1
|
Alvarez I, Banihashem F, Persson A, Hurri E, Kim H, Ducatez M, Geijer E, Valarcher JF, Hägglund S, Zohari S. Detection and Phylogenetic Characterization of Influenza D in Swedish Cattle. Viruses 2024; 17:17. [PMID: 39861806 PMCID: PMC11768518 DOI: 10.3390/v17010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
Increased evidence suggests that cattle are the primary host of Influenza D virus (IDV) and may contribute to respiratory disease in this species. The aim of this study was to detect and characterise IDV in the Swedish cattle population using archived respiratory samples. This retrospective study comprised a collection of a total 1763 samples collected between 1 January 2021 and 30 June 2024. The samples were screened for IDV and other respiratory pathogens using real-time reverse transcription quantitative PCR (rRT-qPCR). Fifty-one IDV-positive samples were identified, with a mean cycle threshold (Ct) value of 27 (range: 15-37). Individual samples with a Ct value of <30 for IDV RNA were further analysed by deep sequencing. Phylogenetic analysis was performed by the maximum likelihood estimation method on the whole IDV genome sequence from 16 samples. The IDV strains collected in 2021 (n = 7) belonged to the D/OK clade, whereas samples from 2023 (n = 4) and 2024 (n = 5) consisted of reassortants between the D/OK and D/660 clades, for the PB2 gene. This study reports the first detection of IDV in Swedish cattle and the circulation of D/OK and reassortant D/OK-D/660 in this population.
Collapse
Affiliation(s)
- Ignacio Alvarez
- Division of Ruminant Medicine, Department of Clinical Sciences, Swedish University of Agricultural Sciences, P.O. Box 7054, 756 51 Uppsala, Sweden
| | - Fereshteh Banihashem
- Department of Microbiology, Swedish Veterinary Agency, Ulls väg 2B, 751 89 Uppsala, Sweden (S.Z.)
| | - Annie Persson
- Department of Microbiology, Swedish Veterinary Agency, Ulls väg 2B, 751 89 Uppsala, Sweden (S.Z.)
| | - Emma Hurri
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, 756 51 Uppsala, Sweden
- Department of Animal Health and Antimicrobial Strategies, Swedish Veterinary Agency, 751 89 Uppsala, Sweden
| | - Hyeyoung Kim
- Department of Epidemiology, Surveillance and Risk Assessment, Swedish Veterinary Agency, Ulls väg 2B, 751 89 Uppsala, Sweden
| | - Mariette Ducatez
- Interactions Hôtes-Agents-Pathogènes, Ecole Vétérinaire de Toulouse (ENVT), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, 31300 Toulouse, France
| | - Erika Geijer
- Gård & Djurhälsan, Kungsängens Gård, 753 23 Uppsala, Sweden
| | - Jean-Francois Valarcher
- Division of Ruminant Medicine, Department of Clinical Sciences, Swedish University of Agricultural Sciences, P.O. Box 7054, 756 51 Uppsala, Sweden
| | - Sara Hägglund
- Division of Ruminant Medicine, Department of Clinical Sciences, Swedish University of Agricultural Sciences, P.O. Box 7054, 756 51 Uppsala, Sweden
| | - Siamak Zohari
- Department of Microbiology, Swedish Veterinary Agency, Ulls väg 2B, 751 89 Uppsala, Sweden (S.Z.)
| |
Collapse
|
2
|
Buczinski S, Broes A, Savard C. Frequency of Bovine Respiratory Disease Complex Bacterial and Viral Agents Using Multiplex Real-Time qPCR in Quebec, Canada, from 2019 to 2023. Vet Sci 2024; 11:631. [PMID: 39728971 DOI: 10.3390/vetsci11120631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/29/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024] Open
Abstract
The bovine respiratory disease complex (BRD) is a multifactorial disease caused by various bacterial and viral pathogens. Using rapid pathogen detection techniques is helpful for tailoring therapeutic and preventive strategies in affected animals and herds. The objective of this study was to report the frequency of 10 pathogens by multiplex RT-qPCR on samples submitted for BRD diagnosis to a diagnostic laboratory (Biovet Inc., QC, Canada) in the Province of Quebec, Eastern Canada. From the 1st of January 2019 to the 31st of December 2023, a total of 1875 samples were analyzed. Most samples collected were individual samples (1547 of 1860 samples for which information was available (83.17%)), and the rest were from pooled samples of 2 (8.55%, n = 159) or ≥3 specimens (8.28%, n = 154). In 19.3% of the samples (n = 362), no pathogen was found, whereas 54.1% of samples had two or more different pathogens. Among the viruses, bovine coronavirus (BCV) was the most commonly found (27.5% of samples, n = 516), followed by bovine respiratory syncytial virus (BRSV) (17.7%, n = 332), whereas, for bacteria, Pasteurella multocida (50.1%, n = 940) and Mannheimia haemolytica (26.9%, n = 505) were the most common. The frequency of samples positive for Histophilus somni, Mycoplasmopsis bovis, influenza type D virus (IDV), bovine parainfluenza virus type 3 (BPI3V), bovine herpesvirus type 1 (BHV1), and bovine viral diarrhea virus (BVDV) was 22.6%, 22.4%, 4.6%, 4.3%, 2.7%, and 0.9%, respectively. In the multivariable Poisson regression model, the total number of pathogens increased with the number of animals in the pool, with an incidence risk ratio (IRR) of 1.15 (95% CI 1.02-1.29) and 1.32 (1.18-1.47) for 2 individuals in the pool and ≥3 individuals vs. individual samples, respectively. An increased number of pathogens were isolated in the winter season (IRR = 1.28 (95% CI 1.17-1.40)) compared to fall, and a lower number of pathogens were isolated in the summer compared to fall (IRR = 0.82 (95% CI 0.73-0.92)). These seasonal differences were mostly driven by the number of viruses isolated. This study gives interesting insights on the circulation of BRD pathogens in cattle from Eastern Canada.
Collapse
Affiliation(s)
- Sébastien Buczinski
- Département des Sciences Cliniques, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - André Broes
- Biovet Inc., Division of Antech Diagnostics and Mars Petcare Science & Diagnostics Company, Saint-Hyacinthe, QC J2S 8W2, Canada
| | - Christian Savard
- Biovet Inc., Division of Antech Diagnostics and Mars Petcare Science & Diagnostics Company, Saint-Hyacinthe, QC J2S 8W2, Canada
| |
Collapse
|
3
|
Yu J, Wen Z, Hu W, Chen M, Zhang Y, Liu S, Wang G, Wang Z, Wang D, Zhai SL, Wei WK, Li T, Liao M. Influenza D virus infection in China, 2022-2023. Emerg Microbes Infect 2024; 13:2343907. [PMID: 38738553 PMCID: PMC11097708 DOI: 10.1080/22221751.2024.2343907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/11/2024] [Indexed: 05/14/2024]
Abstract
Influenza D virus (IDV) plays an important role in the bovine respiratory disease (BRD) complex. Its potential for the zoonotic transmission is of particular concern. In China, IDV has previously been identified in agricultural animals by molecular surveys with no live virus isolates reported. In this study, live IDVs were successfully isolated from cattle in China, which prompted us to further investigate the national prevalence, antigenic property, and infection biology of the virus. IDV RNA was detected in 11.1% (51/460) of cattle throughout the country in 2022-2023. Moreover, we conducted the first IDV serosurveillance in China, revealing a high seroprevalence (91.4%, 393/430) of IDV in cattle during the 2022-2023 winter season. Notably, all the 16 provinces from which cattle originated possessed seropositive animals, and 3 of them displayed the 100% IDV-seropositivity rate. In contrast, a very low seroprevalence of IDV was observed in pigs (3%, 3/100) and goats (1%, 1/100) during the same period of investigation. Furthermore, besides D/Yama2019 lineage-like IDVs, we discovered the D/660 lineage-like IDV in Chinese cattle, which has not been detected to date in Asia. Finally, the Chinese IDVs replicated robustly in diverse cell lines but less efficiently in the swine cell line. Considering the nationwide distribution, high seroprevalence, and appreciably genetic diversity, further studies are required to fully evaluate the risk of Chinese IDVs for both animal and human health in China, which can be evidently facilitated by IDV isolates reported in this study.
Collapse
Affiliation(s)
- Jieshi Yu
- State Key Laboratory of Swine and Poultry Breeding Industry, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, People’s Republic of China
| | - Zhenyu Wen
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Wanke Hu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, People’s Republic of China
| | - Mingwang Chen
- Zhongshan Animal Disease Control Center, Zhongshan, People’s Republic of China
| | - Yuanlong Zhang
- Guangdong Animal Disease Control Center, Guangzhou, People’s Republic of China
| | - Shasha Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Gang Wang
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, People’s Republic of China
| | - Zhao Wang
- School of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| | - Dan Wang
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Shao-lun Zhai
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, People’s Republic of China
| | - Wen-kang Wei
- State Key Laboratory of Swine and Poultry Breeding Industry, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, People’s Republic of China
| | - Tianyu Li
- Zhongshan Animal Disease Control Center, Zhongshan, People’s Republic of China
- College of Animal Science and Technology, Guangxi University, Nanning, People’s Republic of China
| | - Ming Liao
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, People’s Republic of China
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, People’s Republic of China
| |
Collapse
|
4
|
Limaye S, Lohar T, Dube H, Ramasamy S, Kale M, Kulkarni-Kale U, Kuchipudi SV. Rapid evolution leads to extensive genetic diversification of cattle flu Influenza D virus. Commun Biol 2024; 7:1276. [PMID: 39375524 PMCID: PMC11458855 DOI: 10.1038/s42003-024-06954-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/24/2024] [Indexed: 10/09/2024] Open
Abstract
Influenza D virus (IDV), the cattle flu virus, is a novel multi-host RNA virus, circulating silently worldwide, with widespread seropositivity among US cattle, reaching up to 80% in some areas raising a potential threat of cattle-to-human transmission. Currently, five genetic lineages of IDV have been described, but their evolutionary dynamics have not been studied. Although IDV was first identified in 2011, our comprehensive analysis of all known IDV genomes suggests that the earliest ancestors of IDV likely to have evolved towards the end of the 20th century and D/OK lineage appears to have emerged in 2005. We confirmed a significantly higher substitution rate in IDV than in Influenza C virus, which is consistent with their global distribution and multi-host tropism. We identified multiple sub-populations within the D/OK lineage, highlighting extensive diversification and dissemination. Other findings are evidence for potential reassortment among IDV strains in the USA and transboundary circulation of IDV in Europe with introductions into Danish cattle, some of which potentially originated from France. IDV, an emerging virus with a higher rate of evolution and uncontrolled circulation, could facilitate its adaptation to humans. Our findings underscore the importance of targeted surveillance for IDV in humans and at-risk animal populations.
Collapse
Affiliation(s)
- Sanket Limaye
- Bioinformatics Centre, Savitribai Phule Pune University (Formerly University of Pune), Pune, 411007, India
| | - Tejas Lohar
- Department of Statistics, Savitribai Phule Pune University (Formerly University of Pune), Pune, 411007, India
| | - Harita Dube
- Department of Statistics, Savitribai Phule Pune University (Formerly University of Pune), Pune, 411007, India
| | - Santhamani Ramasamy
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, 15261, USA
| | - Mohan Kale
- Department of Statistics, Savitribai Phule Pune University (Formerly University of Pune), Pune, 411007, India
| | - Urmila Kulkarni-Kale
- Bioinformatics Centre, Savitribai Phule Pune University (Formerly University of Pune), Pune, 411007, India.
- Department of Natural Sciences and Environmental Health, University of South Eastern Norway, Bo, Norway.
- CIS-Citadel Precision Medicine LLC, Hyderabad, India.
| | - Suresh V Kuchipudi
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, 15261, USA.
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
5
|
Lachowicz-Wolak A, Klimowicz-Bodys MD, Płoneczka-Janeczko K, Bednarski M, Dyba K, Knap P, Rypuła K. Simultaneous Presence of Antibodies against Five Respiratory Pathogens in Unvaccinated Dairy Calves from South-Western Poland. Animals (Basel) 2024; 14:2520. [PMID: 39272307 PMCID: PMC11394128 DOI: 10.3390/ani14172520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Bovine Respiratory Disease (BRD) poses a significant threat to cattle welfare worldwide, affecting their respiratory system and causing substantial economic losses. BRD is multifactorial in nature. This research aimed to investigate the serological profile of calves for the five main bovine respiratory pathogens. Serum samples were collected from dairy calves aged 7-12 months that had never been vaccinated against tested pathogens and had recently shown signs of BRD. A total of 4095 calves from 650 dairy herds located in south-western Poland were examined. The Commercial Indirect Respiratory ELISA Kit Multiplexed-Double well-BIO K 284/5 (Bio-X Diagnostics, Rochefort, Belgium) was used to determine the presence of antibodies against BVDV, BoAHV1, BRSV, BPIV3, and M. bovis. The presence of antibodies against at least one of the tested pathogens was found in 306 (47.08%) herds. The overall prevalence of antibodies was as follows: BoAHV1 21.54%, BVDV 32.0%, BRSV 34.15%, BPIV3 34.31%, and M. bovis 31.38%. The strongest correlation was between BRSV antibodies positive sera and BPIV3 antibodies positive sera. Among the five pathogens tested, antibodies to BVDV, BRSV, BPIV3, and M. bovis were most commonly detected simultaneously. The results of this study indicate the need for preventive measures against these pathogens in the studied region.
Collapse
Affiliation(s)
- Agnieszka Lachowicz-Wolak
- Division of Infectious Diseases of Animals and Veterinary Administration, Department of Epizootiology and Clinic of Birds and Exotic Animals, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 45, 50-366 Wroclaw, Poland
| | - Małgorzata D Klimowicz-Bodys
- Division of Infectious Diseases of Animals and Veterinary Administration, Department of Epizootiology and Clinic of Birds and Exotic Animals, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 45, 50-366 Wroclaw, Poland
| | - Katarzyna Płoneczka-Janeczko
- Division of Infectious Diseases of Animals and Veterinary Administration, Department of Epizootiology and Clinic of Birds and Exotic Animals, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 45, 50-366 Wroclaw, Poland
| | - Michał Bednarski
- Division of Infectious Diseases of Animals and Veterinary Administration, Department of Epizootiology and Clinic of Birds and Exotic Animals, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 45, 50-366 Wroclaw, Poland
| | - Kamil Dyba
- Department of Applied Mathematics, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 45, 50-366 Wroclaw, Poland
| | - Piotr Knap
- "Epi-Vet" Veterinary Diagnostic Laboratory, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 45, 50-366 Wroclaw, Poland
| | - Krzysztof Rypuła
- Division of Infectious Diseases of Animals and Veterinary Administration, Department of Epizootiology and Clinic of Birds and Exotic Animals, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 45, 50-366 Wroclaw, Poland
| |
Collapse
|
6
|
Limaye S, Shelke A, Kale MM, Kulkarni-Kale U, Kuchipudi SV. IDV Typer: An Automated Tool for Lineage Typing of Influenza D Viruses Based on Return Time Distribution. Viruses 2024; 16:373. [PMID: 38543738 PMCID: PMC10976072 DOI: 10.3390/v16030373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/24/2024] [Accepted: 02/24/2024] [Indexed: 05/23/2024] Open
Abstract
Influenza D virus (IDV) is the most recent addition to the Orthomyxoviridae family and cattle serve as the primary reservoir. IDV has been implicated in Bovine Respiratory Disease Complex (BRDC), and there is serological evidence of human infection of IDV. Evolutionary changes in the IDV genome have resulted in the expansion of genetic diversity and the emergence of multiple lineages that might expand the host tropism and potentially increase the pathogenicity to animals and humans. Therefore, there is an urgent need for automated, accurate and rapid typing tools for IDV lineage typing. Currently, IDV lineage typing is carried out using BLAST-based searches and alignment-based molecular phylogeny of the hemagglutinin-esterase fusion (HEF) gene sequences, and lineage is assigned to query sequences based on sequence similarity (BLAST search) and proximity to the reference lineages in the tree topology, respectively. To minimize human intervention and lineage typing time, we developed IDV Typer server, implementing alignment-free method based on return time distribution (RTD) of k-mers. Lineages are assigned using HEF gene sequences. The server performs with 100% sensitivity and specificity. The IDV Typer server is the first application of an RTD-based alignment-free method for typing animal viruses.
Collapse
Affiliation(s)
- Sanket Limaye
- Bioinformatics Centre, Savitribai Phule Pune University (Formerly University of Pune), Pune 411007, India; (S.L.); (A.S.)
| | - Anant Shelke
- Bioinformatics Centre, Savitribai Phule Pune University (Formerly University of Pune), Pune 411007, India; (S.L.); (A.S.)
| | - Mohan M. Kale
- Department of Statistics, Savitribai Phule Pune University (Formerly University of Pune), Pune 411007, India;
| | - Urmila Kulkarni-Kale
- Bioinformatics Centre, Savitribai Phule Pune University (Formerly University of Pune), Pune 411007, India; (S.L.); (A.S.)
| | - Suresh V. Kuchipudi
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA 15261, USA
| |
Collapse
|
7
|
Werid GM, Van TD, Miller D, Hemmatzadeh F, Fulton RW, Kirkwood R, Petrovski K. Bovine Parainfluenza-3 Virus Detection Methods and Prevalence in Cattle: A Systematic Review and Meta-Analysis. Animals (Basel) 2024; 14:494. [PMID: 38338137 PMCID: PMC10854990 DOI: 10.3390/ani14030494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/22/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Bovine parainfluenza-3 virus (BPI3V) is an important respiratory pathogen in cattle, contributing to syndromes in the bovine respiratory disease complex (BRDC). Despite its significance, the understanding of its prevalence remains fragmented, especially within the larger framework of BRDC. This systematic review and meta-analysis aimed to determine the global prevalence of BPI3V in cattle using varied detection methods and to highlight associated risk factors. Of 2187 initially retrieved articles, 71 were selected for analysis, covering 32 countries. Depending on the detection method employed, the meta-analysis revealed significant variations in BPI3V prevalence. In the general cattle population, the highest prevalence was observed using the antibody detection method, with a proportion of 0.64. In contrast, in cattle with BRDC, a prevalence of 0.75 was observed. For the antigen detection method, a prevalence of 0.15 was observed, exclusively in cattle with BRDC. In nucleic acid detection, a prevalence of 0.05 or 0.10 was observed in the general and BRDC cattle populations, respectively. In virus isolation methods, a prevalence of 0.05 or 0.04 was observed in the general and BRDC cattle populations, respectively. These findings highlight the differences in the detection ability of different methods in identifying BPI3V. Other factors, such as country, study year, coinfections, farm size, the presence of respiratory signs, sex, and body weight, may also affect the prevalence. Most studies were anchored within broader BRDC investigations or aimed at detecting other diseases, indicating a potential under-representation of focused BPI3V research. BPI3V plays an important role in BRDC, with its prevalence varying significantly based on the detection methodology. To further understand its unique role within BRDC and pave the way for targeted interventions, there is an evident need for independent, dedicated research on BPI3V.
Collapse
Affiliation(s)
- Gebremeskel Mamu Werid
- Davies Livestock Research Centre, School of Animal & Veterinary Sciences, University of Adelaide, Roseworthy Campus, Roseworthy, SA 5371, Australia
| | - Thien D. Van
- Davies Livestock Research Centre, School of Animal & Veterinary Sciences, University of Adelaide, Roseworthy Campus, Roseworthy, SA 5371, Australia
| | - Darren Miller
- Davies Livestock Research Centre, School of Animal & Veterinary Sciences, University of Adelaide, Roseworthy Campus, Roseworthy, SA 5371, Australia
| | - Farhid Hemmatzadeh
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal & Veterinary Sciences, University of Adelaide, Roseworthy Campus, Roseworthy, SA 5371, Australia
| | - Robert W. Fulton
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Broken Arrow, OK 74014, USA
| | - Roy Kirkwood
- School of Animal & Veterinary Sciences, University of Adelaide, Roseworthy Campus, Roseworthy, SA 5371, Australia
| | - Kiro Petrovski
- Davies Livestock Research Centre, School of Animal & Veterinary Sciences, University of Adelaide, Roseworthy Campus, Roseworthy, SA 5371, Australia
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal & Veterinary Sciences, University of Adelaide, Roseworthy Campus, Roseworthy, SA 5371, Australia
| |
Collapse
|
8
|
Kwasnik M, Rola J, Rozek W. Influenza D in Domestic and Wild Animals. Viruses 2023; 15:2433. [PMID: 38140674 PMCID: PMC10748149 DOI: 10.3390/v15122433] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Influenza D virus (IDV) infections have been observed in animals worldwide, confirmed through both serological and molecular tests, as well as virus isolation. IDV possesses unique properties that distinguish it from other influenza viruses, primarily attributed to the hemagglutinin-esterase fusion (HEF) surface glycoprotein, which determines the virus' tropism and wide host range. Cattle are postulated to be the reservoir of IDV, and the virus is identified as one of the causative agents of bovine respiratory disease (BRD) syndrome. Animals associated with humans and susceptible to IDV infection include camels, pigs, small ruminants, and horses. Notably, high seroprevalence towards IDV, apart from cattle, is also observed in camels, potentially constituting a reservoir of the virus. Among wild and captive animals, IDV infections have been confirmed in feral pigs, wild boars, deer, hedgehogs, giraffes, wildebeests, kangaroos, wallabies, and llamas. The transmission potential and host range of IDV may contribute to future viral differentiation. It has been confirmed that influenza D may pose a threat to humans as a zoonosis, with seroprevalence noted in people with professional contact with cattle.
Collapse
Affiliation(s)
| | | | - Wojciech Rozek
- Department of Virology, National Veterinary Research Institute, Al. Partyzantow 57, 24-100 Pulawy, Poland; (M.K.); (J.R.)
| |
Collapse
|
9
|
Uprety T, Sreenivasan CC, Thomas M, Hause B, Christopher-Hennings J, Miskimis D, Pillatzki A, Nelson E, Wang D, Li F. Prevalence and characterization of seven-segmented influenza viruses in bovine respiratory disease complex. Virology 2023; 587:109859. [PMID: 37544044 PMCID: PMC10592214 DOI: 10.1016/j.virol.2023.109859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
Bovine respiratory disease (BRD) complex is a multifactorial respiratory disease of cattle. Seven-segmented influenza C (ICV) and D (IDV) viruses have been identified in cattle with BRD, however, molecular epidemiology and prevalence of IDV and ICV in the diseased population remain poorly characterized. Here, we conducted a molecular screening of 208 lung samples of bovine pneumonia cases for the presence of IDV and ICV. Our results demonstrated that both viruses were prevalent in BRD cases and the overall positivity rates of IDV and ICV were 20.88% and 5.99% respectively. Further analysis of three IDV strains isolated from lungs of cattle with BRD showed that these lung-tropic strains belonged to D/Michigan/2019 clade and diverged antigenically from the circulating dominant IDV clades D/OK and D/660. Our results reveal that IDV and ICV are associated with BRD complex and support a role for IDV and ICV in the etiology of BRD.
Collapse
Affiliation(s)
- Tirth Uprety
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, 40546, USA
| | - Chithra C Sreenivasan
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, 40546, USA
| | - Milton Thomas
- Department of Veterinary and Biomedical Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Ben Hause
- Department of Veterinary and Biomedical Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Jane Christopher-Hennings
- Department of Veterinary and Biomedical Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Dale Miskimis
- Department of Veterinary and Biomedical Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Angela Pillatzki
- Department of Veterinary and Biomedical Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Eric Nelson
- Department of Veterinary and Biomedical Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Dan Wang
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, 40546, USA.
| | - Feng Li
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|
10
|
Lim EH, Lim SI, Kim MJ, Kwon M, Kim MJ, Lee KB, Choe S, An DJ, Hyun BH, Park JY, Bae YC, Jeoung HY, Lee KK, Lee YH. First Detection of Influenza D Virus Infection in Cattle and Pigs in the Republic of Korea. Microorganisms 2023; 11:1751. [PMID: 37512923 PMCID: PMC10386134 DOI: 10.3390/microorganisms11071751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Influenza D virus (IDV) belongs to the Orthomyxoviridae family, which also include the influenza A, B and C virus genera. IDV was first detected and isolated in 2011 in the United States from pigs with respiratory illness. IDV circulates in mammals, including pigs, cattle, camelids, horses and small ruminants. Despite the broad host range, cattle are thought to be the natural reservoir of IDV. This virus plays a role as a causative agent of the bovine respiratory disease complex (BRDC). IDV has been identified in North America, Europe, Asia and Africa. However, there has been no information on the presence of IDV in the Republic of Korea (ROK). In this study, we investigated the presence of viral RNA and seroprevalence to IDV among cattle and pigs in the ROK in 2022. Viral RNA was surveyed by the collection and testing of 999 cattle and 2391 pig nasal swabs and lung tissues using a real-time RT-PCR assay. IDV seroprevalence was investigated by testing 742 cattle and 1627 pig sera using a hemagglutination inhibition (HI) assay. The viral RNA positive rate was 1.4% in cattle, but no viral RNA was detected in pigs. Phylogenetic analysis of the hemagglutinin-esterase-fusion (HEF) gene was further conducted for a selection of samples. All sequences belonged to the D/Yamagata/2019 lineage. The seropositivity rates were 54.7% in cattle and 1.4% in pigs. The geometric mean of the antibody titer (GMT) was 68.3 in cattle and 48.5 in pigs. This is the first report on the detection of viral RNA and antibodies to IDV in the ROK.
Collapse
Affiliation(s)
- Eui Hyeon Lim
- Viral Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon 39660, Republic of Korea
| | - Seong-In Lim
- Viral Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon 39660, Republic of Korea
| | - Min Ji Kim
- Viral Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon 39660, Republic of Korea
| | - MiJung Kwon
- Viral Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon 39660, Republic of Korea
| | - Min-Ji Kim
- Viral Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon 39660, Republic of Korea
| | - Kwan-Bok Lee
- Chungnam Veterinary Research Institute, 37 Gulpo-gil, Taean 32138, Republic of Korea
| | - SeEun Choe
- Viral Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon 39660, Republic of Korea
| | - Dong-Jun An
- Viral Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon 39660, Republic of Korea
| | - Bang-Hun Hyun
- Viral Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon 39660, Republic of Korea
| | - Jee-Yong Park
- Import Risk Assessment Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon 39660, Republic of Korea
| | - You-Chan Bae
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon 39660, Republic of Korea
| | - Hye-Young Jeoung
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon 39660, Republic of Korea
| | - Kyung-Ki Lee
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon 39660, Republic of Korea
| | - Yoon-Hee Lee
- Viral Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon 39660, Republic of Korea
| |
Collapse
|
11
|
Gaudino M, Lion A, Sagné E, Nagamine B, Oliva J, Terrier O, Errazuriz-Cerda E, Scribe A, Sikht FZ, Simon E, Foret-Lucas C, Gausserès B, Lion J, Moreno A, Dordet-Frisoni E, Baranowski E, Volmer R, Ducatez MF, Meyer G. The Activation of the RIG-I/MDA5 Signaling Pathway upon Influenza D Virus Infection Impairs the Pulmonary Proinflammatory Response Triggered by Mycoplasma bovis Superinfection. J Virol 2023; 97:e0142322. [PMID: 36692289 PMCID: PMC9972951 DOI: 10.1128/jvi.01423-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/21/2022] [Indexed: 01/25/2023] Open
Abstract
Concurrent infections with multiple pathogens are often described in cattle with respiratory illness. However, how the host-pathogen interactions influence the clinical outcome has been only partially explored in this species. Influenza D virus (IDV) was discovered in 2011. Since then, IDV has been detected worldwide in different hosts. A significant association between IDV and bacterial pathogens in sick cattle was shown in epidemiological studies, especially with Mycoplasma bovis. In an experimental challenge, IDV aggravated M. bovis-induced pneumonia. However, the mechanisms through which IDV drives an increased susceptibility to bacterial superinfections remain unknown. Here, we used the organotypic lung model precision-cut lung slices to study the interplay between IDV and M. bovis coinfection. Our results show that a primary IDV infection promotes M. bovis superinfection by increasing the bacterial replication and the ultrastructural damages in lung pneumocytes. In our model, IDV impaired the innate immune response triggered by M. bovis by decreasing the expression of several proinflammatory cytokines and chemokines that are important for immune cell recruitment and the bacterial clearance. Stimulations with agonists of cytosolic helicases and Toll-like receptors (TLRs) revealed that a primary activation of RIG-I/MDA5 desensitizes the TLR2 activation, similar to what was observed with IDV infection. The cross talk between these two pattern recognition receptors leads to a nonadditive response, which alters the TLR2-mediated cascade that controls the bacterial infection. These results highlight innate immune mechanisms that were not described for cattle so far and improve our understanding of the bovine host-microbe interactions and IDV pathogenesis. IMPORTANCE Since the spread of the respiratory influenza D virus (IDV) infection to the cattle population, the question about the impact of this virus on bovine respiratory disease (BRD) remains still unanswered. Animals affected by BRD are often coinfected with multiple pathogens, especially viruses and bacteria. In particular, viruses are suspected to enhance secondary bacterial superinfections. Here, we use an ex vivo model of lung tissue to study the effects of IDV infection on bacterial superinfections. Our results show that IDV increases the susceptibility to the respiratory pathogen Mycoplasma bovis. In particular, IDV seems to activate immune pathways that inhibit the innate immune response against the bacteria. This may allow M. bovis to increase its proliferation and to delay its clearance from lung tissue. These results suggest that IDV could have a negative impact on the respiratory pathology of cattle.
Collapse
Affiliation(s)
- Maria Gaudino
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | - Adrien Lion
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | - Eveline Sagné
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | | | - Justine Oliva
- Centre International de Recherche en Infectiologie – U1111 (Equipe VirPath) – Institut National de la Santé et de la Recherche Médicale, Ecole Normale Supérieure, Lyon, France
- Centre National de la Recherche Scientifique – UMR5308, Lyon, France
| | - Olivier Terrier
- Centre International de Recherche en Infectiologie – U1111 (Equipe VirPath) – Institut National de la Santé et de la Recherche Médicale, Ecole Normale Supérieure, Lyon, France
- Centre National de la Recherche Scientifique – UMR5308, Lyon, France
| | | | - Anaëlle Scribe
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | | | - Elisa Simon
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | | | | | - Julie Lion
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | - Ana Moreno
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini,” Brescia, Italy
| | | | | | - Romain Volmer
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | | | - Gilles Meyer
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| |
Collapse
|
12
|
Characterisation of the Upper Respiratory Tract Virome of Feedlot Cattle and Its Association with Bovine Respiratory Disease. Viruses 2023; 15:v15020455. [PMID: 36851669 PMCID: PMC9961997 DOI: 10.3390/v15020455] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 02/10/2023] Open
Abstract
Bovine respiratory disease (BRD) is a major health problem within the global cattle industry. This disease has a complex aetiology, with viruses playing an integral role. In this study, metagenomics was used to sequence viral nucleic acids in the nasal swabs of BRD-affected cattle. The viruses detected included those that are well known for their association with BRD in Australia (bovine viral diarrhoea virus 1), as well as viruses known to be present but not fully characterised (bovine coronavirus) and viruses that have not been reported in BRD-affected cattle in Australia (bovine rhinitis, bovine influenza D, and bovine nidovirus). The nasal swabs from a case-control study were subsequently tested for 10 viruses, and the presence of at least one virus was found to be significantly associated with BRD. Some of the more recently detected viruses had inconsistent associations with BRD. Full genome sequences for bovine coronavirus, a virus increasingly associated with BRD, and bovine nidovirus were completed. Both viruses belong to the Coronaviridae family, which are frequently associated with disease in mammals. This study has provided greater insights into the viral pathogens associated with BRD and highlighted the need for further studies to more precisely elucidate the roles viruses play in BRD.
Collapse
|
13
|
Gaudino M, Nagamine B, Ducatez MF, Meyer G. Understanding the mechanisms of viral and bacterial coinfections in bovine respiratory disease: a comprehensive literature review of experimental evidence. Vet Res 2022; 53:70. [PMID: 36068558 PMCID: PMC9449274 DOI: 10.1186/s13567-022-01086-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
Bovine respiratory disease (BRD) is one of the most important diseases impacting the global cattle industry, resulting in significant economic loss. Commonly referred to as shipping fever, BRD is especially concerning for young calves during transport when they are most susceptible to developing disease. Despite years of extensive study, managing BRD remains challenging as its aetiology involves complex interactions between pathogens, environmental and host factors. While at the beginning of the twentieth century, scientists believed that BRD was only caused by bacterial infections ("bovine pasteurellosis"), we now know that viruses play a key role in BRD induction. Mixtures of pathogenic bacteria and viruses are frequently isolated from respiratory secretions of animals with respiratory illness. The increased diagnostic screening data has changed our understanding of pathogens contributing to BRD development. In this review, we aim to comprehensively examine experimental evidence from all existing studies performed to understand coinfections between respiratory pathogens in cattle. Despite the fact that pneumonia has not always been successfully reproduced by in vivo calf modelling, several studies attempted to investigate the clinical significance of interactions between different pathogens. The most studied model of pneumonia induction has been reproduced by a primary viral infection followed by a secondary bacterial superinfection, with strong evidence suggesting this could potentially be one of the most common scenarios during BRD onset. Different in vitro studies indicated that viral priming may increase bacterial adherence and colonization of the respiratory tract, suggesting a possible mechanism underpinning bronchopneumonia onset in cattle. In addition, a few in vivo studies on viral coinfections and bacterial coinfections demonstrated that a primary viral infection could also increase the pathogenicity of a secondary viral infection and, similarly, dual infections with two bacterial pathogens could increase the severity of BRD lesions. Therefore, different scenarios of pathogen dynamics could be hypothesized for BRD onset which are not limited to a primary viral infection followed by a secondary bacterial superinfection.
Collapse
Affiliation(s)
- Maria Gaudino
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | | | | | - Gilles Meyer
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France.
| |
Collapse
|
14
|
Gaudino M, Chiapponi C, Moreno A, Zohari S, O’Donovan T, Quinless E, Sausy A, Oliva J, Salem E, Fusade-Boyer M, Meyer G, Hübschen JM, Saegerman C, Ducatez MF, Snoeck CJ. Evolutionary and temporal dynamics of emerging influenza D virus in Europe (2009-22). Virus Evol 2022; 8:veac081. [PMID: 36533151 PMCID: PMC9752663 DOI: 10.1093/ve/veac081] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/25/2022] [Accepted: 08/31/2022] [Indexed: 07/30/2023] Open
Abstract
Influenza D virus (IDV) is an emerging influenza virus that was isolated for the first time in 2011 in the USA from swine with respiratory illness. Since then, IDV has been detected worldwide in different animal species, and it was also reported in humans. Molecular epidemiological studies revealed the circulation of two major clades, named D/OK and D/660. Additional divergent clades have been described but have been limited to specific geographic areas (i.e. Japan and California). In Europe, IDV was detected for the first time in France in 2012 and subsequently also in Italy, Luxembourg, Ireland, the UK, Switzerland, and Denmark. To understand the time of introduction and the evolutionary dynamics of IDV on the continent, molecular screening of bovine and swine clinical samples was carried out in different European countries, and phylogenetic analyses were performed on all available and newly generated sequences. Until recently, D/OK was the only clade detected in this area. Starting from 2019, an increase in D/660 clade detections was observed, accompanied by an increase in the overall viral genetic diversity and genetic reassortments. The time to the most recent common ancestor (tMRCA) of all existing IDV sequences was estimated as 1995-16 years before its discovery, indicating that the virus could have started its global spread in this time frame. Despite the D/OK and D/660 clades having a similar mean tMRCA (2007), the mean tMRCA for European D/OK sequences was estimated as January 2013 compared to July 2014 for European D/660 sequences. This indicated that the two clades were likely introduced on the European continent at different time points, as confirmed by virological screening findings. The mean nucleotide substitution rate of the hemagglutinin-esterase-fusion (HEF) glycoprotein segment was estimated as 1.403 × 10-3 substitutions/site/year, which is significantly higher than the one of the HEF of human influenza C virus (P < 0.0001). IDV genetic drift, the introduction of new clades on the continent, and multiple reassortment patterns shape the increasing viral diversity observed in the last years. Its elevated substitution rate, diffusion in various animal species, and the growing evidence pointing towards zoonotic potential justify continuous surveillance of this emerging influenza virus.
Collapse
Affiliation(s)
- Maria Gaudino
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse 31076, France
| | - Chiara Chiapponi
- Department of Virology, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna ‘Bruno Ubertini’, Brescia 25124, Italy
| | - Ana Moreno
- Department of Virology, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna ‘Bruno Ubertini’, Brescia 25124, Italy
| | - Siamak Zohari
- Department of microbiology, National Veterinary Institute, Uppsala SE-751 89, Sweden
| | - Tom O’Donovan
- Central Veterinary Research Laboratory, Celbridge, Co. Kildare W23 X3PH, Ireland
| | - Emma Quinless
- Central Veterinary Research Laboratory, Celbridge, Co. Kildare W23 X3PH, Ireland
| | - Aurélie Sausy
- Clinical and Applied Virology Group, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette L-4354, Luxembourg
| | - Justine Oliva
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse 31076, France
| | - Elias Salem
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse 31076, France
| | | | - Gilles Meyer
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse 31076, France
| | - Judith M Hübschen
- Clinical and Applied Virology Group, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette L-4354, Luxembourg
| | | | | | | |
Collapse
|
15
|
Lachowicz-Wolak A, Klimowicz-Bodys MD, Płoneczka-Janeczko K, Bykowy M, Siedlecka M, Cinciała J, Rypuła K. The Prevalence, Coexistence, and Correlations between Seven Pathogens Detected by a PCR Method from South-Western Poland Dairy Cattle Suffering from Bovine Respiratory Disease. Microorganisms 2022; 10:microorganisms10081487. [PMID: 35893545 PMCID: PMC9332621 DOI: 10.3390/microorganisms10081487] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
Bovine respiratory disease (BRD) is a very important disease that contributes to economic losses in dairy and beef cattle breeding worldwide. The molecular testing of material from 296 calves showing BRD symptoms from 74 dairy herds located in south-western Poland was performed in 2019–2021. Molecular tests were performed using a commercial kit “VetMAXTM Ruminant Respiratory Screening Kit” (Thermo Fisher Scientific) for the simultaneous detection of genetic material of seven pathogens responsible for BRD. At least one pathogen was detected in 95.95% of herds. The overall prevalence was: Pasteurella multocida 87.84%, Mannheimia haemolytica 44.59%, bovine coronavirus (BcoV) 32.43%, Mycoplasma bovis 29.73%, Histophilus somni 28.38%, bovine parainfluenza virus type 3 (BPIV-3) 13.51%, and bovine respiratory syncytial virus (BRSV) 10.81%. Twenty-nine configurations of pathogen occurrences were found. Bacterial infections were the most frequently recorded as 56.7% of all results. Coinfections mainly consisted of two pathogens. Not a single purely viral coinfection was detected. The most frequent result was a single P. multocida infection accounting for 18.31% of all results. The statistically significant correlation (p = 0.001) with the highest strength of effect (ϕ 0.38) was between M. bovis and H. somni.
Collapse
Affiliation(s)
- Agnieszka Lachowicz-Wolak
- Division of Infectious Diseases of Animals and Veterinary Administration, Department of Epizootiology and Clinic of Birds and Exotic Animals, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 45, 50-366 Wroclaw, Poland; (A.L.-W.); (M.D.K.-B.); (K.P.-J.); (M.B.); (M.S.)
| | - Małgorzata D. Klimowicz-Bodys
- Division of Infectious Diseases of Animals and Veterinary Administration, Department of Epizootiology and Clinic of Birds and Exotic Animals, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 45, 50-366 Wroclaw, Poland; (A.L.-W.); (M.D.K.-B.); (K.P.-J.); (M.B.); (M.S.)
| | - Katarzyna Płoneczka-Janeczko
- Division of Infectious Diseases of Animals and Veterinary Administration, Department of Epizootiology and Clinic of Birds and Exotic Animals, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 45, 50-366 Wroclaw, Poland; (A.L.-W.); (M.D.K.-B.); (K.P.-J.); (M.B.); (M.S.)
| | - Marek Bykowy
- Division of Infectious Diseases of Animals and Veterinary Administration, Department of Epizootiology and Clinic of Birds and Exotic Animals, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 45, 50-366 Wroclaw, Poland; (A.L.-W.); (M.D.K.-B.); (K.P.-J.); (M.B.); (M.S.)
| | - Magdalena Siedlecka
- Division of Infectious Diseases of Animals and Veterinary Administration, Department of Epizootiology and Clinic of Birds and Exotic Animals, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 45, 50-366 Wroclaw, Poland; (A.L.-W.); (M.D.K.-B.); (K.P.-J.); (M.B.); (M.S.)
| | - Jagoda Cinciała
- Student Scientific Society “AnthraX”, Department of Epizootiology and Clinic of Birds and Exotic Animals, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 45, 50-366 Wroclaw, Poland;
| | - Krzysztof Rypuła
- Division of Infectious Diseases of Animals and Veterinary Administration, Department of Epizootiology and Clinic of Birds and Exotic Animals, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 45, 50-366 Wroclaw, Poland; (A.L.-W.); (M.D.K.-B.); (K.P.-J.); (M.B.); (M.S.)
- Correspondence:
| |
Collapse
|
16
|
Robinson E, Schulein C, Jacobson BT, Jones K, Sago J, Huber V, Jutila M, Bimczok D, Rynda-Apple A. Pathophysiology of Influenza D Virus Infection in Specific-Pathogen-Free Lambs with or without Prior Mycoplasma ovipneumoniae Exposure. Viruses 2022; 14:1422. [PMID: 35891403 PMCID: PMC9321583 DOI: 10.3390/v14071422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 12/04/2022] Open
Abstract
Polymicrobial pneumonias occur frequently in cattle, swine, and sheep, resulting in major economic losses. Individual pathogens comprising these complex infections may be mild on their own but can instead exhibit synergism or increase host susceptibility. Two examples of such pathogens, Mycoplasma ovipneumoniae (M. ovipneumoniae) and influenza D viruses (IDVs), naturally infect domestic sheep. In sheep, the role of M. ovipneumoniae in chronic nonprogressive pneumonia is well-established, but the pathogenesis of IDV infection has not previously been studied. We utilized a specific-pathogen-free sheep flock to study the clinical response to IDV infection in naïve vs. M. ovipneumoniae-exposed lambs. Lambs were inoculated intranasally with M. ovipneumoniae or mock infection, followed after four weeks by infection with IDV. Pathogen shedding was tracked, and immunological responses were evaluated by measuring acute phase response and IDV-neutralizing antibody titers. While lamb health statuses remained subclinical, M. ovipneumoniae-exposed lambs had significantly elevated body temperatures during IDV infection compared to M. ovipneumoniae-naïve, IDV-infected lambs. Moreover, we found a positive correlation between prior M. ovipneumoniae burden, early-infection IDV shedding, and IDV-neutralizing antibody response. Our findings suggest that IDV infection may not induce clinical symptoms in domestic sheep, but previous M. ovipneumoniae exposure may promote mild IDV-associated inflammation.
Collapse
Affiliation(s)
- Ema Robinson
- Department of Microbiology and Cell Biology, Montana State University, 2155 Analysis Drive, Bozeman, MT 59718, USA; (E.R.); (C.S.); (B.T.J.); (K.J.); (M.J.); (D.B.)
| | - Clyde Schulein
- Department of Microbiology and Cell Biology, Montana State University, 2155 Analysis Drive, Bozeman, MT 59718, USA; (E.R.); (C.S.); (B.T.J.); (K.J.); (M.J.); (D.B.)
| | - B. Tegner Jacobson
- Department of Microbiology and Cell Biology, Montana State University, 2155 Analysis Drive, Bozeman, MT 59718, USA; (E.R.); (C.S.); (B.T.J.); (K.J.); (M.J.); (D.B.)
| | - Kerri Jones
- Department of Microbiology and Cell Biology, Montana State University, 2155 Analysis Drive, Bozeman, MT 59718, USA; (E.R.); (C.S.); (B.T.J.); (K.J.); (M.J.); (D.B.)
| | - Jonathon Sago
- Montana State Veterinary Diagnostic Laboratory, 1911 West Lincoln Street, Bozeman, MT 59718, USA;
| | - Victor Huber
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA;
| | - Mark Jutila
- Department of Microbiology and Cell Biology, Montana State University, 2155 Analysis Drive, Bozeman, MT 59718, USA; (E.R.); (C.S.); (B.T.J.); (K.J.); (M.J.); (D.B.)
| | - Diane Bimczok
- Department of Microbiology and Cell Biology, Montana State University, 2155 Analysis Drive, Bozeman, MT 59718, USA; (E.R.); (C.S.); (B.T.J.); (K.J.); (M.J.); (D.B.)
| | - Agnieszka Rynda-Apple
- Department of Microbiology and Cell Biology, Montana State University, 2155 Analysis Drive, Bozeman, MT 59718, USA; (E.R.); (C.S.); (B.T.J.); (K.J.); (M.J.); (D.B.)
| |
Collapse
|
17
|
Enhanced Pathogenesis Caused by Influenza D Virus and Mycoplasma bovis Coinfection in Calves: a Disease Severity Linked with Overexpression of IFN-γ as a Key Player of the Enhanced Innate Immune Response in Lungs. Microbiol Spectr 2021; 9:e0169021. [PMID: 34937196 PMCID: PMC8694133 DOI: 10.1128/spectrum.01690-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bovine respiratory disease (BRD) is a major disease of young cattle whose etiology lies in complex interactions between pathogens and environmental and host factors. Despite a high frequency of codetection of respiratory pathogens in BRD, data on the molecular mechanisms and pathogenesis associated with viral and bacterial interactions are still limited. In this study, we investigated the effects of a coinfection with influenza D virus (IDV) and Mycoplasma bovis in cattle. Naive calves were infected by aerosol with a French IDV strain and an M. bovis strain. The combined infection shortened the incubation period, worsened the disease, and led to more severe macroscopic and microscopic lesions compared to these parameters in calves infected with only one pathogen. In addition, IDV promoted colonization of the lower respiratory tract (LRT) by M. bovis and increased white cell recruitment to the airway lumen. The transcriptomic analysis highlighted an upregulation of immune genes in the lungs of coinfected calves. The gamma interferon (IFN-γ) gene was shown to be the gene most statistically overexpressed after coinfection at 2 days postinfection (dpi) and at least until 7 dpi, which correlated with the high level of lymphocytes in the LRT. Downregulation of the PACE4 and TMPRSS2 endoprotease genes was also highlighted, being a possible reason for the faster clearance of IDV in the lungs of coinfected animals. Taken together, our coinfection model with two respiratory pathogens that when present alone induce moderate clinical signs of disease was shown to increase the severity of the disease in young cattle and a strong transcriptomic innate immune response in the LRT, especially for IFN-γ. IMPORTANCE Bovine respiratory disease (BRD) is among the most prevalent diseases in young cattle. BRD is due to complex interactions between viruses and/or bacteria, most of which have a moderate individual pathogenicity. In this study, we showed that coinfection with influenza D virus (IDV) and Mycoplasma bovis increased the severity of the respiratory disease in calves in comparison with IDV or M. bovis infection. IDV promoted M. bovis colonization of the lower respiratory tract and increased white cell recruitment to the airway lumen. The transcriptomic analysis highlighted an upregulation of immune genes in the lungs of coinfected calves. The IFN-γ gene in particular was highly overexpressed after coinfection, correlated with the disease severity, immune response, and white cell recruitment in the lungs. In conclusion, we showed that IDV facilitates coinfections within the BRD complex by modulating the local innate immune response, providing new insights into the mechanisms involved in severe respiratory diseases.
Collapse
|
18
|
Sreenivasan CC, Sheng Z, Wang D, Li F. Host Range, Biology, and Species Specificity of Seven-Segmented Influenza Viruses-A Comparative Review on Influenza C and D. Pathogens 2021; 10:1583. [PMID: 34959538 PMCID: PMC8704295 DOI: 10.3390/pathogens10121583] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 02/06/2023] Open
Abstract
Other than genome structure, influenza C (ICV), and D (IDV) viruses with seven-segmented genomes are biologically different from the eight-segmented influenza A (IAV), and B (IBV) viruses concerning the presence of hemagglutinin-esterase fusion protein, which combines the function of hemagglutinin and neuraminidase responsible for receptor-binding, fusion, and receptor-destroying enzymatic activities, respectively. Whereas ICV with humans as primary hosts emerged nearly 74 years ago, IDV, a distant relative of ICV, was isolated in 2011, with bovines as the primary host. Despite its initial emergence in swine, IDV has turned out to be a transboundary bovine pathogen and a broader host range, similar to influenza A viruses (IAV). The receptor specificities of ICV and IDV determine the host range and the species specificity. The recent findings of the presence of the IDV genome in the human respiratory sample, and high traffic human environments indicate its public health significance. Conversely, the presence of ICV in pigs and cattle also raises the possibility of gene segment interactions/virus reassortment between ICV and IDV where these viruses co-exist. This review is a holistic approach to discuss the ecology of seven-segmented influenza viruses by focusing on what is known so far on the host range, seroepidemiology, biology, receptor, phylodynamics, species specificity, and cross-species transmission of the ICV and IDV.
Collapse
Affiliation(s)
- Chithra C. Sreenivasan
- Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA; (C.C.S.); (D.W.)
| | - Zizhang Sheng
- Aaron Diamond AIDS Research Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA;
| | - Dan Wang
- Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA; (C.C.S.); (D.W.)
| | - Feng Li
- Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA; (C.C.S.); (D.W.)
| |
Collapse
|