive markers of psychological/emotional risk.
Collapse
Affiliation(s)
- Eriko Ueda
- Graduate School of Education, Kyoto University, Kyoto, Kyoto, Japan
- Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, Japan
| | - Michiko Matsunaga
- Graduate School of Education, Kyoto University, Kyoto, Kyoto, Japan
- Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, Japan
- Department of Advanced Hybrid Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hideaki Fujihara
- Graduate School of Education, Kyoto University, Kyoto, Kyoto, Japan
- Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, Japan
| | - Takamasa Kajiwara
- Graduate School of Education, Kyoto University, Kyoto, Kyoto, Japan
- Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, Japan
| | | | | | - Keisuke Hagihara
- Department of Advanced Hybrid Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Masako Myowa
- Graduate School of Education, Kyoto University, Kyoto, Kyoto, Japan
| |
Collapse
|
6
|
Chang JWC, Hsieh JJ, Tsai CY, Chiu HY, Lin YF, Wu CE, Shen YC, Hou MM, Chang CY, Chen JA, Chen CL, Chiu CT, Yeh YM, Chiu CH. Gut microbiota and clinical response to immune checkpoint inhibitor therapy in patients with advanced cancer. Biomed J 2024; 47:100698. [PMID: 38280521 PMCID: PMC11399570 DOI: 10.1016/j.bj.2024.100698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/07/2024] [Accepted: 01/14/2024] [Indexed: 01/29/2024] Open
Abstract
BACKGROUND There is currently no well-accepted consensus on the association between gut microbiota and the response to treatment of immune checkpoint inhibitors (ICIs) in patients with advanced cancer. METHODS Fecal samples were collected before ICI treatment. Gut microbiota was analyzed using 16 S ribosomal RNA sequencing. We investigated the relationship between the α-diversity of fecal microbiota and patients' clinical outcomes. Microbiota profiles from patients and healthy controls were determined. Pre-treatment serum was examined by cytokine array. RESULTS We analyzed 74 patients, including 42 with melanoma, 8 with kidney cancer, 13 with lung cancer, and 11 with other cancers. Combination therapy of anti-PD1 and anti-CTLA-4 was used in 14 patients, and monotherapy in the rest. Clinical benefit was observed in 35 (47.3 %) cases, including 2 complete responses, 16 partial responses, and 17 stable diseases according to RECIST criteria. No significant difference in α-diversity was found between the benefiter and non-benefiter groups. However, patients with α-diversity within the range of our healthy control had a significantly longer median overall survival (18.9 months), compared to the abnormal group (8.2 months) (p = 0.041, hazard ratio = 0.546) for all patients. The microbiota composition of the benefiters was similar to that of healthy individuals. Furthermore, specific bacteria, such as Prevotella copri and Faecalibacterium prausnitzii, were associated with a favorable outcome. We also observed that serum IL-18 before treatment was significantly lower in the benefiters, compared to non-benefiters. CONCLUSIONS The α-diversity of gut microbiota is positively correlated with more prolonged overall survival in cancer patients following ICI therapy.
Collapse
Affiliation(s)
- John Wen-Cheng Chang
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan; Immuno-Oncology Center of Excellence, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jia-Juan Hsieh
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chih-Yu Tsai
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Horng-Yih Chiu
- School of Medicine, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Yu-Feng Lin
- Immuno-Oncology Center of Excellence, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Nursing, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chiao-En Wu
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan; Immuno-Oncology Center of Excellence, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yung-Chi Shen
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Ming-Mo Hou
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan; Immuno-Oncology Center of Excellence, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chieh-Ying Chang
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Jian-An Chen
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chyi-Liang Chen
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Microbiology and Immunology, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Cheng-Tang Chiu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Chang Gung Microbiota Therapy Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yuan-Ming Yeh
- Chang Gung Microbiota Therapy Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan, Taiwan; Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| | - Cheng-Hsun Chiu
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Chang Gung Microbiota Therapy Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
7
|
Mulder D, Jakobi B, Shi Y, Mulders P, Kist JD, Collard RM, Vrijsen JN, van Eijndhoven P, Tendolkar I, Bloemendaal M, Arias Vasquez A. Gut microbiota composition links to variation in functional domains across psychiatric disorders. Brain Behav Immun 2024; 120:275-287. [PMID: 38815661 DOI: 10.1016/j.bbi.2024.05.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024] Open
Abstract
OBJECTIVE Changes in microbial composition are observed in various psychiatric disorders, but their specificity to certain symptoms or processes remains unclear. This study explores the associations between the gut microbiota composition and the Research Domain Criteria (RDoC) domains of functioning, representing symptom domains, specifically focusing on stress-related and neurodevelopmental disorders in patients with and without psychiatric comorbidity. METHODS The gut microbiota was analyzed in 369 participants, comprising 272 individuals diagnosed with a mood disorder, anxiety disorder, attention deficit/hyperactivity disorder, autism spectrum disorder, and/or substance use disorder, as well as 97 psychiatrically unaffected individuals. The RDoC domains were estimated using principal component analysis (PCA) with oblique rotation on a range of psychiatric, psychological, and personality measures. Associations between the gut microbiota and the functional domains were assessed using multiple linear regression and permanova, adjusted for age, sex, diet, smoking, medication use and comorbidity status. RESULTS Four functional domains, aligning with RDoC's negative valence, social processes, cognitive systems, and arousal/regulatory systems domains, were identified. Significant associations were found between these domains and eight microbial genera, including associations of negative valence with the abundance of the genera Sellimonas, CHKCI001, Clostridium sensu stricto 1, Oscillibacter, and Flavonifractor; social processes with Sellimonas; cognitive systems with Sporobacter and Hungatella; and arousal/regulatory systems with Ruminococcus torques (all pFDR < 0.05). CONCLUSION Our findings demonstrate associations between the gut microbiota and the domains of functioning across patients and unaffected individuals, potentially mediated by immune-related processes. These results open avenues for microbiota-focused personalized interventions, considering psychiatric comorbidity. However, further research is warranted to establish causality and elucidate mechanistic pathways.
Collapse
Affiliation(s)
- Danique Mulder
- Department of Psychiatry, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands; Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - Babette Jakobi
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - Yingjie Shi
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - Peter Mulders
- Department of Psychiatry, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands
| | - Josina D Kist
- Department of Psychiatry, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands
| | - Rose M Collard
- Department of Psychiatry, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands
| | - Janna N Vrijsen
- Department of Psychiatry, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands; Pro Persona Mental Health Care, Depression Expertise Center, Nijmegen, the Netherlands
| | - Phillip van Eijndhoven
- Department of Psychiatry, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands
| | - Indira Tendolkar
- Department of Psychiatry, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands
| | - Mirjam Bloemendaal
- Department of Psychiatry, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands; Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands; Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt am Main, Frankfurt am Main, Germany
| | - Alejandro Arias Vasquez
- Department of Psychiatry, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands; Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands.
| |
Collapse
|
8
|
Li SZ, Wu QY, Fan Y, Guo F, Hu XM, Zuo YG. Gut Microbiome Dysbiosis in Patients with Pemphigus and Correlation with Pathogenic Autoantibodies. Biomolecules 2024; 14:880. [PMID: 39062594 PMCID: PMC11274803 DOI: 10.3390/biom14070880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Pemphigus is a group of potentially life-threatening autoimmune bullous diseases induced by pathogenic autoantibodies binding to the surface of epidermal cells. The role of the gut microbiota (GM) has been described in various autoimmune diseases. However, the impact of the GM on pemphigus is less understood. This study aimed to investigate whether there was alterations in the composition and function of the GM in pemphigus patients compared to healthy controls (HCs). METHODS Fecal samples were collected from 20 patients with active pemphigus (AP), 11 patients with remission pemphigus (PR), and 47 HCs. To sequence the fecal samples, 16S rRNA was applied, and bioinformatic analyses were performed. RESULTS We found differences in the abundance of certain bacterial taxa among the three groups. At the family level, the abundance of Prevotellaceae and Coriobacteriaceae positively correlated with pathogenic autoantibodies. At the genus level, the abundance of Klebsiella, Akkermansia, Bifidobacterium, Collinsella, Gemmiger, and Prevotella positively correlated with pathogenic autoantibodies. Meanwhile, the abundance of Veillonella and Clostridium_XlVa negatively correlated with pathogenic autoantibodies. A BugBase analysis revealed that the sum of potentially pathogenic bacteria was elevated in the AP group in comparison to the PR group. Additionally, the proportion of Gram-negative bacteria in the PR group was statistically significantly lower in comparison to the HC group. CONCLUSION The differences in GM composition among the three groups, and the correlation between certain bacterial taxa and pathogenic autoantibodies of pemphigus, support a linkage between the GM and pemphigus.
Collapse
Affiliation(s)
- Si-Zhe Li
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (S.-Z.L.); (F.G.)
| | - Qing-Yang Wu
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (Q.-Y.W.); (Y.F.)
| | - Yue Fan
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (Q.-Y.W.); (Y.F.)
| | - Feng Guo
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (S.-Z.L.); (F.G.)
| | - Xiao-Min Hu
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (S.-Z.L.); (F.G.)
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Ya-Gang Zuo
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (S.-Z.L.); (F.G.)
| |
Collapse
|
9
|
Maglie R, Baldi S, Nannini G, Di Gloria L, Pallecchi M, Bartolucci G, Ramazzotti M, Niccolai E, Baffa ME, Camilla B, Solimani F, Antiga E, Amedei A. Alterations of circulating free fatty acids in patients with pemphigus vulgaris. Exp Dermatol 2024; 33:e15063. [PMID: 38532568 DOI: 10.1111/exd.15063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/20/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
Free fatty acids (FFA) have gained research interest owing to their functions in both local and systemic immune regulation. Changes in the serum levels of anti-inflammatory short chain fatty acids (SCFA), primarily derived from the gut microbiota, and pro-inflammatory medium (MCFA) and long (LCFA) chain fatty acids, derived from either the gut microbiota or the diet, have been associated with autoimmunity. Circulating FFA were retrospectively analysed by a gas chromatography-mass spectrometry method in the serum of 18 patients with pemphigus vulgaris (PV) at the baseline and 6 months (n = 10) after immunosuppressive treatments, and 18 healthy controls (HC). Circulating FFA were correlated with the Pemphigus Disease Area Index (PDAI) and serum concentrations of interferon-gamma (IFN-γ), Interleukin (IL)-17A, IL-5, IL-10 and IL-21. Principal Component analysis computed on FFA abundances revealed significant differences in the profile of SCFA (p = 0,012), MCFA (p = 0.00015) and LCFA (p = 0,035) between PV patients and HC, which were not significantly changed by immunosuppressive treatments. PV patients showed a significantly lower serum concentration of propionic (p < 0.0005) and butyric (p < 0.0005) acids, SCFA with anti-inflammatory functions, while hexanoic (p < 0.0005) and hexadecanoic (p = 0.0006) acids, pro-inflammatory MCFA and LCFA respectively, were over-represented. Treatments induced a significant decrease of hexanoic (p = 0.035) and a further increase of hexadecanoic (p = 0.046) acids. Positive correlations emerged between IFN-γ and acetic acid (Rho = 0.60), IFN-γ and hexanoic acid (Rho = 0.46), IL-5 and both hexadecanoic acid (Rho = 0.50) and octadecanoic acid (Rho = 0.53), butyric acid and PDAI (Rho = 0.53). PV was associated with a remarked imbalance of circulating FFA compared to HC. The serum alterations of SCFA, MCFA, and LCFA may contribute to promoting inflammation in PV. Deeper insights into the immunomodulatory functions of these molecules may pave the way for personalized dietary interventions in PV patients.
Collapse
Affiliation(s)
- Roberto Maglie
- Department of Health Sciences, Section of Dermatology, University of Florence, Florence, Italy
| | - Simone Baldi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Giulia Nannini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Leandro Di Gloria
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, Florence, Italy
| | - Marco Pallecchi
- Department of Biomedical, Experimental and Clinical Sciences 'Mario Serio', University of Florence, Florence, Italy
| | - Gianluca Bartolucci
- Department of Biomedical, Experimental and Clinical Sciences 'Mario Serio', University of Florence, Florence, Italy
| | - Matteo Ramazzotti
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, Florence, Italy
| | - Elena Niccolai
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Maria Efenesia Baffa
- Department of Health Sciences, Section of Dermatology, University of Florence, Florence, Italy
| | - Biagioni Camilla
- Department of Health Sciences, Section of Dermatology, University of Florence, Florence, Italy
| | - Farzan Solimani
- Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Emiliano Antiga
- Department of Health Sciences, Section of Dermatology, University of Florence, Florence, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Interdisciplinary Internal Medicine Unit, Careggi University Hospital, Florence, Italy
| |
Collapse
|
10
|
Han Z, Fan Y, Wu Q, Guo F, Li S, Hu X, Zuo YG. Comparison of gut microbiota dysbiosis between pemphigus vulgaris and bullous pemphigoid. Int Immunopharmacol 2024; 128:111470. [PMID: 38185033 DOI: 10.1016/j.intimp.2023.111470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/29/2023] [Accepted: 12/29/2023] [Indexed: 01/09/2024]
Abstract
OBJECTIVE Pemphigus vulgaris (PV) and bullous pemphigoid (BP) are two prevalent bullous diseases. Previous studies found that the antibodies of BP could be expressed in the intestinal epithelium and BP was tightly related to inflammatory bowel disease. Therefore, gut microbiota might also play an important role in bullous disease. However, the specific relationship between gut microbiota and bullous diseases remains unknown. Our study aimed to investigate the potential role of gut microbiota in the development and progression of different bullous diseases. METHODS We conducted a prospective and observational cohort study at Peking Union Medical College Hospital. Untreated BP and PV patients were recruited, along with healthy controls (HC) who were spouses or caregivers of these patients. Fecal samples were collected, followed by 16S rRNA gene sequencing. Bioinformatics analyses were performed to assess the composition and function of gut microbiota. RESULTS A total of 38 HC, 32 BP, and 19 PV patients were enrolled in this study. Compared to HC, BP, and PV exhibited a distinct gut microbiota composition, especially BP. The gut microbiota changes were mainly observed in the phylum Bacteroidetes, Firmicutes, and Proteobacteria. The ratio of Faecalibacterium to Escherichia-Shigella (F/E ratio) had a considerable predictive value (AUC: 0.705) for recognizing BP from PV. The levels of Faecalibacterium and Enterobacter were correlated to the anti-BP 180 and anti-desmoglein 3. Microbial functional prediction revealed elevated activity in pathways related to gut microbiota translocation significantly increased in BP patients, indicating a potential pathogenetic role in BP. CONCLUSIONS Our study suggests that the composition of gut microbiota is specific in different bullous diseases and the role of gut microbiota differs. Gut microbiota could help distinguish BP and PV, and might play a role in the pathogenesis of different bullous diseases.
Collapse
Affiliation(s)
- Ziying Han
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730 Beijing, China; Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Yue Fan
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730 Beijing, China
| | - Qingyang Wu
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730 Beijing, China
| | - Feng Guo
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730 Beijing, China
| | - Sizhe Li
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730 Beijing, China
| | - Xiaomin Hu
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China.
| | - Ya-Gang Zuo
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730 Beijing, China.
| |
Collapse
|
11
|
Peng Y, Tun HM, Ng SC, Wai HKF, Zhang X, Parks J, Field CJ, Mandhane P, Moraes TJ, Simons E, Turvey SE, Subbarao P, Brook JR, Takaro TK, Scott JA, Chan FKL, Kozyrskyj AL. Maternal smoking during pregnancy increases the risk of gut microbiome-associated childhood overweight and obesity. Gut Microbes 2024; 16:2323234. [PMID: 38436093 PMCID: PMC10913716 DOI: 10.1080/19490976.2024.2323234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/21/2024] [Indexed: 03/05/2024] Open
Abstract
Childhood obesity is linked to maternal smoking during pregnancy. Gut microbiota may partially mediate this association and could be potential targets for intervention; however, its role is understudied. We included 1,592 infants from the Canadian Healthy Infants Longitudinal Development Cohort. Data on environmental exposure and lifestyle factors were collected prenatally and throughout the first three years. Weight outcomes were measured at one and three years of age. Stool samples collected at 3 and 12 months were analyzed by sequencing the V4 region of 16S rRNA to profile microbial compositions and magnetic resonance spectroscopy to quantify the metabolites. We showed that quitting smoking during pregnancy did not lower the risk of offspring being overweight. However, exclusive breastfeeding until the third month of age may alleviate these risks. We also reported that maternal smoking during pregnancy significantly increased Firmicutes abundance and diversity. We further revealed that Firmicutes diversity mediates the elevated risk of childhood overweight and obesity linked to maternal prenatal smoking. This effect possibly occurs through excessive microbial butyrate production. These findings add to the evidence that women should quit smoking before their pregnancies to prevent microbiome-mediated childhood overweight and obesity risk, and indicate the potential obesogenic role of excessive butyrate production in early life.
Collapse
Affiliation(s)
- Ye Peng
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
- Microbiota I-Center (MagIC), Hong Kong, SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Hein M Tun
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
- Microbiota I-Center (MagIC), Hong Kong, SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Siew C Ng
- Microbiota I-Center (MagIC), Hong Kong, SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
- Department of Medicine and Therapeutics, Institute of Digestive Disease, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Hogan Kok-Fung Wai
- HKU-Pasteur Research Pole, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Xi Zhang
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Jaclyn Parks
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
- Cancer Control Research, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Catherine J Field
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Piush Mandhane
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Theo J Moraes
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Elinor Simons
- Department of Pediatrics and Child Health, Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Canada
| | - Stuart E Turvey
- Department of Pediatrics, Child and Family Research Institute, BC Children’s Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Padmaja Subbarao
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Jeffrey R Brook
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Tim K Takaro
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - James A Scott
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Francis KL Chan
- Microbiota I-Center (MagIC), Hong Kong, SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Anita L Kozyrskyj
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
12
|
Moro F, Sinagra JLM, Salemme A, Fania L, Mariotti F, Pira A, Didona B, Di Zenzo G. Pemphigus: trigger and predisposing factors. Front Med (Lausanne) 2023; 10:1326359. [PMID: 38213911 PMCID: PMC10783816 DOI: 10.3389/fmed.2023.1326359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/29/2023] [Indexed: 01/13/2024] Open
Abstract
Pemphigus is a life-threatening autoimmune blistering disease affecting skin and mucous membranes. Despite its etiopathogenesis remains largely unknown, several trigger and predisposing factors have been reported. Pemphigus is caused by autoantibodies that target desmoglein 1 and desmoglein 3, impacting desmosome function. However, circulating autoantibodies are often the consequence of a precipitating factor that occurs in predisposed individuals. This review aims to describe and discuss almost all trigger and predisposing factors reported as possible or probable cause of the disease. Among the reported trigger factors that may induce or exacerbate pemphigus, we have found of particular interest: drug intake (especially thiol- and phenol-containing compounds), vaccines, infections, as well as some reports about pregnancy, radiations, emotional stress, pesticides and physical trauma. Moreover, we discuss the possible role of food intake in pemphigus onset and particular attention is given to dietary factors containing thiol, phenol and tannin compounds. A trigger factor is "the straw that breaks the camel's back," and often acts together with predisposing factors. Here we discuss how pemphigus onset may be influenced by genetic susceptibility and comorbidities like thyroid diseases, malignancies and other autoimmune disorders. To identify other hitherto unknown trigger and predisposing factors, well designed prospective studies are needed. In this context, future research should explore their connection with the aim to advance our understanding of pemphigus pathogenesis.
Collapse
Affiliation(s)
- Francesco Moro
- Molecular and Cell Biology Laboratory, Istituto Dermopatico dell’Immacolata (IDI)-IRCCS, Rome, Italy
- Dermatology Clinic, Istituto Dermopatico dell’Immacolata (IDI)-IRCCS, Rome, Italy
| | - Jo Linda Maria Sinagra
- Molecular and Cell Biology Laboratory, Istituto Dermopatico dell’Immacolata (IDI)-IRCCS, Rome, Italy
- Dermatology Clinic, Istituto Dermopatico dell’Immacolata (IDI)-IRCCS, Rome, Italy
| | - Adele Salemme
- Molecular and Cell Biology Laboratory, Istituto Dermopatico dell’Immacolata (IDI)-IRCCS, Rome, Italy
| | - Luca Fania
- Dermatology Clinic, Istituto Dermopatico dell’Immacolata (IDI)-IRCCS, Rome, Italy
| | - Feliciana Mariotti
- Molecular and Cell Biology Laboratory, Istituto Dermopatico dell’Immacolata (IDI)-IRCCS, Rome, Italy
| | - Anna Pira
- Molecular and Cell Biology Laboratory, Istituto Dermopatico dell’Immacolata (IDI)-IRCCS, Rome, Italy
| | - Biagio Didona
- Rare Diseases Unit, Istituto Dermopatico dell’Immacolata (IDI)-IRCCS, Rome, Italy
| | - Giovanni Di Zenzo
- Molecular and Cell Biology Laboratory, Istituto Dermopatico dell’Immacolata (IDI)-IRCCS, Rome, Italy
| |
Collapse
|
13
|
Li G, Ma X, Xia L, Wei R, Wang X, Li C, Wang Y, He L, Ren H, Sun J, Qiu W. Integrative analysis of purine metabolites and gut microbiota in patients with neuromyelitis optica spectrum disorders after mycophenolate mofetil treatment. BMC Neurol 2023; 23:444. [PMID: 38102573 PMCID: PMC10725005 DOI: 10.1186/s12883-023-03500-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/08/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Neuromyelitis optica spectrum disorder (NMOSD) is a recurring inflammatory demyelinating disease that is commonly observed in Asian countries like China. Prior investigations have shown that mycophenolate mofetil (MMF) with better biocompatibility compared to azathioprine (AZA), and can prevent relapses of NMOSD, but the efficacy was controversially reported in different NMOSD cases. We aimed to explore the factors that weaken efficacy of MMF in NMOSD. METHODS A total of 34 NMOSD patients treated with MMF were prospectively enrolled and grouped according to the therapeutic efficacy as effective group (EG, n = 23) versus less-effective group (LEG, n = 11). The purine metabolites were profiled in serum samples and gut microbiota was analyzed using 16S rRNA sequencing with stool samples from the same patients. RESULTS Purine salvage pathway (PSP) metabolites (inosine, hypoxanthine, xanthine, guanine and uric acid) in the serum of NMOSD patients were elevated in the LEG compared to EG (p < 0.05). Additionally, the richness and microbial diversity of gut microbiota was found to be similar between EG and LEG patients. However, LEG patients had increased presence of Clostridium and Synergistes but decreased abundance of the Coprococcus genus. CONCLUSIONS The PSP metabolites and composition of the gut microbiota were changed between patients with or without optimal clinical response after MMF treatment. This may help us to understand the pharmacodynamics of MMF in NMOSD.
Collapse
Affiliation(s)
- Gong Li
- College of veterinary medicine, South China Agricultural University, Guangzhou, China
| | - Xiaoyu Ma
- Department of Neurology, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Lijuan Xia
- College of veterinary medicine, South China Agricultural University, Guangzhou, China
| | - Ran Wei
- College of veterinary medicine, South China Agricultural University, Guangzhou, China
| | - Xiran Wang
- College of veterinary medicine, South China Agricultural University, Guangzhou, China
| | - Cang Li
- College of veterinary medicine, South China Agricultural University, Guangzhou, China
| | - Yuge Wang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630, China
| | - Limin He
- College of veterinary medicine, South China Agricultural University, Guangzhou, China
| | - Hao Ren
- College of veterinary medicine, South China Agricultural University, Guangzhou, China
| | - Jian Sun
- College of veterinary medicine, South China Agricultural University, Guangzhou, China.
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630, China.
| |
Collapse
|
14
|
Guo Z, Yiu N, Hu Z, Zhou W, Long X, Yang M, Liao J, Zhang G, Lu Q, Zhao M. Alterations of fecal microbiome and metabolome in pemphigus patients. J Autoimmun 2023; 141:103108. [PMID: 37714737 DOI: 10.1016/j.jaut.2023.103108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/12/2023] [Accepted: 08/24/2023] [Indexed: 09/17/2023]
Abstract
The role of gut microbiome and metabolic substances in the development of autoimmune diseases has gradually been revealed. However, the relevant gut features in pemphigus have not been well clarified. We collected stool samples from pemphigus patients and healthy controls (HCs). Metagenomic sequencing and liquid chromatography-mass spectrometry (LC/MS) metabolome sequencing were performed to analyze the compositional and metabolic alternations of the gut microbiome in pemphigus patients and HCs. We observed the reduced richness and diversity and greater heterogeneity in pemphigus patients, which was characterized by a significant decrease in Firmicutes and an increase in Proteobacteria. At the species level, Intestinal pathogenic bacteria such as Escherichia coli and Bacteroides fragilis were significantly enriched, while anti-inflammatory bacteria and butyric acid-producing bacteria were significantly reduced, which were related to clinical indicators (Dsg1/3 and PDAI). 4 species were selected by the machine learning algorithm to better distinguish pemphigus patients from healthy people. Metabolomic analysis showed that the composition of pemphigus patients was different from that of HCs. PE (18:3 (6Z,9Z, 12Z)/14:1 (9Z)) was the main metabolic substance in pemphigus and involved in a variety of metabolic pathways. While Retinol, flavonoid compounds and various amino acids decreased significantly compared with HCs. Furthermore, we found that differences in the levels of these metabolites correlated with changes in the abundance of specific species. Our study provides a comprehensive picture of gut microbiota and metabolites in pemphigus patients and suggests a potential mechanism of the aberrant gut microbiota and metabolites in the pathogenesis of pemphigus.
Collapse
Affiliation(s)
- Ziyu Guo
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central, South University, Changsha, Hunan, China; Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| | - Nam Yiu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central, South University, Changsha, Hunan, China; Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| | - Zhi Hu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central, South University, Changsha, Hunan, China; Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| | - Wenyu Zhou
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central, South University, Changsha, Hunan, China; Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| | - Xuan Long
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central, South University, Changsha, Hunan, China; Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| | - Miao Yang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central, South University, Changsha, Hunan, China; Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| | - Jieyue Liao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central, South University, Changsha, Hunan, China; Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| | - Guiying Zhang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central, South University, Changsha, Hunan, China; Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China.
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China.
| | - Ming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central, South University, Changsha, Hunan, China; Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China.
| |
Collapse
|
15
|
Liu X, van Beek N, Cepic A, Andreani NA, Chung CJ, Hermes BM, Yilmaz K, Benoit S, Drenovska K, Gerdes S, Gläser R, Goebeler M, Günther C, von Georg A, Hammers CM, Holtsche MM, Hübner F, Kiritsi D, Schauer F, Linnenmann B, Huilaja L, Tasanen-Määttä K, Vassileva S, Zillikens D, Sadik CD, Schmidt E, Ibrahim S, Baines JF. The gut microbiome in bullous pemphigoid: implications of the gut-skin axis for disease susceptibility. Front Immunol 2023; 14:1212551. [PMID: 38022583 PMCID: PMC10668026 DOI: 10.3389/fimmu.2023.1212551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Bullous pemphigoid (BP) is an autoimmune blistering disease that primarily affects the elderly. An altered skin microbiota in BP was recently revealed. Accumulating evidence points toward a link between the gut microbiota and skin diseases; however, the gut microbiota composition of BP patients remains largely underexplored, with only one pilot study to date, with a very limited sample size and no functional profiling of gut microbiota. To thoroughly investigate the composition and function of the gut microbiota in BP patients, and explore possible links between skin conditions and gut microbiota, we here investigated the gut microbiota of 66 patients (81.8% firstly diagnosed) suffering from BP and 66 age-, sex-, and study center-matched controls (CL) with non-inflammatory skin diseases (132 total participants), using 16S rRNA gene and shotgun sequencing data. Decreased alpha-diversity and an overall altered gut microbial community is observed in BP patients. Similar trends are observed in subclassifications of BP patients, including first diagnoses and relapsed cases. Furthermore, we observe a set of BP disease-associated gut microbial features, including reduced Faecalibacterium prausnitzii and greater abundance of pathways related to gamma-aminobutyric acid (GABA) metabolism in BP patients. Interestingly, F. prausnitzii is a well-known microbiomarker of inflammatory diseases, which has been reported to be reduced in the gut microbiome of atopic dermatitis and psoriasis patients. Moreover, GABA plays multiple roles in maintaining skin health, including the inhibition of itching by acting as a neurotransmitter, attenuating skin lesions by balancing Th1 and Th2 levels, and maintaining skin elasticity by increasing the expression of type I collagen. These findings thus suggest that gut microbiota alterations present in BP may play a role in the disease, and certain key microbes and functions may contribute to the link between gut dysbiosis and BP disease activity. Further studies to investigate the underlying mechanisms of the gut-skin interaction are thus clearly warranted, which could aid in the development of potential therapeutic interventions.
Collapse
Affiliation(s)
- Xiaolin Liu
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Kiel, Germany
| | - Nina van Beek
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Aleksa Cepic
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Kiel, Germany
| | - Nadia A. Andreani
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Kiel, Germany
| | - Cecilia J. Chung
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Kiel, Germany
| | - Britt M. Hermes
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Kiel, Germany
| | - Kaan Yilmaz
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Sandrine Benoit
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Kossara Drenovska
- Department of Dermatology and Venereology, Medical University-Sofia, Sofia, Bulgaria
| | - Sascha Gerdes
- Department of Dermatology, Venereology and Allergology, University of Kiel, Kiel, Germany
| | - Regine Gläser
- Department of Dermatology, Venereology and Allergology, University of Kiel, Kiel, Germany
| | - Matthias Goebeler
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Claudia Günther
- Department of Dermatology, University Hospital, Technische Universität (TU) Dresden, Dresden, Germany
| | - Anabelle von Georg
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Christoph M. Hammers
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Maike M. Holtsche
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Franziska Hübner
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Dimitra Kiritsi
- Department of Dermatology, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Franziska Schauer
- Department of Dermatology, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Beke Linnenmann
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Laura Huilaja
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Department of Dermatology and Medical Research Center Oulu, Oulu University Hospital, Oulu, Finland
| | - Kaisa Tasanen-Määttä
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Department of Dermatology and Medical Research Center Oulu, Oulu University Hospital, Oulu, Finland
| | - Snejina Vassileva
- Department of Dermatology and Venereology, Medical University-Sofia, Sofia, Bulgaria
| | - Detlef Zillikens
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
- Center for Research on Inflammation of the Skin (CRIS), University of Lübeck, Lübeck, Germany
| | - Christian D. Sadik
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
- Center for Research on Inflammation of the Skin (CRIS), University of Lübeck, Lübeck, Germany
| | - Enno Schmidt
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
- Center for Research on Inflammation of the Skin (CRIS), University of Lübeck, Lübeck, Germany
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Saleh Ibrahim
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - John F. Baines
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Kiel, Germany
| |
Collapse
|
16
|
Tan J, Ma Q, Li J, Liu Q, Zhuang Y. Bioavailability and Antioxidant Activity of Rambutan ( Nephelium lappaceum) Peel Polyphenols during in Vitro Simulated Gastrointestinal Digestion, Caco-2 Monolayer Cell Model Application, and Colonic Fermentation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15829-15841. [PMID: 37827988 DOI: 10.1021/acs.jafc.3c04106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
The bioavailability of rambutan peel polyphenols (RPPs) was studied via in vitro simulated digestion, a Caco-2 monolayer cell model, and colonic fermentation. Total phenolic content of RPPs decreased with the progress of the simulated digestion. A total of 38 phenolic compounds were identified during the digestion and colonic fermentation, of which 12 new metabolites were found during colonic fermentation. The possible biotransformation pathways were inferred. Geraniin was transformed into corilagin, ellagic acid, and gallic acid during the digestion and colonic fermentation. Ellagic acid could be further transformed into urolithin under the action of intestinal microbiota. The transformation of ellagitannins could be beneficial to transport on Caco-2 monolayer cell. The antioxidant capacity of RPPs increased with the progress of gastrointestinal digestion. Furthermore, RPPs could increase the yield of short-chain fatty acids, decrease the pH value, promote the growth of beneficial bacteria, and inhibit the growth of pathogenic Escherichia coli/Shigella during colonic fermentation.
Collapse
Affiliation(s)
- Junjie Tan
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming, Yunnan 650500, China
| | - Qingyu Ma
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming, Yunnan 650500, China
| | - Jiao Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming, Yunnan 650500, China
| | - Qiuming Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming, Yunnan 650500, China
| | - Yongliang Zhuang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming, Yunnan 650500, China
| |
Collapse
|
17
|
Li BJ, He WX, Hua H, Wei P. Potential correlation of oral flora with pemphigus vulgaris - A case control study. J Dent Sci 2023; 18:1612-1620. [PMID: 37799932 PMCID: PMC10547953 DOI: 10.1016/j.jds.2023.01.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
Background/purpose Oral flora is related to various immune-related diseases. Herein we explored the characteristics of oral flora in patients with pemphigus vulgaris (PV) and analyzed the correlation between oral flora and PV. Materials and methods Twenty-two untreated patients with PV and 12 healthy controls (HC) were included in this case-control study. The characteristics of salivary microbiome were assessed by high-throughput sequencing using the 16S rRNA Illumina MiSeq approach, and differences between the PV and HC groups were determined. The Kyoto Encyclopedia of Genes and Genomes (KEGG) database was applied to screen key metabolic pathways and preliminarily explore potential mechanisms underlying PV occurrence and development. Results The abundance of oral flora in the PV group was significantly lower than that in the HC group, and there were characteristic changes. The relative abundance of Prevotella and Agrobacterium in the PV group was significantly higher than that in the HC group (P < 0.05) and that of Neisseria, Lautropia, and Fusobacterium was significantly lower (P < 0.05). There was a linear correlation between Prevotella and serum Dsg3 level in PV. KEGG pathway analyses indicated significant differences in nine metabolic pathways between the PV and HC groups (P < 0.05), namely carbohydrate metabolism, digestive system, neurodegenerative disease, glycan biosynthesis and metabolism, drug resistance: antimicrobial, infectious disease: viral, circulatory system, excretory system, and nervous system. Conclusion The oral flora of patients with PV presented characteristic changes, and several metabolic pathways were affected, including N-glycan biosynthesis and metabolism. Prevotella spp. appear to require the most attention in PV. We believe that oral flora dysbacteriosis contributes to PV occurrence and development.
Collapse
Affiliation(s)
- Bing-jie Li
- Department of Oral Medicine, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, PR China
| | - Wen-xiu He
- Department of Oral Medicine, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, PR China
| | - Hong Hua
- Department of Oral Medicine, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, PR China
| | - Pan Wei
- Department of Oral Medicine, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, PR China
| |
Collapse
|
18
|
Al-Hasnawi ZA, AL-Drobie B. Cut-off values for IL-21 and IL-23 as biochemical markers for pemphigus vulgaris. J Med Life 2023; 16:1407-1414. [PMID: 38107713 PMCID: PMC10719779 DOI: 10.25122/jml-2023-0226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/20/2023] [Indexed: 12/19/2023] Open
Abstract
Pemphigus vulgaris (PV) is a potentially fatal mucocutaneous autoimmune disease characterized by severe skin lesions. Interleukin-21 (IL-21) and IL-23 have been linked to several autoimmune inflammatory diseases that may have a critical role in PV immunopathogenesis, including T-helper 17 (Th17) development. This study aimed to compare the serum levels of IL-21 and IL-23 in patients with PV and healthy controls. This case-control study included 90 participants (45 patients and 45 controls). Serum IL-21 and IL-23 were measured using the Sandwich-ELISA method provided by Sunlong Biotech, China. The findings revealed statistically significant results for IL-21 O.D. and Conc. (p=0.012*) and highly significant results for IL-23 O.D. and Conc. (p=0.000**). Furthermore, cut-off values were established for IL-21 (O.D.=0.071 pg/mL, Conc.=6.468 pg/mL) and IL-23 (O.D.=0.141 pg/mL, Conc.=6.745 pg/mL). These results indicate a potential association between PV and IL-21, IL-23, and the identified cut-off values. The particular roles of cytokines and how they can be utilized to treat PV require more investigation. To our knowledge, this was the first study to detect a cut-off point for IL-21 and IL-23 that may be used as novel and cost-effective biochemical markers for disease diagnosis.
Collapse
Affiliation(s)
- Zahra Ali Al-Hasnawi
- Department of Oral Medicine, College of Dentistry, University of Baghdad, Baghdad, Iraq
| | - Ban AL-Drobie
- Department of Oral Diagnosis, College of Dentistry, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
19
|
Singh G, Brim H, Haileselassie Y, Varma S, Habtezion A, Rashid M, Sinha SR, Ashktorab H. Microbiomic and Metabolomic Analyses Unveil the Protective Effect of Saffron in a Mouse Colitis Model. Curr Issues Mol Biol 2023; 45:5558-5574. [PMID: 37504267 PMCID: PMC10378474 DOI: 10.3390/cimb45070351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 07/29/2023] Open
Abstract
Despite the existence of effective drugs used to treat inflammatory bowel disease (IBD), many patients fail to respond or lose response over time. Further, many drugs can carry serious adverse effects, including increased risk of infections and malignancies. Saffron (Crocus sativus) has been reported to have anti-inflammatory properties. Its protective role in IBD and how the microbiome and metabolome play a role has not been explored extensively. We aimed to establish whether saffron treatment modulates the host microbiome and metabolic profile in experimental colitis. Colitis was induced in C57BL/6 mice with 3% DSS and treated with either saffron in a dose of 20 mg/kg body weight or vehicle through daily gavage. On day 10, stool pellets from mice were collected and analyzed to assess saffron's effect on fecal microbiota and metabolites through 16S rRNA sequencing and untargeted primary metabolite analysis. Saffron treatment maintained gut microbiota homeostasis by counter-selecting pro-inflammatory bacteria and maintained Firmicutes/Bacteroides ratio, which was otherwise disturbed by DSS treatment. Several metabolites (uric acid, cholesterol, 2 hydroxyglutaric acid, allantoic acid, 2 hydroxyhexanoic acid) were altered significantly with saffron treatment in DSS-treated mice, and this might play a role in mediating saffron's colitis-mitigating effects. These data demonstrate saffron's therapeutic potential, and its protective role is modulated by gut microbiota, potentially acting through changes in metabolites.
Collapse
Affiliation(s)
- Gulshan Singh
- Division of Gastroenterology and Hepatology, School of Medicine, Stanford University, Palo Alto, CA 94305, USA
| | - Hassan Brim
- Department of Pathology, Howard University College of Medicine, Washington, DC 20059, USA
| | - Yeneneh Haileselassie
- Division of Gastroenterology and Hepatology, School of Medicine, Stanford University, Palo Alto, CA 94305, USA
| | - Sudhir Varma
- Hithru Analytics LLC, Silver Spring, MD 20877, USA
| | - Aida Habtezion
- Division of Gastroenterology and Hepatology, School of Medicine, Stanford University, Palo Alto, CA 94305, USA
| | - Mudasir Rashid
- Department of Pathology and Cancer Center, College of Medicine, Howard University College of Medicine, Washington, DC 20059, USA
| | - Sidhartha R. Sinha
- Division of Gastroenterology and Hepatology, School of Medicine, Stanford University, Palo Alto, CA 94305, USA
| | - Hassan Ashktorab
- Department of Pathology and Cancer Center, College of Medicine, Howard University College of Medicine, Washington, DC 20059, USA
| |
Collapse
|
20
|
Park EJ, Yadav H, Singh TP. Editorial: Microbiota in skin inflammatory diseases. Front Immunol 2023; 14:1235314. [PMID: 37398670 PMCID: PMC10311210 DOI: 10.3389/fimmu.2023.1235314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 07/04/2023] Open
Affiliation(s)
- Eun Jeong Park
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hariom Yadav
- Center for Microbiome Research, Microbiomes Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Tej Pratap Singh
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
21
|
Hendricks SA, Vella CA, New DD, Aunjum A, Antush M, Geidl R, Andrews KR, Balemba OB. High-Resolution Taxonomic Characterization Reveals Novel Human Microbial Strains with Potential as Risk Factors and Probiotics for Prediabetes and Type 2 Diabetes. Microorganisms 2023; 11:758. [PMID: 36985331 PMCID: PMC10051885 DOI: 10.3390/microorganisms11030758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/27/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023] Open
Abstract
Alterations in the composition of the gut microbiota is thought to play a key role in causing type 2 diabetes, yet is not fully understood, especially at the strain level. Here, we used long-read DNA sequencing technology of 16S-ITS-23S rRNA genes for high-resolution characterization of gut microbiota in the development of type 2 diabetes. Gut microbiota composition was characterized from fecal DNA from 47 participants divided into 4 cohorts based on glycemic control: normal glycemic control (healthy; n = 21), reversed prediabetes (prediabetes/healthy; n = 8), prediabetes (n = 8), or type 2 diabetes (n = 10). A total of 46 taxa were found to be possibly related to progression from healthy state to type 2 diabetes. Bacteroides coprophilus DSM 18228, Bifidobacterium pseudocatenulatum DSM 20438, and Bifidobacterium adolescentis ATCC 15703 could confer resistance to glucose intolerance. On the other hand, Odoribacter laneus YIT 12061 may be pathogenic as it was found to be more abundant in type 2 diabetes participants than other cohorts. This research increases our understanding of the structural modulation of gut microbiota in the pathogenesis of type 2 diabetes and highlights gut microbiota strains, with the potential for targeted opportunistic pathogen control or consideration for probiotic prophylaxis and treatment.
Collapse
Affiliation(s)
- Sarah A. Hendricks
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID 83843, USA
| | - Chantal A. Vella
- Department of Movement Sciences, University of Idaho, Moscow, ID 83843, USA
- WWAMI Medical Education Program, University of Idaho, Moscow, ID 83843, USA
| | - Daniel D. New
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID 83843, USA
| | - Afiya Aunjum
- Department of Movement Sciences, University of Idaho, Moscow, ID 83843, USA
| | - Maximilian Antush
- Department of Movement Sciences, University of Idaho, Moscow, ID 83843, USA
| | - Rayme Geidl
- WWAMI Medical Education Program, University of Idaho, Moscow, ID 83843, USA
| | - Kimberly R. Andrews
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID 83843, USA
| | - Onesmo B. Balemba
- WWAMI Medical Education Program, University of Idaho, Moscow, ID 83843, USA
- Department of Biological Sciences, University of Idaho, Moscow, ID 83843, USA
| |
Collapse
|
22
|
Liu Y, Fan H, Shao Y, Zhang J, Zuo Z, Wang J, Zhao F, Jiang L. Gut microbiota dysbiosis associated with different types of demyelinating optic neuritis in patients. Mult Scler Relat Disord 2023; 72:104619. [PMID: 36931077 DOI: 10.1016/j.msard.2023.104619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/06/2023] [Accepted: 03/11/2023] [Indexed: 03/14/2023]
Abstract
BACKGROUND Demyelinating optic neuritis (DON) causes rapid vision loss in young and middle-aged people. The limited efficacy of treatment and the toxic side effects of drugs significantly affect the quality of life of patients with DON. Therefore, DON pathogenesis has always been a research hotspot in terms of prevention and treatment. Studies have suggested that gut microbiota imbalances may be involved in autoimmune disease development via the modulation of multiple inflammatory cytokines and anti-inflammatory metabolites. Therefore, this study aims to explore gut microbiota differences between healthy controls (HCs) and patients with DON. METHODS A total of 54 patients with DON and 41 HCs were recruited. Fecal and blood samples were collected before and after intravenous methylprednisolone pulse (IVMP) treatment. The Shannon index, gut microbiota structure, and differential bacteria were evaluated and compared. RESULTS The Shannon diversity index was decreased in patients with DON (p < 0.001) but was higher after IVMP treatment (p < 0.05). In patients with DON, Blautia, Escherichia-Shigella, and Ruminococcus showed higher abundances, whereas Bacteroides, Faecalibacterium, Roseburia, Parabacteroides, Romboutsia, and Alistipes showed lower abundances compared to that in the HCs. After IVMP treatment, the Shannon index of the myelin oligodendrocyte glycoprotein-immunoglobulin G (+) (MOG-IgG (+)) and both aquaporin-4 (AQP4)-IgG (-) and MOG-IgG (-) groups increased (p < 0.05). Bacteroides was negatively correlated with interleukin (IL)-21, IL-17E, and tumor necrosis factor-α levels (p < 0.05, r = -0.54; p < 0.05, r= -0.50; p < 0.05, r =-0.55, respectively). Escherichia was positively correlated with macrophage inflammatory protein-3α (p < 0.05, r = 0.51). Alistipes was negatively correlated with soluble CD40 ligand (p < 0.05, r = -0.52). CONCLUSION The gut microbiota differed significantly between patients with DON and HCs; however, IVMP treatment may restore gut microbiota diversity and structure in patients with DON. Moreover, gut microbiota changes may play a role in DON pathogenesis.
Collapse
Affiliation(s)
- Yi Liu
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; China Emergency General Hospital, Beijing 100028, China
| | - Huimin Fan
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yonghui Shao
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Jing Zhang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; Department of Ophthalmology, Beijing Puren Hospital, Beijing 100062, China
| | - Zhenqiang Zuo
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinfeng Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Fangqing Zhao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China.
| | - Libin Jiang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China.
| |
Collapse
|
23
|
Wang Y, Xia X, Zhou X, Zhan T, Dai Q, Zhang Y, Zhang W, Shu Y, Li W, Xu H. Association of gut microbiome and metabolites with onset and treatment response of patients with pemphigus vulgaris. Front Immunol 2023; 14:1114586. [PMID: 37122759 PMCID: PMC10140300 DOI: 10.3389/fimmu.2023.1114586] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/28/2023] [Indexed: 05/02/2023] Open
Abstract
Background Gut dysbiosis and gut microbiome-derived metabolites have been implicated in both disease onset and treatment response, but this has been rarely demonstrated in pemphigus vulgaris (PV). Here, we aim to systematically characterize the gut microbiome to assess the specific microbial species and metabolites associated with PV. Methods We enrolled 60 PV patients and 19 matched healthy family members, and collected 100 fecal samples (60 treatment-naïve, 21 matched post-treatment, and 19 controls). Metagenomic shotgun sequencing and subsequent quality control/alignment/annotation were performed to assess the composition and microbial species, in order to establish the association between gut microbiome with PV onset and treatment response. In addition, we evaluated short-chain fatty acids (SCFAs) in PV patients through targeted metabolomics analysis. Results The diversity of the gut microbiome in PV patients deviates from the healthy family members but not between responder and non-responder, or before and after glucocorticoid treatment. However, the relative abundance of several microbial species, including the pathogenic bacteria (e.g., Escherichia coli) and some SCFA-producing probiotics (e.g., Eubacterium ventriosum), consistently differed between the two groups in each comparison. Escherichia coli was enriched in PV patients and significantly decreased after treatment in responders. In contrast, Eubacterium ventriosum was enriched in healthy family members and significantly increased particularly in responders after treatment. Consistently, several gut microbiome-derived SCFAs were enriched in healthy family members and significantly increased after treatment (e.g., butyric acid and valeric acid). Conclusions This study supports the association between the gut microbiome and PV onset, possibly through disrupting the balance of gut pathogenic bacteria and probiotics and influencing the level of gut microbiome-derived SCFAs. Furthermore, we revealed the potential relationship between specific microbial species and glucocorticoid treatment.
Collapse
Affiliation(s)
- Yiyi Wang
- Department of Dermatology & Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xuyang Xia
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Chengdu, China
| | - Xingli Zhou
- Department of Dermatology & Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Tongying Zhan
- Department of Dermatology & Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qinghong Dai
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha, China
| | - Yan Zhang
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha, China
| | - Yang Shu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Chengdu, China
| | - Wei Li
- Department of Dermatology & Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Heng Xu, ; Wei Li,
| | - Heng Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Chengdu, China
- Department of Laboratory Medicine, Research Center of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Heng Xu, ; Wei Li,
| |
Collapse
|
24
|
Islam MZ, Tran M, Xu T, Tierney BT, Patel C, Kostic AD. Reproducible and opposing gut microbiome signatures distinguish autoimmune diseases and cancers: a systematic review and meta-analysis. MICROBIOME 2022; 10:218. [PMID: 36482486 PMCID: PMC9733034 DOI: 10.1186/s40168-022-01373-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 09/16/2022] [Indexed: 05/28/2023]
Abstract
BACKGROUND The gut microbiome promotes specific immune responses, and in turn, the immune system has a hand in shaping the microbiome. Cancer and autoimmune diseases are two major disease families that result from the contrasting manifestations of immune dysfunction. We hypothesized that the opposing immunological profiles between cancer and autoimmunity yield analogously inverted gut microbiome signatures. To test this, we conducted a systematic review and meta-analysis on gut microbiome signatures and their directionality in cancers and autoimmune conditions. METHODOLOGY We searched PubMed, Web of Science, and Embase to identify relevant articles to be included in this study. The study was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statements and PRISMA 2009 checklist. Study estimates were pooled by a generic inverse variance random-effects meta-analysis model. The relative abundance of microbiome features was converted to log fold change, and the standard error was calculated from the p-values, sample size, and fold change. RESULTS We screened 3874 potentially relevant publications. A total of 82 eligible studies comprising 37 autoimmune and 45 cancer studies with 4208 healthy human controls and 5957 disease cases from 27 countries were included in this study. We identified a set of microbiome features that show consistent, opposite directionality between cancers and autoimmune diseases in multiple studies. Fusobacterium and Peptostreptococcus were the most consistently increased genera among the cancer cases which were found to be associated in a remarkable 13 (+0.5 log fold change in 5 studies) and 11 studies (+3.6 log fold change in 5 studies), respectively. Conversely, Bacteroides was the most prominent genus, which was found to be increased in 12 autoimmune studies (+0.2 log fold change in 6 studies) and decreased in six cancer studies (-0.3 log fold change in 4 studies). Sulfur-metabolism pathways were found to be the most frequent pathways among the member of cancer-increased genus and species. CONCLUSIONS The surprising reproducibility of these associations across studies and geographies suggests a shared underlying mechanism shaping the microbiome across cancers and autoimmune diseases. Video Abstract.
Collapse
Affiliation(s)
- Md Zohorul Islam
- Section on Pathophysiology and Molecular Pharmacology, Joslin Diabetes Center, Boston, MA, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
- Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Melissa Tran
- Section on Pathophysiology and Molecular Pharmacology, Joslin Diabetes Center, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Tao Xu
- Section on Pathophysiology and Molecular Pharmacology, Joslin Diabetes Center, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Braden T Tierney
- Section on Pathophysiology and Molecular Pharmacology, Joslin Diabetes Center, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA, USA
| | - Chirag Patel
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Aleksandar David Kostic
- Section on Pathophysiology and Molecular Pharmacology, Joslin Diabetes Center, Boston, MA, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA, USA.
| |
Collapse
|
25
|
Huang ZR, Huang QZ, Chen KW, Huang ZF, Liu Y, Jia RB, Liu B. Sanghuangporus vaninii fruit body polysaccharide alleviates hyperglycemia and hyperlipidemia via modulating intestinal microflora in type 2 diabetic mice. Front Nutr 2022; 9:1013466. [PMID: 36337615 PMCID: PMC9632624 DOI: 10.3389/fnut.2022.1013466] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/29/2022] [Indexed: 11/18/2022] Open
Abstract
The disease of type 2 diabetes mellitus (T2DM) is principally induced by insufficient insulin secretion and insulin resistance. In the current study, Sanghuangporus vaninii fruit body polysaccharide (SVP) was prepared and structurally characterized. It was shown that the yield of SVP was 1.91%, and SVP mainly contains small molecular weight polysaccharides. Afterward, the hypoglycemic and hypolipidemic effects and the potential mechanism of SVP in T2DM mice were investigated. The results exhibited oral SVP could reverse the body weight loss, high levels of blood glucose, insulin resistance, hyperlipidemia, and inflammation in T2DM mice. Oral SVP increased fecal short-chain fatty acids (SCFAs) concentrations of T2DM mice. Additionally, 16S rRNA sequencing analysis illustrated that SVP can modulate the structure and function of intestinal microflora in T2DM mice, indicating as decreasing the levels of Firmicutes/Bacteroidetes, Flavonifractor, Odoribacter, and increasing the levels of Weissella, Alloprevotella, and Dubosiella. Additionally, the levels of predicted metabolic functions of Citrate cycle, GABAergic synapse, Insulin signaling pathway were increased, and those of Purine metabolism, Taurine and hypotaurine metabolism, and Starch and sucrose metabolism were decreased in intestinal microflora after SVP treatment. These findings demonstrate that SVP could potentially play hypoglycemic and hypolipidemic effects by regulating gut microflora and be a promising nutraceutical for ameliorating T2DM.
Collapse
Affiliation(s)
- Zi-Rui Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qi-Zhen Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ke-Wen Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zi-Feng Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yun Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rui-Bo Jia
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou, China
- *Correspondence: Bin Liu,
| | - Bin Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Bin Liu,
| |
Collapse
|
26
|
Effects of Bacillus licheniformis on Growth Performance, Diarrhea Incidence, Antioxidant Capacity, Immune Function, and Fecal Microflora in Weaned Piglets. Animals (Basel) 2022; 12:ani12131609. [PMID: 35804509 PMCID: PMC9264952 DOI: 10.3390/ani12131609] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Bacillus licheniformis has been shown to be safe as a green additive in food and feed. This experiment was conducted to investigate the value of Bacillus licheniformis in the diet of piglets. Our results suggested that dietary Bacillus licheniformis supplementation plays an important role in improving the average daily gain, alleviating diarrhea, improving antioxidant capacity, promoting immune function, and regulating the intestinal microflora of weaned piglets. Abstract Bacillus licheniformis (B. licheniformis) is a safe probiotic that can promote animal growth and inhibit pathogenic bacteria. This study aimed to assess the effects of B. licheniformis, one green feed additive, on growth performance, diarrhea incidence, immune function, fecal volatile fatty acids, and microflora structure in weaned piglets. Weaned piglets (n = 180) were randomly divided into three treatment groups and fed a basal diet and a basal diet supplemented with 500 mg B. licheniformis per kg and 1000 mg B. licheniformis per kg, respectively. The dietary 500 mg/kg B. licheniformis inclusion improved the average daily gain, reduced diarrhea incidence, and strengthened antioxidant capacity. Piglets supplemented with B. licheniformis presented increased serum immunoglobulins (IgA, IgM) compared to the CON group. Meanwhile, the expression of anti-inflammation factors was increased, and the levels of pro-inflammation factors were reduced after B. licheniformis administration. Moreover, the levels of volatile fatty acids, including acetic acid, propionic acid, butyric acid, isobutyric acid, and isovaleric acid, in the BL500 and BL1000 groups were increased compared with the CON group, and the concentration of valeric acid was higher in the BL500 group. Furthermore, piglets in the 500 mg/kg B. licheniformis addition group significantly altered fecal microbiota by increasing Clostridium_sensu_stricto_1 and Oscillospira. In conclusion, dietary B. licheniformis relieved diarrhea, enhanced antioxidant capacity, immunity function, and fecal microflora structure in weaned pigs.
Collapse
|
27
|
Low L, Suleiman K, Shamdas M, Bassilious K, Poonit N, Rossiter AE, Acharjee A, Loman N, Murray PI, Wallace GR, Rauz S. Gut Dysbiosis in Ocular Mucous Membrane Pemphigoid. Front Cell Infect Microbiol 2022; 12:780354. [PMID: 35493740 PMCID: PMC9046938 DOI: 10.3389/fcimb.2022.780354] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 03/16/2022] [Indexed: 12/27/2022] Open
Abstract
Mucous Membrane Pemphigoid is an orphan multi-system autoimmune scarring disease involving mucosal sites, including the ocular surface (OcMMP) and gut. Loss of tolerance to epithelial basement membrane proteins and generation of autoreactive T cell and/or autoantibodies are central to the disease process. The gut microbiome plays a critical role in the development of the immune system. Alteration in the gut microbiome (gut dysbiosis) affects the generation of autoreactive T cells and B cell autoantibody repertoire in several autoimmune conditions. This study examines the relationship between gut microbiome diversity and ocular inflammation in patients with OcMMP by comparing OcMMP gut microbiome profiles with healthy controls. DNA was extracted from faecal samples (49 OcMMP patients, 40 healthy controls), amplified for the V4 region of the 16S rRNA gene and sequenced using Illumina Miseq platform. Sequencing reads were processed using the bioinformatics pipeline available in the mothur v.1.44.1 software. After adjusting for participant factors in the multivariable model (age, gender, BMI, diet, proton pump inhibitor use), OcMMP cohort was found to be associated with lower number of operational taxonomic units (OTUs) and Shannon Diversity Index when compared to healthy controls. Within the OcMMP cohort, the number of OTUs were found to be significantly correlated with both the bulbar conjunctival inflammation score (p=0.03) and the current use of systemic immunotherapy (p=0.02). The linear discriminant analysis effect size scores indicated that Streptococcus and Lachnoclostridium were enriched in OcMMP patients whilst Oxalobacter, Clostridia uncultured genus-level group (UCG) 014, Christensenellaceae R-7 group and butyrate-producing bacteria such as Ruminococcus, Lachnospiraceae, Coprococcus, Roseburia, Oscillospiraceae UCG 003, 005, NK4A214 group were enriched in healthy controls (Log10 LDA score < 2, FDR-adjusted p <0.05). In conclusion, OcMMP patients have gut dysbiosis correlating with bulbar conjunctival inflammation and the use of systemic immunotherapies. This provides a framework for future longitudinal deep phenotyping studies on the role of the gut microbiome in the pathogenesis of OcMMP.
Collapse
Affiliation(s)
- Liying Low
- Academic Unit of Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Kusy Suleiman
- Academic Unit of Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Mohith Shamdas
- Academic Unit of Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Kerolos Bassilious
- Academic Unit of Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- Birmingham and Midland Eye Centre, Sandwell and West Birmingham National Health Service (NHS) Trust, Birmingham, United Kingdom
| | - Natraj Poonit
- Birmingham and Midland Eye Centre, Sandwell and West Birmingham National Health Service (NHS) Trust, Birmingham, United Kingdom
| | - Amanda E. Rossiter
- Institute for Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Animesh Acharjee
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, Centre for Computational Biology, University of Birmingham, Birmingham, United Kingdom
- Institute of Translational Medicine, University Hospitals Birmingham National Health Service (NHS), Foundation Trust, Birmingham, United Kingdom
- National Institute for Health Research (NIHR) Surgical Reconstruction and Microbiology Research Centre, University Hospital Birmingham, Birmingham, United Kingdom
| | - Nicholas Loman
- Institute for Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Philip I. Murray
- Academic Unit of Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- Birmingham and Midland Eye Centre, Sandwell and West Birmingham National Health Service (NHS) Trust, Birmingham, United Kingdom
| | - Graham R. Wallace
- Academic Unit of Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Saaeha Rauz
- Academic Unit of Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- Birmingham and Midland Eye Centre, Sandwell and West Birmingham National Health Service (NHS) Trust, Birmingham, United Kingdom
- *Correspondence: Saaeha Rauz,
| |
Collapse
|
28
|
Garofalo L, Nakama C, Hanes D, Zwickey H. Whole-Person, Urobiome-Centric Therapy for Uncomplicated Urinary Tract Infection. Antibiotics (Basel) 2022; 11:218. [PMID: 35203820 PMCID: PMC8868435 DOI: 10.3390/antibiotics11020218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023] Open
Abstract
A healthy urinary tract contains a variety of microbes resulting in a diverse urobiome. Urobiome dysbiosis, defined as an imbalance in the microbial composition in the microenvironments along the urinary tract, is found in women with uncomplicated urinary tract infection (UTI). Historically, antibiotics have been used to address UTI. An alternative approach to uncomplicated UTI is warranted as the current paradigm fails to take urobiome dysbiosis into account and contributes to the communal problem of resistance. A whole-person, multi-modal approach that addresses vaginal and urinary tract dysbiosis may be more effective in reducing recurrent UTI. In this review, we discuss strategies that include reducing pathogenic bacteria while supporting commensal urogenital bacteria, encouraging diuresis, maintaining optimal pH levels, and reducing inflammation. Strategies for future research are suggested.
Collapse
Affiliation(s)
- Luciano Garofalo
- Department of Child, Family, and Population Health Nursing, University of Washington, Seattle, WA 98195, USA
| | - Claudia Nakama
- National University of Natural Medicine, Portland, OR 97201, USA; (C.N.); (D.H.); (H.Z.)
| | - Douglas Hanes
- National University of Natural Medicine, Portland, OR 97201, USA; (C.N.); (D.H.); (H.Z.)
- Helfgott Research Institute, NUNM, Portland, OR 97201, USA
| | - Heather Zwickey
- National University of Natural Medicine, Portland, OR 97201, USA; (C.N.); (D.H.); (H.Z.)
- Helfgott Research Institute, NUNM, Portland, OR 97201, USA
| |
Collapse
|
29
|
Zhou L, Chen L, Liu X, Huang Y, Xu Y, Xiong X, Deng Y. The influence of benzoyl peroxide on skin microbiota and the epidermal barrier for acne vulgaris. Dermatol Ther 2021; 35:e15288. [PMID: 34962033 DOI: 10.1111/dth.15288] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 12/03/2021] [Accepted: 12/26/2021] [Indexed: 12/01/2022]
Abstract
The disordered skin microbiome has been reported to contribute to the pathogenesis of acne vulgaris, for which benzoyl peroxide (BPO) has long been recommended as the first-line therapy. However, there are no data regarding the effect of BPO treatment on skin microbiota and the epidermal barrier in young adults with acne vulgaris. Thirty-three patients with acne vulgaris and 19 healthy controls were enrolled in the study. All patients received topical treatment with BPO 5% gel for 12 weeks. The epidermal barrier was analyzed at baseline and after treatment. Microbial diversity was analyzed using a high-throughput sequencing approach targeting the V3-V4 region of 16S rRNA genes. After receiving treatment with BPO, patients had significant improvement in their Global Acne Grading System (GAGS) score, porphyrin, and red areas (p < 0.05), and the presence of sebum, stratum corneum hydration (SCH), and transepidermal water loss (TEWL) increased (p < 0.05). When compared with baseline, microbial diversity was significantly reduced after treatment, as calculated by the goods coverage (p = 0.0017), Shannon (p = 0.0094), and Simpson (p = 0.0017) diversity indices. The prevalence of the genus Cutibacterium (before treatment: 5.64 [3.50, 7.78] vs. after treatment: 2.43 [1.81, 3.05], p = 0.011) was significantly reduced after treatment while Staphylococcus (before treatment: 43.80 [36.62, 50.98] vs. after treatment: 53.38 [44.88, 61.87], p = 0.075) tended to increase. The abundance of Staphylococcus was negatively associated with SCH (p = 0.008, r = -0.286). Despite its contribution to an improved GAGS score, BPO treatment for acne vulgaris may reduce microbial diversity and damage the epidermal barrier. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Lin Zhou
- Department of Dermatology & STD, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Linna Chen
- Department of Dermatology & STD, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xueping Liu
- Department of Dermatology & STD, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yukun Huang
- Department of Dermatology & STD, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yong Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.,Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Sichuan, China.,Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, China
| | - Xia Xiong
- Department of Dermatology & STD, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yongqiong Deng
- Department of Dermatology & STD, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
30
|
Huang Y, Liu L, Chen L, Zhou L, Xiong X, Deng Y. Gender-Specific Differences in Gut Microbiota Composition Associated with Microbial Metabolites for Patients with Acne Vulgaris. Ann Dermatol 2021; 33:531-540. [PMID: 34858004 PMCID: PMC8577912 DOI: 10.5021/ad.2021.33.6.531] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/18/2021] [Accepted: 04/09/2021] [Indexed: 12/12/2022] Open
Abstract
Background The gut microbial dysbiosis and gender differences in the pathogenesis of acne vulgaris have long been postulated respectively. However, there was no data about a gender-related discrepancy in gut microbiota and microbial metabolism in acne. Objective This study aimed at identifying the underlying gender-related difference in gut microbiota and metabolism in acne vulgaris. Methods Fecal samples were collected from 43 acne patients and 43 age and gender-matched controls. Gut microbiota was analyzed by sequencing the V3-V4 region of 16SrDNA gene and microbial metabolites were quantitatively detected using gas chromatography time-of-flight mass spectrometry. Results Compared with healthy controls, the men had a lower abundance of 18 microbes such as Butyricicoccus, Clostridium sensu stricto, Faecalibaculum, Bacillus, Lactococcus, Blautia, Clostridiales, Lachnospiracea incertae sedis, Ruminococcus at genus level. However, the female patients only showed increased Clostridium sensu stricto and declined Oscillibacter and Odoribacterin. Additionally, the disordered metabolism of fatty acids was identified in male patients, while the dysbiosis of amino acids metabolism in female ones. Conclusion The disorder of gut microbiota and metabolism in acne vulgaris was gender-specific, which supported the potential role of gender difference in the pathogenesis of this disease.
Collapse
Affiliation(s)
- Yukun Huang
- Department of Dermatology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lu Liu
- Department of Dermatology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Linna Chen
- Department of Dermatology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lin Zhou
- Department of Dermatology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xia Xiong
- Department of Dermatology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yongqiong Deng
- Department of Dermatology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
31
|
Karimova M, Moyes D, Ide M, Setterfield JF. The human microbiome in immunobullous disorders and lichen planus. Clin Exp Dermatol 2021; 47:522-528. [PMID: 34669983 DOI: 10.1111/ced.14987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/05/2021] [Accepted: 10/11/2021] [Indexed: 12/18/2022]
Abstract
For several decades, there has been a significant growth in the incidence of autoimmune diseases. Studies indicate that genetic factors may not be the only trigger for disease development and that dysbiosis of the microbiome may be another mechanism involved in the pathogenesis of autoimmune diseases. The role of the microbiome in the development of common skin disorders such as psoriasis, atopic dermatitis, acne and rosacea is increasingly well understood. However, few studies have focused on lichen planus and the rare acquired immunobullous diseases, both mucocutaneous groups of disorders linked to skin, oral and gut microbiomes. This review provides an insight into the current understanding of how the microbiome may contribute to the development of autoimmunity and to the maintenance and exacerbation of acquired immunobullous and lichenoid diseases. These mechanisms may have implications for future preventive and therapeutic approaches.
Collapse
Affiliation(s)
- M Karimova
- Centre for Host Microbiome Interaction (CHMI), Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - D Moyes
- Centre for Host Microbiome Interaction (CHMI), Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - M Ide
- Centre for Host Microbiome Interaction (CHMI), Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK.,Department of Periodontology, Centre for Host-Microbiome Interactions (CHMI), Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, Guy's Hospital, London, UK
| | - J F Setterfield
- Centre for Host Microbiome Interaction (CHMI), Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK.,St John's Institute of Dermatology, Guy's and St Thomas' NHS Foundation Trust, London, UK.,Department of Oral Medicine, Guy's and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
32
|
R H, Ramani P, Tilakaratne WM, Sukumaran G, Ramasubramanian A, Krishnan RP. Critical appraisal of different triggering pathways for the pathobiology of pemphigus vulgaris-A review. Oral Dis 2021; 28:1760-1769. [PMID: 34152662 DOI: 10.1111/odi.13937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/07/2021] [Accepted: 05/26/2021] [Indexed: 12/12/2022]
Abstract
Pemphigus vulgaris is an autoimmune blistering disease with an increased potential for mortality. The epithelium is key in understanding the pathobiology as it is specialized to perform functions like mechanical protection, immunological defense, and proprioception. In order to perform these array of functions, epithelial integrity is important. This integrity is maintained by a host of molecules which orchestrate the ability of the keratinocytes to function as a single unit. Desmoglein 3 antibodies formed in genetically susceptible individuals are known to cause the disruption of the intact oral mucosa leading to the formation of blisters in pemphigus vulgaris patients. However, there are underlying complex triggering pathways leading to the clinical disease. The aim of the review is to congregate and critically appraise the various triggering pathways which contribute toward the pathobiology of pemphigus vulgaris. Articles relevant to the pathobiology of pemphigus vulgaris were identified from various search databases till the year 2020. The pathogenesis of pemphigus vulgaris is complex, and it involves an in-depth understanding of the various predisposing factors, provoking factors, and progression mechanisms. Congregation of the various triggering pathways will open our minds to understand pemphigus vulgaris better and in turn develop a reliable treatment in the near future.
Collapse
Affiliation(s)
- Hannah R
- Department of Oral Pathology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospital, Chennai, India
| | - Pratibha Ramani
- Department of Oral Pathology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospital, Chennai, India
| | - W M Tilakaratne
- Department of Oral and Maxillofacial Clinical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia.,Department of Oral Pathology, Faculty of Dental sciences, University of Peradeniya, Peradeniya, Sri Lanka
| | - Gheena Sukumaran
- Department of Oral Pathology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospital, Chennai, India
| | - Abilasha Ramasubramanian
- Department of Oral Pathology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospital, Chennai, India
| | - Reshma Poothakulath Krishnan
- Department of Oral Pathology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospital, Chennai, India
| |
Collapse
|
33
|
Raspini B, Vacca M, Porri D, De Giuseppe R, Calabrese FM, Chieppa M, Liso M, Cerbo RM, Civardi E, Garofoli F, De Angelis M, Cena H. Early Life Microbiota Colonization at Six Months of Age: A Transitional Time Point. Front Cell Infect Microbiol 2021; 11:590202. [PMID: 33842380 PMCID: PMC8032992 DOI: 10.3389/fcimb.2021.590202] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 03/01/2021] [Indexed: 12/15/2022] Open
Abstract
Background Early life gut microbiota is involved in several biological processes, particularly metabolism, immunity, and cognitive neurodevelopment. Perturbation in the infant’s gut microbiota increases the risk for diseases in early and later life, highlighting the importance of understanding the connections between perinatal factors with early life microbial composition. The present research paper is aimed at exploring the prenatal and postnatal factors influencing the infant gut microbiota composition at six months of age. Methods Gut microbiota of infants enrolled in the longitudinal, prospective, observational study “A.MA.MI” (Alimentazione MAmma e bambino nei primi MIlle giorni) was analyzed. We collected and analyzed 61 fecal samples at baseline (meconium, T0); at six months of age (T2), we collected and analyzed 53 fecal samples. Samples were grouped based on maternal and gestational weight factors, type of delivery, type of feeding, time of weaning, and presence/absence of older siblings. Alpha and beta diversities were evaluated to describe microbiota composition. Multivariate analyses were performed to understand the impact of the aforementioned factors on the infant’s microbiota composition at six months of age. Results Different clustering hypotheses have been tested to evaluate the impact of known metadata factors on the infant microbiota. Neither maternal body mass index nor gestational weight gain was able to determine significant differences in infant microbiota composition six months of age. Concerning the type of feeding, we observed a low alpha diversity in exclusive breastfed infants; conversely, non-exclusively breastfed infants reported an overgrowth of Ruminococcaceae and Flavonifractor. Furthermore, we did not find any statistically significant difference resulting from an early introduction of solid foods (before 4 months of age). Lastly, our sample showed a higher abundance of clostridial patterns in firstborn babies when compared to infants with older siblings in the family. Conclusion Our findings showed that, at this stage of life, there is not a single factor able to affect in a distinct way the infants’ gut microbiota development. Rather, there seems to be a complex multifactorial interaction between maternal and neonatal factors determining a unique microbial niche in the gastrointestinal tract.
Collapse
Affiliation(s)
- Benedetta Raspini
- Department of Public Health, Experimental and Forensic Medicine, Dietetics and Clinical Nutrition Laboratory, University of Pavia, Pavia, Italy
| | - Mirco Vacca
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Debora Porri
- Department of Public Health, Experimental and Forensic Medicine, Dietetics and Clinical Nutrition Laboratory, University of Pavia, Pavia, Italy
| | - Rachele De Giuseppe
- Department of Public Health, Experimental and Forensic Medicine, Dietetics and Clinical Nutrition Laboratory, University of Pavia, Pavia, Italy
| | | | - Marcello Chieppa
- National Institute of Gastroenterology "S. de Bellis", Institute of Research, Castellana Grotte, Italy
| | - Marina Liso
- National Institute of Gastroenterology "S. de Bellis", Institute of Research, Castellana Grotte, Italy
| | - Rosa Maria Cerbo
- Neonatal Unit and Neonatal Intensive Care Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Elisa Civardi
- Neonatal Unit and Neonatal Intensive Care Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Francesca Garofoli
- Neonatal Unit and Neonatal Intensive Care Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Maria De Angelis
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Hellas Cena
- Department of Public Health, Experimental and Forensic Medicine, Dietetics and Clinical Nutrition Laboratory, University of Pavia, Pavia, Italy.,Clinical Nutrition and Dietetics Service, Unit of Internal Medicine and Endocrinology, ICS Maugeri IRCCS, Pavia, Italy
| |
Collapse
|
34
|
Lin YT, Lin TY, Hung SC, Liu PY, Hung WC, Tsai WC, Tsai YC, Delicano RA, Chuang YS, Kuo MC, Chiu YW, Wu PH. Differences in the Microbial Composition of Hemodialysis Patients Treated with and without β-Blockers. J Pers Med 2021; 11:jpm11030198. [PMID: 33809103 PMCID: PMC8002078 DOI: 10.3390/jpm11030198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/21/2021] [Accepted: 03/06/2021] [Indexed: 12/23/2022] Open
Abstract
β-blockers are commonly prescribed to treat cardiovascular disease in hemodialysis patients. Beyond the pharmacological effects, β-blockers have potential impacts on gut microbiota, but no study has investigated the effect in hemodialysis patients. Hence, we aim to investigate the gut microbiota composition difference between β-blocker users and nonusers in hemodialysis patients. Fecal samples collected from hemodialysis patients (83 β-blocker users and 110 nonusers) were determined by 16S ribosomal RNA amplification sequencing. Propensity score (PS) matching was performed to control confounders. The microbial composition differences were analyzed by the linear discriminant analysis effect size, random forest, and zero-inflated Gaussian fit model. The α-diversity (Simpson index) was greater in β-blocker users with a distinct β-diversity (Bray-Curtis Index) compared to nonusers in both full and PS-matched cohorts. There was a significant enrichment in the genus Flavonifractor in β-blocker users compared to nonusers in full and PS-matched cohorts. A similar finding was demonstrated in random forest analysis. In conclusion, hemodialysis patients using β-blockers had a different gut microbiota composition compared to nonusers. In particular, the Flavonifractor genus was increased with β-blocker treatment. Our findings highlight the impact of β-blockers on the gut microbiota in hemodialysis patients.
Collapse
Affiliation(s)
- Yi-Ting Lin
- Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (Y.-T.L.); (Y.-S.C.)
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-C.T.); (M.-C.K.); (Y.-W.C.)
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ting-Yun Lin
- Division of Nephrology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan; (T.-Y.L.); (S.-C.H.)
- School of Medicine, Tzu Chi University, Hualien 97071, Taiwan
| | - Szu-Chun Hung
- Division of Nephrology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan; (T.-Y.L.); (S.-C.H.)
- School of Medicine, Tzu Chi University, Hualien 97071, Taiwan
| | - Po-Yu Liu
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei 100225, Taiwan;
| | - Wei-Chun Hung
- Department of Microbiology and Immunology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Wei-Chung Tsai
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Yi-Chun Tsai
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-C.T.); (M.-C.K.); (Y.-W.C.)
- Division of General Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Faculty of Renal Care, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | | | - Yun-Shiuan Chuang
- Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (Y.-T.L.); (Y.-S.C.)
| | - Mei-Chuan Kuo
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-C.T.); (M.-C.K.); (Y.-W.C.)
- Faculty of Renal Care, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yi-Wen Chiu
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-C.T.); (M.-C.K.); (Y.-W.C.)
- Faculty of Renal Care, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ping-Hsun Wu
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-C.T.); (M.-C.K.); (Y.-W.C.)
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: ; Tel.: +886-7-3121101
| |
Collapse
|
35
|
Straub TJ, Chou WC, Manson AL, Schreiber HL, Walker BJ, Desjardins CA, Chapman SB, Kaspar KL, Kahsai OJ, Traylor E, Dodson KW, Hullar MAJ, Hultgren SJ, Khoo C, Earl AM. Limited effects of long-term daily cranberry consumption on the gut microbiome in a placebo-controlled study of women with recurrent urinary tract infections. BMC Microbiol 2021; 21:53. [PMID: 33596852 PMCID: PMC7890861 DOI: 10.1186/s12866-021-02106-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/28/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Urinary tract infections (UTIs) affect 15 million women each year in the United States, with > 20% experiencing frequent recurrent UTIs. A recent placebo-controlled clinical trial found a 39% reduction in UTI symptoms among recurrent UTI sufferers who consumed a daily cranberry beverage for 24 weeks. Using metagenomic sequencing of stool from a subset of these trial participants, we assessed the impact of cranberry consumption on the gut microbiota, a reservoir for UTI-causing pathogens such as Escherichia coli, which causes > 80% of UTIs. RESULTS The overall taxonomic composition, community diversity, carriage of functional pathways and gene families, and relative abundances of the vast majority of observed bacterial taxa, including E. coli, were not changed significantly by cranberry consumption. However, one unnamed Flavonifractor species (OTU41), which represented ≤1% of the overall metagenome, was significantly less abundant in cranberry consumers compared to placebo at trial completion. Given Flavonifractor's association with negative human health effects, we sought to determine OTU41 characteristic genes that may explain its differential abundance and/or relationship to key host functions. Using comparative genomic and metagenomic techniques, we identified genes in OTU41 related to transport and metabolism of various compounds, including tryptophan and cobalamin, which have been shown to play roles in host-microbe interactions. CONCLUSION While our results indicated that cranberry juice consumption had little impact on global measures of the microbiome, we found one unnamed Flavonifractor species differed significantly between study arms. This suggests further studies are needed to assess the role of cranberry consumption and Flavonifractor in health and wellbeing in the context of recurrent UTI. TRIAL REGISTRATION Clinical trial registration number: ClinicalTrials.gov NCT01776021 .
Collapse
Affiliation(s)
- Timothy J Straub
- Infectious Disease & Microbiome Program, Broad Institute, 415 Main Street, Cambridge, MA, 02142, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Wen-Chi Chou
- Infectious Disease & Microbiome Program, Broad Institute, 415 Main Street, Cambridge, MA, 02142, USA
| | - Abigail L Manson
- Infectious Disease & Microbiome Program, Broad Institute, 415 Main Street, Cambridge, MA, 02142, USA
| | - Henry L Schreiber
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Center for Women's Infectious Disease Research, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Bruce J Walker
- Infectious Disease & Microbiome Program, Broad Institute, 415 Main Street, Cambridge, MA, 02142, USA
| | - Christopher A Desjardins
- Infectious Disease & Microbiome Program, Broad Institute, 415 Main Street, Cambridge, MA, 02142, USA
| | - Sinéad B Chapman
- Infectious Disease & Microbiome Program, Broad Institute, 415 Main Street, Cambridge, MA, 02142, USA
| | | | - Orsalem J Kahsai
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Elizabeth Traylor
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Karen W Dodson
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Center for Women's Infectious Disease Research, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Meredith A J Hullar
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Scott J Hultgren
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Center for Women's Infectious Disease Research, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | | | - Ashlee M Earl
- Infectious Disease & Microbiome Program, Broad Institute, 415 Main Street, Cambridge, MA, 02142, USA.
| |
Collapse
|
36
|
Jirků M, Lhotská Z, Frgelecová L, Kadlecová O, Petrželková KJ, Morien E, Jirků-Pomajbíková K. Helminth Interactions with Bacteria in the Host Gut Are Essential for Its Immunomodulatory Effect. Microorganisms 2021; 9:microorganisms9020226. [PMID: 33499240 PMCID: PMC7910914 DOI: 10.3390/microorganisms9020226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/14/2022] Open
Abstract
Colonization by the benign tapeworm, Hymenolepis diminuta, has been associated with a reduction in intestinal inflammation and changes in bacterial microbiota. However, the role of microbiota in the tapeworm anti-inflammatory effect is not yet clear, and the aim of this study was to determine whether disruption of the microflora during worm colonization can affect the course of intestinal inflammation. We added a phase for disrupting the intestinal microbiota using antibiotics to the experimental design for which we previously demonstrated the protective effect of H. diminuta. We monitored the immunological markers, clinical parameters, bacterial microbiota, and histological changes in the colon of rats. After a combination of colonization, antibiotics, and colitis induction, we had four differently affected experimental groups. We observed a different course of the immune response in each group, but no protective effect was found. Rats treated with colonization and antibiotics showed a strong induction of the Th2 response as well as a significant change in microbial diversity. The microbial results also revealed differences in the richness and abundance of some bacterial taxa, influenced by various factors. Our data suggest that interactions between the tapeworm and bacteria may have a major impact on its protective effect.
Collapse
Affiliation(s)
- Milan Jirků
- Biology Centre, Czech Academy of Sciences, Institute of Parasitology, Branišovská 31, 370 05 České Budějovice, Czech Republic; (Z.L.); (O.K.); (K.J.P.)
- Correspondence: (M.J.); (K.J.-P.); Tel.: +420-38-777-5470 (M.J.); +420-38-777-5470 (K.J.P.)
| | - Zuzana Lhotská
- Biology Centre, Czech Academy of Sciences, Institute of Parasitology, Branišovská 31, 370 05 České Budějovice, Czech Republic; (Z.L.); (O.K.); (K.J.P.)
- Department of Medical Biology, Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Lucia Frgelecová
- Department of Pathology and Parasitology, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1/3, 612 42 Brno, Czech Republic;
| | - Oldřiška Kadlecová
- Biology Centre, Czech Academy of Sciences, Institute of Parasitology, Branišovská 31, 370 05 České Budějovice, Czech Republic; (Z.L.); (O.K.); (K.J.P.)
| | - Klára Judita Petrželková
- Biology Centre, Czech Academy of Sciences, Institute of Parasitology, Branišovská 31, 370 05 České Budějovice, Czech Republic; (Z.L.); (O.K.); (K.J.P.)
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná, 8603 65 Brno, Czech Republic
| | - Evan Morien
- Department of Botany, University of British Columbia, 3156-6270 University Blvd., Vancouver, BC V6T 1Z4, Canada;
| | - Kateřina Jirků-Pomajbíková
- Biology Centre, Czech Academy of Sciences, Institute of Parasitology, Branišovská 31, 370 05 České Budějovice, Czech Republic; (Z.L.); (O.K.); (K.J.P.)
- Department of Medical Biology, Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
- Correspondence: (M.J.); (K.J.-P.); Tel.: +420-38-777-5470 (M.J.); +420-38-777-5470 (K.J.P.)
| |
Collapse
|
37
|
Pandit L, Cox LM, Malli C, D'Cunha A, Rooney T, Lokhande H, Willocq V, Saxena S, Chitnis T. Clostridium bolteae is elevated in neuromyelitis optica spectrum disorder in India and shares sequence similarity with AQP4. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2021; 8:e907. [PMID: 33148687 PMCID: PMC7643530 DOI: 10.1212/nxi.0000000000000907] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/16/2020] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To understand the role of gut microbiome in influencing the pathogenesis of neuromyelitis optica spectrum disorders (NMOSDs) among patients of south Indian origin. METHODS In this case-control study, stool and blood samples were collected from 39 patients with NMOSD, including 17 with aquaporin 4 IgG antibodies (AQP4+) and 36 matched controls. 16S ribosomal RNA (rRNA) sequencing was used to investigate the gut microbiome. Peripheral CD4+ T cells were sorted in 12 healthy controls, and in 12 patients with AQP4+ NMOSD, RNA was extracted and immune gene expression was analyzed using the NanoString nCounter human immunology kit code set. RESULTS Microbiota community structure (beta diversity) differed between patients with AQP4+ NMOSD and healthy controls (p < 0.001, pairwise PERMANOVA test). Linear discriminatory analysis effect size identified several members of the microbiota that were altered in patients with NMOSD, including an increase in Clostridium bolteae (effect size 4.23, p 0.00007). C bolteae was significantly more prevalent (p = 0.02) among patients with AQP4-IgG+ NMOSD (n = 8/17 subjects) compared with seronegative patients (n = 3/22) and was absent among healthy stool samples. C bolteae has a highly conserved glycerol uptake facilitator and related aquaporin protein (p59-71) that shares sequence homology with AQP4 peptide (p92-104), positioned within an immunodominant (AQP4 specific) T-cell epitope (p91-110). Presence of C bolteae correlated with expression of inflammatory genes associated with both innate and adaptive immunities and particularly involved in plasma cell differentiation, B cell chemotaxis, and Th17 activation. CONCLUSION Our study described elevated levels of C bolteae associated with AQP4+ NMOSD among Indian patients. It is possible that this organism may be causally related to the immunopathogenesis of this disease in susceptible individuals.
Collapse
Affiliation(s)
- Lekha Pandit
- From the Nitte University (L.P., C.M., A.D.), Mangalore, India; and Ann Romney Center for Neurological Diseases (L.M.C., T.R., H.L., V.W., S.S., T.C.), Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| | - Laura M Cox
- From the Nitte University (L.P., C.M., A.D.), Mangalore, India; and Ann Romney Center for Neurological Diseases (L.M.C., T.R., H.L., V.W., S.S., T.C.), Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Chaithra Malli
- From the Nitte University (L.P., C.M., A.D.), Mangalore, India; and Ann Romney Center for Neurological Diseases (L.M.C., T.R., H.L., V.W., S.S., T.C.), Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anitha D'Cunha
- From the Nitte University (L.P., C.M., A.D.), Mangalore, India; and Ann Romney Center for Neurological Diseases (L.M.C., T.R., H.L., V.W., S.S., T.C.), Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Timothy Rooney
- From the Nitte University (L.P., C.M., A.D.), Mangalore, India; and Ann Romney Center for Neurological Diseases (L.M.C., T.R., H.L., V.W., S.S., T.C.), Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Hrishikesh Lokhande
- From the Nitte University (L.P., C.M., A.D.), Mangalore, India; and Ann Romney Center for Neurological Diseases (L.M.C., T.R., H.L., V.W., S.S., T.C.), Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Valerie Willocq
- From the Nitte University (L.P., C.M., A.D.), Mangalore, India; and Ann Romney Center for Neurological Diseases (L.M.C., T.R., H.L., V.W., S.S., T.C.), Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Shrishti Saxena
- From the Nitte University (L.P., C.M., A.D.), Mangalore, India; and Ann Romney Center for Neurological Diseases (L.M.C., T.R., H.L., V.W., S.S., T.C.), Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Tanuja Chitnis
- From the Nitte University (L.P., C.M., A.D.), Mangalore, India; and Ann Romney Center for Neurological Diseases (L.M.C., T.R., H.L., V.W., S.S., T.C.), Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
38
|
Comparative Gut Microbiome Differences between Ferric Citrate and Calcium Carbonate Phosphate Binders in Patients with End-Stage Kidney Disease. Microorganisms 2020; 8:microorganisms8122040. [PMID: 33419265 PMCID: PMC7767080 DOI: 10.3390/microorganisms8122040] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 01/07/2023] Open
Abstract
Gut dysbiosis in patients with chronic kidney disease (CKD) may induce chronic inflammation and increase morbidity. Phosphate-binding agents, generally used in patients with CKD, may potentially change the composition of the gut microbiota. This study aimed to compare the microbiota composition in hemodialysis patients treated with ferric citrate or calcium carbonate. The stool microbiota was investigated in hemodialysis patients treated with ferric citrate (n = 8) and calcium carbonate (n = 46) using 16S rRNA gene amplicon sequencing profiling using linear discriminant analysis of effect size. Further predictive functional profiling of microbial communities was obtained with Tax4Fun in R. Hemodialysis patients treated with calcium carbonate had a significantly reduced microbial species diversity (Shannon index and Simpson index) and an increased microbial alteration ratio compared with patients treated with ferric citrate. A distinct microbial community structure was found in patients treated with ferric citrate, with an increased abundance of the Bacteroidetes phylum and a decreased abundance of the phylum Firmicutes. Members of the order Lactobacillales were enriched in patients treated with calcium carbonate, whereas taxa of the genera Ruminococcaceae UCG-004, Flavonifractor, and Cronobacter were enriched in patients treated with ferric citrate phosphate binder. In conclusion, Ferric citrate therapy results in a more diverse microbiome community compared to calcium carbonate therapy in hemodialysis patients with phosphate binder treatment. The gut microbiome reflects the phosphate binder choice in hemodialysis patients, further affecting the physiological environment in the gastrointestinal tract.
Collapse
|
39
|
Su W, Zhou Q, Ke Y, Xue J, Shen J. Functional inhibition of regulatory CD4+CD25+T cells in peripheral blood of patients with pemphigus vulgaris. Clin Exp Dermatol 2020; 45:1019-1026. [PMID: 32460351 DOI: 10.1111/ced.14309] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND Pemphigus vulgaris (PV) is a potentially life-threatening autoimmune bullous disease affecting the skin and mucous membranes. Its pathogenic mechanism is still not fully understood. Regulatory T cells (Tregs) have been reported to play a significant role in regulating immune homeostasis in autoimmune disorders, such as PV. AIM To investigate the potential role of Tregs in the immunopathogenesis of PV. METHODS We enrolled 15 patients with PV and 15 healthy controls (HCs). Peripheral blood samples were collected from all participants before treatment. This was followed by flow cytometric, real-time reverse transcription PCR, and in vitro inhibition-based functional assays to explore the immunopathogenesis of Tregs in PV. RESULTS Our results showed no statistically significant differences in total CD4+CD25+ cells and CD4+CD25high cells. In addition, expression levels of FOXP3 mRNA and the corresponding FOXP3 protein remained unchanged in the patients with PV and the HCs. However, the in vitro suppressive activity of CD4+CD25+ T cells was impaired in patients with PV compared with HCs. CONCLUSIONS Our observations suggest that inhibition of suppressive activity of Treg cells may be involved in the pathogenesis of PV.
Collapse
Affiliation(s)
- W Su
- Department of Medical Cosmetology, Department of Dermatology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou Skin Disease and Plastic Surgery Hospital, Wenzhou, Zhejiang Province, 325027, China
| | - Q Zhou
- Department of Medical Cosmetology, Department of Dermatology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou Skin Disease and Plastic Surgery Hospital, Wenzhou, Zhejiang Province, 325027, China
| | - Y Ke
- Department of Medical Cosmetology, Department of Dermatology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou Skin Disease and Plastic Surgery Hospital, Wenzhou, Zhejiang Province, 325027, China
| | - J Xue
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - J Shen
- Department of Dermatology, Huadong Hospital Affiliated with Fudan University, Shanghai, China
| |
Collapse
|
40
|
Liu RT, Rowan-Nash AD, Sheehan AE, Walsh RFL, Sanzari CM, Korry BJ, Belenky P. Reductions in anti-inflammatory gut bacteria are associated with depression in a sample of young adults. Brain Behav Immun 2020; 88:308-324. [PMID: 32229219 PMCID: PMC7415740 DOI: 10.1016/j.bbi.2020.03.026] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/07/2020] [Accepted: 03/25/2020] [Indexed: 12/15/2022] Open
Abstract
We assessed the gut microbiota of 90 American young adults, comparing 43 participants with major depressive disorder (MDD) and 47 healthy controls, and found that the MDD subjects had significantly different gut microbiota compared to the healthy controls at multiple taxonomic levels. At the phylum level, participants with MDD had lower levels of Firmicutes and higher levels of Bacteroidetes, with similar trends in the at the class (Clostridia and Bacteroidia) and order (Clostridiales and Bacteroidales) levels. At the genus level, the MDD group had lower levels of Faecalibacterium and other related members of the family Ruminococcaceae, which was also reduced relative to healthy controls. Additionally, the class Gammaproteobacteria and genus Flavonifractor were enriched in participants with MDD. Accordingly, predicted functional differences between the two groups include a reduced abundance of short-chain fatty acid production pathways in the MDD group. We also demonstrated that the magnitude of taxonomic changes was associated with the severity of depressive symptoms in many cases, and that most changes were present regardless of whether depressed participants were taking psychotropic medications. Overall, our results support a link between MDD and lower levels of anti-inflammatory, butyrate-producing bacteria, and may support a connection between the gut microbiota and the chronic, low-grade inflammation often observed in MDD patients.
Collapse
Affiliation(s)
- Richard T Liu
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA.
| | - Aislinn D Rowan-Nash
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Ana E Sheehan
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA
| | - Rachel F L Walsh
- Department of Psychology, Temple University, Philadelphia, PA, USA
| | - Christina M Sanzari
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - Benjamin J Korry
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| |
Collapse
|
41
|
Gudjonsson JE, Kabashima K, Eyerich K. Mechanisms of skin autoimmunity: Cellular and soluble immune components of the skin. J Allergy Clin Immunol 2020; 146:8-16. [PMID: 32631499 DOI: 10.1016/j.jaci.2020.05.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 12/15/2022]
Abstract
Autoimmune diseases are driven by either T cells or antibodies reacting specifically to 1 or more self-antigens. Although a number of self-antigens associated with skin diseases have been identified, the causative antigen(s) remains unknown in the great majority of skin diseases suspected to be autoimmune driven. Model diseases such as pemphigus, dermatitis herpetiformis, and more recently psoriasis have added greatly to our understanding of skin autoimmunity. Depending on the dominant T- or B-cell phenotype, skin autoimmune diseases usually follow 1 of 6 immune response patterns: lichenoid, eczematous, bullous, psoriatic, fibrogenic, or granulomatous. Usually, skin autoimmunity develops as a consequence of several events-an altered microbiome, inherited dysfunctional immunity, antigens activating innate immunity, epigenetic modifications, sex predisposition, and impact of antigens either as neoantigen or through molecular mimicry. This review summarizes currently known antigens of skin autoimmune diseases and discusses mechanisms of skin autoimmunity.
Collapse
Affiliation(s)
| | - Kenji Kabashima
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kilian Eyerich
- Division of Dermatology and Venereology, Department of Medicine Solna, and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Unit of Dermatology, Karolinska University Hospital, Department of Dermatology and Venereology, Stockholm, Sweden; Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany.
| |
Collapse
|
42
|
Prior Toxoplasma Gondii Infection Ameliorates Liver Fibrosis Induced by Schistosoma Japonicum through Inhibiting Th2 Response and Improving Balance of Intestinal Flora in Mice. Int J Mol Sci 2020; 21:ijms21082711. [PMID: 32295161 PMCID: PMC7216211 DOI: 10.3390/ijms21082711] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/01/2020] [Accepted: 04/09/2020] [Indexed: 02/06/2023] Open
Abstract
Schistosomiasis is an immunopathogenic disease in which a T helper (Th) cell type 2-like response plays vital roles. Hepatic fibrosis is its main pathologic manifestations, which is the leading cause of hepatic cirrhosis. Co-infections of Schistosoma japonicum (Sj) with other pathogens are frequently encountered but are easily ignored in clinical studies, and effective therapeutic interventions are lacking. In this study, we explored the effect of Toxoplasma gondii (Tg) prior infection on Th1/Th2 response, community shifts in gut microbiome (GM), and the pathogenesis of schistosomiasis in murine hosts. Mice were prior infected with Tg before Sj infection. The effects of co-infection on Th1/Th2 response and hepatic fibrosis were analyzed. Furthermore, we investigated this issue by sequencing 16S rRNA from fecal specimens to define the GM profiles during co-infection. Tg prior infection markedly reduced the granuloma size and collagen deposit in livers against Sj infection. Prior infection promoted a shift toward Th1 immune response instead of Th2. Furthermore, Tg infection promoted the expansion of preponderant flora and Clostridiaceae was identified as a feature marker in the GM of the co-infection group. Redundancy analysis (RDA)/canonical correspondence analysis (CCA) results showed that liver fibrosis, Th1/Th2 cytokines were significantly correlated (P < 0.05) with the GM compositions. Tg infection inhibits hepatic fibrosis by downregulating Th2 immune response against Sj infection, and further promotes the GM shifts through "gut-liver axis" in the murine hosts. Our study may provide insights into potential anti-fibrosis strategies in co-infection individuals.
Collapse
|
43
|
Hu X, Ouyang S, Xie Y, Gong Z, Du J. Characterizing the gut microbiota in patients with chronic kidney disease. Postgrad Med 2020; 132:495-505. [PMID: 32241215 DOI: 10.1080/00325481.2020.1744335] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Objectives: Emerging evidence suggests that gut microbiota dysbiosis plays a critical role in chronic kidney disease (CKD). However, the relationship between altered gut microbiome profiles and disease severity remains unclear. In this study, we sought to characterize the gut microbiota in CKD patients compared to healthy controls, and to explore potential relationships between gut microbiota composition and disease severity. Methods: Fecal samples were collected from 95 patients at different stages of CKD (non-dialysis patients from stage 1 to 5) and 20 healthy controls. Bacterial DNA was extracted for 16S ribosomal DNA sequencing targeting the V3-V4 region. The diversity and relative abundance of gut microbiota were analyzed as outcome indicators. Results: Differences were observed in the microbial composition and diversity of fecal samples from CKD patients and healthy controls. Specifically, disease severity was found to alter gut microbiota composition. Compared to that in healthy controls, CKD patients showed an increased abundance of Proteobacteria and decreased Synergistetes, most notably in disease stage 5. Lower levels of butyrate-producing bacteria and higher levels of potential pathogens were also detected in CKD patients. Further, Pyramidobacter and Prevotellaceae_UCG-001 were significantly decreased in the CKD1 group compared with healthy controls. Notably, nine microbial genera, including Escherichia-Shigella, Parabacteroides, Roseburia, rectale_group, Ruminococcaceae_NK4A214_group, Prevotellaceae_UCG.001, Hungatella, Intestinimonas, and Pyramidobacter, identified using a random forest model, distinguished between patients with CKD and healthy controls with high accuracy. Functional analysis also revealed that fatty acid and inositol phosphate metabolism were enriched in the CKD group, while aminoacyl-tRNA biosynthesis, oxidative phosphorylation, phenylalanine, tyrosine, and tryptophan biosynthesis, thiamine metabolism, pantothenate, and CoA biosynthesis, as well as valine, leucine, and isoleucine biosynthesis were enriched in healthy controls. Conclusion: Gut microbiota composition and function are associated with CKD severity. And, specific gut microbes are potentially helpful for CKD early diagnosis and prognosis monitoring.
Collapse
Affiliation(s)
- Xiaofang Hu
- Department of Pharmacy, Xiangya Hospital, Central South University , Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University , Changsha, Hunan, China.,The Hunan Institute of Pharmacy Practice and Clinical Research, Xiangya Hospital , Changsha, Hunan, China
| | - Shaxi Ouyang
- Department of Nephrology, Hunan Provincial People's Hospital, the First-affiliated Hospital of Hunan Normal University , Changsha, Hunan, China
| | - Yuhong Xie
- Department of Pharmacy, Xiangya Hospital, Central South University , Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University , Changsha, Hunan, China.,The Hunan Institute of Pharmacy Practice and Clinical Research, Xiangya Hospital , Changsha, Hunan, China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University , Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University , Changsha, Hunan, China.,The Hunan Institute of Pharmacy Practice and Clinical Research, Xiangya Hospital , Changsha, Hunan, China
| | - Jie Du
- Department of Pharmacy, Xiangya Hospital, Central South University , Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University , Changsha, Hunan, China.,The Hunan Institute of Pharmacy Practice and Clinical Research, Xiangya Hospital , Changsha, Hunan, China
| |
Collapse
|
44
|
Zhu S, Li H, Liang J, Lv C, Zhao K, Niu M, Li Z, Zeng L, Xu K. Assessment of oral ciprofloxacin impaired gut barrier integrity on gut bacteria in mice. Int Immunopharmacol 2020; 83:106460. [PMID: 32248021 DOI: 10.1016/j.intimp.2020.106460] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/13/2020] [Accepted: 03/28/2020] [Indexed: 12/18/2022]
Abstract
Gut bacteria and gut barrier plays important roles in body homeostasis. Ciprofloxacin (CPFX) is widely used to treat bacterial infections. However, whether high dosage of CPFX has side effects on gut barrier integrity is still unclear. Our results indicated that the High CPFX treatment (1 mg/ml) caused weight loss, nervousness, anorexia, and increased apoptosis cells in gut, but less influence was observed in the Low CPFX group (0.2 mg/ml). Meanwhile, the High CPFX treatment impaired tight junction molecules Ocln/ZO-1 level and down-regulated antibacterial genes expression (reg3γ, pla2g2α and defb1). Further, the High CPFX treatment increased pro-inflammatory cytokine IL-1β in intestinal tract, decreased IL-17A of duodenum but increased IL-17A of colon at day 37. In addition, the gut bacterial diversity and richness behaved significantly loss regarding CPFX treatment, especially in the High CPFX group during the experiment. Indole exhibited sharply decline in both Low and High CPFX groups at day 7, and the High CPFX mice needed longer time on restoring indole level. Meanwhile, CPFX treatment strongly decreased the concentrations of butyric acid and valeric acid at day 1. Correlation analysis indicated that the linked patterns between the key bacteria (families Bacteroidales_S247, Ruminococcaceae and Desulfovibrionaceae) and metabolites (indole and butyric acid) were disturbed via the CPFX treatment. In conclusion, the High CPFX treatment impaired the gut barrier with the evidence of reduced expression of tight junction proteins, increased apoptosis cells and inflammatory cells, decreased the bacterial diversity and composition, which suggesting a proper antibiotic-dosage use should be carefully considered in disease treatment.
Collapse
Affiliation(s)
- Shengyun Zhu
- Institute of Blood Diseases, Xuzhou Medical University, Xuzhou, Jiangsu Province 221002, China; Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province 221002, China; Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu Province 221002, China
| | - Huiqi Li
- Institute of Blood Diseases, Xuzhou Medical University, Xuzhou, Jiangsu Province 221002, China; Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province 221002, China
| | - Jing Liang
- Institute of Blood Diseases, Xuzhou Medical University, Xuzhou, Jiangsu Province 221002, China; Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province 221002, China
| | - Chaoran Lv
- Institute of Blood Diseases, Xuzhou Medical University, Xuzhou, Jiangsu Province 221002, China; Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province 221002, China
| | - Kai Zhao
- Institute of Blood Diseases, Xuzhou Medical University, Xuzhou, Jiangsu Province 221002, China; Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province 221002, China; Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu Province 221002, China
| | - Mingshan Niu
- Institute of Blood Diseases, Xuzhou Medical University, Xuzhou, Jiangsu Province 221002, China; Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province 221002, China; Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu Province 221002, China
| | - Zhenyu Li
- Institute of Blood Diseases, Xuzhou Medical University, Xuzhou, Jiangsu Province 221002, China; Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province 221002, China; Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu Province 221002, China
| | - Lingyu Zeng
- Institute of Blood Diseases, Xuzhou Medical University, Xuzhou, Jiangsu Province 221002, China; Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province 221002, China; Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu Province 221002, China
| | - Kailin Xu
- Institute of Blood Diseases, Xuzhou Medical University, Xuzhou, Jiangsu Province 221002, China; Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province 221002, China; Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu Province 221002, China.
| |
Collapse
|
45
|
Wang Y, Ouyang M, Gao X, Wang S, Fu C, Zeng J, He X. Phocea, Pseudoflavonifractor and Lactobacillus intestinalis: Three Potential Biomarkers of Gut Microbiota That Affect Progression and Complications of Obesity-Induced Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes 2020; 13:835-850. [PMID: 32256098 PMCID: PMC7090210 DOI: 10.2147/dmso.s240728] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/29/2020] [Indexed: 01/10/2023] Open
Abstract
PURPOSE The purpose of this study was to explore the difference and association between intestinal microbiota and plasma metabolomics between type 2 diabetes mellitus (T2DM) and normal group and to identify potential microbiota biomarkers that contribute the most to the difference in metabolites. METHODS Six male ZDF model (fa/fa) rats were fed by a Purina #5008 Lab Diet (crude protein 23.5%, crude fat 6.5%) for 3 weeks and their age-matched 6 ZDF control (fa/+) rats were fed by normal rodent diet. Their stool and blood samples were collected at 12 weeks. To analyze the microbial populations in these samples, we used a 16S rRNA gene sequencing approach. Liquid chromatography-mass spectrometry (LC-MS) followed by multivariate statistical analysis was applied to the plasma metabolites profiling. Correlation analysis of them was calculated by Pearson statistical method. RESULTS Twelve potential biomarkers of intestinal microbial flora and 357 differential metabolites were found in ZDF fa/fa rats, among which there are three flora that contributed the most to the perturbation of metabolites, including genus Phocea, Pseudoflavonifractor and species Lactobacillus intestinalis. CONCLUSION Our study demonstrates the alterations of the abundance and diversity of the intestinal microbiota and the perturbation of metabolites in ZDF rats (fa/fa). We found three potential biomarkers of intestinal microbiota that may lead to perturbation in plasma metabolites. This may prompt new pathogenesis of obesity-related T2DM, but we also need to study further about the causal relationship between intestinal microbe and T2DM, so as to find the target of T2DM treatment or preventive measures.
Collapse
Affiliation(s)
- Yuxin Wang
- Department of Physical and Chemical Inspection, School of Public Health, Shandong University, Jinan, Shandong250012, People’s Republic of China
| | - Meishuo Ouyang
- Department of Public Health, Graduate School of Medicine, Osaka University, Suita, Osaka565-0871, Japan
| | - Xibao Gao
- Department of Physical and Chemical Inspection, School of Public Health, Shandong University, Jinan, Shandong250012, People’s Republic of China
| | - Shuai Wang
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, Shandong250012, People’s Republic of China
| | - Chunyang Fu
- Department of Physical and Chemical Inspection, School of Public Health, Shandong University, Jinan, Shandong250012, People’s Republic of China
| | - Jiayi Zeng
- Department of Physical and Chemical Inspection, School of Public Health, Shandong University, Jinan, Shandong250012, People’s Republic of China
| | - Xiaodong He
- Department of Physical and Chemical Inspection, School of Public Health, Shandong University, Jinan, Shandong250012, People’s Republic of China
- Shandong Provincial Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Shandong University, Jinan, Shandong250012, People’s Republic of China
| |
Collapse
|
46
|
Shi Z, Qiu Y, Wang J, Fang Y, Zhang Y, Chen H, Du Q, Zhao Z, Yan C, Yang M, Zhou H. Dysbiosis of gut microbiota in patients with neuromyelitis optica spectrum disorders: A cross sectional study. J Neuroimmunol 2020; 339:577126. [DOI: 10.1016/j.jneuroim.2019.577126] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/08/2019] [Accepted: 12/09/2019] [Indexed: 02/06/2023]
|
47
|
Ducray HAG, Globa L, Pustovyy O, Roberts MD, Rudisill M, Vodyanoy V, Sorokulova I. Prevention of excessive exercise-induced adverse effects in rats with Bacillus subtilis BSB3. J Appl Microbiol 2019; 128:1163-1178. [PMID: 31814258 PMCID: PMC7079029 DOI: 10.1111/jam.14544] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/21/2019] [Accepted: 12/03/2019] [Indexed: 12/12/2022]
Abstract
Aims To characterize efficacy of the Bacillus subtilis BSB3 (BSB3) strain in the prevention of excessive exercise‐induced side effects and in maintaining stability of the gut microbiota. Methods and Results Rats were pretreated by oral gavage with B. subtilis BSB3 (BSB3) or with phosphate‐buffered saline (PBS) twice a day for 2 days, and were either exposed forced treadmill running or remained sedentary. Histological analysis of intestine, immunofluorescence staining of tight junction (TJ) proteins, serum lipopolysaccharide and intestinal fatty acid‐binding protein assay, culture‐based analysis and pyrosequencing for the gut microbiota were performed for each rat. Forced running resulted in a substantial decrease in intestinal villi height and total mucosa thickness, the depletion of Paneth cells, an inhibition of TJ proteins expression. Short‐term treatment of rats with BSB3 before running prevented these adverse effects. Culture‐based analysis of the gut microbiota revealed significant elevation of pathogenic microorganisms only in treadmill‐exercised rats pretreated with PBS. High‐throughput 16S rRNA gene sequencing also revealed an increase in pathobionts in this group. Preventive treatment of animals with BSB3 resulted in predominance of beneficial bacteria. Conclusions BSB3 prevents excessive exercise‐associated complications by beneficial modulation of the gut microbiota. Significance and Impact of the Study Our study shows a new application of beneficial bacteria for prevention the adverse effects of excessive exercise.
Collapse
Affiliation(s)
- H A G Ducray
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, AL, USA
| | - L Globa
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, AL, USA
| | - O Pustovyy
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, AL, USA
| | - M D Roberts
- School of Kinesiology, Auburn University, Auburn, AL, USA
| | - M Rudisill
- School of Kinesiology, Auburn University, Auburn, AL, USA
| | - V Vodyanoy
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, AL, USA
| | - I Sorokulova
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, AL, USA
| |
Collapse
|