1
|
Antoniou T, Dimitriou AC, Karameta E, Antoniou A, Poulakakis N, Sfenthourakis S. Comparative phylogeography of four lizard taxa within an oceanic island. Mol Phylogenet Evol 2025; 205:108295. [PMID: 39894094 DOI: 10.1016/j.ympev.2025.108295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 02/04/2025]
Abstract
Comparative phylogeography aims to detect common patterns of differentiation among taxa attributed to the same geological or environmental barriers and, thus, find shared drivers of genomic splits and landscape features that explain patterns of occurrence and genetic diversity. Following this approach, this work focuses on four endemic lizard taxa, namely Acanthodactylus schreiberi schreiberi, Ophisops elegans schlueteri, Phoenicolacerta troodica, and Laudakia cypriaca, that co-occur in Cyprus, an isolated island of the Mediterranean. In an attempt to discern possible effects of the geological and ecological history of the region on diversity patterns along the lineages under study, samples were collected from all parts of Cyprus, and phylogenetic reconstructions, species delimitation analyses, and biogeographic comparisons were conducted at both genetic and genomic levels (Sanger and ddRAD sequencing data, respectively) for all four taxa. The derived phylogenomic relationships provide evidence of a strong genetic structure within the island that agrees with the geographical origins of each population. A rare case of an island-to-mainland dispersal event is confirmed for one of the focal taxa, making it one of the few documented cases of this type. Estimated diversification times during the Miocene reflect the timing of the first arrival on the island, while further diversification seems to have been strongly affected by the Pleistocene oscillations.
Collapse
Affiliation(s)
- Theodora Antoniou
- Department of Biological Sciences, University of Cyprus, University Campus, 2109 Aglantzia, Nicosia, Cyprus.
| | - Andreas C Dimitriou
- Department of Biological Sciences, University of Cyprus, University Campus, 2109 Aglantzia, Nicosia, Cyprus; Department of Veterinary Medicine, School of Veterinary Medicine, European University Cyprus, Nicosia 2404, Cyprus
| | - Emmanouela Karameta
- Department of Biological Sciences, University of Cyprus, University Campus, 2109 Aglantzia, Nicosia, Cyprus
| | - Aglaia Antoniou
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Gournes Pediados, Irakleio, 71003 Crete, Greece
| | - Nikos Poulakakis
- Natural History Museum of Crete, School of Sciences and Engineering, University of Crete, Knosos Avenue, Irakleio 71409, Greece; Department of Biology, School of Sciences and Engineering, University of Crete, Vassilika Vouton, Irakleio 70013, Greece; Ancient DNA Lab, Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology - Hellas (FORTH), N. Plastira 100, Vassilika Vouton, GR-70013 Irakleio, Greece
| | - Spyros Sfenthourakis
- Department of Biological Sciences, University of Cyprus, University Campus, 2109 Aglantzia, Nicosia, Cyprus
| |
Collapse
|
2
|
Title PO, Singhal S, Grundler MC, Costa GC, Pyron RA, Colston TJ, Grundler MR, Prates I, Stepanova N, Jones MEH, Cavalcanti LBQ, Colli GR, Di-Poï N, Donnellan SC, Moritz C, Mesquita DO, Pianka ER, Smith SA, Vitt LJ, Rabosky DL. The macroevolutionary singularity of snakes. Science 2024; 383:918-923. [PMID: 38386744 DOI: 10.1126/science.adh2449] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 01/02/2024] [Indexed: 02/24/2024]
Abstract
Snakes and lizards (Squamata) represent a third of terrestrial vertebrates and exhibit spectacular innovations in locomotion, feeding, and sensory processing. However, the evolutionary drivers of this radiation remain poorly known. We infer potential causes and ultimate consequences of squamate macroevolution by combining individual-based natural history observations (>60,000 animals) with a comprehensive time-calibrated phylogeny that we anchored with genomic data (5400 loci) from 1018 species. Due to shifts in the dynamics of speciation and phenotypic evolution, snakes have transformed the trophic structure of animal communities through the recurrent origin and diversification of specialized predatory strategies. Squamate biodiversity reflects a legacy of singular events that occurred during the early history of snakes and reveals the impact of historical contingency on vertebrate biodiversity.
Collapse
Affiliation(s)
- Pascal O Title
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
- Environmental Resilience Institute, Indiana University, Bloomington, IN 47408, USA
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sonal Singhal
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biology, California State University, Dominguez Hills, Carson, CA 90747, USA
| | - Michael C Grundler
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gabriel C Costa
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biology and Environmental Sciences, Auburn University at Montgomery, Montgomery, AL 36117, USA
| | - R Alexander Pyron
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20560, USA
| | - Timothy J Colston
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20560, USA
- Biology Department, University of Puerto Rico at Mayagüez, Mayagüez 00680, Puerto Rico
| | - Maggie R Grundler
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA 94720, USA
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ivan Prates
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Natasha Stepanova
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marc E H Jones
- Science Group: Fossil Reptiles, Amphibians and Birds Section, Natural History Museum, London SW7 5BD, UK
- Research Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
- Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Lucas B Q Cavalcanti
- Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, João Pessoa, Paraíba 58051-900, Brazil
| | - Guarino R Colli
- Departamento de Zoologia, Universidade de Brasília, Brasília, Distrito Federal 70910-900, Brazil
| | - Nicolas Di-Poï
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | | | - Craig Moritz
- Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia
| | - Daniel O Mesquita
- Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, João Pessoa, Paraíba 58051-900, Brazil
| | - Eric R Pianka
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Stephen A Smith
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Laurie J Vitt
- Sam Noble Museum and Department of Biology, University of Oklahoma, Norman, OK, USA
| | - Daniel L Rabosky
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
3
|
Alexander Pyron R. Unsupervised machine learning for species delimitation, integrative taxonomy, and biodiversity conservation. Mol Phylogenet Evol 2023; 189:107939. [PMID: 37804960 DOI: 10.1016/j.ympev.2023.107939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/25/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Integrative taxonomy, combining data from multiple axes of biologically relevant variation, is a major goal of systematics. Ideally, such taxonomies will derive from similarly integrative species-delimitation analyses. Yet, most current methods rely solely or primarily on molecular data, with other layers often incorporated only in a post hoc qualitative or comparative manner. A major limitation is the difficulty of devising quantitative parametric models linking different datasets in a unified ecological and evolutionary framework. Machine Learning (ML) methods offer flexibility in this arena by easily learning high-dimensional associations between observations (e.g., individual specimens) across a wide array of input features (e.g., genetics, geography, environment, and phenotype) to delimit statistically meaningful clusters. Here, I implement an unsupervised method using Self-Organizing (or "Kohonen") Maps (SOMs) for such purposes. Recent extensions called "SuperSOMs" can integrate multiple layers, each of which exerts independent influence on a two-dimensional output grid via empirically estimated weights. The grid cells are then delimited into K distinct units that can be interpreted as species or other entities. I show empirical examples in salamanders (Desmognathus) and snakes (Storeria) with layers representing alleles, space, climate, and traits. Simulations reveal that the SuperSOM approach can detect K = 1, tends not to over-split, reflects contributions from all layers, and limits large layers (e.g., genetic matrices) from overwhelming other datasets, desirable properties addressing major concerns from previous studies. Finally, I suggest that these and similar methods could integrate conservation-relevant layers such as population trends and human encroachment to delimit management units from an explicitly quantitative framework grounded in the ecology and evolution of species limits and boundaries.
Collapse
Affiliation(s)
- R Alexander Pyron
- Department of Biological Sciences, The George Washington University, Washington, DC 20052 USA.
| |
Collapse
|
4
|
Espeland M, Chazot N, Condamine FL, Lemmon AR, Lemmon EM, Pringle E, Heath A, Collins S, Tiren W, Mutiso M, Lees DC, Fisher S, Murphy R, Woodhall S, Tropek R, Ahlborn SS, Cockburn K, Dobson J, Bouyer T, Kaliszewska ZA, Baker CCM, Talavera G, Vila R, Gardiner AJ, Williams M, Martins DJ, Sáfián S, Edge DA, Pierce NE. Rapid radiation of ant parasitic butterflies during the Miocene aridification of Africa. Ecol Evol 2023; 13:e10046. [PMID: 37193112 PMCID: PMC10182571 DOI: 10.1002/ece3.10046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/14/2023] [Indexed: 05/18/2023] Open
Abstract
Africa has undergone a progressive aridification during the last 20 My that presumably impacted organisms and fostered the evolution of life history adaptations. We test the hypothesis that shift to living in ant nests and feeding on ant brood by larvae of phyto-predaceous Lepidochrysops butterflies was an adaptive response to the aridification of Africa that facilitated the subsequent radiation of butterflies in this genus. Using anchored hybrid enrichment we constructed a time-calibrated phylogeny for Lepidochrysops and its closest, non-parasitic relatives in the Euchrysops section (Poloyommatini). We estimated ancestral areas across the phylogeny with process-based biogeographical models and diversification rates relying on time-variable and clade-heterogeneous birth-death models. The Euchrysops section originated with the emerging Miombo woodlands about 22 million years ago (Mya) and spread to drier biomes as they became available in the late Miocene. The diversification of the non-parasitic lineages decreased as aridification intensified around 10 Mya, culminating in diversity decline. In contrast, the diversification of the phyto-predaceous Lepidochrysops lineage proceeded rapidly from about 6.5 Mya when this unusual life history likely first evolved. The Miombo woodlands were the cradle for diversification of the Euchrysops section, and our findings are consistent with the hypothesis that aridification during the Miocene selected for a phyto-predaceous life history in species of Lepidochrysops, with ant nests likely providing caterpillars a safe refuge from fire and a source of food when vegetation was scarce.
Collapse
Affiliation(s)
- Marianne Espeland
- Centre for Taxonomy and MorphologyLeibniz Institute for the Analysis of Evolutionary Change – Museum KoenigBonnGermany
- Department of Organismic and Evolutionary Biology and Museum of Comparative ZoologyHarvard UniversityCambridgeMassachusettsUSA
| | - Nicolas Chazot
- Department of EcologySwedish University of Agricultural SciencesUppsalaSweden
| | - Fabien L. Condamine
- CNRSUMR 5554 Institut des Sciences de l'Evolution de MontpellierMontpellierFrance
| | - Alan R. Lemmon
- Department of Scientific ComputingFlorida State UniversityTallahasseeFloridaUSA
| | | | | | - Alan Heath
- Lepidopterists' Society of AfricaKnysnaSouth Africa
| | | | | | | | - David C. Lees
- Department of Life SciencesNatural History MuseumLondonUK
| | | | | | | | - Robert Tropek
- Department of Ecology, Faculty of ScienceCharles UniversityPragueCzechia
- Institute of Entomology, Biology CentreCzech Academy of SciencesCeske BudejoviceCzechia
| | - Svenja S. Ahlborn
- Centre for Taxonomy and MorphologyLeibniz Institute for the Analysis of Evolutionary Change – Museum KoenigBonnGermany
| | | | | | | | - Zofia A. Kaliszewska
- Department of Organismic and Evolutionary Biology and Museum of Comparative ZoologyHarvard UniversityCambridgeMassachusettsUSA
| | - Christopher C. M. Baker
- Department of Organismic and Evolutionary Biology and Museum of Comparative ZoologyHarvard UniversityCambridgeMassachusettsUSA
| | - Gerard Talavera
- Institut Botànic de Barcelona (IBB, CSIC‐Ajuntament de Barcelona)BarcelonaSpain
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC‐UPF)BarcelonaSpain
| | | | | | - Dino J. Martins
- Turkana Basin InstituteStony Brook UniversityStony BrookNew YorkUSA
| | - Szabolcs Sáfián
- Institute of Silviculture and Forest ProtectionUniversity of SopronSopronHungary
| | | | - Naomi E. Pierce
- Department of Organismic and Evolutionary Biology and Museum of Comparative ZoologyHarvard UniversityCambridgeMassachusettsUSA
| |
Collapse
|
5
|
Mossop KD, Lemmon AR, Moriarty Lemmon E, Eytan R, Adams M, Unmack PJ, Smith Date K, Morales HE, Hammer MP, Wong BBM, Chapple DG. Phylogenomics and biogeography of arid-adapted Chlamydogobius goby fishes. Mol Phylogenet Evol 2023; 182:107757. [PMID: 36925090 DOI: 10.1016/j.ympev.2023.107757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/01/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023]
Abstract
The progressive aridification of the Australian continent from ∼ 20 million years ago posed severe challenges for the persistence of its resident biota. A key question involves the role of refugial habitats - specifically, their ability to mediate the effects of habitat loss and fragmentation, and their potential to shape opportunities for allopatric speciation. With freshwater species, for example, the patchiness, or absence, of water will constrain distributions. However, aridity may not necessarily isolate populations if disjunct refugia experience frequent hydrological connections. To investigate this potential dichotomy, we explored the evolutionary history of the Chlamydogobius gobies (Gobiiformes: Gobiidae), an arid-adapted genus of six small, benthic fish species that exploit all types of waterbodies (i.e. desert springs, waterholes and bore-fed wetlands, coastal estuarine creeks and mangroves) across parts of central and northern Australia. We used Anchored Phylogenomics to generate a highly resolved phylogeny of the group from sequence data for 260 nuclear loci. Buttressed by companion allozyme and mtDNA datasets, our molecular findings infer the diversification of Chlamydogobius in arid Australia, and provide a phylogenetic structure that cannot be simply explained by invoking allopatric speciation events reflecting current geographic proximity. Our findings are generally consistent with the existing morphological delimitation of species, with one exception: at the shallowest nodes of phylogenetic reconstruction, the molecular data do not fully support the current dichotomous delineation of C. japalpa from C. eremius in Kati Thanda-Lake Eyre-associated waterbodies. Together these findings illustrate the ability of structural (hydrological) connections to generate patterns of connectivity and isolation for an ecologically moderate disperser in response to ongoing habitat aridification. Finally, we explore the implications of these results for the immediate management of threatened (C. gloveri) and critically endangered (C. micropterus, C. squamigenus) congeners.
Collapse
Affiliation(s)
- Krystina D Mossop
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Alan R Lemmon
- Department of Scientific Computing, Florida State University, Dirac Science Library, Tallahassee, FL, USA
| | | | - Ron Eytan
- Marine Biology Department, Texas A&M University at Galveston, Galveston, TX 77554, USA; Peabody Museum of Natural History, Yale University, New Haven, CT, USA
| | - Mark Adams
- Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, SA 5000, Australia; School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Peter J Unmack
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia; Centre for Applied Water Science, Institute for Applied Ecology, University of Canberra, ACT 2617, Australia
| | - Katie Smith Date
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia; Museum Victoria, Sciences Department, GPO Box 666, Melbourne, VIC 3001, Australia
| | - Hernán E Morales
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia; Section for Evolutionary Genomics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Michael P Hammer
- Natural Sciences, Museum and Art Gallery of the Northern Territory, Darwin, NT 0801, Australia
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - David G Chapple
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
6
|
Anderson CB, Ospina O, Beerli P, Lemmon AR, Banker SE, Hassinger AB, Dye M, Kortyna ML, Lemmon EM. The population genetics of speciation by cascade reinforcement. Ecol Evol 2023; 13:e9773. [PMID: 36789346 PMCID: PMC9905665 DOI: 10.1002/ece3.9773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/22/2022] [Accepted: 01/09/2023] [Indexed: 02/10/2023] Open
Abstract
Species interactions drive diverse evolutionary outcomes. Speciation by cascade reinforcement represents one example of how species interactions can contribute to the proliferation of species. This process occurs when the divergence of mating traits in response to selection against interspecific hybridization incidentally leads to reproductive isolation among populations of the same species. Here, we investigated the population genetic outcomes of cascade reinforcement in North American chorus frogs (Hylidae: Pseudacris). Specifically, we estimated the frequency of hybridization among three taxa, assessed genetic structure within the focal species, P. feriarum, and ascertained the directionality of gene flow within P. feriarum across replicated contact zones via coalescent modeling. Through field observations and preliminary experimental crosses, we assessed whether hybridization is possible under natural and laboratory conditions. We found that hybridization occurs among P. feriarum and two conspecifics at a low rate in multiple contact zones, and that gene flow within the former species is unidirectional from allopatry into sympatry with these other species in three of four contact zones studied. We found evidence of substantial genetic structuring within P. feriarum including a divergent western allopatric cluster, a behaviorally-distinct sympatric South Carolina cluster, and several genetically-overlapping clusters from the remainder of the distribution. Furthermore, we found sub-structuring between reinforced and nonreinforced populations in the two most intensely-sampled contact zones. Our literature review indicated that P. feriarum hybridizes with at least five heterospecifics at the periphery of its range providing a mechanism for further intraspecific diversification. This work strengthens the evidence for cascade reinforcement in this clade, revealing the geographic and genetic landscape upon which this process can contribute to the proliferation of species.
Collapse
Affiliation(s)
- Carlie B Anderson
- Department of Biological Science Florida State University Tallahassee Florida USA
| | - Oscar Ospina
- Department of Biostatistics and Bioinformatics Moffitt Cancer Center Tampa Florida USA
| | - Peter Beerli
- Department of Scientific Computing Florida State University Tallahassee Florida USA
| | - Alan R Lemmon
- Department of Scientific Computing Florida State University Tallahassee Florida USA
| | - Sarah E Banker
- Department of Biological Science Florida State University Tallahassee Florida USA
- Pfizer Clinical Pharmacogenomics Group Groton Connecticut USA
| | - Alyssa Bigelow Hassinger
- Department of Biological Science Florida State University Tallahassee Florida USA
- Varigen Biosciences Middleton Wisconsin USA
| | - Mysia Dye
- Department of Biological Science Florida State University Tallahassee Florida USA
| | - Michelle L Kortyna
- Department of Biological Science Florida State University Tallahassee Florida USA
| | | |
Collapse
|
7
|
Joffard N, Buatois B, Arnal V, Véla E, Montgelard C, Schatz B. Delimiting species in the taxonomically challenging orchid section Pseudophrys: Bayesian analyses of genetic and phenotypic data. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1058550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Accurate species delimitation is critical for biodiversity conservation. Integrative taxonomy has been advocated for a long time, yet tools allowing true integration of genetic and phenotypic data have been developed quite recently and applied to few models, especially in plants. In this study, we investigated species boundaries within a group of twelve Pseudophrys taxa from France by analyzing genetic, morphometric and chemical (i.e., floral scents) data in a Bayesian framework using the program integrated Bayesian Phylogenetics and Phylogeography (iBPP). We found that these twelve taxa were merged into four species when only genetic data were used, while most formally described species were recognized as such when only phenotypic (either morphometric or chemical) data were used. The result of the iBPP analysis performed on both genetic and phenotypic data supports the proposal to merge Ophrys bilunulata and O. marmorata on the one hand, and O. funerea and O. zonata on the other hand. Our results show that phenotypic data are particularly informative in the section Pseudophrys and that their integration in a model-based method significantly improves the accuracy of species delimitation. We are convinced that the integrative taxonomic approach proposed in this study holds great promise to conduct taxonomic revisions in other orchid groups.
Collapse
|
8
|
Booker WW, Gerhardt HC, Lemmon AR, Ptacek MB, Hassinger ATB, Schul J, Lemmon EM. The Complex History of Genome Duplication and Hybridization in North American Gray Treefrogs. Mol Biol Evol 2022; 39:msab316. [PMID: 34791374 PMCID: PMC8826561 DOI: 10.1093/molbev/msab316] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Polyploid speciation has played an important role in evolutionary history across the tree of life, yet there remain large gaps in our understanding of how polyploid species form and persist. Although systematic studies have been conducted in numerous polyploid complexes, recent advances in sequencing technology have demonstrated that conclusions from data-limited studies may be spurious and misleading. The North American gray treefrog complex, consisting of the diploid Hyla chrysoscelis and the tetraploid H. versicolor, has long been used as a model system in a variety of biological fields, yet all taxonomic studies to date were conducted with only a few loci from nuclear and mitochondrial genomes. Here, we utilized anchored hybrid enrichment and high-throughput sequencing to capture hundreds of loci along with whole mitochondrial genomes to investigate the evolutionary history of this complex. We used several phylogenetic and population genetic methods, including coalescent simulations and testing of polyploid speciation models with approximate Bayesian computation, to determine that H. versicolor was most likely formed via autopolyploidization from a now extinct lineage of H. chrysoscelis. We also uncovered evidence of significant hybridization between diploids and tetraploids where they co-occur, and show that historical hybridization between these groups led to the re-formation of distinct polyploid lineages following the initial whole-genome duplication event. Our study indicates that a wide variety of methods and explicit model testing of polyploid histories can greatly facilitate efforts to uncover the evolutionary history of polyploid complexes.
Collapse
Affiliation(s)
- William W Booker
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - H Carl Gerhardt
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | - Alan R Lemmon
- Department of Scientific Computing, Florida State University, Tallahassee, FL, USA
| | - Margaret B Ptacek
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | - Alyssa T B Hassinger
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, OH, USA
| | - Johannes Schul
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | | |
Collapse
|
9
|
Pyron RA, O’Connell KA, Lemmon EM, Lemmon AR, Beamer DA. Candidate-species delimitation in Desmognathus salamanders reveals gene flow across lineage boundaries, confounding phylogenetic estimation and clarifying hybrid zones. Ecol Evol 2022; 12:e8574. [PMID: 35222955 PMCID: PMC8848459 DOI: 10.1002/ece3.8574] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 12/19/2022] Open
Abstract
Dusky Salamanders (genus Desmognathus) currently comprise only 22 described, extant species. However, recent mitochondrial and nuclear estimates indicate the presence of up to 49 candidate species based on ecogeographic sampling. Previous studies also suggest a complex history of hybridization between these lineages. Studies in other groups suggest that disregarding admixture may affect both phylogenetic inference and clustering-based species delimitation. With a dataset comprising 233 Anchored Hybrid Enrichment (AHE) loci sequenced for 896 Desmognathus specimens from all 49 candidate species, we test three hypotheses regarding (i) species-level diversity, (ii) hybridization and admixture, and (iii) misleading phylogenetic inference. Using phylogenetic and population-clustering analyses considering gene flow, we find support for at least 47 candidate species in the phylogenomic dataset, some of which are newly characterized here while others represent combinations of previously named lineages that are collapsed in the current dataset. Within these, we observe significant phylogeographic structure, with up to 64 total geographic genetic lineages, many of which hybridize either narrowly at contact zones or extensively across ecological gradients. We find strong support for both recent admixture between terminal lineages and ancient hybridization across internal branches. This signal appears to distort concatenated phylogenetic inference, wherein more heavily admixed terminal specimens occupy apparently artifactual early-diverging topological positions, occasionally to the extent of forming false clades of intermediate hybrids. Additional geographic and genetic sampling and more robust computational approaches will be needed to clarify taxonomy, and to reconstruct a network topology to display evolutionary relationships in a manner that is consistent with their complex history of reticulation.
Collapse
Affiliation(s)
- Robert Alexander Pyron
- Department of Biological SciencesThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
- Division of Amphibians and ReptilesDepartment of Vertebrate ZoologyNational Museum of Natural History Smithsonian InstitutionWashingtonDistrict of ColumbiaUSA
| | - Kyle A. O’Connell
- Department of Biological SciencesThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
- Division of Amphibians and ReptilesDepartment of Vertebrate ZoologyNational Museum of Natural History Smithsonian InstitutionWashingtonDistrict of ColumbiaUSA
- Global Genome InitiativeNational Museum of Natural History Smithsonian InstitutionWashingtonDistrict of ColumbiaUSA
- Biomedical Data Science LabDeloitte Consulting LLPArlingtonVirginiaUSA
| | | | - Alan R. Lemmon
- Department of Scientific ComputingFlorida State UniversityTallahasseeFloridaUSA
| | - David A. Beamer
- Department of Natural SciencesNash Community CollegeRocky MountNorth CarolinaUSA
| |
Collapse
|
10
|
Blais BR, Smith BE, Placyk JS, Casper GS, Spellman GM. Phylogeography of the smooth greensnake, Opheodrys vernalis (Squamata: Colubridae): divergent lineages and variable demographics in a widely distributed yet enigmatic species. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Abstract
Phylogeographic studies can uncover robust details about the population structure, demographics, and diversity of species. The smooth greensnake, Opheodrys vernalis, is a small, cryptic snake occupying mesic grassland and sparsely wooded habitats. Although O. vernalis has a wide geographical range, many metapopulations are patchy and some are declining. We used mitochondrial DNA and double digest restriction-site associated DNA sequencing to construct the first phylogeographic assessment of O. vernalis. Genomic analysis of 119 individuals (mitochondrial DNA) and a subset of another 45 smooth greensnakes (nuclear DNA; N = 3031 single nucleotide polymorphisms) strongly supports two longitudinally separated lineages, with admixture in the Great Lakes region. Post-Pleistocene secondary contact best explains admixture from populations advancing northwards. Overall, populations expressed low heterozygosity, variable inbreeding rates, and moderate to high differentiation. Disjunct populations in the Rocky Mountains and central Great Plains regions might be contracting relicts, whereas northerly populations in more continuous mesic habitats (e.g., Prairie Pothole region, southern Canada) had signals of population expansion. Broadly, conservation management efforts should be focused on local populations, because habitat connectivity may facilitate gene flow and genetic diversity.
Collapse
Affiliation(s)
- Brian R Blais
- School of Natural Sciences, Black Hills State University, Spearfish, SD, USA
| | - Brian E Smith
- School of Natural Sciences, Black Hills State University, Spearfish, SD, USA
| | - John S Placyk
- Department of Biology, University of Texas at Tyler, 3900 University Boulevard, Tyler, TX, USA
| | - Gary S Casper
- University of Wisconsin-Milwaukee Field Station, Saukville, WI, USA
| | - Garth M Spellman
- Department of Zoology, Denver Museum of Nature & Science, 2001 Colorado Boulevard, Denver, CO, USA
| |
Collapse
|
11
|
Duchêne DA, Mather N, Van Der Wal C, Ho SYW. Excluding loci with substitution saturation improves inferences from phylogenomic data. Syst Biol 2021; 71:676-689. [PMID: 34508605 PMCID: PMC9016599 DOI: 10.1093/sysbio/syab075] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 09/07/2021] [Indexed: 11/21/2022] Open
Abstract
The historical signal in nucleotide sequences becomes eroded over time by substitutions occurring repeatedly at the same sites. This phenomenon, known as substitution saturation, is recognized as one of the primary obstacles to deep-time phylogenetic inference using genome-scale data sets. We present a new test of substitution saturation and demonstrate its performance in simulated and empirical data. For some of the 36 empirical phylogenomic data sets that we examined, we detect substitution saturation in around 50% of loci. We found that saturation tends to be flagged as problematic in loci with highly discordant phylogenetic signals across sites. Within each data set, the loci with smaller numbers of informative sites are more likely to be flagged as containing problematic levels of saturation. The entropy saturation test proposed here is sensitive to high evolutionary rates relative to the evolutionary timeframe, while also being sensitive to several factors known to mislead phylogenetic inference, including short internal branches relative to external branches, short nucleotide sequences, and tree imbalance. Our study demonstrates that excluding loci with substitution saturation can be an effective means of mitigating the negative impact of multiple substitutions on phylogenetic inferences. [Phylogenetic model performance; phylogenomics; substitution model; substitution saturation; test statistics.]
Collapse
Affiliation(s)
- David A Duchêne
- Centre for Evolutionary Hologenomics, University of Copenhagen, 1352 Copenhagen, Denmark
| | - Niklas Mather
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Cara Van Der Wal
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Simon Y W Ho
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
12
|
Gene Flow and Diversification in Himalopsyche martynovi Species Complex (Trichoptera: Rhyacophilidae) in the Hengduan Mountains. BIOLOGY 2021; 10:biology10080816. [PMID: 34440048 PMCID: PMC8389565 DOI: 10.3390/biology10080816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022]
Abstract
The Hengduan Mountains are one of the most species-rich mountainous areas in the world. The origin and evolution of such a remarkable biodiversity are likely to be associated with geological or climatic dynamics, as well as taxon-specific biotic processes (e.g., hybridization, polyploidization, etc.). Here, we investigate the mechanisms fostering the diversification of the endemic Himalopsyche martynovi complex, a poorly known group of aquatic insects. We used multiple allelic datasets generated from 691 AHE loci to reconstruct species and RaxML phylogenetic trees. We selected the most reliable phylogenetic tree to perform network and gene flow analyses. The phylogenetic reconstructions and network analysis identified three clades, including H. epikur, H. martynovi sensu stricto and H. cf. martynovi. Himalopsyche martynovi sensu stricto and H. cf. martynovi present an intermediate morphology between H. epikur and H. viteceki, the closest known relative to the H. martynovi-complex. The gene flow analysis revealed extensive gene flow among these lineages. Our results suggest that H. viteceki and H. epikur are likely to have contributed to the evolution of H. martynovi sensu stricto and H. cf. martynovi via gene flow, and thus, our study provides insights in the diversification process of a lesser-known ecological group, and hints at the potential role of gene flow in the emergence of biological novelty in the Hengduan Mountains.
Collapse
|
13
|
Morgan B, Huang JP. Isolation by geographical distance after release from Pleistocene refugia explains genetic and phenotypic variation in Xylotrupes siamensis (Coleoptera: Scarabaeidae). Zool J Linn Soc 2021. [DOI: 10.1093/zoolinnean/zlaa106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Consistent and objective species delimitation is crucial to biodiversity studies, but challenges remain when conflicting taxonomic decisions have been made because different data sets and analytical methods were used to delineate species. In the rhinoceros beetle, Xylotrupes siamensis, the use of different morphological characters has resulted in taxonomic disagreement between studies. We used three molecular loci (mitochondrial CO1 and nuclear ITS2 and H3) to investigate the genetic divergence between populations exhibiting different male horn phenotypes. We also applied an approximate Bayesian computation approach to test alternative historical hypotheses that might explain the present genetic diversity among geographical populations. Furthermore, we used species distribution models to estimate the temporal variation in the geographical distribution of suitable habitats. The results show that the two phenotypic taxa within X. siamensis are not genetically structured and that their genetic structure can be explained using isolation by geographical distance. The emergence of the two phenotypic taxa might have been associated with historical isolation in separate refugia. However, spatial expansion and genetic interchange between populations might have gradually eroded the spatial genetic structure. We demonstrate that understanding the historical processes responsible for phenotypic divergence and genetic diversity among current populations could help with making evolutionarily coherent taxonomic decisions.
Collapse
Affiliation(s)
- Brett Morgan
- Biodiversity Research Center, Academia Sinica, Nankang, Taipei, Taiwan
| | - Jen-Pan Huang
- Biodiversity Research Center, Academia Sinica, Nankang, Taipei, Taiwan
| |
Collapse
|
14
|
Esquerré D, Donnellan SC, Pavón-Vázquez CJ, Fenker J, Keogh JS. Phylogeography, historical demography and systematics of the world's smallest pythons (Pythonidae, Antaresia). Mol Phylogenet Evol 2021; 161:107181. [PMID: 33892100 DOI: 10.1016/j.ympev.2021.107181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/06/2021] [Accepted: 04/15/2021] [Indexed: 11/18/2022]
Abstract
Advances from empirical studies in phylogeography, systematics and species delimitation highlight the importance of integrative approaches for quantifying taxonomic diversity. Genomic data have greatly improved our ability to discern both systematic diversity and evolutionary history. Here we combine analyses of mitochondrial DNA sequences, thousands of genome-wide SNPs and linear and geometric morphometrics on Antaresia, a clade of four currently recognised dwarf pythons from Australia and New Guinea (Antaresia childreni, A. stimsoni, A. maculosa and A. perthensis). Our integrative analyses of phylogenetics, population structure, species delimitation, historical demography and morphometrics revealed that the true evolutionary diversity is not well reflected in the current appraisal of the diversity of the group. We find that Antaresia childreni and A. stimsoni comprise a widespread network of populations connected by gene flow and without evidence of species-level divergence among them. However, A. maculosa shows considerable genetic structuring which leads us to recognise two subspecies in northeastern Australia and a new species in Torres Strait and New Guinea. These two contrasting cases of over and under estimation of diversity, respectively, illustrate the power of thorough integrative approaches into understanding evolution of biodiversity. Furthermore, our analyses of historical demographic patterns highlight the importance of the Kimberley, Pilbara and Cape York as origins of biodiversity in Australia.
Collapse
Affiliation(s)
- Damien Esquerré
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia.
| | | | - Carlos J Pavón-Vázquez
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| | - Jéssica Fenker
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| | - J Scott Keogh
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|
15
|
Fontanella FM, Miles E, Strott P. Integrated analysis of the ringneck snake Diadophis punctatus complex (Colubridae: Dipsadidae) in a biodiversity hotspot provides the foundation for conservation reassessment. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Species classification may not reflect the underlying/cryptic genetic diversity and focusing on groups that do not represent historically independent units can misdirect conservation efforts. The identification of evolutionarily significant units (ESUs) allows cryptic genetic diversity to be accounted for when designating conservation priorities. We used multi-locus coalescent-based species delimitation methods and multivariate analyses of morphological data to examine whether the subspecies merit conservation recognition and infer the ESUs in ringneck snakes (Diadophis punctatus) throughout the California Floristic Province. Species delimitation methods failed to recover groups consistent with designated subspecies and instead inferred three well supported, mostly geographically isolated lineages. Divergence time estimates suggest that the divergences were driven by historical isolation associated with Pleistocene climate shifts. We found a correlation between increased morphological differentiation and time since divergence, and greater niche similarity between the more recently diverged eastern California and western California groups. Based on these results, we propose that the morphological similarities are due to a combination of morphological conservatism and evolutionary stasis. Our study provides the foundation necessary to re-assess the biodiversity and conservation status of ringneck snakes and offers an important step in unveiling the diversity within the western portion of the genus’ range.
Collapse
Affiliation(s)
- Frank M Fontanella
- Department of Biology, University of West Georgia, Carrollton, GA 30118,USA
| | - Emily Miles
- Department of Biology, University of West Georgia, Carrollton, GA 30118,USA
| | - Polly Strott
- Department of Biology, University of West Georgia, Carrollton, GA 30118,USA
| |
Collapse
|
16
|
Warwick AR, Barrow LN, Smith ML, Means DB, Lemmon AR, Lemmon EM. Signatures of north-eastern expansion and multiple refugia: genomic phylogeography of the Pine Barrens tree frog, Hyla andersonii (Anura: Hylidae). Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Range fragmentation poses challenges for species persistence over time and can be caused by both historical and contemporary processes. We combined genomic data, phylogeographical model testing and palaeoclimatic niche modelling to infer the evolutionary history of the Pine Barrens tree frog (Hyla andersonii), a seepage bog specialist, in eastern North America to gain a better understanding of the historical context of its fragmented distribution. We sampled H. andersonii populations across the three disjunct regions of the species range: Alabama/Florida (AF), the Carolinas (CL) and New Jersey (NJ). Phylogenetic relationships within H. andersonii were consistent between the nuclear species tree and mitochondrial analyses, indicating divergence between AF and CL/NJ (Atlantic clade) ~0.9 Mya and divergence of the NJ clade ~0.15 Mya. Several predictions of north-eastern expansion along the Atlantic coast were supported by phylogeographical analyses. Model testing using genome-wide single nucleotide polymorphism data and species distribution models both provided evidence for multiple disjunct refugia. This comprehensive phylogeographical study of H. andersonii demonstrates a long history of range fragmentation within an endemic coastal plain species and highlights the influence of historical climate change on the current distribution of species and their genetic diversity.
Collapse
Affiliation(s)
- Alexa R Warwick
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
| | - Lisa N Barrow
- Museum of Southwestern Biology and Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Megan L Smith
- Department of Biology and Department of Computer Science, Indiana University, Bloomington, IN, USA
| | - D Bruce Means
- Coastal Plains Institute and Land Conservancy, Tallahassee, FL, USA
| | - Alan R Lemmon
- Department of Scientific Computing, Florida State University, Tallahassee, FL, USA
| | | |
Collapse
|
17
|
Banker SE, Lemmon AR, Hassinger AB, Dye M, Holland SD, Kortyna ML, Ospina OE, Ralicki H, Lemmon EM. Hierarchical Hybrid Enrichment: Multitiered Genomic Data Collection Across Evolutionary Scales, With Application to Chorus Frogs (Pseudacris). Syst Biol 2021; 69:756-773. [PMID: 31886503 PMCID: PMC7302053 DOI: 10.1093/sysbio/syz074] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 10/26/2019] [Accepted: 11/04/2019] [Indexed: 01/25/2023] Open
Abstract
Determining the optimal targets of genomic subsampling for phylogenomics, phylogeography, and population genomics remains a challenge for evolutionary biologists. Of the available methods for subsampling the genome, hybrid enrichment (sequence capture) has become one of the primary means of data collection for systematics, due to the flexibility and cost efficiency of this approach. Despite the utility of this method, information is lacking as to what genomic targets are most appropriate for addressing questions at different evolutionary scales. In this study, first, we compare the benefits of target loci developed for deep- and shallow scales by comparing these loci at each of three taxonomic levels: within a genus (phylogenetics), within a species (phylogeography), and within a hybrid zone (population genomics). Specifically, we target evolutionarily conserved loci that are appropriate for deeper phylogenetic scales and more rapidly evolving loci that are informative for phylogeographic and population genomic scales. Second, we assess the efficacy of targeting multiple-locus sets for different taxonomic levels in the same hybrid enrichment reaction, an approach we term hierarchical hybrid enrichment. Third, we apply this approach to the North American chorus frog genus Pseudacris to answer key evolutionary questions across taxonomic and temporal scales. We demonstrate that in this system the type of genomic target that produces the most resolved gene trees differs depending on the taxonomic level, although the potential for error is substantially lower for the deep-scale loci at all levels. We successfully recover data for the two different locus sets with high efficiency. Using hierarchical data targeting deep and shallow levels: we 1) resolve the phylogeny of the genus Pseudacris and introduce a novel visual and hypothesis testing method that uses nodal heat maps to examine the robustness of branch support values to the removal of sites and loci; 2) estimate the phylogeographic history of Pseudacris feriarum, which reveals up to five independent invasions leading to sympatry with congener Pseudacris nigrita to form replicated reinforcement contact zones with ongoing gene flow into sympatry; and 3) quantify with high confidence the frequency of hybridization in one of these zones between P. feriarum and P. nigrita, which is lower than microsatellite-based estimates. We find that the hierarchical hybrid enrichment approach offers an efficient, multitiered data collection method for simultaneously addressing questions spanning multiple evolutionary scales. [Anchored hybrid enrichment; heat map; hybridization; phylogenetics; phylogeography; population genomics; reinforcement; reproductive character displacement.].
Collapse
Affiliation(s)
- Sarah E Banker
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL 32306, USA.,Department of Integrative Biology, University of California, Berkeley, #3160 Berkeley, CA 94720-3160, USA
| | - Alan R Lemmon
- Department of Scientific Computing, Florida State University 400 Dirac Science Library, Tallahassee, FL 32306, USA
| | - Alyssa Bigelow Hassinger
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL 32306, USA.,Department of Evolution, Ecology, and Organismal Biology, Ohio State University, 318 W. 12th Avenue, 300 Aronoff Laboratory, Columbus, OH 43210, USA
| | - Mysia Dye
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL 32306, USA
| | - Sean D Holland
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL 32306, USA
| | - Michelle L Kortyna
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL 32306, USA
| | - Oscar E Ospina
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL 32306, USA
| | - Hannah Ralicki
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL 32306, USA.,Department of Biological Science, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06268, USA
| | - Emily Moriarty Lemmon
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL 32306, USA
| |
Collapse
|
18
|
Hime PM, Lemmon AR, Lemmon ECM, Prendini E, Brown JM, Thomson RC, Kratovil JD, Noonan BP, Pyron RA, Peloso PLV, Kortyna ML, Keogh JS, Donnellan SC, Mueller RL, Raxworthy CJ, Kunte K, Ron SR, Das S, Gaitonde N, Green DM, Labisko J, Che J, Weisrock DW. Phylogenomics Reveals Ancient Gene Tree Discordance in the Amphibian Tree of Life. Syst Biol 2021; 70:49-66. [PMID: 32359157 PMCID: PMC7823230 DOI: 10.1093/sysbio/syaa034] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 11/30/2022] Open
Abstract
Molecular phylogenies have yielded strong support for many parts of the amphibian Tree of Life, but poor support for the resolution of deeper nodes, including relationships among families and orders. To clarify these relationships, we provide a phylogenomic perspective on amphibian relationships by developing a taxon-specific Anchored Hybrid Enrichment protocol targeting hundreds of conserved exons which are effective across the class. After obtaining data from 220 loci for 286 species (representing 94% of the families and 44% of the genera), we estimate a phylogeny for extant amphibians and identify gene tree-species tree conflict across the deepest branches of the amphibian phylogeny. We perform locus-by-locus genealogical interrogation of alternative topological hypotheses for amphibian monophyly, focusing on interordinal relationships. We find that phylogenetic signal deep in the amphibian phylogeny varies greatly across loci in a manner that is consistent with incomplete lineage sorting in the ancestral lineage of extant amphibians. Our results overwhelmingly support amphibian monophyly and a sister relationship between frogs and salamanders, consistent with the Batrachia hypothesis. Species tree analyses converge on a small set of topological hypotheses for the relationships among extant amphibian families. These results clarify several contentious portions of the amphibian Tree of Life, which in conjunction with a set of vetted fossil calibrations, support a surprisingly younger timescale for crown and ordinal amphibian diversification than previously reported. More broadly, our study provides insight into the sources, magnitudes, and heterogeneity of support across loci in phylogenomic data sets.[AIC; Amphibia; Batrachia; Phylogeny; gene tree-species tree discordance; genomics; information theory.].
Collapse
Affiliation(s)
- Paul M Hime
- Biodiversity Institute, University of Kansas, Lawrence, KS 66045, USA
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Alan R Lemmon
- Department of Scientific Computing, Florida State University, Tallahassee, FL 32306, USA
| | | | - Elizabeth Prendini
- Division of Vertebrate Zoology: Herpetology, American Museum of Natural History, New York, NY 10024, USA
| | - Jeremy M Brown
- Department of Biological Sciences and Museum of Natural Science, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Robert C Thomson
- School of Life Sciences, University of Hawai’i, Honolulu, HI 96822, USA
| | - Justin D Kratovil
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA
| | - Brice P Noonan
- Department of Biology, University of Mississippi, Oxford, MS 38677, USA
| | - R Alexander Pyron
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - Pedro L V Peloso
- Division of Vertebrate Zoology: Herpetology, American Museum of Natural History, New York, NY 10024, USA
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, 66075-750, Brazil
| | - Michelle L Kortyna
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - J Scott Keogh
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, 2601, Australia
| | - Stephen C Donnellan
- South Australian Museum, North Terrace, Adelaide 5000, Australia
- School of Biological Sciences, University of Adelaide, Adelaide 5005, Australia
| | | | - Christopher J Raxworthy
- Division of Vertebrate Zoology: Herpetology, American Museum of Natural History, New York, NY 10024, USA
| | - Krushnamegh Kunte
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| | - Santiago R Ron
- Museo de Zoología, Escuela de Biología, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Sandeep Das
- Forest Ecology and Biodiversity Conservation Division, Kerala Forest Research Institute, Peechi, Kerala 680653, India
| | - Nikhil Gaitonde
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| | - David M Green
- Redpath Museum, McGill University, Montreal, Quebec H3A 0C4, Canada
| | - Jim Labisko
- The Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, The University of Kent, Canterbury, Kent, CT2 7NR, UK
- Island Biodiversity and Conservation Centre, University of Seychelles, PO Box 1348, Anse Royale, Mahé, Seychelles
| | - Jing Che
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Kunming 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - David W Weisrock
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
19
|
Bangs MR, Douglas MR, Chafin TK, Douglas ME. Gene flow and species delimitation in fishes of Western North America: Flannelmouth ( Catostomus latipinnis) and Bluehead sucker ( C. Pantosteus discobolus). Ecol Evol 2020; 10:6477-6493. [PMID: 32724527 PMCID: PMC7381754 DOI: 10.1002/ece3.6384] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 03/15/2020] [Accepted: 03/17/2020] [Indexed: 02/02/2023] Open
Abstract
The delimitation of species boundaries, particularly those obscured by reticulation, is a critical step in contemporary biodiversity assessment. It is especially relevant for conservation and management of indigenous fishes in western North America, represented herein by two species with dissimilar life histories codistributed in the highly modified Colorado River (i.e., flannelmouth sucker, Catostomus latipinnis; bluehead sucker, C. (Pantosteus) discobolus). To quantify phylogenomic patterns and examine proposed taxonomic revisions, we first employed double-digest restriction site-associated DNA sequencing (ddRAD), yielding 39,755 unlinked SNPs across 139 samples. These were subsequently evaluated with multiple analytical approaches and by contrasting life history data. Three phylogenetic methods and a Bayesian assignment test highlighted similar phylogenomic patterns in each, but with considerable difference in presumed times of divergence. Three lineages were detected in bluehead sucker, supporting elevation of C. (P.) virescens to species status and recognizing C. (P.) discobolus yarrowi (Zuni bluehead sucker) as a discrete entity. Admixture in the latter necessitated a reevaluation of its contemporary and historic distributions, underscoring how biodiversity identification can be confounded by complex evolutionary histories. In addition, we defined three separate flannelmouth sucker lineages as ESUs (evolutionarily significant units), given limited phenotypic and genetic differentiation, contemporary isolation, and lack of concordance (per the genealogical concordance component of the phylogenetic species concept). Introgression was diagnosed in both species, with the Little Colorado and Virgin rivers in particular. Our diagnostic methods, and the agreement of our SNPs with previous morphological, enzymatic, and mitochondrial work, allowed us to partition complex evolutionary histories into requisite components, such as isolation versus secondary contact.
Collapse
Affiliation(s)
- Max R. Bangs
- Department of Biological SciencesFlorida State UniversityTallahasseeFLUSA
| | - Marlis R. Douglas
- Department of Biological SciencesUniversity of ArkansasFayettevilleARUSA
| | - Tyler K. Chafin
- Department of Biological SciencesUniversity of ArkansasFayettevilleARUSA
| | - Michael E. Douglas
- Department of Biological SciencesUniversity of ArkansasFayettevilleARUSA
| |
Collapse
|
20
|
Huang J. Is population subdivision different from speciation? From phylogeography to species delimitation. Ecol Evol 2020; 10:6890-6896. [PMID: 32760499 PMCID: PMC7391551 DOI: 10.1002/ece3.6524] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/01/2020] [Accepted: 06/04/2020] [Indexed: 12/31/2022] Open
Abstract
Species-level diversity and the underlying mechanisms that lead to the formation of new species, that is, speciation, have often been confounded with intraspecific diversity and population subdivision. The delineation between intraspecific and interspecific divergence processes has received much less attention than species delimitation. The ramifications of confounding speciation and population subdivision are that the term speciation has been used to describe many different biological divergence processes, rendering the results, or inferences, between studies incomparable. Phylogeographic studies have advanced our understanding of how spatial variation in the pattern of biodiversity can begin, become structured, and persist through time. Studies of species delimitation have further provided statistical and model-based approaches to determine the phylogeographic entities that merit species status. However, without a proper understanding and delineation between the processes that generate and maintain intraspecific and interspecific diversity in a study system, the delimitation of species may still not be biologically and evolutionarily relevant. I argue that variation in the continuity of the divergence process among biological systems could be a key factor leading to the enduring contention in delineating divergence patterns, or species delimitation, meriting future comparative studies to help us better understand the nature of biological species.
Collapse
Affiliation(s)
- Jen‐Pan Huang
- Biodiversity Research CenterAcademia SinicaTaipeiTaiwan
| |
Collapse
|
21
|
Pyron RA, O'Connell KA, Lemmon EM, Lemmon AR, Beamer DA. Phylogenomic data reveal reticulation and incongruence among mitochondrial candidate species in Dusky Salamanders (Desmognathus). Mol Phylogenet Evol 2020; 146:106751. [DOI: 10.1016/j.ympev.2020.106751] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 01/02/2020] [Accepted: 01/28/2020] [Indexed: 12/14/2022]
|
22
|
Novikova PY, Brennan IG, Booker W, Mahony M, Doughty P, Lemmon AR, Moriarty Lemmon E, Roberts JD, Yant L, Van de Peer Y, Keogh JS, Donnellan SC. Polyploidy breaks speciation barriers in Australian burrowing frogs Neobatrachus. PLoS Genet 2020; 16:e1008769. [PMID: 32392206 PMCID: PMC7259803 DOI: 10.1371/journal.pgen.1008769] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 05/29/2020] [Accepted: 04/08/2020] [Indexed: 01/13/2023] Open
Abstract
Polyploidy has played an important role in evolution across the tree of life but it is still unclear how polyploid lineages may persist after their initial formation. While both common and well-studied in plants, polyploidy is rare in animals and generally less understood. The Australian burrowing frog genus Neobatrachus is comprised of six diploid and three polyploid species and offers a powerful animal polyploid model system. We generated exome-capture sequence data from 87 individuals representing all nine species of Neobatrachus to investigate species-level relationships, the origin and inheritance mode of polyploid species, and the population genomic effects of polyploidy on genus-wide demography. We describe rapid speciation of diploid Neobatrachus species and show that the three independently originated polyploid species have tetrasomic or mixed inheritance. We document higher genetic diversity in tetraploids, resulting from widespread gene flow between the tetraploids, asymmetric inter-ploidy gene flow directed from sympatric diploids to tetraploids, and isolation of diploid species from each other. We also constructed models of ecologically suitable areas for each species to investigate the impact of climate on differing ploidy levels. These models suggest substantial change in suitable areas compared to past climate, which correspond to population genomic estimates of demographic histories. We propose that Neobatrachus diploids may be suffering the early genomic impacts of climate-induced habitat loss, while tetraploids appear to be avoiding this fate, possibly due to widespread gene flow. Finally, we demonstrate that Neobatrachus is an attractive model to study the effects of ploidy on the evolution of adaptation in animals.
Collapse
Affiliation(s)
- Polina Yu. Novikova
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Ian G. Brennan
- Division of Ecology & Evolution, Research School of Biology, The Australian National University, Canberra, Australia
| | - William Booker
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Michael Mahony
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, Australia
| | - Paul Doughty
- Western Australian Museum, Welshpool, Perth, Australia
| | - Alan R. Lemmon
- Department of Scientific Computing, Florida State University, Tallahassee, Florida, United States of America
| | - Emily Moriarty Lemmon
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - J. Dale Roberts
- School of Biological Sciences, and, Centre for Evolutionary Biology, University of Western Australia, Albany, Western Australia, Australia
| | - Levi Yant
- School of Life Sciences and Future Food Beacon, University of Nottingham, Nottingham, United Kingdom
| | - Yves Van de Peer
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - J. Scott Keogh
- Division of Ecology & Evolution, Research School of Biology, The Australian National University, Canberra, Australia
| | - Stephen C. Donnellan
- South Australian Museum, North Terrace, Adelaide, Australia
- School of Biological Sciences, University of Adelaide, North Terrace, Adelaide, Australia
| |
Collapse
|
23
|
Chaplin K, Sumner J, Hipsley CA, Melville J. An Integrative Approach Using Phylogenomics and High-Resolution X-Ray Computed Tomography for Species Delimitation in Cryptic Taxa. Syst Biol 2020; 69:294-307. [PMID: 31372642 DOI: 10.1093/sysbio/syz048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/18/2019] [Accepted: 07/12/2019] [Indexed: 11/14/2022] Open
Abstract
Morphologically cryptic taxa have proved to be a long-standing challenge for taxonomists. Lineages that show strong genomic structuring across the landscape but are phenotypically similar pose a conundrum, with traditional morphological analyses of these cryptic lineages struggling to keep up with species delimitation advances. Micro X-ray computed tomography (CT) combined with geometric morphometric analyses provides a promising avenue for identification of morphologically cryptic taxa, given its ability to detect subtle differences in anatomical structures. However, this approach has yet to be used in combination with genomic data in a comparative analytical framework to distinguish cryptic taxa. We present an integrative approach incorporating genomic and geometric morphometric evidence to assess the species delimitation of grassland earless dragons (Tympanocryptis spp.) in north-eastern Australia. Using mitochondrial and nuclear genes (ND2 and RAG1, respectively), along with $>$8500 SNPs (nuclear single nucleotide polymorphisms), we assess the evolutionary independence of target lineages and several closely related species. We then integrate phylogenomic data with osteological cranial variation between lineages using landmark-based analyses of three-dimensional CT models. High levels of genomic differentiation between the three target lineages were uncovered, also supported by significant osteological differences. By incorporating multiple lines of evidence, we provide strong support for three undescribed cryptic lineages of Tympanocryptis in north-eastern Australia that warrant taxonomic review. Our approach demonstrates the successful application of CT with integrative taxonomic approaches for cryptic species delimitation, which is broadly applicable across vertebrates containing morphologically similar yet genetically distinct lineages. Additionally, we provide a review of recent integrative taxonomic approaches for cryptic species delimitation and an assessment of how our approach can value-add to taxonomic research.
Collapse
Affiliation(s)
- Kirilee Chaplin
- Department of Sciences, Museums Victoria, GPO Box 666, Melbourne, Victoria 3001, Australia.,School of BioSciences The University of Melbourne Parkville Campus Victoria 3010, Australia
| | - Joanna Sumner
- Department of Sciences, Museums Victoria, GPO Box 666, Melbourne, Victoria 3001, Australia
| | - Christy A Hipsley
- Department of Sciences, Museums Victoria, GPO Box 666, Melbourne, Victoria 3001, Australia.,School of BioSciences The University of Melbourne Parkville Campus Victoria 3010, Australia
| | - Jane Melville
- Department of Sciences, Museums Victoria, GPO Box 666, Melbourne, Victoria 3001, Australia
| |
Collapse
|
24
|
Chambers EA, Hillis DM. The Multispecies Coalescent Over-Splits Species in the Case of Geographically Widespread Taxa. Syst Biol 2020; 69:184-193. [PMID: 31180508 DOI: 10.1093/sysbio/syz042] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 11/14/2022] Open
Abstract
Many recent species delimitation studies rely exclusively on limited analyses of genetic data analyzed under the multispecies coalescent (MSC) model, and results from these studies often are regarded as conclusive support for taxonomic changes. However, most MSC-based species delimitation methods have well-known and often unmet assumptions. Uncritical application of these genetic-based approaches (without due consideration of sampling design, the effects of a priori group designations, isolation by distance, cytoplasmic-nuclear mismatch, and population structure) can lead to over-splitting of species. Here, we argue that in many common biological scenarios, researchers must be particularly cautious regarding these limitations, especially in cases of well-studied, geographically variable, and parapatrically distributed species complexes. We consider these points with respect to a historically controversial species group, the American milksnakes (Lampropeltis triangulum complex), using genetic data from a recent analysis (Ruane et al. 2014). We show that over-reliance on the program Bayesian Phylogenetics and Phylogeography, without adequate consideration of its assumptions and of sampling limitations, resulted in over-splitting of species in this study. Several of the hypothesized species of milksnakes instead appear to represent arbitrary slices of continuous geographic clines. We conclude that the best available evidence supports three, rather than seven, species within this complex. More generally, we recommend that coalescent-based species delimitation studies incorporate thorough analyses of geographic variation and carefully examine putative contact zones among delimited species before making taxonomic changes.
Collapse
Affiliation(s)
- E Anne Chambers
- Department of Integrative Biology and Biodiversity Center, The University of Texas at Austin, Austin, TX 78712, USA
| | - David M Hillis
- Department of Integrative Biology and Biodiversity Center, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
25
|
Burbrink FT, Grazziotin FG, Pyron RA, Cundall D, Donnellan S, Irish F, Keogh JS, Kraus F, Murphy RW, Noonan B, Raxworthy CJ, Ruane S, Lemmon AR, Lemmon EM, Zaher H. Interrogating Genomic-Scale Data for Squamata (Lizards, Snakes, and Amphisbaenians) Shows no Support for Key Traditional Morphological Relationships. Syst Biol 2019; 69:502-520. [DOI: 10.1093/sysbio/syz062] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 09/05/2019] [Accepted: 09/10/2019] [Indexed: 12/15/2022] Open
Abstract
Abstract
Genomics is narrowing uncertainty in the phylogenetic structure for many amniote groups. For one of the most diverse and species-rich groups, the squamate reptiles (lizards, snakes, and amphisbaenians), an inverse correlation between the number of taxa and loci sampled still persists across all publications using DNA sequence data and reaching a consensus on the relationships among them has been highly problematic. In this study, we use high-throughput sequence data from 289 samples covering 75 families of squamates to address phylogenetic affinities, estimate divergence times, and characterize residual topological uncertainty in the presence of genome-scale data. Importantly, we address genomic support for the traditional taxonomic groupings Scleroglossa and Macrostomata using novel machine-learning techniques. We interrogate genes using various metrics inherent to these loci, including parsimony-informative sites (PIS), phylogenetic informativeness, length, gaps, number of substitutions, and site concordance to understand why certain loci fail to find previously well-supported molecular clades and how they fail to support species-tree estimates. We show that both incomplete lineage sorting and poor gene-tree estimation (due to a few undesirable gene properties, such as an insufficient number of PIS), may account for most gene and species-tree discordance. We find overwhelming signal for Toxicofera, and also show that none of the loci included in this study supports Scleroglossa or Macrostomata. We comment on the origins and diversification of Squamata throughout the Mesozoic and underscore remaining uncertainties that persist in both deeper parts of the tree (e.g., relationships between Dibamia, Gekkota, and remaining squamates; among the three toxicoferan clades Iguania, Serpentes, and Anguiformes) and within specific clades (e.g., affinities among gekkotan, pleurodont iguanians, and colubroid families).
Collapse
Affiliation(s)
- Frank T Burbrink
- Department of Herpetology, The American Museum of Natural History, 79th Street at Central Park West, New York, NY 10024, USA
| | - Felipe G Grazziotin
- Laboratório de Coleções Zoológicas, Instituto Butantan, Av. Vital Brasil, 1500—Butantã, São Paulo—SP 05503-900, Brazil
| | - R Alexander Pyron
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - David Cundall
- Department of Biological Sciences, 1 W. Packer Avenue, Lehigh University, Bethlehem, PA 18015, USA
| | - Steve Donnellan
- South Australian Museum, North Terrace, Adelaide SA 5000, Australia
- School of Biological Sciences, University of Adelaide, SA 5005 Australia
| | - Frances Irish
- Department of Biological Sciences, Moravian College, 1200 Main St, Bethlehem, PA 18018, US
| | - J Scott Keogh
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Fred Kraus
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Robert W Murphy
- Department of Natural History, Royal Ontario Museum, 100 Queens Park, Toronto, ON M5S 2C6, Canada
| | - Brice Noonan
- Department of Biology, University of Mississippi, Oxford, MS 38677, USA
| | - Christopher J Raxworthy
- Department of Herpetology, The American Museum of Natural History, 79th Street at Central Park West, New York, NY 10024, USA
| | - Sara Ruane
- Department of Biological Sciences, 206 Boyden Hall, Rutgers University, 195 University Avenue, Newark, NJ 07102, USA
| | - Alan R Lemmon
- Department of Scientific Computing, Florida State University, Dirac Science Library, Tallahassee, FL 32306-4102, USA
| | - Emily Moriarty Lemmon
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL 32306-4295, USA
| | - Hussam Zaher
- Museu de Zoologia da Universidade de São Paulo, São Paulo, Brazil CEP 04263-000, Brazil
- Centre de Recherche sur la Paléobiodiversité et les Paléoenvironnements (CR2P), UMR 7207 CNRS/MNHN/Sorbonne Université, Muséum national d’Histoire naturelle, 8 rue Buffon, CP 38, 75005 Paris, France
| |
Collapse
|
26
|
Tonzo V, Papadopoulou A, Ortego J. Genomic data reveal deep genetic structure but no support for current taxonomic designation in a grasshopper species complex. Mol Ecol 2019; 28:3869-3886. [DOI: 10.1111/mec.15189] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 07/14/2019] [Accepted: 07/15/2019] [Indexed: 01/04/2023]
Affiliation(s)
- Vanina Tonzo
- Department of Integrative Ecology Estación Biológica de Doñana (EBD‐CSIC) Seville Spain
| | - Anna Papadopoulou
- Department of Biological Sciences University of Cyprus Nicosia Cyprus
| | - Joaquín Ortego
- Department of Integrative Ecology Estación Biológica de Doñana (EBD‐CSIC) Seville Spain
| |
Collapse
|
27
|
Liu Y, Johnson MG, Cox CJ, Medina R, Devos N, Vanderpoorten A, Hedenäs L, Bell NE, Shevock JR, Aguero B, Quandt D, Wickett NJ, Shaw AJ, Goffinet B. Resolution of the ordinal phylogeny of mosses using targeted exons from organellar and nuclear genomes. Nat Commun 2019; 10:1485. [PMID: 30940807 PMCID: PMC6445109 DOI: 10.1038/s41467-019-09454-w] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 03/07/2019] [Indexed: 11/21/2022] Open
Abstract
Mosses are a highly diverse lineage of land plants, whose diversification, spanning at least 400 million years, remains phylogenetically ambiguous due to the lack of fossils, massive early extinctions, late radiations, limited morphological variation, and conflicting signal among previously used markers. Here, we present phylogenetic reconstructions based on complete organellar exomes and a comparable set of nuclear genes for this major lineage of land plants. Our analysis of 142 species representing 29 of the 30 moss orders reveals that relative average rates of non-synonymous substitutions in nuclear versus plastid genes are much higher in mosses than in seed plants, consistent with the emerging concept of evolutionary dynamism in mosses. Our results highlight the evolutionary significance of taxa with reduced morphologies, shed light on the relative tempo and mechanisms underlying major cladogenic events, and suggest hypotheses for the relationships and delineation of moss orders.
Collapse
Affiliation(s)
- Yang Liu
- Fairy Lake Botanical Garden & Chinese Academy of Sciences, Shenzhen, 518004, China
- BGI-Shenzhen, Shenzhen, 518120, China
| | | | - Cymon J Cox
- Centro de Ciências do Mar, Universidade do Algarve, Gambelas, 8005-319, Faro, Portugal
| | - Rafael Medina
- Department of Biology, Augustana College, Rock Island, IL, 61201, USA
| | - Nicolas Devos
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | | | - Lars Hedenäs
- Department of Botany, Swedish Museum of Natural History, Stockholm, Box 50007, 10405, Sweden
| | - Neil E Bell
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh, EH3 5LR, UK
| | - James R Shevock
- California Academy of Sciences, San Francisco, CA, 94118, USA
| | - Blanka Aguero
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Dietmar Quandt
- Nees Institute for Biodiversity of Plants, University of Bonn, Bonn, 53115, Germany
| | | | - A Jonathan Shaw
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Bernard Goffinet
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA.
| |
Collapse
|
28
|
Folt B, Bauder J, Spear S, Stevenson D, Hoffman M, Oaks JR, Wood PL, Jenkins C, Steen DA, Guyer C. Taxonomic and conservation implications of population genetic admixture, mito-nuclear discordance, and male-biased dispersal of a large endangered snake, Drymarchon couperi. PLoS One 2019; 14:e0214439. [PMID: 30913266 PMCID: PMC6435180 DOI: 10.1371/journal.pone.0214439] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 03/11/2019] [Indexed: 01/08/2023] Open
Abstract
Accurate species delimitation and description are necessary to guide effective conservation of imperiled species, and this synergy is maximized when multiple data sources are used to delimit species. We illustrate this point by examining Drymarchon couperi (Eastern Indigo Snake), a large, federally-protected species in North America that was recently divided into two species based on gene sequence data from three loci and heuristic morphological assessment. Here, we re-evaluate the two-species hypothesis for D. couperi by evaluating both population genetic and gene sequence data. Our analyses of 14 microsatellite markers revealed 6–8 genetic population clusters with significant admixture, particularly across the contact zone between the two hypothesized species. Phylogenetic analyses of gene sequence data with maximum-likelihood methods suggested discordance between mitochondrial and nuclear markers and provided phylogenetic support for one species rather than two. For these reasons, we place Drymarchon kolpobasileus into synonymy with D. couperi. We suggest inconsistent patterns between mitochondrial and nuclear DNA are driven by high dispersal of males relative to females. We advocate for species delimitation exercises that evaluate admixture and gene flow in addition to phylogenetic analyses, particularly when the latter reveal monophyletic lineages. This is particularly important for taxa, such as squamates, that exhibit strong sex-biased dispersal. Problems associated with over-delimitation of species richness can become particularly acute for threatened and endangered species, because of high costs to conservation when taxonomy demands protection of more individual species than are supported by accumulating data.
Collapse
Affiliation(s)
- Brian Folt
- Department of Biological Sciences and Auburn University Museum of Natural History, Auburn University, Auburn, Alabama, United States of America
- * E-mail:
| | - Javan Bauder
- The Orianne Society, 11 Fruitstand Lane, Tiger, Georgia, United States of America
- Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts, United States of America
- Illinois Natural History Survey, University of Illinois, Champaign, Illinois, United States of America
| | - Stephen Spear
- The Orianne Society, 11 Fruitstand Lane, Tiger, Georgia, United States of America
- The Wilds, Cumberland, Ohio United States of America
| | - Dirk Stevenson
- The Orianne Society, 11 Fruitstand Lane, Tiger, Georgia, United States of America
- Altamaha Environmental Consulting, Hinesville, Georgia, United States of America
| | - Michelle Hoffman
- The Orianne Center for Indigo Conservation, Central Florida Zoo and Botanical Gardens, Sanford, Florida, United States of America
| | - Jamie R. Oaks
- Department of Biological Sciences and Auburn University Museum of Natural History, Auburn University, Auburn, Alabama, United States of America
| | - Perry L. Wood
- Department of Biological Sciences and Auburn University Museum of Natural History, Auburn University, Auburn, Alabama, United States of America
| | - Christopher Jenkins
- The Orianne Society, 11 Fruitstand Lane, Tiger, Georgia, United States of America
| | - David A. Steen
- Georgia Sea Turtle Center, Jekyll Island Authority, Jekyll Island, Georgia, United States of America
| | - Craig Guyer
- Department of Biological Sciences and Auburn University Museum of Natural History, Auburn University, Auburn, Alabama, United States of America
| |
Collapse
|
29
|
Different species or genetically divergent populations? Integrative species delimitation of the Primulina hochiensis complex from isolated karst habitats. Mol Phylogenet Evol 2019; 132:219-231. [DOI: 10.1016/j.ympev.2018.12.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 12/09/2018] [Accepted: 12/09/2018] [Indexed: 12/15/2022]
|
30
|
Anchored hybrid enrichment generated nuclear, plastid and mitochondrial markers resolve the Lepanthes horrida (Orchidaceae: Pleurothallidinae) species complex. Mol Phylogenet Evol 2018; 129:27-47. [DOI: 10.1016/j.ympev.2018.07.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/25/2018] [Accepted: 07/15/2018] [Indexed: 11/20/2022]
|
31
|
Irisarri I, Singh P, Koblmüller S, Torres-Dowdall J, Henning F, Franchini P, Fischer C, Lemmon AR, Lemmon EM, Thallinger GG, Sturmbauer C, Meyer A. Phylogenomics uncovers early hybridization and adaptive loci shaping the radiation of Lake Tanganyika cichlid fishes. Nat Commun 2018; 9:3159. [PMID: 30089797 PMCID: PMC6082878 DOI: 10.1038/s41467-018-05479-9] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 05/30/2018] [Indexed: 11/21/2022] Open
Abstract
Lake Tanganyika is the oldest and phenotypically most diverse of the three East African cichlid fish adaptive radiations. It is also the cradle for the younger parallel haplochromine cichlid radiations in Lakes Malawi and Victoria. Despite its evolutionary significance, the relationships among the main Lake Tanganyika lineages remained unresolved, as did the general timescale of cichlid evolution. Here, we disentangle the deep phylogenetic structure of the Lake Tanganyika radiation using anchored phylogenomics and uncover hybridization at its base, as well as early in the haplochromine radiation. This suggests that hybridization might have facilitated these speciation bursts. Time-calibrated trees support that the radiation of Tanganyika cichlids coincided with lake formation and that Gondwanan vicariance concurred with the earliest splits in the cichlid family tree. Genes linked to key innovations show signals of introgression or positive selection following colonization of lake habitats and species' dietary adaptations are revealed as major drivers of colour vision evolution. These findings shed light onto the processes shaping the evolution of adaptive radiations.
Collapse
Affiliation(s)
- Iker Irisarri
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Universitätsstrasse 10, Konstanz, 78457, Germany
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal, 2, Madrid, 28006, Spain
| | - Pooja Singh
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Universitätsstrasse 10, Konstanz, 78457, Germany
- Institute of Biology, University of Graz, Universitätsplatz 2, Graz, 8010, Austria
| | - Stephan Koblmüller
- Institute of Biology, University of Graz, Universitätsplatz 2, Graz, 8010, Austria
| | - Julián Torres-Dowdall
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Universitätsstrasse 10, Konstanz, 78457, Germany
| | - Frederico Henning
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Universitätsstrasse 10, Konstanz, 78457, Germany
- Department of Genetics, Institute of Biology, Federal University of Rio de Janeiro, Ilha do Fundão, Rio de Janeiro, 21944-970, Brazil
| | - Paolo Franchini
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Universitätsstrasse 10, Konstanz, 78457, Germany
| | - Christoph Fischer
- Institute of Computational Biotechnology, Graz University of Technology, Petersgasse 14, Graz, 8010, Austria
- OMICS Center Graz, BioTechMed Graz, Stiftingtalstraße 24, Graz, 8010, Austria
| | - Alan R Lemmon
- Department of Scientific Computing, Florida State University, Dirac Science Library, Tallahassee, FL, 32306, USA
| | - Emily Moriarty Lemmon
- Department of Biological Science, Florida State University, Biomedical Research Facility, Tallahassee, FL, 32306, USA
| | - Gerhard G Thallinger
- Institute of Computational Biotechnology, Graz University of Technology, Petersgasse 14, Graz, 8010, Austria
- OMICS Center Graz, BioTechMed Graz, Stiftingtalstraße 24, Graz, 8010, Austria
| | - Christian Sturmbauer
- Institute of Biology, University of Graz, Universitätsplatz 2, Graz, 8010, Austria.
| | - Axel Meyer
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Universitätsstrasse 10, Konstanz, 78457, Germany.
- Radcliffe Institute for Advanced Study, Harvard University, Cambridge, 02138, MA, USA.
| |
Collapse
|
32
|
Morales-Briones DF, Liston A, Tank DC. Phylogenomic analyses reveal a deep history of hybridization and polyploidy in the Neotropical genus Lachemilla (Rosaceae). THE NEW PHYTOLOGIST 2018; 218:1668-1684. [PMID: 29604235 DOI: 10.1111/nph.15099] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/09/2018] [Indexed: 05/10/2023]
Abstract
Hybridization, incomplete lineage sorting, and phylogenetic error produce similar incongruence patterns, representing a great challenge for phylogenetic reconstruction. Here, we use sequence capture data and multiple species tree and species network approaches to resolve the backbone phylogeny of the Neotropical genus Lachemilla, while distinguishing among sources of incongruence. We used 396 nuclear loci and nearly complete plastome sequences from 27 species to clarify the relationships among the major groups of Lachemilla, and explored multiple sources of conflict between gene trees and species trees inferred with a plurality of approaches. All phylogenetic methods recovered the four major groups previously proposed for Lachemilla, but species tree methods recovered different topologies for relationships between these four clades. Species network analyses revealed that one major clade, Orbiculate, is likely of ancient hybrid origin, representing one of the main sources of incongruence among the species trees. Additionally, we found evidence for a potential whole genome duplication event shared by Lachemilla and allied genera. Lachemilla shows clear evidence of ancient and recent hybridization throughout the evolutionary history of the group. Also, we show the necessity to use phylogenetic network approaches that can simultaneously accommodate incomplete lineage sorting and gene flow when studying groups that show patterns of reticulation.
Collapse
Affiliation(s)
- Diego F Morales-Briones
- Department of Biological Sciences, University of Idaho, 875 Perimeter Drive MS 3051, Moscow, ID, 83844-3051, USA
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, 875 Perimeter Drive MS 3051, Moscow, ID, 83844-3051, USA
- Stillinger Herbarium, University of Idaho, 875 Perimeter Drive MS 3051, Moscow, ID, 83844-3051, USA
| | - Aaron Liston
- Department of Botany and Plant Pathology, Oregon State University, 2082 Cordley Hall, Corvallis, OR, 97331, USA
| | - David C Tank
- Department of Biological Sciences, University of Idaho, 875 Perimeter Drive MS 3051, Moscow, ID, 83844-3051, USA
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, 875 Perimeter Drive MS 3051, Moscow, ID, 83844-3051, USA
- Stillinger Herbarium, University of Idaho, 875 Perimeter Drive MS 3051, Moscow, ID, 83844-3051, USA
| |
Collapse
|
33
|
Barrow LN, Lemmon AR, Lemmon EM. Targeted Sampling and Target Capture: Assessing Phylogeographic Concordance with Genome-wide Data. Syst Biol 2018; 67:979-996. [DOI: 10.1093/sysbio/syy021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 03/15/2018] [Indexed: 01/09/2023] Open
Affiliation(s)
- Lisa N Barrow
- Department of Biology, Museum of Southwestern Biology, MSC03 2020, 1 University of New Mexico, Albuquerque, NM 87131-0001, USA
- Department of Biological Science, Florida State University, 319 Stadium Drive, PO Box 3064295, Tallahassee, FL 32306-4295, USA
| | - Alan R Lemmon
- Department of Scientific Computing, Florida State University, Dirac Science Library, Tallahassee, FL 32306-4120, USA
| | - Emily Moriarty Lemmon
- Department of Biological Science, Florida State University, 319 Stadium Drive, PO Box 3064295, Tallahassee, FL 32306-4295, USA
| |
Collapse
|
34
|
Noguerales V, Cordero PJ, Ortego J. Integrating genomic and phenotypic data to evaluate alternative phylogenetic and species delimitation hypotheses in a recent evolutionary radiation of grasshoppers. Mol Ecol 2018; 27:1229-1244. [DOI: 10.1111/mec.14504] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/16/2017] [Accepted: 01/05/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Víctor Noguerales
- Grupo de Investigación de la Biodiversidad Genética y Cultural; Instituto de Investigación en Recursos Cinegéticos - IREC (CSIC, UCLM, JCCM); Ciudad Real Spain
| | - Pedro J. Cordero
- Grupo de Investigación de la Biodiversidad Genética y Cultural; Instituto de Investigación en Recursos Cinegéticos - IREC (CSIC, UCLM, JCCM); Ciudad Real Spain
| | - Joaquín Ortego
- Department of Integrative Ecology; Estación Biológica de Doñana (EBD-CSIC); Seville Spain
| |
Collapse
|
35
|
Everson KM, Hildebrandt KBP, Goodman SM, Olson LE. Caught in the act: Incipient speciation across a latitudinal gradient in a semifossorial mammal from Madagascar, the mole tenrec Oryzorictes hova (Tenrecidae). Mol Phylogenet Evol 2018; 126:74-84. [PMID: 29501374 DOI: 10.1016/j.ympev.2018.02.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 02/02/2018] [Accepted: 02/23/2018] [Indexed: 11/17/2022]
Abstract
Madagascar is one of the world's foremost biodiversity hotspots, yet a large portion of its flora and fauna remains undescribed and the driving forces of in situ diversification are not well understood. Recent studies have identified a widespread, latitudinally structured phylogeographic pattern in Madagascar's humid-forest mammals, amphibians, reptiles, and insects. Several factors may be driving this pattern, namely biogeographic barriers (i.e., rivers or valleys) or past episodes of forest contraction and expansion. In this study, we describe the phylogeographic structure of the small, semifossorial mammal Oryzorictes hova, one of Madagascar's two species of mole tenrec, found throughout Madagascar's eastern humid forest belt, from high-elevation montane forest to low-elevation forests, as well as disturbed habitat such as rice fields. Using one mitochondrial locus, four nuclear loci, and 31 craniomandibular measurements, we identified three distinct populations of O. hova associated with the northern, central, and southern regions of the island. We found little evidence of gene flow among these populations, so we treated each population as a potential species. We validated species limits using two Bayesian methods: BP&P, employing only DNA sequence data, and iBPP using both DNA and morphological data, and we assessed whether these methods are susceptible to producing false positive errors. Molecular and morphological data support the recognition of each of the three populations of O. hova as distinct species, but formal species descriptions will require additional data from type specimens. This study illustrates the importance of using integrative datasets, multiple methodological approaches, and extensive geographic sampling for species delimitation and adds evidence for a widespread phylogeographic pattern in Madagascar's humid forest taxa.
Collapse
Affiliation(s)
- Kathryn M Everson
- University of Alaska Museum, 907 Yukon Drive, Fairbanks, AK 99775, USA.
| | | | - Steven M Goodman
- Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, IL 60605, USA; Association Vahatra, BP 3972, Antananarivo 101, Madagascar
| | - Link E Olson
- University of Alaska Museum, 907 Yukon Drive, Fairbanks, AK 99775, USA; Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, IL 60605, USA
| |
Collapse
|
36
|
O'Connell KA, Smith EN, Shaney KJ, Arifin U, Kurniawan N, Sidik I, Fujita MK. Coalescent species delimitation of a Sumatran parachuting frog. ZOOL SCR 2017. [DOI: 10.1111/zsc.12248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kyle A O'Connell
- Department of Biology The University of Texas at Arlington Arlington TX USA
- The Amphibian and Reptile Diversity Research Center University of Texas at Arlington Arlington TX USA
| | - Eric N Smith
- Department of Biology The University of Texas at Arlington Arlington TX USA
- The Amphibian and Reptile Diversity Research Center University of Texas at Arlington Arlington TX USA
| | - Kyle J Shaney
- Department of Biology The University of Texas at Arlington Arlington TX USA
- The Amphibian and Reptile Diversity Research Center University of Texas at Arlington Arlington TX USA
| | - Umilaela Arifin
- Biozentrum Grindel & Zopolofisches Museum Universität Hamburg Hamburg Germany
| | - Nia Kurniawan
- Department of Biology Universitas Brawijaya Malang East Java Indonesia
| | - Irvan Sidik
- Research and Development Center for Biology Indonesian Institute of Science (LIPI) Cibinong West Java Indonesia
| | - Matthew K Fujita
- Department of Biology The University of Texas at Arlington Arlington TX USA
- The Amphibian and Reptile Diversity Research Center University of Texas at Arlington Arlington TX USA
| |
Collapse
|
37
|
Wanke S, Granados Mendoza C, Müller S, Paizanni Guillén A, Neinhuis C, Lemmon AR, Lemmon EM, Samain MS. Recalcitrant deep and shallow nodes in Aristolochia (Aristolochiaceae) illuminated using anchored hybrid enrichment. Mol Phylogenet Evol 2017; 117:111-123. [DOI: 10.1016/j.ympev.2017.05.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 05/12/2017] [Accepted: 05/15/2017] [Indexed: 01/05/2023]
|
38
|
Chan KO, Alexander AM, Grismer LL, Su YC, Grismer JL, Quah ESH, Brown RM. Species delimitation with gene flow: A methodological comparison and population genomics approach to elucidate cryptic species boundaries in Malaysian Torrent Frogs. Mol Ecol 2017; 26:5435-5450. [DOI: 10.1111/mec.14296] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/12/2017] [Accepted: 08/01/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Kin Onn Chan
- Biodiversity Institute and Department of Ecology and Evolutionary Biology; University of Kansas; Lawrence KS USA
| | - Alana M. Alexander
- Biodiversity Institute and Department of Ecology and Evolutionary Biology; University of Kansas; Lawrence KS USA
| | - L. Lee Grismer
- Department of Biology; La Sierra University; Riverside CA USA
| | - Yong-Chao Su
- Department of Biomedical Science and Environmental Biology; Kaohsiung Medical University; Kaohsiung City Taiwan
| | - Jesse L. Grismer
- Department of Biological Sciences; Auburn University; Auburn AL USA
- La Kretz Center for Californian Conservation Science; Institute of the Environment and Sustainability; University of California Los Angeles; Los Angeles CA USA
| | - Evan S. H. Quah
- School of Biological Sciences; Universiti Sains Malaysia; Penang Malaysia
| | - Rafe M. Brown
- Biodiversity Institute and Department of Ecology and Evolutionary Biology; University of Kansas; Lawrence KS USA
| |
Collapse
|
39
|
Léveillé-Bourret É, Starr JR, Ford BA, Moriarty Lemmon E, Lemmon AR. Resolving Rapid Radiations within Angiosperm Families Using Anchored Phylogenomics. Syst Biol 2017; 67:94-112. [DOI: 10.1093/sysbio/syx050] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 04/28/2017] [Indexed: 11/13/2022] Open
|
40
|
Morales HE, Sunnucks P, Joseph L, Pavlova A. Perpendicular axes of differentiation generated by mitochondrial introgression. Mol Ecol 2017; 26:3241-3255. [DOI: 10.1111/mec.14114] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 03/14/2017] [Accepted: 03/15/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Hernán E. Morales
- School of Biological Sciences Monash UniversityClayton Campus Melbourne Vic. 3800 Australia
- Centre for Marine Evolutionary Biology Department of Marine Sciences University of GothenburgBox 461 SE 405 30 Göteborg Sweden
| | - Paul Sunnucks
- School of Biological Sciences Monash UniversityClayton Campus Melbourne Vic. 3800 Australia
| | - Leo Joseph
- Australian National Wildlife Collection CSIRO National Research Collections AustraliaGPO Box 1700 Canberra ACT 2601 Australia
| | - Alexandra Pavlova
- School of Biological Sciences Monash UniversityClayton Campus Melbourne Vic. 3800 Australia
| |
Collapse
|
41
|
Olave M, Avila LJ, Sites JW, Morando M. Hidden diversity within the lizard genus Liolaemus: Genetic vs morphological divergence in the L. rothi complex (Squamata:Liolaeminae). Mol Phylogenet Evol 2017; 107:56-63. [DOI: 10.1016/j.ympev.2016.09.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/25/2016] [Accepted: 09/12/2016] [Indexed: 11/29/2022]
|
42
|
In the shadows: Phylogenomics and coalescent species delimitation unveil cryptic diversity in a Cerrado endemic lizard (Squamata: Tropidurus). Mol Phylogenet Evol 2017; 107:455-465. [DOI: 10.1016/j.ympev.2016.12.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 11/07/2016] [Accepted: 12/07/2016] [Indexed: 11/18/2022]
|
43
|
Overview of Phylogenetic Approaches to Mycorrhizal Biogeography, Diversity and Evolution. BIOGEOGRAPHY OF MYCORRHIZAL SYMBIOSIS 2017. [DOI: 10.1007/978-3-319-56363-3_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
44
|
Mitchell N, Lewis PO, Lemmon EM, Lemmon AR, Holsinger KE. Anchored phylogenomics improves the resolution of evolutionary relationships in the rapid radiation of Protea L. AMERICAN JOURNAL OF BOTANY 2017; 104:102-115. [PMID: 28104589 DOI: 10.3732/ajb.1600227] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 11/30/2016] [Indexed: 05/05/2023]
Abstract
PREMISE OF THE STUDY Estimating phylogenetic relationships in relatively recent evolutionary radiations is challenging, especially if short branches associated with recent divergence result in multiple gene tree histories. We combine anchored enrichment next-generation sequencing with species tree analyses to produce a robust estimate of phylogenetic relationships in the genus Protea (Proteaceae), an iconic radiation in South Africa. METHODS We sampled multiple individuals within 59 out of 112 species of Protea and 6 outgroup species for a total of 163 individuals, and obtained sequences for 498 low-copy, orthologous nuclear loci using anchored phylogenomics. We compare several approaches for building species trees, and explore gene tree-species tree discrepancies to determine whether poor phylogenetic resolution reflects a lack of informative sites, incomplete lineage sorting, or hybridization. KEY RESULTS Phylogenetic estimates from species tree approaches are similar to one another and recover previously well-supported clades within Protea, in addition to providing well-supported phylogenetic hypotheses for previously poorly resolved intrageneric relationships. Individual gene trees are markedly different from one another and from species trees. Nonetheless, analyses indicate that differences among gene trees occur primarily concerning clades supported by short branches. CONCLUSIONS Species tree methods using hundreds of nuclear loci provided strong support for many previously unresolved relationships in the radiation of the genus Protea. In cases where support for particular relationships remains low, these appear to arise from few informative sites and lack of information rather than strongly supported disagreement among gene trees.
Collapse
Affiliation(s)
- Nora Mitchell
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut 06269 United States
| | - Paul O Lewis
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut 06269 United States
| | - Emily Moriarty Lemmon
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306 United States
| | - Alan R Lemmon
- Department of Scientific Computing, Florida State University, Tallahassee, Florida 32306 United States
| | - Kent E Holsinger
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut 06269 United States
| |
Collapse
|
45
|
Manthey JD, Tollis M, Lemmon AR, Moriarty Lemmon E, Boissinot S. Diversification in wild populations of the model organism Anolis carolinensis: A genome-wide phylogeographic investigation. Ecol Evol 2016; 6:8115-8125. [PMID: 27891220 PMCID: PMC5108263 DOI: 10.1002/ece3.2547] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/14/2016] [Accepted: 09/19/2016] [Indexed: 01/14/2023] Open
Abstract
The green anole (Anolis carolinensis) is a lizard widespread throughout the southeastern United States and is a model organism for the study of reproductive behavior, physiology, neural biology, and genomics. Previous phylogeographic studies of A. carolinensis using mitochondrial DNA and small numbers of nuclear loci identified conflicting and poorly supported relationships among geographically structured clades; these inconsistencies preclude confident use of A. carolinensis evolutionary history in association with morphological, physiological, or reproductive biology studies among sampling localities and necessitate increased effort to resolve evolutionary relationships among natural populations. Here, we used anchored hybrid enrichment of hundreds of genetic markers across the genome of A. carolinensis and identified five strongly supported phylogeographic groups. Using multiple analyses, we produced a fully resolved species tree, investigated relative support for each lineage across all gene trees, and identified mito‐nuclear discordance when comparing our results to previous studies. We found fixed differences in only one clade—southern Florida restricted to the Everglades region—while most polymorphisms were shared between lineages. The southern Florida group likely diverged from other populations during the Pliocene, with all other diversification during the Pleistocene. Multiple lines of support, including phylogenetic relationships, a latitudinal gradient in genetic diversity, and relatively more stable long‐term population sizes in southern phylogeographic groups, indicate that diversification in A. carolinensis occurred northward from southern Florida.
Collapse
Affiliation(s)
| | - Marc Tollis
- Biodesign Institute Arizona State University Tempe AZ USA
| | - Alan R Lemmon
- Department of Scientific Computing Florida State University Tallahassee FL USA
| | | | | |
Collapse
|
46
|
Hamilton CA, Lemmon AR, Lemmon EM, Bond JE. Expanding anchored hybrid enrichment to resolve both deep and shallow relationships within the spider tree of life. BMC Evol Biol 2016; 16:212. [PMID: 27733110 PMCID: PMC5062932 DOI: 10.1186/s12862-016-0769-y] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 09/28/2016] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Despite considerable effort, progress in spider molecular systematics has lagged behind many other comparable arthropod groups, thereby hindering family-level resolution, classification, and testing of important macroevolutionary hypotheses. Recently, alternative targeted sequence capture techniques have provided molecular systematics a powerful tool for resolving relationships across the Tree of Life. One of these approaches, Anchored Hybrid Enrichment (AHE), is designed to recover hundreds of unique orthologous loci from across the genome, for resolving both shallow and deep-scale evolutionary relationships within non-model systems. Herein we present a modification of the AHE approach that expands its use for application in spiders, with a particular emphasis on the infraorder Mygalomorphae. RESULTS Our aim was to design a set of probes that effectively capture loci informative at a diversity of phylogenetic timescales. Following identification of putative arthropod-wide loci, we utilized homologous transcriptome sequences from 17 species across all spiders to identify exon boundaries. Conserved regions with variable flanking regions were then sought across the tick genome, three published araneomorph spider genomes, and raw genomic reads of two mygalomorph taxa. Following development of the 585 target loci in the Spider Probe Kit, we applied AHE across three taxonomic depths to evaluate performance: deep-level spider family relationships (33 taxa, 327 loci); family and generic relationships within the mygalomorph family Euctenizidae (25 taxa, 403 loci); and species relationships in the North American tarantula genus Aphonopelma (83 taxa, 581 loci). At the deepest level, all three major spider lineages (the Mesothelae, Mygalomorphae, and Araneomorphae) were supported with high bootstrap support. Strong support was also found throughout the Euctenizidae, including generic relationships within the family and species relationships within the genus Aptostichus. As in the Euctenizidae, virtually identical topologies were inferred with high support throughout Aphonopelma. CONCLUSIONS The Spider Probe Kit, the first implementation of AHE methodology in Class Arachnida, holds great promise for gathering the types and quantities of molecular data needed to accelerate an understanding of the spider Tree of Life by providing a mechanism whereby different researchers can confidently and effectively use the same loci for independent projects, yet allowing synthesis of data across independent research groups.
Collapse
Affiliation(s)
- Chris A. Hamilton
- Department of Biological Sciences, Auburn University & Auburn University Museum of Natural History, Auburn, AL USA
| | - Alan R. Lemmon
- Department of Scientific Computing, Florida State University, Tallahassee, FL USA
| | | | - Jason E. Bond
- Department of Biological Sciences, Auburn University & Auburn University Museum of Natural History, Auburn, AL USA
| |
Collapse
|