1
|
Ma Y, Zeng T, Li Z, Jue D, Sui Y, Wang X, Zhong H, Yang J. Transcriptomic analysis reveals long non-coding RNA involved in the key metabolic pathway in response to Botrytis cinerea in kiwifruit. BMC PLANT BIOLOGY 2025; 25:474. [PMID: 40234757 PMCID: PMC11998429 DOI: 10.1186/s12870-025-06499-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 04/01/2025] [Indexed: 04/17/2025]
Abstract
BACKGROUND Understanding the molecular mechanisms that confer kiwifruit resistance to Botrytis cinerea is essential for developing resistant cultivars. Long non-coding RNAs (lncRNAs), known to participate in various physiological processes including plant defense against diseases, have an undefined role in kiwifruit's resistance. RESULTS Our study aimed to identify lncRNAs induced by B. cinerea infection in 'Hongyang' kiwifruit at 0 to 3 days post-inoculation (dpi) through high-throughput sequencing. The differential expression analysis identified 126 differentially expressed lncRNAs (DELs). Subsequent GO and KEGG analyses indicated that these lncRNAs' target genes were predominantly associated with plant-pathogen interactions, carbohydrate metabolism including starch and sucrose, mitogen-activated protein kinase (MAPK) signaling pathways, and plant hormone signal transduction. Co-expression analysis revealed that lncRNAs modulate the expression of genes involved in phytohormone signaling pathways, such as those for auxin, ethylene (ETH), abscisic acid (ABA), jasmonic acid (JA), and salicylic acid (SA), as well as the MAPK signaling pathway. This regulation affects the biosynthesis of defense-related secondary metabolites like ADP-glucose, sucrose, 1,3-β-glucan, and cellulose, thereby enhancing the fruit's disease resistance. CONCLUSION Our findings offer valuable insights into the mechanisms by which lncRNAs respond to biotic stress in kiwifruit, potentially aiding in the development of strategies for breeding kiwifruit with improved resistance to B. cinerea.
Collapse
Affiliation(s)
- Yijia Ma
- Chongqing Key Laboratory for Germplasm Innovation of Special Aromatic Spice Plants, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Smart Agriculture, Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, 402160, China
| | - Tianjing Zeng
- Chongqing Key Laboratory for Germplasm Innovation of Special Aromatic Spice Plants, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Smart Agriculture, Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, 402160, China
| | - Zhexin Li
- Chongqing Key Laboratory for Germplasm Innovation of Special Aromatic Spice Plants, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Smart Agriculture, Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, 402160, China.
| | - Dengwei Jue
- Chongqing Key Laboratory for Germplasm Innovation of Special Aromatic Spice Plants, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Smart Agriculture, Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, 402160, China
| | - Yuan Sui
- Chongqing Key Laboratory for Germplasm Innovation of Special Aromatic Spice Plants, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Smart Agriculture, Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, 402160, China
| | - Xu Wang
- Chongqing Key Laboratory for Germplasm Innovation of Special Aromatic Spice Plants, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Smart Agriculture, Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, 402160, China
| | - Hongpan Zhong
- Chongqing Key Laboratory for Germplasm Innovation of Special Aromatic Spice Plants, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Smart Agriculture, Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, 402160, China
| | - Jiaqi Yang
- Chongqing Key Laboratory for Germplasm Innovation of Special Aromatic Spice Plants, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Smart Agriculture, Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, 402160, China
| |
Collapse
|
2
|
Tao XY, Feng SL, Yuan L, Li YJ, Li XJ, Guan XY, Chen ZH, Xu SC. Harnessing transposable elements for plant functional genomics and genome engineering. TRENDS IN PLANT SCIENCE 2025:S1360-1385(25)00067-6. [PMID: 40240259 DOI: 10.1016/j.tplants.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/04/2025] [Accepted: 03/17/2025] [Indexed: 04/18/2025]
Abstract
Transposable elements (TEs) constitute a large portion of many plant genomes and play important roles in regulating gene expression and in driving genome evolution and crop domestication. Despite advances in understanding the functions and mechanisms of TEs, a comprehensive review of their integrated knowledge and cutting-edge biotechnological applications of TEs is still needed. We provide a thorough overview that connects discoveries, mechanisms, and technologies associated with plant TEs. We discuss the identification and function of TEs driven by functional genomics, epigenetic regulation of TEs, and utilization of active TEs in plant functional genomics and genome engineering. In summary, expanding the knowledge and application of TEs will be beneficial to crop breeding and plant synthetic biology in the future.
Collapse
Affiliation(s)
| | | | - Lu Yuan
- Xianghu Laboratory, Hangzhou 311231, China
| | - Yan-Jun Li
- Xianghu Laboratory, Hangzhou 311231, China
| | - Xin-Jia Li
- Xianghu Laboratory, Hangzhou 311231, China
| | - Xue-Ying Guan
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW, Australia; School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, 5064 SA, Australia.
| | - Sheng-Chun Xu
- Xianghu Laboratory, Hangzhou 311231, China; Institute of Digital Agriculture, Zhejiang Academy of Agricultural Science, Hangzhou, China.
| |
Collapse
|
3
|
Zhao J, Ding Y, Ramakrishnan M, Zou LH, Chen Y, Zhou M. LTR retrotransposon-derived novel lncRNA2 enhances cold tolerance in Moso bamboo by modulating antioxidant activity and photosynthetic efficiency. PeerJ 2025; 13:e19056. [PMID: 40028216 PMCID: PMC11871892 DOI: 10.7717/peerj.19056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/05/2025] [Indexed: 03/05/2025] Open
Abstract
In Moso bamboo, the mechanism of long terminal repeat (LTR) retrotransposon-derived long non-coding RNA (TElncRNA) in response to cold stress remains unclear. In this study, several Pe-TElncRNAs were identified from Moso bamboo transcriptome data. qRT-PCR analysis showed that the expression of a novel Pe-TElncRNA2 in Moso bamboo seedlings reached its highest level at 8 hours of cold treatment at 4 °C and was significantly higher in the stems compared to the leaves, roots, and buds. Furthermore, cellular localization analysis revealed that Pe-TElncRNA2 expression was significantly higher in the cytoplasm than in the nucleus. Pe-TElncRNA2 overexpression in Moso bamboo protoplasts showed that Pe-TElncRNA2 positively regulated the expression of FZR2, NOT3, ABCG44 and AGD6 genes. Further validation of this lncRNA in Arabidopsis thaliana enhanced antioxidant activities, as evidenced by increased superoxide dismutase (SOD) activity and proline content, as well as maximum photochemical efficiency PS II in dark-adapted leaves (F v/F m), in the transgenic plants compared to the wild-type controls. Conversely, malondialdehyde (MDA) content, a lipid peroxidation marker (a marker of oxidative stress), was significantly reduced in the transgenic plants. Notably, the expression levels of both Pe-TElncRNA2 and the genes that were regulated by this lncRNA were upregulated in the transgenic plants after two days of cold stress treatment. These findings elucidate the critical role of LTR retrotransposon-derived lncRNAs in mediating cold stress responses in Moso bamboo.
Collapse
Affiliation(s)
- Jiamin Zhao
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, ZheJiang, China
| | - Yiqian Ding
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, ZheJiang, China
- School of Forestry Science and Technology, Lishui Vocational and Technical College, Lishui, ZheJiang, China
| | - Muthusamy Ramakrishnan
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Long-Hai Zou
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, ZheJiang, China
| | - Yujing Chen
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, ZheJiang, China
| | - Mingbing Zhou
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, ZheJiang, China
| |
Collapse
|
4
|
Lyu MJA, Du H, Yao H, Zhang Z, Chen G, Huang Y, Ni X, Chen F, Zhao YY, Tang Q, Miao F, Wang Y, Zhao Y, Lu H, Fang L, Gao Q, Qi Y, Zhang Q, Zhang J, Yang T, Cui X, Liang C, Lu T, Zhu XG. A dominant role of transcriptional regulation during the evolution of C 4 photosynthesis in Flaveria species. Nat Commun 2025; 16:1643. [PMID: 39952962 PMCID: PMC11828953 DOI: 10.1038/s41467-025-56901-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 02/02/2025] [Indexed: 02/17/2025] Open
Abstract
C4 photosynthesis exemplifies convergent evolution of complex traits. Herein, we construct chromosome-scale genome assemblies and perform multi-omics analysis for five Flaveria species, which represent evolutionary stages from C3 to C4 photosynthesis. Chromosome-scale genome sequence analyses reveal a gradual increase in genome size during the evolution of C4 photosynthesis attributed to the expansion of transposable elements. Systematic annotation of genes encoding C4 enzymes and transporters identify additional copies of three C4 enzyme genes through retrotranspositions in C4 species. C4 genes exhibit elevated mRNA and protein abundances, reduced protein-to-RNA ratios, and comparable translation efficiencies in C4 species, highlighting a critical role of transcriptional regulation in C4 evolution. Furthermore, we observe an increased abundance of ethylene response factor (ERF) transcription factors and cognate cis-regulatory elements associated with C4 genes regulation. Altogether, our study provides valuable genomic resources for the Flaveria genus and sheds lights on evolutionary and regulatory mechanisms underlying C4 photosynthesis.
Collapse
Affiliation(s)
- Ming-Ju Amy Lyu
- State Key Laboratory of Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Huilong Du
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Hongyan Yao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Zhiguo Zhang
- Biotechnology Research Institute/National Key Facility for Gene Resources and Gene Improvement, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Genyun Chen
- State Key Laboratory of Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yuhui Huang
- State Key Laboratory of Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiaoxiang Ni
- State Key Laboratory of Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Faming Chen
- State Key Laboratory of Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yong-Yao Zhao
- State Key Laboratory of Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Qiming Tang
- State Key Laboratory of Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Fenfen Miao
- State Key Laboratory of Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yanjie Wang
- State Key Laboratory of Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yuhui Zhao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Hongwei Lu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Lu Fang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Qiang Gao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Yiying Qi
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Sugarcane Biology and Genetic Breeding, National Engineering Research Center for Sugarcane, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qing Zhang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Sugarcane Biology and Genetic Breeding, National Engineering Research Center for Sugarcane, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jisen Zhang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Sugarcane Biology and Genetic Breeding, National Engineering Research Center for Sugarcane, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tao Yang
- China National GeneBank, Shenzhen, 518120, China
| | - Xuean Cui
- Biotechnology Research Institute/National Key Facility for Gene Resources and Gene Improvement, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Chengzhi Liang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.
| | - Tiegang Lu
- Biotechnology Research Institute/National Key Facility for Gene Resources and Gene Improvement, Chinese Academy of Agricultural Sciences, 100081, Beijing, China.
| | - Xin-Guang Zhu
- State Key Laboratory of Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
5
|
Farkas D, Dobránszki J. Vegetal memory through the lens of transcriptomic changes - recent progress and future practical prospects for exploiting plant transcriptional memory. PLANT SIGNALING & BEHAVIOR 2024; 19:2383515. [PMID: 39077764 PMCID: PMC11290777 DOI: 10.1080/15592324.2024.2383515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/31/2024]
Abstract
Plant memory plays an important role in the efficient and rapid acclimation to a swiftly changing environment. In addition, since plant memory can be inherited, it is also of adaptive and evolutionary importance. The ability of a plant to store, retain, retrieve and delete information on acquired experience is based on cellular, biochemical and molecular networks in the plants. This review offers an up-to-date overview on the formation, types, checkpoints of plant memory based on our current knowledge and focusing on its transcriptional aspects, the transcriptional memory. Roles of long and small non-coding RNAs are summarized in the regulation, formation and the cooperation between the different layers of the plant memory, i.e. in the establishment of epigenetic changes associated with memory formation in plants. The RNA interference mechanisms at the RNA and DNA level and the interplays between them are also presented. Furthermore, this review gives an insight of how exploitation of plant transcriptional memory may provide new opportunities for elaborating promising cost-efficient, and effective strategies to cope with the ever-changing environmental perturbations, caused by climate change. The potentials of plant memory-based methods, such as crop priming, cross acclimatization, memory modification by miRNAs and associative use of plant memory, in the future's agriculture are also discussed.
Collapse
Affiliation(s)
- Dóra Farkas
- Centre for Agricultural Genomics and Biotechnology, Faculty of the Agricultural and Food Science and Environmental Management, University of Debrecen, Nyíregyháza, Hungary
| | - Judit Dobránszki
- Centre for Agricultural Genomics and Biotechnology, Faculty of the Agricultural and Food Science and Environmental Management, University of Debrecen, Nyíregyháza, Hungary
| |
Collapse
|
6
|
Tian L, Wu L, Zhong XF, Ma LH, Du GY. Genome-Wide Characterization of ABC Transporter Genes and Expression Profiles in Red Macroalga Pyropia yezoensis Expose to Low-Temperature. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:1179-1193. [PMID: 39269589 DOI: 10.1007/s10126-024-10355-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 08/05/2024] [Indexed: 09/15/2024]
Abstract
Pyropia yezoensis is an important economic macroalga widely cultivated in the East Asia countries of China, Korea, and Japan. The ATP-binding cassette (ABC) transporter gene family is one of the largest transporter families in all forms of life involved in various biological processes. The characteristics of ABC transporter genes in P. yezoensis (PyABC) and their functions in stress resistance, however, remain largely unknown. In this study, PyABCs were identified and characterized their expression patterns under low-temperature stress. A total of 48 PyABCs transporters were identified and divided into eight subfamilies, which are mostly predicted as membrane-binding proteins. The cis-elements of phytohormone and low-temperature response were distinguished in promoter sequences of PyABCs. Transcriptome analysis showed that PyABCs are involved in response to low-temperature stress. Among them, 12 PyABCs were significantly up-regulated after 24 h of exposure to low temperature (2 °C). Further quantitative RT-PCR analysis corroborated the highest expression happened at 24 for detected genes of PyABCC8, PyABCF3, and PyABCI1, extraordinarily for PyABCF3, and followed by decreased expression at 48 h. The expression of PyABCI1 was generally low in all tested strains. Whereas, in a strain of P. yezoensis with lower tolerance to low temperature, the expression was observed higher in PyABCC1, PyABCC8, and remarkably high in PyABCF3. This study provided valuable information on ABC gene families in P. yezoensis and their functional characteristics, especially on low-temperature resistance, and would help to understand the adaptive mechanisms of P. yezoensis to adverse environments.
Collapse
Affiliation(s)
- Lin Tian
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Lan Wu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Xue-Feng Zhong
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Li-Hong Ma
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Guo-Ying Du
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
7
|
Gan Y, Wang L, Liu G, Guo X, Zhou Y, Chang K, Zhang Z, Yan F, Liu Q, Chen B. Transposable Elements Contribute to the Regulation of Long Noncoding RNAs in Drosophila melanogaster. INSECTS 2024; 15:950. [PMID: 39769552 PMCID: PMC11678190 DOI: 10.3390/insects15120950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025]
Abstract
Background: Transposable elements (TEs) and noncoding sequences are major components of the genome, yet their functional contributions to long noncoding RNAs (lncRNAs) are not well understood. Although many lncRNAs originating from TEs (TE-lncRNAs) have been identified across various organisms, their characteristics and regulatory roles, particularly in insects, remain largely unexplored. This study integrated multi-omics data to investigate TE-lncRNAs in D. melanogaster, focusing on the influence of transposons across different omics levels. Results: We identified 16,118 transposons overlapping with lncRNA sequences that constitute 2119 TE-lncRNAs (40.4% of all lncRNAs) using 256 public RNA-seq samples and 15 lncRNA-seq samples of Drosophila S2 cells treated with heavy metals. Of these, 67.2% of TE-lncRNAs contain more than one TE. The LTR/Gypsy family was the most common transposon insertion. Transposons preferred to insert into promoters, transcription starting sites, and intronic regions, especially in chromosome ends. Compared with lncRNAs, TE-lncRNAs showed longer lengths, a lower conservation, and lower levels but a higher specificity of expression. Multi-omics data analysis revealed positive correlations between transposon insertions and chromatin openness at the pre-transcriptional level. Notably, a total of 516 TE-lncRNAs provided transcriptional factor binding sites through transposon insertions. The regulatory network of a key transcription factor was rewired by transposons, potentially recruiting other transcription factors to exert regulatory functions under heavy metal stress. Additionally, 99 TE-lncRNAs were associated with m6A methylation modification sites, and 115 TE-lncRNAs potentially provided candidate small open reading frames through transposon insertions. Conclusions: Our data analysis demonstrated that TEs contribute to the regulation of lncRNAs. TEs not only promote the transcriptional regulation of lncRNAs, but also facilitate their post-transcriptional and epigenetic regulation.
Collapse
Affiliation(s)
- Yuli Gan
- College of Life Science, Hebei University, Baoding 071002, China; (Y.G.); (L.W.); (X.G.)
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Lingyan Wang
- College of Life Science, Hebei University, Baoding 071002, China; (Y.G.); (L.W.); (X.G.)
| | - Guoxian Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Xiruo Guo
- College of Life Science, Hebei University, Baoding 071002, China; (Y.G.); (L.W.); (X.G.)
| | - Yiming Zhou
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China; (Y.Z.); (Z.Z.)
| | - Kexin Chang
- Key Laboratory of Herbage and Endemic Crop Biotechnology, Ministry of Education, School of Life Science, Inner Mongolia University, Hohhot 010021, China; (K.C.); (F.Y.)
| | - Zhonghui Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China; (Y.Z.); (Z.Z.)
| | - Fang Yan
- Key Laboratory of Herbage and Endemic Crop Biotechnology, Ministry of Education, School of Life Science, Inner Mongolia University, Hohhot 010021, China; (K.C.); (F.Y.)
| | - Qi Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Bing Chen
- College of Life Science, Hebei University, Baoding 071002, China; (Y.G.); (L.W.); (X.G.)
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China
| |
Collapse
|
8
|
Sahu S, Rao AR, Saxena S, Gupta P, Gaikwad K. Systematic profiling and analysis of growth and development responsive DE-lncRNAs in cluster bean (Cyamopsis tetragonoloba). Int J Biol Macromol 2024; 280:135821. [PMID: 39306152 DOI: 10.1016/j.ijbiomac.2024.135821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/07/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024]
Abstract
Long non-coding RNAs (lncRNAs) play crucial role in regulating genes involved in various processes including growth & development, flowering, and stress response in plants. The study aims to identify and characterize tissue-specific, growth & development and floral responsive differentially expressed lncRNAs (DE-lncRNAs) in cluster bean from a high-throughput RNA sequencing data. We have identified 3309 DE-lncRNAs, with an average length of 818 bp. Merely, around 4 % of DE-lncRNAs across the tissues were found to be conserved as rate of evolution of lncRNAs is high. Among the identified DE-lncRNAs, 204 were common in leaf vs. shoot, leaf vs. flower and flower vs. shoot. A total of 60 DE-lncRNAs targeted 10 protein-coding genes involved in flower development and initiation processes. We investigated 179 tissue-specific DE-lncRNAs based on tissue specificity index. Three DE-lncRNAs: Cb_lnc_0820, Cb_lnc_0430, Cb_lnc_0260 and their target genes show their involvement in floral development and stress mechanisms, which were validated by Quantitative real-time PCR (qRT-PCR). The identified DE-lncRNAs were expressed higher in flower bud than in leaf and similar expression pattern was observed in both RNA-seq data and qRT-PCR analyses. Notably, 362 DE-lncRNAs were predicted as eTM-lncRNAs with the participation of 84 miRNAs. Whereas 46 DE-lncRNAs were predicted to possess the internal ribosomal entry sites (IRES) and can encode for small peptides. The regulatory networks established between DE-lncRNAs, mRNAs and miRNAs have provided an insight into their association with plant growth & development, flowering, and stress mechanisms. Comprehensively, the characterization of DE-lncRNAs in various tissues of cluster bean shed a light on interactions among lncRNAs, miRNAs and mRNAs and help understand their involvement in growth & development and floral initiation processes. The information retrieved from the analyses was shared in the public domain in the form of a database: Cb-DElncRNAdb, and made available at http://backlin.cabgrid.res.in/Cb-DElncRNA/index.php, which may be useful for the scientific community engaged cluster bean research.
Collapse
Affiliation(s)
- Sarika Sahu
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi 110012, India
| | | | - Swati Saxena
- ICAR - National Institute for Plant Biotechnology, New Delhi 110012, India
| | - Palak Gupta
- ICAR - National Institute for Plant Biotechnology, New Delhi 110012, India
| | - Kishor Gaikwad
- ICAR - National Institute for Plant Biotechnology, New Delhi 110012, India
| |
Collapse
|
9
|
Li YH, Liu C, Xu RZ, Fan YP, Wang JY, Li H, Zhang J, Zhang HJ, Wang JJ, Li DK. Genome-wide analysis of long non-coding RNAs involved in the fruit development process of Cucumis melo Baogua. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1475-1491. [PMID: 39310708 PMCID: PMC11413265 DOI: 10.1007/s12298-024-01507-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024]
Abstract
Melon (Cucumis melo L.) is a horticultural crop that is planted globally. Cucumis melo L. cv. Baogua is a typical melon that is suitable for studying fruit development because of its ability to adapt to different climatic conditions. Long non-coding RNAs (lncRNAs) are a class of non-coding RNAs longer than 200 nucleotides, which play important roles in a wide range of biological processes by regulating gene expression. In this study, the transcriptome of the Baogua melon was sequenced at three stages of the process of fruit development (14 days, 21 days, and 28 days) to study the role of lncRNAs in fruit development. The cis and trans lncRNAs were subsequently predicted and identified to determine their target genes. Notably, 1716 high-confidence lncRNAs were obtained in the three groups. A subsequent differential expression analysis of the lncRNAs between the three groups revealed 388 differentially expressed lncRNAs. A total of 11 genes were analyzed further to validate the transcriptome sequencing results. Interestingly, the MELO3C001376.2 and MSTRG.571.2 genes were found to be significantly (P < 0.05) downregulated in the fruits. This study provides a basis to better understand the functions and regulatory mechanisms of lncRNAs during the development of melon fruit.
Collapse
Affiliation(s)
- Ya-hui Li
- School of Life Sciences, Anhui Bio-Breeding Engineering Research Center for Water Melon and Melon, Huaibei Normal University, Huaibei, 235000 Anhui People’s Republic of China
| | - Chun Liu
- School of Life Sciences, Anhui Bio-Breeding Engineering Research Center for Water Melon and Melon, Huaibei Normal University, Huaibei, 235000 Anhui People’s Republic of China
| | - Run-zhe Xu
- School of Life Sciences, Anhui Bio-Breeding Engineering Research Center for Water Melon and Melon, Huaibei Normal University, Huaibei, 235000 Anhui People’s Republic of China
| | - Yu-peng Fan
- School of Life Sciences, Anhui Bio-Breeding Engineering Research Center for Water Melon and Melon, Huaibei Normal University, Huaibei, 235000 Anhui People’s Republic of China
| | - Ji-yuan Wang
- School of Life Sciences, Anhui Bio-Breeding Engineering Research Center for Water Melon and Melon, Huaibei Normal University, Huaibei, 235000 Anhui People’s Republic of China
| | - Hu Li
- School of Life Sciences, Anhui Bio-Breeding Engineering Research Center for Water Melon and Melon, Huaibei Normal University, Huaibei, 235000 Anhui People’s Republic of China
| | - Jian Zhang
- Institute of Vegetables, Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction By Ministry and Province), Anhui Academy of Agricultural Sciences, Huaibei Normal University, Nongke South Road 40, Hefei, 230031 Anhui Province People’s Republic of China
| | - Hui-jun Zhang
- School of Life Sciences, Anhui Bio-Breeding Engineering Research Center for Water Melon and Melon, Huaibei Normal University, Huaibei, 235000 Anhui People’s Republic of China
| | - Jing-jing Wang
- Huinan Academy of Agricultural Sciences, Huainan, 232001 Anhui Province People’s Republic of China
| | - Da-kui Li
- Huinan Academy of Agricultural Sciences, Huainan, 232001 Anhui Province People’s Republic of China
| |
Collapse
|
10
|
Song B, Luo T, Fan Y, Li M, Qiu Z, Tian Y, Shang Y, Ma C, Liu C, Cao Q, Peng Y, Xu P, Krishnan HB, Wang Z, Zhang S, Liu S. Generation of New β-Conglycinin-Deficient Soybean Lines by Editing the lincRNA lincCG1 Using the CRISPR/Cas9 System. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15013-15026. [PMID: 38907729 DOI: 10.1021/acs.jafc.4c02269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Soybean β-conglycinin is a major allergen that adversely affects the nutritional properties of soybean. Soybean deficient in β-conglycinin is associated with low allergenicity and high nutritional value. Long intergenic noncoding RNAs (lincRNAs) regulate gene expression and are considered important regulators of essential biological processes. Despite increasing knowledge of the functions of lincRNAs, relatively little is known about the effects of lincRNAs on the accumulation of soybean β-conglycinin. The current study presents the identification of a lincRNA lincCG1 that was mapped to the intergenic noncoding region of the β-conglycinin α-subunit locus. The full-length lincCG1 sequence was cloned and found to regulate the expression of soybean seed storage protein (SSP) genes via both cis- and trans-acting regulatory mechanisms. Loss-of-function lincCG1 mutations generated using the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system led to the deficiency of the allergenic α'-, α-, and β-subunits of soybean β-conglycinin as well as higher content of proteins, sulfur-containing amino acids, and free arginine. The dominant null allele LincCG1, and consequently, the β-conglycinin-deficient phenotype associated with the lincCG1-gene-edited line was stably inherited by the progenies in a Mendelian fashion. The dominant null allele LincCG1 may therefore be exploited for engineering/developing novel hypoallergenic soybean varieties. Furthermore, Cas9-free and β-conglycinin-deficient homozygous mutant lines were obtained in the T1 generation. This study is the first to employ the CRISPR/Cas9 technology for editing a lincRNA gene associated with the soybean allergenic protein β-conglycinin. Moreover, this study reveals that lincCG1 plays a crucial role in regulating the expression of the β-conglycinin subunit gene cluster, besides highlighting the efficiency of employing the CRISPR/Cas9 system for modulating lincRNAs, and thereby regulating soybean seed components.
Collapse
Affiliation(s)
- Bo Song
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of the Chinese Education Ministry, Harbin 150030, China
- Key Laboratory of Molecular and Cytogenetics, College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China
| | - Tingting Luo
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of the Chinese Education Ministry, Harbin 150030, China
| | - Yuanhang Fan
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of the Chinese Education Ministry, Harbin 150030, China
| | - Ming Li
- Keshan Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar 161000, China
| | - Zhendong Qiu
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of the Chinese Education Ministry, Harbin 150030, China
| | - Yusu Tian
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of the Chinese Education Ministry, Harbin 150030, China
| | - Yuzhuo Shang
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of the Chinese Education Ministry, Harbin 150030, China
| | - Chongxuan Ma
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of the Chinese Education Ministry, Harbin 150030, China
| | - Chang Liu
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of the Chinese Education Ministry, Harbin 150030, China
| | - Qingqian Cao
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of the Chinese Education Ministry, Harbin 150030, China
| | - Yuhan Peng
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of the Chinese Education Ministry, Harbin 150030, China
| | - Pengfei Xu
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of the Chinese Education Ministry, Harbin 150030, China
| | - Hari B Krishnan
- Plant Genetics Research, USDA Agricultural Research Service, Columbia, Missouri 65211, United States
- Plant Science Division, University of Missouri, Columbia, Missouri 65201, United States
| | - Zhenhui Wang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Shuzhen Zhang
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of the Chinese Education Ministry, Harbin 150030, China
| | - Shanshan Liu
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of the Chinese Education Ministry, Harbin 150030, China
| |
Collapse
|
11
|
Imaduwage I, Hewadikaram M. Predicted roles of long non-coding RNAs in abiotic stress tolerance responses of plants. MOLECULAR HORTICULTURE 2024; 4:20. [PMID: 38745264 PMCID: PMC11094901 DOI: 10.1186/s43897-024-00094-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 04/06/2024] [Indexed: 05/16/2024]
Abstract
The plant genome exhibits a significant amount of transcriptional activity, with most of the resulting transcripts lacking protein-coding potential. Non-coding RNAs play a pivotal role in the development and regulatory processes in plants. Long non-coding RNAs (lncRNAs), which exceed 200 nucleotides, may play a significant role in enhancing plant resilience to various abiotic stresses, such as excessive heat, drought, cold, and salinity. In addition, the exogenous application of chemicals, such as abscisic acid and salicylic acid, can augment plant defense responses against abiotic stress. While how lncRNAs play a role in abiotic stress tolerance is relatively well-studied in model plants, this review provides a comprehensive overview of the current understanding of this function in horticultural crop plants. It also delves into the potential role of lncRNAs in chemical priming of plants in order to acquire abiotic stress tolerance, although many limitations exist in proving lncRNA functionality under such conditions.
Collapse
Affiliation(s)
- Iuh Imaduwage
- Department of Biomedical Sciences, Faculty of Science, NSBM Green University, Pitipana, Homagama, Sri Lanka
| | - Madhavi Hewadikaram
- Department of Biomedical Sciences, Faculty of Science, NSBM Green University, Pitipana, Homagama, Sri Lanka.
| |
Collapse
|
12
|
Wang WQ, Liu XF, Zhu YJ, Zhu JZ, Liu C, Wang ZY, Shen XX, Allan AC, Yin XR. Identification of miRNA858 long-loop precursors in seed plants. THE PLANT CELL 2024; 36:1637-1654. [PMID: 38114096 PMCID: PMC11062470 DOI: 10.1093/plcell/koad315] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/20/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
MicroRNAs (miRNAs) are a class of nonprotein-coding short transcripts that provide a layer of post-transcriptional regulation essential to many plant biological processes. MiR858, which targets the transcripts of MYB transcription factors, can affect a range of secondary metabolic processes. Although miR858 and its 187-nt precursor have been well studied in Arabidopsis (Arabidopsis thaliana), a systematic investigation of miR858 precursors and their functions across plant species is lacking due to a problem in identifying the transcripts that generate this subclass. By re-evaluating the transcript of miR858 and relaxing the length cut-off for identifying hairpins, we found in kiwifruit (Actinidia chinensis) that miR858 has long-loop hairpins (1,100 to 2,100 nt), whose intervening sequences between miRNA generating complementary sites were longer than all previously reported miRNA hairpins. Importantly, these precursors of miR858 containing long-loop hairpins (termed MIR858L) are widespread in seed plants including Arabidopsis, varying between 350 and 5,500 nt. Moreover, we showed that MIR858L has a greater impact on proanthocyanidin and flavonol levels in both Arabidopsis and kiwifruit. We suggest that an active MIR858L-MYB regulatory module appeared in the transition of early land plants to large upright flowering plants, making a key contribution to plant secondary metabolism.
Collapse
Affiliation(s)
- Wen-qiu Wang
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Xiao-fen Liu
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Yong-jing Zhu
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Jia-zhen Zhu
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research), Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Chao Liu
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Zhi-ye Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Xing-Xing Shen
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Andrew C Allan
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research), Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1010, New Zealand
| | - Xue-ren Yin
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| |
Collapse
|
13
|
Cai J, Zhang Y, He R, Jiang L, Qu Z, Gu J, Yang J, Legascue MF, Wang ZY, Ariel F, Adelson DL, Zhu Y, Wang D. LncRNA DANA1 promotes drought tolerance and histone deacetylation of drought responsive genes in Arabidopsis. EMBO Rep 2024; 25:796-812. [PMID: 38177920 PMCID: PMC10897447 DOI: 10.1038/s44319-023-00030-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024] Open
Abstract
Although many long noncoding RNAs have been discovered in plants, little is known about their biological function and mode of action. Here we show that the drought-induced long intergenic noncoding RNA DANA1 interacts with the L1p/L10e family member protein DANA1-INTERACTING PROTEIN 1 (DIP1) in the cell nucleus of Arabidopsis, and both DANA1 and DIP1 promote plant drought resistance. DANA1 and DIP1 increase histone deacetylase HDA9 binding to the CYP707A1 and CYP707A2 loci. DIP1 further interacts with PWWP3, a member of the PEAT complex that associates with HDA9 and has histone deacetylase activity. Mutation of DANA1 enhances CYP707A1 and CYP707A2 acetylation and expression resulting in impaired drought tolerance, in agreement with dip1 and pwwp3 mutant phenotypes. Our results demonstrate that DANA1 is a positive regulator of drought response and that DANA1 works jointly with the novel chromatin-related factor DIP1 on epigenetic reprogramming of the plant transcriptome during the response to drought.
Collapse
Affiliation(s)
- Jingjing Cai
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, 330031, Jiangxi, China
| | - Yongdi Zhang
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, 330031, Jiangxi, China
| | - Reqing He
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, 330031, Jiangxi, China
| | - Liyun Jiang
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, 330031, Jiangxi, China
| | - Zhipeng Qu
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, 5005, SA, Australia
| | - Jinbao Gu
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, 510316, Guangdong, China
| | - Jun Yang
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, 330031, Jiangxi, China
| | - María Florencia Legascue
- Instituto de Agrobiotecnología del Litoral, CONICET, FBCB, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, Santa Fe, 3000, Argentina
| | - Zhen-Yu Wang
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, 510316, Guangdong, China
| | - Federico Ariel
- Instituto de Agrobiotecnología del Litoral, CONICET, FBCB, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, Santa Fe, 3000, Argentina
| | - David L Adelson
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, 5005, SA, Australia
| | - Youlin Zhu
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, 330031, Jiangxi, China
| | - Dong Wang
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, 330031, Jiangxi, China.
| |
Collapse
|
14
|
Hassan AH, Mokhtar MM, El Allali A. Transposable elements: multifunctional players in the plant genome. FRONTIERS IN PLANT SCIENCE 2024; 14:1330127. [PMID: 38239225 PMCID: PMC10794571 DOI: 10.3389/fpls.2023.1330127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/06/2023] [Indexed: 01/22/2024]
Abstract
Transposable elements (TEs) are indispensable components of eukaryotic genomes that play diverse roles in gene regulation, recombination, and environmental adaptation. Their ability to mobilize within the genome leads to gene expression and DNA structure changes. TEs serve as valuable markers for genetic and evolutionary studies and facilitate genetic mapping and phylogenetic analysis. They also provide insight into how organisms adapt to a changing environment by promoting gene rearrangements that lead to new gene combinations. These repetitive sequences significantly impact genome structure, function and evolution. This review takes a comprehensive look at TEs and their applications in biotechnology, particularly in the context of plant biology, where they are now considered "genomic gold" due to their extensive functionalities. The article addresses various aspects of TEs in plant development, including their structure, epigenetic regulation, evolutionary patterns, and their use in gene editing and plant molecular markers. The goal is to systematically understand TEs and shed light on their diverse roles in plant biology.
Collapse
Affiliation(s)
- Asmaa H. Hassan
- Bioinformatics Laboratory, College of Computing, Mohammed VI Polytechnic University, Ben Guerir, Morocco
- Agricultural Genetic Engineering Research Institute, Agriculture Research Center, Giza, Egypt
| | - Morad M. Mokhtar
- Bioinformatics Laboratory, College of Computing, Mohammed VI Polytechnic University, Ben Guerir, Morocco
- Agricultural Genetic Engineering Research Institute, Agriculture Research Center, Giza, Egypt
| | - Achraf El Allali
- Bioinformatics Laboratory, College of Computing, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| |
Collapse
|
15
|
Qian J, Ibrahim HMM, Erz M, Kümmel F, Panstruga R, Kusch S. Long noncoding RNAs emerge from transposon-derived antisense sequences and may contribute to infection stage-specific transposon regulation in a fungal phytopathogen. Mob DNA 2023; 14:17. [PMID: 37964319 PMCID: PMC10648671 DOI: 10.1186/s13100-023-00305-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/18/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND The genome of the obligate biotrophic phytopathogenic barley powdery mildew fungus Blumeria hordei is inflated due to highly abundant and possibly active transposable elements (TEs). In the absence of the otherwise common repeat-induced point mutation transposon defense mechanism, noncoding RNAs could be key for regulating the activity of TEs and coding genes during the pathogenic life cycle. RESULTS We performed time-course whole-transcriptome shotgun sequencing (RNA-seq) of total RNA derived from infected barley leaf epidermis at various stages of fungal pathogenesis and observed significant transcript accumulation and time point-dependent regulation of TEs in B. hordei. Using a manually curated consensus database of 344 TEs, we discovered phased small RNAs mapping to 104 consensus transposons, suggesting that RNA interference contributes significantly to their regulation. Further, we identified 5,127 long noncoding RNAs (lncRNAs) genome-wide in B. hordei, of which 823 originated from the antisense strand of a TE. Co-expression network analysis of lncRNAs, TEs, and coding genes throughout the asexual life cycle of B. hordei points at extensive positive and negative co-regulation of lncRNAs, subsets of TEs and coding genes. CONCLUSIONS Our work suggests that similar to mammals and plants, fungal lncRNAs support the dynamic modulation of transcript levels, including TEs, during pivotal stages of host infection. The lncRNAs may support transcriptional diversity and plasticity amid loss of coding genes in powdery mildew fungi and may give rise to novel regulatory elements and virulence peptides, thus representing key drivers of rapid evolutionary adaptation to promote pathogenicity and overcome host defense.
Collapse
Affiliation(s)
- Jiangzhao Qian
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany
| | - Heba M M Ibrahim
- Department of Biosystems, Division of Plant Biotechnics, Faculty of Bioscience Engineering, Katholieke Universiteit Leuven, 3001, Leuven, Belgium
- Present address: Institute of Bio- and Geosciences IBG-2, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Myriam Erz
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany
| | - Florian Kümmel
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany
- Present address: Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-Von-Linné-Weg 10, 50829, Cologne, Germany
| | - Ralph Panstruga
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany
| | - Stefan Kusch
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany.
- Present address: Institute of Bio- and Geosciences IBG-4, Forschungszentrum Jülich, 52425, Jülich, Germany.
| |
Collapse
|
16
|
Roulé T, Legascue MF, Barrios A, Gaggion N, Crespi M, Ariel F, Blein T. The long intergenic noncoding RNA ARES modulates root architecture in Arabidopsis. IUBMB Life 2023; 75:880-892. [PMID: 37409758 DOI: 10.1002/iub.2761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 05/24/2023] [Indexed: 07/07/2023]
Abstract
Long noncoding RNAs (lncRNAs) have emerged as important regulators of gene expression in plants. They have been linked to a wide range of molecular mechanisms, including epigenetics, miRNA activity, RNA processing and translation, and protein localization or stability. In Arabidopsis, characterized lncRNAs have been implicated in several physiological contexts, including plant development and the response to the environment. Here we searched for lncRNA loci located nearby key genes involved in root development and identified the lncRNA ARES (AUXIN REGULATOR ELEMENT DOWNSTREAM SOLITARYROOT) downstream of the lateral root master gene IAA14/SOLITARYROOT (SLR). Although ARES and IAA14 are co-regulated during development, the knockdown and knockout of ARES did not affect IAA14 expression. However, in response to exogenous auxin, ARES knockdown impairs the induction of its other neighboring gene encoding the transcription factor NF-YB3. Furthermore, knockdown/out of ARES results in a root developmental phenotype in control conditions. Accordingly, a transcriptomic analysis revealed that a subset of ARF7-dependent genes is deregulated. Altogether, our results hint at the lncRNA ARES as a novel regulator of the auxin response governing lateral root development, likely by modulating gene expression in trans.
Collapse
Affiliation(s)
- Thomas Roulé
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Evry, Université Paris-Saclay, Gif-sur-Yvette, France
- Institute of Plant Sciences Paris-Saclay IPS2, Université de Paris, Gif-sur-Yvette, France
| | - María Florencia Legascue
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Andana Barrios
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Evry, Université Paris-Saclay, Gif-sur-Yvette, France
- Institute of Plant Sciences Paris-Saclay IPS2, Université de Paris, Gif-sur-Yvette, France
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Nicolás Gaggion
- Institute for Signals, Systems and Computational Intelligence, sinc(i) CONICET-Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Martin Crespi
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Evry, Université Paris-Saclay, Gif-sur-Yvette, France
- Institute of Plant Sciences Paris-Saclay IPS2, Université de Paris, Gif-sur-Yvette, France
| | - Federico Ariel
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Thomas Blein
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Evry, Université Paris-Saclay, Gif-sur-Yvette, France
- Institute of Plant Sciences Paris-Saclay IPS2, Université de Paris, Gif-sur-Yvette, France
| |
Collapse
|
17
|
Zhang P, He R, Yang J, Cai J, Qu Z, Yang R, Gu J, Wang ZY, Adelson DL, Zhu Y, Cao X, Wang D. The long non-coding RNA DANA2 positively regulates drought tolerance by recruiting ERF84 to promote JMJ29-mediated histone demethylation. MOLECULAR PLANT 2023; 16:1339-1353. [PMID: 37553833 DOI: 10.1016/j.molp.2023.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 06/15/2023] [Accepted: 08/02/2023] [Indexed: 08/10/2023]
Abstract
Tens of thousands of long non-coding RNAs have been uncovered in plants, but few of them have been comprehensively studied for their biological function and molecular mechanism of their mode of action. Here, we show that the Arabidopsis long non-coding RNA DANA2 interacts with an AP2/ERF transcription factor ERF84 in the cell nucleus and then affects the transcription of JMJ29 that encodes a Jumonji C domain-containing histone H3K9 demethylase. Both RNA sequencing (RNA-seq) and genetic analyses demonstrate that DANA2 positively regulates drought stress responses through JMJ29. JMJ29 positively regulates the expression of ERF15 and GOLS2 by modulation of H3K9me2 demethylation. Accordingly, mutation of JMJ29 causes decreased ERF15 and GOLS2 expression, resulting in impaired drought tolerance, in agreement with drought-sensitive phenotypes of dana2 and erf84 mutants. Taken together, these results demonstrate that DANA2 is a positive regulator of drought response and works jointly with the transcriptional activator ERF84 to modulate JMJ29 expression in plant response to drought.
Collapse
Affiliation(s)
- Pengxiang Zhang
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, Jiangxi 330031, China
| | - Reqing He
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, Jiangxi 330031, China
| | - Jun Yang
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, Jiangxi 330031, China
| | - Jingjing Cai
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, Jiangxi 330031, China
| | - Zhipeng Qu
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Rongxin Yang
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, Jiangxi 330031, China
| | - Jinbao Gu
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangdong 510316, China
| | - Zhen-Yu Wang
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangdong 510316, China
| | - David L Adelson
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Youlin Zhu
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, Jiangxi 330031, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| | - Dong Wang
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, Jiangxi 330031, China.
| |
Collapse
|
18
|
Zhang X, Du M, Yang Z, Wang Z, Lim KJ. Biogenesis, Mode of Action and the Interactions of Plant Non-Coding RNAs. Int J Mol Sci 2023; 24:10664. [PMID: 37445841 DOI: 10.3390/ijms241310664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
The central dogma of genetics, which outlines the flow of genetic information from DNA to RNA to protein, has long been the guiding principle in molecular biology. In fact, more than three-quarters of the RNAs produced by transcription of the plant genome are not translated into proteins, and these RNAs directly serve as non-coding RNAs in the regulation of plant life activities at the molecular level. The breakthroughs in high-throughput transcriptome sequencing technology and the establishment and improvement of non-coding RNA experiments have now led to the discovery and confirmation of the biogenesis, mechanisms, and synergistic effects of non-coding RNAs. These non-coding RNAs are now predicted to play important roles in the regulation of gene expression and responses to stress and evolution. In this review, we focus on the synthesis, and mechanisms of non-coding RNAs, and we discuss their impact on gene regulation in plants.
Collapse
Affiliation(s)
- Xin Zhang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Mingjun Du
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhengfu Yang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhengjia Wang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Kean-Jin Lim
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
19
|
Yang J, He R, Qu Z, Gu J, Jiang L, Zhan X, Gao Y, Adelson DL, Li S, Wang ZY, Zhu Y, Wang D. Long noncoding RNA ARTA controls ABA response through MYB7 nuclear trafficking in Arabidopsis. Dev Cell 2023:S1534-5807(23)00236-8. [PMID: 37290444 DOI: 10.1016/j.devcel.2023.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/27/2023] [Accepted: 05/15/2023] [Indexed: 06/10/2023]
Abstract
In eukaryotes, transcription factors are a crucial element in the regulation of gene expression, and nuclear translocation is the key to the function of transcription factors. Here, we show that the long intergenic noncoding RNA ARTA interacts with an importin β-like protein, SAD2, through a long noncoding RNA-binding region embedded in the carboxyl terminal, and then it blocks the import of the transcription factor MYB7 into the nucleus. Abscisic acid (ABA)-induced ARTA expression can positively regulate ABI5 expression by fine-tuning MYB7 nuclear trafficking. Therefore, the mutation of arta represses ABI5 expression, resulting in desensitization to ABA, thereby reducing Arabidopsis drought tolerance. Our results demonstrate that lncRNA can hijack a nuclear trafficking receptor to modulate the nuclear import of a transcription factor during plant responses to environmental stimuli.
Collapse
Affiliation(s)
- Jun Yang
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Reqing He
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Zhipeng Qu
- Department of Molecular and Biomedical Science, School of Biological Sciences, the University of Adelaide, South Australia 5005, Australia
| | - Jinbao Gu
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences 510316, Guangdong, China
| | - Liyun Jiang
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Xiangqiang Zhan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Ying Gao
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - David L Adelson
- Department of Molecular and Biomedical Science, School of Biological Sciences, the University of Adelaide, South Australia 5005, Australia
| | - Sisi Li
- Department of Biochemistry and Molecular Biology, International Cancer Center, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Zhen-Yu Wang
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences 510316, Guangdong, China
| | - Youlin Zhu
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Dong Wang
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, Nanchang, Jiangxi 330031, China.
| |
Collapse
|
20
|
Zhou H, Yan R, He H, Wei X, Liu S, Guo B, Zhang Y, Liu X, Rahman SU, Zhou C, He Z. Transcriptional profiling of long noncoding RNAs associated with flower color formation in Ipomoea nil. PLANTA 2023; 258:6. [PMID: 37219701 DOI: 10.1007/s00425-023-04142-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/24/2023] [Indexed: 05/24/2023]
Abstract
MAIN CONCLUSION LncRNAs regulate flower color formation in Ipomoea nil via vacuolar pH, TCA cycle, and oxidative phosphorylation pathways. The significance of long noncoding RNA (lncRNA) in diverse biological processes is crucial in plant kingdoms. Although study on lncRNAs has been extensive in mammals and model plants, lncRNAs have not been identified in Ipomoea nil (I. nil). In this study, we employed whole transcriptome strand-specific RNA sequencing to identify 11,203 expressed lncRNA candidates, including 961 known lncRNA and 10,242 novel lncRNA in the I. nil genome. These lncRNAs in I. nil had fewer exons and were generally shorter in length compared to mRNA genes. Totally, 1141 different expression lncRNAs (DELs) were significantly identified between white and red flowers. The functional analysis indicated that lncRNA-targeted genes were enriched in the TCA cycle, photosynthesis, and oxidative phosphorylation-related pathway, which was also found in differentially expressed genes (DEGs) functional enrichments. LncRNAs can regulate transcriptional levels through cis- or trans-acting mechanisms. LncRNA cis-targeted genes were significantly enriched in potassium and lysosome. For trans-lncRNA, two energy metabolism pathways, TCA cycles and oxidative phosphorylation, were identified from positive association pairs of trans-lncRNA and mRNA. This research advances our understanding of lncRNAs and their role in flower color development, providing valuable insights for future selective breeding of I. nil.
Collapse
Affiliation(s)
- Hanlin Zhou
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU), Biotechnology Research Center, Yichang Key Laboratory of Omics-Based Breeding for Chinese Medicines, China Three Gorges University, Yichang, 443002, China
| | - Ruizhi Yan
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU), Biotechnology Research Center, Yichang Key Laboratory of Omics-Based Breeding for Chinese Medicines, China Three Gorges University, Yichang, 443002, China
| | - Huan He
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU), Biotechnology Research Center, Yichang Key Laboratory of Omics-Based Breeding for Chinese Medicines, China Three Gorges University, Yichang, 443002, China
| | - Xinlin Wei
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU), Biotechnology Research Center, Yichang Key Laboratory of Omics-Based Breeding for Chinese Medicines, China Three Gorges University, Yichang, 443002, China
| | - Shuangcheng Liu
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU), Biotechnology Research Center, Yichang Key Laboratory of Omics-Based Breeding for Chinese Medicines, China Three Gorges University, Yichang, 443002, China
| | - Bintao Guo
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU), Biotechnology Research Center, Yichang Key Laboratory of Omics-Based Breeding for Chinese Medicines, China Three Gorges University, Yichang, 443002, China
| | - Yonghong Zhang
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Basic Medicine, Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, China
| | - Xiaoyun Liu
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan, 430056, China
| | - Shafeeq Ur Rahman
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Chao Zhou
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU), Biotechnology Research Center, Yichang Key Laboratory of Omics-Based Breeding for Chinese Medicines, China Three Gorges University, Yichang, 443002, China.
| | - Zhengquan He
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU), Biotechnology Research Center, Yichang Key Laboratory of Omics-Based Breeding for Chinese Medicines, China Three Gorges University, Yichang, 443002, China.
| |
Collapse
|
21
|
Singh A, AT V, Gupta K, Sharma S, Kumar S. Long non-coding RNA and microRNA landscape of two major domesticated cotton species. Comput Struct Biotechnol J 2023; 21:3032-3044. [PMID: 37266406 PMCID: PMC10229759 DOI: 10.1016/j.csbj.2023.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 06/03/2023] Open
Abstract
Allotetraploid cotton plants Gossypium hirsutum and Gossypium barbadense have been widely cultivated for their natural, renewable textile fibres. Even though ncRNAs in domesticated cotton species have been extensively studied, systematic identification and annotation of lncRNAs and miRNAs expressed in various tissues and developmental stages under various biological contexts are limited. This influences the comprehension of their functions and future research on these cotton species. Here, we report high confidence lncRNAs and miRNA collection from G. hirsutum accession and G. barbadense accession using large-scale RNA-seq and small RNA-seq datasets incorporated into a user-friendly database, CoNCRAtlas. This database provides a wide range and depth of lncRNA and miRNA annotation based on the systematic integration of extensive annotations such as expression patterns derived from transcriptome data analysis in thousands of samples, as well as multi-omics annotations. We assume this comprehensive resource will accelerate evolutionary and functional studies in ncRNAs and inform future breeding programs for cotton improvement. CoNCRAtlas is accessible at http://www.nipgr.ac.in/CoNCRAtlas/.
Collapse
Affiliation(s)
- Ajeet Singh
- Bioinformatics Lab, National Institute of Plant Genome Research, New Delhi 110067, India
- Postdoctoral Associate, Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| | - Vivek AT
- Bioinformatics Lab, National Institute of Plant Genome Research, New Delhi 110067, India
| | - Kanika Gupta
- Bioinformatics Lab, National Institute of Plant Genome Research, New Delhi 110067, India
| | - Shruti Sharma
- Bioinformatics Lab, National Institute of Plant Genome Research, New Delhi 110067, India
| | - Shailesh Kumar
- Bioinformatics Lab, National Institute of Plant Genome Research, New Delhi 110067, India
| |
Collapse
|
22
|
Mishra DC, Majumdar SG, Kumar A, Bhati J, Chaturvedi KK, Kumar RR, Goswami S, Rai A, Budhlakoti N. Regulatory Networks of lncRNAs, miRNAs, and mRNAs in Response to Heat Stress in Wheat (Triticum Aestivum L.): An Integrated Analysis. Int J Genomics 2023; 2023:1774764. [PMID: 37033711 PMCID: PMC10079388 DOI: 10.1155/2023/1774764] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/25/2022] [Accepted: 09/03/2022] [Indexed: 04/03/2023] Open
Abstract
Climate change has become a major source of concern, particularly in agriculture, because it has a significant impact on the production of economically important crops such as wheat, rice, and maize. In the present study, an attempt has been made to identify differentially expressed heat stress-responsive long non-coding RNAs (lncRNAs) in the wheat genome using publicly available wheat transcriptome data (24 SRAs) representing two conditions, namely, control and heat-stressed. A total of 10,965 lncRNAs have been identified and, among them, 153, 143, and 211 differentially expressed transcripts have been found under 0 DAT, 1 DAT, and 4 DAT heat-stress conditions, respectively. Target prediction analysis revealed that 4098 lncRNAs were targeted by 119 different miRNA responses to a plethora of environmental stresses, including heat stress. A total of 171 hub genes had 204 SSRs (simple sequence repeats), and a set of target sequences had SNP potential as well. Furthermore, gene ontology analysis revealed that the majority of the discovered lncRNAs are engaged in a variety of cellular and biological processes related to heat stress responses. Furthermore, the modeled three-dimensional (3D) structures of hub genes encoding proteins, which had an appropriate range of similarity with solved structures, provided information on their structural roles. The current study reveals many elements of gene expression regulation in wheat under heat stress, paving the way for the development of improved climate-resilient wheat cultivars.
Collapse
|
23
|
Reynoso MA, Blanco FA, Zanetti ME. Nuclear and cytoplasmic lncRNAs in root tips of the model legume Medicago truncatula under control and submergence. IUBMB Life 2023. [PMID: 36852968 DOI: 10.1002/iub.2712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/21/2023] [Indexed: 03/01/2023]
Abstract
In this study, we aimed to identify long noncoding RNAs (lncRNAs) in root tips of the model legume Medicago truncatula using previously generated nuclear, total polyA, ribosome-associated polyA, and Riboseq RNA datasets, which might shed light on their localization and potential regulatory roles. RNA-seq data were mapped to the version 5 of the M. truncatula A17 genome and analyzed to identify genome annotated lncRNAs and putative new root tip (NRT) lncRNAs. lncRNAs were classified according to their genomic location relative to chromatin accessible regions, protein-coding genes and transposable elements (TE), finding differences between annotated lncRNAs and NRT lncRNAs, both in their genomic position as well as in the type of TEs in their vicinity. We investigated their response to submergence and found a set of regulated lncRNAs that were preferentially upregulated in the nucleus, some of which were located nearby genes of the conserved submergence upregulated gene families, and chromatin accessible regions suggesting a potential regulatory role. Finally, the accumulation of lncRNAs under submergence was validated by reverse transcription quantitative polymerase chain reaction on nuclear RNA, providing additional evidence of their localization, which could ultimately be required for their function.
Collapse
Affiliation(s)
- Mauricio A Reynoso
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Argentina.,Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California, USA
| | - Flavio Antonio Blanco
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Argentina
| | - María Eugenia Zanetti
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Argentina
| |
Collapse
|
24
|
Berger F, Muegge K, Richards EJ. Seminars in cell and development biology on histone variants remodelers of H2A variants associated with heterochromatin. Semin Cell Dev Biol 2023; 135:93-101. [PMID: 35249811 PMCID: PMC9440159 DOI: 10.1016/j.semcdb.2022.02.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 01/04/2023]
Abstract
Variants of the histone H2A occupy distinct locations in the genome. There is relatively little known about the mechanisms responsible for deposition of specific H2A variants. Notable exceptions are chromatin remodelers that control the dynamics of H2A.Z at promoters. Here we review the steps that identified the role of a specific class of chromatin remodelers, including LSH and DDM1 that deposit the variants macroH2A in mammals and H2A.W in plants, respectively. The function of these remodelers in heterochromatin is discussed together with their multiple roles in genome stability.
Collapse
Affiliation(s)
- Frédéric Berger
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria.
| | - Kathrin Muegge
- Epigenetics Section, Frederick National Laboratory for Cancer Research in the Mouse Cancer Genetics Program, National Cancer Institute, Frederick, MD, USA.
| | | |
Collapse
|
25
|
Jia Y, Zhao H, Niu Y, Wang Y. Identification of birch lncRNAs and mRNAs responding to salt stress and characterization of functions of lncRNA. HORTICULTURE RESEARCH 2023; 10:uhac277. [PMID: 36793758 PMCID: PMC9926155 DOI: 10.1093/hr/uhac277] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/02/2022] [Indexed: 06/18/2023]
Abstract
Long noncoding RNAs (lncRNAs) are important in abiotic stress tolerance. Here, we identified salt-responsive genes and lncRNAs in the roots and leaves of Betula platyphylla Suk. (birch), and characterized their lncRNAs functions. In total, 2660 mRNAs and 539 lncRNAs responding to salt treatment were identified using RNA-seq. The salt-responsive genes were substantially enriched in 'cell wall biogenesis' and 'wood development' in the roots and were enriched in 'photosynthesis' and 'response to stimulus' in the leaves. Meanwhile, the potential target genes of the salt-responsive lncRNAs in roots and leaves were both enriched in 'nitrogen compound metabolic process' and 'response to stimulus'. We further built a method for quickly identifying abiotic stress tolerance of lncRNAs, which employed transient transformation for overexpression and knock-down of the lncRNA, enabling gain- and loss-of-function analysis. Using this method, 11 randomly selected salt-responsive lncRNAs were characterized. Among them, six lncRNAs confer salt tolerance, two lncRNAs confer salt sensitivity, and the other three lncRNAs are not involved in salt tolerance. In addition, a lncRNA, LncY1, was further characterized, which improves salt tolerance by regulating two transcription factors, BpMYB96 and BpCDF3. Taken together, our results suggested that lncRNAs play important roles in the salt response of birch plants.
Collapse
Affiliation(s)
| | | | - Yani Niu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | | |
Collapse
|
26
|
Chen X, Jiang X, Niu F, Sun X, Hu Z, Gao F, Zhang H, Jiang Q. Overexpression of lncRNA77580 Regulates Drought and Salinity Stress Responses in Soybean. PLANTS (BASEL, SWITZERLAND) 2023; 12:181. [PMID: 36616307 PMCID: PMC9824792 DOI: 10.3390/plants12010181] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/16/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Emerging evidence indicates that long non-coding RNAs (lncRNAs) play important roles in diverse biological processes. However, the biological functions of most plant lncRNAs are still unknown. We previously discovered a soybean abiotic-stress-related lncRNA, lncRNA77580, and cloned the entire full-length sequence. Here, in order to fully identify the function of lncRNA77580 in soybean stress response, we created transgenic soybean lines overexpressing lncRNA77580. Compared with the wild type, overexpression of lncRNA77580 enhances the drought tolerance of soybean. However, the transgenic plants exhibit increased sensitivity to high salinity at the seedling stage. We found that lncRNA77580 modulates the transcription of different gene sets during salt and drought stress response. Under water deficit at the reproductive stage, lncRNA77580 overexpression increases the seed yield by increasing the seed number per plant. These results provide insight into the role of lncRNA77580 in soybean stress response.
Collapse
Affiliation(s)
- Xiangqian Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xuemin Jiang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fengjuan Niu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xianjun Sun
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zheng Hu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fei Gao
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Hui Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qiyan Jiang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
27
|
Quan C, Li Y, Chen G, Tian X, Jia Z, Tu J, Shen J, Yi B, Fu T, Ma C, Dai C. The dynamics of lncRNAs transcription in interspecific F 1 allotriploid hybrids between Brassica species. Genomics 2022; 114:110505. [PMID: 36265744 DOI: 10.1016/j.ygeno.2022.110505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/05/2022] [Accepted: 10/15/2022] [Indexed: 01/15/2023]
Abstract
Interspecific hybridization is the intrinsic forces behind genome evolution. Long non-coding RNAs (lncRNAs) are important for plant biological processes regulation. However, it is unclear that these non-coding fractions are impacted by interspecific hybridization. Here we examined the profiles of lncRNAs by comparing them with coding genes in Brassica napus, three accessions of Brassica rapa, and their F1 hybrids. 6206 high-confidential lncRNAs were identified in F 1 hybrids and their parentals, and the lncRNAs transcriptome in the F1 hybrids was reprogrammed by the genome shock. Notably, genome-wide unbalanced of lncRNAs were observed between An and Ar subgenomes, ELD (Expression Level Dominance) was biased toward the An -genome in F1 hybrids, and ELD of non-conserved lncRNAs was more than conserved lncRNAs. Our findings demonstrate that the reprogramed lncRNAs acts as important role in enhancing plant plasticity, leading to the acquisition of desirable traits in polyploid Brassica species.
Collapse
Affiliation(s)
- Chengtao Quan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yuanyuan Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Guoting Chen
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Xia Tian
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Zhibao Jia
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Cheng Dai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| |
Collapse
|
28
|
Liu Y, Cai Y, Li Y, Zhang X, Shi N, Zhao J, Yang H. Dynamic changes in the transcriptome landscape of Arabidopsis thaliana in response to cold stress. FRONTIERS IN PLANT SCIENCE 2022; 13:983460. [PMID: 36110360 PMCID: PMC9468617 DOI: 10.3389/fpls.2022.983460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Plants must reprogram gene expression to adapt constantly changing environmental temperatures. With the increased occurrence of extremely low temperatures, the negative effects on plants, especially on growth and development, from cold stress are becoming more and more serious. In this research, strand-specific RNA sequencing (ssRNA-seq) was used to explore the dynamic changes in the transcriptome landscape of Arabidopsis thaliana exposed to cold temperatures (4°C) at different times. In total, 7,623 differentially expressed genes (DEGs) exhibited dynamic temporal changes during the cold treatments. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed that the DEGs were enriched in cold response, secondary metabolic processes, photosynthesis, glucosinolate biosynthesis, and plant hormone signal transduction pathways. Meanwhile, long non-coding RNAs (lncRNAs) were identified after the assembly of the transcripts, from which 247 differentially expressed lncRNAs (DElncRNAs) and their potential target genes were predicted. 3,621 differentially alternatively spliced (DAS) genes related to RNA splicing and spliceosome were identified, indicating enhanced transcriptome complexity due to the alternative splicing (AS) in the cold. In addition, 739 cold-regulated transcription factors (TFs) belonging to 52 gene families were identified as well. This research analyzed the dynamic changes of the transcriptome landscape in response to cold stress, which reveals more complete transcriptional patterns during short- and long-term cold treatment and provides new insights into functional studies of that how plants are affected by cold stress.
Collapse
Affiliation(s)
- Yue Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Yajun Cai
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Yanzhuo Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Xiaoling Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Nan Shi
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Jingze Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Hongchun Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- RNA Institute, Wuhan University, Wuhan, China
| |
Collapse
|
29
|
Zhao Z, Zang S, Zou W, Pan YB, Yao W, You C, Que Y. Long Non-Coding RNAs: New Players in Plants. Int J Mol Sci 2022; 23:ijms23169301. [PMID: 36012566 PMCID: PMC9409372 DOI: 10.3390/ijms23169301] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
During the process of growth and development, plants are prone to various biotic and abiotic stresses. They have evolved a variety of strategies to resist the adverse effects of these stresses. lncRNAs (long non-coding RNAs) are a type of less conserved RNA molecules of more than 200 nt (nucleotides) in length. lncRNAs do not code for any protein, but interact with DNA, RNA, and protein to affect transcriptional, posttranscriptional, and epigenetic modulation events. As a new regulatory element, lncRNAs play a critical role in coping with environmental pressure during plant growth and development. This article presents a comprehensive review on the types of plant lncRNAs, the role and mechanism of lncRNAs at different molecular levels, the coordination between lncRNA and miRNA (microRNA) in plant immune responses, the latest research progress of lncRNAs in plant growth and development, and their response to biotic and abiotic stresses. We conclude with a discussion on future direction for the elaboration of the function and mechanism of lncRNAs.
Collapse
Affiliation(s)
- Zhennan Zhao
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shoujian Zang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenhui Zou
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yong-Bao Pan
- Sugarcane Research Unit, USDA-ARS, Houma, LA 70360, USA
| | - Wei Yao
- Guangxi Key Laboratory for Sugarcane Biology & State Key Laboratory for Conservation and Utilization of Agro Bioresources, Guangxi University, Nanning 530005, China
| | - Cuihuai You
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (C.Y.); (Y.Q.); Tel.: +86-591-8385-2547 (C.Y. & Y.Q.)
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (C.Y.); (Y.Q.); Tel.: +86-591-8385-2547 (C.Y. & Y.Q.)
| |
Collapse
|
30
|
Li W, Chen Y, Wang Y, Zhao J, Wang Y. Gypsy retrotransposon-derived maize lncRNA GARR2 modulates gibberellin response. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1433-1446. [PMID: 35368126 DOI: 10.1111/tpj.15748] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 05/09/2023]
Abstract
Long non-coding RNAs (lncRNAs) mediate diverse biological events mainly through the modulation of transcriptional hierarchy. The phytohormone gibberellin (GA) is essential for various aspects of plant growth and development. However, the roles of lncRNAs in the regulation of the GA response remain largely unknown. Through sequencing multiple strand-specific and ribosomal-depleted RNA libraries, we delineated the landscape of lncRNAs in maize (Zea mays). Out of identified lncRNAs, 445 GIBBERELLIN-RESPONSIVE lncRNAs (GARRs) were differentially expressed upon GA application. By the intersection of GARRs from normal-height and dwarf plants from an advanced backcross population, four shared GARRs (GARR1 to GARR4) were identified. Out of these four shared GARRs, GARR2 was derived from a Gypsy LTR retrotransposon. GA-responsive element P-boxes were identified upstream of GARR2. GARR2-edited lines exhibited a GA-induced phenotype. Editing of GARR2 resulted in changes in the transcriptional abundance of GA pathway components and endogenous GA contents. Besides GA, GARR2 affected the primary auxin response. An RNA pull-down assay revealed the HECT ubiquitin-protein ligase family member ZmUPL1 as a potential interaction target of GARR2. GARR2 influenced the abundance of ZmUPL1 in the GA response. Our study uncovers lncRNA players involved in the modulation of the GA response and guides the development of plant height ideotype driven by knowledge of the phytohormone GA.
Collapse
Affiliation(s)
- Wei Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Yudong Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Yali Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Jia Zhao
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Yijun Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
31
|
Yu L, Huang T, Qi X, Yu J, Wu T, Luo Z, Zhou L, Li Y. Genome-Wide Analysis of Long Non-coding RNAs Involved in Nodule Senescence in Medicago truncatula. FRONTIERS IN PLANT SCIENCE 2022; 13:917840. [PMID: 35707611 PMCID: PMC9189404 DOI: 10.3389/fpls.2022.917840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Plant long non-coding RNAs (lncRNAs) are widely accepted to play crucial roles during diverse biological processes. In recent years, thousands of lncRNAs related to the establishment of symbiosis, root nodule organogenesis and nodule development have been identified in legumes. However, lncRNAs involved in nodule senescence have not been reported. In this study, senescence-related lncRNAs were investigated in Medicago truncatula nodules by high-throughput strand-specific RNA-seq. A total of 4576 lncRNAs and 126 differentially expressed lncRNAs (DElncRNAs) were identified. We found that more than 60% lncRNAs were associated with transposable elements, especially TIR/Mutator and Helitron DNA transposons families. In addition, 49 DElncRNAs were predicted to be the targets of micro RNAs. Functional analysis showed that the largest sub-set of differently expressed target genes of DElncRNAs were associated with the membrane component. Of these, nearly half genes were related to material transport, suggesting that an important function of DElncRNAs during nodule senescence is the regulation of substance transport across membranes. Our findings will be helpful for understanding the functions of lncRNAs in nodule senescence and provide candidate lncRNAs for further research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yixing Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
32
|
Zhu Y, Chen L, Hong X, Shi H, Li X. Revealing the novel complexity of plant long non-coding RNA by strand-specific and whole transcriptome sequencing for evolutionarily representative plant species. BMC Genomics 2022; 23:381. [PMID: 35590257 PMCID: PMC9118565 DOI: 10.1186/s12864-022-08602-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 12/02/2022] Open
Abstract
Background Previous studies on plant long noncoding RNAs (lncRNAs) lacked consistency and suffered from many factors like heterogeneous data sources and experimental protocols, different plant tissues, inconsistent bioinformatics pipelines, etc. For example, the sequencing of RNAs with poly(A) tails excluded a large portion of lncRNAs without poly(A), and use of regular RNA-sequencing technique did not distinguish transcripts’ direction for lncRNAs. The current study was designed to systematically discover and analyze lncRNAs across eight evolutionarily representative plant species, using strand-specific (directional) and whole transcriptome sequencing (RiboMinus) technique. Results A total of 39,945 lncRNAs (25,350 lincRNAs and 14,595 lncNATs) were identified, which showed molecular features of lncRNAs that are consistent across divergent plant species but different from those of mRNA. Further, transposable elements (TEs) were found to play key roles in the origination of lncRNA, as significantly large number of lncRNAs were found to contain TEs in gene body and promoter region, and transcription of many lncRNAs was driven by TE promoters. The lncRNA sequences were divergent even in closely related species, and most plant lncRNAs were genus/species-specific, amid rapid turnover in evolution. Evaluated with PhastCons scores, plant lncRNAs showed similar conservation level to that of intergenic sequences, suggesting that most lincRNAs were young and with short evolutionary age. INDUCED BY PHOSPHATE STARVATION (IPS) was found so far to be the only plant lncRNA group with conserved motifs, which may play important roles in the adaptation of terrestrial life during migration from aquatic to terrestrial. Most highly and specially expressed lncRNAs formed co-expression network with coding genes, and their functions were believed to be closely related to their co-expression genes. Conclusion The study revealed novel features and complexity of lncRNAs in plants through systematic analysis, providing important insights into the origination and evolution of plant lncRNAs. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08602-9.
Collapse
Affiliation(s)
- Yan Zhu
- Key Laboratory of Synthetic Biology, Center for Excellence in Molecular Plant Sciences/Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Longxian Chen
- Key Laboratory of Synthetic Biology, Center for Excellence in Molecular Plant Sciences/Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiangna Hong
- Key Laboratory of Synthetic Biology, Center for Excellence in Molecular Plant Sciences/Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,Henan University, Kaifeng, China
| | - Han Shi
- Key Laboratory of Synthetic Biology, Center for Excellence in Molecular Plant Sciences/Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xuan Li
- Key Laboratory of Synthetic Biology, Center for Excellence in Molecular Plant Sciences/Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China. .,University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
33
|
Shapiro JA. What we have learned about evolutionary genome change in the past 7 decades. Biosystems 2022; 215-216:104669. [DOI: 10.1016/j.biosystems.2022.104669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 12/12/2022]
|
34
|
Kejnovsky E, Jedlicka P. Nucleic acids movement and its relation to genome dynamics of repetitive DNA: Is cellular and intercellular movement of DNA and RNA molecules related to the evolutionary dynamic genome components?: Is cellular and intercellular movement of DNA and RNA molecules related to the evolutionary dynamic genome components? Bioessays 2022; 44:e2100242. [PMID: 35112737 DOI: 10.1002/bies.202100242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 11/07/2022]
Abstract
There is growing evidence of evolutionary genome plasticity. The evolution of repetitive DNA elements, the major components of most eukaryotic genomes, involves the amplification of various classes of mobile genetic elements, the expansion of satellite DNA, the transfer of fragments or entire organellar genomes and may have connections with viruses. In addition to various repetitive DNA elements, a plethora of large and small RNAs migrate within and between cells during individual development as well as during evolution and contribute to changes of genome structure and function. Such migration of DNA and RNA molecules often results in horizontal gene transfer, thus shaping the whole genomic network of interconnected species. Here, we propose that a high evolutionary dynamism of repetitive genome components is often related to the migration/movement of DNA or RNA molecules. We speculate that the cytoplasm is probably an ideal compartment for such evolutionary experiments.
Collapse
Affiliation(s)
- Eduard Kejnovsky
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Pavel Jedlicka
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| |
Collapse
|
35
|
Chen X, Li Y, Rubio K, Deng B, Li Y, Tang Q, Mao C, Liu S, Xiao D, Barreto G, Tao Y. Lymphoid-specific helicase in epigenetics, DNA repair and cancer. Br J Cancer 2022; 126:165-173. [PMID: 34493821 PMCID: PMC8770686 DOI: 10.1038/s41416-021-01543-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/26/2021] [Accepted: 08/25/2021] [Indexed: 02/07/2023] Open
Abstract
Lymphoid-specific helicase (LSH) is a member of the SNF2 helicase family of chromatin-remodelling proteins. Dysfunctions or mutations in LSH causes an autosomal recessive disease known as immunodeficiency-centromeric instability-facial anomaly (ICF) syndrome. Interestingly, LSH participates in various aspects of epigenetic regulation, including nucleosome remodelling, DNA methylation, histone modifications and heterochromatin formation. Further, LSH plays a crucial role during DNA-damage repair, specifically during double-strand break (DSB) repair, since murine LSH was shown to be essential for non-homologous end joining (NHEJ) and homologous recombination (HR). Accordingly, overexpression of LSH drives tumorigenesis and malignancy. On the other hand, LSH homologs stabilise the genome. Thus, LSH might be implemented as a biomarker for various cancer types and potential target molecule to develop therapeutic strategies against them. In this review, we focus on the role of LSH in orchestrating chromatin rearrangements, such as DNA methylation and histone modifications, as well as in DNA-damage repair. Changes in chromatin structure may facilitate gene expression signatures that cause malignant transformation. We summarise recent findings of LSH in cancers and raise critical open questions for further studies.
Collapse
Affiliation(s)
- Xiangyu Chen
- Department of Pathology, Xiangya Hospital, Central South University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan, China
- NHC Key Laboratory of Carcinogenesis of Ministry of Health (Central South University); Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yamei Li
- Department of Pathology, Xiangya Hospital, Central South University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan, China
- NHC Key Laboratory of Carcinogenesis of Ministry of Health (Central South University); Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Karla Rubio
- Université de Lorraine, CNRS, Laboratoire IMoPA, UMR 7365, Nancy, France
- Univ Paris Est Creteil, Gly-CRRET, Brain and Lung Epigenetics (BLUE), Creteil, France
- Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
- International Laboratory EPIGEN, Universidad de la Salud del Estado de Puebla, Puebla, Mexico
| | - Bi Deng
- Department of Pathology, Xiangya Hospital, Central South University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan, China
- NHC Key Laboratory of Carcinogenesis of Ministry of Health (Central South University); Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yuyi Li
- Department of Pathology, Xiangya Hospital, Central South University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan, China
- NHC Key Laboratory of Carcinogenesis of Ministry of Health (Central South University); Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Qinwei Tang
- Department of Pathology, Xiangya Hospital, Central South University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan, China
- NHC Key Laboratory of Carcinogenesis of Ministry of Health (Central South University); Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Chao Mao
- Department of Pathology, Xiangya Hospital, Central South University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan, China
- NHC Key Laboratory of Carcinogenesis of Ministry of Health (Central South University); Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Desheng Xiao
- Department of Pathology, Xiangya Hospital, Central South University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan, China.
- NHC Key Laboratory of Carcinogenesis of Ministry of Health (Central South University); Cancer Research Institute, Central South University, Changsha, Hunan, China.
| | - Guillermo Barreto
- Université de Lorraine, CNRS, Laboratoire IMoPA, UMR 7365, Nancy, France.
- Univ Paris Est Creteil, Gly-CRRET, Brain and Lung Epigenetics (BLUE), Creteil, France.
- Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany.
- International Laboratory EPIGEN, Universidad de la Salud del Estado de Puebla, Puebla, Mexico.
| | - Yongguang Tao
- Department of Pathology, Xiangya Hospital, Central South University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan, China.
- NHC Key Laboratory of Carcinogenesis of Ministry of Health (Central South University); Cancer Research Institute, Central South University, Changsha, Hunan, China.
- Department of Thoracic Surgery, Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer and Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
36
|
Zhang X, Zhu YN, Chen B, Kang L. A Gypsy element contributes to the nuclear retention and transcriptional regulation of the resident lncRNA in locusts. RNA Biol 2022; 19:206-220. [PMID: 35067197 PMCID: PMC8786324 DOI: 10.1080/15476286.2021.2024032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The majority of long noncoding RNAs (lncRNAs) contain transposable elements (TEs). PAHAL, a nuclear-retained lncRNA that is inserted by a Gypsy retrotransposon, has been shown to be a vital regulator of phenylalanine hydroxylase (PAH) gene expression that controls dopamine biosynthesis and behavioural aggregation in the migratory locust. However, the role of the Gypsy retrotransposon in the transcriptional regulation of PAHAL remains unknown. Here, we identified a Gypsy retrotransposon (named Gypsy element) as an inverted long terminal repeat located in the 3′ end of PAHAL, representing a feature shared by many other lncRNAs in the locust genome. The embedded Gypsy element contains a RNA nuclear localization signal motif, which promotes the stable accumulation of PAHAL in the nucleus. The Gypsy element also provides high-affinity SRSF2 binding sites for PAHAL that induce the recruitment of SRSF2, resulting in the PAHAL-mediated transcriptional activation of PAH. Thus, our data demonstrate that TEs provide discrete functional domains for lncRNA organization and highlight the contribution of TEs to the regulatory significance of lncRNAs.
Collapse
Affiliation(s)
- Xia Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Ya Nan Zhu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Bing Chen
- School of Life Sciences, Hebei University, Baoding, China
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.,School of Life Sciences, Hebei University, Baoding, China.,Beijing Institute of Life Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
37
|
Chen L, Zhu QH. The evolutionary landscape and expression pattern of plant lincRNAs. RNA Biol 2022; 19:1190-1207. [PMID: 36382947 PMCID: PMC9673970 DOI: 10.1080/15476286.2022.2144609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/02/2022] [Indexed: 11/17/2022] Open
Abstract
Long intergenic non-coding RNAs (lincRNAs) are important regulators of cellular processes, including development and stress response. Many lincRNAs have been bioinformatically identified in plants, but their evolutionary dynamics and expression characteristics are still elusive. Here, we systematically identified thousands of lincRNAs in 26 plant species, including 6 non-flowering plants, investigated the conservation of the identified lincRNAs in different levels of plant lineages based on sequence and/or synteny homology and explored characteristics of the conserved lincRNAs during plant evolution and their co-expression relationship with protein-coding genes (PCGs). In addition to confirmation of the features well documented in literature for lincRNAs, such as species-specific, fewer exons, tissue-specific expression patterns and less abundantly expressed, we revealed that histone modification signals and/or binding sites of transcription factors were enriched in the conserved lincRNAs, implying their biological functionalities, as demonstrated by identifying conserved lincRNAs related to flower development in both the Brassicaceae and grass families and ancient lincRNAs potentially functioning in meristem development of non-flowering plants. Compared to PCGs, lincRNAs are more likely to be associated with transposable elements (TEs), but with different characteristics in different evolutionary lineages, for instance, the types of TEs and the variable level of association in lincRNAs with different conservativeness. Together, these results provide a comprehensive view on the evolutionary landscape of plant lincRNAs and shed new insights on the conservation and functionality of plant lincRNAs.
Collapse
Affiliation(s)
- Li Chen
- School of Life Sciences, Westlake University, Hangzhou, China
- Institute for Biology, Plant Cell and Molecular Biology, Humboldt-Universität Zu Berlin, Berlin, Germany
| | | |
Collapse
|
38
|
Xiao L, Lu L, Zeng W, Shang X, Cao S, Yan H. DNA Methylome and LncRNAome Analysis Provide Insights Into Mechanisms of Genome-Dosage Effects in Autotetraploid Cassava. FRONTIERS IN PLANT SCIENCE 2022; 13:915056. [PMID: 35860527 PMCID: PMC9289687 DOI: 10.3389/fpls.2022.915056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/02/2022] [Indexed: 05/16/2023]
Abstract
Whole genome duplication (WGD) increases the dosage of all coding and non-coding genes, yet the molecular implications of genome-dosage effects remain elusive. In this study, we generated integrated maps of the methylomes and lncRNAomes for diploid and artificially generated autotetraploid cassava (Manihot esculenta Crantz). We found that transposable elements (TEs) suppressed adjacent protein coding gene (PCG)-expression levels, while TEs activated the expression of nearby long non-coding RNAs (lncRNAs) in the cassava genome. The hypermethylation of DNA transposons in mCG and mCHH sites may be an effective way to suppress the expression of nearby PCGs in autotetraploid cassava, resulting in similar expression levels for most of PCGs between autotetraploid and diploid cassava. In the autotetraploid, decreased methylation levels of retrotransposons at mCHG and mCHH sites contributed to reduced methylation of Gypsy-neighboring long intergenic non-coding RNAs, potentially preserving diploid-like expression patterns in the major of lncRNAs. Collectively, our study highlighted that WGD-induced DNA methylation variation in DNA transposons and retrotransposons may be as direct adaptive responses to dosage of all coding-genes and lncRNAs, respectively.
Collapse
Affiliation(s)
- Liang Xiao
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Liuying Lu
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Wendan Zeng
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Xiaohong Shang
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Sheng Cao
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Huabing Yan
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- *Correspondence: Huabing Yan,
| |
Collapse
|
39
|
Taming, Domestication and Exaptation: Trajectories of Transposable Elements in Genomes. Cells 2021; 10:cells10123590. [PMID: 34944100 PMCID: PMC8700633 DOI: 10.3390/cells10123590] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023] Open
Abstract
During evolution, several types of sequences pass through genomes. Along with mutations and internal genetic tinkering, they are a useful source of genetic variability for adaptation and evolution. Most of these sequences are acquired by horizontal transfers (HT), but some of them may come from the genomes themselves. If they are not lost or eliminated quickly, they can be tamed, domesticated, or even exapted. Each of these processes results from a series of events, depending on the interactions between these sequences and the host genomes, but also on environmental constraints, through their impact on individuals or population fitness. After a brief reminder of the characteristics of each of these states (taming, domestication, exaptation), the evolutionary trajectories of these new or acquired sequences will be presented and discussed, emphasizing that they are not totally independent insofar as the first can constitute a step towards the second, and the second is another step towards the third.
Collapse
|
40
|
Andreev IO, Parnikoza IY, Konvalyuk II, Metcheva R, Kozeretska IA, Kunakh VA. Genetic divergence of Deschampsia antarctica (Poaceae) population groups in the maritime Antarctic. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
We used inter-simple sequence repeats and inter-retrotransposon amplified polymorphism markers to assess genetic variation in Deschampsia antarctica populations in the context of its uneven distribution in the northern and central maritime Antarctic. Genetic diversity and population structure and differentiation were assessed in nine populations from geographically isolated population groups of D. antarctica, including the South Shetland Islands, Anvers Island and the Argentine Islands regions. In total, 265 amplified DNA fragments were scored, of which 220 (83.0%) were polymorphic. The total sample showed low genetic diversity (unbiased expected heterozygosity = 0.081 and Shannon diversity index = 0.115) and high population differentiation (molecular variance among populations = 0.659). We also found a trend toward a decrease in genetic diversity and an increase in population differentiation toward the southern edge of the species range. Principal coordinates analysis of polymerase chain reaction data and Bayesian population structure analysis showed three main clusters, which included plants originating from three spatially isolated population groups. The unweighted pair group method with arithmetic mean clustering of populations based on Nei’s genetic distances was mainly in agreement with this pattern. Testing of isolation by distance using the Mantel test demonstrated a significant correlation between genetic and ln-transformed geographical distance (r = 0.703). The data obtained indicate that the geographically isolated D. antarctica populations in the maritime Antarctic might form genetic clusters within the total range.
Collapse
Affiliation(s)
- Igor O Andreev
- Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Ivan Yu Parnikoza
- Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
- National Antarctic Scientific Centre of Ukraine, Kyiv, Ukraine
| | - Iryna I Konvalyuk
- Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | | | | | - Viktor A Kunakh
- Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
41
|
Galbraith JD, Kortschak RD, Suh A, Adelson DL. Genome Stability Is in the Eye of the Beholder: CR1 Retrotransposon Activity Varies Significantly across Avian Diversity. Genome Biol Evol 2021; 13:6433158. [PMID: 34894225 PMCID: PMC8665684 DOI: 10.1093/gbe/evab259] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2021] [Indexed: 12/20/2022] Open
Abstract
Since the sequencing of the zebra finch genome it has become clear that avian genomes, while largely stable in terms of chromosome number and gene synteny, are more dynamic at an intrachromosomal level. A multitude of intrachromosomal rearrangements and significant variation in transposable element (TE) content have been noted across the avian tree. TEs are a source of genome plasticity, because their high similarity enables chromosomal rearrangements through nonallelic homologous recombination, and they have potential for exaptation as regulatory and coding sequences. Previous studies have investigated the activity of the dominant TE in birds, chicken repeat 1 (CR1) retrotransposons, either focusing on their expansion within single orders, or comparing passerines with nonpasserines. Here, we comprehensively investigate and compare the activity of CR1 expansion across orders of birds, finding levels of CR1 activity vary significantly both between and within orders. We describe high levels of TE expansion in genera which have speciated in the last 10 Myr including kiwis, geese, and Amazon parrots; low levels of TE expansion in songbirds across their diversification, and near inactivity of TEs in the cassowary and emu for millions of years. CR1s have remained active over long periods of time across most orders of neognaths, with activity at any one time dominated by one or two families of CR1s. Our findings of higher TE activity in species-rich clades and dominant families of TEs within lineages mirror past findings in mammals and indicate that genome evolution in amniotes relies on universal TE-driven processes.
Collapse
Affiliation(s)
- James D Galbraith
- School of Biological Sciences, The University of Adelaide, South Australia, Australia
| | | | - Alexander Suh
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom.,Department of Organismal Biology, Evolutionary Biology Centre (EBC), Science for Life Laboratory, Uppsala University, Sweden
| | - David L Adelson
- School of Biological Sciences, The University of Adelaide, South Australia, Australia
| |
Collapse
|
42
|
Negi P, Mishra S, Ganapathi TR, Srivastava AK. Regulatory short RNAs: A decade's tale for manipulating salt tolerance in plants. PHYSIOLOGIA PLANTARUM 2021; 173:1535-1555. [PMID: 34227692 DOI: 10.1111/ppl.13492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/25/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Salt stress is a globally increasing environmental detriment to crop growth and productivity. Exposure to salt stress evokes a complex medley of cellular signals, which rapidly reprogram transcriptional and metabolic networks to shape plant phenotype. To date, genetic engineering approaches were used with success to enhance salt tolerance; however, their performance is yet to be evaluated under realistic field conditions. Regulatory short non-coding RNAs (rsRNAs) are emerging as next-generation candidates for engineering salt tolerance in crops. In view of this, the present review provides a comprehensive analysis of a decade's worth of functional studies on non-coding RNAs involved in salt tolerance. Further, we have integrated this knowledge of rsRNA-mediated regulation with the current paradigm of salt tolerance to highlight two regulatory complexes (RCs) for regulating salt tolerance in plants. Finally, a knowledge-driven roadmap is proposed to judiciously utilize RC component(s) for enhancing salt tolerance in crops.
Collapse
Affiliation(s)
- Pooja Negi
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Shefali Mishra
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Thumballi Ramabhatta Ganapathi
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Ashish Kumar Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
43
|
Gelaw TA, Sanan-Mishra N. Non-Coding RNAs in Response to Drought Stress. Int J Mol Sci 2021; 22:12519. [PMID: 34830399 PMCID: PMC8621352 DOI: 10.3390/ijms222212519] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023] Open
Abstract
Drought stress causes changes in the morphological, physiological, biochemical and molecular characteristics of plants. The response to drought in different plants may vary from avoidance, tolerance and escape to recovery from stress. This response is genetically programmed and regulated in a very complex yet synchronized manner. The crucial genetic regulations mediated by non-coding RNAs (ncRNAs) have emerged as game-changers in modulating the plant responses to drought and other abiotic stresses. The ncRNAs interact with their targets to form potentially subtle regulatory networks that control multiple genes to determine the overall response of plants. Many long and small drought-responsive ncRNAs have been identified and characterized in different plant varieties. The miRNA-based research is better documented, while lncRNA and transposon-derived RNAs are relatively new, and their cellular role is beginning to be understood. In this review, we have compiled the information on the categorization of non-coding RNAs based on their biogenesis and function. We also discuss the available literature on the role of long and small non-coding RNAs in mitigating drought stress in plants.
Collapse
Affiliation(s)
- Temesgen Assefa Gelaw
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India;
- Department of Biotechnology, College of Natural and Computational Science, Debre Birhan University, Debre Birhan P.O. Box 445, Ethiopia
| | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India;
| |
Collapse
|
44
|
Jampala P, Garhewal A, Lodha M. Functions of long non-coding RNA in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2021; 16:1925440. [PMID: 33980126 PMCID: PMC8281000 DOI: 10.1080/15592324.2021.1925440] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
A major part of the eukaryotic genome is transcribed into non-coding RNAs (ncRNAs) having no protein coding potential. ncRNAs which are longer than 200 nucleotides are categorized as long non coding RNAs (lncRNAs). Most lncRNAs are induced as a consequence of various environmental and developmental cues. Among plants, the functions of lncRNAs are best studied in Arabidopsis thaliana. In this review, we highlight the important functional roles of various lncRNAs during different stages of Arabidopsis life cycle and their response to environmental changes. These lncRNAs primarily govern processes such as flowering, seed germination, stress response, light- and auxin-regulated development, and RNA-dependent DNA methylation (RdDM). Major challenge is to differentiate between functional and cryptic transcripts. Genome editing, large scale RNAi and computational approaches may help to identify and characterize novel functional lncRNAs in Arabidopsis.
Collapse
Affiliation(s)
- Preethi Jampala
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | - Mukesh Lodha
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
- CONTACT Mukesh Lodha CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Habsiguda500007, India
| |
Collapse
|
45
|
Zhang Z, Xu Y, Yang F, Xiao B, Li G. RiceLncPedia: a comprehensive database of rice long non-coding RNAs. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1492-1494. [PMID: 34038032 PMCID: PMC8384608 DOI: 10.1111/pbi.13639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/04/2021] [Accepted: 05/14/2021] [Indexed: 05/05/2023]
Affiliation(s)
- Zhengfeng Zhang
- School of Life SciencesHubei Key Laboratory of Genetic Regulation and Integrative BiologyCentral China Normal UniversityWuhanChina
| | - Yao Xu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Fei Yang
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Benze Xiao
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Guoliang Li
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- Agricultural Bioinformatics Key Laboratory of Hubei ProvinceHubei Engineering Technology Research Center of Agricultural Big Data3D Genomics Research CenterCollege of InformaticsHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
46
|
Chen K, Su C, Tang W, Zhou Y, Xu Z, Chen J, Li H, Chen M, Ma Y. Nuclear transport factor GmNTF2B-1 enhances soybean drought tolerance by interacting with oxidoreductase GmOXR17 to reduce reactive oxygen species content. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:740-759. [PMID: 33978999 DOI: 10.1111/tpj.15319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/18/2021] [Accepted: 05/03/2021] [Indexed: 05/27/2023]
Abstract
Drought is a critical abiotic stressor that modulates soybean yield. Drought stress drastically enhances reactive oxygen species (ROS) formation, and maintaining ROS content above a cytostatic level but below a cytotoxic level is essential for normal biology processes in plants. At present, most of the known ROS-scavenging systems are in the cytoplasm, and the mechanism of ROS regulation in the nucleus remains unclear. GmNTF2B-1 is a member of the IV subgroup in the nucleus transporter family. Its expression is localized to the roots and is stimulated by drought stress. In this study, the overexpression of GmNTF2B-1 was found to improve the drought tolerance of transgenic soybean by influencing the ROS content in plants. An oxidoreductase, GmOXR17, was identified to interact with GmNTF2B-1 in the nucleus through the yeast two-hybrid, coimmunoprecipitation and bimolecular fluorescence complementation assays. The drought tolerance of GmOXR17 transgenic soybean was similar to that of GmNTF2B-1. GmNTF2B-1 was expressed in both cytoplasm and nucleus, and GmOXR17 transferred from the cytoplasm to the nucleus under drought stress. The overexpression of GmNTF2B-1 enhanced the nuclear entry of GmOXR17, and the overexpression of GmNTF2B-1 or GmOXR17 could decrease the H2 O2 content and oxidation level in the nucleus. In conclusion, the interaction between GmNTF2B-1 and GmOXR17 may enhance the nuclear entry of GmOXR17, thereby enhancing nuclear ROS scavenging to improve the drought resistance of soybean.
Collapse
Affiliation(s)
- Kai Chen
- Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Ministry of Agriculture, Beijing, 100081, China
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Chen Su
- Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Ministry of Agriculture, Beijing, 100081, China
- Agricultural Technology Extension Center of Xi'an, Xi'an 710000, China
| | - Wensi Tang
- Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Ministry of Agriculture, Beijing, 100081, China
| | - Yongbin Zhou
- Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Ministry of Agriculture, Beijing, 100081, China
| | - Zhaoshi Xu
- Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Ministry of Agriculture, Beijing, 100081, China
| | - Jun Chen
- Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Ministry of Agriculture, Beijing, 100081, China
| | - Haiyan Li
- College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Ming Chen
- Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Ministry of Agriculture, Beijing, 100081, China
| | - Youzhi Ma
- Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Ministry of Agriculture, Beijing, 100081, China
| |
Collapse
|
47
|
Zhao T, Mei H, Cao Z, Wang L, Tao X, Feng S, Fang L, Guan X. Absence of CG methylation alters the long noncoding transcriptome landscape in multiple species. FEBS Lett 2021; 595:1734-1747. [PMID: 33950520 DOI: 10.1002/1873-3468.14100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/31/2021] [Accepted: 04/21/2021] [Indexed: 11/12/2022]
Abstract
The noncoding regions throughout the genome are in large part comprised of transposable elements (TEs), some of which are functionalized with long intergenic noncoding RNAs (lincRNAs). DNA methylation is predominantly associated with TEs, but little is known about its contribution to the transcription of lincRNAs. Here, we examine the lincRNA profiles of DNA methylation-related mutants of five species, Arabidopsis, rice, tomato, maize, and mouse, to elucidate patterns in lincRNA regulation under altered DNA methylation status. Significant activation of lincRNAs was observed in the absence of CG DNA methylation rather than non-CG. Our study establishes a working model of the contribution of DNA methylation to regulation of the dynamic activity of lincRNA transcription.
Collapse
Affiliation(s)
- Ting Zhao
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Huan Mei
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Zeyi Cao
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Luyao Wang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,College of Agriculture, Engineering Research Center of Ministry of Cotton Education, Xinjiang Agricultural University, Urumqi, China
| | - Xiaoyuan Tao
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Shouli Feng
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Lei Fang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xueying Guan
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
48
|
Bhogireddy S, Mangrauthia SK, Kumar R, Pandey AK, Singh S, Jain A, Budak H, Varshney RK, Kudapa H. Regulatory non-coding RNAs: a new frontier in regulation of plant biology. Funct Integr Genomics 2021; 21:313-330. [PMID: 34013486 PMCID: PMC8298231 DOI: 10.1007/s10142-021-00787-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 11/27/2022]
Abstract
Beyond the most crucial roles of RNA molecules as a messenger, ribosomal, and transfer RNAs, the regulatory role of many non-coding RNAs (ncRNAs) in plant biology has been recognized. ncRNAs act as riboregulators by recognizing specific nucleic acid targets through homologous sequence interactions to regulate plant growth, development, and stress responses. Regulatory ncRNAs, ranging from small to long ncRNAs (lncRNAs), exert their control over a vast array of biological processes. Based on the mode of biogenesis and their function, ncRNAs evolved into different forms that include microRNAs (miRNAs), small interfering RNAs (siRNAs), miRNA variants (isomiRs), lncRNAs, circular RNAs (circRNAs), and derived ncRNAs. This article explains the different classes of ncRNAs and their role in plant development and stress responses. Furthermore, the applications of regulatory ncRNAs in crop improvement, targeting agriculturally important traits, have been discussed.
Collapse
Affiliation(s)
- Sailaja Bhogireddy
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India.
| | | | - Rakesh Kumar
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- Department of Life Sciences, Central University of Karnataka, Karnataka, India
| | - Arun K Pandey
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Sadhana Singh
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Ankit Jain
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | | | - Rajeev K Varshney
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Murdoch University, Murdoch, Western Australia, Australia
| | - Himabindu Kudapa
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India.
| |
Collapse
|
49
|
Ariel FD, Manavella PA. When junk DNA turns functional: transposon-derived non-coding RNAs in plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4132-4143. [PMID: 33606874 DOI: 10.1093/jxb/erab073] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/12/2021] [Indexed: 05/05/2023]
Abstract
Transposable elements (TEs) are major contributors to genome complexity in eukaryotes. TE mobilization may cause genome instability, although it can also drive genome diversity throughout evolution. TE transposition may influence the transcriptional activity of neighboring genes by modulating the epigenomic profile of the region or by altering the relative position of regulatory elements. Notably, TEs have emerged in the last few years as an important source of functional long and small non-coding RNAs. A plethora of small RNAs derived from TEs have been linked to the trans regulation of gene activity at the transcriptional and post-transcriptional levels. Furthermore, TE-derived long non-coding RNAs have been shown to modulate gene expression by interacting with protein partners, sequestering active small RNAs, and forming duplexes with DNA or other RNA molecules. In this review, we summarize our current knowledge of the functional and mechanistic paradigms of TE-derived long and small non-coding RNAs and discuss their role in plant development and evolution.
Collapse
Affiliation(s)
- Federico D Ariel
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Pablo A Manavella
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| |
Collapse
|
50
|
Baruah PM, Krishnatreya DB, Bordoloi KS, Gill SS, Agarwala N. Genome wide identification and characterization of abiotic stress responsive lncRNAs in Capsicum annuum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:221-236. [PMID: 33706183 DOI: 10.1016/j.plaphy.2021.02.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/22/2021] [Indexed: 05/25/2023]
Abstract
Long non-coding RNAs (lncRNAs) are a type of non-coding transcripts having length of more than 200 nucleotides lacking protein-coding ability. In the present study, 12807 lncRNAs were identified in Capsicum annuum tissues exposed to abiotic stress conditions viz. heat, cold, osmotic and salinity stress. Expression analysis of lncRNAs in different treatment conditions demonstrates their stress-specific expression. Thirty lncRNAs were found to act as precursors for 10 microRNAs (miRNAs) of C. annuum. Additionally, a total of 1807 lncRNAs were found to interact with 194 miRNAs which targeted 621 mRNAs of C. annuum. Among these, 344 lncRNAs were found to act as target mimics for 621 genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that out of those 621 gene sequences, 546 were tagged with GO terms, 105 Enzyme Code (EC) numbers were assigned to 246 genes and 223 genes are found to be involved in 63 biological pathways. In this report, we have highlighted the prospective role of lncRNAs in different abiotic stress conditions by interacting with miRNAs and regulating stress responsive transcription factors (TFs) such as DoF, WRKY, MYB, bZIP and ERF in C. annuum.
Collapse
Affiliation(s)
- Pooja Moni Baruah
- Department of Botany, Gauhati University, Jalukbari, Guwahati, Assam, 781014, India
| | | | | | - Sarvajeet Singh Gill
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 124 001, India
| | - Niraj Agarwala
- Department of Botany, Gauhati University, Jalukbari, Guwahati, Assam, 781014, India.
| |
Collapse
|