1
|
Hagenbuch B, Stieger B, Locher KP. Organic anion transporting polypeptides: Pharmacology, toxicology, structure, and transport mechanisms. Pharmacol Rev 2025; 77:100023. [PMID: 40148036 DOI: 10.1016/j.pharmr.2024.100023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/12/2024] [Indexed: 03/29/2025] Open
Abstract
Organic anion transporting polypeptides (OATPs) are membrane proteins that mediate the uptake of a wide range of substrates across the plasma membrane of various cells and tissues. They are classified into 6 subfamilies, OATP1 through OATP6. Humans contain 12 OATPs encoded by 11 solute carrier of organic anion transporting polypeptide (SLCO) genes: OATP1A2, OATP1B1, OATP1B3, the splice variant OATP1B3-1B7, OATP1C1, OATP2A1, OATP2B1, OATP3A1, OATP4A1, OATP4C1, OATP5A1, and OATP6A1. Most of these proteins are expressed in epithelial cells, where they mediate the uptake of structurally unrelated organic anions, cations, and even neutral compounds into the cytoplasm. The best-characterized members are OATP1B1 and OATP1B3, which have an important role in drug metabolism by mediating drug uptake into the liver and are involved in drug-drug interactions. In this review, we aimed to (1) provide a historical perspective on the identification of OATPs and their nomenclature and discuss their phylogenic relationships and molecular characteristics; (2) review the current knowledge of the broad substrate specificity and their role in drug disposition and drug-drug interactions, with a special emphasis on human hepatic OATPs; (3) summarize the different experimental systems that are used to study the function of OATPs and discuss their advantages and disadvantages; (4) review the available experimental 3-dimensional structures and examine how they can help elucidate the transport mechanisms of OATPs; and (5) finally, summarize the current knowledge of the regulation of OATP expression, discuss clinically important single-nucleotide polymorphisms, and outline challenges of physiologically based pharmacokinetic modeling and in vitro to in vivo extrapolation. SIGNIFICANCE STATEMENT: Organic anion transporting polypeptides (OATPs) are a family of 12 uptake transporters in the solute carrier superfamily. Several members, particularly the liver-expressed OATP1B1 and OATP1B3, are important drug transporters. They mediate the uptake of several endobiotics and xenobiotics, including statins and numerous other drugs, into hepatocytes, and their inhibition by other drugs or reduced expression due to single-nucleotide polymorphisms can lead to adverse drug effects. Their recently solved 3-dimensional structures should help to elucidate their transport mechanisms and broad substrate specificities.
Collapse
Affiliation(s)
- Bruno Hagenbuch
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas.
| | - Bruno Stieger
- Institute of Molecular Biology and Biophysics, ETH Zürich, Zürich, Switzerland
| | - Kaspar P Locher
- Institute of Molecular Biology and Biophysics, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
2
|
McCoubrey LE, Shen C, Mwasambu S, Favaron A, Sangfuang N, Thomaidou S, Orlu M, Globisch D, Basit AW. Characterising and preventing the gut microbiota's inactivation of trifluridine, a colorectal cancer drug. Eur J Pharm Sci 2024; 203:106922. [PMID: 39368784 DOI: 10.1016/j.ejps.2024.106922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
The gut microbiome can metabolise hundreds of drugs, potentially affecting their bioavailability and pharmacological effect. As most gut bacteria reside in the colon, drugs that reach the colon in significant proportions may be most impacted by microbiome metabolism. In this study the anti-colorectal cancer drug trifluridine was used as a model drug for characterising metabolism by the colonic microbiota, identifying correlations between bacterial species and individuals' rates of microbiome drug inactivation, and developing strategies to prevent drug inactivation following targeted colonic delivery. High performance liquid chromatography and ultra-high performance liquid chromatography coupled with high resolution tandem mass spectrometry demonstrated trifluridine's variable and multi-route metabolism by the faecal microbiota sourced from six healthy humans. Here, four drug metabolites were linked to the microbiome for the first time. Metagenomic sequencing of the human microbiota samples revealed their composition, which facilitated prediction of individual donors' microbial trifluridine inactivation. Notably, the abundance of Clostridium perfringens strongly correlated with the extent of trifluridine inactivation by microbiota samples after 2 hours (R2 = 0.8966). Finally, several strategies were trialled for the prevention of microbial trifluridine metabolism. It was shown that uridine, a safe and well-tolerated molecule, significantly reduced the microbiota's metabolism of trifluridine by acting as a competitive enzyme inhibitor. Further, uridine was found to provide prebiotic effects. The findings in this study greatly expand knowledge on trifluridine's interactions with the gut microbiome and provide valuable insights for investigating the microbiome metabolism of other drugs. The results demonstrate how protection strategies could enhance the colonic stability of microbiome-sensitive drugs.
Collapse
Affiliation(s)
- Laura E McCoubrey
- UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom
| | - Chenghao Shen
- UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom
| | - Sydney Mwasambu
- Department of Chemistry - BMC, Science for Life Laboratory, Uppsala University, 75124 Uppsala, Sweden
| | - Alessia Favaron
- UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom
| | - Nannapat Sangfuang
- UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom
| | - Stavrina Thomaidou
- UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom
| | - Mine Orlu
- UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom
| | - Daniel Globisch
- Department of Chemistry - BMC, Science for Life Laboratory, Uppsala University, 75124 Uppsala, Sweden
| | - Abdul W Basit
- UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom.
| |
Collapse
|
3
|
Li P, Luo J, Jiang Y, Pan X, Dong M, Chen B, Wang J, Zhou H, Jiang H, Duan Y, Lin N. Downregulation of OATP2B1 by proinflammatory cytokines leads to 5-ASA hyposensitivity in Ulcerative colitis. Chem Biol Interact 2024; 398:111074. [PMID: 38844255 DOI: 10.1016/j.cbi.2024.111074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/16/2024] [Accepted: 05/27/2024] [Indexed: 06/15/2024]
Abstract
5-Aminosalicylic acid (5-ASA) is a first-line agent in both remission and maintenance therapy for ulcerative colitis (UC). However, the mucosal concentration of 5-ASA was significantly lower in patients with severe histological inflammation, which further led to a poor response to 5-ASA treatment. Our study aimed to clarify the mechanism of 5-ASA uptake into colonic epithelial cells and to further explore the reason for the decreased colonic mucosal 5-ASA concentration in UC patients. Our results demonstrated that the colonic 5-ASA concentration was notably reduced in DSS-induced colitis mice and inversely correlated with colonic inflammation. 5-ASA was not a substrate of carnitine/organic cation transporter 1/2 (OCTN1/2) or multidrug resistance protein 1 (MDR1), whereas organic anion transporting polypeptide 2B1 (OATP2B1) and sodium-coupled monocarboxylate transporter 1 (SMCT1) mediated the uptake of 5-ASA, with a greater contribution from OATP2B1 than SMCT1. Inhibitors and siRNAs targeting OATP2B1 significantly reduced 5-ASA absorption in colonic cell lines. Moreover, OATP2B1 expression was dramatically downregulated in colon tissues from UC patients and dextran sodium sulfate (DSS)-induced colitis mice, and was also negatively correlated with colonic inflammation. Mechanistically, mixed proinflammatory cytokines downregulated the expression of OATP2B1 in a time- and concentration-dependent manner through the hepatocyte nuclear factor 4 α (HNF4α) pathway. In conclusion, OATP2B1 was the pivotal transporter involved in colonic 5-ASA uptake, which indicated that inducing OATP2B1 expression may be a strategy to promote 5-ASA uptake and further improve the concentration and anti-inflammatory efficacy of 5-ASA in UC.
Collapse
Affiliation(s)
- Ping Li
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China; Institute of Drug Metabolism and Pharmaceutical Analysis, Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jun Luo
- Institute of Drug Metabolism and Pharmaceutical Analysis, Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yiming Jiang
- Institute of Drug Metabolism and Pharmaceutical Analysis, Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiaoyi Pan
- Institute of Drug Metabolism and Pharmaceutical Analysis, Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Minlei Dong
- Institute of Drug Metabolism and Pharmaceutical Analysis, Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Binxin Chen
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Jinhai Wang
- Department of Colorectal Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hui Zhou
- Institute of Drug Metabolism and Pharmaceutical Analysis, Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Huidi Jiang
- Institute of Drug Metabolism and Pharmaceutical Analysis, Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yangri Duan
- Department of Gastroenterology, The Third People's Hospital of Yuhang District, Hangzhou, China.
| | - Nengming Lin
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China; Department of Gastroenterology, The Third People's Hospital of Yuhang District, Hangzhou, China; Westlake Laboratory of Life Sciences and Biomedicine of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
4
|
Cho H, Huh KM, Cho HJ, Kim B, Shim MS, Cho YY, Lee JY, Lee HS, Kwon YJ, Kang HC. Beyond nanoparticle-based oral drug delivery: transporter-mediated absorption and disease targeting. Biomater Sci 2024; 12:3045-3067. [PMID: 38712883 DOI: 10.1039/d4bm00313f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Various strategies at the microscale/nanoscale have been developed to improve oral absorption of therapeutics. Among them, gastrointestinal (GI)-transporter/receptor-mediated nanosized drug delivery systems (NDDSs) have drawn attention due to their many benefits, such as improved water solubility, improved chemical/physical stability, improved oral absorption, and improved targetability of their payloads. Their therapeutic potential in disease animal models (e.g., solid tumors, virus-infected lungs, metastasis, diabetes, and so on) has been investigated, and could be expanded to disease targeting after systemic/lymphatic circulation, although the detailed paths and mechanisms of endocytosis, endosomal escape, intracellular trafficking, and exocytosis through the epithelial cell lining in the GI tract are still unclear. Thus, this review summarizes and discusses potential GI transporters/receptors, their absorption and distribution, in vivo studies, and potential sequential targeting (e.g., oral absorption and disease targeting in organs/tissues).
Collapse
Affiliation(s)
- Hana Cho
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
| | - Kang Moo Huh
- Department of Polymer Science and Engineering & Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyun Ji Cho
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
| | - Bogeon Kim
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
| | - Min Suk Shim
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Yong-Yeon Cho
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
- Regulated Cell Death (RCD) Control Material Research Institute, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Joo Young Lee
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
- Regulated Cell Death (RCD) Control Material Research Institute, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Hye Suk Lee
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
- Regulated Cell Death (RCD) Control Material Research Institute, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Young Jik Kwon
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA
| | - Han Chang Kang
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
- Regulated Cell Death (RCD) Control Material Research Institute, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| |
Collapse
|
5
|
Kambayashi A, Shirasaka Y. Food effects on gastrointestinal physiology and drug absorption. Drug Metab Pharmacokinet 2023; 48:100488. [PMID: 36737277 DOI: 10.1016/j.dmpk.2022.100488] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/01/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Food ingestion affects the oral absorption of many drugs in humans. In this review article, we summarize the physiological factors in the gastrointestinal (GI) tract that affect the in vivo performance of orally administered solid dosage forms in fasted and fed states in humans. In particular, we discuss the effects of food ingestion on fluid characteristics (pH, bile concentration, and volume) in the stomach and small intestine, GI transit of water and dosage forms, and microbiota. Additionally, case examples of food effects on GI physiology and subsequent changes in oral drug absorption are provided. Furthermore, the effects of food, especially fruit juices (e.g., grapefruit, orange, apple) and green tea, on transporter-mediated permeation and enzyme-catalyzed metabolism of drugs in intestinal epithelial cells are also summarized comprehensively.
Collapse
Affiliation(s)
- Atsushi Kambayashi
- Pharmaceutical Research and Technology Labs, Astellas Pharma Inc., 180 Ozumi, Yaizu, Shizuoka, 425-0072, Japan; School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Yoshiyuki Shirasaka
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.
| |
Collapse
|
6
|
Balusikova K, Dostalikova-Cimburova M, Tacheci I, Kovar J. Expression profiles of iron transport molecules along the duodenum. J Cell Mol Med 2022; 26:2995-3004. [PMID: 35445529 PMCID: PMC9097835 DOI: 10.1111/jcmm.17313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 11/30/2022] Open
Abstract
Duodenal biopsies are considered a suitable source of enterocytes for studies of dietary iron absorption. However, the expression level of molecules involved in iron absorption may vary along the length of duodenum. We aimed to determine whether the expression of molecules involved in the absorption of heme and non-heme iron differs depending on the location in the duodenum. Analysis was performed with samples of duodenal biopsies from 10 individuals with normal iron metabolism. Samples were collected at the following locations: (a) immediately post-bulbar, (b) 1-2 cm below the papilla of Vater and (c) in the distal duodenum. The gene expression was analyzed at the mRNA and protein level using real-time PCR and Western blot analysis. At the mRNA level, significantly different expression of HCP1, DMT1, ferroportin and Zip8 was found at individual positions of duodenum. Position-dependent expression of other molecules, especially of FLVCR1, HMOX1 and HMOX2 was also detected but with no statistical significances. At the protein level, we observed statistically significantly decreasing expression of transporters HCP1, FLVCR1, DMT1, ferroportin, Zip14 and Zip8 with advancing positions of duodenum. Our results are consistent with a gradient of diminishing iron absorption along the duodenum for both heme and non-heme iron.
Collapse
Affiliation(s)
- Kamila Balusikova
- Department of Biochemistry, Cell and Molecular Biology & Center for Research of Diabetes, Metabolism and Nutrition, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Marketa Dostalikova-Cimburova
- Department of Biochemistry, Cell and Molecular Biology & Center for Research of Diabetes, Metabolism and Nutrition, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ilja Tacheci
- 2nd Department of Internal Medicine - Gastroenterology, University Hospital and Charles University in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jan Kovar
- Department of Biochemistry, Cell and Molecular Biology & Center for Research of Diabetes, Metabolism and Nutrition, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
7
|
Hens B, Gonzalez-Alvarez I, Bermejo M. Exploring the Predictive Power of the In Situ Perfusion Technique towards Drug Absorption: Theory, Practice, and Applications. Mol Pharm 2022; 19:749-762. [DOI: 10.1021/acs.molpharmaceut.1c00861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Bart Hens
- Drug Product Design, Pfizer, Sandwich, Kent, CT13 9NJ, United Kingdom
| | - Isabel Gonzalez-Alvarez
- Department Engineering Pharmacy Section, Miguel Hernandez University, San Juan de Alicante, 03550 Alicante, Spain
| | - Marival Bermejo
- Department Engineering Pharmacy Section, Miguel Hernandez University, San Juan de Alicante, 03550 Alicante, Spain
| |
Collapse
|
8
|
Qian F, Jiang X, Chai R, Liu D. The Roles of Solute Carriers in Auditory Function. Front Genet 2022; 13:823049. [PMID: 35154281 PMCID: PMC8827148 DOI: 10.3389/fgene.2022.823049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
Solute carriers (SLCs) are important transmembrane transporters with members organized into 65 families. They play crucial roles in transporting many important molecules, such as ions and some metabolites, across the membrane, maintaining cellular homeostasis. SLCs also play important roles in hearing. It has been found that mutations in some SLC members are associated with hearing loss. In this review, we summarize SLC family genes related with hearing dysfunction to reveal the vital roles of these transporters in auditory function. This summary could help us understand the auditory physiology and the mechanisms of hearing loss and further guide future studies of deafness gene identification.
Collapse
Affiliation(s)
- Fuping Qian
- School of Life Sciences, Nantong University, Nantong, China
| | - Xiaoge Jiang
- Department of Rehabilitation Medicine, The Second People's Hospital of Nantong, Affiliated Rehabilitation Hospital of Nantong University, Nantong, China
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, Southeast University, Nanjing, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China.,Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China.,Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Dong Liu
- School of Life Sciences, Nantong University, Nantong, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
9
|
Keely SJ, Urso A, Ilyaskin AV, Korbmacher C, Bunnett NW, Poole DP, Carbone SE. Contributions of bile acids to gastrointestinal physiology as receptor agonists and modifiers of ion channels. Am J Physiol Gastrointest Liver Physiol 2022; 322:G201-G222. [PMID: 34755536 PMCID: PMC8782647 DOI: 10.1152/ajpgi.00125.2021] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 10/28/2021] [Accepted: 11/08/2021] [Indexed: 02/03/2023]
Abstract
Bile acids (BAs) are known to be important regulators of intestinal motility and epithelial fluid and electrolyte transport. Over the past two decades, significant advances in identifying and characterizing the receptors, transporters, and ion channels targeted by BAs have led to exciting new insights into the molecular mechanisms involved in these processes. Our appreciation of BAs, their receptors, and BA-modulated ion channels as potential targets for the development of new approaches to treat intestinal motility and transport disorders is increasing. In the current review, we aim to summarize recent advances in our knowledge of the different BA receptors and BA-modulated ion channels present in the gastrointestinal system. We discuss how they regulate motility and epithelial transport, their roles in pathogenesis, and their therapeutic potential in a range of gastrointestinal diseases.
Collapse
Affiliation(s)
- Stephen J Keely
- Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - Andreacarola Urso
- Department of Surgery, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
- Department of Pharmacology, Columbia University, New York, New York
| | - Alexandr V Ilyaskin
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander University Erlangen-Nürnberg, Bavaria, Germany
| | - Christoph Korbmacher
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander University Erlangen-Nürnberg, Bavaria, Germany
| | - Nigel W Bunnett
- Department of Molecular Pathobiology, Neuroscience Institute, New York University, New York, New York
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University, New York, New York
| | - Daniel P Poole
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Australian Research Council, Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Simona E Carbone
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Australian Research Council, Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
10
|
Kiriyama Y, Nochi H. Physiological Role of Bile Acids Modified by the Gut Microbiome. Microorganisms 2021; 10:68. [PMID: 35056517 PMCID: PMC8777643 DOI: 10.3390/microorganisms10010068] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/21/2021] [Accepted: 12/29/2021] [Indexed: 12/13/2022] Open
Abstract
Bile acids (BAs) are produced from cholesterol in the liver and are termed primary BAs. Primary BAs are conjugated with glycine and taurine in the liver and then released into the intestine via the gallbladder. After the deconjugation of glycine or taurine by the gut microbiome, primary BAs are converted into secondary BAs by the gut microbiome through modifications such as dehydroxylation, oxidation, and epimerization. Most BAs in the intestine are reabsorbed and transported to the liver, where both primary and secondary BAs are conjugated with glycine or taurine and rereleased into the intestine. Thus, unconjugated primary Bas, as well as conjugated and unconjugated secondary BAs, have been modified by the gut microbiome. Some of the BAs reabsorbed from the intestine spill into the systemic circulation, where they bind to a variety of nuclear and cell-surface receptors in tissues, whereas some of the BAs are not reabsorbed and bind to receptors in the terminal ileum. BAs play crucial roles in the physiological regulation of various tissues. Furthermore, various factors, such as diet, age, and antibiotics influence BA composition. Here, we review recent findings regarding the physiological roles of BAs modified by the gut microbiome in the metabolic, immune, and nervous systems.
Collapse
Affiliation(s)
- Yoshimitsu Kiriyama
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Shido 1314-1, Sanuki 769-2193, Kagawa, Japan;
- Laboratory of Neuroendocrinology, Institute of Neuroscience, Tokushima Bunri University, Shido 1314-1, Sanuki 769-2193, Kagawa, Japan
| | - Hiromi Nochi
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Shido 1314-1, Sanuki 769-2193, Kagawa, Japan;
| |
Collapse
|
11
|
Hussner J, Foletti A, Seibert I, Fuchs A, Schuler E, Malagnino V, Grube M, Meyer Zu Schwabedissen HE. Differences in transport function of the human and rat orthologue of the Organic Anion Transporting Polypeptide 2B1 (OATP2B1). Drug Metab Pharmacokinet 2021; 41:100418. [PMID: 34628357 DOI: 10.1016/j.dmpk.2021.100418] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/30/2021] [Accepted: 08/17/2021] [Indexed: 01/02/2023]
Abstract
The human drug transporter Organic Anion Transporting Polypeptide (hOATP)2B1 facilitates cellular uptake of its substrates. Various studies suggest that hOATP2B1 is involved in intestinal absorption, but preclinical evaluations performed in rodents do not support this. Thus, our study aimed to compare the expression and function of hOATP2B1 with its orthologue in rats (rOatp2b1). Even if the general expression pattern was comparable, the transporters exhibited substantial differences on functional level. While bromosulfophthalein and atorvastatin were substrates of both transporters, the steroid sulfate conjugates estrone 3-sulfate (E1S), progesterone sulfate and dehydroepiandrosterone sulfate were only transported by hOATP2B1. To further elucidate these functional differences, experiments searching for the E1S substrate recognition site were conducted generating human-rat chimera as well as partly humanized variants of rOatp2b1. The rOatp2b1-329-hOATP2B1 chimera led to a significant increase in E1S uptake suggesting the C-terminal part of the human transporter is involved. However, humanization of various regions within this part, namely of the transmembrane domain (TMD)-9, TMD-10 or the extracellular loop-5 did not significantly change E1S transport function. Replacement of the intracellular loop-3, slightly enhanced cellular accumulation of sulfated steroids. Taken together, we report that OATP2B1 exhibited differences in recognition of steroid sulfate conjugates comparing the rat and human orthologues.
Collapse
Affiliation(s)
- Janine Hussner
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Annalise Foletti
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Isabell Seibert
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Anja Fuchs
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Eveline Schuler
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Vanessa Malagnino
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Markus Grube
- Institute of Pharmacology, C_DAT Center of Drug Absorption and Transport, University Medicine Greifswald, Greifswald, Germany
| | | |
Collapse
|
12
|
Malik PRV, Yeung CHT, Ismaeil S, Advani U, Djie S, Edginton AN. A Physiological Approach to Pharmacokinetics in Chronic Kidney Disease. J Clin Pharmacol 2021; 60 Suppl 1:S52-S62. [PMID: 33205424 DOI: 10.1002/jcph.1713] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/20/2020] [Indexed: 12/27/2022]
Abstract
The conventional approach to approximating the pharmacokinetics of drugs in patients with chronic kidney disease (CKD) only accounts for changes in the estimated glomerular filtration rate. However, CKD is a systemic and multifaceted disease that alters many body systems. Therefore, the objective of this exercise was to develop and evaluate a whole-body mechanistic approach to predicting pharmacokinetics in patients with CKD. Physiologically based pharmacokinetic models were developed in PK-Sim v8.0 (www.open-systems-pharmacology.org) to mechanistically represent the disposition of 7 compounds in healthy human adults. The 7 compounds selected were eliminated by glomerular filtration and active tubular secretion by the organic cation transport system to varying degrees. After a literature search, the healthy adult models were adapted to patients with CKD by numerically accounting for changes in glomerular filtration rate, kidney volume, renal perfusion, hematocrit, plasma protein concentrations, and gastrointestinal transit. Literature-informed interindividual variability was applied to the physiological parameters to facilitate a population approach. Model performance in CKD was evaluated against pharmacokinetic data from 8 clinical trials in the literature. Overall, integration of the CKD parameterization enabled exposure predictions that were within 1.5-fold error across all compounds and patients with varying stages of renal impairment. Notable improvement was observed over the conventional approach to scaling exposure, which failed in all but 1 scenario in patients with advanced CKD. Further research is required to qualify its use for first-in-CKD dose selection and clinical trial planning for a wider selection of renally eliminated compounds, including those subject to anion transport.
Collapse
Affiliation(s)
- Paul R V Malik
- School of Pharmacy, University of Waterloo, Kitchener, Ontario, Canada
| | - Cindy H T Yeung
- School of Pharmacy, University of Waterloo, Kitchener, Ontario, Canada
| | - Shams Ismaeil
- School of Pharmacy, University of Waterloo, Kitchener, Ontario, Canada
| | - Urooj Advani
- School of Pharmacy, University of Waterloo, Kitchener, Ontario, Canada
| | - Sebastian Djie
- School of Pharmacy, University of Waterloo, Kitchener, Ontario, Canada
| | - Andrea N Edginton
- School of Pharmacy, University of Waterloo, Kitchener, Ontario, Canada
| |
Collapse
|
13
|
Mohr S, Fritz N, Hammer C, Martínez C, Berens S, Schmitteckert S, Wahl V, Schmidt M, Houghton LA, Goebel‐Stengel M, Kabisch M, Götze D, Milovač I, D’Amato M, Zheng T, Röth R, Mönnikes H, Engel F, Gauss A, Tesarz J, Raithel M, Andresen V, Frieling T, Keller J, Pehl C, Stein‐Thöringer C, Clarke G, Kennedy PJ, Cryan JF, Dinan TG, Quigley EMM, Spiller R, Beltrán C, Madrid AM, Torres V, Pérez de Arce E, Herzog W, Mayer EA, Sayuk G, Gazouli M, Karamanolis G, Kapur‐Pojskič L, Bustamante M, Rabionet R, Estivil X, Franke A, Lieb W, Boeckxstaens G, Wouters MM, Simrén M, Rappold GA, Vicario M, Santos J, Schaefert R, Lorenzo‐Bermejo J, Niesler B. The alternative serotonin transporter promoter P2 impacts gene function in females with irritable bowel syndrome. J Cell Mol Med 2021; 25:8047-8061. [PMID: 34165249 PMCID: PMC8358858 DOI: 10.1111/jcmm.16736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 12/20/2022] Open
Abstract
Irritable bowel syndrome (IBS) is a gut-brain disorder in which symptoms are shaped by serotonin acting centrally and peripherally. The serotonin transporter gene SLC6A4 has been implicated in IBS pathophysiology, but the underlying genetic mechanisms remain unclear. We sequenced the alternative P2 promoter driving intestinal SLC6A4 expression and identified single nucleotide polymorphisms (SNPs) that were associated with IBS in a discovery sample. Identified SNPs built different haplotypes, and the tagging SNP rs2020938 seems to associate with constipation-predominant IBS (IBS-C) in females. rs2020938 validation was performed in 1978 additional IBS patients and 6,038 controls from eight countries. Meta-analysis on data from 2,175 IBS patients and 6,128 controls confirmed the association with female IBS-C. Expression analyses revealed that the P2 promoter drives SLC6A4 expression primarily in the small intestine. Gene reporter assays showed a functional impact of SNPs in the P2 region. In silico analysis of the polymorphic promoter indicated differential expression regulation. Further follow-up revealed that the major allele of the tagging SNP rs2020938 correlates with differential SLC6A4 expression in the jejunum and with stool consistency, indicating functional relevance. Our data consolidate rs2020938 as a functional SNP associated with IBS-C risk in females, underlining the relevance of SLC6A4 in IBS pathogenesis.
Collapse
|
14
|
Yuasa H, Yasujima T, Inoue K. Current Understanding of the Intestinal Absorption of Nucleobases and Analogs. Biol Pharm Bull 2021; 43:1293-1300. [PMID: 32879202 DOI: 10.1248/bpb.b20-00342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has long been suggested that a Na+-dependent carrier-mediated transport system is involved in the absorption of nucleobases and analogs, including some drugs currently in therapeutic use, for their uptake at the brush border membrane of epithelial cells in the small intestine, mainly based on studies in non-primate experimental animals. The presence of this transport system was indeed proved by the recent identification of sodium-dependent nucleobase transporter 1 (SNBT1/Slc23a4) as its molecular entity in rats. However, this transporter has been found to be genetically deficient in humans and higher primates. Aware of this deficiency, we need to revisit the issue of the absorption of these compounds in the human small intestine so that we can understand the mechanisms and gain information to assure the more rational use and development of drugs analogous to nucleobases. Here, we review the current understanding of the intestinal absorption of nucleobases and analogs. This includes recent knowledge about the efflux transport of those compounds across the basolateral membrane when exiting epithelial cells, following brush border uptake, in order to complete the overall absorption process; the facilitative transporters of equilibrative nucleoside transporter 1 (ENT1/SLC29A1) and equilibrative nucleobase transporter 1 (ENBT1/SLC43A3) may be involved in that in many animal species, including human and rat, without any major species differences.
Collapse
Affiliation(s)
- Hiroaki Yuasa
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Tomoya Yasujima
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Katsuhisa Inoue
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| |
Collapse
|
15
|
Wenzel C, Drozdzik M, Oswald S. Organic Cation Transporter 1 an Intestinal Uptake Transporter: Fact or Fiction? Front Pharmacol 2021; 12:648388. [PMID: 33935750 PMCID: PMC8080103 DOI: 10.3389/fphar.2021.648388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/01/2021] [Indexed: 01/11/2023] Open
Abstract
Intestinal transporter proteins are known to affect the pharmacokinetics and in turn the efficacy and safety of many orally administered drugs in a clinically relevant manner. This knowledge is especially well-established for intestinal ATP-binding cassette transporters such as P-gp and BCRP. In contrast to this, information about intestinal uptake carriers is much more limited although many hydrophilic or ionic drugs are not expected to undergo passive diffusion but probably require specific uptake transporters. A transporter which is controversially discussed with respect to its expression, localization and function in the human intestine is the organic cation transporter 1 (OCT1). This review article provides an up-to-date summary on the available data from expression analysis as well as functional studies in vitro, animal findings and clinical observations. The current evidence suggests that OCT1 is expressed in the human intestine in small amounts (on gene and protein levels), while its cellular localization in the apical or basolateral membrane of the enterocytes remains to be finally defined, but functional data point to a secretory function of the transporter at the basolateral membrane. Thus, OCT1 should not be considered as a classical uptake transporter in the intestine but rather as an intestinal elimination pathway for cationic compounds from the systemic circulation.
Collapse
Affiliation(s)
- Christoph Wenzel
- Department of Pharmacology, Center of Drug Absorption and Transport, University Medicine Greifswald, Greifswald, Germany
| | - Marek Drozdzik
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, Szczecin, Poland
| | - Stefan Oswald
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
16
|
Wei G, Gu Z, Gu J, Yu J, Huang X, Qin F, Li L, Ding R, Huo J. Platinum accumulation in oxaliplatin-induced peripheral neuropathy. J Peripher Nerv Syst 2021; 26:35-42. [PMID: 33462873 PMCID: PMC7986112 DOI: 10.1111/jns.12432] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 12/16/2022]
Abstract
Oxaliplatin-induced peripheral neuropathy (OIPN) is a common and dose-limiting toxic effect that markedly limits the use of oxaliplatin and affects the quality of life. Although it is common, the underlying mechanisms of OIPN remain ambiguous. Recent studies have shown that the platinum accumulation in peripheral nervous system, especially in dorsal root ganglion, is a significant mechanism of OIPN. Several specific transporters, including organic cation transporters, high-affinity copper uptake protein1 (CTR1), ATPase copper transporting alpha (ATP7A) and multidrug and toxin extrusion protein 1 (MATE1), could be associated with this mechanism. This review summarizes the current research progress about the relationship between platinum accumulation and OIPN, as well as suggests trend for the future research.
Collapse
Affiliation(s)
- Guoli Wei
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
- Graduate schoolNanjing University of Chinese MedicineNanjingChina
- Department of OncologyJiangsu Province Academy of Traditional Chinese MedicineNanjingChina
| | - Zhancheng Gu
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
- Graduate schoolNanjing University of Chinese MedicineNanjingChina
| | - Jialin Gu
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
- Graduate schoolNanjing University of Chinese MedicineNanjingChina
| | - Jialin Yu
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
- Department of OncologyJiangsu Province Academy of Traditional Chinese MedicineNanjingChina
| | - Xiaofei Huang
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
- Graduate schoolNanjing University of Chinese MedicineNanjingChina
- Department of OncologyJiangsu Province Academy of Traditional Chinese MedicineNanjingChina
| | - Fengxia Qin
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
- Graduate schoolNanjing University of Chinese MedicineNanjingChina
- Department of OncologyJiangsu Province Academy of Traditional Chinese MedicineNanjingChina
| | - Lingchang Li
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
- Department of OncologyJiangsu Province Academy of Traditional Chinese MedicineNanjingChina
| | - Rong Ding
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
- Department of OncologyJiangsu Province Academy of Traditional Chinese MedicineNanjingChina
| | - Jiege Huo
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
- Department of OncologyJiangsu Province Academy of Traditional Chinese MedicineNanjingChina
| |
Collapse
|
17
|
Intestinal membrane transporter-mediated approaches to improve oral drug delivery. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-021-00515-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
18
|
Organic Cation Transporters in Human Physiology, Pharmacology, and Toxicology. Int J Mol Sci 2020; 21:ijms21217890. [PMID: 33114309 PMCID: PMC7660683 DOI: 10.3390/ijms21217890] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022] Open
Abstract
Individual cells and epithelia control the chemical exchange with the surrounding environment by the fine-tuned expression, localization, and function of an array of transmembrane proteins that dictate the selective permeability of the lipid bilayer to small molecules, as actual gatekeepers to the interface with the extracellular space. Among the variety of channels, transporters, and pumps that localize to cell membrane, organic cation transporters (OCTs) are considered to be extremely relevant in the transport across the plasma membrane of the majority of the endogenous substances and drugs that are positively charged near or at physiological pH. In humans, the following six organic cation transporters have been characterized in regards to their respective substrates, all belonging to the solute carrier 22 (SLC22) family: the organic cation transporters 1, 2, and 3 (OCT1–3); the organic cation/carnitine transporter novel 1 and 2 (OCTN1 and N2); and the organic cation transporter 6 (OCT6). OCTs are highly expressed on the plasma membrane of polarized epithelia, thus, playing a key role in intestinal absorption and renal reabsorption of nutrients (e.g., choline and carnitine), in the elimination of waste products (e.g., trimethylamine and trimethylamine N-oxide), and in the kinetic profile and therapeutic index of several drugs (e.g., metformin and platinum derivatives). As part of the Special Issue Physiology, Biochemistry, and Pharmacology of Transporters for Organic Cations, this article critically presents the physio-pathological, pharmacological, and toxicological roles of OCTs in the tissues in which they are primarily expressed.
Collapse
|
19
|
Gellan Gum Promotes the Differentiation of Enterocytes from Human Induced Pluripotent Stem Cells. Pharmaceutics 2020; 12:pharmaceutics12100951. [PMID: 33050367 PMCID: PMC7599917 DOI: 10.3390/pharmaceutics12100951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/30/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023] Open
Abstract
The evaluation of drug pharmacokinetics in the small intestine is critical for developing orally administered drugs. Caucasian colon adenocarcinoma (Caco-2) cells are employed to evaluate drug absorption in preclinical trials of drug development. However, the pharmacokinetic characteristics of Caco-2 cells are different from those of the normal human small intestine. Besides this, it is almost impossible to obtain primary human intestinal epithelial cells of the same batch. Therefore, human iPS cell-derived enterocytes (hiPSEs) with pharmacokinetic functions similar to human intestinal epithelial cells are expected to be useful for the evaluation of drug absorption. Previous studies have been limited to the use of cytokines and small molecules to generate hiPSEs. Dietary fibers play a critical role in maintaining intestinal physiology. We used gellan gum (GG), a soluble dietary fiber, to optimize hiPSE differentiation. hiPSEs cocultured with GG had significantly higher expression of small intestine- and pharmacokinetics-related genes and proteins. The activities of drug-metabolizing enzymes, such as cytochrome P450 2C19, and peptide transporter 1 were significantly increased in the GG treatment group compared to the control group. At the end point of differentiation, the percentage of senescent cells increased. Therefore, GG could improve the differentiation efficiency of human iPS cells to enterocytes and increase intestinal maturation by extending the life span of hiPSEs.
Collapse
|
20
|
Effects of perfluoroalkyl carboxylic acids on the uptake of sulfobromophthalein via organic anion transporting polypeptides in human intestinal Caco-2 cells. Biochem Biophys Rep 2020; 24:100807. [PMID: 32964147 PMCID: PMC7490525 DOI: 10.1016/j.bbrep.2020.100807] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 11/21/2022] Open
Abstract
We performed a detailed investigation of the uptake of sulfobromophthalein (BSP) from the apical membrane of Caco-2 cells, which is a substrate for organic anion transporting polypeptides (OATPs), and calculated the kinetic parameters of BSP uptake as follows: Km = 13.9 ± 1.3 μM, Vmax = 1.15 ± 0.07 nmol (mg protein)-1 (5 min)-1, and kd = 38.2 ± 0.53 μL (mg protein)-1 (5 min)-1. Coincubation with medium-chain (C7-C11) perfluoroalkyl carboxylic acids (PFCAs), such as perfluoroheptanoic acid (PFHpA, C7), perfluorooctanoic acid (PFOA, C8), perfluorononanoic acid (PFNA, C9), perfluorodecanoic acid (PFDA, C10) and perfluoroundecanoic acid (PFUnDA, C11), significantly decreased BSP uptake by 27-55%, while coincubation with short- (C3-C6) and long-chain (C12-C14) PFCAs decreased the uptake only slightly. Dixon plotting suggested that PFOA, PFNA and PFDA competitively inhibited the BSP uptake with inhibition constant (Ki) values of 62.2 ± 1.3 μM, 35.3 ± 0.1 μM and 43.2 ± 0.3 μM, respectively. PFCAs with medium-chains could be substrates for OATPs, probably OATP2B1, which is the most abundantly expressed OATP isoform in Caco-2 cells.
Collapse
|
21
|
Cellular Mechanisms Accounting for the Refractoriness of Colorectal Carcinoma to Pharmacological Treatment. Cancers (Basel) 2020; 12:cancers12092605. [PMID: 32933095 PMCID: PMC7563523 DOI: 10.3390/cancers12092605] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Colorectal cancer (CRC) causes a high number (more than 800,000) of deaths worldwide each year. Better methods for early diagnosis and the development of strategies to enhance the efficacy of the therapeutic approaches used to complement or substitute surgical removal of the tumor are urgently needed. Currently available pharmacological armamentarium provides very moderate benefits to patients due to the high resistance of tumor cells to respond to anticancer drugs. The present review summarizes and classifies into seven groups the cellular and molecular mechanisms of chemoresistance (MOC) accounting for the failure of CRC response to the pharmacological treatment. Abstract The unsatisfactory response of colorectal cancer (CRC) to pharmacological treatment contributes to the substantial global health burden caused by this disease. Over the last few decades, CRC has become the cause of more than 800,000 deaths per year. The reason is a combination of two factors: (i) the late cancer detection, which is being partially solved by the implementation of mass screening of adults over age 50, permitting earlier diagnosis and treatment; (ii) the inadequate response of advanced unresectable tumors (i.e., stages III and IV) to pharmacological therapy. The latter is due to the existence of complex mechanisms of chemoresistance (MOCs) that interact and synergize with each other, rendering CRC cells strongly refractory to the available pharmacological regimens based on conventional chemotherapy, such as pyrimidine analogs (5-fluorouracil, capecitabine, trifluridine, and tipiracil), oxaliplatin, and irinotecan, as well as drugs targeted toward tyrosine kinase receptors (regorafenib, aflibercept, bevacizumab, cetuximab, panitumumab, and ramucirumab), and, more recently, immune checkpoint inhibitors (nivolumab, ipilimumab, and pembrolizumab). In the present review, we have inventoried the genes involved in the lack of CRC response to pharmacological treatment, classifying them into seven groups (from MOC-1 to MOC-7) according to functional criteria to identify cancer cell weaknesses. This classification will be useful to pave the way for developing sensitizing tools consisting of (i) new agents to be co-administered with the active drug; (ii) pharmacological approaches, such as drug encapsulation (e.g., into labeled liposomes or exosomes); (iii) gene therapy interventions aimed at restoring the impaired function of some proteins (e.g., uptake transporters and tumor suppressors) or abolishing that of others (such as export pumps and oncogenes).
Collapse
|
22
|
Hofsäss MA, Dressman J. Evaluation of Differences in Dosage Form Performance of Generics Using BCS-Based Biowaiver Specifications and Biopharmaceutical Modeling–Case Examples Amoxicillin and Doxycycline. J Pharm Sci 2020; 109:2437-2453. [DOI: 10.1016/j.xphs.2020.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/06/2020] [Accepted: 04/17/2020] [Indexed: 12/12/2022]
|
23
|
In Silico Prediction of Intestinal Permeability by Hierarchical Support Vector Regression. Int J Mol Sci 2020; 21:ijms21103582. [PMID: 32438630 PMCID: PMC7279352 DOI: 10.3390/ijms21103582] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/14/2020] [Accepted: 05/17/2020] [Indexed: 11/17/2022] Open
Abstract
The vast majority of marketed drugs are orally administrated. As such, drug absorption is one of the important drug metabolism and pharmacokinetics parameters that should be assessed in the process of drug discovery and development. A nonlinear quantitative structure-activity relationship (QSAR) model was constructed in this investigation using the novel machine learning-based hierarchical support vector regression (HSVR) scheme to render the extremely complicated relationships between descriptors and intestinal permeability that can take place through various passive diffusion and carrier-mediated active transport routes. The predictions by HSVR were found to be in good agreement with the observed values for the molecules in the training set (n = 53, r2 = 0.93, q CV 2 = 0.84, RMSE = 0.17, s = 0.08), test set (n = 13, q2 = 0.75-0.89, RMSE = 0.26, s = 0.14), and even outlier set (n = 8, q2 = 0.78-0.92, RMSE = 0.19, s = 0.09). The built HSVR model consistently met the most stringent criteria when subjected to various statistical assessments. A mock test also assured the predictivity of HSVR. Consequently, this HSVR model can be adopted to facilitate drug discovery and development.
Collapse
|
24
|
Chen M, Hu S, Li Y, Gibson AA, Fu Q, Baker SD, Sparreboom A. Role of Oatp2b1 in Drug Absorption and Drug-Drug Interactions. Drug Metab Dispos 2020; 48:419-425. [PMID: 32114507 PMCID: PMC7180048 DOI: 10.1124/dmd.119.090316] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/18/2020] [Indexed: 12/18/2022] Open
Abstract
The organic anion transporting polypeptide (OATP)2B1 is localized on the basolateral membrane of hepatocytes and is expressed in enterocytes. Based on its distribution pattern and functional similarity to OATP1B-type transporters, OATP2B1 might have a role in the absorption and disposition of a range of xenobiotics. Although several prescription drugs, including hydroxymethylglutaryl-coenzyme A-CoA reductase inhibitors (statins) such as fluvastatin, are OATP2B1 substrates in vitro, evidence supporting the in vivo relevance of this transporter remains limited, and most has relied on substrate-inhibitor interactions resulting in altered pharmacokinetic properties of the victim drugs. To address this knowledge deficit, we developed and characterized an Oatp2b1-deficient mouse model and evaluated the impact of this transporter on the absorption and disposition of fluvastatin. Consistent with the intestinal localization of Oatp2b1, we found that the genetic deletion or pharmacological inhibition of Oatp2b1 was associated with decreased absorption of fluvastatin by 2- to 3-fold. The availability of a viable Oatp2b1-deficient mouse model provides an opportunity to unequivocally determine the contribution of this transporter to the absorption and drug-drug interaction potential of drugs. SIGNIFICANCE STATEMENT: The current investigation suggests that mice deficient in Oatp2b1 provide a valuable tool to study the in vivo importance of this transporter. In addition, our studies have identified novel potent inhibitors of OATP2B1 among the class of tyrosine kinase inhibitors, a rapidly expanding class of drugs used in various therapeutic areas that may cause drug-drug interactions with OATP2B1 substrates.
Collapse
Affiliation(s)
- Mingqing Chen
- Experimental Cancer Pharmacology Laboratory, Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Shuiying Hu
- Experimental Cancer Pharmacology Laboratory, Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Yang Li
- Experimental Cancer Pharmacology Laboratory, Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Alice A Gibson
- Experimental Cancer Pharmacology Laboratory, Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Qiang Fu
- Experimental Cancer Pharmacology Laboratory, Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Sharyn D Baker
- Experimental Cancer Pharmacology Laboratory, Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Alex Sparreboom
- Experimental Cancer Pharmacology Laboratory, Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| |
Collapse
|
25
|
Couto N, Al-Majdoub ZM, Gibson S, Davies PJ, Achour B, Harwood MD, Carlson G, Barber J, Rostami-Hodjegan A, Warhurst G. Quantitative Proteomics of Clinically Relevant Drug-Metabolizing Enzymes and Drug Transporters and Their Intercorrelations in the Human Small Intestine. Drug Metab Dispos 2020; 48:245-254. [PMID: 31959703 PMCID: PMC7076527 DOI: 10.1124/dmd.119.089656] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/23/2019] [Indexed: 01/02/2023] Open
Abstract
The levels of drug-metabolizing enzymes (DMEs) and transporter proteins in the human intestine are pertinent to determine oral drug bioavailability. Despite the paucity of reports on such measurements, it is well recognized that these values are essential for translating in vitro data on drug metabolism and transport to predict drug disposition in gut wall. In the current study, clinically relevant DMEs [cytochrome P450 (P450) and uridine 5'-diphospho-glucuronosyltransferase (UGT)] and drug transporters were quantified in total mucosal protein preparations from the human jejunum (n = 4) and ileum (n = 12) using quantification concatemer-based targeted proteomics. In contrast to previous reports, UGT2B15 and organic anion-transporting polypeptide 1 (OATP1A2) were quantifiable in all our samples. Overall, no significant disparities in protein expression were observed between jejunum and ileum. Relative mRNA expression for drug transporters did not correlate with the abundance of their cognate protein, except for P-glycoprotein 1 (P-gp) and organic solute transporter subunit alpha (OST-α), highlighting the limitations of RNA as a surrogate for protein expression in dynamic tissues with high turnover. Intercorrelations were found within P450 [2C9-2C19 (P = 0.002, R 2 = 0.63), 2C9-2J2 (P = 0.004, R 2 = 0.40), 2D6-2J2 (P = 0.002, R 2 = 0.50)] and UGT [1A1-2B7 (P = 0.02, R 2 = 0.87)] family of enzymes. There were also correlations between P-gp and several other proteins [OST-α (P < 0.0001, R 2 = 0.77), UGT1A6 (P = 0.009, R 2 = 0.38), and CYP3A4 (P = 0.007, R 2 = 0.30)]. Incorporating such correlations into building virtual populations is crucial for obtaining plausible characteristics of simulated individuals. SIGNIFICANCE STATEMENT: A number of drug transporters were quantified for the first time in this study. Several intercorrelations of protein abundance were reported. mRNA expression levels proved to be a poor reflection of differences between individuals regarding the level of protein expression in gut. The reported abundance of drug-metabolizing enzymes and transporters and their intercorrelations will contribute to better predictions of oral drug bioavailability and drug-drug interactions by linking in vitro observations to potential outcomes through physiologically based pharmacokinetic models.
Collapse
Affiliation(s)
- Narciso Couto
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.C., Z.M.A.-M., B.A., J.B., A.R.-H.); Gut Barrier Group, Inflammation and Repair, University of Manchester, Salford Royal NHS Trust, Salford, United Kingdom (S.G., P.J.D., G.C., G.W.); and Certara UK Limited (Simcyp Division), Sheffield, United Kingdom (M.D.H., A.R.-H.)
| | - Zubida M Al-Majdoub
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.C., Z.M.A.-M., B.A., J.B., A.R.-H.); Gut Barrier Group, Inflammation and Repair, University of Manchester, Salford Royal NHS Trust, Salford, United Kingdom (S.G., P.J.D., G.C., G.W.); and Certara UK Limited (Simcyp Division), Sheffield, United Kingdom (M.D.H., A.R.-H.)
| | - Stephanie Gibson
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.C., Z.M.A.-M., B.A., J.B., A.R.-H.); Gut Barrier Group, Inflammation and Repair, University of Manchester, Salford Royal NHS Trust, Salford, United Kingdom (S.G., P.J.D., G.C., G.W.); and Certara UK Limited (Simcyp Division), Sheffield, United Kingdom (M.D.H., A.R.-H.)
| | - Pamela J Davies
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.C., Z.M.A.-M., B.A., J.B., A.R.-H.); Gut Barrier Group, Inflammation and Repair, University of Manchester, Salford Royal NHS Trust, Salford, United Kingdom (S.G., P.J.D., G.C., G.W.); and Certara UK Limited (Simcyp Division), Sheffield, United Kingdom (M.D.H., A.R.-H.)
| | - Brahim Achour
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.C., Z.M.A.-M., B.A., J.B., A.R.-H.); Gut Barrier Group, Inflammation and Repair, University of Manchester, Salford Royal NHS Trust, Salford, United Kingdom (S.G., P.J.D., G.C., G.W.); and Certara UK Limited (Simcyp Division), Sheffield, United Kingdom (M.D.H., A.R.-H.)
| | - Matthew D Harwood
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.C., Z.M.A.-M., B.A., J.B., A.R.-H.); Gut Barrier Group, Inflammation and Repair, University of Manchester, Salford Royal NHS Trust, Salford, United Kingdom (S.G., P.J.D., G.C., G.W.); and Certara UK Limited (Simcyp Division), Sheffield, United Kingdom (M.D.H., A.R.-H.)
| | - Gordon Carlson
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.C., Z.M.A.-M., B.A., J.B., A.R.-H.); Gut Barrier Group, Inflammation and Repair, University of Manchester, Salford Royal NHS Trust, Salford, United Kingdom (S.G., P.J.D., G.C., G.W.); and Certara UK Limited (Simcyp Division), Sheffield, United Kingdom (M.D.H., A.R.-H.)
| | - Jill Barber
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.C., Z.M.A.-M., B.A., J.B., A.R.-H.); Gut Barrier Group, Inflammation and Repair, University of Manchester, Salford Royal NHS Trust, Salford, United Kingdom (S.G., P.J.D., G.C., G.W.); and Certara UK Limited (Simcyp Division), Sheffield, United Kingdom (M.D.H., A.R.-H.)
| | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.C., Z.M.A.-M., B.A., J.B., A.R.-H.); Gut Barrier Group, Inflammation and Repair, University of Manchester, Salford Royal NHS Trust, Salford, United Kingdom (S.G., P.J.D., G.C., G.W.); and Certara UK Limited (Simcyp Division), Sheffield, United Kingdom (M.D.H., A.R.-H.)
| | - Geoffrey Warhurst
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.C., Z.M.A.-M., B.A., J.B., A.R.-H.); Gut Barrier Group, Inflammation and Repair, University of Manchester, Salford Royal NHS Trust, Salford, United Kingdom (S.G., P.J.D., G.C., G.W.); and Certara UK Limited (Simcyp Division), Sheffield, United Kingdom (M.D.H., A.R.-H.)
| |
Collapse
|
26
|
The Segregated Intestinal Flow Model (SFM) for Drug Absorption and Drug Metabolism: Implications on Intestinal and Liver Metabolism and Drug-Drug Interactions. Pharmaceutics 2020; 12:pharmaceutics12040312. [PMID: 32244748 PMCID: PMC7238003 DOI: 10.3390/pharmaceutics12040312] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/13/2022] Open
Abstract
The properties of the segregated flow model (SFM), which considers split intestinal flow patterns perfusing an active enterocyte region that houses enzymes and transporters (<20% of the total intestinal blood flow) and an inactive serosal region (>80%), were compared to those of the traditional model (TM), wherein 100% of the flow perfuses the non-segregated intestine tissue. The appropriateness of the SFM model is important in terms of drug absorption and intestinal and liver drug metabolism. Model behaviors were examined with respect to intestinally (M1) versus hepatically (M2) formed metabolites and the availabilities in the intestine (FI) and liver (FH) and the route of drug administration. The %contribution of the intestine to total first-pass metabolism bears a reciprocal relation to that for the liver, since the intestine, a gateway tissue, regulates the flow of substrate to the liver. The SFM predicts the highest and lowest M1 formed with oral (po) and intravenous (iv) dosing, respectively, whereas the extent of M1 formation is similar for the drug administered po or iv according to the TM, and these values sit intermediate those of the SFM. The SFM is significant, as this drug metabolism model explains route-dependent intestinal metabolism, describing a higher extent of intestinal metabolism with po versus the much reduced or absence of intestinal metabolism with iv dosing. A similar pattern exists for drug–drug interactions (DDIs). The inhibitor or inducer exerts its greatest effect on victim drugs when both inhibitor/inducer and drug are given po. With po dosing, more drug or inhibitor/inducer is brought into the intestine for DDIs. The bypass of flow and drug to the enterocyte region of the intestine after intravenous administration adds complications to in vitro–in vivo extrapolations (IVIVE).
Collapse
|
27
|
pH-dependent transport kinetics of the human organic anion-transporting polypeptide 1A2. Drug Metab Pharmacokinet 2020; 35:220-227. [DOI: 10.1016/j.dmpk.2019.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/09/2019] [Accepted: 12/13/2019] [Indexed: 01/10/2023]
|
28
|
Singh S, Arthur S, Sundaram U. Mechanisms of Regulation of Transporters of Amino Acid Absorption in Inflammatory Bowel Diseases. Compr Physiol 2020; 10:673-686. [PMID: 32163200 DOI: 10.1002/cphy.c190016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Intestinal absorption of dietary amino acids/peptides is essential for protein homeostasis, which in turn is crucial for maintaining health as well as restoration of health from significant diseases. Dietary amino acids/peptides are absorbed by unique transporter processes present in the brush border membrane of absorptive villus cells, which line the entire length of the intestine. To date, the only nutrient absorptive system described in the secretory crypt cells in the mammalian intestine is the one that absorbs the amino acid glutamine. Majority of the amino acid transporters are sodium dependent and therefore require basolateral membrane Na-K-ATPase to maintain an efficient transcellular Na gradient for their activity. These transport processes are tightly regulated by various cellular and molecular mechanisms that facilitate their optimal activity during normal physiological processes. Malabsorption of amino acids, recently described in pathophysiological states such as in inflammatory bowel disease (IBD), is undoubtedly responsible for the debilitating symptoms of IBD such as malnutrition, weight loss and ultimately a failure to thrive. Also recently, in vivo models of IBD and in vitro studies have demonstrated that specific immune-inflammatory mediators/pathways regulate specific amino acid transporters. This provides possibilities to derive novel nutrition and immune-based treatment options for conditions such as IBD. © 2020 American Physiological Society. Compr Physiol 10:673-686, 2020.
Collapse
Affiliation(s)
- Soudamani Singh
- Department of Clinical and Translational Sciences and Appalachian Clinical and Translational Science Institute, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, USA
| | - Subha Arthur
- Department of Clinical and Translational Sciences and Appalachian Clinical and Translational Science Institute, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, USA
| | - Uma Sundaram
- Department of Clinical and Translational Sciences and Appalachian Clinical and Translational Science Institute, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, USA
| |
Collapse
|
29
|
Costa ACC, Yamamoto PA, Lauretti GR, Benzi JR, Zanelli CF, Barz V, Ciarimboli G, Moraes NV. Cetirizine Reduces Gabapentin Plasma Concentrations and Effect: Role of Renal Drug Transporters for Organic Cations. J Clin Pharmacol 2020; 60:1076-1086. [DOI: 10.1002/jcph.1603] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/10/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Ana Carolina Conchon Costa
- School of Pharmaceutical Sciences of Ribeirão PretoUSP–São Paulo University Ribeirão Preto SP Brazil
- Experimental Nephrology, Medicine Clinic DUniversity Hospital Münster Münster Germany
| | | | | | - Jhohann Richard Benzi
- School of Pharmaceutical Sciences of Ribeirão PretoUSP–São Paulo University Ribeirão Preto SP Brazil
| | | | - Vivien Barz
- Experimental Nephrology, Medicine Clinic DUniversity Hospital Münster Münster Germany
| | - Giuliano Ciarimboli
- Experimental Nephrology, Medicine Clinic DUniversity Hospital Münster Münster Germany
| | | |
Collapse
|
30
|
Wang G, Zhao L, Jiang Q, Sun Y, Zhao D, Sun M, He Z, Sun J, Wang Y. Intestinal OCTN2- and MCT1-targeted drug delivery to improve oral bioavailability. Asian J Pharm Sci 2020; 15:158-173. [PMID: 32256846 PMCID: PMC7118283 DOI: 10.1016/j.ajps.2020.02.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 12/08/2019] [Accepted: 02/12/2020] [Indexed: 12/18/2022] Open
Abstract
Various drug transporters are widely expressed throughout the intestine and play important roles in absorbing nutrients and drugs, thus providing high quality targets for the design of prodrugs or nanoparticles to facilitate oral drug delivery. In particular, intestinal carnitine/organic cation transporter 2 (OCTN2) and mono-carboxylate transporter protein 1 (MCT1) possess high transport capacities and complementary distributions. Therefore, we outline recent developments in transporter-targeted oral drug delivery with regard to the OCTN2 and MCT1 proteins in this review. First, basic information of the two transporters is reviewed, including their topological structures, characteristics and functions, expression and key features of their substrates. Furthermore, progress in transporter-targeting prodrugs and nanoparticles to increase oral drug delivery is discussed, including improvements in the oral absorption of anti-inflammatory drugs, antiepileptic drugs and anticancer drugs. Finally, the potential of a dual transporter-targeting strategy is discussed.
Collapse
Affiliation(s)
- Gang Wang
- Zhuang Yao Medicine Center of Engineering and Technology, Guang Xi University of Chinese Medicine, Nanning 530200, China
| | - Lichun Zhao
- Zhuang Yao Medicine Center of Engineering and Technology, Guang Xi University of Chinese Medicine, Nanning 530200, China.,School of Pharmacy, Guang Xi University of Chinese Medicine, Nanning 530200, China
| | - Qikun Jiang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yixin Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dongyang Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Mengchi Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhonggui He
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jin Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yang Wang
- School of Pharmacy, Guang Xi University of Chinese Medicine, Nanning 530200, China
| |
Collapse
|
31
|
Rodrigues AD, Rowland A. Profiling of Drug-Metabolizing Enzymes and Transporters in Human Tissue Biopsy Samples: A Review of the Literature. J Pharmacol Exp Ther 2020; 372:308-319. [PMID: 31879375 DOI: 10.1124/jpet.119.262972] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/19/2019] [Indexed: 03/08/2025] Open
Abstract
Within the drug pharmacokinetics (PK)-absorption, distribution, metabolism, and excretion (ADME) research community, investigators regularly generate in vitro data sets using appropriately vendor-sourced and processed human tissue. Such data enable drug screening, the generation of kinetic parameters, extrapolation of in vitro to in vivo, as well as the modeling and simulation of drug PK. Although there are large numbers of manuscripts describing studies with deceased organ donor tissue, relatively few investigators have published studies utilizing living donor tissue biopsy samples. After a review of the available literature, it was possible to find publications describing the use of tissue biopsy samples to determine enzyme inhibition ex vivo, the study of genotype-phenotype associations, the evaluation of tissue expression profiling following an inducer, and assessment of correlations between tissue expression profiles and in vivo-derived trait measures (e.g., biomarker plasma levels and probe drug PK). Some reports described multiple single-tissue biopsies, whereas others described single multiple-organ biopsies. It is concluded that biopsy-derived data can support modeling exercises (as input data and when validating models) and enable the assessment of organ-specific changes in enzyme and transporter profiles resulting from drug interactions, disease (e.g., metabolic disease, fibrosis, inflammation, cancer, infection), age, pregnancy, organ impairment, and genotype. With the emergence of multiorgan axes (e.g., microbiome-gut-liver-kidney) and interest in remote sensing (interorgan communication), it is envisioned that there will be increased demand for single- and multiorgan tissue biopsy data to support hypothesis testing and PK-ADME model building. SIGNIFICANCE STATEMENT: Based on a review of the literature, it is apparent that profiling of human tissue biopsy samples is useful in support of pharmacokinetics (PK)-absorption, distribution, metabolism, and excretion (ADME)-related studies. With conventional tissue biopsy as precedent, it is envisioned that researchers will turn to less invasive "liquid biopsy" methods in support of ADME-related studies (e.g., profiling of plasma-derived tissue-specific nanovesicles). Generation of such multiorgan liquid biopsy data in larger numbers of subjects and at multiple study time points will provide a rich data set for modeling purposes.
Collapse
Affiliation(s)
- A David Rodrigues
- ADME Sciences, Medicine Design, Worldwide Research & Development, Pfizer Inc., Groton, Connecticut (D.R.) and College of Medicine and Public Health, Flinders University, Adelaide, Australia (A.R.)
| | - Andrew Rowland
- ADME Sciences, Medicine Design, Worldwide Research & Development, Pfizer Inc., Groton, Connecticut (D.R.) and College of Medicine and Public Health, Flinders University, Adelaide, Australia (A.R.)
| |
Collapse
|
32
|
Voronova V, Sokolov V, Al-Khaifi A, Straniero S, Kumar C, Peskov K, Helmlinger G, Rudling M, Angelin B. A Physiology-Based Model of Bile Acid Distribution and Metabolism Under Healthy and Pathologic Conditions in Human Beings. Cell Mol Gastroenterol Hepatol 2020; 10:149-170. [PMID: 32112828 PMCID: PMC7240226 DOI: 10.1016/j.jcmgh.2020.02.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Disturbances of the enterohepatic circulation of bile acids (BAs) are seen in a number of clinically important conditions, including metabolic disorders, hepatic impairment, diarrhea, and gallstone disease. To facilitate the exploration of underlying pathogenic mechanisms, we developed a mathematical model built on quantitative physiological observations across different organs. METHODS The model consists of a set of kinetic equations describing the syntheses of cholic, chenodeoxycholic, and deoxycholic acids, as well as time-related changes of their respective free and conjugated forms in the systemic circulation, the hepatoportal region, and the gastrointestinal tract. The core structure of the model was adapted from previous modeling research and updated based on recent mechanistic insights, including farnesoid X receptor-mediated autoregulation of BA synthesis and selective transport mechanisms. The model was calibrated against existing data on BA distribution and feedback regulation. RESULTS According to model-based predictions, changes in intestinal motility, BA absorption, and biotransformation rates affected BA composition and distribution differently, as follows: (1) inhibition of transintestinal BA flux (eg, in patients with BA malabsorption) or acceleration of intestinal motility, followed by farnesoid X receptor down-regulation, was associated with colonic BA accumulation; (2) in contrast, modulation of the colonic absorption process was predicted to not affect the BA pool significantly; and (3) activation of ileal deconjugation (eg, in patents with small intestinal bacterial overgrowth) was associated with an increase in the BA pool, owing to higher ileal permeability of unconjugated BA species. CONCLUSIONS This model will be useful in further studying how BA enterohepatic circulation modulation may be exploited for therapeutic benefits.
Collapse
Affiliation(s)
- Veronika Voronova
- Department of Pharmacological Modeling, M&S Decisions, Moscow, Russia,Correspondence Address correspondence to: Veronika Voronova, M&S Decisions 125167, Naryshkinskaya Alley, 5, Building 1, Moscow, Russian Federation. fax: +7(495)7975535.
| | - Victor Sokolov
- Department of Pharmacological Modeling, M&S Decisions, Moscow, Russia
| | - Amani Al-Khaifi
- Metabolism Unit, Endocrinology, Metabolism and Diabetes, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden,Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Centre, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden,Department of Biochemistry, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Sara Straniero
- Metabolism Unit, Endocrinology, Metabolism and Diabetes, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden,Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Centre, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Chanchal Kumar
- Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Centre, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden,Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals Research and Development, AstraZeneca, Gothenburg, Sweden
| | - Kirill Peskov
- Department of Pharmacological Modeling, M&S Decisions, Moscow, Russia,Computational Oncology Group, Sechenov First Moscow State Medical University of the Russian Ministry of Health, Moscow, Russia
| | - Gabriel Helmlinger
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals Research and Development, AstraZeneca, Boston, Massachusetts
| | - Mats Rudling
- Metabolism Unit, Endocrinology, Metabolism and Diabetes, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden,Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Centre, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Bo Angelin
- Metabolism Unit, Endocrinology, Metabolism and Diabetes, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden,Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Centre, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
33
|
Amino acid transporters as tetraspanin TM4SF5 binding partners. Exp Mol Med 2020; 52:7-14. [PMID: 31956272 PMCID: PMC7000776 DOI: 10.1038/s12276-019-0363-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 01/22/2023] Open
Abstract
Transmembrane 4 L6 family member 5 (TM4SF5) is a tetraspanin that has four transmembrane domains and can be N-glycosylated and palmitoylated. These posttranslational modifications of TM4SF5 enable homophilic or heterophilic binding to diverse membrane proteins and receptors, including growth factor receptors, integrins, and tetraspanins. As a member of the tetraspanin family, TM4SF5 promotes protein-protein complexes for the spatiotemporal regulation of the expression, stability, binding, and signaling activity of its binding partners. Chronic diseases such as liver diseases involve bidirectional communication between extracellular and intracellular spaces, resulting in immune-related metabolic effects during the development of pathological phenotypes. It has recently been shown that, during the development of fibrosis and cancer, TM4SF5 forms protein-protein complexes with amino acid transporters, which can lead to the regulation of cystine uptake from the extracellular space to the cytosol and arginine export from the lysosomal lumen to the cytosol. Furthermore, using proteomic analyses, we found that diverse amino acid transporters were precipitated with TM4SF5, although these binding partners need to be confirmed by other approaches and in functionally relevant studies. This review discusses the scope of the pathological relevance of TM4SF5 and its binding to certain amino acid transporters.
Collapse
|
34
|
Abstract
The organic cation transporters (OCTs) OCT1, OCT2, OCT3, novel OCT (OCTN)1, OCTN2, multidrug and toxin exclusion (MATE)1, and MATE kidney-specific 2 are polyspecific transporters exhibiting broadly overlapping substrate selectivities. They transport organic cations, zwitterions, and some uncharged compounds and operate as facilitated diffusion systems and/or antiporters. OCTs are critically involved in intestinal absorption, hepatic uptake, and renal excretion of hydrophilic drugs. They modulate the distribution of endogenous compounds such as thiamine, L-carnitine, and neurotransmitters. Sites of expression and functions of OCTs have important impact on energy metabolism, pharmacokinetics, and toxicity of drugs, and on drug-drug interactions. In this work, an overview about the human OCTs is presented. Functional properties of human OCTs, including identified substrates and inhibitors of the individual transporters, are described. Sites of expression are compiled, and data on regulation of OCTs are presented. In addition, genetic variations of OCTs are listed, and data on their impact on transport, drug treatment, and diseases are reported. Moreover, recent data are summarized that indicate complex drug-drug interaction at OCTs, such as allosteric high-affinity inhibition of transport and substrate dependence of inhibitor efficacies. A hypothesis about the molecular mechanism of polyspecific substrate recognition by OCTs is presented that is based on functional studies and mutagenesis experiments in OCT1 and OCT2. This hypothesis provides a framework to imagine how observed complex drug-drug interactions at OCTs arise. Finally, preclinical in vitro tests that are performed by pharmaceutical companies to identify interaction of novel drugs with OCTs are discussed. Optimized experimental procedures are proposed that allow a gapless detection of inhibitory and transported drugs.
Collapse
Affiliation(s)
- Hermann Koepsell
- Institute of Anatomy and Cell Biology and Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Würzburg, Würzburg, Germany
| |
Collapse
|
35
|
Abdelkawy KS, El-Haggar SM, Ziada DH, Ebaid NF, El-Magd MA, Elbarbry FA. The effect of genetic variations on ribavirin pharmacokinetics and treatment response in HCV-4 Egyptian patients receiving sofosbuvir/daclatasvir and ribavirin. Biomed Pharmacother 2019; 121:109657. [PMID: 31810127 DOI: 10.1016/j.biopha.2019.109657] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 12/21/2022] Open
Abstract
PURPOSE This study aimed to investigate the effect of single nucleotide polymorphisms (SNPs) of genes involved in ribavirin (RBV) transport (SLC28A2 gene, ABCB1 gene and ABCB11 gene) on the clinical outcome and pharmacokinetics of ribavirin in HCV- 4 Egyptian patients. METHOD 100 patients treated with sofosbuvir/daclatasvir and ribavirin for 12 weeks. The SNP genotyping was performed by real-time PCR using high resolution melting analysis. Ribavirin plasma trough concentrations were determined at week 4 of therapy using a liquid chromatography/tandem mass spectrometry (LC-MS/MS). For clinical outcomes, sustained virological response (SVR), liver function tests (ALT and AST), total bilirubin, albumin, serum creatinine, hemoglobin, leukocyte count, and platelet count were measured. RESULTS Concerning RBV pharmacokinetics, ABCB1 2677 G > T SNP and ABCB11 1331 T > C SNP were statistically associated with RBV Ctrough levels after 4 weeks of therapy. ABCB11 1331 T > C SNP revealed significant association with clinical outcomes (SVR). SLC28A2-146 A > T SNP has not showed any statistically significant association with RBV plasma levels or response. CONCLUSION SNP genotyping for ABCB1 and ABCB11 genes can help in better personalized medicine for maximizing response for ribavirin as explored by the significant association between polymorphism in ABCB1 and ABCB11 genes and ribavirin pharmacokinetics and the significant association of ABCB11 1331 T > C SNP with clinical response.
Collapse
Affiliation(s)
- K S Abdelkawy
- Clinical Pharmacy, Faculty of Pharmacy, Kafrelsheikh University, Egypt.
| | - S M El-Haggar
- Clinical Pharmacy, Faculty of Pharmacy, Tanta University, Egypt.
| | - D H Ziada
- Tropical Medicine and Infectious Diseases, Faculty of Medicine, Tanta University, Egypt.
| | - N F Ebaid
- Clinical Pharmacy, Faculty of Pharmacy, Kafrelsheikh University, Egypt.
| | - M A El-Magd
- Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Egypt.
| | - F A Elbarbry
- Pacific University Oregon School of Pharmacy, 222 SE 8thAve., Hillsboro, OR, 97123, USA.
| |
Collapse
|
36
|
Farasyn T, Crowe A, Hatley O, Neuhoff S, Alam K, Kanyo J, Lam TT, Ding K, Yue W. Preincubation With Everolimus and Sirolimus Reduces Organic Anion-Transporting Polypeptide (OATP)1B1- and 1B3-Mediated Transport Independently of mTOR Kinase Inhibition: Implication in Assessing OATP1B1- and OATP1B3-Mediated Drug-Drug Interactions. J Pharm Sci 2019; 108:3443-3456. [PMID: 31047942 PMCID: PMC6759397 DOI: 10.1016/j.xphs.2019.04.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 04/11/2019] [Accepted: 04/18/2019] [Indexed: 02/07/2023]
Abstract
Organic anion transporting polypeptides (OATP)1B1 and OATP1B3 mediate hepatic uptake of many drugs including lipid-lowering statins. Current studies determined the OATP1B1/1B3-mediated drug-drug interaction (DDI) potential of mammalian target of rapamycin (mTOR) inhibitors, everolimus and sirolimus, using R-value and physiologically based pharmacokinetic models. Preincubation with everolimus and sirolimus significantly decreased OATP1B1/1B3-mediated transport even after washing and decreased inhibition constant values up to 8.3- and 2.9-fold for OATP1B1 and both 2.7-fold for OATP1B3, respectively. R-values of everolimus, but not sirolimus, were greater than the FDA-recommended cutoff value of 1.1. Physiologically based pharmacokinetic models predict that everolimus and sirolimus have low OATP1B1/1B3-mediated DDI potential against pravastatin. OATP1B1/1B3-mediated transport was not affected by preincubation with INK-128 (10 μM, 1 h), which does however abolish mTOR kinase activity. The preincubation effects of everolimus and sirolimus on OATP1B1/1B3-mediated transport were similar in cells before preincubation with vehicle control or INK-128, suggesting that inhibition of mTOR activity is not a prerequisite for the preincubation effects observed for everolimus and sirolimus. Nine potential phosphorylation sites of OATP1B1 were identified by phosphoproteomics; none of these are the predicted mTOR phosphorylation sites. We report the everolimus/sirolimus-preincubation-induced inhibitory effects on OATP1B1/1B3 and relatively low OATP1B1/1B3-mediated DDI potential of everolimus and sirolimus.
Collapse
Affiliation(s)
- Taleah Farasyn
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Alexandra Crowe
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Oliver Hatley
- Certara UK Ltd., Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield S1 2BJ, UK
| | - Sibylle Neuhoff
- Certara UK Ltd., Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield S1 2BJ, UK
| | - Khondoker Alam
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Jean Kanyo
- Yale MS & Proteomics Resource, Yale University, New Haven, Connecticut 06520
| | - TuKiet T Lam
- Yale MS & Proteomics Resource, Yale University, New Haven, Connecticut 06520; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| | - Kai Ding
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Wei Yue
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104.
| |
Collapse
|
37
|
Harwood MD, Zhang M, Pathak SM, Neuhoff S. The Regional-Specific Relative and Absolute Expression of Gut Transporters in Adult Caucasians: A Meta-Analysis. Drug Metab Dispos 2019; 47:854-864. [PMID: 31076413 DOI: 10.1124/dmd.119.086959] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 04/30/2019] [Indexed: 02/13/2025] Open
Abstract
The aim of this study was to derive region-specific transporter expression data suitable for in vitro-to-in vivo extrapolation (IVIVE) within a physiologically based pharmacokinetic (PBPK) modeling framework. A meta-analysis was performed whereby literary sources reporting region-specific transporter expression obtained via absolute and relative quantification approaches were considered in healthy adult Caucasian individuals. Furthermore, intestinal total membrane protein yield was calculated to enable mechanistic IVIVE via absolute transporter abundances. Where required, authors were contacted for additional information. A refined database was constructed where samples were excluded based on quantification in, non-Caucasian subjects, disease tissue, subjects <18 years old, duplicated samples, non-total membrane matrix, pooled matrices, or cDNA. Demographic data were collected where available. The weighted and geometric mean, coefficient of variation, and between-study homogeneity was calculated in each of eight gut segments (duodenum, two jejunum, four ileum, and colon) for 16 transporters. Expression data were normalized to that in the proximal jejunum. From a total of 47 articles, the final database consisted of 2238 measurements for 16 transporters. The solute carrier peptide transporter 1 (PepT1) showed the highest jejunal abundance, while multidrug resistance-associated protein (MRP) 2 was the highest abundance ATP-binding cassette transporter. Transporters displaying significant region-specific expression included the ileal bile acid transporter, which showed 18-fold greater terminal ileum expression compared with the proximal jejunum, while MRP3, organic cation transporter type 1 (OCTN1), and OCT1 showed >2-fold higher expression in other regions compared with the proximal jejunum. This is the first systematic analysis incorporating absolute quantification methodology to determine region-specific intestinal transporter expression. It is expected to be beneficial for mechanistic transporter IVIVE in healthy adult Caucasians. SIGNIFICANCE STATEMENT: Given the burgeoning reports of absolute transporter abundances in the human intestine, the incorporation of such information into mechanistic IVIVE-PBPK models could offer a distinct advantage in facilitating the robust assessment of the impact of gut transporters on drug disposition. The systematic and formal assessment via a literature meta-analysis described herein, enables assignment of the regional-specific expression, absolute transporter abundances, interindividual variability, and other associated scaling factors to healthy Caucasian populations within PBPK models. The resulting values are available to incorporate into PBPK models, and offer a verifiable account describing intestinal transporter expression within PBPK models for persons wishing to utilize them. Furthermore, these data facilitate the development of appropriate IVIVE scaling strategies using absolute transporter abundances.
Collapse
Affiliation(s)
| | - Mian Zhang
- Certara UK Ltd., Simcyp Division, Sheffield, United Kingdom
| | | | | |
Collapse
|
38
|
The Biosynthesis, Signaling, and Neurological Functions of Bile Acids. Biomolecules 2019; 9:biom9060232. [PMID: 31208099 PMCID: PMC6628048 DOI: 10.3390/biom9060232] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 12/13/2022] Open
Abstract
Bile acids (BA) are amphipathic steroid acids synthesized from cholesterol in the liver. They act as detergents to expedite the digestion and absorption of dietary lipids and lipophilic vitamins. BA are also considered to be signaling molecules, being ligands of nuclear and cell-surface receptors, including farnesoid X receptor and Takeda G-protein receptor 5. Moreover, BA also activate ion channels, including the bile acid-sensitive ion channel and epithelial Na+ channel. BA regulate glucose and lipid metabolism by activating these receptors in peripheral tissues, such as the liver and brown and white adipose tissue. Recently, 20 different BA have been identified in the central nervous system. Furthermore, BA affect the function of neurotransmitter receptors, such as the muscarinic acetylcholine receptor and γ-aminobutyric acid receptor. BA are also known to be protective against neurodegeneration. Here, we review recent findings regarding the biosynthesis, signaling, and neurological functions of BA.
Collapse
|
39
|
Christiansen CB, Trammell SAJ, Wewer Albrechtsen NJ, Schoonjans K, Albrechtsen R, Gillum MP, Kuhre RE, Holst JJ. Bile acids drive colonic secretion of glucagon-like-peptide 1 and peptide-YY in rodents. Am J Physiol Gastrointest Liver Physiol 2019; 316:G574-G584. [PMID: 30767682 DOI: 10.1152/ajpgi.00010.2019] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A large number of glucagon-like-peptide-1 (GLP-1)- and peptide-YY (PYY)-producing L cells are located in the colon, but little is known about their contribution to whole body metabolism. Since bile acids (BAs) increase GLP-1 and PYY release, and since BAs spill over from the ileum to the colon, we decided to investigate the ability of BAs to stimulate colonic GLP-1 and PYY secretion. Using isolated perfused rat/mouse colon as well as stimulation of the rat colon in vivo, we demonstrate that BAs significantly enhance secretion of GLP-1 and PYY from the colon with average increases of 3.5- and 2.9-fold, respectively. Furthermore, we find that responses depend on BA absorption followed by basolateral activation of the BA-receptor Takeda-G protein-coupled-receptor 5. Surprisingly, the apical sodium-dependent BA transporter, which serves to absorb conjugated BAs, was not required for colonic conjugated BA absorption or conjugated BA-induced peptide secretion. In conclusion, we demonstrate that BAs represent a major physiological stimulus for colonic L-cell secretion. NEW & NOTEWORTHY By the use of isolated perfused rodent colon preparations we show that bile acids are potent and direct promoters of colonic glucagon-like-peptide 1 and peptide-YY secretion. The study provides convincing evidence that basolateral Takeda-G protein-coupled-receptor 5 activation is mediating the effects of bile acids in the colon and thus add to the existing literature described for L cells in the ileum.
Collapse
Affiliation(s)
- Charlotte Bayer Christiansen
- Novo Nordic Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Samuel Addison Jack Trammell
- Novo Nordic Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Nicolai Jacob Wewer Albrechtsen
- Novo Nordic Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark.,Department of Clinical Biochemistry, Rigshospitalet, Copenhagen , Denmark.,Clinical Proteomics, Novo Nordic Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Kristina Schoonjans
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne , Switzerland
| | - Reidar Albrechtsen
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Matthew Paul Gillum
- Novo Nordic Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Rune Ehrenreich Kuhre
- Novo Nordic Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Jens Juul Holst
- Novo Nordic Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
40
|
Schulte RR, Ho RH. Organic Anion Transporting Polypeptides: Emerging Roles in Cancer Pharmacology. Mol Pharmacol 2019; 95:490-506. [PMID: 30782852 PMCID: PMC6442320 DOI: 10.1124/mol.118.114314] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 02/09/2019] [Indexed: 12/13/2022] Open
Abstract
The organic anion transporting polypeptides (OATPs) are a superfamily of drug transporters involved in the uptake and disposition of a wide array of structurally divergent endogenous and exogenous substrates, including steroid hormones, bile acids, and commonly used drugs, such as anti-infectives, antihypertensives, and cholesterol lowering agents. In the past decade, OATPs, primarily OATP1A2, OATP1B1, and OATP1B3, have emerged as potential mediators of chemotherapy disposition, including drugs such as methotrexate, doxorubicin, paclitaxel, docetaxel, irinotecan and its important metabolite 7-ethyl-10-hydroxycamptothecin, and certain tyrosine kinase inhibitors. Furthermore, OATP family members are polymorphic and numerous studies have shown OATP variants to have differential uptake, disposition, and/or pharmacokinetics of numerous drug substrates with important implications for interindividual differences in efficacy and toxicity. Additionally, certain OATPs have been found to be overexpressed in a variety of human solid tumors, including breast, liver, colon, pancreatic, and ovarian cancers, suggesting potential roles for OATPs in tumor development and progression and as novel targets for cancer therapy. This review focuses on the emerging roles for selected OATPs in cancer pharmacology, including preclinical and clinical studies suggesting roles in chemotherapy disposition, the pharmacogenetics of OATPs in cancer therapy, and OATP overexpression in various tumor tissues with implications for OATPs as therapeutic targets.
Collapse
Affiliation(s)
- Rachael R Schulte
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Richard H Ho
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
41
|
Longitudinal Impacts of Gastric Bypass Surgery on Pharmacodynamics and Pharmacokinetics of Statins. Obes Surg 2019; 29:2571-2583. [PMID: 31004269 DOI: 10.1007/s11695-019-03885-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
PURPOSE Undergoing Roux-en-Y gastric bypass (RYGB) is expected to affect orally administered drug absorption. Statins are commonly prescribed to patients with obesity for the prevention of atherosclerotic cardiovascular diseases by lowering cholesterol. This is the first longitudinal prospective study on impacts of RYGB on weight loss, pharmacodynamics, and pharmacokinetics of atorvastatin, rosuvastatin, and simvastatin, and their active metabolites, up to 1-year post-surgery. METHODS Forty-six patients were recruited, five patients on atorvastatin, twelve on rosuvastatin, nine on simvastatin, and twenty on no statin. The concentrations of atorvastatin, rosuvastatin, and simvastatin with their active metabolites were monitored. RESULTS Mean plasma concentrations of atorvastatin and metabolites and rosuvastatin normalized by the unit dose [(nM)/(mg/kg)] decreased by 3- to 6-month post-surgery. Conversely, simvastatin and its metabolite concentrations increased up to 6-month post-surgery, then declined to preoperative levels by 1-year post-surgery. The metabolisms of atorvastatin to hydroxyl-metabolites and simvastatin to simvastatin acid were decreased after RYGB. The weight loss and PD outcomes were comparable between statin and non-statin groups suggesting the key impacts were from RYGB. The discontinuation or reduction of dose of atorvastatin or rosuvastatin post-RYGB exhibited rebounds of LDL levels in some subjects, but the rebound was not apparent with patients on simvastatin pre-surgery. CONCLUSION Discontinuations of statin dosing post-RYGB require LDL monitoring and reducing the dose to half seems to have better results. Patients on statin treatment post-RYGB should be followed-up closely based on our pharmacokinetic findings, to ensure therapeutic effects of the treatment with minimal adverse effects.
Collapse
|
42
|
Oswald S. Organic Anion Transporting Polypeptide (OATP) transporter expression, localization and function in the human intestine. Pharmacol Ther 2019; 195:39-53. [DOI: 10.1016/j.pharmthera.2018.10.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
43
|
Xue Y, Ma C, Hanna I, Pan G. Intestinal Transporter-Associated Drug Absorption and Toxicity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1141:361-405. [DOI: 10.1007/978-981-13-7647-4_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
44
|
Negoro R, Takayama K, Kawai K, Harada K, Sakurai F, Hirata K, Mizuguchi H. Efficient Generation of Small Intestinal Epithelial-like Cells from Human iPSCs for Drug Absorption and Metabolism Studies. Stem Cell Reports 2018; 11:1539-1550. [PMID: 30472010 PMCID: PMC6294172 DOI: 10.1016/j.stemcr.2018.10.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/25/2018] [Accepted: 10/25/2018] [Indexed: 02/07/2023] Open
Abstract
The small intestine plays an important role in the absorption and metabolism of oral drugs. In the current evaluation system, it is difficult to predict the precise absorption and metabolism of oral drugs. In this study, we generated small intestinal epithelial-like cells from human induced pluripotent stem cells (hiPS-SIECs), which could be applied to drug absorption and metabolism studies. The small intestinal epithelial-like cells were efficiently generated from human induced pluripotent stem cell by treatment with WNT3A, R-spondin 3, Noggin, EGF, IGF-1, SB202190, and dexamethasone. The gene expression levels of small intestinal epithelial cell (SIEC) markers were similar between the hiPS-SIECs and human adult small intestine. Importantly, the gene expression levels of colonic epithelial cell markers in the hiPS-SIECs were much lower than those in human adult colon. The hiPS-SIECs generated by our protocol exerted various SIEC functions. In conclusion, the hiPS-SIECs can be utilized for evaluation of drug absorption and metabolism.
Collapse
Affiliation(s)
- Ryosuke Negoro
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazuo Takayama
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; PRESTO, Japan Science and Technology Agency, Saitama 332-0012, Japan; Laboratory of Hepatocyte Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan; Laboratory of Biochemistry and Molecular Biology, School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan.
| | - Kanae Kawai
- Laboratory of Biochemistry and Molecular Biology, School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Kazuo Harada
- Laboratory of Applied Environmental Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Fuminori Sakurai
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Laboratory of Biochemistry and Molecular Biology, School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Kazumasa Hirata
- Laboratory of Applied Environmental Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Laboratory of Hepatocyte Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan; Laboratory of Biochemistry and Molecular Biology, School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan; Global Center for Medical Engineering and Informatics, Osaka University, Osaka 565-0871, Japan.
| |
Collapse
|
45
|
Giaretta PR, Rech RR, Guard BC, Blake AB, Blick AK, Steiner JM, Lidbury JA, Cook AK, Hanifeh M, Spillmann T, Kilpinen S, Syrjä P, Suchodolski JS. Comparison of intestinal expression of the apical sodium-dependent bile acid transporter between dogs with and without chronic inflammatory enteropathy. J Vet Intern Med 2018; 32:1918-1926. [PMID: 30315593 PMCID: PMC6271328 DOI: 10.1111/jvim.15332] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/28/2018] [Accepted: 09/05/2018] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Intestinal absorption of bile acids is mediated by the apical sodium-dependent bile acid transporter (ASBT). Fecal bile acid dysmetabolism has been reported in dogs with chronic inflammatory enteropathy (CIE). OBJECTIVE Characterization of ASBT distribution along the intestinal tract of control dogs and comparison to dogs with CIE. ANIMALS Twenty-four dogs with CIE and 11 control dogs. METHODS The ASBT mRNA and protein expression were assessed using RNA in situ hybridization and immunohistochemistry, respectively. The concentrations of fecal bile acids were measured by gas chromatography-mass spectrometry. The fecal microbiota dysbiosis index was assessed with a quantitative polymerase chain reaction panel. RESULTS In control dogs, ASBT mRNA expression was observed in enterocytes in all analyzed intestinal segments, with highest expression in the ileum. The ASBT protein expression was restricted to enterocytes in the ileum, cecum, and colon. Dogs with CIE had significantly decreased expression of ASBT protein in the ileum (P = .001), which was negatively correlated with histopathological score (ρ = -0.40; Pcorr = .049). Additionally, dogs with CIE had a significantly increased percentage of primary bile acids in feces compared to controls (P = .04). The fecal dysbiosis index was significantly higher in dogs with CIE than in control dogs (P = .01). CONCLUSIONS AND CLINICAL IMPORTANCE These findings indicate that ileal protein expression of ASBT is downregulated in dogs with CIE. This change may be linked to the inflammatory process, intestinal dysbiosis, and fecal bile acid dysmetabolism observed in these patients.
Collapse
Affiliation(s)
- Paula R. Giaretta
- Department of Veterinary PathobiologyCollege of Veterinary Medicine and Biomedical Sciences, Texas A&M UniversityCollege StationTexas
| | - Raquel R. Rech
- Department of Veterinary PathobiologyCollege of Veterinary Medicine and Biomedical Sciences, Texas A&M UniversityCollege StationTexas
| | - Blake C. Guard
- Gastrointestinal Laboratory, Department of Small Animal Clinical SciencesCollege of Veterinary Medicine and Biomedical Sciences, Texas A&M UniversityCollege StationTexas
| | - Amanda B. Blake
- Gastrointestinal Laboratory, Department of Small Animal Clinical SciencesCollege of Veterinary Medicine and Biomedical Sciences, Texas A&M UniversityCollege StationTexas
| | - Anna K. Blick
- Department of Veterinary PathobiologyCollege of Veterinary Medicine and Biomedical Sciences, Texas A&M UniversityCollege StationTexas
| | - Jörg M. Steiner
- Department of Veterinary PathobiologyCollege of Veterinary Medicine and Biomedical Sciences, Texas A&M UniversityCollege StationTexas
- Gastrointestinal Laboratory, Department of Small Animal Clinical SciencesCollege of Veterinary Medicine and Biomedical Sciences, Texas A&M UniversityCollege StationTexas
| | - Jonathan A. Lidbury
- Gastrointestinal Laboratory, Department of Small Animal Clinical SciencesCollege of Veterinary Medicine and Biomedical Sciences, Texas A&M UniversityCollege StationTexas
| | - Audrey K. Cook
- Department of Small Animal Clinical SciencesCollege of Veterinary Medicine and Biomedical Sciences, Texas A&M UniversityCollege StationTexas
| | - Mohsen Hanifeh
- Department of Equine and Small Animal Medicine, Faculty of Veterinary MedicineUniversity of HelsinkiHelsinkiFinland
| | - Thomas Spillmann
- Department of Equine and Small Animal Medicine, Faculty of Veterinary MedicineUniversity of HelsinkiHelsinkiFinland
| | - Susanne Kilpinen
- Department of Equine and Small Animal Medicine, Faculty of Veterinary MedicineUniversity of HelsinkiHelsinkiFinland
| | - Pernilla Syrjä
- Department of Veterinary Biosciences, Faculty of Veterinary MedicineUniversity of HelsinkiHelsinkiFinland
| | - Jan S. Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical SciencesCollege of Veterinary Medicine and Biomedical Sciences, Texas A&M UniversityCollege StationTexas
| |
Collapse
|
46
|
Aherne CM, Collins CB, Rapp CR, Olli KE, Perrenoud L, Jedlicka P, Bowser JL, Mills TW, Karmouty-Quintana H, Blackburn MR, Eltzschig HK. Coordination of ENT2-dependent adenosine transport and signaling dampens mucosal inflammation. JCI Insight 2018; 3:121521. [PMID: 30333323 PMCID: PMC6237472 DOI: 10.1172/jci.insight.121521] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 08/30/2018] [Indexed: 12/19/2022] Open
Abstract
Intestinal epithelial barrier repair is vital for remission in inflammatory bowel disease (IBD). Extracellular adenosine signaling has been implicated in promoting restoration of epithelial barrier function. Currently, no clinically approved agents target this pathway. Adenosine signaling is terminated by uptake from the extracellular space via equilibrative nucleoside transporters (ENTs). We hypothesized that ENT inhibition could dampen intestinal inflammation. Initial studies demonstrated transcriptional repression of ENT1 and ENT2 in IBD biopsies or in murine IBD models. Subsequent studies in mice with global Ent1 or Ent2 deletion revealed selective protection of Ent2-/- mice. Elevated intestinal adenosine levels in conjunction with abolished protection following pharmacologic blockade of A2B adenosine receptors implicate adenosine signaling as the mechanism of gut protection in Ent2-/- mice. Additional studies in mice with tissue-specific deletion of Ent2 uncovered epithelial Ent2 as the target. Moreover, intestinal protection provided by a selective Ent2 inhibitor was abolished in mice with epithelium-specific deletion of Ent2 or the A2B adenosine receptor. Taken together, these findings indicate that increased mucosal A2B signaling following repression or deletion of epithelial Ent2 coordinates the resolution of intestinal inflammation. This study suggests the presence of a targetable purinergic network within the intestinal epithelium designed to limit tissue inflammation.
Collapse
Affiliation(s)
- Carol M. Aherne
- Department of Anesthesiology, and
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Colm B. Collins
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Digestive Health Institute, Children’s Hospital Colorado, Aurora, Colorado, USA
| | - Caroline R. Rapp
- Department of Anesthesiology, and
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Kristine E. Olli
- Department of Anesthesiology, and
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Loni Perrenoud
- Department of Anesthesiology, and
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Paul Jedlicka
- Department of Pathology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Jessica L. Bowser
- Department of Anesthesiology, McGovern Medical School at UTHealth, Houston, Texas, USA
| | - Tingting W. Mills
- Department of Biochemistry and Molecular Biology, McGovern Medical School at UTHealth, Houston, Texas, USA
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, McGovern Medical School at UTHealth, Houston, Texas, USA
| | - Michael R. Blackburn
- Department of Biochemistry and Molecular Biology, McGovern Medical School at UTHealth, Houston, Texas, USA
| | - Holger K. Eltzschig
- Department of Anesthesiology, and
- Department of Anesthesiology, McGovern Medical School at UTHealth, Houston, Texas, USA
| |
Collapse
|
47
|
Navrátilová L, Applová L, Horký P, Mladěnka P, Pávek P, Trejtnar F. Interaction of soy isoflavones and their main metabolites with hOATP2B1 transporter. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2018; 391:1063-1071. [PMID: 29934673 DOI: 10.1007/s00210-018-1528-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 06/14/2018] [Indexed: 12/24/2022]
Abstract
Membrane organic anion-transporting polypeptides (OATPs) are responsible for the drug transmembrane transport within the human body. The function of OATP2B1 transporter can be inhibited by various natural compounds. Despite increased research interest in soya as a part of human diet, the effect of its active components to interact with hOATP2B1 has not been elucidated in a complex extent. This in vitro study examined the inhibitory effect of main soy isoflavones (daidzin, daidzein, genistin, genistein, glycitin, glycitein, biochanin A, formononetin) and their metabolites formed in vivo (S-equol, O-desmethylangolensin) towards human OATP2B1 transporter. MDCKII cells overexpressing hOATP2B1 were employed to determine quantitative inhibitory parameters of the tested compounds and to analyze mechanism/s of the inhibitory interaction. The study showed that aglycones of soy isoflavones and the main biologically active metabolite S-equol were able to significantly inhibit hOATP2B1-mediated transport. The Ki values for most of aglycones range from 1 to 20 μM. In contrast, glucosides did not exhibit significant inhibitory effect. The kinetic analysis did not indicate a uniform type of inhibition towards the hOATP2B1 although predominant mechanism of inhibition seemed to be competitive. These findings may suggest that tested soy isoflavones and their metabolites might affect transport of xenobiotics including drugs across tissue barriers via hOATP2B1.
Collapse
Affiliation(s)
- Lucie Navrátilová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Lenka Applová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Pavel Horký
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Petr Pávek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - František Trejtnar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic.
| |
Collapse
|
48
|
Ferreira C, Hagen P, Stern M, Hussner J, Zimmermann U, Grube M, Meyer zu Schwabedissen HE. The scaffold protein PDZK1 modulates expression and function of the organic anion transporting polypeptide 2B1. Eur J Pharm Sci 2018; 120:181-190. [DOI: 10.1016/j.ejps.2018.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/08/2018] [Indexed: 11/25/2022]
|
49
|
Rocha KCE, Pereira BMV, Rodrigues AC. An update on efflux and uptake transporters as determinants of statin response. Expert Opin Drug Metab Toxicol 2018; 14:613-624. [PMID: 29842801 DOI: 10.1080/17425255.2018.1482276] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Statins are used in the treatment of dyslipidemia promoting primary and secondary prevention against detrimental cardiovascular events. ATP-binding cassette (ABC) and solute carrier (SLC) membrane transporters transport statins across the cell membrane. Differences in drug transporter tissue expression and activity contribute to variability in statin pharmacokinetics (PK) and response. Areas covered: The purpose of this review is to discuss factors impacting transporter expression and the effect this has on statin efficacy and safety. Previous studies have demonstrated that genetic polymorphisms, drug-drug interactions (DDI), nuclear receptors, and microRNAs affect statin PK and pharmacodynamics. Expert opinion: Genetic variants of ABCG2 and SLCO1B1 transporters affect statin PK and, as a result, the intended lipid-lowering response. However, the effect size is small, limiting its applicability in clinical practice. Furthermore, genetic variants do not totally explain the observed intervariability in statin response. Thus, it is likely that transcriptional and post-transcriptional regulation of drug transporters are also highly involved. Further studies are required to understand the contribution of each of these new factors in statin disposition and toxicity.
Collapse
Affiliation(s)
- Karina Cunha E Rocha
- a Department of Pharmacology , Institute of Biomedical Sciences, University of Sao Paulo , Sao Paulo , SP , Brazil
| | - Beatriz Maria Veloso Pereira
- a Department of Pharmacology , Institute of Biomedical Sciences, University of Sao Paulo , Sao Paulo , SP , Brazil
| | - Alice Cristina Rodrigues
- a Department of Pharmacology , Institute of Biomedical Sciences, University of Sao Paulo , Sao Paulo , SP , Brazil
| |
Collapse
|
50
|
Miyake M, Fujishima M, Nakai D. Inhibitory Potency of Marketed Drugs for Ulcerative Colitis and Crohn's Disease on PEPT1. Biol Pharm Bull 2018; 40:1572-1575. [PMID: 28867741 DOI: 10.1248/bpb.b17-00181] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigate the inhibitory effect of marketed drugs for treatment of inflammatory bowel disease (IBD) such as ulcerative colitis (UC) and Crohn's disease (CD) on the uptake transporters of peptide transporter 1 (PEPT1), which are up-regulated under the inflamed condition. The uptake transport of glycylsarcosine, a typical substrate for PEPT1, was reduced to 60% only by 5-aminosalicylate at the clinically relevant concentration among tested marketed drugs in PEPT1 transfected HEK293 cell lines. These findings suggest that the inhibition of PEPT1, which were up-regulated in inflamed or non-inflamed site on UC and CD patients, contribute to the clinical effect of commercially available drugs for IBD patients through the inhibition of uptake of antigenic proinflammatory oligopeptides such as formyl-methionine (Met)-leucine (Leu)-phenylalanine (Phe) via PEPT1.
Collapse
Affiliation(s)
- Masateru Miyake
- Department of Pharmacy, Uppsala University.,BA Project, Formulation Research Institute, Otsuka Pharmaceutical Co., Ltd
| | | | | |
Collapse
|