1
|
Mishra AK, Tripathi MK, Kumar D, Gupta SP. Neurons Specialize in Presynaptic Autophagy: A Perspective to Ameliorate Neurodegeneration. Mol Neurobiol 2025; 62:2626-2640. [PMID: 39141193 DOI: 10.1007/s12035-024-04399-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/24/2024] [Indexed: 08/15/2024]
Abstract
The efficient and prolonged neurotransmission is reliant on the coordinated action of numerous synaptic proteins in the presynaptic compartment that remodels synaptic vesicles for neurotransmitter packaging and facilitates their exocytosis. Once a cycle of neurotransmission is completed, membranes and associated proteins are endocytosed into the cytoplasm for recycling or degradation. Both exocytosis and endocytosis are closely regulated in a timely and spatially constrained manner. Recent research demonstrated the impact of dysfunctional synaptic vesicle retrieval in causing retrograde degeneration of midbrain neurons and has highlighted the importance of such endocytic proteins, including auxilin, synaptojanin1 (SJ1), and endophilin A (EndoA) in neurodegenerative diseases. Additionally, the role of other associated proteins, including leucine-rich repeat kinase 2 (LRRK2), adaptor proteins, and retromer proteins, is being investigated for their roles in regulating synaptic vesicle recycling. Research suggests that the degradation of defective vesicles via presynaptic autophagy, followed by their recycling, not only revitalizes them in the active zone but also contributes to strengthening synaptic plasticity. The presynaptic autophagy rejuvenating terminals and maintaining neuroplasticity is unique in autophagosome formation. It involves several synaptic proteins to support autophagosome construction in tiny compartments and their retrograde trafficking toward the cell bodies. Despite having a comprehensive understanding of ATG proteins in autophagy, we still lack a framework to explain how autophagy is triggered and potentiated in compact presynaptic compartments. Here, we reviewed synaptic proteins' involvement in forming presynaptic autophagosomes and in retrograde trafficking of terminal cargos. The review also discusses the status of endocytic proteins and endocytosis-regulating proteins in neurodegenerative diseases and strategies to combat neurodegeneration.
Collapse
Affiliation(s)
- Abhishek Kumar Mishra
- Department of Zoology, Government Shaheed Gendsingh College, Charama, Uttar Bastar Kanker, 494 337, Chhattisgarh, India.
| | - Manish Kumar Tripathi
- School of Pharmacy, Faculty of Medicine, Institute for Drug Research, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel
| | - Dipak Kumar
- Department of Zoology, Munger University, Munger, Bihar, India
| | - Satya Prakash Gupta
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221 005, India
| |
Collapse
|
2
|
Cheng S, Long Y, Zhang X, Liu B, Song S, Li G, Hu Y, Du L, Wang Q, Jiang J, Xiong G. The Sorting and Transport of the Cargo Protein CcSnc1 by the Retromer Complex Regulate the Growth, Development, and Pathogenicity of Corynespora cassiicola. J Fungi (Basel) 2024; 10:714. [PMID: 39452666 PMCID: PMC11508248 DOI: 10.3390/jof10100714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/27/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024] Open
Abstract
In eukaryotes, the retromer complex is critical for the transport of cargo proteins from endosomes to the trans-Golgi network (TGN). Despite its importance, there is a lack of research on the retromer-mediated transport of cargo proteins regulating the growth, development, and pathogenicity of filamentous fungi. In the present study, transcriptome analysis showed that the expression levels of the retromer complex (CcVPS35, CcVPS29 and CcVPS26) were significantly elevated during the early stages of Corynespora cassiicola invasion. Gene knockout and complementation analyses further highlighted the critical role of the retromer complex in C. cassiicola infection. Subcellular localization analysis showed that the retromer complex was mainly localized to the vacuolar membrane and partially to endosomes and the TGN. Further research found that the retromer core subunit CcVps35 can interact with the cargo protein CcSnc1. Subcellular localization showed that CcSnc1 is mainly located at the hyphal tip and partially in endosomes and the Golgi apparatus. Deletion of CcVPS35 resulted in the missorting of CcSnc1 into the vacuolar degradation pathway, indicating that the retromer can sort CcSnc1 from endosomes and transport it to the TGN. Additionally, gene knockout and complementation analyses demonstrated that CcSnc1 is critical for the growth, development, and pathogenicity of C. cassiicola. In summary, the vesicular transport pathway involving the retromer complex regulates the sorting and transport of the cargo protein CcSnc1, which is important for the growth, development and pathogenicity of C. cassiicola.
Collapse
Affiliation(s)
- Shuyuan Cheng
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China; (S.C.); (B.L.); (S.S.); (G.L.); (Y.H.); (L.D.); (Q.W.)
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yunfei Long
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Xiaoyang Zhang
- Jiujiang Agricultural Technology Extension Center, Jiujiang 332000, China;
| | - Bing Liu
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China; (S.C.); (B.L.); (S.S.); (G.L.); (Y.H.); (L.D.); (Q.W.)
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shuilin Song
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China; (S.C.); (B.L.); (S.S.); (G.L.); (Y.H.); (L.D.); (Q.W.)
| | - Genghua Li
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China; (S.C.); (B.L.); (S.S.); (G.L.); (Y.H.); (L.D.); (Q.W.)
| | - Yuzhuan Hu
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China; (S.C.); (B.L.); (S.S.); (G.L.); (Y.H.); (L.D.); (Q.W.)
| | - Lei Du
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China; (S.C.); (B.L.); (S.S.); (G.L.); (Y.H.); (L.D.); (Q.W.)
| | - Quanxing Wang
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China; (S.C.); (B.L.); (S.S.); (G.L.); (Y.H.); (L.D.); (Q.W.)
| | - Junxi Jiang
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China; (S.C.); (B.L.); (S.S.); (G.L.); (Y.H.); (L.D.); (Q.W.)
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization, Jiangxi Agricultural University, Nanchang 330045, China
| | - Guihong Xiong
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China; (S.C.); (B.L.); (S.S.); (G.L.); (Y.H.); (L.D.); (Q.W.)
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
3
|
Rawat S, Sharma M. CD8α-CI-M6PR Particle Motility Assay to Study the Retrograde Motion of CI-M6PR Receptors in Cultured Living Cells. Bio Protoc 2024; 14:e4979. [PMID: 38737505 PMCID: PMC11082784 DOI: 10.21769/bioprotoc.4979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 05/14/2024] Open
Abstract
The cation-independent mannose 6-phosphate receptors (CI-M6PR) bind newly synthesized mannose 6-phosphate (Man-6-P)-tagged enzymes in the Golgi and transport them to late endosomes/lysosomes, providing them with degradative functions. Following the cargo delivery, empty receptors are recycled via early/recycling endosomes back to the trans-Golgi network (TGN) retrogradely in a dynein-dependent motion. One of the most widely used methods for studying the retrograde trafficking of CI-M6PR involves employing the CD8α-CI-M6PR chimera. This chimera, comprising a CD8 ectodomain fused with the cytoplasmic tail of the CI-M6PR receptor, allows for labeling at the plasma membrane, followed by trafficking only in a retrograde direction. Previous studies utilizing the CD8α-CI-M6PR chimera have focused mainly on colocalization studies with various endocytic markers under steady-state conditions. This protocol extends the application of the CD8α-CI-M6PR chimera to live cell imaging, followed by a quantitative analysis of its motion towards the Golgi. Additionally, we present an approach to quantify parameters such as speed and track lengths associated with the motility of CD8α-CI-M6PR endosomes using the Fiji plugin TrackMate. Key features • This assay is adapted from the methodology by Prof. Matthew Seaman for studying the retrograde trafficking of CI-M6PR by expressing CD8α-CI-M6PR chimera in HeLa cells. • The experiments include live-cell imaging of surface-labeled CD8α-CI-M6PR molecules, followed by a chase in cells. • Allows the monitoring of real-time motion of CD8α-CI-M6PR endosomes and facilitates calculation of kinetic parameters associated with endosome trajectories, e.g., speed and distance (run lengths).
Collapse
Affiliation(s)
- Shalini Rawat
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali (IISERM), Punjab, India
- Department of Molecular Pharmacology and Cell Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Mahak Sharma
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali (IISERM), Punjab, India
| |
Collapse
|
4
|
Romano‐Moreno M, Astorga‐Simón EN, Rojas AL, Hierro A. Retromer-mediated recruitment of the WASH complex involves discrete interactions between VPS35, VPS29, and FAM21. Protein Sci 2024; 33:e4980. [PMID: 38607248 PMCID: PMC11010949 DOI: 10.1002/pro.4980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/08/2024] [Accepted: 03/16/2024] [Indexed: 04/13/2024]
Abstract
Endosomal trafficking ensures the proper distribution of lipids and proteins to various cellular compartments, facilitating intracellular communication, nutrient transport, waste disposal, and the maintenance of cell structure. Retromer, a peripheral membrane protein complex, plays an important role in this process by recruiting the associated actin-polymerizing WASH complex to establish distinct sorting domains. The WASH complex is recruited through the interaction of the VPS35 subunit of retromer with the WASH complex subunit FAM21. Here, we report the identification of two separate fragments of FAM21 that interact with VPS35, along with a third fragment that binds to the VPS29 subunit of retromer. The crystal structure of VPS29 bound to a peptide derived from FAM21 shows a distinctive sharp bend that inserts into a conserved hydrophobic pocket with a binding mode similar to that adopted by other VPS29 effectors. Interestingly, despite the network of interactions between FAM21 and retromer occurring near the Parkinson's disease-linked mutation (D620N) in VPS35, this mutation does not significantly impair the direct association with FAM21 in vitro.
Collapse
Affiliation(s)
- Miguel Romano‐Moreno
- Center for Cooperative Research in Biosciences (CIC bioGUNE)BilbaoSpain
- GAIKER Technology CentreBasque Research and Technology Alliance (BRTA)ZamudioSpain
| | | | - Adriana L. Rojas
- Center for Cooperative Research in Biosciences (CIC bioGUNE)BilbaoSpain
| | - Aitor Hierro
- Center for Cooperative Research in Biosciences (CIC bioGUNE)BilbaoSpain
- IKERBASQUE, Basque Foundation for ScienceBilbaoSpain
- Present address:
Instituto Biofisika (UPV/EHU, CSIC)University of the Basque CountryLeioaSpain
| |
Collapse
|
5
|
Nishida S, Matovelo SA, Kajimoto T, Nakamura SI, Okada T. Extracellular α-synuclein impairs sphingosine 1-phosphate receptor type 3 (S1PR3)-regulated lysosomal delivery of cathepsin D in HeLa cells. Genes Cells 2024; 29:207-216. [PMID: 38163647 DOI: 10.1111/gtc.13093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/16/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
α-Synuclein (α-Syn)-positive intracellular fibrillar protein deposits, known as Lewy bodies, are thought to be involved in the pathogenesis of Parkinson's disease (PD). Although recent lines of evidence suggested that extracellular α-Syn secreted from pathogenic neurons contributes to the propagation of PD pathology, the precise mechanism of action remains unclear. We have reported that extracellular α-Syn caused sphingosine 1-phosphate (S1P) receptor type 1 (S1PR1) uncoupled from Gi and inhibited downstream G-protein signaling in SH-SY5Y cells, although its patho/physiological role remains to be clarified. Here we show that extracellular α-Syn caused S1P receptor type 3 (S1PR3) uncoupled from G protein in HeLa cells. Further studies indicated that α-Syn treatment reduced cathepsin D activity while enhancing the secretion of immature pro-cathepsin D into cell culture medium, suggesting that lysosomal delivery of cathepsin D was disturbed. Actually, extracellular α-Syn attenuated the retrograde trafficking of insulin-like growth factor-II/mannose 6-phosphate (IGF-II/M6P) receptor, which is under the regulation of S1PR3. These findings shed light on the understanding of dissemination of the PD pathology, that is, the mechanism underlying how extracellular α-Syn secreted from pathogenic cells causes lysosomal dysfunction of the neighboring healthy cells, leading to propagation of the disease.
Collapse
Affiliation(s)
- Susumu Nishida
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shubi Ambwene Matovelo
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
- Department of Biochemistry and Physiology, School of Medicine and Dentistry, The University of Dodoma, Dodoma, Tanzania
| | - Taketoshi Kajimoto
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shun-Ichi Nakamura
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Taro Okada
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
6
|
McCarron KR, Elcocks H, Mortiboys H, Urbé S, Clague MJ. The Parkinson's disease related mutant VPS35 (D620N) amplifies the LRRK2 response to endolysosomal stress. Biochem J 2024; 481:265-278. [PMID: 38299383 PMCID: PMC10903469 DOI: 10.1042/bcj20230492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/02/2024]
Abstract
The identification of multiple genes linked to Parkinson's disease (PD) invites the question as to how they may co-operate. We have generated isogenic cell lines that inducibly express either wild-type or a mutant form of the retromer component VPS35 (D620N), which has been linked to PD. This has enabled us to test proposed effects of this mutation in a setting where the relative expression reflects the physiological occurrence. We confirm that this mutation compromises VPS35 association with the WASH complex, but find no defect in WASH recruitment to endosomes, nor in the distribution of lysosomal receptors, cation-independent mannose-6-phosphate receptor and Sortilin. We show VPS35 (D620N) enhances the activity of the Parkinson's associated kinase LRRK2 towards RAB12 under basal conditions. Furthermore, VPS35 (D620N) amplifies the LRRK2 response to endolysosomal stress resulting in enhanced phosphorylation of RABs 10 and 12. By comparing different types of endolysosomal stresses such as the ionophore nigericin and the membranolytic agent l-leucyl-l-leucine methyl ester, we are able to dissociate phospho-RAB accumulation from membrane rupture.
Collapse
Affiliation(s)
- Katy R. McCarron
- Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., Liverpool L69 3BX, U.K
| | - Hannah Elcocks
- Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., Liverpool L69 3BX, U.K
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, U.S.A
| | - Heather Mortiboys
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, U.K
| | - Sylvie Urbé
- Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., Liverpool L69 3BX, U.K
| | - Michael J. Clague
- Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., Liverpool L69 3BX, U.K
| |
Collapse
|
7
|
De Francesco MA. Herpesviridae, Neurodegenerative Disorders and Autoimmune Diseases: What Is the Relationship between Them? Viruses 2024; 16:133. [PMID: 38257833 PMCID: PMC10818483 DOI: 10.3390/v16010133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/06/2023] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Alzheimer's disease and Parkinson's disease represent the most common forms of cognitive impairment. Multiple sclerosis is a chronic inflammatory disease of the central nervous system responsible for severe disability. An aberrant immune response is the cause of myelin destruction that covers axons in the brain, spinal cord, and optic nerves. Systemic lupus erythematosus is an autoimmune disease characterized by alteration of B cell activation, while Sjögren's syndrome is a heterogeneous autoimmune disease characterized by altered immune responses. The etiology of all these diseases is very complex, including an interrelationship between genetic factors, principally immune associated genes, and environmental factors such as infectious agents. However, neurodegenerative and autoimmune diseases share proinflammatory signatures and a perturbation of adaptive immunity that might be influenced by herpesviruses. Therefore, they might play a critical role in the disease pathogenesis. The aim of this review was to summarize the principal findings that link herpesviruses to both neurodegenerative and autoimmune diseases; moreover, briefly underlining the potential therapeutic approach of virus vaccination and antivirals.
Collapse
Affiliation(s)
- Maria Antonia De Francesco
- Department of Molecular and Translational Medicine, Institute of Microbiology, University of Brescia-ASST Spedali Civili, 25123 Brescia, Italy
| |
Collapse
|
8
|
Harraz MM. Selective dopaminergic vulnerability in Parkinson's disease: new insights into the role of DAT. Front Neurosci 2023; 17:1219441. [PMID: 37694119 PMCID: PMC10483232 DOI: 10.3389/fnins.2023.1219441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/31/2023] [Indexed: 09/12/2023] Open
Abstract
One of the hallmarks of Parkinson's disease (PD) is the progressive loss of dopaminergic neurons and associated dopamine depletion. Several mechanisms, previously considered in isolation, have been proposed to contribute to the pathophysiology of dopaminergic degeneration: dopamine oxidation-mediated neurotoxicity, high dopamine transporter (DAT) expression density per neuron, and autophagy-lysosome pathway (ALP) dysfunction. However, the interrelationships among these mechanisms remained unclear. Our recent research bridges this gap, recognizing autophagy as a novel dopamine homeostasis regulator, unifying these concepts. I propose that autophagy modulates dopamine reuptake by selectively degrading DAT. In PD, ALP dysfunction could increase DAT density per neuron, and enhance dopamine reuptake, oxidation, and neurotoxicity, potentially contributing to the progressive loss of dopaminergic neurons. This integrated understanding may provide a more comprehensive view of aspects of PD pathophysiology and opens new avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Maged M. Harraz
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
9
|
Chen X, Tsika E, Levine N, Moore DJ. VPS35 and α-Synuclein fail to interact to modulate neurodegeneration in rodent models of Parkinson's disease. Mol Neurodegener 2023; 18:51. [PMID: 37542299 PMCID: PMC10403858 DOI: 10.1186/s13024-023-00641-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 07/11/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND Mutations in the vacuolar protein sorting 35 ortholog (VPS35) gene cause late-onset, autosomal dominant Parkinson's disease (PD), with a single missense mutation (Asp620Asn, D620N) known to segregate with disease in families with PD. The VPS35 gene encodes a core component of the retromer complex, involved in the endosomal sorting and recycling of transmembrane cargo proteins. VPS35-linked PD is clinically indistinguishable from sporadic PD, although it is not yet known whether VPS35-PD brains exhibit α-synuclein-positive brainstem Lewy pathology that is characteristic of sporadic cases. Prior studies have suggested a functional interaction between VPS35 and the PD-linked gene product α-synuclein in lower organisms, where VPS35 deletion enhances α-synuclein-induced toxicity. In mice, VPS35 overexpression is reported to rescue hippocampal neuronal loss in human α-synuclein transgenic mice, potentially suggesting a retromer deficiency in these mice. METHODS Here, we employ multiple well-established genetic rodent models to explore a functional or pathological interaction between VPS35 and α-synuclein in vivo. RESULTS We find that endogenous α-synuclein is dispensable for nigrostriatal pathway dopaminergic neurodegeneration induced by the viral-mediated delivery of human D620N VPS35 in mice, suggesting that α-synuclein does not operate downstream of VPS35. We next evaluated retromer levels in affected brain regions from human A53T-α-synuclein transgenic mice, but find normal levels of the core subunits VPS35, VPS26 or VPS29. We further find that heterozygous VPS35 deletion fails to alter the lethal neurodegenerative phenotype of these A53T-α-synuclein transgenic mice, suggesting the absence of retromer deficiency in this PD model. Finally, we explored the neuroprotective capacity of increasing VPS35 expression in a viral-based human wild-type α-synuclein rat model of PD. However, we find that the overexpression of wild-type VPS35 is not sufficient for protection against α-synuclein-induced nigral dopaminergic neurodegeneration, α-synuclein pathology and reactive gliosis. CONCLUSION Collectively, our data suggest a limited interaction of VPS35 and α-synuclein in neurodegenerative models of PD, and do not provide support for their interaction within a common pathophysiological pathway.
Collapse
Affiliation(s)
- Xi Chen
- Department of Neurodegenerative Science, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI, 49503, USA
| | - Elpida Tsika
- Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Vaud, 1015, Switzerland
- AC Immune SA, EPFL Innovation Park, Lausanne, 1015, Switzerland
| | - Nathan Levine
- Department of Neurodegenerative Science, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI, 49503, USA
| | - Darren J Moore
- Department of Neurodegenerative Science, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
10
|
Dostál V, Humhalová T, Beránková P, Pácalt O, Libusová L. SWIP mediates retromer-independent membrane recruitment of the WASH complex. Traffic 2023; 24:216-230. [PMID: 36995008 DOI: 10.1111/tra.12884] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/28/2023] [Accepted: 03/16/2023] [Indexed: 03/31/2023]
Abstract
The pentameric WASH complex facilitates endosomal protein sorting by activating Arp2/3, which in turn leads to the formation of F-actin patches specifically on the endosomal surface. It is generally accepted that WASH complex attaches to the endosomal membrane via the interaction of its subunit FAM21 with the retromer subunit VPS35. However, we observe the WASH complex and F-actin present on endosomes even in the absence of VPS35. We show that the WASH complex binds to the endosomal surface in both a retromer-dependent and a retromer-independent manner. The retromer-independent membrane anchor is directly mediated by the subunit SWIP. Furthermore, SWIP can interact with a number of phosphoinositide species. Of those, our data suggest that the interaction with phosphatidylinositol-3,5-bisphosphate (PI(3,5)P2 ) is crucial to the endosomal binding of SWIP. Overall, this study reveals a new role of the WASH complex subunit SWIP and highlights the WASH complex as an independent, self-sufficient trafficking regulator.
Collapse
Affiliation(s)
- Vojtěch Dostál
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, Prague, Czech Republic
| | - Tereza Humhalová
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, Prague, Czech Republic
| | - Pavla Beránková
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, Prague, Czech Republic
| | - Ondřej Pácalt
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, Prague, Czech Republic
| | - Lenka Libusová
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, Prague, Czech Republic
| |
Collapse
|
11
|
Yoshida S, Hasegawa T. Beware of Misdelivery: Multifaceted Role of Retromer Transport in Neurodegenerative Diseases. Front Aging Neurosci 2022; 14:897688. [PMID: 35601613 PMCID: PMC9120357 DOI: 10.3389/fnagi.2022.897688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Retromer is a highly integrated multimeric protein complex that mediates retrograde cargo sorting from endosomal compartments. In concert with its accessory proteins, the retromer drives packaged cargoes to tubular and vesicular structures, thereby transferring them to the trans-Golgi network or to the plasma membrane. In addition to the endosomal trafficking, the retromer machinery participates in mitochondrial dynamics and autophagic processes and thus contributes to cellular homeostasis. The retromer components and their associated molecules are expressed in different types of cells including neurons and glial cells, and accumulating evidence from genetic and biochemical studies suggests that retromer dysfunction is profoundly involved in the pathogenesis of neurodegenerative diseases including Alzheimer’s Disease and Parkinson’s disease. Moreover, targeting retromer components could alleviate the neurodegenerative process, suggesting that the retromer complex may serve as a promising therapeutic target. In this review, we will provide the latest insight into the regulatory mechanisms of retromer and discuss how its dysfunction influences the pathological process leading to neurodegeneration.
Collapse
Affiliation(s)
- Shun Yoshida
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Neurology, National Hospital Organization Yonezawa Hospital, Yonezawa, Japan
| | - Takafumi Hasegawa
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan
- *Correspondence: Takafumi Hasegawa,
| |
Collapse
|
12
|
Popescu C. WASHC5 mutation extends the genotypic heterogeneity in early-onset Parkinson’s disease. FUTURE NEUROLOGY 2022. [DOI: 10.2217/fnl-2021-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Materials & methods: Herein, we are reporting a 31-year-old man diagnosed with Parkinson’s disease (PD) without evidence of family co-segregation. Analysis across the PD loci was carried out followed by whole-exome sequencing. Results: We identified a novel heterozygous WASHC5 variant, c.775T >C p. (Tyr259His) segregating with PD. WASHC5 or strumpellin has previously been identified in autosomal dominant disorder hereditary spastic paraplegia type 8 (HSP8). Conclusion: We present clinical, genetic and physiopathological data supporting a relevant role of c.775T >C p. (Tyr259His) variant in early-onset PD. One can hypothesizes a model wherein the clinical continuum of strumpellin-associated neurological syndromes share common pathways based on endo-lysosomal trafficking dysfunction. This novel mutation extends the spectrum of WASHC5 gene mutations and supports the allelic heterogeneity of PD.
Collapse
|
13
|
Gock N, Follett J, Rintoul GL, Beischlag TV, Lee FJ. Endosomal recycling and dopamine neurotransmission: Exploring the links between the retromer and Parkinson's disease. Synapse 2022; 76:e22224. [DOI: 10.1002/syn.22224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/17/2021] [Accepted: 01/23/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Nathan Gock
- Faculty of Health Sciences Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
- Centre for Cell Biology, Development, and Disease Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
| | - Jordan Follett
- Laboratory of Neurogenetics and Neuroscience Department of Neurology University of Florida 1149 Newell Dr Gainesville FL 32610‐0236 United States
| | - Gordon L Rintoul
- Department of Biological Sciences Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
- Centre for Cell Biology, Development, and Disease Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
| | - Timothy V Beischlag
- Faculty of Health Sciences Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
- Centre for Cell Biology, Development, and Disease Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
| | - Frank J.S. Lee
- Faculty of Health Sciences Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
- Centre for Cell Biology, Development, and Disease Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
| |
Collapse
|
14
|
Wen MH, Xie X, Huang PS, Yang K, Chen TY. Crossroads between membrane trafficking machinery and copper homeostasis in the nerve system. Open Biol 2021; 11:210128. [PMID: 34847776 PMCID: PMC8633785 DOI: 10.1098/rsob.210128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Imbalanced copper homeostasis and perturbation of membrane trafficking are two common symptoms that have been associated with the pathogenesis of neurodegenerative and neurodevelopmental diseases. Accumulating evidence from biophysical, cellular and in vivo studies suggest that membrane trafficking orchestrates both copper homeostasis and neural functions-however, a systematic review of how copper homeostasis and membrane trafficking interplays in neurons remains lacking. Here, we summarize current knowledge of the general trafficking itineraries for copper transporters and highlight several critical membrane trafficking regulators in maintaining copper homeostasis. We discuss how membrane trafficking regulators may alter copper transporter distribution in different membrane compartments to regulate intracellular copper homeostasis. Using Parkinson's disease and MEDNIK as examples, we further elaborate how misregulated trafficking regulators may interplay parallelly or synergistically with copper dyshomeostasis in devastating pathogenesis in neurodegenerative diseases. Finally, we explore multiple unsolved questions and highlight the existing challenges to understand how copper homeostasis is modulated through membrane trafficking.
Collapse
Affiliation(s)
- Meng-Hsuan Wen
- Department of Chemistry, University of Houston, Houston, TX 77204, USA
| | - Xihong Xie
- Department of Chemistry, University of Houston, Houston, TX 77204, USA
| | - Pei-San Huang
- Department of Chemistry, University of Houston, Houston, TX 77204, USA
| | - Karen Yang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Tai-Yen Chen
- Department of Chemistry, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
15
|
Placidi G, Campa CC. Deliver on Time or Pay the Fine: Scheduling in Membrane Trafficking. Int J Mol Sci 2021; 22:11773. [PMID: 34769203 PMCID: PMC8583995 DOI: 10.3390/ijms222111773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/23/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
Membrane trafficking is all about time. Automation in such a biological process is crucial to ensure management and delivery of cellular cargoes with spatiotemporal precision. Shared molecular regulators and differential engagement of trafficking components improve robustness of molecular sorting. Sequential recruitment of low affinity protein complexes ensures directionality of the process and, concomitantly, serves as a kinetic proofreading mechanism to discriminate cargoes from the whole endocytosed material. This strategy helps cells to minimize losses and operating errors in membrane trafficking, thereby matching the appealed deadline. Here, we summarize the molecular pathways of molecular sorting, focusing on their timing and efficacy. We also highlight experimental procedures and genetic approaches to robustly probe these pathways, in order to guide mechanistic studies at the interface between biochemistry and quantitative biology.
Collapse
Affiliation(s)
- Giampaolo Placidi
- Italian Institute for Genomic Medicine, c/o IRCCS, Str. Prov.le 142, km 3.95, 10060 Candiolo, Italy;
- Candiolo Cancer Institute, FPO-IRCCS, Str. Prov.le 142, km 3.95, 10060 Candiolo, Italy
| | - Carlo C. Campa
- Italian Institute for Genomic Medicine, c/o IRCCS, Str. Prov.le 142, km 3.95, 10060 Candiolo, Italy;
- Candiolo Cancer Institute, FPO-IRCCS, Str. Prov.le 142, km 3.95, 10060 Candiolo, Italy
| |
Collapse
|
16
|
Schechter M, Sharon R. An Emerging Role for Phosphoinositides in the Pathophysiology of Parkinson’s Disease. JOURNAL OF PARKINSON'S DISEASE 2021; 11:1725-1750. [PMID: 34151859 PMCID: PMC8609718 DOI: 10.3233/jpd-212684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Recent data support an involvement of defects in homeostasis of phosphoinositides (PIPs) in the pathophysiology of Parkinson’s disease (PD). Genetic mutations have been identified in genes encoding for PIP-regulating and PIP-interacting proteins, that are associated with familial and sporadic PD. Many of these proteins are implicated in vesicular membrane trafficking, mechanisms that were recently highlighted for their close associations with PD. PIPs are phosphorylated forms of the membrane phospholipid, phosphatidylinositol. Their composition in the vesicle’s membrane of origin, as well as membrane of destination, controls vesicular membrane trafficking. We review the converging evidence that points to the involvement of PIPs in PD. The review describes PD- and PIP-associated proteins implicated in clathrin-mediated endocytosis and autophagy, and highlights the involvement of α-synuclein in these mechanisms.
Collapse
Affiliation(s)
- Meir Schechter
- Department of Biochemistry and Molecular Biology, IMRIC, The Hebrew University-Hadassah Medical School, Ein Kerem, Jerusalem, Israel
| | - Ronit Sharon
- Department of Biochemistry and Molecular Biology, IMRIC, The Hebrew University-Hadassah Medical School, Ein Kerem, Jerusalem, Israel
| |
Collapse
|
17
|
Kadgien CA, Kamesh A, Milnerwood AJ. Endosomal traffic and glutamate synapse activity are increased in VPS35 D620N mutant knock-in mouse neurons, and resistant to LRRK2 kinase inhibition. Mol Brain 2021; 14:143. [PMID: 34530877 PMCID: PMC8447518 DOI: 10.1186/s13041-021-00848-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/27/2021] [Indexed: 12/26/2022] Open
Abstract
Vacuolar protein sorting 35 (VPS35) regulates neurotransmitter receptor recycling from endosomes. A missense mutation (D620N) in VPS35 leads to autosomal-dominant, late-onset Parkinson's disease. Here, we study the basic neurobiology of VPS35 and Parkinson's disease mutation effects in the D620N knock-in mouse and the effect of leucine-rich repeat kinase 2 (LRRK2) inhibition on synaptic phenotypes. The study was conducted using a VPS35 D620N knock-in mouse that expresses VPS35 at endogenous levels. Protein levels, phosphorylation states, and binding ratios in brain lysates from knock-in mice and wild-type littermates were assayed by co-immunoprecipitation and western blot. Dendritic protein co-localization, AMPA receptor surface expression, synapse density, and glutamatergic synapse activity in primary cortical cultures from knock-in and wild-type littermates were assayed using immunocytochemistry and whole-cell patch clamp electrophysiology. In brain tissue, we confirm VPS35 forms complexes with LRRK2 and AMPA-type glutamate receptor GluA1 subunits, in addition to NMDA-type glutamate receptor GluN1 subunits and D2-type dopamine receptors. Receptor and LRRK2 binding was unaltered in D620N knock-in mice, but we confirm the mutation results in reduced binding of VPS35 with WASH complex member FAM21, and increases phosphorylation of the LRRK2 kinase substrate Rab10, which is reversed by LRRK2 kinase inhibition in vivo. In cultured cortical neurons from knock-in mice, pRab10 is also increased, and reversed by LRRK2 inhibition. The mutation also results in increased endosomal recycling protein cluster density (VPS35-FAM21 co-clusters and Rab11 clusters), glutamate transmission, and GluA1 surface expression. LRRK2 kinase inhibition, which reversed Rab10 hyper-phosphorylation, did not rescue elevated glutamate release or surface GluA1 expression in knock-in neurons, but did alter AMPAR traffic in wild-type cells. The results improve our understanding of the cell biology of VPS35, and the consequences of the D620N mutation in developing neuronal networks. Together the data support a chronic synaptopathy model for latent neurodegeneration, providing phenotypes and candidate pathophysiological stresses that may drive eventual transition to late-stage parkinsonism in VPS35 PD. The study demonstrates the VPS35 mutation has effects that are independent of ongoing LRRK2 kinase activity, and that LRRK2 kinase inhibition alters basal physiology of glutamate synapses in vitro.
Collapse
Affiliation(s)
- Chelsie A Kadgien
- Graduate Program in Neuroscience and Centre for Applied Neurogenetics, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
- Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
| | - Anusha Kamesh
- Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
| | - Austen J Milnerwood
- Graduate Program in Neuroscience and Centre for Applied Neurogenetics, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada.
- Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada.
| |
Collapse
|
18
|
Retromer dependent changes in cellular homeostasis and Parkinson's disease. Essays Biochem 2021; 65:987-998. [PMID: 34528672 PMCID: PMC8709886 DOI: 10.1042/ebc20210023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 12/18/2022]
Abstract
To date, mechanistic treatments targeting the initial cause of Parkinson's disease (PD) are limited due to the underlying biological cause(s) been unclear. Endosomes and their associated cellular homeostasis processes have emerged to have a significant role in the pathophysiology associated with PD. Several variants within retromer complex have been identified and characterised within familial PD patients. The retromer complex represents a key sorting platform within the endosomal system that regulates cargo sorting that maintains cellular homeostasis. In this review, we summarise the current understandings of how PD-associated retromer variants disrupt cellular trafficking and how the retromer complex can interact with other PD-associated genes to contribute to the disease progression.
Collapse
|
19
|
The understudied links of the retromer complex to age-related pathways. GeroScience 2021; 44:19-24. [PMID: 34370162 PMCID: PMC8811076 DOI: 10.1007/s11357-021-00430-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/30/2021] [Indexed: 11/03/2022] Open
Abstract
Neuronal aging is associated with numerous diseases resulting in memory impairment and functional decline. A common hallmark of these disorders is the accumulation of intracellular and extracellular protein aggregates. The retromer complex plays a central role in sorting proteins by marking them for reuse rather than degradation. Retromer dysfunction has been shown to induce protein aggregates and neurodegeneration, suggesting that it may be important for age-related neuronal decline and disease progression. Despite this, little is known about how aging influences retromer stability and the proteins with which it interacts. Detailed insights into age-dependent changes in retromer structure and function could provide valuable information towards treating and preventing many age-related neurodegenerative disorders. Here, we visit age-related pathways which interact with retromer function that ought to be further explored to determine its role in age-related neurodegeneration.
Collapse
|
20
|
Ding Y, Li Y, Chhetri G, Peng X, Wu J, Wang Z, Zhao B, Zhao W, Li X. Parkinson's Disease Causative Mutation in Vps35 Disturbs Tetherin Trafficking to Cell Surfaces and Facilitates Virus Spread. Cells 2021; 10:746. [PMID: 33800686 PMCID: PMC8066283 DOI: 10.3390/cells10040746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder, characterized by progressive loss of dopaminergic neurons in the substantia nigra, intraneuronal deposition of misfolded proteins known as Lewy bodies, and chronic neuroinflammation. PD can arise from monogenic mutations, but in most cases, the etiology is unclear. Viral infection is gaining increasing attentions as a trigger of PD. In this study, we investigated whether the PD-causative 620 aspartate (D) to asparagine (N) mutation in the vacuolar protein sorting 35 ortholog (Vps35) precipitated herpes simplex virus (HSV) infection. We observed that ectopic expression of Vps35 significantly reduced the proliferation and release of HSV-1 virions; the D620N mutation rendered Vps35 a partial loss of such inhibitory effects. Tetherin is a host cell protein capable of restricting the spread of encapsulated viruses including HSV-1 and SARS-Cov-2, both of which are implicated in the development of parkinsonism. Compared with cells overexpressing wildtype Vps35, cells expressing mutant Vps35 with D620N had less Tetherin on cell surfaces. Real-time and static cell imaging revealed that Tetherin recycled through Vps35-positive endosomes. Expression of Vps35 with D620N reduced endosomal dynamics and frequency of motile Tetherin-containing vesicles, a sign of defective production of recycling carriers. Our study suggests that the D620N mutation in Vps35 hinders Tetherin trafficking to cell surfaces and facilitates virus spread.
Collapse
Affiliation(s)
- Yingzhuo Ding
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.D.); (Y.L.); (G.C.); (X.P.); (J.W.); (Z.W.); (B.Z.); (W.Z.)
| | - Yan Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.D.); (Y.L.); (G.C.); (X.P.); (J.W.); (Z.W.); (B.Z.); (W.Z.)
| | - Gaurav Chhetri
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.D.); (Y.L.); (G.C.); (X.P.); (J.W.); (Z.W.); (B.Z.); (W.Z.)
| | - Xiaoxin Peng
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.D.); (Y.L.); (G.C.); (X.P.); (J.W.); (Z.W.); (B.Z.); (W.Z.)
| | - Jing Wu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.D.); (Y.L.); (G.C.); (X.P.); (J.W.); (Z.W.); (B.Z.); (W.Z.)
| | - Zejian Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.D.); (Y.L.); (G.C.); (X.P.); (J.W.); (Z.W.); (B.Z.); (W.Z.)
| | - Bo Zhao
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.D.); (Y.L.); (G.C.); (X.P.); (J.W.); (Z.W.); (B.Z.); (W.Z.)
| | - Wenjuan Zhao
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.D.); (Y.L.); (G.C.); (X.P.); (J.W.); (Z.W.); (B.Z.); (W.Z.)
| | - Xueyi Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.D.); (Y.L.); (G.C.); (X.P.); (J.W.); (Z.W.); (B.Z.); (W.Z.)
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
21
|
Follett J, Farrer MJ. LRRK2; a dynamic regulator of cellular trafficking. Brain Res 2021; 1761:147394. [PMID: 33662339 DOI: 10.1016/j.brainres.2021.147394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/11/2021] [Accepted: 02/20/2021] [Indexed: 12/26/2022]
Abstract
Parkinson's disease (PD) represents the second most common neurodegenerative disorder, characterized clinically by bradykinesia, resting tremor, rigidity and postural instability, and a variety of non-motor features. The etiology of PD is unknown, however genetic, environmental and inflammatory factors may influence disease onset and progression. Genetic variability in leucine-rich repeat kinase 2 confers significant genotypic and population-attributable risk for LRRK2-parkinsonism that is clinically indistinguishable from idiopathic PD. Nevertheless, the age-associated midbrain pathology observed post-mortem in LRRK2-parkinsonism may involve the abnormal accumulation of either α-synuclein or tau, or just the loss of dopaminergic neurons and gliosis. While diverse biological functions have been described for this multi-domain protein in many cell types, evidence suggests LRRK2 may sense endosomal trafficking to orchestrate dynamic changes in vesicular flux and cytoskeletal architecture. This review posits the long-held belief that synaptic-axonal dysfunction and terminal degeneration may precede dopaminergic cell loss, and provocatively questions how facets of LRRK2 biology may influence this molecular pathogenesis.
Collapse
Affiliation(s)
- Jordan Follett
- Laboratory of Neurogenetics and Neuroscience, Department of Neurology, University of Florida, Gainesville, FL, USA.
| | - Matthew J Farrer
- Laboratory of Neurogenetics and Neuroscience, Department of Neurology, University of Florida, Gainesville, FL, USA
| |
Collapse
|