1
|
Gao Y, Ji Z, Zhao J, Gu J. Therapeutic potential of mesenchymal stem cells for fungal infections: mechanisms, applications, and challenges. Front Microbiol 2025; 16:1554917. [PMID: 39949625 PMCID: PMC11821621 DOI: 10.3389/fmicb.2025.1554917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 01/16/2025] [Indexed: 02/16/2025] Open
Abstract
As a particularly serious condition in immunocompromised patients, fungal infections (FIs) have increasingly become a public health problem worldwide. Mesenchymal stem cells (MSCs), characterized by multilineage differentiation potential and immunomodulatory properties, are considered an emerging strategy for the treatment of FIs. In this study, the therapeutic potential of MSCs for FIs was reviewed, including their roles played by secreting antimicrobial peptides, regulating immune responses, and promoting tissue repair. Meanwhile, the status of research on MSCs in FIs and the controversies were also discussed. However, the application of MSCs still faces numerous challenges, such as the heterogeneity of cell sources, long-term safety, and feasibility of large-scale production. By analyzing the latest study results, this review intends to offer theoretical support for the application of MSCs in FI treatment and further research.
Collapse
Affiliation(s)
- Yangjie Gao
- Department of Dermatology, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Zhe Ji
- Department of Pharmacology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jingyu Zhao
- Department of Dermatology, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Julin Gu
- Department of Dermatology, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
2
|
Seabaugh K, Rao S, Koenig JB, Pezzanite L, Dow S, Koch TG, Russell KA, Mehrpouyan S, Alizadeh AH, Goodrich LR. A Pilot Study to Assess the Safety and Efficacy of Umbilical Cord Blood-Derived Mesenchymal Stromal Cells for the Treatment of Synovitis in Horses. Animals (Basel) 2024; 14:3406. [PMID: 39682372 DOI: 10.3390/ani14233406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/13/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Synovitis is present before and during osteoarthritis in horses and can result in performance-limiting lameness. Twenty-four horses with lameness localized to the metacarpo-/metatarsophalangeal joint or a single joint of the carpus were enrolled in this study. We evaluated the response of intra-articular injection with 10 million activated (aMSC) or non-activated (naMSC) allogeneic equine umbilical cord blood-derived mesenchymal stromal cells (MSCs). Subjective and objective lameness was assessed on Days 0, 1, 21, and 42. The treatment injection was randomly assigned and performed following the baseline assessment on Day 0. naMSC-treated horses had straight-line lameness scores that were significantly lower on Day 21 (1.0 ± 1.15) and Day 42 (1.13 ± 1.00) than on Day 0 (p = 0.0098 and p = 0.0418, respectively). aMSC-treated horses had straight-line lameness scores that were significantly lower on Day 21 (0.96 ± 1.03) and Day 42 (0.79 ± 1.05) than on Day 0 (p = 0.0011 and p < 0.0001, respectively). There was no significant difference between the treatment groups for any parameter at any timepoint. In conclusion, both aMSC and naMSC allogeneic MSCs resulted in significantly improved subjective lameness scores in horses when compared to baseline lameness scores.
Collapse
Affiliation(s)
- Kathryn Seabaugh
- Orthopaedic Research Center, Translational Medicine Institute, Colorado State University, Fort Collins, CO 80523, USA
| | - Sangeeta Rao
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Judith B Koenig
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON N1G2W1, Canada
| | - Lynn Pezzanite
- Orthopaedic Research Center, Translational Medicine Institute, Colorado State University, Fort Collins, CO 80523, USA
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Steven Dow
- Orthopaedic Research Center, Translational Medicine Institute, Colorado State University, Fort Collins, CO 80523, USA
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Thomas G Koch
- eQcell Inc., University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Keith A Russell
- eQcell Inc., University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Sahar Mehrpouyan
- eQcell Inc., University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - A Hamed Alizadeh
- eQcell Inc., University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Laurie R Goodrich
- Orthopaedic Research Center, Translational Medicine Institute, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
3
|
Khatibzadeh SM, Dahlgren LA, Caswell CC, Ducker WA, Werre SR, Bogers SH. Equine bone marrow-derived mesenchymal stromal cells reduce established S. aureus and E. coli biofilm matrix in vitro. PLoS One 2024; 19:e0312917. [PMID: 39480794 PMCID: PMC11527187 DOI: 10.1371/journal.pone.0312917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 10/16/2024] [Indexed: 11/02/2024] Open
Abstract
Biofilms reduce antibiotic efficacy and lead to complications and mortality in human and equine patients with orthopedic infections. Equine bone marrow-derived mesenchymal stromal cells (MSC) kill planktonic bacteria and prevent biofilm formation, but their ability to disrupt established orthopedic biofilms is unknown. Our objective was to evaluate the ability of MSC to reduce established S. aureus or E. coli biofilms in vitro. We hypothesized that MSC would reduce biofilm matrix and colony-forming units (CFU) compared to no treatment and that MSC combined with the antibiotic, amikacin sulfate, would reduce these components more than MSC or amikacin alone. MSC were isolated from 5 adult Thoroughbred horses in antibiotic-free medium. 24-hour S. aureus or E. coli biofilms were co-cultured in triplicate for 24 or 48 hours in a transwell plate system: untreated (negative) control, 30 μg/mL amikacin, 1 x 106 passage 3 MSC, and MSC with 30 μg/mL amikacin. Treated biofilms were photographed and biofilm area quantified digitally. Biomass was quantified via crystal violet staining, and CFU quantified following enzymatic digestion. Data were analyzed using mixed model ANOVA with Tukey post-hoc comparisons (p < 0.05). MSC significantly reduced S. aureus biofilms at both timepoints and E. coli biofilm area at 48 hours compared to untreated controls. MSC with amikacin significantly reduced S. aureus biofilms versus amikacin and E. coli biofilms versus MSC at 48 hours. MSC significantly reduced S. aureus biomass at both timepoints and reduced S. aureus CFU at 48 hours versus untreated controls. MSC with amikacin significantly reduced S. aureus biomass versus amikacin at 24 hours and S. aureus and E. coli CFU versus MSC at both timepoints. MSC primarily disrupted the biofilm matrix but performed differently on S. aureus versus E. coli. Evaluation of biofilm-MSC interactions, MSC dose, and treatment time are warranted prior to testing in vivo.
Collapse
Affiliation(s)
- Sarah M. Khatibzadeh
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States of America
| | - Linda A. Dahlgren
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States of America
| | - Clayton C. Caswell
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia, United States of America
| | - William A. Ducker
- Department of Chemical Engineering, College of Engineering, Virginia Tech, Blacksburg, VA, United States of America
| | - Stephen R. Werre
- Laboratory for Study Design and Statistical Analysis, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia, United States of America
| | - Sophie H. Bogers
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States of America
| |
Collapse
|
4
|
Lee DH, Lee J, Ahn SY, Ho TL, Kim K, Ko EJ. Monophosphoryl lipid A and poly I:C combination enhances immune responses of equine influenza virus vaccine. Vet Immunol Immunopathol 2024; 271:110743. [PMID: 38522410 DOI: 10.1016/j.vetimm.2024.110743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/09/2024] [Accepted: 03/15/2024] [Indexed: 03/26/2024]
Abstract
Equine influenza is a contagious respiratory disease caused by H3N8 type A influenza virus. Vaccination against equine influenza is conducted regularly; however, infection still occurs globally because of the short immunity duration and suboptimal efficacy of current vaccines. Hence the objective of this study was to investigate whether an adjuvant combination can improve immune responses to equine influenza virus (EIV) vaccines. Seventy-two mice were immunized with an EIV vaccine only or with monophosphoryl lipid A (MPL), polyinosinic-polycytidylic acid (Poly I:C), or MPL + Poly I:C. Prime immunization was followed by boost immunization after 2 weeks. Mice were euthanized at 4, 8, and 32 weeks post-prime immunization, respectively. Sera were collected to determine humoral response. Bone marrow, spleen, and lung samples were harvested to determine memory cell responses, antigen-specific T-cell proliferation, and lung viral titers. MPL + Poly I:C resulted in the highest IgG, IgG1, and IgG2a antibodies and hemagglutination inhibition titers among the groups and sustained their levels until 32 weeks post-prime immunization. The combination enhanced memory B cell responses in the bone marrow and spleen. At 8 weeks post-prime immunization, the combination induced higher CD8+ central memory T cell frequencies in the lungs and CD8+ central memory T cells in the spleen. In addition, the combination group exhibited enhanced antigen-specific T cell proliferation, except for CD4+ T cells in the lungs. Our results demonstrated improved immune responses when using MPL + Poly I:C in EIV vaccines by inducing enhanced humoral responses, memory cell responses, and antigen-specific T cell proliferation.
Collapse
Affiliation(s)
- Dong-Ha Lee
- Department of Veterinary Medicine, College of Veterinary Medicine, Jeju National University, Jeju 63243, Republic of Korea; Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Republic of Korea
| | - Jueun Lee
- Department of Veterinary Medicine, College of Veterinary Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - So Yeon Ahn
- Department of Veterinary Medicine, College of Veterinary Medicine, Jeju National University, Jeju 63243, Republic of Korea; Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Republic of Korea
| | - Thi Len Ho
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, Republic of Korea
| | - Kiyeon Kim
- Department of Veterinary Medicine, College of Veterinary Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Eun-Ju Ko
- Department of Veterinary Medicine, College of Veterinary Medicine, Jeju National University, Jeju 63243, Republic of Korea; Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Republic of Korea; Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, Republic of Korea.
| |
Collapse
|
5
|
Cassano JM, Leonard BC, Martins BC, Vapniarsky N, Morgan JT, Dow SW, Wotman KL, Pezzanite LM. Preliminary evaluation of safety and migration of immune activated mesenchymal stromal cells administered by subconjunctival injection for equine recurrent uveitis. Front Vet Sci 2023; 10:1293199. [PMID: 38162475 PMCID: PMC10757620 DOI: 10.3389/fvets.2023.1293199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction Equine recurrent uveitis (ERU), an immune mediated disease characterized by repeated episodes of intra-ocular inflammation, affects 25% of horses in the USA and is the most common cause of glaucoma, cataracts, and blindness. Mesenchymal stromal cells (MSCs) have immunomodulatory properties, which are upregulated by preconditioning with toll-like receptor agonists. The objective was to evaluate safety and migration of TLR-3 agonist polyinosinic, polycytidylic acid (pIC)-activated MSCs injected subconjunctivally in healthy horses prior to clinical application in horses with ERU. We hypothesized that activated allogeneic MSCs injected subconjunctivally would not induce ocular or systemic inflammation and would remain in the conjunctiva for >14 days. Methods Bulbar subconjunctiva of two horses was injected with 10 × 106 pIC-activated (10 μg/mL, 2 h) GFP-labeled MSCs from one donor three times at two-week intervals. Vehicle (saline) control was injected in the contralateral conjunctiva. Horses received physical and ophthalmic exams [slit lamp biomicroscopy, rebound tonometry, fundic examination, and semiquantitative preclinical ocular toxicology scoring (SPOTS)] every 1-3 days. Systemic inflammation was assessed via CBC, fibrinogen, and serum amyloid A (SAA). Horses were euthanized 14 days following final injection. Full necropsy and histopathology were performed to examine ocular tissues and 36 systemic organs for MSC presence via IVIS Spectrum. Anti-GFP immunohistochemistry was performed on ocular tissues. Results No change in physical examinations was noted. Bloodwork revealed fibrinogen 100-300 mg/dL (ref 100-400) and SAA 0-25 μg/mL (ref 0-20). Ocular effects of the subjconjucntival injection were similar between MSC and control eyes on SPOTS grading system, with conjunctival hypermia, chemosis and ocular discharge noted bilaterally, which improved without intervention within 14 days. All other ocular parameters were unaffected throughout the study. Necropsy and histopathology revealed no evidence of systemic inflammation. Ocular histopathology was similar between MSC and control eyes. Fluorescent imaging analysis did not locate MSCs. Immunohistochemistry did not identify intact MSCs in the conjunctiva, but GFP-labeled cellular components were present in conjunctival phagocytic cells. Discussion Allogeneic pIC-activated conjunctival MSC injections were well tolerated. GFP-labeled tracking identified MSC components phagocytosed by immune cells subconjunctivally. This preliminary safety and tracking information is critical towards advancing immune conditioned cellular therapies to clinical trials in horses.
Collapse
Affiliation(s)
- Jennifer M. Cassano
- Veterinary Institute for Regenerative Cures, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Brian C. Leonard
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Bianca C. Martins
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Natalia Vapniarsky
- Veterinary Institute for Regenerative Cures, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Joshua T. Morgan
- Department of Bioengineering, University of California, Riverside, Riverside, CA, United States
| | - Steven W. Dow
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Kathryn L. Wotman
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Lynn M. Pezzanite
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
6
|
Colbath AC, Frye CW. Interactions Between Biologic Therapies and Other Treatment Modalities. Vet Clin North Am Equine Pract 2023; 39:515-523. [PMID: 37442732 DOI: 10.1016/j.cveq.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023] Open
Abstract
Biologic therapies are becoming increasingly utilized by veterinarians. The literature regarding the interaction of biologic therapies with other therapeutics is still in its infancy. Initial studies have examined the effects of exercise, stress, various pharmaceutical interventions, extracorporeal shockwave, therapeutic laser, and hyperbaric oxygen on biologic therapies. Continued research is imperative as owners and veterinarians increasingly choose a multimodal approach to injury and illness. Further, understanding the effects of concurrently administered treatments and pharmaceuticals as well as the health status of the horse is imperative to providing the optimal therapeutic outcome.
Collapse
Affiliation(s)
- Aimee C Colbath
- Department of Clinical Sciences, Cornell University College of Veterinary Medicine, 930 Campus Road, Box 30, Ithaca, NY 14853, USA.
| | - Christopher W Frye
- Department of Clinical Sciences, Cornell University College of Veterinary Medicine, 930 Campus Road, Box 25, Ithaca, NY 14853, USA
| |
Collapse
|
7
|
Pezzanite LM, Chow L, Dow SW, Goodrich LR, Gilbertie JM, Schnabel LV. Antimicrobial Properties of Equine Stromal Cells and Platelets and Future Directions. Vet Clin North Am Equine Pract 2023; 39:565-578. [PMID: 37442729 DOI: 10.1016/j.cveq.2023.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023] Open
Abstract
Increasing antimicrobial resistance in veterinary practice has driven the investigation of novel therapeutic strategies including regenerative and biologic therapies to treat bacterial infection. Integration of biological approaches such as platelet lysate and mesenchymal stromal cell (MSC) therapy may represent adjunctive treatment strategies for bacterial infections that minimize systemic side effects and local tissue toxicity associated with traditional antibiotics and that are not subject to antibiotic resistance. In this review, we will discuss mechanisms by which biological therapies exert antimicrobial effects, as well as potential applications and challenges in clinical implementation in equine practice.
Collapse
Affiliation(s)
- Lynn M Pezzanite
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
| | - Lyndah Chow
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Steven W Dow
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA; Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Laurie R Goodrich
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Jessica M Gilbertie
- Department of Microbiology and Immunology, Edward Via College of Osteopathic Medicine, Blacksburg, VA, USA
| | - Lauren V Schnabel
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, North Carolina State University, Raleigh, NC, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
8
|
Gugjoo MB, Sakeena Q, Wani MY, Abdel-Baset Ismail A, Ahmad SM, Shah RA. Mesenchymal stem cells: A promising antimicrobial therapy in veterinary medicine. Microb Pathog 2023; 182:106234. [PMID: 37442216 DOI: 10.1016/j.micpath.2023.106234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/18/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023]
Abstract
Growing antimicrobial resistance (AMR) is a threat to human and animal populations citing the limited available options. Alternative antimicrobial options or functional enhancement of currently available antimicrobials remains only options. One of the potential options seems stem cells especially the mesenchymal stem cells (MSCs) that show antimicrobial properties. These cells additionally have pro-healing effects that may plausibly improve healing outcomes. MSCs antimicrobial actions are mediated either through direct cell-cell contact or their secretome that enhances innate immune mediated antimicrobial activities. These cells synergistically enhance efficacy of currently available antimicrobials especially against the biofilms. Reciprocal action from antimicrobials on the MSCs functionality remains poorly understood. Currently, the main limitation with MSCs based therapy is their limited efficacy. This demands further understanding and can be enhanced through biotechnological interventions. One of the interventional options is the 'priming' to enhance MSCs resistance and specific expression potential. The available literature shows potential antimicrobial actions of MSCs both ex vivo as well as in vivo. The studies on veterinary species are very promising although limited by number and extensiveness in details for their utility as standard therapeutic agents. The current review aims to discuss the role of animals in AMR and the potential antimicrobial actions of MSCs in veterinary medicine. The review also discusses the limitations in their utilization as standard therapeutics.
Collapse
Affiliation(s)
| | - Qumaila Sakeena
- Division of Veterinary Surgery & Radiology, FVSc & AH, Shuhama, J&K, 190006, India
| | - Mohd Yaqoob Wani
- Directorate of Extension Education, SKUAST-K, Shalimar, J&K, 190025, India
| | - Ahmed Abdel-Baset Ismail
- Department of Surgery, Anaesthesiology and Radiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkia, 44511, Egypt
| | - Syed Mudasir Ahmad
- Division of Animal Biotechnology, FVSc & AH, Shuhama, J&K, 190006, India
| | - Riaz Ahmad Shah
- Division of Animal Biotechnology, FVSc & AH, Shuhama, J&K, 190006, India
| |
Collapse
|
9
|
Phyo H, Aburza A, Mellanby K, Esteves CL. Characterization of canine adipose- and endometrium-derived Mesenchymal Stem/Stromal Cells and response to lipopolysaccharide. Front Vet Sci 2023; 10:1180760. [PMID: 37275605 PMCID: PMC10237321 DOI: 10.3389/fvets.2023.1180760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/02/2023] [Indexed: 06/07/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are used for regenerative therapy in companion animals. Their potential was initially attributed to multipotency, but subsequent studies in rodents, humans and veterinary species evidenced that MSCs produce factors that are key mediators of immune, anti-infective and angiogenic responses, which are essential in tissue repair. MSCs preparations have been classically obtained from bone marrow and adipose tissue (AT) in live animals, what requires the use of surgical procedures. In contrast, the uterus, which is naturally exposed to external insult and infection, can be accessed nonsurgically to obtain samples, or tissues can be taken after neutering. In this study, we explored the endometrium (EM) as an alternative source of MSCs, which we compared with AT obtained from canine paired samples. Canine AT- and EM-MSCs, formed CFUs when seeded at low density, underwent tri-lineage differentiation into adipocytes, osteocytes and chondrocytes, and expressed the CD markers CD73, CD90 and CD105, at equivalent levels. The immune genes IL8, CCL2 and CCL5 were equally expressed at basal levels by both cell types. However, in the presence of the inflammatory stimulus lipopolysaccharide (LPS), expression of IL8 was higher in EM- than in AT-MSCs (p < 0.04) while the other genes were equally elevated in both cell types (p < 0.03). This contrasted with the results for CD markers, where the expression was unaltered by exposing the MSCs to LPS. Overall, the results indicate that canine EM-MSCs could serve as an alternative cell source to AT-MSCs in therapeutic applications.
Collapse
|
10
|
Lee DH, Lee EB, Seo JP, Ko EJ. In vitro effects of monophosphoryl lipid A and Poly I:C combination on equine cells. J Vet Sci 2023; 24:e37. [PMID: 37271505 DOI: 10.4142/jvs.23007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/09/2023] [Accepted: 03/10/2023] [Indexed: 06/06/2023] Open
Abstract
BACKGROUND Toll-like receptor (TLR) agonists have been used as adjuvants to modulate immune responses in both animals and humans. OBJECTIVES The objective of this study was to evaluate the combined effects of the TLR 4 agonist monophosphoryl lipid A (MPL) and the TLR 3 agonist polyinosinic:polycytidylic acid (Poly I:C) on equine peripheral blood mononuclear cells (PBMCs), monocyte-derived dendritic cells (MoDCs), and bone marrow-derived mesenchymal stromal cells (BM-MSCs). METHODS The PBMCs, MoDCs, and BM-MSCs collected from three mixed breed horses were treated with MPL, Poly I:C, and their combination. The mRNA expression of interferon gamma (IFN-γ), interleukin (IL)-1β, IL-4, IL-6, IL-8, IL-12p40, tumor necrosis factor alpha (TNF-α), vascular endothelial growth factor (VEGF), and monocyte chemoattractant protein-1 (MCP-1) was determined using real-time polymerase chain reaction. RESULTS The combination of MPL and Poly I:C significantly upregulated immunomodulatory responses in equine cells/ without cytotoxicity. The combination induced greater mRNA expression of pro-inflammatory cytokines IFN-γ and IL-6 than MPL or Poly I:C stimulation alone in PBMCs. In addition, the combination induced significantly higher mRNA expression of IL-1β, IL-6, and IL-12p40 in MoDCs, and IL-8, MCP-1, and VEGF in BM-MSCs compared to stimulation with a single TLR agonist. CONCLUSIONS The combination of MPL and Poly I:C can be used as a potential adjuvant candidate for vaccines to aid in preventing infectious diseases in horses.
Collapse
Affiliation(s)
- Dong-Ha Lee
- College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Korea
| | - Eun-Bee Lee
- Department of Veterinary Medicine, College of Veterinary Medicine, Jeju National University, Jeju 63243, Korea
| | - Jong-Pil Seo
- Department of Veterinary Medicine, College of Veterinary Medicine, Jeju National University, Jeju 63243, Korea
| | - Eun-Ju Ko
- College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Korea
- Department of Veterinary Medicine, College of Veterinary Medicine, Jeju National University, Jeju 63243, Korea.
| |
Collapse
|
11
|
Zhou R, Bu W, Fan Y, Du Z, Zhang J, Zhang S, Sun J, Li Z, Li J. Dynamic Changes in Serum Cytokine Profile in Rats with Severe Acute Pancreatitis. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:321. [PMID: 36837523 PMCID: PMC9961770 DOI: 10.3390/medicina59020321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/12/2023]
Abstract
Background and Objectives: Most published research has only investigated a single timepoint after the onset of severe acute pancreatitis (SAP), meaning that they have been unable to observe the relationship between the dynamic changes in cytokines and SAP progression. In this study, we attempted to reveal the relationship between dynamic changes in cytokine expression levels and SAP disease progression and the relationship between cytokines, using continuous large-scale cytokine detection. Materials and Methods: Seventy rats were randomly assigned to control (Con), sham operation (SO) and SAP groups. The SAP group was randomly allocated to five subgroups at 3, 6, 9, 12 and 15 h after the operation. In the SAP group, 5% sodium taurocholate was injected retrograde into the pancreatic bile duct. Animals in the SO group received a similar incision, a turning over of the pancreas. Control animals did not receive any treatment. We observed the survival, ascites fluid amount, pancreatic histopathological scores and serum amylase activity of SAP rats. We used the cytokine microarray to simultaneously detect 90 cytokines and the dynamic changes in one experiment and to analyze the correlation between cytokine expression and disease progression. Results: The mortality of SAP rats increased with an increase in time. Serum amylase activity, pancreatic histopathological scores and ascites fluid amount were time-dependent. Compared with normal rats, 69 cytokines in SAP rats were significantly changed for at least one timepoint, and 49 cytokines were significantly changed at different timepoints after SAP induction. The changes in inflammatory cytokines were significantly upregulated at 6 and 9 h and 12 h and then significantly decreased. Conclusions: The trend of cytokine expression in SAP rats was not consistent with the disease progression. The cytokine-cytokine receptor interaction and MAPK signal's dominant cytokines were always highly expressed at various time points over the course of SAP.
Collapse
Affiliation(s)
- Rui Zhou
- National & Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
- Department of General Surgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Wangjun Bu
- Department of Breast and Thyroid Surgery, The Northwest Women’s and Children’s Hospital, Xi’an 710061, China
| | - Yudan Fan
- National & Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
- Center for Tumor and Immunology, The Precision Medical Institute, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Ziwei Du
- National & Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Jian Zhang
- National & Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
- Department of General Surgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Shu Zhang
- National & Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
- Department of General Surgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Jin Sun
- National & Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
- Center for Tumor and Immunology, The Precision Medical Institute, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Zongfang Li
- National & Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
- Department of General Surgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
- Center for Tumor and Immunology, The Precision Medical Institute, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Jun Li
- National & Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
- Center for Tumor and Immunology, The Precision Medical Institute, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| |
Collapse
|
12
|
Crosby CE, Redding LE, Ortved KF. Current treatment and prevention of orthopaedic infections in the horse. EQUINE VET EDUC 2023. [DOI: 10.1111/eve.13770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Corinne E. Crosby
- Department of Clinical Studies University of Pennsylvania, New Bolton Center Kennett Square Pennsylvania USA
| | - Laurel E. Redding
- Department of Clinical Studies University of Pennsylvania, New Bolton Center Kennett Square Pennsylvania USA
| | - Kyla F. Ortved
- Department of Clinical Studies University of Pennsylvania, New Bolton Center Kennett Square Pennsylvania USA
| |
Collapse
|
13
|
Pezzanite LM, Chow L, Strumpf A, Johnson V, Dow SW. Immune Activated Cellular Therapy for Drug Resistant Infections: Rationale, Mechanisms, and Implications for Veterinary Medicine. Vet Sci 2022; 9:610. [PMID: 36356087 PMCID: PMC9695672 DOI: 10.3390/vetsci9110610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/18/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Antimicrobial resistance and biofilm formation both present challenges to treatment of bacterial infections with conventional antibiotic therapy and serve as the impetus for development of improved therapeutic approaches. Mesenchymal stromal cell (MSC) therapy exerts an antimicrobial effect as demonstrated in multiple acute bacterial infection models. This effect can be enhanced by pre-conditioning the MSC with Toll or Nod-like receptor stimulation, termed activated cellular therapy (ACT). The purpose of this review is to summarize the current literature on mechanisms of antimicrobial activity of MSC with emphasis on enhanced effects through receptor agonism, and data supporting use of ACT in treatment of bacterial infections in veterinary species including dogs, cats, and horses with implications for further treatment applications. This review will advance the field's understanding of the use of activated antimicrobial cellular therapy to treat infection, including mechanisms of action and potential therapeutic applications.
Collapse
Affiliation(s)
- Lynn M. Pezzanite
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Lyndah Chow
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Alyssa Strumpf
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Valerie Johnson
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Michigan State University, Lansing, MI 48824, USA
| | - Steven W. Dow
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
14
|
Pezzanite LM, Chow L, Phillips J, Griffenhagen GM, Moore AR, Schaer TP, Engiles JB, Werpy N, Gilbertie J, Schnabel LV, Antczak D, Miller D, Dow S, Goodrich LR. TLR-activated mesenchymal stromal cell therapy and antibiotics to treat multi-drug resistant Staphylococcal septic arthritis in an equine model. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1157. [PMID: 36467344 PMCID: PMC9708491 DOI: 10.21037/atm-22-1746] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 09/23/2022] [Indexed: 01/29/2024]
Abstract
BACKGROUND Rapid development of antibiotic resistance necessitates advancement of novel therapeutic strategies to treat infection. Mesenchymal stromal cells (MSC) possess antimicrobial and immunomodulatory properties, mediated through antimicrobial peptide secretion and recruitment of innate immune cells including neutrophils and monocytes. TLR-3 activation of human, canine and equine MSC has been shown to enhance bacterial killing and clearance in vitro, in rodent Staphylococcal biofilm infection models and dogs with spontaneous multi-drug-resistant infections. The objective of this study was to determine if intra-articular (IA) TLR-3-activated MSC with antibiotics improved clinical parameters and reduced bacterial counts and inflammatory cytokine concentrations in synovial fluid (SF) of horses with induced septic arthritis. METHODS Eight horses were inoculated in one tarsocrural joint with multidrug-resistant Staphylococcus aureus (S. aureus). Bone marrow-derived MSC from three unrelated donors were activated with TLR-3 agonist polyinosinic, polycytidylic acid (pIC). Recipient horses received MSC plus vancomycin (TLR-MSC-VAN), or vancomycin (VAN) alone, on days 1, 4, 7 post-inoculation and systemic gentamicin. Pain scores, quantitative bacterial counts (SF, synovium), SF analyses, complete blood counts, cytokine concentrations (SF, plasma), imaging changes (MRI, ultrasound, radiographs), macroscopic joint scores and histologic changes were assessed. Results were reported as mean ± SEM. RESULTS Pain scores (d7, P=0.01, 15.2±0.2 vs. 17.9±0.5), ultrasound (d7, P=0.03, 9.0±0.6 vs. 11.8±0.5), quantitative bacterial counts (SF d7, P=0.02, 0±0 vs. 3.4±0.4; synovium P=0.003, 0.4±0.4 vs. 162.7±18.4), systemic neutrophil (d4, P=0.03, 4.6±0.6 vs. 7.8±0.6) and serum amyloid A (SAA) (d4, P=0.01, 1,106.0±659.0 vs. 2,858.8±141.3; d7, P=0.02, 761.8±746.2 vs. 2,357.3±304.3), and SF lactate (d7, P<0.0001, 5.4±0.2 vs. 15.0±0.3), SAA (endterm, P=0.01, 0.0 vs. 2,094.0±601.6), IL-6 (P=0.03, 313.0±119.2 vs. 1,328.2±208.9), and IL-18 (P=0.02, 11.1±0.5 vs. 13.3±3.8) were improved in TLR-MSC-VAN vs. VAN horses. Study limitations include the small horse sample size, short study duration, and lack of additional control groups. CONCLUSIONS Combined TLR-activated MSC with antibiotic therapy may be a promising approach to manage joint infections with drug resistant bacteria.
Collapse
Affiliation(s)
- Lynn M. Pezzanite
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Lyndah Chow
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Jennifer Phillips
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Gregg M. Griffenhagen
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - A. Russell Moore
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Thomas P. Schaer
- Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA, USA
| | - Julie B. Engiles
- Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA, USA
- Department of Pathobiology, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA, USA
| | | | - Jessica Gilbertie
- Department of Microbiology and Immunology, Edward Via College of Osteopathic Medicine, Blacksburg, VA, USA
| | - Lauren V. Schnabel
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Doug Antczak
- Baker Institute, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Donald Miller
- Baker Institute, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Steven Dow
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Laurie R. Goodrich
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
15
|
Johnson V, Chow L, Harrison J, Soontararak S, Dow S. Activated Mesenchymal Stromal Cell Therapy for Treatment of Multi-Drug Resistant Bacterial Infections in Dogs. Front Vet Sci 2022; 9:925701. [PMID: 35812842 PMCID: PMC9260693 DOI: 10.3389/fvets.2022.925701] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/17/2022] [Indexed: 01/08/2023] Open
Abstract
New and creative approaches are required to treat chronic infections caused by increasingly drug-resistant strains of bacteria. One strategy is the use of cellular therapy employing mesenchymal stromal cells (MSC) to kill bacteria directly and to also activate effective host immunity to infection. We demonstrated previously that activated MSC delivered systemically could be used effectively together with antibiotic therapy to clear chronic biofilm infections in rodent models. Therefore, we sought in the current studies to gain new insights into the antimicrobial properties of activated canine MSC and to evaluate their effectiveness as a novel cellular therapy for treatment of naturally-occurring drug resistant infections in dogs. These studies revealed that canine MSC produce and secrete antimicrobial peptides that synergize with most classes of common antibiotics to trigger rapid bactericidal activity. In addition, activated canine MSC migrated more efficiently to inflammatory stimuli, and secreted factors associated with wound healing and fibroblast proliferation and recruitment of activated neutrophils. Macrophages incubated with conditioned medium from activated MSC developed significantly enhanced bactericidal activity. Clinical studies in dogs with chronic multidrug resistant infections treated by repeated i.v. delivery of activated, allogeneic MSC demonstrated significant clinical benefit, including infection clearance and healing of infected tissues. Taken together, the results of these studies provide new insights into antimicrobial activity of canine MSC, and their potential clinical utility for management of chronic, drug-resistant infections.
Collapse
Affiliation(s)
- Valerie Johnson
- Department of Clinical Sciences, Center for Immune and Regenerative Medicine, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, CO, United States
- Department of Small Animal Clinical Sciences, College of Vetinerary Medicine, Michigan State Univeristy, East Lansing, MI, United States
| | - Lyndah Chow
- Department of Clinical Sciences, Center for Immune and Regenerative Medicine, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, CO, United States
| | - Jacqueline Harrison
- Department of Clinical Sciences, Center for Immune and Regenerative Medicine, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, CO, United States
| | - Sirikul Soontararak
- Department of Clinical Sciences, Center for Immune and Regenerative Medicine, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, CO, United States
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Steven Dow
- Department of Clinical Sciences, Center for Immune and Regenerative Medicine, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, CO, United States
- *Correspondence: Steven Dow
| |
Collapse
|
16
|
Pilgrim CR, McCahill KA, Rops JG, Dufour JM, Russell KA, Koch TG. A Review of Fetal Bovine Serum in the Culture of Mesenchymal Stromal Cells and Potential Alternatives for Veterinary Medicine. Front Vet Sci 2022; 9:859025. [PMID: 35591873 PMCID: PMC9111178 DOI: 10.3389/fvets.2022.859025] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/08/2022] [Indexed: 12/12/2022] Open
Abstract
Fetal bovine serum (FBS) remains widely used as a supplement in cell culture media used in the isolation and expansion of mesenchymal stromal cells (MSC) despite longstanding practical, clinical, and ethical concerns over its use. As a result, research on alternative culture media supplement solutions that conserve crucial MSC characteristics has become increasingly relevant. Species-specific supplements and serum-free media such as platelet lysate or chemically defined media have been assessed for their effect in MSC cultures regarding proliferation, differentiation, and immunomodulatory capacity. While none of the alternatives offer a complete solution in replacing traditional FBS supplemented media for culturing MSCs for all species, short-term or transitional use of FBS-free media can perform equally well and could address some of the concerns over the use of FBS.
Collapse
Affiliation(s)
| | | | | | | | | | - Thomas G. Koch
- Department of Biomedical Science, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
17
|
Uberti B, Plaza A, Henríquez C. Pre-conditioning Strategies for Mesenchymal Stromal/Stem Cells in Inflammatory Conditions of Livestock Species. Front Vet Sci 2022; 9:806069. [PMID: 35372550 PMCID: PMC8974404 DOI: 10.3389/fvets.2022.806069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/16/2022] [Indexed: 12/20/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) therapy has been a cornerstone of regenerative medicine in humans and animals since their identification in 1968. MSCs can interact and modulate the activity of practically all cellular components of the immune response, either through cell-cell contact or paracrine secretion of soluble mediators, which makes them an attractive alternative to conventional therapies for the treatment of chronic inflammatory and immune-mediated diseases. Many of the mechanisms described as necessary for MSCs to modulate the immune/inflammatory response appear to be dependent on the animal species and source. Although there is evidence demonstrating an in vitro immunomodulatory effect of MSCs, there are disparate results between the beneficial effect of MSCs in preclinical models and their actual use in clinical diseases. This discordance might be due to cells' limited survival or impaired function in the inflammatory environment after transplantation. This limited efficacy may be due to several factors, including the small amount of MSCs inoculated, MSC administration late in the course of the disease, low MSC survival rates in vivo, cryopreservation and thawing effects, and impaired MSC potency/biological activity. Multiple physical and chemical pre-conditioning strategies can enhance the survival rate and potency of MSCs; this paper focuses on hypoxic conditions, with inflammatory cytokines, or with different pattern recognition receptor ligands. These different pre-conditioning strategies can modify MSCs metabolism, gene expression, proliferation, and survivability after transplantation.
Collapse
Affiliation(s)
- Benjamin Uberti
- Instituto de Ciencias Clínicas, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Anita Plaza
- Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Claudio Henríquez
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
- *Correspondence: Claudio Henríquez
| |
Collapse
|
18
|
Khatua S, Simal-Gandara J, Acharya K. Understanding immune-modulatory efficacy in vitro. Chem Biol Interact 2022; 352:109776. [PMID: 34906553 PMCID: PMC8665649 DOI: 10.1016/j.cbi.2021.109776] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 11/19/2021] [Accepted: 12/07/2021] [Indexed: 01/07/2023]
Abstract
Boosting or suppressing our immune system represents an attractive adjunct in the treatment of infections including SARS-CoV-2, cancer, AIDS, malnutrition, age related problems and some inflammatory disorders. Thus, there has been a growing interest in exploring and developing novel drugs, natural or synthetic, that can manipulate our defence mechanism. Many of such studies, reported till date, have been designed to explore effect of the therapeutic on function of macrophages, being a key component in innate immune system. Indeed, RAW264.7, J774A.1, THP-1 and U937 cell lines act as ideal model systems for preliminary investigation and selection of dose for in vivo studies. Several bioassays have been standardized so far where many techniques require high throughput instruments, cost effective reagents and technical assistance that may hinder many scholars to perform a method demanding compilation of available protocols. In this review, we have taken an attempt for the first time to congregate commonly used in vitro immune-modulating techniques explaining their principles. The study detected that among about 40 different assays and more than 150 sets of primers, the methods of cell proliferation by MTT, phagocytosis by neutral red, NO detection by Griess reaction and estimation of expression of TLRs, COX-2, iNOS, TNF-α, IL-6 and IL-1β by PCR have been the most widely used to screen the therapeutics under investigation.
Collapse
Affiliation(s)
- Somanjana Khatua
- Molecular and Applied Mycology and Plant Pathology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India,Department of Botany, Krishnagar Government College, Krishnagar, Nadia, 741101, West Bengal, India
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004, Ourense, Spain,Corresponding author
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India,Corresponding author
| |
Collapse
|
19
|
Estrada McDermott J, Pezzanite L, Goodrich L, Santangelo K, Chow L, Dow S, Wheat W. Role of Innate Immunity in Initiation and Progression of Osteoarthritis, with Emphasis on Horses. Animals (Basel) 2021; 11:3247. [PMID: 34827979 PMCID: PMC8614551 DOI: 10.3390/ani11113247] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis (OA) is a common condition with diverse etiologies, affecting horses, humans, and companion animals. Importantly, OA is not a single disease, but rather a disease process initiated by different events, including acute trauma, irregular or repetitive overload of articular structures, and spontaneous development with aging. Our understanding of the pathogenesis of OA is still evolving, and OA is increasingly considered a multifactorial disease in which the innate immune system plays a key role in regulating and perpetuating low-grade inflammation, resulting in sustained cartilage injury and destruction. Macrophages within the synovium and synovial fluid are considered the key regulators of immune processes in OA and are capable of both stimulating and suppressing joint inflammation, by responding to local and systemic cues. The purpose of this review is to examine the role of the innate immune system in the overall pathogenesis of OA, drawing on insights from studies in humans, animal models of OA, and from clinical and research studies in horses. This review also discusses the various therapeutic immune modulatory options currently available for managing OA and their mechanisms of action.
Collapse
Affiliation(s)
- Juan Estrada McDermott
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (J.E.M.); (L.P.); (L.G.); (L.C.); (S.D.)
| | - Lynn Pezzanite
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (J.E.M.); (L.P.); (L.G.); (L.C.); (S.D.)
| | - Laurie Goodrich
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (J.E.M.); (L.P.); (L.G.); (L.C.); (S.D.)
| | - Kelly Santangelo
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA;
| | - Lyndah Chow
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (J.E.M.); (L.P.); (L.G.); (L.C.); (S.D.)
| | - Steven Dow
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (J.E.M.); (L.P.); (L.G.); (L.C.); (S.D.)
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA;
| | - William Wheat
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (J.E.M.); (L.P.); (L.G.); (L.C.); (S.D.)
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA;
| |
Collapse
|
20
|
Pezzanite LM, Hendrickson DA, Dow S, Stoneback J, Chow L, Krause D, Goodrich L. Intra-articular administration of antibiotics in horses: Justifications, risks, reconsideration of use and outcomes. Equine Vet J 2021; 54:24-38. [PMID: 34459027 DOI: 10.1111/evj.13502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 07/02/2021] [Accepted: 08/26/2021] [Indexed: 12/11/2022]
Abstract
Antibiotics have been injected intra-articularly by equine veterinarians for decades, either prophylactically when other drugs are administered for osteoarthritis or therapeutically to treat septic arthritis. This route of administration has also more recently gained attention in human orthopaedic clinical practice, particularly as an alternative to systemic antibiotic administration to treat infections following prosthetic arthroplasty. While the rationale for injecting antibiotics intra-articularly has been largely focused on achieving high local drug concentrations, there has been relatively little focus on pharmacokinetic parameters of antibiotics administered by this route, or on the potential for local toxicity. The increasing incidence of antibiotic resistance in veterinary and human medicine prompts reconsideration of off-label antibiotic usage and evaluation of evidence-based dosing strategies. The purpose of this review was to summarise the current literature describing intra-articular antibiotic usage, including specific studies where pharmacokinetics, potential safety and toxicity have been evaluated. This review will advance practitioners' understanding of the use of intra-articularly administered antibiotics, including the overall pros and cons of the approach.
Collapse
Affiliation(s)
- Lynn M Pezzanite
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Dean A Hendrickson
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Steven Dow
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA.,Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Jason Stoneback
- Department of Orthopedic Surgery, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Lyndah Chow
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Danielle Krause
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Laurie Goodrich
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|