1
|
Kochetkova T, Kormilina T, Englisch S, Drobek D, Zubiri BA, Braun O, Calame M, Remund S, Neuenschwander B, Michler J, Zysset P, Spiecker E, Schwiedrzik J. Human bone ultrastructure in 3D: Multimodal correlative study combining nanoscale X-ray computed tomography and quantitative polarized Raman spectroscopy. Acta Biomater 2025; 198:302-318. [PMID: 40154766 DOI: 10.1016/j.actbio.2025.03.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 02/23/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Unique mechanical properties of cortical bone are defined by the arrangement and ratio of its organic and inorganic constituents. This arrangement can be influenced by ageing and disease, urging the understanding of normal and deviant morphological patterns down to the nanoscale level, as much as the exploration of techniques able to grant that knowledge. Here, the ultrastructure and composition of seven samples taken from the femoral neck cortical bone of a single donor (52 y.o. female, no metabolic bone disease) is assessed with emerging characterization techniques. Laboratory-based nanoscale X-ray computed tomography providing ∼50 nm spatial resolution at (16 nm)3 voxel size resolves not only the lacuno-canalicular network but also the mineral ellipsoids associated with mineralized collagen fibrils (MCF). Site-matching 3D data with quantitative polarized Raman spectroscopy provides, in turn, complementary information on relative mineral and organic composition, while both techniques allow to quantify the MCF orientation. Bone matrix composition and lacuna-canalicular network organization are shown to vary between the osteonal and interstitial zones. Both plywood and gradual oscillating motifs of bone lamellation are observed, in line with existing theories. By combining these two methods, future studies can concentrate on other bone ultrastructural units of interest like interlamellar and cement interfaces, the structure of MCF around lacunae and near Haversian channels, as well as the influence of metabolic diseases on bone ultrastructure. STATEMENT OF SIGNIFICANCE: This study provides new insights into bone hierarchical organization, revealing local composition and lacuno-canalicular network organization within osteonal and interstitial bone zones, as well as their mineralized collagen fiber (MCF) orientation within the lamella. Synchrotron-like resolution was achieved on a laboratory-based nano-CT by exposing the volumes of interest from the bulk sample and applying machine learning segmentation algorithms. Site-matched analysis with quantitative Polarized Raman spectroscopy (qPRS) provided indirect access to relative mineral and organic composition variations and local MCF out-of-plane angle, with good agreement between the two methods. The proposed correlative experiment workflow greatly facilitates the characterization of bone ultrastructure and can be applied to other fields dealing with ordered hierarchical materials of similar feature sizes.
Collapse
Affiliation(s)
- Tatiana Kochetkova
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials & Nanostructures, Feuerwerkerstrasse 39, CH-3602 Thun, Switzerland; ARTORG Center for Biomedical Engineering Research, University of Bern, Switzerland.
| | - Tatiana Kormilina
- Institute of Micro- and Nanostructure Research (IMN) and Center for Nanoanalysis and Electron Microscopy (CENEM), IZNF, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Graz Center for Electron Microscopy (ZFE) and Institute of Electron Microscopy and Nanoanalysis (FELMI), Graz University of Technology, Austria.
| | - Silvan Englisch
- Institute of Micro- and Nanostructure Research (IMN) and Center for Nanoanalysis and Electron Microscopy (CENEM), IZNF, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Dominik Drobek
- Institute of Micro- and Nanostructure Research (IMN) and Center for Nanoanalysis and Electron Microscopy (CENEM), IZNF, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Benjamin Apeleo Zubiri
- Institute of Micro- and Nanostructure Research (IMN) and Center for Nanoanalysis and Electron Microscopy (CENEM), IZNF, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Oliver Braun
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Transport at Nanoscale Interfaces Laboratory, Dübendorf, Switzerland; Department of Physics, University of Basel, Switzerland
| | - Michel Calame
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Transport at Nanoscale Interfaces Laboratory, Dübendorf, Switzerland; Department of Physics, University of Basel, Switzerland; Swiss Nanoscience Institute, University of Basel, Switzerland
| | - Stefan Remund
- Institute for Applied Laser, Photonics and Surface technologies (ALPS), Bern University of Applied Sciences, Burgdorf, Switzerland
| | - Beat Neuenschwander
- Institute for Applied Laser, Photonics and Surface technologies (ALPS), Bern University of Applied Sciences, Burgdorf, Switzerland
| | - Johann Michler
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials & Nanostructures, Feuerwerkerstrasse 39, CH-3602 Thun, Switzerland
| | - Philippe Zysset
- ARTORG Center for Biomedical Engineering Research, University of Bern, Switzerland
| | - Erdmann Spiecker
- Institute of Micro- and Nanostructure Research (IMN) and Center for Nanoanalysis and Electron Microscopy (CENEM), IZNF, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany.
| | - Jakob Schwiedrzik
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials & Nanostructures, Feuerwerkerstrasse 39, CH-3602 Thun, Switzerland; Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for High Performance Ceramics, Dübendorf, Switzerland.
| |
Collapse
|
2
|
Bastías CS, Savard LM, Jacobson KR, Connell KA, Calve S, Ferguson VL, Luetkemeyer CM. Pregnancy and age differentially affect stiffness, injury susceptibility, and composition of murine uterosacral ligaments. J Mech Behav Biomed Mater 2025; 163:106874. [PMID: 39709727 DOI: 10.1016/j.jmbbm.2024.106874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/27/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
Pelvic organ prolapse is a debilitating condition that diminishes quality of life, and it has been linked to pregnancy and aging. Injury of the uterosacral ligaments (USLs), which provide apical support to the pelvic organs, is a major cause of uterine prolapse. In this study, we examined the effect of pregnancy and age on the apparent elastic modulus, susceptibility to collagen damage, and extracellular matrix (ECM) composition of the murine USL. USLs from mice at three different stages of pregnancy and across two age groups were mechanically tested and evaluated for collagen microdamage. Raman spectroscopy was used to evaluate changes in ECM composition. Our findings reveal that (1) all USLs subjected to mechanical stretch sustained collagen microdamage, (2) both pregnancy and age significantly affected USL stiffness and injury susceptibility, and (3) pregnancy, but not age, altered ECM composition. Overall, this work represents a major step toward understanding the role of tissue microstructure and mechanical function in USL injury, which should guide novel ECM-targeted treatment and prevention strategies for uterine prolapse.
Collapse
Affiliation(s)
- Catalina S Bastías
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, IL, USA; Biomedical Engineering Program, University of Colorado Boulder, Boulder, CO, USA; Grainger College of Engineering, University of Illinois Urbana-Champaign, IL, USA.
| | - Lea M Savard
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Kathryn R Jacobson
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Kathleen A Connell
- Department of Obstetrics and Gynecology, University of Colorado Anschutz, Aurora, CO, USA
| | - Sarah Calve
- Biomedical Engineering Program, University of Colorado Boulder, Boulder, CO, USA; Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA; BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Virginia L Ferguson
- Biomedical Engineering Program, University of Colorado Boulder, Boulder, CO, USA; Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA; BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Callan M Luetkemeyer
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, IL, USA; Department of Bioengineering, University of Illinois Urbana-Champaign, IL, USA; Beckman Institute, University of Illinois Urbana-Champaign, IL, USA; Materials Research Laboratory, University of Illinois Urbana-Champaign, IL, USA; Institute for Genomic Biology, University of Illinois Urbana-Champaign, IL, USA; Grainger College of Engineering, University of Illinois Urbana-Champaign, IL, USA
| |
Collapse
|
3
|
Migotsky N, Kumar S, Shuster JT, Coulombe JC, Senwar B, Gestos AA, Farber CR, Ferguson VL, Silva MJ. Multi-scale cortical bone traits vary in females and males from two mouse models of genetic diversity. JBMR Plus 2024; 8:ziae019. [PMID: 38634075 PMCID: PMC11021811 DOI: 10.1093/jbmrpl/ziae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/08/2024] [Indexed: 04/19/2024] Open
Abstract
Understanding the genetic basis of cortical bone traits can allow for the discovery of novel genes or biological pathways regulating bone health. Mice are the most widely used mammalian model for skeletal biology and allow for the quantification of traits that cannot easily be evaluated in humans, such as osteocyte lacunar morphology. The goal of our study was to investigate the effect of genetic diversity on multi-scale cortical bone traits of 3 long bones in skeletally-mature mice. We measured bone morphology, mechanical properties, material properties, lacunar morphology, and mineral composition of mouse bones from 2 populations of genetic diversity. Additionally, we compared how intrabone relationships varied in the 2 populations. Our first population of genetic diversity included 72 females and 72 males from the 8 inbred founder strains used to create the Diversity Outbred (DO) population. These 8 strains together span almost 90% of the genetic diversity found in mice (Mus musculus). Our second population of genetic diversity included 25 genetically unique, outbred females and 25 males from the DO population. We show that multi-scale cortical bone traits vary significantly with genetic background; heritability values range from 21% to 99% indicating genetic control of bone traits across length scales. We show for the first time that lacunar shape and number are highly heritable. Comparing the 2 populations of genetic diversity, we show that each DO mouse does not resemble a single inbred founder, but instead the outbred mice display hybrid phenotypes with the elimination of extreme values. Additionally, intrabone relationships (eg, ultimate force vs. cortical area) were mainly conserved in our 2 populations. Overall, this work supports future use of these genetically diverse populations to discover novel genes contributing to cortical bone traits, especially at the lacunar length scale.
Collapse
Affiliation(s)
- Nicole Migotsky
- Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO 63110, United States
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63110, United States
| | - Surabhi Kumar
- Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO 63110, United States
| | - John T Shuster
- Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO 63110, United States
| | - Jennifer C Coulombe
- Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309, United States
| | - Bhavya Senwar
- Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309, United States
| | - Adrian A Gestos
- Materials Instrumentation and Multimodal Imaging Core, University of Colorado, Boulder, CO 80309, United States
| | - Charles R Farber
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, United States
| | - Virginia L Ferguson
- Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309, United States
- Materials Instrumentation and Multimodal Imaging Core, University of Colorado, Boulder, CO 80309, United States
| | - Matthew J Silva
- Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO 63110, United States
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63110, United States
| |
Collapse
|
4
|
Van Gulick L, Saby C, Mayer C, Fossier E, Jaisson S, Okwieka A, Gillery P, Chenais B, Mimouni V, Morjani H, Beljebbar A. Biochemical and morpho-mechanical properties, and structural organization of rat tail tendon collagen in diet-induced obesity model. Int J Biol Macromol 2024; 254:127936. [PMID: 37939767 DOI: 10.1016/j.ijbiomac.2023.127936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 11/10/2023]
Abstract
We have investigated the impact of obesity on the structural organization, morpho-mechanical properties of collagen fibers from rat tail tendon fascicles (RTTFs). Polarized Raman microspectroscopy showed that the collagen bands 855, 875, 938, and 960 cm-1 as well as those 1631 and 1660 cm-1 were affected by diet. Mechanical properties exhibited an increase in the yield strength from control (CTRL) to high fat (HF) diet (9.60 ± 1.71 and 13.09 ± 1.81 MPa) (p < 0.01) and ultimate tensile strength (13.12 ± 2.37 and 18.32 ± 2.83 MPa) (p < 0.05) with no significant change in the Young's Modulus. During mechanical, the band at 875 cm-1 exhibited the most relevant frequency shift (2 cm-1). The intensity of those at 855, 875, and 938 cm-1 in HF collagen displayed a comparable response to mechanical stress as compared to CTRL collagen with no significant diet-related changes in the Full Width at Half Maximum. Second harmonic generation technique revealed i) similar fiber straightness (0.963 ± 0.004 and 0.965 ± 0.003) and ii) significant changes in fibers diameter (1.48 ± 0.07 and 1.52 ± 0.08 μm) (p < 0.05) and length (22.06 ± 2.38 and 29.00 ± 3.76 μm) (p < 0.001) between CTRL and HF diet, respectively. The quantification of advanced glycation end products (AGEs) revealed an increase in both carboxymethyl-lysine and total fluorescence AGEs from CTRL to HF RTTFs.
Collapse
Affiliation(s)
- Laurence Van Gulick
- Université de Reims Champagne-Ardenne, BioSpecT EA 7506, UFR de Pharmacie, 51096 Reims, France
| | - Charles Saby
- Université de Reims Champagne-Ardenne, BioSpecT EA 7506, UFR de Pharmacie, 51096 Reims, France
| | - Claire Mayer
- BiOSSE, Biology of Organisms, Stress, Health, Environment, Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, 53020 Laval, France
| | - Emilie Fossier
- Université de Reims Champagne-Ardenne, BioSpecT EA 7506, UFR de Pharmacie, 51096 Reims, France
| | - Stéphane Jaisson
- Université de Reims Champagne-Ardenne, MEDyC CNRS UMR 7369, UFR de Médecine, 51097 Reims, France; Centre Hospitalo-Universitaire, Service de Biochimie-Pharmacologie-Toxicologie, Reims, France
| | - Anaïs Okwieka
- Université de Reims Champagne-Ardenne, MEDyC CNRS UMR 7369, UFR de Médecine, 51097 Reims, France
| | - Philippe Gillery
- Université de Reims Champagne-Ardenne, MEDyC CNRS UMR 7369, UFR de Médecine, 51097 Reims, France; Centre Hospitalo-Universitaire, Service de Biochimie-Pharmacologie-Toxicologie, Reims, France
| | - Benoît Chenais
- BiOSSE, Biology of Organisms, Stress, Health, Environment, UFR Sciences et Techniques, Le Mans Université, 72085 Le Mans, France
| | - Virginie Mimouni
- BiOSSE, Biology of Organisms, Stress, Health, Environment, Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, 53020 Laval, France
| | - Hamid Morjani
- Université de Reims Champagne-Ardenne, BioSpecT EA 7506, UFR de Pharmacie, 51096 Reims, France
| | - Abdelilah Beljebbar
- Université de Reims Champagne-Ardenne, BioSpecT EA 7506, UFR de Pharmacie, 51096 Reims, France.
| |
Collapse
|
5
|
Migotsky N, Kumar S, Shuster JT, Coulombe JC, Senwar B, Gestos AA, Farber CR, Ferguson VL, Silva MJ. Multi-Scale Cortical Bone Traits Vary in Two Mouse Models of Genetic Diversity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.02.543484. [PMID: 37333124 PMCID: PMC10274655 DOI: 10.1101/2023.06.02.543484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Understanding the genetic basis of cortical bone traits can allow for the discovery of novel genes or biological pathways regulating bone health. Mice are the most widely used mammalian model for skeletal biology and allow for the quantification of traits that can't easily be evaluated in humans, such as osteocyte lacunar morphology. The goal of our study was to investigate the effect of genetic diversity on multi-scale cortical bone traits of three long bones in skeletally-mature mice. We measured bone morphology, mechanical properties, material properties, lacunar morphology, and mineral composition of mouse bones from two populations of genetic diversity. Additionally, we compared how intra-bone relationships varied in the two populations. Our first population of genetic diversity included 72 females and 72 males from the eight Inbred Founder strains used to create the Diversity Outbred (DO) population. These eight strains together span almost 90% of the genetic diversity found in mice (Mus musculus). Our second population of genetic diversity included 25 genetically unique, outbred females and 25 males from the DO population. We show that multi-scale cortical bone traits vary significantly with genetic background; heritability values range from 21% to 99% indicating genetic control of bone traits across length scales. We show for the first time that lacunar shape and number are highly heritable. Comparing the two populations of genetic diversity, we show each DO mouse does not resemble a single Inbred Founder but instead the outbred mice display hybrid phenotypes with the elimination of extreme values. Additionally, intra-bone relationships (e.g., ultimate force vs. cortical area) were mainly conserved in our two populations. Overall, this work supports future use of these genetically diverse populations to discover novel genes contributing to cortical bone traits, especially at the lacunar length scale.
Collapse
Affiliation(s)
- Nicole Migotsky
- Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO
| | - Surabhi Kumar
- Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO
| | - John T Shuster
- Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO
| | | | - Bhavya Senwar
- Department of Mechanical Engineering, University of Colorado, Boulder, CO
| | - Adrian A Gestos
- Materials Instrumentation and Multimodal Imaging Core, University of Colorado, Boulder, CO
| | - Charles R Farber
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA
| | - Virginia L Ferguson
- Department of Mechanical Engineering, University of Colorado, Boulder, CO
- Materials Instrumentation and Multimodal Imaging Core, University of Colorado, Boulder, CO
| | - Matthew J Silva
- Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO
| |
Collapse
|
6
|
Pendyala M, Stephen SJ, Vashishth D, Blaber EA, Chan DD. Loss of hyaluronan synthases impacts bone morphology, quality, and mechanical properties. Bone 2023; 172:116779. [PMID: 37100359 DOI: 10.1016/j.bone.2023.116779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 04/28/2023]
Abstract
Hyaluronan, a glycosaminoglycan synthesized by three isoenzymes (Has1, Has2, Has3), is known to play a role in regulating bone turnover, remodeling, and mineralization, which in turn can affect bone quality and strength. The goal of this study is to characterize how the loss of Has1 or Has3 affects the morphology, matrix properties, and overall strength of murine bone. Femora were isolated from Has1-/-,Has3-/-, and wildtype (WT) C57Bl/6 J female mice and were analyzed using microcomputed-tomography, confocal Raman spectroscopy, three-point bending, and nanoindentation. Of the three genotypes tested, Has1-/- bones demonstrated significantly lower cross-sectional area (p = 0.0002), reduced hardness (p = 0.033), and lower mineral-to-matrix ratio (p < 0.0001). Has3-/- bones had significantly higher stiffness (p < 0.0001) and higher mineral-to-matrix ratio (p < 0.0001) but lower strength (p = 0.0014) and bone mineral density (p < 0.0001) than WT. Interestingly, loss of Has3 was also associated with significantly lower accumulation of advanced glycation end-products than WT (p = 0.0478). Taken together, these results demonstrate, for the first time, the impact of the loss of hyaluronan synthase isoforms on cortical bone structure, content, and biomechanics. Loss of Has1 impacted morphology, mineralization, and micron-level hardness, while loss of Has3 reduced bone mineral density and affected organic matrix composition, impacting whole bone mechanics. This is the first study to characterize the effect of loss of hyaluronan synthases on bone quality, suggesting an essential role hyaluronan plays during the development and regulation of bone.
Collapse
Affiliation(s)
- Meghana Pendyala
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8(th) St. Troy, NY 12180, United States of America; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8(th) St. Troy, NY 12180, United States of America
| | - Samuel J Stephen
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8(th) St. Troy, NY 12180, United States of America; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8(th) St. Troy, NY 12180, United States of America
| | - Deepak Vashishth
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8(th) St. Troy, NY 12180, United States of America; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8(th) St. Troy, NY 12180, United States of America
| | - Elizabeth A Blaber
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8(th) St. Troy, NY 12180, United States of America; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8(th) St. Troy, NY 12180, United States of America; Blue Marble Space Institute of Science at NASA Ames Research Center, PO Box 1, Moffett Field, CA 94035, United States of America
| | - Deva D Chan
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8(th) St. Troy, NY 12180, United States of America; Weldon School of Biomedical Engineering, 206 S. Martin Jischke Drive, Purdue University, West Lafayette, IN, United States of America.
| |
Collapse
|
7
|
Xu Z, Yang C, Wu F, Tan X, Guo Y, Zhang H, Wang H, Sui X, Xu Z, Zhao M, Jiang S, Dai Z, Li Y. Triple-gene deletion for osteocalcin significantly impairs the alignment of hydroxyapatite crystals and collagen in mice. Front Physiol 2023; 14:1136561. [PMID: 37057181 PMCID: PMC10089303 DOI: 10.3389/fphys.2023.1136561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Osteocalcin (Ocn), also known as bone Gla protein, is synthesized by osteoblasts and thought to regulate energy metabolism, testosterone synthesis and brain development. However, its function in bone is not fully understood. Mice have three Ocn genes: Bglap, Bglap2 and Bglap3. Due to the long span of these genes in the mouse genome and the low expression of Bglap3 in bone, researchers commonly use Bglap and Bglap2 knockout mice to investigate the function of Ocn. However, it is unclear whether Bglap3 has any compensatory mechanisms when Bglap and Bglap2 are knocked out. Considering the controversy surrounding the role of Ocn in bone, we constructed an Ocn-deficient mouse model by knocking out all three genes (Ocn−/−) and analyzed bone quality by Raman spectroscopy (RS), Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and MicroCT (μCT). The RS test showed that the alignment of hydroxyapatite crystals and collagen fibers was significantly poorer in Ocn−/− mice than in wild-type (WT) mice. Ocn deficiency resulted in a looser surface structure of bone particles and a larger gap area proportion. FTIR analysis showed few differences in bone mineral index between WT and Ocn−/− mice, while μCT analysis showed no significant difference in cortical and trabecular regions. However, under tail-suspension simulating bone loss condition, the disorder of hydroxyapatite and collagen fiber alignment in Ocn−/− mice led to more obvious changes in bone mineral composition. Collectively, our results revealed that Ocn is necessary for regulating the alignment of minerals parallel to collagen fibrils.
Collapse
Affiliation(s)
- Zihan Xu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Chao Yang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
- *Correspondence: Chao Yang, ; Zhongquan Dai, ; Yinghui Li,
| | - Feng Wu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Xiaowen Tan
- Department of Pathology and Forensics, Dalian Medical University, Dalian, China
| | - Yaxiu Guo
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Hongyu Zhang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Hailong Wang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Xiukun Sui
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Zi Xu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Minbo Zhao
- Department of Pathology and Forensics, Dalian Medical University, Dalian, China
| | - Siyu Jiang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Zhongquan Dai
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
- *Correspondence: Chao Yang, ; Zhongquan Dai, ; Yinghui Li,
| | - Yinghui Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
- *Correspondence: Chao Yang, ; Zhongquan Dai, ; Yinghui Li,
| |
Collapse
|
8
|
Stephen SJ, Bailey S, D'Erminio DN, Krishnamoorthy D, Iatridis JC, Vashishth D. Bone matrix quality in a developing high-fat diet mouse model is altered by RAGE deletion. Bone 2022; 162:116470. [PMID: 35718325 PMCID: PMC9296598 DOI: 10.1016/j.bone.2022.116470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 11/20/2022]
Abstract
Overweightness and obesity in adolescents are epidemics linked to chronic low-grade inflammation and elevated fracture risk. The increased fracture risk observed in overweight/obese adolescence contrasts the traditional concept that high body mass is protective against fracture, and thus highlights the need to determine why weight gain becomes detrimental to fracture during growth and maturity. The Receptor for Advanced Glycation End products (RAGE) is a central inflammatory regulator that can influence bone metabolism. It remains unknown how RAGE removal impacts skeletal fragility in overweightness/obesity, and whether increased fracture risk in adolescents could result from low-grade inflammation deteriorating bone quality. We characterized the multiscale structural, mechanical, and chemical properties of tibiae extracted from adolescent C57BL/6J (WT) and RAGE null (KO) mice fed either low-fat (LF) or high-fat (HF) diet for 12 weeks starting at 6 weeks of age using micro-computed tomography, strength, Raman spectroscopy, and nanoindentation. Overweight/obese WT HF mice possessed degraded mineral-crystal quality and increased matrix glycoxidation in the form of pentosidine and carboxymethyl-lysine, with HF diet in females only showing reduced cortical surface expansion and TMD independently of RAGE ablation. Furthermore, in contrast to males, HF diet in females led to more material damage and plastic deformation. RAGE KO mitigated glycoxidative matrix accumulation, preserved mineral quantity, and led to increased E/H ratio in females. Taken together, these results highlight the complex, multi-scale and sex-dependent relationships between bone quality and function under overweightness, and identifies RAGE-controlled glycoxidation as a target to potentially preserve matrix quality and mechanical integrity.
Collapse
Affiliation(s)
- Samuel J Stephen
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Stacyann Bailey
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Danielle N D'Erminio
- Leni and Peter W. May Department of Orthopaedics, Ichan School of Medicine at Mount Sinai, New York, NY, USA
| | - Divya Krishnamoorthy
- Leni and Peter W. May Department of Orthopaedics, Ichan School of Medicine at Mount Sinai, New York, NY, USA
| | - James C Iatridis
- Leni and Peter W. May Department of Orthopaedics, Ichan School of Medicine at Mount Sinai, New York, NY, USA
| | - Deepak Vashishth
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies Rensselaer Polytechnic Institute, Troy, NY, USA.
| |
Collapse
|
9
|
Abstract
Raman spectroscopy (RS) is used to analyze the physiochemical properties of bone because it is non-destructive and requires minimal sample preparation. With over two decades of research involving measurements of mineral-to-matrix ratio, type-B carbonate substitution, crystallinity, and other compositional characteristics of the bone matrix by RS, there are multiple methods to acquire Raman signals from bone, to process those signals, and to determine peak ratios including sub-peak ratios as well as the full-width at half maximum of the most prominent Raman peak, which is nu1 phosphate (ν1PO4). Selecting which methods to use is not always clear. Herein, we describe the components of RS instruments and how they influence the quality of Raman spectra acquired from bone because signal-to-noise of the acquisition and the accompanying background fluorescence dictate the pre-processing of the Raman spectra. We also describe common methods and challenges in preparing acquired spectra for the determination of matrix properties of bone. This article also serves to provide guidance for the analysis of bone by RS with examples of how methods for pre-processing the Raman signals and for determining properties of bone composition affect RS sensitivity to potential differences between experimental groups. Attention is also given to deconvolution methods that are used to ascertain sub-peak ratios of the amide I band as a way to assess characteristics of collagen type I. We provide suggestions and recommendations on the application of RS to bone with the goal of improving reproducibility across studies and solidify RS as a valuable technique in the field of bone research.
Collapse
Affiliation(s)
- Mustafa Unal
- Department of Mechanical Engineering, Karamanoglu Mehmetbey University, Karaman, 70200, Turkey.
- Department of Bioengineering, Karamanoglu Mehmetbey University, Karaman, Turkey 70200
- Department of Biophysics, Faculty of Medicine, Karamanoglu Mehmetbey University, Karaman, Turkey 70200
| | - Rafay Ahmed
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Anita Mahadevan-Jansen
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Vanderbilt Biophotonics Center, Vanderbilt University, Nashville, TN 37235, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jeffry S Nyman
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| |
Collapse
|
10
|
Genetic variability affects the skeletal response to immobilization in founder strains of the diversity outbred mouse population. Bone Rep 2021; 15:101140. [PMID: 34761080 PMCID: PMC8566767 DOI: 10.1016/j.bonr.2021.101140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/28/2021] [Accepted: 10/04/2021] [Indexed: 12/13/2022] Open
Abstract
Mechanical unloading decreases bone volume and strength. In humans and mice, bone mineral density is highly heritable, and in mice the response to changes in loading varies with genetic background. Thus, genetic variability may affect the response of bone to unloading. As a first step to identify genes involved in bones' response to unloading, we evaluated the effects of unloading in eight inbred mouse strains: C57BL/6J, PWK/PhJ, WSB/EiJ, A/J, 129S1/SvImJ, NOD/ShiLtJ, NZO/HlLtJ, and CAST/EiJ. C57BL/6J and NOD/ShiLtJ mice had the greatest unloading-induced loss of diaphyseal cortical bone volume and strength. NZO/HlLtJ mice had the greatest metaphyseal trabecular bone loss, and C57BL/6J, WSB/EiJ, NOD/ShiLtJ, and CAST/EiJ mice had the greatest epiphyseal trabecular bone loss. Bone loss in the epiphyses displayed the highest heritability. With immobilization, mineral:matrix was reduced, and carbonate:phosphate and crystallinity were increased. A/J mice displayed the greatest unloading-induced loss of mineral:matrix. Changes in gene expression in response to unloading were greatest in NOD/ShiLtJ and CAST/EiJ mice. The most upregulated genes in response to unloading were associated with increased collagen synthesis and extracellular matrix formation. Our results demonstrate a strong differential response to unloading as a function of strain. Diversity outbred (DO) mice are a high-resolution mapping population derived from these eight inbred founder strains. These results suggest DO mice will be highly suited for examining the genetic basis of the skeletal response to unloading. Mouse strain affects bone's response to immobilization. Magnitude of bone loss from immobilization is heritable. Bone transcriptomic response to immobilization is influenced by genetic variation.
Collapse
|
11
|
Lee YR, Findlay DM, Muratovic D, Gill TK, Kuliwaba JS. Raman microspectroscopy demonstrates reduced mineralization of subchondral bone marrow lesions in knee osteoarthritis patients. Bone Rep 2020; 12:100269. [PMID: 32395569 PMCID: PMC7210419 DOI: 10.1016/j.bonr.2020.100269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/06/2020] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION Bone marrow lesions (BMLs) are frequently identified by MRI in the subchondral bone in knee osteoarthritis (KOA). BMLs are known to be closely associated with joint pain, loss of the cartilage and structural changes in the subchondral trabecular bone (SCTB). Despite this, understanding of the nature of BMLs at the trabecular tissue level is incomplete. Thus, we used Raman microspectroscopy to examine the biochemical properties of SCTB from KOA patients with presence or absence of BMLs (OA-BML, OA No-BML; respectively), in comparison with age-matched cadaveric non-symptomatic controls (Non-OA CTL). METHODS Tibial plateau (TP) specimens were collected from 19 KOA arthroplasty patients (6-Male, 13-Female; aged 56-74 years). BMLs were identified ex-vivo by MRI, using PDFS- and T1-weighted sequences. The KOA specimens were then categorized into an OA-BML group (n = 12; containing a BML within the medial condyle only) and an OA No-BML group (n = 7; with no BMLs identified in the TP). The control (CTL) group consisted of Non-OA cadaveric TP samples with no BMLs and no macroscopic or microscopic evidence of OA-related changes (n = 8; 5-Male, 3-Female; aged 44-80 years). Confocal Raman microspectroscopy, with high spatial resolution, was used to quantify the biochemical properties of SCTB tissue of both the medial and the lateral condyle in each group. RESULTS The ratios of peak intensity and integrated area of bone matrix mineral (Phosphate (v1), Phosphate (v2) and Phosphate (v4)), to surrogates of the organic phase of bone matrix (Amide I, Proline and Amide III), were calculated. Within the medial compartment, the mineral:organic matrix ratios were significantly lower for OA-BML, compared to Non-OA CTL. These ratios were also significantly lower for the OA-BML medial compartment, compared to the OA-BML lateral compartment. There were no group or compartmental differences for Carbonate:Phosphate (v1, v2 and v4), Amide III (α-helix):Amide III (random-coil), Hydroxyproline:Proline, or Crystallinity. CONCLUSION As measured by Raman microspectroscopy, SCTB tissue in BML zones in KOA is significantly less mineralized than the corresponding zones in individuals without OA. These data are consistent with those obtained using other methods (e.g. Fourier transform infrared spectroscopy; FTIR) and with the increased rate of bone remodeling observed in BML zones. Reduced mineralization may change the biomechanical properties of the trabecular bone in BMLs and the mechanical interaction between subchondral bone and its overlying cartilage, with potential implications for the development and progression of OA.
Collapse
Affiliation(s)
- Yea-Rin Lee
- Adelaide Medical School, The University of Adelaide, Adelaide, Australia
- School of Pharmacy and Medical Sciences, The University of South Australia, Adelaide, Australia
| | - David M. Findlay
- Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | - Dzenita Muratovic
- Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | - Tiffany K. Gill
- Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | - Julia S. Kuliwaba
- Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Individuals with type 1 and type 2 diabetes mellitus (T1DM, T2DM) have an increased risk of bone fracture compared to non-diabetic controls that is not explained by differences in BMD, BMI, or falls. Thus, bone tissue fracture resistance may be reduced in individuals with DM. The purpose of this review is to summarize work that analyzes the effects of T1DM and T2DM on bone tissue compositional and mechanical properties. RECENT FINDINGS Studies of clinical T2DM specimens revealed increased mineralization and advanced glycation endproduct (AGE) concentrations and significant relationships between mechanical performance and composition of cancellous bone. Specifically, in femoral cancellous tissue, compressive stiffness and strength increased with mineral content; and post-yield properties decreased with AGE concentration. In addition, cortical resistance to in vivo indentation (bone material strength index) was lower in patients with T2DM vs. age-matched non-diabetic controls, and this resistance decreased with worsening glycemic control. Recent studies on patients with T1DM and history of a prior fragility fracture found greater mineral content and concentrations of AGEs in iliac trabecular bone and correspondingly stiffer, harder bone at the nanosacle. Recent observational data showed greater AGE and mineral content in surgically retrieved bone from patients with T2DM vs. non-DM controls, consistent with reduced bone remodeling. Limited data on human T1DM bone tissue also showed higher mineral and AGE content in patients with prior fragility fractures compared to non-DM and non-fracture controls.
Collapse
MESH Headings
- Animals
- Biomechanical Phenomena
- Blood Glucose/metabolism
- Bone Density
- Bone Remodeling
- Bone and Bones/diagnostic imaging
- Bone and Bones/metabolism
- Bone and Bones/physiopathology
- Cancellous Bone/diagnostic imaging
- Cancellous Bone/metabolism
- Cancellous Bone/physiopathology
- Cortical Bone/diagnostic imaging
- Cortical Bone/metabolism
- Cortical Bone/physiopathology
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/physiopathology
- Diabetes Mellitus, Type 1/epidemiology
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/physiopathology
- Diabetes Mellitus, Type 2/epidemiology
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/physiopathology
- Fractures, Bone/epidemiology
- Glycation End Products, Advanced/metabolism
- Humans
Collapse
Affiliation(s)
- Sashank Lekkala
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | - Erik A Taylor
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Heather B Hunt
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | - Eve Donnelly
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA.
- Research Division, Hospital for Special Surgery, New York, NY, USA.
| |
Collapse
|
13
|
Van Gulick L, Saby C, Morjani H, Beljebbar A. Age-related changes in molecular organization of type I collagen in tendon as probed by polarized SHG and Raman microspectroscopy. Sci Rep 2019; 9:7280. [PMID: 31086263 PMCID: PMC6513820 DOI: 10.1038/s41598-019-43636-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/17/2019] [Indexed: 12/03/2022] Open
Abstract
Type I Collagen is one of the most abundant proteins of the extracellular matrix of the most organs. During chronological aging or in diseases, type I collagen undergoes biochemical and structural changes which can impact biomechanical and physiological properties of organs. In this study, we have investigated the age-related changes in the molecular organization of type I collagen in rat tails tendon using polarized Raman spectroscopy. Our results show that Amide I, amide III as well as the bands related to proline and hydroxyproline are highly sensitive to polarization and age-related. On the other hand, 1453 and 1270 cm−1 do not show any preferential orientation. Depolarization and anisotropic ratios were used to provide information about the changes in orientation of collagen fibers with aging. The anisotropy degree of Raman bands increase from adult to old collagen, indicating a higher collagen fibers alignment to the fascicle backbone axis in old tendons, and consequently a higher straightness of collagen fibers. These data were correlated to those obtained using polarized second harmonic generation technique. Polarized Raman mapping showed a more homogeneous spatial distribution of collagen fibers alignment to the fascicle axis in old tendon. This confirms a higher straightness of collagen fiber with aging.
Collapse
Affiliation(s)
- Laurence Van Gulick
- BioSpectroscopie Translationnelle (BioSpecT), EA 7506, SFR CAP-Sante FED4231, Université de Reims Champagne-Ardenne, UFR de Pharmacie, 51 rue Cognacq-Jay, 51096, Reims, cedex, France
| | - Charles Saby
- BioSpectroscopie Translationnelle (BioSpecT), EA 7506, SFR CAP-Sante FED4231, Université de Reims Champagne-Ardenne, UFR de Pharmacie, 51 rue Cognacq-Jay, 51096, Reims, cedex, France
| | - Hamid Morjani
- BioSpectroscopie Translationnelle (BioSpecT), EA 7506, SFR CAP-Sante FED4231, Université de Reims Champagne-Ardenne, UFR de Pharmacie, 51 rue Cognacq-Jay, 51096, Reims, cedex, France
| | - Abdelilah Beljebbar
- BioSpectroscopie Translationnelle (BioSpecT), EA 7506, SFR CAP-Sante FED4231, Université de Reims Champagne-Ardenne, UFR de Pharmacie, 51 rue Cognacq-Jay, 51096, Reims, cedex, France.
| |
Collapse
|
14
|
Unal M, Uppuganti S, Timur S, Mahadevan-Jansen A, Akkus O, Nyman JS. Assessing matrix quality by Raman spectroscopy helps predict fracture toughness of human cortical bone. Sci Rep 2019; 9:7195. [PMID: 31076574 PMCID: PMC6510799 DOI: 10.1038/s41598-019-43542-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 04/26/2019] [Indexed: 01/10/2023] Open
Abstract
Developing clinical tools that assess bone matrix quality could improve the assessment of a person's fracture risk. To determine whether Raman spectroscopy (RS) has such potential, we acquired Raman spectra from human cortical bone using microscope- and fiber optic probe-based Raman systems and tested whether correlations between RS and fracture toughness properties were statistically significant. Calculated directly from intensities at wavenumbers identified by second derivative analysis, Amide I sub-peak ratio I1670/I1640, not I1670/I1690, was negatively correlated with Kinit (N = 58; R2 = 32.4%) and J-integral (R2 = 47.4%) when assessed by Raman micro-spectroscopy. Area ratios (A1670/A1690) determined from sub-band fitting did not correlate with fracture toughness. There were fewer correlations between RS and fracture toughness when spectra were acquired by probe RS. Nonetheless, the I1670/I1640 sub-peak ratio again negatively correlated with Kinit (N = 56; R2 = 25.6%) and J-integral (R2 = 39.0%). In best-fit general linear models, I1670/I1640, age, and volumetric bone mineral density explained 50.2% (microscope) and 49.4% (probe) of the variance in Kinit. I1670/I1640 and v1PO4/Amide I (microscope) or just I1670/I1640 (probe) were negative predictors of J-integral (adjusted-R2 = 54.9% or 37.9%, respectively). While Raman-derived matrix properties appear useful to the assessment of fracture resistance of bone, the acquisition strategy to resolve the Amide I band needs to be identified.
Collapse
Affiliation(s)
- Mustafa Unal
- Department of Orthopaedic Surgery & Rehabilitation, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Biophotonics Center, Vanderbilt University, Nashville, TN, 37212, USA
| | - Sasidhar Uppuganti
- Department of Orthopaedic Surgery & Rehabilitation, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Selin Timur
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Anita Mahadevan-Jansen
- Vanderbilt Biophotonics Center, Vanderbilt University, Nashville, TN, 37212, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37212, USA
| | - Ozan Akkus
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
- Department of Orthopaedics, Case Western Reserve University, Cleveland, OH, 44106, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Jeffry S Nyman
- Department of Orthopaedic Surgery & Rehabilitation, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Vanderbilt Biophotonics Center, Vanderbilt University, Nashville, TN, 37212, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37212, USA.
| |
Collapse
|
15
|
Abramczyk H, Brozek-Pluska B, Kopec M. Polarized Raman microscopy imaging: Capabilities and challenges for cancer research. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.03.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
Ciubuc JD, Manciu M, Maran A, Yaszemski MJ, Sundin EM, Bennet KE, Manciu FS. Raman Spectroscopic and Microscopic Analysis for Monitoring Renal Osteodystrophy Signatures. BIOSENSORS-BASEL 2018; 8:bios8020038. [PMID: 29642494 PMCID: PMC6022865 DOI: 10.3390/bios8020038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/24/2018] [Accepted: 04/02/2018] [Indexed: 01/01/2023]
Abstract
Defining the pathogenesis of renal osteodystrophy (ROD) and its treatment efficacy are difficult, since many factors potentially affect bone quality. In this study, confocal Raman microscopy and parallel statistical analysis were used to identify differences in bone composition between healthy and ROD bone tissues through direct visualization of three main compositional parametric ratios, namely, calcium content, mineral-to-matrix, and carbonate-to-matrix. Besides the substantially lower values found in ROD specimens for these representative ratios, an obvious accumulation of phenylalanine is Raman spectroscopically observed for the first time in ROD samples and reported here. Thus, elevated phenylalanine could also be considered as an indicator of the disease. Since the image results are based on tens of thousands of spectra per sample, not only are the average ratios statistically significantly different for normal and ROD bone, but the method is clearly powerful in distinguishing between the two types of samples. Furthermore, the statistical outcomes demonstrate that only a relatively small number of spectra need to be recorded in order to classify the samples. This work thus opens the possibility of future development of in vivo Raman sensors for assessment of bone structure, remodeling, and mineralization, where different biomarkers are simultaneously detected with unprecedented accuracy.
Collapse
Affiliation(s)
- John D Ciubuc
- Department of Physics, University of Texas at El Paso, El Paso, TX 79968, USA.
- Department of Biomedical Engineering, University of Texas at El Paso, El Paso, TX 79968, USA.
| | - Marian Manciu
- Department of Physics, University of Texas at El Paso, El Paso, TX 79968, USA.
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA.
| | - Avudaiappan Maran
- Department of Orthopedic Surgery and Biomaterials and Histomorphometry Core Laboratory, Mayo Clinic, Rochester, MN 55905, USA.
| | - Michael J Yaszemski
- Department of Orthopedic Surgery and Biomaterials and Histomorphometry Core Laboratory, Mayo Clinic, Rochester, MN 55905, USA.
| | - Emma M Sundin
- Department of Physics, University of Texas at El Paso, El Paso, TX 79968, USA.
- Department of Biomedical Engineering, University of Texas at El Paso, El Paso, TX 79968, USA.
| | - Kevin E Bennet
- Division of Engineering, Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA.
| | - Felicia S Manciu
- Department of Physics, University of Texas at El Paso, El Paso, TX 79968, USA.
- Department of Biomedical Engineering, University of Texas at El Paso, El Paso, TX 79968, USA.
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA.
| |
Collapse
|
17
|
Georgiadis M, Müller R, Schneider P. Techniques to assess bone ultrastructure organization: orientation and arrangement of mineralized collagen fibrils. J R Soc Interface 2017; 13:rsif.2016.0088. [PMID: 27335222 DOI: 10.1098/rsif.2016.0088] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/18/2016] [Indexed: 12/13/2022] Open
Abstract
Bone's remarkable mechanical properties are a result of its hierarchical structure. The mineralized collagen fibrils, made up of collagen fibrils and crystal platelets, are bone's building blocks at an ultrastructural level. The organization of bone's ultrastructure with respect to the orientation and arrangement of mineralized collagen fibrils has been the matter of numerous studies based on a variety of imaging techniques in the past decades. These techniques either exploit physical principles, such as polarization, diffraction or scattering to examine bone ultrastructure orientation and arrangement, or directly image the fibrils at the sub-micrometre scale. They make use of diverse probes such as visible light, X-rays and electrons at different scales, from centimetres down to nanometres. They allow imaging of bone sections or surfaces in two dimensions or investigating bone tissue truly in three dimensions, in vivo or ex vivo, and sometimes in combination with in situ mechanical experiments. The purpose of this review is to summarize and discuss this broad range of imaging techniques and the different modalities of their use, in order to discuss their advantages and limitations for the assessment of bone ultrastructure organization with respect to the orientation and arrangement of mineralized collagen fibrils.
Collapse
Affiliation(s)
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Philipp Schneider
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland Bioengineering Science Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton, UK
| |
Collapse
|
18
|
Makowski AJ, Granke M, Ayala OD, Uppuganti S, Mahadevan-Jansen A, Nyman JS. Applying Full Spectrum Analysis to a Raman Spectroscopic Assessment of Fracture Toughness of Human Cortical Bone. APPLIED SPECTROSCOPY 2017; 71:2385-2394. [PMID: 28708001 PMCID: PMC5561524 DOI: 10.1177/0003702817718149] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A decline in the inherent quality of bone tissue is a † Equal contributors contributor to the age-related increase in fracture risk. Although this is well-known, the important biochemical factors of bone quality have yet to be identified using Raman spectroscopy (RS), a nondestructive, inelastic light-scattering technique. To identify potential RS predictors of fracture risk, we applied principal component analysis (PCA) to 558 Raman spectra (370-1720 cm-1) of human cortical bone acquired from 62 female and male donors (nine spectra each) spanning adulthood (age range = 21-101 years). Spectra were analyzed prior to R-curve, nonlinear fracture mechanics that delineate crack initiation (Kinit) from crack growth toughness (Kgrow). The traditional ν1phosphate peak per amide I peak (mineral-to-matrix ratio) weakly correlated with Kinit (r = 0.341, p = 0.0067) and overall crack growth toughness (J-int: r = 0.331, p = 0.0086). Sub-peak ratios of the amide I band that are related to the secondary structure of type 1 collagen did not correlate with the fracture toughness properties. In the full spectrum analysis, one principal component (PC5) correlated with all of the mechanical properties (Kinit: r = - 0.467, Kgrow: r = - 0.375, and J-int: r = - 0.428; p < 0.0067). More importantly, when known predictors of fracture toughness, namely age and/or volumetric bone mineral density (vBMD), were included in general linear models as covariates, several PCs helped explain 45.0% (PC5) to 48.5% (PC7), 31.4% (PC6), and 25.8% (PC7) of the variance in Kinit, Kgrow, and J-int, respectively. Deriving spectral features from full spectrum analysis may improve the ability of RS, a clinically viable technology, to assess fracture risk.
Collapse
Affiliation(s)
- Alexander J. Makowski
- Department of Orthopaedic Surgery & Rehabilitation, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212
- Vanderbilt Biophotonics Center, Vanderbilt University, Nashville, TN 37232
| | - Mathilde Granke
- Department of Orthopaedic Surgery & Rehabilitation, Vanderbilt University Medical Center, Nashville, TN 37232
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212
| | - Oscar D. Ayala
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232
- Vanderbilt Biophotonics Center, Vanderbilt University, Nashville, TN 37232
| | - Sasidhar Uppuganti
- Department of Orthopaedic Surgery & Rehabilitation, Vanderbilt University Medical Center, Nashville, TN 37232
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212
| | - Anita Mahadevan-Jansen
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232
- Vanderbilt Biophotonics Center, Vanderbilt University, Nashville, TN 37232
| | - Jeffry S. Nyman
- Department of Orthopaedic Surgery & Rehabilitation, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212
- Vanderbilt Biophotonics Center, Vanderbilt University, Nashville, TN 37232
| |
Collapse
|
19
|
Taylor EA, Lloyd AA, Salazar-Lara C, Donnelly E. Raman and Fourier Transform Infrared (FT-IR) Mineral to Matrix Ratios Correlate with Physical Chemical Properties of Model Compounds and Native Bone Tissue. APPLIED SPECTROSCOPY 2017; 71:2404-2410. [PMID: 28485618 DOI: 10.1177/0003702817709286] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Raman and Fourier transform infrared (FT-IR) spectroscopic imaging techniques can be used to characterize bone composition. In this study, our objective was to validate the Raman mineral:matrix ratios (ν1 PO4:amide III, ν1 PO4:amide I, ν1 PO4:Proline + hydroxyproline, ν1 PO4:Phenylalanine, ν1 PO4:δ CH2 peak area ratios) by correlating them to ash fraction and the IR mineral:matrix ratio (ν3 PO4:amide I peak area ratio) in chemical standards and native bone tissue. Chemical standards consisting of varying ratios of synthetic hydroxyapatite (HA) and collagen, as well as bone tissue from humans, sheep, and mice, were characterized with confocal Raman spectroscopy and FT-IR spectroscopy and gravimetric analysis. Raman and IR mineral:matrix ratio values from chemical standards increased reciprocally with ash fraction (Raman ν1 PO4/Amide III: P < 0.01, R2 = 0.966; Raman ν1 PO4/Amide I: P < 0.01, R2 = 0.919; Raman ν1 PO4/Proline + Hydroxyproline: P < 0.01, R2 = 0.976; Raman ν1 PO4/Phenylalanine: P < 0.01, R2 = 0.911; Raman ν1 PO4/δ CH2: P < 0.01, R2 = 0.894; IR P < 0.01, R2 = 0.91). Fourier transform infrared mineral:matrix ratio values from native bone tissue were also similar to theoretical mineral:matrix ratio values for a given ash fraction. Raman and IR mineral:matrix ratio values were strongly correlated ( P < 0.01, R2 = 0.82). These results were confirmed by calculating the mineral:matrix ratio for theoretical IR spectra, developed by applying the Beer-Lambert law to calculate the relative extinction coefficients of HA and collagen over the same range of wavenumbers (800-1800 cm-1). The results confirm that the Raman mineral:matrix bone composition parameter correlates strongly to ash fraction and to its IR counterpart. Finally, the mineral:matrix ratio values of the native bone tissue are similar to those of both chemical standards and theoretical values, confirming the biological relevance of the chemical standards and the characterization techniques.
Collapse
Affiliation(s)
- Erik A Taylor
- 1 Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Ashley A Lloyd
- 2 Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | - Carolina Salazar-Lara
- 2 Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | - Eve Donnelly
- 2 Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
- 3 Hospital for Special Surgery, New York, NY, USA
| |
Collapse
|
20
|
Bi X, Grafe I, Ding H, Flores R, Munivez E, Jiang MM, Dawson B, Lee B, Ambrose CG. Correlations Between Bone Mechanical Properties and Bone Composition Parameters in Mouse Models of Dominant and Recessive Osteogenesis Imperfecta and the Response to Anti-TGF-β Treatment. J Bone Miner Res 2017; 32:347-359. [PMID: 27649409 PMCID: PMC7894383 DOI: 10.1002/jbmr.2997] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 08/31/2016] [Accepted: 09/08/2016] [Indexed: 12/12/2022]
Abstract
Osteogenesis imperfecta (OI) is a group of genetic disorders characterized by brittle bones that are prone to fracture. Although previous studies in animal models investigated the mechanical properties and material composition of OI bone, little work has been conducted to statistically correlate these parameters to identify key compositional contributors to the impaired bone mechanical behaviors in OI. Further, although increased TGF-β signaling has been demonstrated as a contributing mechanism to the bone pathology in OI models, the relationship between mechanical properties and bone composition after anti-TGF-β treatment in OI has not been studied. Here, we performed follow-up analyses of femurs collected in an earlier study from OI mice with and without anti-TGF-β treatment from both recessive (Crtap-/- ) and dominant (Col1a2+/P.G610C ) OI mouse models and WT mice. Mechanical properties were determined using three-point bending tests and evaluated for statistical correlation with molecular composition in bone tissue assessed by Raman spectroscopy. Statistical regression analysis was conducted to determine significant compositional determinants of mechanical integrity. Interestingly, we found differences in the relationships between bone composition and mechanical properties and in the response to anti-TGF-β treatment. Femurs of both OI models exhibited increased brittleness, which was associated with reduced collagen content and carbonate substitution. In the Col1a2+/P.G610C femurs, reduced hydroxyapatite crystallinity was also found to be associated with increased brittleness, and increased mineral-to-collagen ratio was correlated with increased ultimate strength, elastic modulus, and bone brittleness. In both models of OI, regression analysis demonstrated that collagen content was an important predictor of the increased brittleness. In summary, this work provides new insights into the relationships between bone composition and material properties in models of OI, identifies key bone compositional parameters that correlate with the impaired mechanical integrity of OI bone, and explores the effects of anti-TGF-β treatment on bone-quality parameters in these models. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Xiaohong Bi
- Department of Nanomedicine and Biomedical Engineering, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ingo Grafe
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Hao Ding
- Department of Nanomedicine and Biomedical Engineering, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Rene Flores
- Academic and Research Affairs, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Elda Munivez
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Ming Ming Jiang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Brian Dawson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Catherine G Ambrose
- Department of Orthopaedic Surgery, University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
21
|
Raman Spectroscopic Analyses of Jaw Periosteal Cell Mineralization. Stem Cells Int 2017; 2017:1651376. [PMID: 28232849 PMCID: PMC5292402 DOI: 10.1155/2017/1651376] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 11/11/2016] [Accepted: 12/18/2016] [Indexed: 01/16/2023] Open
Abstract
To achieve safer patient treatments, serum-free cell culture conditions have to be established for cell therapies. In previous studies, we demonstrated that serum-free culture favored the proliferation of MSCA-1+ osteoprogenitors derived from the jaw periosteum. In this study, the in vitro formation of bone-specific matrix by MSCA-1+ jaw periosteal cells (JPCs, 3 donors) was assessed and compared under serum-free and serum-containing media conditions using the marker-free Raman spectroscopy. Based on a standard fluorescence assay, JPCs from one patient were not able to mineralize under serum-containing culture conditions, whereas the other cells showed similar mineralization levels under both conditions. Raman spectra from mineralizing MSCA-1+ JPCs revealed higher levels of hydroxyapatite formation and higher mineral to matrix ratios under serum-free culture conditions. Higher carbonate to phosphate ratios and higher crystallinity in JPCs cultured under serum-containing conditions indicated immature bone formation. Due to reduced collagen production under serum-free conditions, we obtained significant differences in collagen maturity and proline to hydroxyproline ratios compared to serum-free conditions. We conclude that Raman spectroscopy is a useful tool for the assessment and noninvasive monitoring of in vitro mineralization of osteoprogenitor cells. Further studies should extend this knowledge and improve JPC mineralization by optimizing culture conditions.
Collapse
|
22
|
Bergholt MS, St-Pierre JP, Offeddu GS, Parmar P, Albro MB, Puetzer J, Oyen M, Stevens MM. Raman Spectroscopy Reveals New Insights into the Zonal Organization of Native and Tissue-Engineered Articular Cartilage. ACS CENTRAL SCIENCE 2016; 2:885-895. [PMID: 28058277 PMCID: PMC5200931 DOI: 10.1021/acscentsci.6b00222] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Indexed: 05/17/2023]
Abstract
Tissue architecture is intimately linked with its functions, and loss of tissue organization is often associated with pathologies. The intricate depth-dependent extracellular matrix (ECM) arrangement in articular cartilage is critical to its biomechanical functions. In this study, we developed a Raman spectroscopic imaging approach to gain new insight into the depth-dependent arrangement of native and tissue-engineered articular cartilage using bovine tissues and cells. Our results revealed previously unreported tissue complexity into at least six zones above the tidemark based on a principal component analysis and k-means clustering analysis of the distribution and orientation of the main ECM components. Correlation of nanoindentation and Raman spectroscopic data suggested that the biomechanics across the tissue depth are influenced by ECM microstructure rather than composition. Further, Raman spectroscopy together with multivariate analysis revealed changes in the collagen, glycosaminoglycan, and water distributions in tissue-engineered constructs over time. These changes were assessed using simple metrics that promise to instruct efforts toward the regeneration of a broad range of tissues with native zonal complexity and functional performance.
Collapse
Affiliation(s)
- Mads S. Bergholt
- Department
of Materials, Imperial College London, London SW7 2AZ, United Kingdom
- Department
of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
- Institute
of Biomedical Engineering, Imperial College
London, London SW7 2AZ, United Kingdom
| | - Jean-Philippe St-Pierre
- Department
of Materials, Imperial College London, London SW7 2AZ, United Kingdom
- Department
of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
- Institute
of Biomedical Engineering, Imperial College
London, London SW7 2AZ, United Kingdom
| | - Giovanni S. Offeddu
- Nanoscience
Centre, Department of Engineering, University
of Cambridge, Cambridge CB3 0FF, United Kingdom
| | - Paresh
A. Parmar
- Department
of Materials, Imperial College London, London SW7 2AZ, United Kingdom
- Department
of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
- Institute
of Biomedical Engineering, Imperial College
London, London SW7 2AZ, United Kingdom
| | - Michael B. Albro
- Department
of Materials, Imperial College London, London SW7 2AZ, United Kingdom
- Department
of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
- Institute
of Biomedical Engineering, Imperial College
London, London SW7 2AZ, United Kingdom
| | - Jennifer
L. Puetzer
- Department
of Materials, Imperial College London, London SW7 2AZ, United Kingdom
- Department
of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
- Institute
of Biomedical Engineering, Imperial College
London, London SW7 2AZ, United Kingdom
| | - Michelle
L. Oyen
- Nanoscience
Centre, Department of Engineering, University
of Cambridge, Cambridge CB3 0FF, United Kingdom
| | - Molly M. Stevens
- Department
of Materials, Imperial College London, London SW7 2AZ, United Kingdom
- Department
of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
- Institute
of Biomedical Engineering, Imperial College
London, London SW7 2AZ, United Kingdom
- E-mail:
| |
Collapse
|
23
|
Casanova M, Herelle J, Thomas M, Softley R, Schindeler A, Little D, Schneider P, Müller R. Effect of combined treatment with zoledronic acid and parathyroid hormone on mouse bone callus structure and composition. Bone 2016; 92:70-78. [PMID: 27542660 DOI: 10.1016/j.bone.2016.08.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 08/12/2016] [Accepted: 08/14/2016] [Indexed: 11/20/2022]
Abstract
In recent years, great interest in combined treatment of parathyroid hormone (PTH) with anti-resorptive therapy has emerged. PTH has been suggested to aid bridging of atrophic fractures and improve strength in closed fracture models. Bisphosphonate treatments typically result in a larger woven bone callus that is slower to remodel. The combination of both drugs has been demonstrated to be effective for the treatment of osteoporotic bone loss in many preclinical studies. However, the effect of combined treatment on fracture repair is still largely unexplored. In this study, we aimed to compare these drugs as single-agent and in combination in a murine closed fracture model. We wanted to assess potential differences in material properties, morphometry and in the development of the lacuno-canalicular network. A total of 40 female, 11-week-old wild type mice underwent a closed fracture on the midshaft of the tibia and were assigned to four groups (n=8-10 per group). Beginning on post-operative day 8, animals received different subcutaneous injections. Group 1 received a single injection of saline solution and Group 2 of zoledronic acid (ZA). Group 3 received daily dosing of PTH. Group 4 received a dual treatment, starting with a single dose of ZA followed by daily injection of PTH. Three weeks after fracture, all animals were euthanized and tibiae were assessed using micro-computed tomography (micro-CT), high-resolution micro-CT (HR micro-CT), Raman spectroscopy, quantitative histomorphometry, and deconvolution microscopy (DV microscopy). Combined treatment showed a significant increase of 41% in bone volume fraction and a significant decrease of 61% in the standard deviation of the trabecular spacing compared to vehicle, both known to be strong predictors of callus strength. An analysis via HR micro-CT showed similar results on all groups for lacunar numerical density, whereas mean lacuna volume was found to be higher compared to vehicle in treated groups, but only PTH mono-treatment showed a significant increase compared to vehicle (+45%). Raman spectroscopy did not reveal detectable changes in material properties of the bone calluses. Sclerostin staining, tartrate resistant acid phosphatase (TRAP) staining and canalicular analysis with DV microscopy on a subset of samples did not display distinctive difference in any of the treatments. We therefore consider PTH+ZA treatment beneficial for bone healing. No clear negative effect on bone quality was detected during this study.
Collapse
Affiliation(s)
- Michele Casanova
- Institute for Biomechanics, HCP H 22.1, Leopold-Ruzicka-Weg 4, ETH Zurich, 8093 Zurich, Switzerland.
| | - Janelle Herelle
- Institute for Biomechanics, HCP H 22.1, Leopold-Ruzicka-Weg 4, ETH Zurich, 8093 Zurich, Switzerland.
| | - Marcel Thomas
- Institute for Biomechanics, HCP H 22.1, Leopold-Ruzicka-Weg 4, ETH Zurich, 8093 Zurich, Switzerland.
| | - Rowan Softley
- Institute for Biomechanics, HCP H 22.1, Leopold-Ruzicka-Weg 4, ETH Zurich, 8093 Zurich, Switzerland.
| | - Aaron Schindeler
- Orthopaedic Research and Biotechnology, The Children's Hospital at Westmead, Westmead, NSW 2145, Australia; Discipline of Paediatrics and Child Health, University of Sydney, Camperdown, Australia.
| | - David Little
- Orthopaedic Research and Biotechnology, The Children's Hospital at Westmead, Westmead, NSW 2145, Australia; Discipline of Paediatrics and Child Health, University of Sydney, Camperdown, Australia.
| | - Philipp Schneider
- Institute for Biomechanics, HCP H 22.1, Leopold-Ruzicka-Weg 4, ETH Zurich, 8093 Zurich, Switzerland; Bioengineering Science Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton, UK.
| | - Ralph Müller
- Institute for Biomechanics, HCP H 22.1, Leopold-Ruzicka-Weg 4, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
24
|
Schrof S, Varga P, Hesse B, Schöne M, Schütz R, Masic A, Raum K. Multimodal correlative investigation of the interplaying micro-architecture, chemical composition and mechanical properties of human cortical bone tissue reveals predominant role of fibrillar organization in determining microelastic tissue properties. Acta Biomater 2016; 44:51-64. [PMID: 27497843 DOI: 10.1016/j.actbio.2016.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/03/2016] [Accepted: 08/02/2016] [Indexed: 12/15/2022]
Abstract
UNLABELLED The mechanical competence of bone is crucially determined by its material composition and structural design. To investigate the interaction of the complex hierarchical architecture, the chemical composition and the resulting elastic properties of healthy femoral bone at the level of single bone lamellae and entire structural units, we combined polarized Raman spectroscopy (PRS), scanning acoustic microscopy (SAM) and synchrotron X-ray phase contrast nano tomography (SR-nanoCT). In line with earlier studies, mutual correlation analysis strongly suggested that the characteristic elastic modulations of bone lamellae within single units are the result of the twisting fibrillar orientation, rather than compositional variations, modulations of the mineral particle maturity, or mass density deviations. Furthermore, we show that predominant fibril orientations in entire tissue units can be rapidly assessed from Raman parameter maps. Coexisting twisted and oscillating fibril patterns were observed in all investigated tissue domains. Ultimately, our findings demonstrate in particular the potential of combined PRS and SAM measurements in providing multi-scalar analysis of correlated fundamental tissue properties. In future studies, the presented approach can be applied for non-destructive investigation of small pathologic samples from bone biopsies and a broad range of biological materials and tissues. STATEMENT OF SIGNIFICANCE Bone is a complex structured composite material consisting of collagen fibrils and mineral particles. Various studies have shown that not only composition, maturation, and packing of its components, but also their structural arrangement determine the mechanical performance of the tissue. However, prominent methodologies are usually not able to concurrently describe these factors on the micron scale and complementary tissue characterization remains challenging. In this study we combine X-ray nanoCT, polarized Raman imaging and scanning acoustic microscopy and propose a protocol for fast and easy assessment of predominant fibril orientations in bone. Based on our site-matched analysis of cortical bone, we conclude that the elastic modulations of bone lamellae are mainly determined by the fibril arrangement.
Collapse
Affiliation(s)
- Susanne Schrof
- Berlin-Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.
| | - Peter Varga
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - Bernhard Hesse
- European Synchrotron Radiation Facility, Grenoble, France
| | - Martin Schöne
- Berlin-Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Roman Schütz
- Dept. of Biomaterials, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
| | - Admir Masic
- Dep. of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Mass. Ave, Cambridge, MA 02139, USA
| | - Kay Raum
- Berlin-Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|
25
|
Creecy A, Uppuganti S, Merkel AR, O'Neal D, Makowski AJ, Granke M, Voziyan P, Nyman JS. Changes in the Fracture Resistance of Bone with the Progression of Type 2 Diabetes in the ZDSD Rat. Calcif Tissue Int 2016; 99:289-301. [PMID: 27209312 PMCID: PMC4961536 DOI: 10.1007/s00223-016-0149-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/05/2016] [Indexed: 01/11/2023]
Abstract
Individuals with type 2 diabetes (T2D) have a higher fracture risk compared to non-diabetics, even though their areal bone mineral density is normal to high. Identifying the mechanisms whereby diabetes lowers fracture resistance requires well-characterized rodent models of diabetic bone disease. Toward that end, we hypothesized that bone toughness, more so than bone strength, decreases with the duration of diabetes in ZDSD rats. Bones were harvested from male CD(SD) control rats and male ZDSD rats at 16 weeks (before the onset of hyperglycemia), at 22 weeks (5-6 weeks of hyperglycemia), and at 29 weeks (12-13 weeks of hyperglycemia). There were at least 12 rats per strain per age group. At 16 weeks, there was no difference in either body weight or glucose levels between the two rat groups. Within 2 weeks of switching all rats to a diet with 48 % of kcal from fat, only the ZDSD rats developed hyperglycemia (>250 mg/dL). They also began to lose body weight at 21 weeks. CD(SD) rats remained normoglycemic (<110 mg/dL) on the high-fat diet and became obese (>600 g). From micro-computed tomography (μCT) analysis of a lumbar vertebra and distal femur, trabecular bone volume did not vary with age among the non-diabetic rats but was lower at 29 weeks than at 16 weeks or at 22 weeks for the diabetic rats. Consistent with that finding, μCT-derived intra-cortical porosity (femur diaphysis) was higher for ZDSD following ~12 weeks of hyperglycemia than for age-matched CD(SD) rats. Despite an age-related increase in mineralization in both rat strains (μCT and Raman spectroscopy), material strength of cortical bone (from three-point bending tests) increased with age only in the non-diabetic CD(SD) rats. Moreover, two other material properties, toughness (radius) and fracture toughness (femur), significantly decreased with the duration of T2D in ZDSD rats. This was accompanied by the increase in the levels of the pentosidine (femur). However, pentosidine was not significantly higher in diabetic than in non-diabetic bone at any time point. The ZDSD rat, which has normal leptin signaling and becomes diabetic after skeletal maturity, provides a pre-clinical model of diabetic bone disease, but a decrease in body weight during prolonged diabetes and certain strain-related differences before the onset of hyperglycemia should be taken into consideration when interpreting diabetes-related differences.
Collapse
Affiliation(s)
- Amy Creecy
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, 37212, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37232, USA
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Sasidhar Uppuganti
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, 37212, USA
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Orthopaedic Surgery & Rehabilitation, Vanderbilt University Medical Center, 1215 21st Ave S., Suite 4200, Nashville, TN, 37232, USA
| | - Alyssa R Merkel
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, 37212, USA
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Dianne O'Neal
- School of Medicine, Meharry Medical College, Nashville, TN, 37208, USA
| | - Alexander J Makowski
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, 37212, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37232, USA
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Mathilde Granke
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, 37212, USA
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Orthopaedic Surgery & Rehabilitation, Vanderbilt University Medical Center, 1215 21st Ave S., Suite 4200, Nashville, TN, 37232, USA
| | - Paul Voziyan
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Jeffry S Nyman
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, 37212, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37232, USA.
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Department of Orthopaedic Surgery & Rehabilitation, Vanderbilt University Medical Center, 1215 21st Ave S., Suite 4200, Nashville, TN, 37232, USA.
| |
Collapse
|
26
|
Zhang Q, Sun X, Yang J, Ding H, LeBrun D, Ding K, Houchen CW, Postier RG, Ambrose CG, Li Z, Bi X, Li M. ZIP4 silencing improves bone loss in pancreatic cancer. Oncotarget 2016; 6:26041-51. [PMID: 26305676 PMCID: PMC4694884 DOI: 10.18632/oncotarget.4667] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 07/06/2015] [Indexed: 01/06/2023] Open
Abstract
Metabolic bone disorders are associated with several types of human cancers. Pancreatic cancer patients usually suffer from severe nutrition deficiency, muscle wasting, and loss of bone mass. We have previously found that silencing of a zinc transporter ZIP4 prolongs the survival and reduces the severity of the cachexia in vivo. However, the role of ZIP4 in the pancreatic cancer related bone loss remains unknown. In this study we investigated the effect of ZIP4 knockdown on the bone structure, composition and mechanical properties of femurs in an orthotopic xenograft mouse model. Our data showed that silencing of ZIP4 resulted in increased bone tissue mineral density, decreased bone crystallinity and restoration of bone strength through the RANK/RANKL pathway. The results further support the impact of ZIP4 on the progression of pancreatic cancer, and suggest its potential significance as a therapeutic target for treating patients with such devastating disease and cancer related disorders.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Orthopedics, General Hospital of The Jinan Military Command, Jinan, Shandong 250031, China.,The Vivian L. Smith Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Xiaotian Sun
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, TX 77030, USA.,Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China.,Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.,Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Jingxuan Yang
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, TX 77030, USA.,Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.,Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Hao Ding
- Department of Nanomedicine and Biomedical Engineering, The University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Drake LeBrun
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Kai Ding
- Department of Biostatistics and Epidemiology, College of Public Health, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Courtney W Houchen
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Russell G Postier
- Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Catherine G Ambrose
- Department of Orthopedic Surgery, The University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Zhaoshen Li
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Xiaohong Bi
- Department of Nanomedicine and Biomedical Engineering, The University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Min Li
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, TX 77030, USA.,Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.,Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
27
|
Dhainaut A, Hoff M, Syversen U, Haugeberg G. Technologies for assessment of bone reflecting bone strength and bone mineral density in elderly women: an update. ACTA ACUST UNITED AC 2016; 12:209-16. [PMID: 26900798 DOI: 10.2217/whe.15.94] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Reduced bone mineral density is a strong risk factor for fracture. The WHO's definition of osteoporosis is based on bone mineral density measurements assessed by dual x-ray absorptiometry. Several on other techniques than dual x-ray absorptiometry have been developed for quantitative assessment of bone, for example, quantitative ultrasound and digital x-ray radiogrammetry. Some of these techniques may also capture other bone properties than bone mass that contribute to bone strength, for example, bone porosity and microarchitecture. In this article we give an update on technologies which are available for evaluation primarily of bone mass and bone density, but also describe methods which currently are validated or are under development for quantitative assessment of other bone properties.
Collapse
Affiliation(s)
- Alvilde Dhainaut
- Department of Neuroscience (INM) Norwegian University of Science & Technology (NTNU), Trondheim, Norway.,Department of Public Health & General Practice (ISM), Norwegian University of Science & Technology, Trondheim Norway
| | - Mari Hoff
- Department of Public Health & General Practice (ISM), Norwegian University of Science & Technology, Trondheim Norway.,Department of Rheumatology, St Olav's Hospital, Trondheim, Norway
| | - Unni Syversen
- Department of Cancer Research & Molecular Medicine (IKM), NTNU, Trondheim, Norway.,Department of Endocrinology, St. Olav's Hospital, Norway
| | - Glenn Haugeberg
- Department of Neuroscience (INM) Norwegian University of Science & Technology (NTNU), Trondheim, Norway.,Department of Rheumatology, Hospital of Southern Norway, Kristiansand S, Norway
| |
Collapse
|
28
|
Daniel A, Prakasarao A, Dornadula K, Ganesan S. Polarized Raman spectroscopy unravels the biomolecular structural changes in cervical cancer. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 152:58-63. [PMID: 26189160 DOI: 10.1016/j.saa.2015.06.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/12/2015] [Accepted: 06/17/2015] [Indexed: 06/04/2023]
Abstract
Polarized Raman spectroscopy has emerged as a promising technique giving a wealth of information about the orientation and symmetry of bond vibrations in addition to the general chemical information from the conventional Raman spectroscopy. In this regard, polarized Raman Spectroscopic technique was employed to study the changes in the orientation of biomolecules in normal and cancerous conditions. This technique was compared to the conventional Raman spectroscopic technique and was found to yield additional information about the orientation of tyrosine, collagen and DNA. The statistically analyzed depolarization ratios by Linear Discriminant Analysis yielded better accuracy than the statistical results of conventional Raman spectroscopy. Thus, this study reveals that polarized Raman spectroscopy has better diagnostic potential than the conventional Raman spectroscopic technique.
Collapse
Affiliation(s)
- Amuthachelvi Daniel
- Anna University, Department of Medical Physics, Sardar Patel Road, Chennai, India
| | - Aruna Prakasarao
- Anna University, Department of Medical Physics, Sardar Patel Road, Chennai, India.
| | | | - Singaravelu Ganesan
- Anna University, Department of Medical Physics, Sardar Patel Road, Chennai, India
| |
Collapse
|
29
|
Anisotropy in bone demineralization revealed by polarized far-IR spectroscopy. Molecules 2015; 20:5835-50. [PMID: 25849806 PMCID: PMC6272147 DOI: 10.3390/molecules20045835] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 03/24/2015] [Accepted: 03/25/2015] [Indexed: 11/25/2022] Open
Abstract
Bone material is composed of an organic matrix of collagen fibers and apatite nanoparticles. Previously, vibrational spectroscopy techniques such as infrared (IR) and Raman spectroscopy have proved to be particularly useful for characterizing the two constituent organic and inorganic phases of bone. In this work, we tested the potential use of high intensity synchrotron-based far-IR radiation (50–500 cm−1) to gain new insights into structure and chemical composition of bovine fibrolamellar bone. The results from our study can be summarized in the following four points: (I) compared to far-IR spectra obtained from synthetic hydroxyapatite powder, those from fibrolamellar bone showed similar peak positions, but very different peak widths; (II) during stepwise demineralization of the bone samples, there was no significant change neither to far-IR peak width nor position, demonstrating that mineral dissolution occurred in a uniform manner; (III) application of external loading on fully demineralized bone had no significant effect on the obtained spectra, while dehydration of samples resulted in clear differences. (IV) using linear dichroism, we showed that the anisotropic structure of fibrolamellar bone is also reflected in anisotropic far-IR absorbance properties of both the organic and inorganic phases. Far-IR spectroscopy thus provides a novel way to functionally characterize bone structure and chemistry, and with further technological improvements, has the potential to become a useful clinical diagnostic tool to better assess quality of collagen-based tissues.
Collapse
|
30
|
Atkins A, Reznikov N, Ofer L, Masic A, Weiner S, Shahar R. The three-dimensional structure of anosteocytic lamellated bone of fish. Acta Biomater 2015; 13:311-23. [PMID: 25449924 DOI: 10.1016/j.actbio.2014.10.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 09/24/2014] [Accepted: 10/21/2014] [Indexed: 12/18/2022]
Abstract
Fish represent the most diverse and numerous of the vertebrate clades. In contrast to the bones of all tetrapods and evolutionarily primitive fish, many of the evolutionarily more advanced fish have bones that do not contain osteocytes. Here we use a variety of imaging techniques to show that anosteocytic fish bone is composed of a sequence of planar layers containing mainly aligned collagen fibrils, in which the prevailing principal orientation progressively spirals. When the sequence of fibril orientations completes a rotation of around 180°, a thin layer of poorly oriented fibrils is present between it and the next layer. The thick layer of aligned fibrils and the thin layer of non-aligned fibrils constitute a lamella. Although both basic components of mammalian lamellar bone are found here as well, the arrangement is unique, and we therefore call this structure lamellated bone. We further show that the lamellae of anosteocytic fish bone contain an array of dense, small-diameter (1-4 μm) bundles of hypomineralized collagen fibrils that are oriented mostly orthogonal to the lamellar plane. Results of mechanical tests conducted on beams from anosteocytic fish bone and human cortical bone show that the fish bones are less stiff but much tougher than the human bones. We propose that the unique lamellar structure and the orthogonal hypomineralized collagen bundles are responsible for the unusual mechanical properties and mineral distribution in anosteocytic fish bone.
Collapse
Affiliation(s)
- Ayelet Atkins
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Natalie Reznikov
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Lior Ofer
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Admir Masic
- Department of Biomaterials, Max Planck Institute of Colloids & Interfaces, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Steve Weiner
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ron Shahar
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| |
Collapse
|
31
|
Mandair GS, Morris MD. Contributions of Raman spectroscopy to the understanding of bone strength. BONEKEY REPORTS 2015; 4:620. [PMID: 25628882 DOI: 10.1038/bonekey.2014.115] [Citation(s) in RCA: 220] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 10/24/2014] [Indexed: 02/07/2023]
Abstract
Raman spectroscopy is increasingly commonly used to understand how changes in bone composition and structure influence tissue-level bone mechanical properties. The spectroscopic technique provides information on bone mineral and matrix collagen components and on the effects of various matrix proteins on bone material properties as well. The Raman spectrum of bone not only contains information on bone mineral crystallinity that is related to bone hardness but also provides information on the orientation of mineral crystallites with respect to the collagen fibril axis. Indirect information on collagen cross-links is also available and will be discussed. After a short introduction to bone Raman spectroscopic parameters and collection methodologies, advances in in vivo Raman spectroscopic measurements for animal and human subject studies will be reviewed. A discussion on the effects of aging, osteogenesis imperfecta, osteoporosis and therapeutic agents on bone composition and mechanical properties will be highlighted, including genetic mouse models in which structure-function and exercise effects are explored. Similarly, extracellular matrix proteins, proteases and transcriptional proteins implicated in the regulation of bone material properties will be reviewed.
Collapse
Affiliation(s)
- Gurjit S Mandair
- Department of Chemistry, University of Michigan , Ann Arbor, MI, USA
| | - Michael D Morris
- Department of Chemistry, University of Michigan , Ann Arbor, MI, USA
| |
Collapse
|
32
|
Schrof S, Varga P, Galvis L, Raum K, Masic A. 3D Raman mapping of the collagen fibril orientation in human osteonal lamellae. J Struct Biol 2014; 187:266-275. [DOI: 10.1016/j.jsb.2014.07.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/04/2014] [Accepted: 07/05/2014] [Indexed: 10/25/2022]
|
33
|
Kerns JG, Gikas PD, Buckley K, Shepperd A, Birch HL, McCarthy I, Miles J, Briggs TWR, Keen R, Parker AW, Matousek P, Goodship AE. Evidence from Raman spectroscopy of a putative link between inherent bone matrix chemistry and degenerative joint disease. Arthritis Rheumatol 2014; 66:1237-46. [PMID: 24470432 PMCID: PMC4158861 DOI: 10.1002/art.38360] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 01/09/2014] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Osteoarthritis (OA) is a common debilitating disease that results in degeneration of cartilage and bone in the synovial joints. Subtle changes in the molecular structure of the subchondral bone matrix occur and may be associated with cartilage changes. The aim of this study was to explore whether the abnormal molecular changes observed in the matrix of OA subchondral bone can be identified with Raman spectroscopy. METHODS Tibial plateaus from patients undergoing total knee replacement for OA (n = 10) were compared with healthy joints from patients undergoing leg amputation (n = 5; sex- and laterality-matched) and with non-OA cadaveric knee specimens (n = 5; age-matched). The samples were analyzed with Raman spectroscopy, peripheral quantitative computed tomography, and chemical analysis to compare changes in defined load-bearing sites in both the medial and lateral compartments. RESULTS OA subchondral bone matrix changes were detected by Raman spectroscopy. Within each cohort, there was no spectral difference in bone matrix chemistry between the medial and lateral compartments, whereas a significant spectral difference (P < 0.001) was observed between the non-OA and OA specimens. Type I collagen chain ratios were normal in the non-OA specimens but were significantly elevated in the OA specimens. CONCLUSION In comparing the results of Raman spectroscopy with those obtained by other standard techniques, these findings show, for the first time, that subchondral bone changes, or inherent differences, exist in both the medial and lateral (beneath intact cartilage) compartments of OA knees. The development of Raman spectroscopy as a screening tool, based on molecular-specific modifications in bone, would facilitate the identification of clinical disease, including early molecular changes.
Collapse
Affiliation(s)
- Jemma G Kerns
- Institute of Orthopaedics and Musculoskeletal Science, University College London, and Royal National Orthopaedic Hospital, Stanmore, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Bart ZR, Hammond MA, Wallace JM. Multi-scale analysis of bone chemistry, morphology and mechanics in the oim model of osteogenesis imperfecta. Connect Tissue Res 2014; 55 Suppl 1:4-8. [PMID: 25158170 DOI: 10.3109/03008207.2014.923860] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Osteogenesis imperfecta is a congenital disease commonly characterized by brittle bones and caused by mutations in the genes encoding Type I collagen, the single most abundant protein produced by the body. The oim model has a natural collagen mutation, converting its heterotrimeric structure (two α1 and one α2 chains) into α1 homotrimers. This mutation in collagen may impact formation of the mineral, creating a brittle bone phenotype in animals. Femurs from male wild type (WT) and homozygous (oim/oim) mice, all at 12 weeks of age, were assessed using assays at multiple length scales with minimal sample processing to ensure a near-physiological state. Atomic force microscopy (AFM) demonstrated detectable differences in the organization of collagen at the nanoscale that may partially contribute to alterations in material and structural behavior obtained through mechanical testing and reference point indentation (RPI). Changes in geometric and chemical structure obtained from µ-Computed Tomography and Raman spectroscopy indicate a smaller bone with reduced trabecular architecture and altered chemical composition. Decreased tissue material properties in oim/oim mice are likely driven by changes in collagen fibril structure, decreasing space available for mineral nucleation and growth, as supported by a reduction in mineral crystallinity. Multi-scale analyses of this nature offer much in assessing how molecular changes compound to create a degraded, brittle bone phenotype.
Collapse
Affiliation(s)
- Zachary R Bart
- Department of Biomedical Engineering, Indiana University-Purdue University , Indianapolis, IN , USA
| | | | | |
Collapse
|
35
|
Makowski AJ, Uppuganti S, Wadeer SA, Whitehead JM, Rowland BJ, Granke M, Mahadevan-Jansen A, Yang X, Nyman JS. The loss of activating transcription factor 4 (ATF4) reduces bone toughness and fracture toughness. Bone 2014; 62:1-9. [PMID: 24509412 PMCID: PMC3992706 DOI: 10.1016/j.bone.2014.01.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Revised: 01/06/2014] [Accepted: 01/28/2014] [Indexed: 01/10/2023]
Abstract
Even though age-related changes to bone tissue affecting fracture risk are well characterized, only a few matrix-related factors have been identified as important to maintaining fracture resistance. As a gene critical to osteoblast differentiation, activating transcription factor 4 (ATF4) is possibly one of these important factors. To test the hypothesis that the loss of ATF4 affects the fracture resistance of bone beyond bone mass and structure, we harvested bones from Atf4+/+ and Atf4-/- littermates at 8 and 20 weeks of age (n≥9 per group) for bone assessment across several length scales. From whole bone mechanical tests in bending, femurs from Atf4-/- mice were found to be brittle with reduced toughness and fracture toughness compared to femurs from Atf4+/+ mice. However, there were no differences in material strength and in tissue hardness, as determined by nanoindentation, between the genotypes, irrespective of age. Tissue mineral density of the cortex at the point of loading as determined by micro-computed tomography was also not significantly different. However, by analyzing local composition by Raman Spectroscopy (RS), bone tissue of Atf4-/- mice was found to have higher mineral to collagen ratio compared to wild-type tissue, primarily at 20 weeks of age. From RS analysis of intact femurs at 2 orthogonal orientations relative to the polarization axis of the laser, we also found that the organizational-sensitive peak ratio, ν1Phosphate per Amide I, changed to a greater extent upon bone rotation for Atf4-deficient tissue, implying bone matrix organization may contribute to the brittleness phenotype. Target genes of ATF4 activity are not only important to osteoblast differentiation but also in maintaining bone toughness and fracture toughness.
Collapse
Affiliation(s)
- Alexander J Makowski
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 27212, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - Sasidhar Uppuganti
- Department of Orthopaedic Surgery & Rehabilitation, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sandra A Wadeer
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 27212, USA
| | - Jack M Whitehead
- Department of Orthopaedic Surgery & Rehabilitation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Barbara J Rowland
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 27212, USA; Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mathilde Granke
- Department of Orthopaedic Surgery & Rehabilitation, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Xiangli Yang
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jeffry S Nyman
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 27212, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA; Department of Orthopaedic Surgery & Rehabilitation, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
36
|
Makowski AJ, Pence IJ, Uppuganti S, Zein-Sabatto A, Huszagh MC, Mahadevan-Jansen A, Nyman JS. Polarization in Raman spectroscopy helps explain bone brittleness in genetic mouse models. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:117008. [PMID: 25402627 PMCID: PMC4240742 DOI: 10.1117/1.jbo.19.11.117008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 10/22/2014] [Indexed: 06/04/2023]
Abstract
Raman spectroscopy (RS) has been extensively used to characterize bone composition. However, the link between bone biomechanics and RS measures is not well established. Here, we leveraged the sensitivity of RS polarization to organization, thereby assessing whether RS can explain differences in bone toughness in genetic mouse models for which traditional RS peak ratios are not informative. In the selected mutant mice - activating transcription factor 4 (ATF4) or matrix metalloproteinase 9 (MMP9) knock-outs - toughness is reduced but differences in bone strength do not exist between knock-out and corresponding wild-type controls. To incorporate differences in the RS of bone occurring at peak shoulders, a multivariate approach was used. Full spectrum principal components analysis of two paired, orthogonal bone orientations (relative to laser polarization) improved genotype classification and correlation to bone toughness when compared to traditional peak ratios. When applied to femurs from wild-type mice at 8 and 20 weeks of age, the principal components of orthogonal bone orientations improved age classification but not the explanation of the maturation-related increase in strength. Overall, increasing polarization information by collecting spectra from two bone orientations improves the ability of multivariate RS to explain variance in bone toughness, likely due to polarization sensitivity to organizational changes in both mineral and collagen.
Collapse
Affiliation(s)
- Alexander J. Makowski
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, Tennessee 27212, United States
- Vanderbilt University, Department of Biomedical Engineering, Nashville, Tennessee 37232, United States
- Vanderbilt University, Vanderbilt Center for Bone Biology, Nashville, Tennessee 37232, United States
- Vanderbilt University, Department of Orthopaedic Surgery and Rehabilitation, Nashville, Tennessee 37232, United States
| | - Isaac J. Pence
- Vanderbilt University, Department of Biomedical Engineering, Nashville, Tennessee 37232, United States
| | - Sasidhar Uppuganti
- Vanderbilt University, Department of Orthopaedic Surgery and Rehabilitation, Nashville, Tennessee 37232, United States
| | - Ahbid Zein-Sabatto
- Vanderbilt University, Department of Biomedical Engineering, Nashville, Tennessee 37232, United States
| | - Meredith C. Huszagh
- Vanderbilt University, Department of Biomedical Engineering, Nashville, Tennessee 37232, United States
| | - Anita Mahadevan-Jansen
- Vanderbilt University, Department of Biomedical Engineering, Nashville, Tennessee 37232, United States
| | - Jeffry S. Nyman
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, Tennessee 27212, United States
- Vanderbilt University, Department of Biomedical Engineering, Nashville, Tennessee 37232, United States
- Vanderbilt University, Vanderbilt Center for Bone Biology, Nashville, Tennessee 37232, United States
- Vanderbilt University, Department of Orthopaedic Surgery and Rehabilitation, Nashville, Tennessee 37232, United States
| |
Collapse
|
37
|
Ding H, Nyman JS, Sterling JA, Perrien DS, Mahadevan-Jansen A, Bi X. Development of Raman spectral markers to assess metastatic bone in breast cancer. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:111606. [PMID: 24933683 PMCID: PMC4059340 DOI: 10.1117/1.jbo.19.11.111606] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/17/2014] [Accepted: 05/20/2014] [Indexed: 05/29/2023]
Abstract
Bone is the most common site for breast cancer metastases. One of the major complications of bone metastasis is pathological bone fracture caused by chronic bone loss and degeneration. Current guidelines for the prediction of pathological fracture mainly rely on radiographs or computed tomography, which are limited in their ability to predict fracture risk. The present study explored the feasibility of using Raman spectroscopy to estimate pathological fracture risk by characterizing the alterations in the compositional properties of metastatic bones. Tibiae with evident bone destruction were investigated using Raman spectroscopy. The carbonation level calculated by the ratio of carbonate/phosphate ν1 significantly increased in the tumor-bearing bone at all the sampling regions at the proximal metaphysis and diaphysis, while tumor-induced elevation in mineralization and crystallinity was more pronounced in the metaphysis. Furthermore, the increased carbonation level is positively correlated to bone lesion size, indicating that this parameter could serve as a unique spectral marker for tumor progression and bone loss. With the promising advances in the development of spatially offset Raman spectroscopy for deep tissue measurement, this spectral marker can potentially be used for future noninvasive evaluation of metastatic bone and prediction of pathological fracture risk.
Collapse
Affiliation(s)
- Hao Ding
- University of Texas Health Science Center at Houston, Department of Nanomedicine and Biomedical Engineering, 1881 East Road, Houston, Texas 77054
| | - Jeffry S. Nyman
- Tennessee Valley Healthcare System, Department of Veterans Affairs, 1310 24th Avenue South, Nashville, Tennessee 37212
- Vanderbilt University, Department of Biomedical Engineering, VU Station B#351631, 2301 Vanderbilt Place, Nashville, Tennessee 37235
- Vanderbilt University, Department of Orthopaedic Surgery and Rehabilitation, Medical Center East, South Tower, Suite 4200, Nashville, Tennessee 37232
- Vanderbilt University, Vanderbilt Center for Bone Biology, 2215B Garland Avenue, Nashville, Tennessee 37232
| | - Julie A. Sterling
- Tennessee Valley Healthcare System, Department of Veterans Affairs, 1310 24th Avenue South, Nashville, Tennessee 37212
- Vanderbilt University, Vanderbilt Center for Bone Biology, 2215B Garland Avenue, Nashville, Tennessee 37232
- Vanderbilt University, Department of Medicine, Division of Clinical Pharmacology, 2200 Pierce Ave., Nashville, Tennessee 37235
- Vanderbilt University, Department of Cancer Biology, 2220 Pierce Ave., Nashville, Tennessee 37235
| | - Daniel S. Perrien
- Tennessee Valley Healthcare System, Department of Veterans Affairs, 1310 24th Avenue South, Nashville, Tennessee 37212
- Vanderbilt University, Department of Orthopaedic Surgery and Rehabilitation, Medical Center East, South Tower, Suite 4200, Nashville, Tennessee 37232
- Vanderbilt University, Vanderbilt Center for Bone Biology, 2215B Garland Avenue, Nashville, Tennessee 37232
- Vanderbilt University, Institute of Imaging Sciences, 1161 21st Avenue South, Medical Center North, AA-1105, Nashville, Tennessee 37232
| | - Anita Mahadevan-Jansen
- Vanderbilt University, Department of Biomedical Engineering, VU Station B#351631, 2301 Vanderbilt Place, Nashville, Tennessee 37235
| | - Xiaohong Bi
- University of Texas Health Science Center at Houston, Department of Nanomedicine and Biomedical Engineering, 1881 East Road, Houston, Texas 77054
| |
Collapse
|
38
|
Jung GB, Lee YJ, Lee G, Park HK. A simple and rapid detection of tissue adhesive-induced biochemical changes in cells and DNA using Raman spectroscopy. BIOMEDICAL OPTICS EXPRESS 2013; 4:2673-82. [PMID: 24298425 PMCID: PMC3829560 DOI: 10.1364/boe.4.002673] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/27/2013] [Accepted: 09/27/2013] [Indexed: 05/24/2023]
Abstract
We demonstrate a cytotoxicity evaluation of tissue adhesive using Raman spectroscopy. This method allows for quantitative, label-free, non-invasive and rapid monitoring of the biochemical changes of cells following tissue adhesive treatment. Here, we show the biochemical property changes in mouse fibroblast L929 cells and cellular DNA following tissue adhesive (Dermabond) treatment using Raman spectroscopy. The Raman band intensities were significantly decreased when the cells were treated with Dermabond as compared to control cells. These results suggest denaturation and conformational changes in proteins and degradation of DNA related to cell death. To support these conclusions, conventional cytotoxicity assays such as WST, LIVE/DEAD, and TUNEL were carried out, and the results were in agreement with the Raman results. Thus, Raman spectroscopy analysis not only distinguishes between viable and damaged cells, but can also be used for identification and quantification of a cytotoxicity of tissue adhesive, which based on the cellular biochemical and structural changes at a molecular level. Therefore, we suggest that this method could be used for cytotoxic evaluation of tissue adhesives by rapid and sensitive detection of cellular changes.
Collapse
Affiliation(s)
- Gyeong Bok Jung
- Department of Biomedical Engineering & Healthcare Industry Research Institute, College of Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, South Korea
| | - Young Ju Lee
- Department of Biomedical Engineering & Healthcare Industry Research Institute, College of Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, South Korea
| | - Gihyun Lee
- Department of Physiology, College of Korean Medicine, Kyung Hee University, 1 Hoeki-Dong, Dongdaemoon-gu, Seoul 130-701, South Korea
| | - Hun-Kuk Park
- Department of Biomedical Engineering & Healthcare Industry Research Institute, College of Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, South Korea
- Program of Medical Engineering, Kyung Hee University, Seoul 130-701, South Korea
| |
Collapse
|