1
|
Bauer N, Beckmann D, Reinhardt D, Frost N, Bobe S, Erapaneedi R, Risse B, Kiefer F. Therapy-induced modulation of tumor vasculature and oxygenation in a murine glioblastoma model quantified by deep learning-based feature extraction. Sci Rep 2024; 14:2034. [PMID: 38263339 PMCID: PMC10805754 DOI: 10.1038/s41598-024-52268-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/16/2024] [Indexed: 01/25/2024] Open
Abstract
Glioblastoma presents characteristically with an exuberant, poorly functional vasculature that causes malperfusion, hypoxia and necrosis. Despite limited clinical efficacy, anti-angiogenesis resulting in vascular normalization remains a promising therapeutic approach. Yet, fundamental questions concerning anti-angiogenic therapy remain unanswered, partly due to the scale and resolution gap between microscopy and clinical imaging and a lack of quantitative data readouts. To what extend does treatment lead to vessel regression or vessel normalization and does it ameliorate or aggravate hypoxia? Clearly, a better understanding of the underlying mechanisms would greatly benefit the development of desperately needed improved treatment regimens. Here, using orthotopic transplantation of Gli36 cells, a widely used murine glioma model, we present a mesoscopic approach based on light sheet fluorescence microscopic imaging of wholemount stained tumors. Deep learning-based segmentation followed by automated feature extraction allowed quantitative analyses of the entire tumor vasculature and oxygenation statuses. Unexpectedly in this model, the response to both cytotoxic and anti-angiogenic therapy was dominated by vessel normalization with little evidence for vessel regression. Equally surprising, only cytotoxic therapy resulted in a significant alleviation of hypoxia. Taken together, we provide and evaluate a quantitative workflow that addresses some of the most urgent mechanistic questions in anti-angiogenic therapy.
Collapse
Affiliation(s)
- Nadine Bauer
- European Institute for Molecular Imaging (EIMI), Multiscale Imaging Centre (MIC), University of Münster, Röntgenstr. 16, 48149, Münster, Germany
- Max Planck Institute for Molecular Biomedicine, Röntgenstr. 20, 48149, Münster, Germany
| | - Daniel Beckmann
- Institute for Geoinformatics, University of Münster, Heisenbergstr. 2, 48149, Münster, Germany
- Institute for Computer Science, University of Münster, Einsteinstraße 62, 48149, Münster, Germany
| | - Dirk Reinhardt
- European Institute for Molecular Imaging (EIMI), Multiscale Imaging Centre (MIC), University of Münster, Röntgenstr. 16, 48149, Münster, Germany
| | - Nicole Frost
- European Institute for Molecular Imaging (EIMI), Multiscale Imaging Centre (MIC), University of Münster, Röntgenstr. 16, 48149, Münster, Germany
| | - Stefanie Bobe
- European Institute for Molecular Imaging (EIMI), Multiscale Imaging Centre (MIC), University of Münster, Röntgenstr. 16, 48149, Münster, Germany
- Gerhard Domagk Institute of Pathology, University Hospital Münster, Domagkstr. 15, 48149, Münster, Germany
| | - Raghu Erapaneedi
- European Institute for Molecular Imaging (EIMI), Multiscale Imaging Centre (MIC), University of Münster, Röntgenstr. 16, 48149, Münster, Germany
- Max Planck Institute for Molecular Biomedicine, Röntgenstr. 20, 48149, Münster, Germany
| | - Benjamin Risse
- Institute for Geoinformatics, University of Münster, Heisenbergstr. 2, 48149, Münster, Germany
- Institute for Computer Science, University of Münster, Einsteinstraße 62, 48149, Münster, Germany
| | - Friedemann Kiefer
- European Institute for Molecular Imaging (EIMI), Multiscale Imaging Centre (MIC), University of Münster, Röntgenstr. 16, 48149, Münster, Germany.
- Max Planck Institute for Molecular Biomedicine, Röntgenstr. 20, 48149, Münster, Germany.
| |
Collapse
|
2
|
Zabel WJ, Allam N, Foltz WD, Flueraru C, Taylor E, Vitkin IA. Bridging the macro to micro resolution gap with angiographic optical coherence tomography and dynamic contrast enhanced MRI. Sci Rep 2022; 12:3159. [PMID: 35210476 PMCID: PMC8873467 DOI: 10.1038/s41598-022-07000-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/09/2022] [Indexed: 11/25/2022] Open
Abstract
Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) is emerging as a valuable tool for non-invasive volumetric monitoring of the tumor vascular status and its therapeutic response. However, clinical utility of DCE-MRI is challenged by uncertainty in its ability to quantify the tumor microvasculature (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mu \mathrm{m}$$\end{document}μm scale) given its relatively poor spatial resolution (mm scale at best). To address this challenge, we directly compared DCE-MRI parameter maps with co-registered micron-scale-resolution speckle variance optical coherence tomography (svOCT) microvascular images in a window chamber tumor mouse model. Both semi and fully quantitative (Toft’s model) DCE-MRI metrics were tested for correlation with microvascular svOCT biomarkers. svOCT’s derived vascular volume fraction (VVF) and the mean distance to nearest vessel (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\overline{\mathrm{DNV} }$$\end{document}DNV¯) metrics were correlated with DCE-MRI vascular biomarkers such as time to peak contrast enhancement (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$r=-0.81$$\end{document}r=-0.81 and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$0.83$$\end{document}0.83 respectively, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$P<0.0001$$\end{document}P<0.0001 for both), the area under the gadolinium-time concentration curve (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$r=0.50$$\end{document}r=0.50 and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$-0.48$$\end{document}-0.48 respectively, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$P<0.0001$$\end{document}P<0.0001 for both) and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${k}_{trans}$$\end{document}ktrans (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$r=0.64$$\end{document}r=0.64 and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$-0.61$$\end{document}-0.61 respectively, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$P<0.0001$$\end{document}P<0.0001 for both). Several other correlated micro–macro vascular metric pairs were also noted. The microvascular insights afforded by svOCT may help improve the clinical utility of DCE-MRI for tissue functional status assessment and therapeutic response monitoring applications.
Collapse
Affiliation(s)
- W Jeffrey Zabel
- Department of Medical Biophysics, University of Toronto, Toronto, Canada.
| | - Nader Allam
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Warren D Foltz
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Costel Flueraru
- National Research Council Canada, Information Communication Technology, Ottawa, Canada
| | - Edward Taylor
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - I Alex Vitkin
- Department of Medical Biophysics, University of Toronto, Toronto, Canada.,Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Sulheim E, Hanson I, Snipstad S, Vikedal K, Mørch Y, Boucher Y, Davies CDL. Sonopermeation with Nanoparticle‐Stabilized Microbubbles Reduces Solid Stress and Improves Nanomedicine Delivery to Tumors. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Einar Sulheim
- Department of Physics Norwegian University of Science and Technology (NTNU) Trondheim NO‐7491 Norway
- Department of Biotechnology and Nanomedicine SINTEF AS Trondheim 7034 Norway
- Cancer Clinic St.Olavs Hospital Trondheim 7030 Norway
| | - Ingunn Hanson
- Department of Physics Norwegian University of Science and Technology (NTNU) Trondheim NO‐7491 Norway
| | - Sofie Snipstad
- Department of Physics Norwegian University of Science and Technology (NTNU) Trondheim NO‐7491 Norway
- Department of Biotechnology and Nanomedicine SINTEF AS Trondheim 7034 Norway
- Cancer Clinic St.Olavs Hospital Trondheim 7030 Norway
| | - Krister Vikedal
- Department of Physics Norwegian University of Science and Technology (NTNU) Trondheim NO‐7491 Norway
| | - Yrr Mørch
- Department of Biotechnology and Nanomedicine SINTEF AS Trondheim 7034 Norway
| | - Yves Boucher
- Edwin L. Steele Laboratory for Tumor Biology Massachusetts General Hospital Boston MA 02114 USA
| | - Catharina de Lange Davies
- Department of Physics Norwegian University of Science and Technology (NTNU) Trondheim NO‐7491 Norway
| |
Collapse
|
4
|
Wu Y, Fortunato GM, Okesola BO, Brocchetti FLPD, Suntornnond R, Connelly J, De Maria C, Rodriguez-Cabello JC, Vozzi G, Wang W, Mata A. An interfacial self-assembling bioink for the manufacturing of capillary-like structures with tuneable and anisotropic permeability. Biofabrication 2021; 13. [PMID: 33561850 DOI: 10.1088/1758-5090/abe4c3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/09/2021] [Indexed: 12/28/2022]
Abstract
Self-assembling bioinks offer the possibility to biofabricate with molecular precision, hierarchical control, and biofunctionality. For this to become a reality with widespread impact, it is essential to engineer these ink systems ensuring reproducibility and providing suitable standardization. We have reported a self-assembling bioink based on disorder-to-order transitions of an elastin-like recombinamer (ELR) to co-assemble with graphene oxide (GO). Here, we establish reproducible processes, optimize printing parameters for its use as a bioink, describe new advantages that the self-assembling bioink can provide, and demonstrate how to fabricate novel structures with physiological relevance. We fabricate capillary-like structures with resolutions down to ∼10µm in diameter and ∼2µm thick tube walls and use both experimental and finite element analysis to characterize the printing conditions, underlying interfacial diffusion-reaction mechanism of assembly, printing fidelity, and material porosity and permeability. We demonstrate the capacity to modulate the pore size and tune the permeability of the resulting structures with and without human umbilical vascular endothelial cells. Finally, the potential of the ELR-GO bioink to enable supramolecular fabrication of biomimetic structures was demonstrated by printing tubes exhibiting walls with progressively different structure and permeability.
Collapse
Affiliation(s)
- Yuanhao Wu
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, United Kingdom.,Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, United Kingdom.,Institute of Bioengineering, Queen Mary University of London, London E1 4NS, United Kingdom.,School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Gabriele Maria Fortunato
- Research Center 'E. Piaggio' and Dipartimento di Ingegneria dell'Informazione, University of Pisa, Largo Lucio Lazzarino, Pisa 1-56122, Italy
| | - Babatunde O Okesola
- Institute of Bioengineering, Queen Mary University of London, London E1 4NS, United Kingdom.,School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, United Kingdom
| | | | - Ratima Suntornnond
- CREATE LAB, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, United Kingdom
| | - John Connelly
- CREATE LAB, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, United Kingdom
| | - Carmelo De Maria
- Research Center 'E. Piaggio' and Dipartimento di Ingegneria dell'Informazione, University of Pisa, Largo Lucio Lazzarino, Pisa 1-56122, Italy
| | | | - Giovanni Vozzi
- Research Center 'E. Piaggio' and Dipartimento di Ingegneria dell'Informazione, University of Pisa, Largo Lucio Lazzarino, Pisa 1-56122, Italy
| | - Wen Wang
- Institute of Bioengineering, Queen Mary University of London, London E1 4NS, United Kingdom.,School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Alvaro Mata
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, United Kingdom.,Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, United Kingdom.,Institute of Bioengineering, Queen Mary University of London, London E1 4NS, United Kingdom.,School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, United Kingdom.,Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
5
|
Xifu WMD, Xizhong DBS, Tingting HMS, Jie MBS, Yuanxun KMS, Jiwen KBS, Renju BMD, Zhaojun LMD. Evaluation of Features of Adrenal Adenomas and Nonadenomas Using Dynamic Contrast-Enhanced CT Biomarkers. ADVANCED ULTRASOUND IN DIAGNOSIS AND THERAPY 2021. [DOI: 10.37015/audt.2021.210020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
6
|
Lan H, Zhang W, Jin K, Liu Y, Wang Z. Modulating barriers of tumor microenvironment through nanocarrier systems for improved cancer immunotherapy: a review of current status and future perspective. Drug Deliv 2020; 27:1248-1262. [PMID: 32865029 PMCID: PMC7470050 DOI: 10.1080/10717544.2020.1809559] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer immunotherapy suppresses and destroys tumors by re-activating and sustaining the tumor-immune process, and thus improving the immune response of the body to the tumor. Immunotherapeutic strategies are showing promising results in pre-clinical and clinical trials, however, tumor microenvironment (TME) is extremely immunosuppressive. Thus, their translation from labs to clinics still faces issues. Recently, nanomaterial-based strategies have been developed to modulate the TME for robust immunotherapeutic responses. The combination of nanotechnology with immunotherapy potentiates the effectiveness of immunotherapy by increasing delivery and retention, and by reducing immunomodulation toxicity. This review aims to highlight the barriers offered by TME for hindering the efficiency of immunotherapy for cancer treatment. Next, we highlight various nano-carriers based strategies for modulating those barriers for achieving better therapeutic efficacy of cancer immunotherapy with higher safety. This review will add to the body of scientific knowledge and will be a good reference material for academia and industries.
Collapse
Affiliation(s)
- Huanrong Lan
- Department of Breast and Thyroid Surgery, Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, China
| | - Wei Zhang
- Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Ketao Jin
- Department of Colorectal Surgery, Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, China
| | - Yuyao Liu
- Department of Colorectal Surgery, Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, China
| | - Zhen Wang
- Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
7
|
Manipulation of immune‒vascular crosstalk: new strategies towards cancer treatment. Acta Pharm Sin B 2020; 10:2018-2036. [PMID: 33304777 PMCID: PMC7714955 DOI: 10.1016/j.apsb.2020.09.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 12/17/2022] Open
Abstract
Tumor vasculature is characterized by aberrant structure and function, resulting in immune suppressive profiles of tumor microenvironment through limiting immune cell infiltration into tumors, endogenous immune surveillance and immune cell function. Vascular normalization as a novel therapeutic strategy tends to prune some of the immature blood vessels and fortify the structure and function of the remaining vessels, thus improving immune stimulation and the efficacy of immunotherapy. Interestingly, the presence of "immune‒vascular crosstalk" enables the formation of a positive feedback loop between vascular normalization and immune reprogramming, providing the possibility to develop new cancer therapeutic strategies. The applications of nanomedicine in vascular-targeting therapy in cancer have gained increasing attention due to its specific physical and chemical properties. Here, we reviewed the recent advances of effective routes, especially nanomedicine, for normalizing tumor vasculature. We also summarized the development of enhancing nanoparticle-based anticancer drug delivery via the employment of transcytosis and mimicking immune cell extravasation. This review explores the potential to optimize nanomedicine-based therapeutic strategies as an alternative option for cancer treatment.
Collapse
|
8
|
Detection of colonic neoplasia in vivo using near-infrared-labeled peptide targeting cMet. Sci Rep 2019; 9:17917. [PMID: 31784601 PMCID: PMC6884535 DOI: 10.1038/s41598-019-54385-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 11/12/2019] [Indexed: 02/06/2023] Open
Abstract
White light colonoscopy is widely used to detect colorectal polyps, but flat and depressed lesions are often missed. Here, we report a molecular imaging strategy to potentially improve diagnostic performance by developing a fluorescently-labeled peptide specific for cMet. This 7mer is conjugated to Cy5.5, a near-infrared (NIR) cyanine dye. Specific binding to cMet was confirmed by cell staining, knockdown, and competition assays. The probe showed high binding affinity (kd = 57 nM) and fast onset (k = 1.6 min) to support topical administration in vivo. A mouse model (CPC;Apc) that develops spontaneous adenomas that overexpress cMet was used to demonstrate feasibility for real time in vivo imaging. This targeting ligand showed significantly higher target-to-background (T/B) ratio for polypoid and non-polypoid lesions by comparison with a scrambled control peptide. Immunofluorescence staining on human colon specimens show significantly greater binding to tubular and sessile serrated adenomas versus hyperplastic polyps and normal mucosa. These results demonstrate a peptide specific for cMet that is promising for endoscopic detection of pre-malignant lesions and guiding of tissue biopsy.
Collapse
|
9
|
Castiglioni S, Romeo V, Casati S, Ottria R, Perrotta C, Ciuffreda P, Maier JAM. N6-isopentenyladenosine a new potential anti-angiogenic compound that targets human microvascular endothelial cells in vitro. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2018; 37:533-545. [PMID: 30465624 DOI: 10.1080/15257770.2018.1503673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
N6-isopentenyladenosine is an anti-proliferative and pro-apoptotic atypical nucleoside for normal and tumor cells. Considering the role of angiogenesis in various diseases, we investigated the cytotoxic effect of N6-isopentenyladenosine on human microvascular endothelial cells, protagonists in angiogenesis. Our results show that N6-isopentenyladenosine induced a significant reduction of cell viability, upregulated p21 and promoted caspase-3 cleavage in a dose dependent manner leading to apoptotic cell death as detected by FACS analysis. To understand structure-function relationship of N6-isopentenyladenosine, we investigated the effect of some N6-isopentenyladenosine analogs. Our results suggest that N6-isopentenyladenosine and some of its derivatives are potentially novel angiostatic agents and might be associated with other anti-angiogenic compounds for a better outcome.
Collapse
Affiliation(s)
- Sara Castiglioni
- a Dipartimento di Scienze Biomediche e Cliniche "L. Sacco" , Università degli Studi di Milano , Milano , Italy
| | - Valentina Romeo
- a Dipartimento di Scienze Biomediche e Cliniche "L. Sacco" , Università degli Studi di Milano , Milano , Italy
| | - Silvana Casati
- a Dipartimento di Scienze Biomediche e Cliniche "L. Sacco" , Università degli Studi di Milano , Milano , Italy
| | - Roberta Ottria
- a Dipartimento di Scienze Biomediche e Cliniche "L. Sacco" , Università degli Studi di Milano , Milano , Italy
| | - Cristiana Perrotta
- a Dipartimento di Scienze Biomediche e Cliniche "L. Sacco" , Università degli Studi di Milano , Milano , Italy
| | - Pierangela Ciuffreda
- a Dipartimento di Scienze Biomediche e Cliniche "L. Sacco" , Università degli Studi di Milano , Milano , Italy
| | - Jeanette A M Maier
- a Dipartimento di Scienze Biomediche e Cliniche "L. Sacco" , Università degli Studi di Milano , Milano , Italy
| |
Collapse
|
10
|
Snipstad S, Sulheim E, de Lange Davies C, Moonen C, Storm G, Kiessling F, Schmid R, Lammers T. Sonopermeation to improve drug delivery to tumors: from fundamental understanding to clinical translation. Expert Opin Drug Deliv 2018; 15:1249-1261. [PMID: 30415585 DOI: 10.1080/17425247.2018.1547279] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Ultrasound in combination with microbubbles can make cells and tissues more accessible for drugs, thereby achieving improved therapeutic outcomes. In this review, we introduce the term 'sonopermeation', covering mechanisms such as pore formation (traditional sonoporation), as well as the opening of intercellular junctions, stimulated endocytosis/transcytosis, improved blood vessel perfusion and changes in the (tumor) microenvironment. Sonopermeation has gained a lot of interest in recent years, especially for delivering drugs through the otherwise impermeable blood-brain barrier, but also to tumors. AREAS COVERED In this review, we summarize various in vitro assays and in vivo setups that have been employed to unravel the fundamental mechanisms involved in ultrasound-enhanced drug delivery, as well as clinical trials that are ongoing in patients with brain, pancreatic, liver and breast cancer. We summarize the basic principles of sonopermeation, describe recent findings obtained in (pre-) clinical trials, and discuss future directions. EXPERT OPINION We suggest that an improved mechanistic understanding, and microbubbles and ultrasound equipment specialized for drug delivery (and not for imaging) are key aspects to create more effective treatment regimens by sonopermeation. Real-time feedback and tools to predict therapeutic outcome and which tumors/patients will benefit from sonopermeation-based interventions will be important to promote clinical translation.
Collapse
Affiliation(s)
- Sofie Snipstad
- a Department of Physics , Norwegian University of Science and Technology (NTNU) , Trondheim , Norway.,b Department of Biotechnology and Nanomedicine , SINTEF AS , Trondheim , Norway.,c Cancer Clinic , St. Olavs Hospital , Trondheim , Norway
| | - Einar Sulheim
- a Department of Physics , Norwegian University of Science and Technology (NTNU) , Trondheim , Norway.,b Department of Biotechnology and Nanomedicine , SINTEF AS , Trondheim , Norway.,c Cancer Clinic , St. Olavs Hospital , Trondheim , Norway
| | - Catharina de Lange Davies
- a Department of Physics , Norwegian University of Science and Technology (NTNU) , Trondheim , Norway
| | - Chrit Moonen
- d Imaging Division , University Medical Center , Utrecht , The Netherlands
| | - Gert Storm
- e Department of Pharmaceutics , Utrecht University , Utrecht , The Netherlands.,f Department of Targeted Therapeutics , University of Twente , Enschede , The Netherlands
| | - Fabian Kiessling
- g Institute for Experimental Molecular Imaging , RWTH Aachen University , Aachen , Germany
| | - Ruth Schmid
- b Department of Biotechnology and Nanomedicine , SINTEF AS , Trondheim , Norway
| | - Twan Lammers
- e Department of Pharmaceutics , Utrecht University , Utrecht , The Netherlands.,f Department of Targeted Therapeutics , University of Twente , Enschede , The Netherlands.,g Institute for Experimental Molecular Imaging , RWTH Aachen University , Aachen , Germany
| |
Collapse
|
11
|
Kannan P, Kretzschmar WW, Winter H, Warren D, Bates R, Allen PD, Syed N, Irving B, Papiez BW, Kaeppler J, Markelc B, Kinchesh P, Gilchrist S, Smart S, Schnabel JA, Maughan T, Harris AL, Muschel RJ, Partridge M, Sharma RA, Kersemans V. Functional Parameters Derived from Magnetic Resonance Imaging Reflect Vascular Morphology in Preclinical Tumors and in Human Liver Metastases. Clin Cancer Res 2018; 24:4694-4704. [PMID: 29959141 PMCID: PMC6171743 DOI: 10.1158/1078-0432.ccr-18-0033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 05/11/2018] [Accepted: 06/25/2018] [Indexed: 12/13/2022]
Abstract
Purpose: Tumor vessels influence the growth and response of tumors to therapy. Imaging vascular changes in vivo using dynamic contrast-enhanced MRI (DCE-MRI) has shown potential to guide clinical decision making for treatment. However, quantitative MR imaging biomarkers of vascular function have not been widely adopted, partly because their relationship to structural changes in vessels remains unclear. We aimed to elucidate the relationships between vessel function and morphology in vivo Experimental Design: Untreated preclinical tumors with different levels of vascularization were imaged sequentially using DCE-MRI and CT. Relationships between functional parameters from MR (iAUC, K trans, and BATfrac) and structural parameters from CT (vessel volume, radius, and tortuosity) were assessed using linear models. Tumors treated with anti-VEGFR2 antibody were then imaged to determine whether antiangiogenic therapy altered these relationships. Finally, functional-structural relationships were measured in 10 patients with liver metastases from colorectal cancer.Results: Functional parameters iAUC and K trans primarily reflected vessel volume in untreated preclinical tumors. The relationships varied spatially and with tumor vascularity, and were altered by antiangiogenic treatment. In human liver metastases, all three structural parameters were linearly correlated with iAUC and K trans For iAUC, structural parameters also modified each other's effect.Conclusions: Our findings suggest that MR imaging biomarkers of vascular function are linked to structural changes in tumor vessels and that antiangiogenic therapy can affect this link. Our work also demonstrates the feasibility of three-dimensional functional-structural validation of MR biomarkers in vivo to improve their biological interpretation and clinical utility. Clin Cancer Res; 24(19); 4694-704. ©2018 AACR.
Collapse
Affiliation(s)
- Pavitra Kannan
- CRUK and MRC Oxford Institute for Radiation Oncology Department of Oncology, University of Oxford, Oxford, United Kingdom.
| | - Warren W Kretzschmar
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Gene Technology, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Helen Winter
- CRUK and MRC Oxford Institute for Radiation Oncology Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Daniel Warren
- CRUK and MRC Oxford Institute for Radiation Oncology Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Russell Bates
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Philip D Allen
- CRUK and MRC Oxford Institute for Radiation Oncology Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Nigar Syed
- CRUK and MRC Oxford Institute for Radiation Oncology Department of Oncology, University of Oxford, Oxford, United Kingdom
- NHS, Department of Radiology, Churchill Hospital, Oxford, United Kingdom
| | - Benjamin Irving
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Bartlomiej W Papiez
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Jakob Kaeppler
- CRUK and MRC Oxford Institute for Radiation Oncology Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Bosjtan Markelc
- CRUK and MRC Oxford Institute for Radiation Oncology Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Paul Kinchesh
- CRUK and MRC Oxford Institute for Radiation Oncology Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Stuart Gilchrist
- CRUK and MRC Oxford Institute for Radiation Oncology Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Sean Smart
- CRUK and MRC Oxford Institute for Radiation Oncology Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Julia A Schnabel
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Tim Maughan
- CRUK and MRC Oxford Institute for Radiation Oncology Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Adrian L Harris
- CRUK and MRC Oxford Institute for Radiation Oncology Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Ruth J Muschel
- CRUK and MRC Oxford Institute for Radiation Oncology Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Mike Partridge
- CRUK and MRC Oxford Institute for Radiation Oncology Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Ricky A Sharma
- CRUK and MRC Oxford Institute for Radiation Oncology Department of Oncology, University of Oxford, Oxford, United Kingdom
- NIHR University College London Hospitals Biomedical Research Centre, University College London, London, United Kingdom
| | - Veerle Kersemans
- CRUK and MRC Oxford Institute for Radiation Oncology Department of Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
12
|
Okumura K, Yoshida K, Yoshioka K, Aki S, Yoneda N, Inoue D, Kitao A, Ogi T, Kozaka K, Minami T, Koda W, Kobayashi S, Takuwa Y, Gabata T. Photoacoustic imaging of tumour vascular permeability with indocyanine green in a mouse model. Eur Radiol Exp 2018; 2:5. [PMID: 29708213 PMCID: PMC5909364 DOI: 10.1186/s41747-018-0036-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/15/2018] [Indexed: 01/10/2023] Open
Abstract
Background We analysed the haemodynamics of indocyanine green (ICG) in mouse organs and tumours and evaluated responses to anti-angiogenic agents in an allograft tumour mouse model by photoacoustic imaging. Methods Thirty-six male mice (aged 10–14 weeks; body weight 20–25 g) were used. Real-time photoacoustic imaging of organs and tumours after intravenous injection of ICG was conducted in mice until 10 min after ICG injection. ICG distribution in tumour tissues was assessed by immunohistochemical staining and observation of ICG-derived fluorescence. Vascular permeability changes induced by the vascular endothelial growth factor (VEGF)-blocking agent VEGF-trap on tumour photoacoustic signals were studied. Results The photoacoustic signals in salivary glands and tumours after intravenous injection of iCG (0.604 ± 0.011 and 0.994 ± 0.175 [mean ± standard deviation], respectively) were significantly increased compared with those in the liver, kidney, and great vessel (0.234 ± 0.043, 0.204 ± 0.058 and 0.127 ± 0.040, respectively; p < 0.010). In tumours, the photoacoustic signal increased within 30 s after ICG injection in a dose-dependent manner (r2 = 0.899) and then decreased gradually. ICG was found to extravasate in tumour tissues. In VEGF-trap-treated mice, the photoacoustic signal in the tumour decreased at the early phase before inhibition of tumour growth was detected (0.297 ± 0.052 vs 1.011 ± 0.170 in the control; p < 0.001). Conclusions Photoacoustic imaging with ICG administration demonstrated extravasation of ICG in mouse organs and tumours, indicating the potential for early detection of changes in vascular permeability during cancer therapy.
Collapse
Affiliation(s)
- Kenichiro Okumura
- 1Department of Radiology, Kanazawa University School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8641 Japan
| | - Kotaro Yoshida
- 1Department of Radiology, Kanazawa University School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8641 Japan
| | - Kazuaki Yoshioka
- 2Department of Physiology, Kanazawa University School of Medical Sciences, Ishikawa, Japan
| | - Sho Aki
- 2Department of Physiology, Kanazawa University School of Medical Sciences, Ishikawa, Japan
| | - Norihide Yoneda
- 1Department of Radiology, Kanazawa University School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8641 Japan
| | - Dai Inoue
- 1Department of Radiology, Kanazawa University School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8641 Japan
| | - Azusa Kitao
- 1Department of Radiology, Kanazawa University School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8641 Japan
| | - Takahiro Ogi
- 1Department of Radiology, Kanazawa University School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8641 Japan
| | - Kazuto Kozaka
- 1Department of Radiology, Kanazawa University School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8641 Japan
| | - Tetsuya Minami
- 1Department of Radiology, Kanazawa University School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8641 Japan
| | - Wataru Koda
- 1Department of Radiology, Kanazawa University School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8641 Japan
| | - Satoshi Kobayashi
- 3Department of Quantum Medical Technology, Kanazawa University Graduate School of Medical Sciences, Ishikawa, Japan
| | - Yoh Takuwa
- 2Department of Physiology, Kanazawa University School of Medical Sciences, Ishikawa, Japan
| | - Toshifumi Gabata
- 1Department of Radiology, Kanazawa University School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8641 Japan
| |
Collapse
|
13
|
Lapin NA, Krzykawska-Serda M, Dilliard S, Mackeyev Y, Serda M, Wilson LJ, Curley SA, Corr SJ. The effects of non-invasive radiofrequency electric field hyperthermia on biotransport and biodistribution of fluorescent [60]fullerene derivative in a murine orthotopic model of breast adenocarcinoma. J Control Release 2017; 260:92-99. [PMID: 28527736 PMCID: PMC5549922 DOI: 10.1016/j.jconrel.2017.05.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 05/07/2017] [Accepted: 05/16/2017] [Indexed: 01/09/2023]
Abstract
The aim of this study is to understand the combined and differential biokinetic effects of radiofrequency (RF) electric-field hyperthermia as an adjunctive therapy to [60]fullerene nanoparticle-based drug delivery systems in targeting the micro-vasculature and micro-environments of breast cancer tumors. Intravital microscopy (IVM) is an ideal tool to provide the spatial and temporal resolution needed for quantification in this investigation. The water-soluble and fluorescent [60]fullerene derivative (C60-serPF) was designed to be an amphiphilic nanostructure, which is able to cross several biological membranes and accumulate in tumor tissues by passing through abnormally leaky tumor blood vessels. To elucidate the coupled effects of the highly permeable, but heterogeneous tumor vasculature, with the permeabilizing effects of mild (40-42°C) hyperthermia produced by a local RF field, we controlled variables across tumor and non-tumor mammary gland microvasculature with and without application of RF hyperthermia in each condition. We notice that tumor tissue is characterized by more intense drug extravasation than in contralateral mammary fat pad tissue, which is consistent with enhanced permeability and retention (EPR) effects. The analysis of a permeability parameter (Papp), C60-serPF velocity, and the time of compound influx into the intra- and extra-vascular space suggest that mild RF hyperthermia can improve nanoparticle delivery into tumor tissue.
Collapse
Affiliation(s)
- Norman A Lapin
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Martyna Krzykawska-Serda
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków 30-387, Poland
| | - Sean Dilliard
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA
| | - Yuri Mackeyev
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| | - Maciej Serda
- Department of Chemistry, Rice University, Houston, TX 77005, USA; Institute of Chemistry, University of Silesia in Katowice, 40-006 Katowice, Poland
| | - Lon J Wilson
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| | - Steven A Curley
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; Department of Mechanical Engineering and Materials Science, Rice University, Houston, TX 77005, USA
| | - Stuart J Corr
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; Department of Chemistry, Rice University, Houston, TX 77005, USA; Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA.
| |
Collapse
|
14
|
Poupard N, Badarou P, Fasani F, Groult H, Bridiau N, Sannier F, Bordenave-Juchereau S, Kieda C, Piot JM, Grillon C, Fruitier-Arnaudin I, Maugard T. Assessment of Heparanase-Mediated Angiogenesis Using Microvascular Endothelial Cells: Identification of λ-Carrageenan Derivative as a Potent Anti Angiogenic Agent. Mar Drugs 2017; 15:md15050134. [PMID: 28486399 PMCID: PMC5450540 DOI: 10.3390/md15050134] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/21/2017] [Accepted: 04/27/2017] [Indexed: 01/22/2023] Open
Abstract
Heparanase is overexpressed by tumor cells and degrades the extracellular matrix proteoglycans through cleavage of heparan sulfates (HS), allowing pro-angiogenic factor release and thus playing a key role in tumor angiogenesis and metastasis. Here we propose new HS analogs as potent heparanase inhibitors: Heparin as a positive control, Dextran Sulfate, λ-Carrageenan, and modified forms of them obtained by depolymerization associated to glycol splitting (RD-GS). After heparanase activity assessment, 11 kDa RD-GS-λ-Carrageenan emerged as the most effective heparanase inhibitor with an IC50 of 7.32 ng/mL compared to 10.7 ng/mL for the 16 kDa unfractionated heparin. The fractionated polysaccharides were then tested in a heparanase-rich medium-based in vitro model, mimicking tumor microenvironment, to determine their effect on microvascular endothelial cells (HSkMEC) angiogenesis. As a preliminary study, we identified that under hypoxic and nutrient poor conditions, MCF-7 cancer cells released much more mature heparanase in their supernatant than in normal conditions. Then a MatrigelTM assay using HSkMEC cultured under hypoxic conditions in the presence (or not) of this heparanase-rich supernatant was realized. Adding heparanase-rich media strongly enhanced angiogenic network formation with a production of twice more pseudo-vessels than with the control. When sulfated polysaccharides were tested in this angiogenesis assay, RD-GS-λ-Carrageenan was identified as a promising anti-angiogenic agent.
Collapse
Affiliation(s)
- Nicolas Poupard
- Université de la Rochelle, UMR CNRS 7266, LIENSs, Equipe Approches Moléculaires, Environnement-Santé, Avenue Michel Crépeau, 17000 La Rochelle, France.
| | - Pamela Badarou
- Centre de Biophysique Moléculaire, UPR CNRS 4301, 45071 Orléans, France.
| | - Fabienne Fasani
- Centre de Biophysique Moléculaire, UPR CNRS 4301, 45071 Orléans, France.
| | - Hugo Groult
- Université de la Rochelle, UMR CNRS 7266, LIENSs, Equipe Approches Moléculaires, Environnement-Santé, Avenue Michel Crépeau, 17000 La Rochelle, France.
| | - Nicolas Bridiau
- Université de la Rochelle, UMR CNRS 7266, LIENSs, Equipe Approches Moléculaires, Environnement-Santé, Avenue Michel Crépeau, 17000 La Rochelle, France.
| | - Frédéric Sannier
- Université de la Rochelle, UMR CNRS 7266, LIENSs, Equipe Approches Moléculaires, Environnement-Santé, Avenue Michel Crépeau, 17000 La Rochelle, France.
| | - Stéphanie Bordenave-Juchereau
- Université de la Rochelle, UMR CNRS 7266, LIENSs, Equipe Approches Moléculaires, Environnement-Santé, Avenue Michel Crépeau, 17000 La Rochelle, France.
| | - Claudine Kieda
- Centre de Biophysique Moléculaire, UPR CNRS 4301, 45071 Orléans, France.
| | - Jean-Marie Piot
- Université de la Rochelle, UMR CNRS 7266, LIENSs, Equipe Approches Moléculaires, Environnement-Santé, Avenue Michel Crépeau, 17000 La Rochelle, France.
| | - Catherine Grillon
- Centre de Biophysique Moléculaire, UPR CNRS 4301, 45071 Orléans, France.
| | - Ingrid Fruitier-Arnaudin
- Université de la Rochelle, UMR CNRS 7266, LIENSs, Equipe Approches Moléculaires, Environnement-Santé, Avenue Michel Crépeau, 17000 La Rochelle, France.
| | - Thierry Maugard
- Université de la Rochelle, UMR CNRS 7266, LIENSs, Equipe Approches Moléculaires, Environnement-Santé, Avenue Michel Crépeau, 17000 La Rochelle, France.
| |
Collapse
|
15
|
Oda K, Iwamoto Y, Tsukada K. Simultaneous mapping of unevenly distributed tissue hypoxia and vessel permeability in tumor microenvironment. Biomed Phys Eng Express 2016. [DOI: 10.1088/2057-1976/aa5193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Li CH, Chen FH, Schellingerhout D, Lin YS, Hong JH, Liu HL. Flow versus permeability weighting in estimating the forward volumetric transfer constant (K trans) obtained by DCE-MRI with contrast agents of differing molecular sizes. Magn Reson Imaging 2016; 36:105-111. [PMID: 27989901 DOI: 10.1016/j.mri.2016.10.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/26/2016] [Indexed: 01/02/2023]
Abstract
PURPOSE To quantify the differential plasma flow- (Fp-) and permeability surface area product per unit mass of tissue- (PS-) weighting in forward volumetric transfer constant (Ktrans) estimates by using a low molecular (Gd-DTPA) versus high molecular (Gadomer) weight contrast agent in dynamic contrast enhanced (DCE) MRI. MATERIALS AND METHODS DCE MRI was performed using a 7T animal scanner in 14 C57BL/6J mice syngeneic for TRAMP tumors, by administering Gd-DTPA (0.9kD) in eight mice and Gadomer (35kD) in the remainder. The acquisition time was 10min with a sampling rate of one image every 2s. Pharmacokinetic modeling was performed to obtain Ktrans by using Extended Tofts model (ETM). In addition, the adiabatic approximation to the tissue homogeneity (AATH) model was employed to obtain the relative contributions of Fp and PS. RESULTS The Ktrans values derived from DCE-MRI with Gd-DTPA showed significant correlations with both PS (r2=0.64, p=0.009) and Fp (r2=0.57, p=0.016), whereas those with Gadomer were found only significantly correlated with PS (r2=0.96, p=0.0003) but not with Fp (r2=0.34, p=0.111). A voxel-based analysis showed that Ktrans approximated PS (<30% difference) in 78.3% of perfused tumor volume for Gadomer, but only 37.3% for Gd-DTPA. CONCLUSIONS The differential contributions of Fp and PS in estimating Ktrans values vary with the molecular weight of the contrast agent used. The macromolecular contrast agent resulted in Ktrans values that were much less dependent on flow. These findings support the use of macromolecular contrast agents for estimating tumor vessel permeability with DCE-MRI.
Collapse
Affiliation(s)
- Cheng-He Li
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Fang-Hsin Chen
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Radiation Biology Research Center, Institute for Radiological Research, Chang Gung University, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Radiation Oncology, Chang Gung Memorial Hospital at Linko, Taoyuan, Taiwan
| | - Dawid Schellingerhout
- Departments of Diagnostic Radiology and Cancer Systems Imaging, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Yu-Shi Lin
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ji-Hong Hong
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Radiation Biology Research Center, Institute for Radiological Research, Chang Gung University, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Radiation Oncology, Chang Gung Memorial Hospital at Linko, Taoyuan, Taiwan
| | - Ho-Ling Liu
- Department of Imaging Physics, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
17
|
Maeda A, Kulbatski I, DaCosta RS. Emerging Applications for Optically Enabled Intravital Microscopic Imaging in Radiobiology. Mol Imaging 2015. [DOI: 10.2310/7290.2015.00022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Azusa Maeda
- From the Princess Margaret Cancer Centre, University Health Network, MaRS Centre; Techna Institute for Advancement of Technologies for Health; and Department of Medical Biophysics, University of Toronto, MaRS Centre, Toronto, ON
| | - Iris Kulbatski
- From the Princess Margaret Cancer Centre, University Health Network, MaRS Centre; Techna Institute for Advancement of Technologies for Health; and Department of Medical Biophysics, University of Toronto, MaRS Centre, Toronto, ON
| | - Ralph S. DaCosta
- From the Princess Margaret Cancer Centre, University Health Network, MaRS Centre; Techna Institute for Advancement of Technologies for Health; and Department of Medical Biophysics, University of Toronto, MaRS Centre, Toronto, ON
| |
Collapse
|
18
|
Feng C, Gao P, Qiu X, Qian T, Lin Y, Zhou J, Sui B. Prediction of radiosensitivity in primary central nervous system germ cell tumors using dynamic contrast-enhanced magnetic resonance imaging. Chin J Cancer Res 2015; 27:231-8. [PMID: 26157319 DOI: 10.3978/j.issn.1000-9604.2015.05.06] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 05/13/2015] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVE To evaluate the feasibility of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for predicting tumor response to radiotherapy in patients with suspected primary central nervous system (CNS) germ cell tumors (GCTs). METHODS DCE-MRI parameters of 35 patients with suspected primary CNS GCTs were obtained prior to diagnostic radiation, using the Tofts and Kermode model. Radiosensitivity was determined in tumors diagnosed 2 weeks after radiation by observing changes in tumor size and markers as a response to MRI. Taking radiosensitivity as the gold standard, the cut-off value of DCE-MRI parameters was measured by receiver operating characteristic (ROC) curve. Diagnostic accuracy of DCE-MRI parameters for predicting radiosensitivity was evaluated by ROC curve. RESULTS A significant elevation in transfer constant (K(trans)) and extravascular extracellular space (Ve) (P=0.000), as well as a significant reduction in rate constant (Kep) (P=0.000) was observed in tumors. K(trans), relative K(trans), and relative Kep of the responsive group were significantly higher than non-responsive groups. No significant difference was found in Kep, Ve, and relative Ve between the two groups. Relative K(trans) showed the best diagnostic value in predicting radiosensitivity with a sensitivity of 100%, specificity of 91.7%, positive predictive value (PPV) of 95.8%, and negative predictive value (NPV) of 100%. CONCLUSIONS Relative K(trans) appeared promising in predicting tumor response to radiation therapy (RT). It is implied that DCE-MRI pre-treatment is a requisite step in diagnostic procedures and a novel and reliable approach to guide clinical choice of RT.
Collapse
Affiliation(s)
- Chenlu Feng
- 1 Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China ; 2 Beijing Neurosurgical Institute, Beijing 100050, China ; 3 Department of Radiotherapy, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China ; 4 MR Collaboration NE Asia, Siemens Healthcare, Beijing 100102, China
| | - Peiyi Gao
- 1 Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China ; 2 Beijing Neurosurgical Institute, Beijing 100050, China ; 3 Department of Radiotherapy, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China ; 4 MR Collaboration NE Asia, Siemens Healthcare, Beijing 100102, China
| | - Xiaoguang Qiu
- 1 Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China ; 2 Beijing Neurosurgical Institute, Beijing 100050, China ; 3 Department of Radiotherapy, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China ; 4 MR Collaboration NE Asia, Siemens Healthcare, Beijing 100102, China
| | - Tianyi Qian
- 1 Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China ; 2 Beijing Neurosurgical Institute, Beijing 100050, China ; 3 Department of Radiotherapy, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China ; 4 MR Collaboration NE Asia, Siemens Healthcare, Beijing 100102, China
| | - Yan Lin
- 1 Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China ; 2 Beijing Neurosurgical Institute, Beijing 100050, China ; 3 Department of Radiotherapy, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China ; 4 MR Collaboration NE Asia, Siemens Healthcare, Beijing 100102, China
| | - Jian Zhou
- 1 Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China ; 2 Beijing Neurosurgical Institute, Beijing 100050, China ; 3 Department of Radiotherapy, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China ; 4 MR Collaboration NE Asia, Siemens Healthcare, Beijing 100102, China
| | - Binbin Sui
- 1 Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China ; 2 Beijing Neurosurgical Institute, Beijing 100050, China ; 3 Department of Radiotherapy, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China ; 4 MR Collaboration NE Asia, Siemens Healthcare, Beijing 100102, China
| |
Collapse
|
19
|
Ultrasound-enhanced drug delivery in prostate cancer xenografts by nanoparticles stabilizing microbubbles. J Control Release 2014; 187:39-49. [DOI: 10.1016/j.jconrel.2014.05.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/07/2014] [Accepted: 05/09/2014] [Indexed: 11/20/2022]
|
20
|
Multi-modality imaging of a murine mammary window chamber for breast cancer research. Biotechniques 2014; 57:45-50. [PMID: 25005693 DOI: 10.2144/000114191] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 06/25/2014] [Indexed: 11/23/2022] Open
Abstract
Window chamber models have been developed and utilized as a means to study the complex microenvironment in which cancers develop, proliferate, and metastasize in small animals. Here we utilize rapid prototyping printer technology to construct a new plastic orthotopic mammary window chamber that is compatible with magnetic resonance imaging, nuclear imaging, and optical imaging. Optical imaging allows for high-resolution cellular and molecular level analysis of tissues; magnetic resonance imaging provides quantitative measures of tumor size, perfusion, diffusion, fat/water content relaxation parameters; and a nuclear imaging technique, called the Beta Imager, supports functional and metabolic imaging. Our demonstration of the multiple imaging capabilities of this model suggests that it can be used as a powerful platform for studying basic cancer biology and developing new cancer therapies.
Collapse
|
21
|
Maeda A, DaCosta RS. Optimization of the dorsal skinfold window chamber model and multi-parametric characterization of tumor-associated vasculature. INTRAVITAL 2014; 3:e27935. [PMID: 28243506 PMCID: PMC5312716 DOI: 10.4161/intv.27935] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 01/20/2014] [Accepted: 01/21/2014] [Indexed: 11/21/2022]
Abstract
The dorsal skinfold window chamber (DSWC) model is a unique tool that enables analysis of various aspects of tumor biology and therapeutic response. Although the protocol for the murine DSWC model is standardized, certain tumors fail to grow or require a particular environment to promote growth. Given such limitations, we optimized the DSWC model for a slow-growing tumor that regresses spontaneously in the standard protocol. We further characterized the vascular network in the tumor model compared with that of non-tumor-bearing mice and observed significant differences in multiple parameters related to vascular structure and function.
Collapse
Affiliation(s)
- Azusa Maeda
- Ontario Cancer Institute; University Health Network; Toronto, ON Canada; Department of Medical Biophysics; University of Toronto; Toronto, ON Canada
| | - Ralph S DaCosta
- Ontario Cancer Institute; University Health Network; Toronto, ON Canada; Department of Medical Biophysics; University of Toronto; Toronto, ON Canada
| |
Collapse
|
22
|
Practical dynamic contrast enhanced MRI in small animal models of cancer: data acquisition, data analysis, and interpretation. Pharmaceutics 2013; 4:442-78. [PMID: 23105959 PMCID: PMC3480221 DOI: 10.3390/pharmaceutics4030442] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) consists of the continuous acquisition of images before, during, and after the injection of a contrast agent. DCE-MRI allows for noninvasive evaluation of tumor parameters related to vascular perfusion and permeability and tissue volume fractions, and is frequently employed in both preclinical and clinical investigations. However, the experimental and analytical subtleties of the technique are not frequently discussed in the literature, nor are its relationships to other commonly used quantitative imaging techniques. This review aims to provide practical information on the development, implementation, and validation of a DCE-MRI study in the context of a preclinical study (though we do frequently refer to clinical studies that are related to these topics).
Collapse
|
23
|
Rao SX, Chen CZ, Liu H, Zeng MS, Qu XD. Three-dimensional whole-liver perfusion magnetic resonance imaging in patients with hepatocellular carcinomas and colorectal hepatic metastases. BMC Gastroenterol 2013; 13:53. [PMID: 23530688 PMCID: PMC3626859 DOI: 10.1186/1471-230x-13-53] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 03/21/2013] [Indexed: 01/17/2023] Open
Abstract
Background Three-dimensional (3D) whole-liver perfusion magnetic resonance(MR) imaging with parallel imaging, a novel imaging method to characterize tumor vascularization in vivo, has recently been applied to comprehensively image perfusion changes in large tumors. Coupled with new perfusion software, this technique enables motion correction, registration, and evaluation of perfusion MR parameters. The purpose of this study was to assess the feasibility of 3D whole-liver perfusion MR, for imaging hepatocellular carcinoma (HCC) and colorectal hepatic metastases (CRHM). Methods 26 patients with hepatic tumors (10 HCC; 16 CRHM) were subjected to 3D whole-liver perfusion MR with a temporal resolution of 3.7 seconds. The following estimated perfusion parameters were measured: the volume transfer constant Ktrans (min-1); the volume (Ve) of extravascular extracellular space (EES) per volume unit of tissue; and the flux rate constant between EES and plasma Kep (min-1). Statistical analysis was conducted to investigate inter-observer characteristics and significance of the measured parameters. Results Inter-observer agreement analysis (95% limits of agreement) yielded a mean difference of −0.0048 min-1 (−0.0598 ~ 0.0502) for Ktrans , -0.0630 ml (−0.5405 ~ 0.4145) for Ve, and −0.0031 min-1 (−0.0771 ~ 0.0709) for Kep respectively. When comparing images from patients with HCC vs. CRHM, significant differences were seen for the mean Ktrans (p = 0.017), but not for Ve(p = 0.117) or Kep(p = 0.595). Conclusion Herein we show that 3D whole-liver MR perfusion imaging with semi-automatic data analysis is feasible and enables the reliable quantitative evaluation of the perfusion parameters for HCCs and CRHMs.
Collapse
Affiliation(s)
- Sheng-Xiang Rao
- Department of Diagnostic Radiology, Zhongshan Hospital, Fudan University, and Shanghai Medical Imaging Institute, Shanghai, People's Republic of China
| | | | | | | | | |
Collapse
|
24
|
Dubey R, Levin MD, Szabo LZ, Laszlo CF, Kushal S, Singh JB, Oh P, Schnitzer JE, Olenyuk BZ. Suppression of Tumor Growth by Designed Dimeric Epidithiodiketopiperazine Targeting Hypoxia-Inducible Transcription Factor Complex. J Am Chem Soc 2013; 135:4537-49. [DOI: 10.1021/ja400805b] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ramin Dubey
- Department of Pharmacology and
Pharmaceutical Sciences, University of Southern California, 1985 Zonal Ave., PSC B15C, HSC 9121, Los Angeles, California 90089,
United States
| | - Michael D. Levin
- Proteogenomics Research Institute
for Systems Medicine, 11107 Roselle St., San Diego, California 92121,
United States
| | - Lajos Z. Szabo
- Department
of Chemistry and
Biochemistry, University of Arizona, 1306
East University Blvd., Tucson, Arizona 85721, United States
| | - Csaba F. Laszlo
- Department
of Chemistry and
Biochemistry, University of Arizona, 1306
East University Blvd., Tucson, Arizona 85721, United States
| | - Swati Kushal
- Department of Pharmacology and
Pharmaceutical Sciences, University of Southern California, 1985 Zonal Ave., PSC B15C, HSC 9121, Los Angeles, California 90089,
United States
| | - Jason B. Singh
- Department
of Chemistry and
Biochemistry, University of Arizona, 1306
East University Blvd., Tucson, Arizona 85721, United States
| | - Philip Oh
- Proteogenomics Research Institute
for Systems Medicine, 11107 Roselle St., San Diego, California 92121,
United States
| | - Jan E. Schnitzer
- Proteogenomics Research Institute
for Systems Medicine, 11107 Roselle St., San Diego, California 92121,
United States
| | - Bogdan Z. Olenyuk
- Department of Pharmacology and
Pharmaceutical Sciences, University of Southern California, 1985 Zonal Ave., PSC B15C, HSC 9121, Los Angeles, California 90089,
United States
| |
Collapse
|
25
|
Li SZ, Wang Q. Feasibility of diagnosis of early gastric cancer assisted by confocal microscopy. Shijie Huaren Xiaohua Zazhi 2012; 20:205-209. [DOI: 10.11569/wcjd.v20.i3.205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer has high incidence and mortality and does serious harm to the health of human beings. Early diagnosis and radical operation are crucial for prognosis in patients with gastric cancer. Worldwide efforts have been taken to search new methods and technologies that can enable early, accurate and efficient diagnosis of gastric cancer. The birth of the confocal microscope makes the dream come true. It perfectly combines the advantages of various kinds of technologies and allows early, rapid and accurate diagnosis of gastric cancer. In this paper, we discuss the possibility of using laser confocal microscopy for the early diagnosis of gastric cancer to improve patients' life quality and survival rate.
Collapse
|
26
|
Intravital microscopy in window chambers: a unique tool to study tumor angiogenesis and delivery of nanoparticles. Angiogenesis 2010; 13:113-30. [DOI: 10.1007/s10456-010-9176-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Accepted: 06/03/2010] [Indexed: 12/19/2022]
|