1
|
Kriukova E, Mazurenka M, Marcazzan S, Glasl S, Quante M, Saur D, Tschurtschenthaler M, Puppels GJ, Gorpas D, Ntziachristos V. Hybrid Raman and Partial Wave Spectroscopy Microscope for the Characterization of Molecular and Structural Alterations in Tissue. JOURNAL OF BIOPHOTONICS 2024; 17:e202400330. [PMID: 39462506 PMCID: PMC11614561 DOI: 10.1002/jbio.202400330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/29/2024]
Abstract
We present a hybrid Raman spectroscopy (RS) and partial wave spectroscopy (PWS) microscope for the characterization of molecular and structural tissue alterations. The PWS performance was assessed with surface roughness standards, while the Raman performance with a silicon crystal standard. We also validated the system on stomach and intestinal mouse tissues, two closely-related tissue types, and demonstrate that the addition of PWS information improves RS data classification for these tissue types from R2 = 0.892 to R2 = 0.964 (norm of residuals 0.863 and 0.497, respectively). Then, in a proof-of-concept experiment, we show that the hybrid system can detect changes in intestinal tissues harvested from a tumorigenic Villin-Cre, Apcfl/wt mouse. We discuss how the hybrid modality offers new abilities to identify the relative roles of PWS morphological features and Raman molecular fingerprints, possibly allowing for their combination to enhance the study of carcinogenesis and early cancer diagnostics in the future.
Collapse
Affiliation(s)
- Elena Kriukova
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and HealthTechnical University of MunichMunichGermany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum MünchenNeuherbergGermany
| | - Mikhail Mazurenka
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and HealthTechnical University of MunichMunichGermany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum MünchenNeuherbergGermany
| | - Sabrina Marcazzan
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and HealthTechnical University of MunichMunichGermany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum MünchenNeuherbergGermany
| | - Sarah Glasl
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and HealthTechnical University of MunichMunichGermany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum MünchenNeuherbergGermany
| | - Michael Quante
- Klinik für Innere Medizin II, Universitätsklinikum FreiburgFreiburgGermany
| | - Dieter Saur
- Division of Translational Cancer ResearchGerman Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK)HeidelbergGermany
- Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine and HealthTechnical University of MunichMunichGermany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine and HealthTechnical University of MunichMunichGermany
| | - Markus Tschurtschenthaler
- Division of Translational Cancer ResearchGerman Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK)HeidelbergGermany
- Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine and HealthTechnical University of MunichMunichGermany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine and HealthTechnical University of MunichMunichGermany
| | | | - Dimitris Gorpas
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and HealthTechnical University of MunichMunichGermany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum MünchenNeuherbergGermany
| | - Vasilis Ntziachristos
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and HealthTechnical University of MunichMunichGermany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum MünchenNeuherbergGermany
- Munich Institute of Biomedical Engineering (MIBE), Technical University of MunichGarching b. MünchenGermany
| |
Collapse
|
2
|
Sangeetha B, Leroy KI, Udaya Kumar B. Harnessing Bioluminescence: A Comprehensive Review of In Vivo Imaging for Disease Monitoring and Therapeutic Intervention. Cell Biochem Funct 2024; 42:e70020. [PMID: 39673353 DOI: 10.1002/cbf.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 12/16/2024]
Abstract
The technique of using naturally occurring light-emitting reactants (photoproteins and luciferases] that have been extracted from a wide range of animals is known as bioluminescence imaging, or BLI. This imaging offers important details on the location and functional state of regenerative cells inserted into various disease-modeling animals. Reports on gene expression patterns, cell motions, and even the actions of individual biomolecules in whole tissues and live animals have all been made possible by bioluminescence. Generally speaking, bioluminescent light in animals may be found down to a few centimetres, while the precise limit depends on the signal's brightness and the detector's sensitivity. We can now spatiotemporally visualize cell behaviors in any body region of a living animal in a time frame process, including proliferation, apoptosis, migration, and immunological responses, thanks to BLI. The biological applications of in vivo BLI in nondestructively monitoring biological processes in intact small animal models are reviewed in this work, along with some of the advancements that will make BLI a more versatile molecular imaging tool.
Collapse
Affiliation(s)
- B Sangeetha
- Department of Biotechnology, St Joseph's College of Engineering, Chennai, Tamilnadu, India
| | - K I Leroy
- Department of Biotechnology, St Joseph's College of Engineering, Chennai, Tamilnadu, India
| | - B Udaya Kumar
- Department of Biotechnology, St Joseph's College of Engineering, Chennai, Tamilnadu, India
| |
Collapse
|
3
|
Pujadas Liwag EM, Wei X, Acosta N, Carter LM, Yang J, Almassalha LM, Jain S, Daneshkhah A, Rao SSP, Seker-Polat F, MacQuarrie KL, Ibarra J, Agrawal V, Aiden EL, Kanemaki MT, Backman V, Adli M. Depletion of lamins B1 and B2 promotes chromatin mobility and induces differential gene expression by a mesoscale-motion-dependent mechanism. Genome Biol 2024; 25:77. [PMID: 38519987 PMCID: PMC10958841 DOI: 10.1186/s13059-024-03212-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 03/07/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND B-type lamins are critical nuclear envelope proteins that interact with the three-dimensional genomic architecture. However, identifying the direct roles of B-lamins on dynamic genome organization has been challenging as their joint depletion severely impacts cell viability. To overcome this, we engineered mammalian cells to rapidly and completely degrade endogenous B-type lamins using Auxin-inducible degron technology. RESULTS Using live-cell Dual Partial Wave Spectroscopic (Dual-PWS) microscopy, Stochastic Optical Reconstruction Microscopy (STORM), in situ Hi-C, CRISPR-Sirius, and fluorescence in situ hybridization (FISH), we demonstrate that lamin B1 and lamin B2 are critical structural components of the nuclear periphery that create a repressive compartment for peripheral-associated genes. Lamin B1 and lamin B2 depletion minimally alters higher-order chromatin folding but disrupts cell morphology, significantly increases chromatin mobility, redistributes both constitutive and facultative heterochromatin, and induces differential gene expression both within and near lamin-associated domain (LAD) boundaries. Critically, we demonstrate that chromatin territories expand as upregulated genes within LADs radially shift inwards. Our results indicate that the mechanism of action of B-type lamins comes from their role in constraining chromatin motion and spatial positioning of gene-specific loci, heterochromatin, and chromatin domains. CONCLUSIONS Our findings suggest that, while B-type lamin degradation does not significantly change genome topology, it has major implications for three-dimensional chromatin conformation at the single-cell level both at the lamina-associated periphery and the non-LAD-associated nuclear interior with concomitant genome-wide transcriptional changes. This raises intriguing questions about the individual and overlapping roles of lamin B1 and lamin B2 in cellular function and disease.
Collapse
Affiliation(s)
- Emily M Pujadas Liwag
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- IBIS Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, USA
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Xiaolong Wei
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
| | - Nicolas Acosta
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Lucas M Carter
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- IBIS Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, USA
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Jiekun Yang
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Luay M Almassalha
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Gastroenterology and Hepatology, Northwestern Memorial Hospital, Chicago, IL, 60611, USA
| | - Surbhi Jain
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Ali Daneshkhah
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Suhas S P Rao
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX, 77030, USA
- School of Medicine, Stanford University, Stanford, CA, 94305, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Fidan Seker-Polat
- Feinberg School of Medicine, Robert Lurie Comprehensive Cancer Center, Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL, 60611, USA
| | - Kyle L MacQuarrie
- Feinberg School of Medicine, Robert Lurie Comprehensive Cancer Center, Department of Pediatrics, Northwestern University, Chicago, IL, 60611, USA
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Joe Ibarra
- Feinberg School of Medicine, Robert Lurie Comprehensive Cancer Center, Department of Pediatrics, Northwestern University, Chicago, IL, 60611, USA
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Vasundhara Agrawal
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Erez Lieberman Aiden
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Theoretical Biological Physics, Rice University, Houston, TX, 77030, USA
- Departments of Computer Science and Computational and Applied Mathematics, Rice University, Houston, TX, 77030, USA
| | - Masato T Kanemaki
- Department of Chromosome Science, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Shizuoka, 411-8540, Japan
- Department of Biological Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Vadim Backman
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA.
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, 60208, USA.
| | - Mazhar Adli
- Feinberg School of Medicine, Robert Lurie Comprehensive Cancer Center, Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
4
|
Daneshkhah A, Prabhala S, Viswanathan P, Subramanian H, Lin J, Chang AS, Bharat A, Roy HK, Backman V. Early detection of lung cancer using artificial intelligence-enhanced optical nanosensing of chromatin alterations in field carcinogenesis. Sci Rep 2023; 13:13702. [PMID: 37608214 PMCID: PMC10444865 DOI: 10.1038/s41598-023-40550-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/12/2023] [Indexed: 08/24/2023] Open
Abstract
Supranucleosomal chromatin structure, including chromatin domain conformation, is involved in the regulation of gene expression and its dysregulation has been associated with carcinogenesis. Prior studies have shown that cells in the buccal mucosa carry a molecular signature of lung cancer among the cigarette-smoking population, the phenomenon known as field carcinogenesis or field of injury. Thus, we hypothesized that chromatin structural changes in buccal mucosa can be predictive of lung cancer. However, the small size of the chromatin chain (approximately 20 nm) folded into chromatin packing domains, themselves typically below 300 nm in diameter, preclude the detection of alterations in intradomain chromatin conformation using diffraction-limited optical microscopy. In this study, we developed an optical spectroscopic statistical nanosensing technique to detect chromatin packing domain changes in buccal mucosa as a lung cancer biomarker: chromatin-sensitive partial wave spectroscopic microscopy (csPWS). Artificial intelligence (AI) was applied to csPWS measurements of chromatin alterations to enhance diagnostic performance. Our AI-enhanced buccal csPWS nanocytology of 179 patients at two clinical sites distinguished Stage-I lung cancer versus cancer-free controls with an area under the ROC curve (AUC) of 0.92 ± 0.06 for Site 1 (in-state location) and 0.82 ± 0.11 for Site 2 (out-of-state location).
Collapse
Affiliation(s)
- Ali Daneshkhah
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Sravya Prabhala
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | | | - Hariharan Subramanian
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- NanoCytomics, Evanston, IL, USA
| | | | - Andrew S Chang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Ankit Bharat
- Department of Surgery, Feinberg School of Medicine, Canning Thoracic Institute, Northwestern University, 420 East Superior Street, Chicago, IL, 60611, USA
| | | | - Vadim Backman
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
5
|
Pujadas EM, Wei X, Acosta N, Carter L, Yang J, Almassalha L, Daneshkhah A, Rao SSP, Agrawal V, Seker-Polat F, Aiden EL, Kanemaki MT, Backman V, Adli M. Depletion of lamins B1 and B2 alters chromatin mobility and induces differential gene expression by a mesoscale-motion dependent mechanism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.26.546573. [PMID: 37425796 PMCID: PMC10326988 DOI: 10.1101/2023.06.26.546573] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
BACKGROUND B-type lamins are critical nuclear envelope proteins that interact with the 3D genomic architecture. However, identifying the direct roles of B-lamins on dynamic genome organization has been challenging as their joint depletion severely impacts cell viability. To overcome this, we engineered mammalian cells to rapidly and completely degrade endogenous B-type lamins using Auxin-inducible degron (AID) technology. RESULTS Paired with a suite of novel technologies, live-cell Dual Partial Wave Spectroscopic (Dual-PWS) microscopy, in situ Hi-C, and CRISPR-Sirius, we demonstrate that lamin B1 and lamin B2 depletion transforms chromatin mobility, heterochromatin positioning, gene expression, and loci-positioning with minimal disruption to mesoscale chromatin folding. Using the AID system, we show that the disruption of B-lamins alters gene expression both within and outside lamin associated domains, with distinct mechanistic patterns depending on their localization. Critically, we demonstrate that chromatin dynamics, positioning of constitutive and facultative heterochromatic markers, and chromosome positioning near the nuclear periphery are significantly altered, indicating that the mechanism of action of B-type lamins is derived from their role in maintaining chromatin dynamics and spatial positioning. CONCLUSIONS Our findings suggest that the mechanistic role of B-type lamins is stabilization of heterochromatin and chromosomal positioning along the nuclear periphery. We conclude that degrading lamin B1 and lamin B2 has several functional consequences related to both structural disease and cancer.
Collapse
|
6
|
Su Y, Fu R, Du W, Yang H, Ma L, Luo X, Wang R, Lin X, Jin X, Shan X, Lv W, Huang G. Label-Free and Quantitative Dry Mass Monitoring for Single Cells during In Situ Culture. Cells 2021; 10:cells10071635. [PMID: 34209893 PMCID: PMC8303735 DOI: 10.3390/cells10071635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/19/2021] [Accepted: 06/25/2021] [Indexed: 11/16/2022] Open
Abstract
Quantitative measurement of single cells can provide in-depth information about cell morphology and metabolism. However, current live-cell imaging techniques have a lack of quantitative detection ability. Herein, we proposed a label-free and quantitative multichannel wide-field interferometric imaging (MWII) technique with femtogram dry mass sensitivity to monitor single-cell metabolism long-term in situ culture. We demonstrated that MWII could reveal the intrinsic status of cells despite fluctuating culture conditions with 3.48 nm optical path difference sensitivity, 0.97 fg dry mass sensitivity and 2.4% average maximum relative change (maximum change/average) in dry mass. Utilizing the MWII system, different intrinsic cell growth characteristics of dry mass between HeLa cells and Human Cervical Epithelial Cells (HCerEpiC) were studied. The dry mass of HeLa cells consistently increased before the M phase, whereas that of HCerEpiC increased and then decreased. The maximum growth rate of HeLa cells was 11.7% higher than that of HCerEpiC. Furthermore, HeLa cells were treated with Gemcitabine to reveal the relationship between single-cell heterogeneity and chemotherapeutic efficacy. The results show that cells with higher nuclear dry mass and nuclear density standard deviations were more likely to survive the chemotherapy. In conclusion, MWII was presented as a technique for single-cell dry mass quantitative measurement, which had significant potential applications for cell growth dynamics research, cell subtype analysis, cell health characterization, medication guidance and adjuvant drug development.
Collapse
|
7
|
Eid A, Winkelmann JA, Eshein A, Taflove A, Backman V. Origins of subdiffractional contrast in optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2021; 12:3630-3642. [PMID: 34221684 PMCID: PMC8221934 DOI: 10.1364/boe.416572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 05/12/2023]
Abstract
We demonstrate that OCT images quantify subdiffractional tissue structure. Optical coherence tomography (OCT) measures stratified tissue morphology with spatial resolution limited by the temporal coherence length. Spectroscopic OCT processing, on the other hand, has enabled nanoscale sensitive analysis, presenting an unexplored question: how does subdiffractional information get folded into the OCT image and how does one best analyze to allow for unambiguous quantification of ultrastructure? We first develop an FDTD simulation to model spectral domain OCT with nanometer resolution. Using this, we validate an analytical relationship between the sample statistics through the power spectral density (PSD) of refractive index fluctuations and three measurable quantities (image mean, image variance, and spectral slope), and have found that each probes different aspects of the PSD (amplitude, integral and slope, respectively). Finally, we found that only the spectral slope, quantifying mass scaling, is monotonic with the sample autocorrelation shape.
Collapse
Affiliation(s)
- Aya Eid
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - James A. Winkelmann
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Adam Eshein
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Allen Taflove
- Department of Electrical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Vadim Backman
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
8
|
Fu R, Su Y, Wang R, Lin X, Jin X, Yang H, Du W, Shan X, Lv W, Huang G. Single cell capture, isolation, and long-term in-situ imaging using quantitative self-interference spectroscopy. Cytometry A 2021; 99:601-609. [PMID: 33704903 DOI: 10.1002/cyto.a.24333] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 11/09/2022]
Abstract
Single cell research with microfluidic chip is of vital importance in biomedical studies and clinical medicine. Simultaneous microfluidic cell manipulations and long-term cell monitoring needs further investigations due to the lack of label-free quantitative imaging techniques and systems. In this work, single cell capture, isolation and long-term in-situ monitoring was realized with a microfluidic cell chip, compact cell incubator and quantitative self-interference spectroscopy. The proposed imaging method could obtain quantitative and dynamic refractive index distribution in living cells. And the designed microfluidic chip could capture and isolate single cells. The customized incubator could support cell growth conditions when single cell was captured in microfluidic chip. According to the results, single cells could be trapped, transferred and pushed into the culture chamber with the microfluidic chip. The incubator could culture single cells in the chip for 120 h. The refractive index sensitivity of the proposed quantitative imaging method was 0.0282 and the relative error was merely 0.04%.
Collapse
Affiliation(s)
- Rongxin Fu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Ya Su
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Ruliang Wang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Xue Lin
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Xiangyu Jin
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Han Yang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Wenli Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Xiaohui Shan
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Wenqi Lv
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Guoliang Huang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China.,National Engineering Research Center for Beijing Biochip Technology, Beijing, China
| |
Collapse
|
9
|
Li Y, Eshein A, Virk RKA, Eid A, Wu W, Frederick J, VanDerway D, Gladstein S, Huang K, Shim AR, Anthony NM, Bauer GM, Zhou X, Agrawal V, Pujadas EM, Jain S, Esteve G, Chandler JE, Nguyen TQ, Bleher R, de Pablo JJ, Szleifer I, Dravid VP, Almassalha LM, Backman V. Nanoscale chromatin imaging and analysis platform bridges 4D chromatin organization with molecular function. SCIENCE ADVANCES 2021; 7:eabe4310. [PMID: 33523864 PMCID: PMC7775763 DOI: 10.1126/sciadv.abe4310] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/09/2020] [Indexed: 05/10/2023]
Abstract
Extending across multiple length scales, dynamic chromatin structure is linked to transcription through the regulation of genome organization. However, no individual technique can fully elucidate this structure and its relation to molecular function at all length and time scales at both a single-cell level and a population level. Here, we present a multitechnique nanoscale chromatin imaging and analysis (nano-ChIA) platform that consolidates electron tomography of the primary chromatin fiber, optical super-resolution imaging of transcription processes, and label-free nano-sensing of chromatin packing and its dynamics in live cells. Using nano-ChIA, we observed that chromatin is localized into spatially separable packing domains, with an average diameter of around 200 nanometers, sub-megabase genomic size, and an internal fractal structure. The chromatin packing behavior of these domains exhibits a complex bidirectional relationship with active gene transcription. Furthermore, we found that properties of PDs are correlated among progenitor and progeny cells across cell division.
Collapse
Affiliation(s)
- Yue Li
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Adam Eshein
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Ranya K A Virk
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Aya Eid
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Wenli Wu
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Jane Frederick
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - David VanDerway
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Scott Gladstein
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Kai Huang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Anne R Shim
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Nicholas M Anthony
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Greta M Bauer
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Xiang Zhou
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Vasundhara Agrawal
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Emily M Pujadas
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Surbhi Jain
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - George Esteve
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - John E Chandler
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - The-Quyen Nguyen
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Reiner Bleher
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Juan J de Pablo
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Igal Szleifer
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Vinayak P Dravid
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Luay M Almassalha
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Vadim Backman
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
10
|
EID AYA, ESHEIN ADAM, LI YUE, VIRK RANYA, VANDERWAY DAVID, ZHANG DI, TAFLOVE ALLEN, BACKMAN VADIM. Characterizing chromatin packing scaling in whole nuclei using interferometric microscopy. OPTICS LETTERS 2020; 45:4810-4813. [PMID: 32870863 PMCID: PMC7951997 DOI: 10.1364/ol.400231] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Chromatin is the macromolecular assembly containing the cell's genetic information, and its architectural conformation facilitates accessibility to activation sites and thus gene expression. We have developed an analytical framework to quantify chromatin structure with spectral microscopy. Chromatin structure can be described as a mass fractal, with packing scaling D up to specific genomic length scales. Considering various system geometries, we established a model to measure D with the interferometric technique partial wave spectroscopy (PWS) and validated the analysis using finite difference time domain to simulate the PWS system. Calculations of D were consistent with ground truth electron microscopy measurements, enabling a high-throughput, label-free approach to quantifying chromatin structure in the nanometer length scale regime.
Collapse
Affiliation(s)
- AYA EID
- Department of Biomedical Engineering, Northwestern University, Evanston, USA
| | - ADAM ESHEIN
- Department of Biomedical Engineering, Northwestern University, Evanston, USA
| | - YUE LI
- Department of Biomedical Engineering, Northwestern University, Evanston, USA
| | - RANYA VIRK
- Department of Biomedical Engineering, Northwestern University, Evanston, USA
| | - DAVID VANDERWAY
- Department of Biomedical Engineering, Northwestern University, Evanston, USA
| | - DI ZHANG
- Department of Biomedical Engineering, Northwestern University, Evanston, USA
| | - ALLEN TAFLOVE
- Department of Electrical Engineering, Northwestern University, Evanston, USA6
| | - VADIM BACKMAN
- Department of Biomedical Engineering, Northwestern University, Evanston, USA
- Corresponding author:
| |
Collapse
|
11
|
Virk RKA, Wu W, Almassalha LM, Bauer GM, Li Y, VanDerway D, Frederick J, Zhang D, Eshein A, Roy HK, Szleifer I, Backman V. Disordered chromatin packing regulates phenotypic plasticity. SCIENCE ADVANCES 2020; 6:eaax6232. [PMID: 31934628 PMCID: PMC6949045 DOI: 10.1126/sciadv.aax6232] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 11/08/2019] [Indexed: 05/19/2023]
Abstract
Three-dimensional supranucleosomal chromatin packing plays a profound role in modulating gene expression by regulating transcription reactions through mechanisms such as gene accessibility, binding affinities, and molecular diffusion. Here, we use a computational model that integrates disordered chromatin packing (CP) with local macromolecular crowding (MC) to study how physical factors, including chromatin density, the scaling of chromatin packing, and the size of chromatin packing domains, influence gene expression. We computationally and experimentally identify a major role of these physical factors, specifically chromatin packing scaling, in regulating phenotypic plasticity, determining responsiveness to external stressors by influencing both intercellular transcriptional malleability and heterogeneity. Applying CPMC model predictions to transcriptional data from cancer patients, we identify an inverse relationship between patient survival and phenotypic plasticity of tumor cells.
Collapse
Affiliation(s)
- Ranya K. A. Virk
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Wenli Wu
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Luay M. Almassalha
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Medical Scientist Training Program, Feinberg School of Medicine, Northwestern University, Chicago, IL 60211, USA
- Department of Internal Medicine, Northwestern University, Chicago, IL 60211, USA
| | - Greta M. Bauer
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Yue Li
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Applied Physics Program, Northwestern University, Evanston, IL 60208, USA
| | - David VanDerway
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Jane Frederick
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Di Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Adam Eshein
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Hemant K. Roy
- Section of Gastroenterology, Boston Medical Center/Boston University School of Medicine, Boston, MA 02118, USA
| | - Igal Szleifer
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Corresponding author. (V.B.); (I.S.)
| | - Vadim Backman
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Corresponding author. (V.B.); (I.S.)
| |
Collapse
|
12
|
Fu R, Su Y, Wang R, Lin X, Jiang K, Jin X, Yang H, Ma L, Luo X, Lu Y, Huang G. Label-free tomography of living cellular nanoarchitecture using hyperspectral self-interference microscopy. BIOMEDICAL OPTICS EXPRESS 2019; 10:2757-2767. [PMID: 31259049 PMCID: PMC6583342 DOI: 10.1364/boe.10.002757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/11/2019] [Accepted: 04/24/2019] [Indexed: 06/09/2023]
Abstract
Quantitative phase imaging (QPI) is the most ideal method for achieving long-term cellular tomography because it is label free and quantitative. However, for current QPI instruments, interference signals from different layers overlay with each other and impede nanoscale optical sectioning. Integrated incubators and improved configurations also require further investigation for QPI instruments. In this work, hyperspectral self-reflectance microscopy is proposed to achieve label-free tomography of living cellular nanoarchitecture. The optical description and tomography reconstruction algorithm were proposed so that the quantitative morphological structure of the entire living cell can be acquired with 89.2 nm axial resolution and 1.91 nm optical path difference sensitivity. A cell incubator was integrated to culture living cells for in situ measurement and expensive precise optical components were not needed. The proposed system can reveal native and dynamic cellular nanoscale structure, providing an alternative approach for long-term monitoring and quantitative analysis of living cells.
Collapse
Affiliation(s)
- Rongxin Fu
- Department of Biomedical Engineering, the School of Medicine, Tsinghua University, Beijing 100084, China
- Contributed equally as co-authors
| | - Ya Su
- Department of Biomedical Engineering, the School of Medicine, Tsinghua University, Beijing 100084, China
- Contributed equally as co-authors
| | - Ruliang Wang
- Department of Biomedical Engineering, the School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xue Lin
- Department of Biomedical Engineering, the School of Medicine, Tsinghua University, Beijing 100084, China
| | - Kai Jiang
- Department of Biomedical Engineering, the School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xiangyu Jin
- Department of Biomedical Engineering, the School of Medicine, Tsinghua University, Beijing 100084, China
| | - Han Yang
- Department of Biomedical Engineering, the School of Medicine, Tsinghua University, Beijing 100084, China
| | - Li Ma
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China
| | - Xianbo Luo
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China
| | - Ying Lu
- Department of Biomedical Engineering, the School of Medicine, Tsinghua University, Beijing 100084, China
| | - Guoliang Huang
- Department of Biomedical Engineering, the School of Medicine, Tsinghua University, Beijing 100084, China
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China
| |
Collapse
|
13
|
Gladstein S, Almassalha LM, Cherkezyan L, Chandler JE, Eshein A, Eid A, Zhang D, Wu W, Bauer GM, Stephens AD, Morochnik S, Subramanian H, Marko JF, Ameer GA, Szleifer I, Backman V. Multimodal interference-based imaging of nanoscale structure and macromolecular motion uncovers UV induced cellular paroxysm. Nat Commun 2019; 10:1652. [PMID: 30971691 PMCID: PMC6458150 DOI: 10.1038/s41467-019-09717-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 03/25/2019] [Indexed: 01/12/2023] Open
Abstract
Understanding the relationship between intracellular motion and macromolecular structure remains a challenge in biology. Macromolecular structures are assembled from numerous molecules, some of which cannot be labeled. Most techniques to study motion require potentially cytotoxic dyes or transfection, which can alter cellular behavior and are susceptible to photobleaching. Here we present a multimodal label-free imaging platform for measuring intracellular structure and macromolecular dynamics in living cells with a sensitivity to macromolecular structure as small as 20 nm and millisecond temporal resolution. We develop and validate a theory for temporal measurements of light interference. In vitro, we study how higher-order chromatin structure and dynamics change during cell differentiation and ultraviolet (UV) light irradiation. Finally, we discover cellular paroxysms, a near-instantaneous burst of macromolecular motion that occurs during UV induced cell death. With nanoscale sensitive, millisecond resolved capabilities, this platform could address critical questions about macromolecular behavior in live cells.
Collapse
Affiliation(s)
- Scott Gladstein
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Luay M Almassalha
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Lusik Cherkezyan
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - John E Chandler
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Adam Eshein
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Aya Eid
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Di Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Wenli Wu
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Greta M Bauer
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Andrew D Stephens
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA
| | - Simona Morochnik
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Hariharan Subramanian
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- The Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - John F Marko
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA
- Department of Physics & Astronomy, Northwestern University, Evanston, IL, 60208, USA
- The Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Guillermo A Ameer
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- The Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, 60208, USA
- The Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Igal Szleifer
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- The Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, 60208, USA
- The Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Vadim Backman
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA.
- The Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, 60208, USA.
- The Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
14
|
Zhou X, Gladstein S, Almassalha LM, Li Y, Eshein A, Cherkezyan L, Viswanathan P, Subramanian H, Szleifer I, Backman V. Preservation of cellular nano-architecture by the process of chemical fixation for nanopathology. PLoS One 2019; 14:e0219006. [PMID: 31329606 PMCID: PMC6645510 DOI: 10.1371/journal.pone.0219006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/13/2019] [Indexed: 11/24/2022] Open
Abstract
Transformation in chromatin organization is one of the most universal markers of carcinogenesis. Microscale chromatin alterations have been a staple of histopathological diagnosis of neoplasia, and nanoscale alterations have emerged as a promising marker for cancer prognostication and the detection of predysplastic changes. While numerous methods have been developed to detect these alterations, most methods for sample preparation remain largely validated via conventional microscopy and have not been examined with nanoscale sensitive imaging techniques. For these nanoscale sensitive techniques to become standard of care screening tools, new histological protocols must be developed that preserve nanoscale information. Partial Wave Spectroscopic (PWS) microscopy has recently emerged as a novel imaging technique sensitive to length scales ranging between 20 and 200 nanometers. As a label-free, high-throughput, and non-invasive imaging technique, PWS microscopy is an ideal tool to quantify structural information during sample preparation. Therefore, in this work we applied PWS microscopy to systematically evaluate the effects of cytological preparation on the nanoscales changes of chromatin using two live cell models: a drug-based model of Hela cells differentially treated with daunorubicin and a cell line comparison model of two cells lines with inherently distinct chromatin organizations. Notably, we show that existing cytological preparation can be modified in order to maintain clinically relevant nanoscopic differences, paving the way for the emerging field of nanopathology.
Collapse
Affiliation(s)
- Xiang Zhou
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States of America
| | - Scott Gladstein
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States of America
| | - Luay M. Almassalha
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States of America
- Medical Scientist Training Program, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - Yue Li
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States of America
| | - Adam Eshein
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States of America
| | - Lusik Cherkezyan
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States of America
| | - Parvathi Viswanathan
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States of America
| | - Hariharan Subramanian
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States of America
| | - Igal Szleifer
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States of America
| | - Vadim Backman
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States of America
- * E-mail:
| |
Collapse
|
15
|
Gladstein S, Damania D, Almassalha LM, Smith LT, Gupta V, Subramanian H, Rex DK, Roy HK, Backman V. Correlating colorectal cancer risk with field carcinogenesis progression using partial wave spectroscopic microscopy. Cancer Med 2018; 7:2109-2120. [PMID: 29573208 PMCID: PMC5943438 DOI: 10.1002/cam4.1357] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 10/06/2017] [Accepted: 12/28/2017] [Indexed: 12/12/2022] Open
Abstract
Prior to the development of a localized cancerous tumor, diffuse molecular, and structural alterations occur throughout an organ due to genetic, environmental, and lifestyle factors. This process is known as field carcinogenesis. In this study, we used partial wave spectroscopic (PWS) microscopy to explore the progression of field carcinogenesis by measuring samples collected from 190 patients with a range of colonic history (no history, low-risk history, and high-risk history) and current colon health (healthy, nondiminutive adenomas (NDA; ≥5 mm and <10 mm), and advanced adenoma [AA; ≥10 mm, HGD, or >25% villous features]). The low-risk history groups include patients with a history of NDA. The high-risk history groups include patients with either a history of AA or colorectal cancer (CRC). PWS is a nanoscale-sensitive imaging technique which measures the organization of intracellular structure. Previous studies have shown that PWS is sensitive to changes in the higher-order (20-200 nm) chromatin topology that occur due to field carcinogenesis within histologically normal cells. The results of this study show that these nanoscale structural alterations are correlated with a patient's colonic history, which suggests that PWS can detect altered field carcinogenic signatures even in patients with negative colonoscopies. Furthermore, we developed a model to calculate the 5-year risk of developing CRC for each patient group. We found that our data fit this model remarkably well (R2 = 0.946). This correlation suggests that PWS could potentially be used to monitor CRC progression less invasively and in patients without adenomas, which opens PWS to many potential cancer care applications.
Collapse
Affiliation(s)
- Scott Gladstein
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, 60208, USA
| | - Dhwanil Damania
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, 60208, USA
| | - Luay M Almassalha
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, 60208, USA
| | - Lauren T Smith
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, 60208, USA
| | - Varun Gupta
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, 60208, USA
| | - Hariharan Subramanian
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, 60208, USA
| | - Douglas K Rex
- Division of Gastroenterology/Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Hemant K Roy
- Section of Gastroenterology, Boston Medical Center/Boston University School of Medicine, Boston, Massachusetts, 02118, USA
| | - Vadim Backman
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, 60208, USA
| |
Collapse
|
16
|
Gladstein S, Stawarz A, Almassalha LM, Cherkezyan L, Chandler JE, Zhou X, Subramanian H, Backman V. Measuring Nanoscale Chromatin Heterogeneity with Partial Wave Spectroscopic Microscopy. Methods Mol Biol 2018; 1745:337-360. [PMID: 29476478 DOI: 10.1007/978-1-4939-7680-5_19] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Despite extensive research in the area, current understanding of the structural organization of higher-order chromatin topology (between 20 and 200 nm) is limited due to a lack of proper imaging techniques at these length scales. The organization of chromatin at these scales defines the physical context (nanoenvironment) in which many important biological processes occur. Improving our understanding of the nanoenvironment is crucial because it has been shown to play a critical functional role in the regulation of chemical reactions. Recent progress in partial wave spectroscopic (PWS) microscopy enables real-time measurement of higher-order chromatin organization within label-free live cells. Specifically, PWS quantifies the nanoscale variations in mass density (heterogeneity) within the cell. These advancements have made it possible to study the functional role of chromatin topology, such as its regulation of the global transcriptional state of the cell and its role in the development of cancer. In this chapter, the importance of studying chromatin topology is explained, the theory and instrumentation of PWS are described, the measurements and analysis processes for PWS are laid out in detail, and common issues, troubleshooting steps, and validation techniques are provided.
Collapse
Affiliation(s)
- Scott Gladstein
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Andrew Stawarz
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Luay M Almassalha
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Lusik Cherkezyan
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - John E Chandler
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Xiang Zhou
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | | | - Vadim Backman
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
17
|
Almassalha LM, Bauer GM, Wu W, Cherkezyan L, Zhang D, Kendra A, Gladstein S, Chandler JE, VanDerway D, Seagle BLL, Ugolkov A, Billadeau DD, O'Halloran TV, Mazar AP, Roy HK, Szleifer I, Shahabi S, Backman V. Macrogenomic engineering via modulation of the scaling of chromatin packing density. Nat Biomed Eng 2017; 1:902-913. [PMID: 29450107 DOI: 10.1038/s41551-017-0153-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many human diseases result from the dysregulation of the complex interactions between tens to thousands of genes. However, approaches for the transcriptional modulation of many genes simultaneously in a predictive manner are lacking. Here, through the combination of simulations, systems modelling and in vitro experiments, we provide a physical regulatory framework based on chromatin packing-density heterogeneity for modulating the genomic information space. Because transcriptional interactions are essentially chemical reactions, they depend largely on the local physical nanoenvironment. We show that the regulation of the chromatin nanoenvironment allows for the predictable modulation of global patterns in gene expression. In particular, we show that the rational modulation of chromatin density fluctuations can lead to a decrease in global transcriptional activity and intercellular transcriptional heterogeneity in cancer cells during chemotherapeutic responses to achieve near-complete cancer cell killing in vitro. Our findings represent a 'macrogenomic engineering' approach to modulating the physical structure of chromatin for whole-scale transcriptional modulation.
Collapse
Affiliation(s)
- Luay M Almassalha
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Greta M Bauer
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Wenli Wu
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Lusik Cherkezyan
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Di Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Alexis Kendra
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Scott Gladstein
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - John E Chandler
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - David VanDerway
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Brandon-Luke L Seagle
- Department of Obstetrics and Gynecology, Prentice Women's Hospital, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Andrey Ugolkov
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Daniel D Billadeau
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Thomas V O'Halloran
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA.,Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA.,Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | | | - Hemant K Roy
- Section of Gastroenterology, Boston Medical Center/Boston University School of Medicine, Boston, MA, 02118, USA
| | - Igal Szleifer
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA. .,Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA. .,Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA.
| | - Shohreh Shahabi
- Department of Obstetrics and Gynecology, Prentice Women's Hospital, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Vadim Backman
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA. .,Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|