1
|
Liu TT, Zhang Z, Deng J, Shi CY, Zheng S, Jia LX, Du J, Piao C. CXCL16 knockout inhibit asthma airway inflammation by suppressing H2-DM molecular mediated antigen presentation. Cell Death Discov 2025; 11:90. [PMID: 40050290 PMCID: PMC11885808 DOI: 10.1038/s41420-025-02371-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/02/2025] [Accepted: 02/20/2025] [Indexed: 03/09/2025] Open
Abstract
The inflammatory microenvironment influences dendritic cell-mediated antigen presentation to regulate asthma Th2 inflammation. The scavenger receptor is expressed on DCs and regulates antigen presentation and T priming. However, whether the transmembrane scavenger receptor (SR-PSOX/CXCL16) regulates the phenotype and antigen presentation function of DCs remains unclear. We found that CXCL16 is mainly expressed on DCs in the lung tissues of asthma patients and asthma mice. CXCL16 knockout led to the suppression of airway inflammation, mucus overproduction, and airway hyperresponsiveness in Aspergillus-induced asthma. In addition, the adoptive transfer of Aspergillus-pulsed DCs shows the CXCL16+ DCs exerted a promoting role in airway inflammation, the CXCL16- DCs inhibit airway inflammation. Additionally, RNA sequencing and flow cytometry data revealed that CXCL16 knockout inhibits airway inflammation by suppressing the antigen processing and presentation function of DCs, which was mediated by MHC II chaperone H2-DM. Furthermore, we found CXCL16 knockout suppressed dendritic cells differentiated forward to cDC2b subtype which is mainly charged with antigen presentation to T cell. In conclusion, we found that CXCL16 downregulated the capacity of DC antigen processing and presentation to suppress airway inflammation by reducing H2-DM expression which mediated DC differentiation. The study suggested that inhibition of CXCL16 can be a potential therapy for asthma.
Collapse
Affiliation(s)
- Ting-Ting Liu
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, 100029, Beijing, China
- The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education, Beijing, China
- Collaborative Innovation Center for Cardiovascular Disorders, Yanji, China
| | - Zhi Zhang
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, 100029, Beijing, China
| | - Jing Deng
- School of Basic Medical Sciences, Yanbian University, 133000, Yanji, China
| | - Chang-Yu Shi
- School of Basic Medical Sciences, Yanbian University, 133000, Yanji, China
| | - Shuai Zheng
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, 100029, Beijing, China
- The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education, Beijing, China
- Collaborative Innovation Center for Cardiovascular Disorders, Yanji, China
| | - Li-Xin Jia
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education, Beijing, China
- Collaborative Innovation Center for Cardiovascular Disorders, Yanji, China
| | - Jie Du
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, 100029, Beijing, China
- The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education, Beijing, China
- Collaborative Innovation Center for Cardiovascular Disorders, Yanji, China
| | - Chunmei Piao
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, 100029, Beijing, China.
- The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education, Beijing, China.
- Collaborative Innovation Center for Cardiovascular Disorders, Yanji, China.
| |
Collapse
|
2
|
Bandola-Simon J, Ito Y, Wucherpfennig KW, Roche PA. Defective removal of invariant chain peptides from MHC class II suppresses tumor antigen presentation and promotes tumor growth. Cell Rep 2025; 44:115150. [PMID: 39752250 PMCID: PMC11886875 DOI: 10.1016/j.celrep.2024.115150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/26/2024] [Accepted: 12/12/2024] [Indexed: 02/01/2025] Open
Abstract
Tumor-draining lymph node dendritic cells (DCs) are poor stimulators of tumor antigen-specific CD4 T cells; however, the mechanism behind this defect is unclear. We now show that, in tumor-draining lymph node DCs, a large proportion of major histocompatibility complex class II (MHC-II) molecules retains the class II-associated invariant chain peptide (CLIP) fragment of the invariant chain bound to the MHC-II peptide binding groove due to reduced expression of the peptide editor H2-M and enhanced activity of the CLIP-generating proteinase cathepsin S. The net effect of this is that MHC-II molecules are unable to efficiently bind antigenic peptides. DCs in mice expressing a mutation in the invariant chain sequence that results in enhanced MHC-II-CLIP accumulation are poor stimulators of CD4 T cells and have diminished anti-tumor responses. Our data reveal a previously unknown mechanism of immune evasion in which enhanced expression of MHC-II-CLIP complexes on tumor-draining lymph node DCs limits MHC-II availability for tumor peptides.
Collapse
MESH Headings
- Histocompatibility Antigens Class II/metabolism
- Histocompatibility Antigens Class II/immunology
- Histocompatibility Antigens Class II/genetics
- Animals
- Antigens, Differentiation, B-Lymphocyte/metabolism
- Antigens, Differentiation, B-Lymphocyte/immunology
- Antigens, Differentiation, B-Lymphocyte/genetics
- Antigen Presentation/immunology
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Mice
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- Mice, Inbred C57BL
- CD4-Positive T-Lymphocytes/immunology
- Peptides/metabolism
- Peptides/immunology
- Lymph Nodes/immunology
- Neoplasms/immunology
- Neoplasms/pathology
- Cell Line, Tumor
- Humans
Collapse
Affiliation(s)
- Joanna Bandola-Simon
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yoshinaga Ito
- Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Kai W Wucherpfennig
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Immunology, Harvard Medical School, Boston, MA 02115, USA; Department of Neurology, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Paul A Roche
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
3
|
Zhang Q, Xia C, Weng Q, Zhang L, Wang Y, Liu Y, Zheng X, Lin Y, Chen Y, Shen Y, Qi H, Liu L, Zhu Y, Zhang M, Huang D, Hu F, Zhang M, Zeng H, Wang J, Wang T. Hypoimmunogenic CD19 CAR-NK cells derived from embryonic stem cells suppress the progression of human B-cell malignancies in xenograft animals. Front Immunol 2024; 15:1504459. [PMID: 39664387 PMCID: PMC11631852 DOI: 10.3389/fimmu.2024.1504459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/11/2024] [Indexed: 12/13/2024] Open
Abstract
Background Chimeric antigen receptor (CAR) engineered natural killer (NK) cells exhibit advantages such as MHC-independent recognition and strong anti-tumor functions. However, allogeneic CAR-NK cells derived from human tissues are heterogeneous and susceptible to clearance by hosts. Methods We generated a B2M knockout, HLA-E and CD19 CAR ectopic expressing embryonic stem cell (ESC) line, which differentiated normally and gave rise to homogeneous CD19 CAR-NK (CD19 CAR-UiNK) cells using an organoid aggregate induction method. The CD19 CAR-UiNK were co-cultured with T cells or NK cells derived from peripheral blood mononuclear cells (PBMC) with the mismatched HLA to evaluate the immunogenicity of CD19 CAR-UiNK cells. We further assessed the therapeutic effects of CD19 CAR-UiNK cells on CD19+ tumor cells through in vitro cytotoxicity assays and in vivo animal models. Results The CD19 CAR-UiNK cells exhibited typical expression patterns of activating and inhibitory receptors, and crucial effector molecules of NK cells, similar to those of unmodified NK cells. In co-culture assays, the CD19 CAR-UiNK cells evaded allogeneic T cell response and suppressed allogeneic NK cell response. Functionally, the CD19 CAR-UiNK cells robustly secreted IFN-γ and TNF-α, and upregulated CD107a upon stimulation with Nalm-6 tumor cells. The CD19 CAR-UiNK cells effectively eliminated CD19+ tumor cells in vitro, including B-cell cancer cell lines and primary tumor cells from human B-cell leukemia and lymphoma. Further, the CD19 CAR-UiNK cells exhibited strong anti-tumor activity in xenograft animals. Conclusion We offer a strategy for deriving homogeneous and hypoimmunogenic CD19 CAR-iNK cells with robust anti-tumor effects from ESCs. Our study has significant implications for developing hypoimmunogenic CD19 CAR-NK cell therapy using human ESC as an unlimited cell source.
Collapse
MESH Headings
- Animals
- Killer Cells, Natural/immunology
- Humans
- Antigens, CD19/immunology
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Mice
- Xenograft Model Antitumor Assays
- Embryonic Stem Cells/immunology
- Immunotherapy, Adoptive/methods
- Cytotoxicity, Immunologic
- Cell Line, Tumor
- Leukemia, B-Cell/therapy
- Leukemia, B-Cell/immunology
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/therapy
Collapse
Affiliation(s)
- Qi Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Chengxiang Xia
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Qitong Weng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Leqiang Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yao Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yanhong Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiujuan Zheng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yunqing Lin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yi Chen
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Yiyuan Shen
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Hanmeng Qi
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Lijuan Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yanping Zhu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Min Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Dehao Huang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Fangxiao Hu
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Mengyun Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Hui Zeng
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jinyong Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Tongjie Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| |
Collapse
|
4
|
Ishina IA, Zakharova MY, Kurbatskaia IN, Mamedov AE, Belogurov AA, Rubtsov YP, Gabibov AG. Antigenic Peptide-Thioredoxin Fusion Chimeras for In Vitro Stimulus of CD4 + TCR + Jurkat T Cells. DOKL BIOCHEM BIOPHYS 2024; 516:53-57. [PMID: 38700816 DOI: 10.1134/s1607672924600210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/10/2024] [Accepted: 03/15/2024] [Indexed: 05/26/2024]
Abstract
Study of CD4+ T cell response and T cell receptor (TCR) specificity is crucial for understanding etiology of immune-mediated diseases and developing targeted therapies. However, solubility, accessibility, and stability of synthetic antigenic peptides used in T cell assays may be a critical point in such studies. Here we present a T cell activation reporter system using recombinant proteins containing antigenic epitopes fused with bacterial thioredoxin (trx-peptides) and obtained by bacterial expression. We report that co-incubation of CD4+ HA1.7 TCR+ reporter Jurkat 76 TRP cells with CD80+ HLA-DRB1*01:01+ HeLa cells or CD4+ Ob.1A12 TCR+ Jurkat 76 TRP with CD80+ HLA-DRB1*15:01+ HeLa cells resulted in activation of reporter Jurkat 76 TPR after addition of recombinant trx-peptide fusion proteins, containing TCR-specific epitopes. Trx-peptides were comparable with corresponding synthetic peptides in their capacity to activate Jurkat 76 TPR. These data demonstrate that thioredoxin as a carrier protein (trx) for antigenic peptides exhibits minimal interference with recognition of MHC-specific peptides by TCRs and consequent T cell activation. Our findings highlight potential feasibility of trx-peptides as a reagent for assessing the immunogenicity of antigenic fragments.
Collapse
Affiliation(s)
- I A Ishina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
| | - M Y Zakharova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
| | - I N Kurbatskaia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - A E Mamedov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - A A Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Department of Biological Chemistry, Evdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - Yu P Rubtsov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - A G Gabibov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Department of Life Sciences, Higher School of Economics, Moscow, Russia
- Department of Chemistry, Moscow State University, Moscow, Russia
| |
Collapse
|
5
|
Budeus B, Álvaro-Benito M, Crivello P. HLA-DM and HLA-DO interplay for the peptide editing of HLA class II in healthy tissues and leukemia. Best Pract Res Clin Haematol 2024; 37:101561. [PMID: 39098801 DOI: 10.1016/j.beha.2024.101561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/13/2024] [Accepted: 06/27/2024] [Indexed: 08/06/2024]
Abstract
HLA class II antigen presentation is modulated by the activity of the peptide editor HLA-DM and its antagonist HLA-DO, with their interplay controlling the peptide repertoires presented by normal and malignant cells. The role of these molecules in allogeneic hematopoietic cell transplantation (alloHCT) is poorly investigated. Balanced expression of HLA-DM and HLA-DO can influence the presentation of leukemia-associated antigens and peptides targeted by alloreactive T cells, therefore affecting both anti-leukemia immunity and the potential onset of Graft versus Host Disease. We leveraged on a large collection of bulk and single cell RNA sequencing data, available at different repositories, to comprehensively review the level and distribution of HLA-DM and HLA-DO in different cell types and tissues of the human body. The resulting expression atlas will help future investigations aiming to dissect the dual role of HLA class II peptide editing in alloHCT, and their potential impact on its clinical outcome.
Collapse
Affiliation(s)
- Bettina Budeus
- Institute of Cell Biology (Cancer Research), Medical Faculty, University of Duisburg-Essen, Essen, Germany.
| | - Miguel Álvaro-Benito
- School of Medicine, Universidad Complutense de Madrid, 12 de Octubre Health Research Institute, Madrid, Spain; Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.
| | - Pietro Crivello
- Institute for Experimental Cellular Therapy, University Hospital Essen, Essen, Germany.
| |
Collapse
|
6
|
Boukouaci W, Rivera-Franco MM, Volt F, Lajnef M, Wu CL, Rafii H, Cappelli B, Scigliuolo GM, Kenzey C, Ruggeri A, Rocha V, Gluckman E, Tamouza R. HLA peptide-binding pocket diversity modulates immunological complications after cord blood transplant in acute leukaemia. Br J Haematol 2024; 204:1920-1934. [PMID: 38380743 DOI: 10.1111/bjh.19339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/23/2024] [Accepted: 02/04/2024] [Indexed: 02/22/2024]
Abstract
Pocket motifs and their amino acid positions of HLA molecules are known to govern antigen presentation to effector cells. Our objective was to analyse their influence on the risk of graft-versus-host disease (GVHD) and relapse after umbilical cord blood transplant (UCBT). The transplant characteristics of 849 patients with acute leukaemia were obtained from the Eurocord/EBMT database. Higher acute (a) GVHD was associated with homozygosity of UCB HLA-C amino acid positions 77 and 80 (NN/KK) (p = 0.008). Severe aGVHD was associated with HLA-A pocket B YSAVMENVHY motif (p = 0.002) and NN and RR genotypes of the HLA-C amino acid positions 77 and 156 (p = 0.006 and p = 0.002). Such risk was also increased in case of recipient and UCB mismatches in P4 (p < 0.0001) and P9 (p = 0.003) pockets of HLA-DQB1 alleles. For chronic GVHD, the pocket B YYAVMEISNY motif of the HLA-B*15:01 allele and the absence of mismatch between recipient and UCB in the P6 pocket of HLA-DRB1 were associated with a lower risk (p = 0.0007 and p = 0.0004). In relapse, both UCB pocket B YFAVMENVHY belonging to HLA-A*32:01 and recipient pocket B YDSVGENYQY motif of the HLA-C*07:01 allele were associated with higher risk (p = 0.0026 and p = 0.015). We provide clues on HLA-mediated cellular interactions and their role in the development of GVHD and relapse.
Collapse
Affiliation(s)
| | - Monica M Rivera-Franco
- Eurocord, Hôpital Saint Louis APHP, Institut de Recherche de Saint-Louis (IRSL) EA3518, Université de Paris Cité, Paris, France
| | - Fernanda Volt
- Eurocord, Hôpital Saint Louis APHP, Institut de Recherche de Saint-Louis (IRSL) EA3518, Université de Paris Cité, Paris, France
| | - Mohamed Lajnef
- Univ Paris Est Créteil, INSERM U955, IMRB, Créteil, France
| | - Ching-Lien Wu
- Univ Paris Est Créteil, INSERM U955, IMRB, Créteil, France
| | - Hanadi Rafii
- Eurocord, Hôpital Saint Louis APHP, Institut de Recherche de Saint-Louis (IRSL) EA3518, Université de Paris Cité, Paris, France
| | - Barbara Cappelli
- Eurocord, Hôpital Saint Louis APHP, Institut de Recherche de Saint-Louis (IRSL) EA3518, Université de Paris Cité, Paris, France
- Monacord, Centre Scientifique de Monaco, Monaco, Monaco
| | - Graziana Maria Scigliuolo
- Eurocord, Hôpital Saint Louis APHP, Institut de Recherche de Saint-Louis (IRSL) EA3518, Université de Paris Cité, Paris, France
- Monacord, Centre Scientifique de Monaco, Monaco, Monaco
| | - Chantal Kenzey
- Eurocord, Hôpital Saint Louis APHP, Institut de Recherche de Saint-Louis (IRSL) EA3518, Université de Paris Cité, Paris, France
| | - Annalisa Ruggeri
- Eurocord, Hôpital Saint Louis APHP, Institut de Recherche de Saint-Louis (IRSL) EA3518, Université de Paris Cité, Paris, France
- Hematology and Bone Marrow Transplant Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Vanderson Rocha
- Eurocord, Hôpital Saint Louis APHP, Institut de Recherche de Saint-Louis (IRSL) EA3518, Université de Paris Cité, Paris, France
- Service of Hematology, Transfusion and Cell Therapy, and Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), Hospital das Clínicas, Faculty of Medicine, São Paulo University, São Paulo, Brazil
| | - Eliane Gluckman
- Eurocord, Hôpital Saint Louis APHP, Institut de Recherche de Saint-Louis (IRSL) EA3518, Université de Paris Cité, Paris, France
- Monacord, Centre Scientifique de Monaco, Monaco, Monaco
| | - Ryad Tamouza
- Univ Paris Est Créteil, INSERM U955, IMRB, Créteil, France
| |
Collapse
|
7
|
Kulicke CA, Swarbrick GM, Ladd NA, Cansler M, Null M, Worley A, Lemon C, Ahmed T, Bennett J, Lust TN, Heisler CM, Huber ME, Krawic JR, Ankley LM, McBride SK, Tafesse FG, Olive AJ, Hildebrand WH, Lewinsohn DA, Adams EJ, Lewinsohn DM, Harriff MJ. Delivery of loaded MR1 monomer results in efficient ligand exchange to host MR1 and subsequent MR1T cell activation. Commun Biol 2024; 7:228. [PMID: 38402309 PMCID: PMC10894271 DOI: 10.1038/s42003-024-05912-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/12/2024] [Indexed: 02/26/2024] Open
Abstract
MR1-restricted T cells have been implicated in microbial infections, sterile inflammation, wound healing and cancer. Similar to other antigen presentation molecules, evidence supports multiple, complementary MR1 antigen presentation pathways. To investigate ligand exchange pathways for MR1, we used MR1 monomers and tetramers loaded with 5-(2-oxopropylideneamino)-6-d-ribitylaminouracil (5-OP-RU) to deliver the antigen. Using MR1-deficient cells reconstituted with wild-type MR1 or MR1 molecules that cannot bind 5-OP-RU, we show that presentation of monomer-delivered 5-OP-RU is dependent on cellular MR1 and requires the transfer of ligand from the soluble molecule onto MR1 expressed by the antigen presenting cell. This mode of antigen delivery strengthens the evidence for post-ER ligand exchange pathways for MR1, which could represent an important avenue by which MR1 acquires antigens derived from endocytosed pathogens.
Collapse
Affiliation(s)
- Corinna A Kulicke
- Division of Pulmonary, Allergy, and Critical Care Medicine, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Gwendolyn M Swarbrick
- Division of Infectious Diseases, Department of Pediatrics, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Nicole A Ladd
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Meghan Cansler
- Division of Infectious Diseases, Department of Pediatrics, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Megan Null
- Division of Infectious Diseases, Department of Pediatrics, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Aneta Worley
- Division of Pulmonary, Allergy, and Critical Care Medicine, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Chance Lemon
- Division of Pulmonary, Allergy, and Critical Care Medicine, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Tania Ahmed
- Division of Infectious Diseases, Department of Pediatrics, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Joshua Bennett
- Division of Infectious Diseases, Department of Pediatrics, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Taylor N Lust
- Division of Pulmonary, Allergy, and Critical Care Medicine, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Chelsea M Heisler
- Division of Pulmonary, Allergy, and Critical Care Medicine, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Megan E Huber
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Jason R Krawic
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Laurisa M Ankley
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Savannah K McBride
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Fikadu G Tafesse
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Andrew J Olive
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - William H Hildebrand
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Deborah A Lewinsohn
- Division of Infectious Diseases, Department of Pediatrics, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Erin J Adams
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
| | - David M Lewinsohn
- Division of Pulmonary, Allergy, and Critical Care Medicine, Oregon Health & Science University, Portland, OR, 97239, USA
- VA Portland Health Care System, Portland, OR, 97239, USA
| | - Melanie J Harriff
- Division of Pulmonary, Allergy, and Critical Care Medicine, Oregon Health & Science University, Portland, OR, 97239, USA.
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, 97239, USA.
- VA Portland Health Care System, Portland, OR, 97239, USA.
| |
Collapse
|
8
|
Abualrous ET, Stolzenberg S, Sticht J, Wieczorek M, Roske Y, Günther M, Dähn S, Boesen BB, Calvo MM, Biese C, Kuppler F, Medina-García Á, Álvaro-Benito M, Höfer T, Noé F, Freund C. MHC-II dynamics are maintained in HLA-DR allotypes to ensure catalyzed peptide exchange. Nat Chem Biol 2023; 19:1196-1204. [PMID: 37142807 PMCID: PMC10522485 DOI: 10.1038/s41589-023-01316-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 03/17/2023] [Indexed: 05/06/2023]
Abstract
Presentation of antigenic peptides by major histocompatibility complex class II (MHC-II) proteins determines T helper cell reactivity. The MHC-II genetic locus displays a large degree of allelic polymorphism influencing the peptide repertoire presented by the resulting MHC-II protein allotypes. During antigen processing, the human leukocyte antigen (HLA) molecule HLA-DM (DM) encounters these distinct allotypes and catalyzes exchange of the placeholder peptide CLIP by exploiting dynamic features of MHC-II. Here, we investigate 12 highly abundant CLIP-bound HLA-DRB1 allotypes and correlate dynamics to catalysis by DM. Despite large differences in thermodynamic stability, peptide exchange rates fall into a target range that maintains DM responsiveness. A DM-susceptible conformation is conserved in MHC-II molecules, and allosteric coupling between polymorphic sites affects dynamic states that influence DM catalysis. As exemplified for rheumatoid arthritis, we postulate that intrinsic dynamic features of peptide-MHC-II complexes contribute to the association of individual MHC-II allotypes with autoimmune disease.
Collapse
Affiliation(s)
- Esam T Abualrous
- Protein Biochemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
- Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany
- Department of Physics, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Sebastian Stolzenberg
- Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany
| | - Jana Sticht
- Protein Biochemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
- Core Facility BioSupraMol, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Marek Wieczorek
- Protein Biochemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Yvette Roske
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Matthias Günther
- Theoretische Systembiologie (B086), Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Steffen Dähn
- Protein Biochemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Benedikt B Boesen
- Protein Biochemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Marcos Martínez Calvo
- Protein Biochemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Charlotte Biese
- Protein Biochemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Frank Kuppler
- Protein Biochemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Álvaro Medina-García
- Protein Biochemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Miguel Álvaro-Benito
- Protein Biochemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Thomas Höfer
- Theoretische Systembiologie (B086), Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Frank Noé
- Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany.
- Microsoft Research AI4Science, Berlin, Germany.
- Department of Physics, Freie Universität Berlin, Berlin, Germany.
- Department of Chemistry, Rice University, Houston, TX, USA.
| | - Christian Freund
- Protein Biochemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
9
|
Ishina IA, Zakharova MY, Kurbatskaia IN, Mamedov AE, Belogurov AA, Gabibov AG. MHC Class II Presentation in Autoimmunity. Cells 2023; 12:314. [PMID: 36672249 PMCID: PMC9856717 DOI: 10.3390/cells12020314] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/17/2023] Open
Abstract
Antigen presentation by major histocompatibility complex class II (MHC-II) molecules is crucial for eliciting an efficient immune response by CD4+ T cells and maintaining self-antigen tolerance. Some MHC-II alleles are known to be positively or negatively associated with the risk of the development of different autoimmune diseases (ADs), including those characterized by the emergence of autoreactive T cells. Apparently, the MHC-II presentation of self-antigens contributes to the autoimmune T cell response, initiated through a breakdown of central tolerance to self-antigens in the thymus. The appearance of autoreactive T cell might be the result of (i) the unusual interaction between T cell receptors (TCRs) and self-antigens presented on MHC-II; (ii) the posttranslational modifications (PTMs) of self-antigens; (iii) direct loading of the self-antigen to classical MHC-II without additional nonclassical MHC assistance; (iv) the proinflammatory environment effect on MHC-II expression and antigen presentation; and (v) molecular mimicry between foreign and self-antigens. The peculiarities of the processes involved in the MHC-II-mediated presentation may have crucial importance in the elucidation of the mechanisms of triggering and developing ADs as well as for clarification on the protective effect of MHC-II alleles that are negatively associated with ADs.
Collapse
Affiliation(s)
- Irina A. Ishina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | - Maria Y. Zakharova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | - Inna N. Kurbatskaia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | - Azad E. Mamedov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | - Alexey A. Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
- Department of Biological Chemistry, Evdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| | - Alexander G. Gabibov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
- Department of Life Sciences, Higher School of Economics, 101000 Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
10
|
Johansson T, Partanen J, Saavalainen P. HLA allele-specific expression: Methods, disease associations, and relevance in hematopoietic stem cell transplantation. Front Immunol 2022; 13:1007425. [PMID: 36248878 PMCID: PMC9554311 DOI: 10.3389/fimmu.2022.1007425] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/09/2022] [Indexed: 11/27/2022] Open
Abstract
Varying HLA allele-specific expression levels are associated with human diseases, such as graft versus host disease (GvHD) in hematopoietic stem cell transplantation (HSCT), cytotoxic T cell response and viral load in HIV infection, and the risk of Crohn’s disease. Only recently, RNA-based next generation sequencing (NGS) methodologies with accompanying bioinformatics tools have emerged to quantify HLA allele-specific expression replacing the quantitative PCR (qPCR) -based methods. These novel NGS approaches enable the systematic analysis of the HLA allele-specific expression changes between individuals and between normal and disease phenotypes. Additionally, analyzing HLA allele-specific expression and allele-specific expression loss provide important information for predicting efficacies of novel immune cell therapies. Here, we review available RNA sequencing-based approaches and computational tools for NGS to quantify HLA allele-specific expression. Moreover, we explore recent studies reporting disease associations with differential HLA expression. Finally, we discuss the role of allele-specific expression in HSCT and how considering the expression quantification in recipient-donor matching could improve the outcome of HSCT.
Collapse
Affiliation(s)
- Tiira Johansson
- Translational Immunology Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
- Research and Development, Finnish Red Cross Blood Service, Helsinki, Finland
- *Correspondence: Tiira Johansson,
| | - Jukka Partanen
- Research and Development, Finnish Red Cross Blood Service, Helsinki, Finland
| | - Päivi Saavalainen
- Translational Immunology Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
- Genetics Research Program, Folkhälsan Research Center, Helsinki, Finland
| |
Collapse
|
11
|
Natural variation of ncHLAII molecules: challenges and perspectives. Cell Mol Immunol 2022; 19:1432-1434. [DOI: 10.1038/s41423-022-00910-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 07/28/2022] [Indexed: 11/09/2022] Open
|
12
|
Cheng R, Xu Z, Luo M, Wang P, Cao H, Jin X, Zhou W, Xiao L, Jiang Q. Identification of alternative splicing-derived cancer neoantigens for mRNA vaccine development. Brief Bioinform 2022; 23:bbab553. [PMID: 35279714 DOI: 10.1093/bib/bbab553] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/15/2021] [Accepted: 12/02/2021] [Indexed: 12/17/2023] Open
Abstract
Messenger RNA (mRNA) vaccines have shown great potential for anti-tumor therapy due to the advantages in safety, efficacy and industrial production. However, it remains a challenge to identify suitable cancer neoantigens that can be targeted for mRNA vaccines. Abnormal alternative splicing occurs in a variety of tumors, which may result in the translation of abnormal transcripts into tumor-specific proteins. High-throughput technologies make it possible for systematic characterization of alternative splicing as a source of suitable target neoantigens for mRNA vaccine development. Here, we summarized difficulties and challenges for identifying alternative splicing-derived cancer neoantigens from RNA-seq data and proposed a conceptual framework for designing personalized mRNA vaccines based on alternative splicing-derived cancer neoantigens. In addition, several points were presented to spark further discussion toward improving the identification of alternative splicing-derived cancer neoantigens.
Collapse
Affiliation(s)
- Rui Cheng
- Harbin Institute of Technology, China
| | | | - Meng Luo
- Harbin Institute of Technology, China
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Is it possible to learn and create a first Hidden Markov Model (HMM) without programming skills or understanding the algorithms in detail? In this concise tutorial, we present the HMM through the 2 general questions it was initially developed to answer and describe its elements. The HMM elements include variables, hidden and observed parameters, the vector of initial probabilities, and the transition and emission probability matrices. Then, we suggest a set of ordered steps, for modeling the variables and illustrate them with a simple exercise of modeling and predicting transmembrane segments in a protein sequence. Finally, we show how to interpret the results of the algorithms for this particular problem. To guide the process of information input and explicit solution of the basic HMM algorithms that answer the HMM questions posed, we developed an educational webserver called HMMTeacher. Additional solved HMM modeling exercises can be found in the user’s manual and answers to frequently asked questions. HMMTeacher is available at https://hmmteacher.mobilomics.org, mirrored at https://hmmteacher1.mobilomics.org. A repository with the code of the tool and the webpage is available at https://gitlab.com/kmilo.f/hmmteacher.
Collapse
Affiliation(s)
- Camilo Fuentes-Beals
- PhD Program in Sciences Mention Modeling of Chemical and Biological Systems, School of Bioinformatics Engineering, Center for Bioinformatics, Simulation and Modeling, CBSM, Department of Bioinformatics, Faculty of Engineering, University of Talca, Campus Talca, Talca, Chile
| | - Alejandro Valdés-Jiménez
- Center for Bioinformatics, Simulation and Modeling, CBSM, Department of Bioinformatics, Faculty of Engineering, University of Talca, Campus Talca, Talca, Chile
| | - Gonzalo Riadi
- ANID–Millennium Science Initiative Program Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Center for Bioinformatics, Simulation and Modeling, CBSM, Department of Bioinformatics, Faculty of Engineering, University of Talca, Talca, Chile
- * E-mail:
| |
Collapse
|
14
|
He J, Chen J, Han X, Gu Q, Liang J, Sun M, Liu S, Yao Y, Shi L. Association of HLA-DM and HLA class II Genes with Antibody Response Induced by Inactivated Japanese Encephalitis Vaccine. HLA 2022; 99:357-367. [PMID: 35118816 DOI: 10.1111/tan.14575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 11/04/2022]
Abstract
HLA (HLA) class II molecules, HLA-DR, DP, and DQ, together with HLA II-like protein DM, play a dominant role in the processing and presentation of antigens, which may influence vaccine effectiveness. We previously demonstrated that variations in the HLA-DRB1, DPB1, and DQB1 genes may affect the neutralising antibody (NAb) response induced by the inactivated Japanese encephalitis vaccine (IJEV). In the present study, we genotyped HLA-DPA1, DQA1, DMA, and DMB genes and used previous HLA-DRB1, DPB1, and DQB1 data to evaluate the association of these genes with IJEV-induced NAbs, at both the seroconversion and geometric mean titres (GMTs). We confirmed the seropositive association of DQB1*02:01 and NAbs (0.156 vs. 0.075, Padj = 0.018; OR = 2.270; 95% CI = 1.285-3.999) and seronegative association of DQB1*02:02 (0.014 vs. 0.09, Padj = 0.0002; OR = 0.130; 95% CI = 0.047-0.400). Furthermore, the DMB*01:03-DMA*01:01-DPA1*01:03-DPB1*04:01 haplotype was associated with a negative response (0.020 vs. 0.074; Padj = 0.03; OR = 0.250; 95% CI = 0.097-0.649), whereas DRB1*15:02-DMB*01:01-DMA*01:01 was associated with a positive response (0.034 vs. 0; Padj = 0.044). In addition, DRB1*12:02, DRB1*13:02, DPB1*04:01, DPB1*05:01, DPB1*09:01, DQA1*06:01, and DQA1*01:02 were associated with a higher GMT of NAbs, whereas DRB1*11:01, DPB1*13:01, and DQA1*05:05 were associated with a lower GMT of NAbs. In conclusion, the present study suggests that variations in the HLA-DM and HLA class II genes, as well as their combined allotypes, may influence the IJEV NAbs at seroconversion and GMT levels. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jihong He
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Jun Chen
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Xue Han
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Qin Gu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, China
| | - Jiangli Liang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, China
| | - Mingbo Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, China
| | - Shuyuan Liu
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Yufeng Yao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Li Shi
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, China
| |
Collapse
|
15
|
Guo C, Zhou J, Ma B, Wang R, Ge Y, Wang Z, Ji B, Wang W, Zhang J, Wang Z. A Somatic Mutation-Derived LncRNA Signature of Genomic Instability Predicts Prognosis for Patients With Liver Cancer. Front Surg 2021; 8:724792. [PMID: 34504866 PMCID: PMC8421795 DOI: 10.3389/fsurg.2021.724792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Genomic instability is considered as one of the hallmarks of hepatocellular carcinoma (HCC) and poses a significant challenge to the clinical treatment. The emerging evidence has revealed the roles of long non-coding RNAs (lncRNAs) in the maintenance of genomic instability. This study is aimed to develop a genomic instability-related lncRNA signature for determining HCC prognosis and the suitability of patients for immunotherapy. Methods: In this study, data related to transcriptome profiling, clinical features, and the somatic mutations of patients with HCC were downloaded from The Cancer Genomic Atlas (TCGA). Bioinformatics analysis was performed to identify and construct a somatic mutation-derived genomic instability-associated lncRNA signature (GILncSig). Single-sample gene set enrichment analysis (ssGSEA) was applied to estimate the levels of immune cell infiltration. A nomogram was constructed, and calibration was performed to assess the effectiveness of the model. Results: In the study, seven genomic instability-related lncRNAs were identified and used to define a prognostic signature. Patients with HCC were stratified into high- and low-risk groups with significant differences in the survival (median survival time = 1.489, 1.748 year; p = 0.006) based on the optimal cutoff value (risk score = 1.010) of the risk score in the training group. In addition, GILncSig was demonstrated to be an independent risk factor for the patients with HCC when compared to the clinical parameters (p < 0.001). According to the receiver operating characteristic (ROC) curve, nomogram, and calibration plot, the signature could predict the survival rate for the patients with HCC in the 1st, 3rd, and 5th years. Furthermore, ssGSEA revealed the potential of the signature in guiding decisions for administering clinical treatment. Conclusions: In this study, we developed a novel prognostic model based on the somatic mutation-derived lncRNAs and validated it using an internal dataset. The independence of the GILncSig was estimated using univariate and follow-up multivariate analyses. Immunologic analysis was used to evaluate the complex factors involved in the HCC progression.
Collapse
Affiliation(s)
- Cheng Guo
- Department of Gastroenterology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Zhou
- Department of Gastroenterology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Boyu Ma
- Department of Gastroenterology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Rui Wang
- Department of Gastroenterology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yanli Ge
- Department of Gastroenterology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhe Wang
- Department of Gastroenterology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bing Ji
- Department of Gastroenterology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wei Wang
- Department of Gastroenterology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Junjie Zhang
- Department of Gastroenterology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhirong Wang
- Department of Gastroenterology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
16
|
Partnering for the major histocompatibility complex class II and antigenic determinant requires flexibility and chaperons. Curr Opin Immunol 2021; 70:112-121. [PMID: 34146954 DOI: 10.1016/j.coi.2021.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 11/22/2022]
Abstract
Cytotoxic, or helper T cells recognize antigen via T cell receptors (TCRs) that can see their target antigen as short sequences of peptides bound to the groove of proteins of major histocompatibility complex (MHC) class I, and class II respectively. For MHC class II epitope selection from exogenous pathogens or self-antigens, participation of several accessory proteins, molecular chaperons, processing enzymes within multiple vesicular compartments is necessary. A major contributing factor is the MHC class II structure itself that uniquely offers a dynamic and flexible groove essential for epitope selection. In this review, I have taken a historical perspective focusing on the flexibility of the MHC II molecules as the driving force in determinant selection and interactions with the accessory molecules in antigen processing, HLA-DM and HLA-DO.
Collapse
|
17
|
Abualrous ET, Sticht J, Freund C. Major histocompatibility complex (MHC) class I and class II proteins: impact of polymorphism on antigen presentation. Curr Opin Immunol 2021; 70:95-104. [PMID: 34052735 DOI: 10.1016/j.coi.2021.04.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 01/01/2023]
Abstract
The major histocompatibility complex (MHC) loci are amongst the most polymorphic regions in the genomes of vertebrates. In the human population, thousands of MHC gene variants (alleles) exist that translate into distinct allotypes equipped with overlapping but unique peptide binding profiles. Understanding the differential structural and dynamic properties of MHC alleles and their interaction with critical regulators of peptide exchange bears the potential for more personalized strategies of immune modulation in the context of HLA-associated diseases.
Collapse
Affiliation(s)
- Esam T Abualrous
- Protein Biochemistry, Institute for Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Jana Sticht
- Protein Biochemistry, Institute for Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Christian Freund
- Protein Biochemistry, Institute for Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany.
| |
Collapse
|
18
|
Väyrynen JP, Haruki K, Väyrynen SA, Lau MC, Dias Costa A, Borowsky J, Zhao M, Ugai T, Kishikawa J, Akimoto N, Zhong R, Shi S, Chang TW, Fujiyoshi K, Arima K, Twombly TS, Da Silva A, Song M, Wu K, Zhang X, Chan AT, Nishihara R, Fuchs CS, Meyerhardt JA, Giannakis M, Ogino S, Nowak JA. Prognostic significance of myeloid immune cells and their spatial distribution in the colorectal cancer microenvironment. J Immunother Cancer 2021; 9:jitc-2020-002297. [PMID: 33931472 PMCID: PMC8098931 DOI: 10.1136/jitc-2020-002297] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2021] [Indexed: 12/24/2022] Open
Abstract
Background Myeloid cells represent an abundant yet heterogeneous cell population in the colorectal cancer microenvironment, and their roles remain poorly understood. Methods We used multiplexed immunofluorescence combined with digital image analysis to identify CD14+ monocytic and CD15+ granulocytic cells and to evaluate their maturity (HLA-DR and CD33), immunosuppressive potential (ARG1) and proximity to cytokeratin (KRT)-positive tumor cells in 913 colorectal carcinomas. Using covariate data of 4465 incident colorectal cancers in two prospective cohort studies, the inverse probability weighting method was used with multivariable-adjusted Cox proportional hazards models to assess cancer-specific mortality according to ordinal quartiles (Q1–Q4) of myeloid cell densities. Immune cell–tumor cell proximity was measured with the nearest neighbor method and the G-cross function, which determines the likelihood of any tumor cell having at least one immune cell of the specified type within a certain radius. Results Higher intraepithelial (Ptrend=0.0002; HR for Q4 (vs Q1), 0.48, 95% CI 0.31 to 0.76) and stromal (Ptrend <0.0001; HR for Q4 (vs Q1), 0.42, 95% CI 0.29 to 0.63) densities of CD14+HLA-DR+ cells were associated with lower colorectal cancer-specific mortality while, conversely, higher intraepithelial densities of CD14+HLA-DR− cells were associated with higher colorectal cancer-specific mortality (Ptrend=0.0003; HR for Q4 (vs Q1), 1.78, 95% CI 1.25 to 2.55). Spatial analyses indicated that CD15+ cells were located closer to tumor cells than CD14+ cells, and CD14+HLA-DR+ cells were closer to tumor than CD14+HLA-DR− cells (p<0.0001). The G-cross proximity measurement, evaluating the difference in the likelihood of any tumor cell being colocated with at least one CD14+HLA-DR+ cell versus CD14+HLA-DR− cell within a 20 µm radius, was associated with lower colorectal cancer-specific mortality (Ptrend <0.0001; HR for Q4 (vs Q1), 0.37, 95% CI 0.24 to 0.57). Conclusions Myeloid cell populations occur in spatially distinct distributions and exhibit divergent, subset-specific prognostic significance in colorectal cancer, with mature CD14+HLA-DR+ and immature CD14+HLA-DR− monocytic phenotypes most notably showing opposite associations. These results highlight the prognostic utility of multimarker evaluation of myeloid cell infiltrates and reveal a previously unrecognized degree of spatial organization for myeloid cells in the immune microenvironment.
Collapse
Affiliation(s)
- Juha P Väyrynen
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Oulu, Finland.,Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA.,Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Koichiro Haruki
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA.,Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Surgery, Jikei University School of Medicine, Tokyo, Japan
| | - Sara A Väyrynen
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Mai Chan Lau
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Andressa Dias Costa
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Jennifer Borowsky
- Conjoint Gastroenterology Department, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Melissa Zhao
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Tomotaka Ugai
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Epidemiology, Harvard University T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Junko Kishikawa
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Naohiko Akimoto
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Rong Zhong
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Shanshan Shi
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Tzuu-Wang Chang
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Kenji Fujiyoshi
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Kota Arima
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Tyler S Twombly
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Annacarolina Da Silva
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Mingyang Song
- Department of Nutrition, Harvard University T.H. Chan School of Public Health, Boston, Massachusetts, USA.,Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kana Wu
- Department of Epidemiology, Harvard University T.H. Chan School of Public Health, Boston, Massachusetts, USA.,Department of Nutrition, Harvard University T.H. Chan School of Public Health, Boston, Massachusetts, USA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Xuehong Zhang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Immunology and Infectious Diseases, Harvard University T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Reiko Nishihara
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Epidemiology, Harvard University T.H. Chan School of Public Health, Boston, Massachusetts, USA.,Department of Nutrition, Harvard University T.H. Chan School of Public Health, Boston, Massachusetts, USA.,Department of Biostatistics, Harvard University T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Charles S Fuchs
- Yale University Yale Cancer Center, New Haven, Connecticut, USA.,Department of Medicine, Yale School of Medicine, New Haven, Connecticut, USA.,Smilow Cancer Hospital, New Haven, Connecticut, USA
| | - Jeffrey A Meyerhardt
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Shuji Ogino
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA .,Department of Epidemiology, Harvard University T.H. Chan School of Public Health, Boston, Massachusetts, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Cancer Immunology and Cancer Epidemiology Programs, Dana-Farber Harvard Cancer Center, Boston, Massachusetts, USA
| | - Jonathan A Nowak
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
19
|
Nanaware PP, Jurewicz MM, Clement CC, Lu L, Santambrogio L, Stern LJ. Distinguishing Signal From Noise in Immunopeptidome Studies of Limiting-Abundance Biological Samples: Peptides Presented by I-A b in C57BL/6 Mouse Thymus. Front Immunol 2021; 12:658601. [PMID: 33995376 PMCID: PMC8116589 DOI: 10.3389/fimmu.2021.658601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/09/2021] [Indexed: 11/13/2022] Open
Abstract
Antigen presentation by MHC-II proteins in the thymus is central to selection of CD4 T cells, but analysis of the full repertoire of presented peptides responsible for positive and negative selection is complicated by the low abundance of antigen presenting cells. A key challenge in analysis of limiting abundance immunopeptidomes by mass spectrometry is distinguishing true MHC-binding peptides from co-eluting non-specifically bound peptides present in the mixture eluted from immunoaffinity-purified MHC molecules. Herein we tested several approaches to minimize the impact of non-specific background peptides, including analyzing eluates from isotype-control antibody-conjugated beads, considering only peptides present in nested sets, and using predicted binding motif analysis to identify core epitopes. We evaluated these methods using well-understood human cell line samples, and then applied them to analysis of the I-Ab presented immunopeptidome of the thymus of C57BL/6 mice, comparing this to the more easily characterized splenic B cell and dendritic cell populations. We identified a total of 3473 unique peptides eluted from the various tissues, using a data dependent acquisition strategy with a false-discovery rate of <1%. The immunopeptidomes presented in thymus as compared to splenic B cells and DCs identified shared and tissue-specific epitopes. A broader length distribution was observed for peptides presented in the thymus as compared to splenic B cells or DCs. Detailed analysis of 61 differentially presented peptides indicated a wider distribution of I-Ab binding affinities in thymus as compared to splenic B cells. These results suggest different constraints on antigen processing and presentation pathways in central versus peripheral tissues.
Collapse
Affiliation(s)
- Padma P. Nanaware
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Mollie M. Jurewicz
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Cristina C. Clement
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, United States
| | - Liying Lu
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Laura Santambrogio
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, United States
| | - Lawrence J. Stern
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, United States
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
20
|
Grimholt U, Lukacs M. Fate of MHCII in salmonids following 4WGD. Immunogenetics 2020; 73:79-91. [PMID: 33225379 PMCID: PMC7862078 DOI: 10.1007/s00251-020-01190-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/11/2020] [Indexed: 12/27/2022]
Abstract
Major histocompatibility complex (MHC) genes are key players in the adaptive immunity providing a defense against invading pathogens. Although the basic structures are similar when comparing mammalian and teleost MHC class II (MHCII) molecules, there are also clear-cut differences. Based on structural requirements, the teleosts non-classical MHCII molecules do not comply with a function similar to the human HLA-DM and HLA-DO, i.e., assisting in peptide loading and editing of classical MHCII molecules. We have previously studied the evolution of teleost class II genes identifying various lineages and tracing their phylogenetic occurrence back to ancient ray-finned fishes. We found no syntenic MHCII regions shared between cyprinids, salmonids, and neoteleosts, suggesting regional instabilities. Salmonids have experienced a unique whole genome duplication 94 million years ago, providing them with the opportunity to experiment with gene duplicates. Many salmonid genomes have recently become available, and here we set out to investigate how MHCII has evolved in salmonids using Northern pike as a diploid sister phyla, that split from the salmonid lineage prior to the fourth whole genome duplication (4WGD) event. We identified 120 MHCII genes in pike and salmonids, ranging from 11 to 20 genes per species analyzed where DB-group genes had the most expansions. Comparing the MHC of Northern pike with that of Atlantic salmon and other salmonids species provides a tale of gene loss, translocations, and genome rearrangements.
Collapse
Affiliation(s)
- Unni Grimholt
- Norwegian Veterinary Institute, P.O. Box 8146 Dep, 0033, Oslo, Norway.
| | - Morten Lukacs
- Norwegian Veterinary Institute, P.O. Box 8146 Dep, 0033, Oslo, Norway
| |
Collapse
|