1
|
Piškor M, Milić A, Koštrun S, Majerić Elenkov M, Grbčić P, Kraljević Pavelić S, Pavelić K, Raić-Malić S. Synthesis, Antiproliferative Activity, and ADME Profiling of Novel Racemic and Optically Pure Aryl-Substituted Purines and Purine Bioisosteres. Biomolecules 2025; 15:351. [PMID: 40149888 PMCID: PMC11940194 DOI: 10.3390/biom15030351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025] Open
Abstract
The aim of this study was to synthesize new racemic and optically pure aryl-substituted purine bioisosteres using ultrasound-assisted Cu(I)-catalyzed Huisgen 1,3-dipolar cycloaddition. Regioselective synthesis of α-azido alcohols was applied to afford heterocycles with a 2-hydroxyeth-1-yl linker. Catalytic asymmetric synthesis using halohydrin dehalogenase in the ring-opening of epoxides gave enantioenriched azido alcohols, which subsequently afforded R- and S-enantiomers of purine and pyrrolo[2,3-d]pyrimidines with a 1-hydroxyeth-2-yl linker. The newly synthesized compounds were evaluated in vitro for their antiproliferative activity against four malignant tumor cell lines. The influence of regioisomerism and the stereochemistry of the hydroxyethyl group, as well as a N-heterocyclic scaffold linked to the aryl moiety on cytostatic activity was evaluated. Of all the compounds tested, purine 40a and pyrrolo[2,3-d]pyrimidine 45a derivatives with p-trifluoromethyl-substituted aryl connected to 1,2,3-triazole via a 2-hydroxyeth-1-yl spacer showed promising submicromolar antiproliferative activity. In addition, compound 45a exhibited selectivity towards the tumor cell line, with a selectivity index (SI) of 40, moderate clearance, and good membrane permeability.
Collapse
Affiliation(s)
- Martina Piškor
- Department of Organic Chemistry, University of Zagreb, Faculty of Chemical Engineering and Technology, Marulićev trg 19, 10000 Zagreb, Croatia;
| | | | | | - Maja Majerić Elenkov
- Division of Organic Chemistry and Biochemistry, Ruder Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia;
| | - Petra Grbčić
- Juraj Dobrila University of Pula, Faculty of Medicine, 52100 Pula, Croatia; (P.G.); (K.P.)
| | | | - Krešimir Pavelić
- Juraj Dobrila University of Pula, Faculty of Medicine, 52100 Pula, Croatia; (P.G.); (K.P.)
| | - Silvana Raić-Malić
- Department of Organic Chemistry, University of Zagreb, Faculty of Chemical Engineering and Technology, Marulićev trg 19, 10000 Zagreb, Croatia;
| |
Collapse
|
2
|
Kotze S, Goss KU, Ebert A. The pH-dependence of efflux ratios determined with bidirectional transport assays across cellular monolayers. Int J Pharm X 2024; 8:100269. [PMID: 39669004 PMCID: PMC11637191 DOI: 10.1016/j.ijpx.2024.100269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/20/2024] [Accepted: 07/04/2024] [Indexed: 12/14/2024] Open
Abstract
MDCK/Caco-2 assays serve as essential in vitro tools for evaluating membrane permeability and active transport, especially mediated by P-glycoprotein (P-gp). Despite their utility, challenges remain in quantifying active transport and using the efflux ratio (ER) to determine intrinsic values for active efflux. Such an intrinsic value for P-gp facilitated efflux necessitates knowing whether this transporter transports the neutral or ionic species of a compound. Utilising MDCK-MDR1 assays, we investigate a method for determining transporter substrate fraction preference by studying ER pH-dependence for basic, acidic and non-dissociating compounds. These results are compared with model fits based on various assumptions of transporter species preference. As an unexpected consequence of these assays, we also give evidence for an additional influx transporter at the basolateral membrane, and further extend our model to incorporate this transport. The combined influences of paracellular transport, the previously unaccounted for basolateral influx transporter, as well as potential pH effects on the transporter impedes the extraction of intrinsic values for active transport from the ER. Furthermore, we determined that using inhibitor affects the measurement of paracellular transport. While clear indications of transporter species preference remain elusive, this study enhances understanding of the MDCK system.
Collapse
Affiliation(s)
- Soné Kotze
- Department of Computational Biology and Chemistry, Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, Leipzig 04318, Germany
| | - Kai-Uwe Goss
- Department of Computational Biology and Chemistry, Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, Leipzig 04318, Germany
- Institute of Chemistry, University of Halle-Wittenberg, Kurt-Mothes-Straße 2, Halle 06120, Germany
| | - Andrea Ebert
- Department of Computational Biology and Chemistry, Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, Leipzig 04318, Germany
| |
Collapse
|
3
|
Sóskuti E, Szilvásy N, Temesszentandrási-Ambrus C, Urbán Z, Csíkvári O, Szabó Z, Kecskeméti G, Pusztai É, Gáborik Z. Applicability of MDR1 Overexpressing Abcb1KO-MDCKII Cell Lines for Investigating In Vitro Species Differences and Brain Penetration Prediction. Pharmaceutics 2024; 16:736. [PMID: 38931858 PMCID: PMC11207571 DOI: 10.3390/pharmaceutics16060736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Implementing the 3R initiative to reduce animal experiments in brain penetration prediction for CNS-targeting drugs requires more predictive in vitro and in silico models. However, animal studies are still indispensable to obtaining brain concentration and determining the prediction performance of in vitro models. To reveal species differences and provide reliable data for IVIVE, in vitro models are required. Systems overexpressing MDR1 and BCRP are widely used to predict BBB penetration, highlighting the impact of the in vitro system on predictive performance. In this study, endogenous Abcb1 knock-out MDCKII cells overexpressing MDR1 of human, mouse, rat or cynomolgus monkey origin were used. Good correlations between ERs of 83 drugs determined in each cell line suggest limited species specificities. All cell lines differentiated CNS-penetrating compounds based on ERs with high efficiency and sensitivity. The correlation between in vivo and predicted Kp,uu,brain was the highest using total ER of human MDR1 and BCRP and optimized scaling factors. MDR1 interactors were tested on all MDR1 orthologs using digoxin and quinidine as substrates. We found several examples of inhibition dependent on either substrate or transporter abundance. In summary, this assay system has the potential for early-stage brain penetration screening. IC50 comparison between orthologs is complex; correlation with transporter abundance data is not necessarily proportional and requires the understanding of modes of transporter inhibition.
Collapse
Affiliation(s)
- Emőke Sóskuti
- Charles River Laboratories Hungary, H-1117 Budapest, Hungary; (E.S.); (N.S.); (C.T.-A.); (Z.U.); (O.C.)
- Doctoral School of Semmelweis University, Molecular Medicine Division, H-1085 Budapest, Hungary
| | - Nóra Szilvásy
- Charles River Laboratories Hungary, H-1117 Budapest, Hungary; (E.S.); (N.S.); (C.T.-A.); (Z.U.); (O.C.)
| | | | - Zoltán Urbán
- Charles River Laboratories Hungary, H-1117 Budapest, Hungary; (E.S.); (N.S.); (C.T.-A.); (Z.U.); (O.C.)
| | - Olivér Csíkvári
- Charles River Laboratories Hungary, H-1117 Budapest, Hungary; (E.S.); (N.S.); (C.T.-A.); (Z.U.); (O.C.)
| | - Zoltán Szabó
- Department of Medical Chemistry, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary; (Z.S.); (G.K.)
| | - Gábor Kecskeméti
- Department of Medical Chemistry, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary; (Z.S.); (G.K.)
| | - Éva Pusztai
- Department of Chemical and Environmental Process Engineering, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary;
| | - Zsuzsanna Gáborik
- Charles River Laboratories Hungary, H-1117 Budapest, Hungary; (E.S.); (N.S.); (C.T.-A.); (Z.U.); (O.C.)
| |
Collapse
|
4
|
Racané L, Ptiček L, Kostrun S, Raić-Malić S, Taylor MC, Delves M, Alsford S, Olmo F, Francisco AF, Kelly JM. Bis-6-amidino-benzothiazole Derivative that Cures Experimental Stage 1 African Trypanosomiasis with a Single Dose. J Med Chem 2023; 66:13043-13057. [PMID: 37722077 PMCID: PMC10544003 DOI: 10.1021/acs.jmedchem.3c01051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Indexed: 09/20/2023]
Abstract
We designed and synthesized a series of symmetric bis-6-amidino-benzothiazole derivatives with aliphatic central units and evaluated their efficacy against bloodstream forms of the African trypanosome Trypanosoma brucei. Of these, a dicationic benzothiazole compound (9a) exhibited sub-nanomolar in vitro potency with remarkable selectivity over mammalian cells (>26,000-fold). Unsubstituted 5-amidine groups and a cyclohexyl spacer were the crucial determinants of trypanocidal activity. In all cases, mice treated with a single dose of 20 mg kg-1 were cured of stage 1 trypanosomiasis. The compound displayed a favorable in vitro ADME profile, with the exception of low membrane permeability. However, we found evidence that uptake by T. brucei is mediated by endocytosis, a process that results in lysosomal sequestration. The compound was also active in low nanomolar concentrations against cultured asexual forms of the malaria parasite Plasmodium falciparum. Therefore, 9a has exquisite cross-species efficacy and represents a lead compound with considerable therapeutic potential.
Collapse
Affiliation(s)
- Livio Racané
- Department
of Applied Chemistry, Faculty of Textile Technology, University of Zagreb, Prilaz baruna Filipovića 28a, 10000 Zagreb, Croatia
| | - Lucija Ptiček
- Department
of Applied Chemistry, Faculty of Textile Technology, University of Zagreb, Prilaz baruna Filipovića 28a, 10000 Zagreb, Croatia
| | - Sanja Kostrun
- Chemistry
Department, Selvita Ltd., Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia
| | - Silvana Raić-Malić
- Department
of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 20, 10000 Zagreb, Croatia
| | - Martin Craig Taylor
- Department
of Infection Biology, London School of Hygiene
and Tropical Medicine, Keppel Street, WC1E 7HT London, U.K.
| | - Michael Delves
- Department
of Infection Biology, London School of Hygiene
and Tropical Medicine, Keppel Street, WC1E 7HT London, U.K.
| | - Sam Alsford
- Department
of Infection Biology, London School of Hygiene
and Tropical Medicine, Keppel Street, WC1E 7HT London, U.K.
| | - Francisco Olmo
- Department
of Infection Biology, London School of Hygiene
and Tropical Medicine, Keppel Street, WC1E 7HT London, U.K.
| | - Amanda Fortes Francisco
- Department
of Infection Biology, London School of Hygiene
and Tropical Medicine, Keppel Street, WC1E 7HT London, U.K.
| | - John M. Kelly
- Department
of Infection Biology, London School of Hygiene
and Tropical Medicine, Keppel Street, WC1E 7HT London, U.K.
| |
Collapse
|
5
|
Isolation of MDCK cells with low expression of mdr1 gene and their use in membrane permeability screening. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2022; 72:275-288. [PMID: 36651516 DOI: 10.2478/acph-2022-0003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/29/2021] [Indexed: 01/20/2023]
Abstract
The Madin-Darby canine kidney (MDCK) cell line is frequently used for permeability screening in drug discovery. It contains endogenous transporters, most prominently canine multidrug resistance P-glycoprotein (Mdr1), which can interfere with studies of P-glycoprotein substrate assessment and permeability measurements. Because MDCK wild type (WT) is genetically heterogeneous, an isolation procedure was investigated in this study to obtain the subclonal line with low P-glycoprotein expression. The best clone obtained had up to 3-fold lower amprenavir efflux and P-glycoprotein expression in comparison to WT. Of 12 standard compounds tested that exhibited active efflux in WT cells, 11 showed a decrease in efflux in the isolated clone. However, the decrease was not below the cut-off value of 2, indicating residual P--glycoprotein activity. Clone isolation via the limiting dilution method, combined with bidirectional amprenavir permeability for clone selection, successfully identified MDCK clones with substantially lower P-glycoprotein efflux and has been demonstrated as a useful tool for assessing passive permeability in early drug discovery.
Collapse
|
6
|
Bentz J, Ellens H. Case Study 8: Status of the Structural Mass Action Kinetic Model of P-gp-Mediated Transport Through Confluent Cell Monolayers. Methods Mol Biol 2021; 2342:737-763. [PMID: 34272715 DOI: 10.1007/978-1-0716-1554-6_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In the first edition of this book, we presented the basics of explicitly incorporating the lipid biochemistry into a confluent cell monolayer transport model and the novel findings of this model up to 2013, including the use of global optimization to fit the elementary rate constants and the efflux active P-glycoprotein (P-gp) membrane concentrations for the transport of four P-gp substrates across MDCKII-hMDR1-NKI confluent cell monolayers. This chapter is an update on that model, which has been focused primarily on discovering how microvilli morphology regulates the efflux active P-gp and the existence of, as yet, unidentified uptake transporters of P-gp substrates in all of the commonly used P-gp expressing cell lines used in the pharmaceutical industry, thereby adding new players to DDI predictions and IVIVE. The structural mass action kinetic model uses the general mass action reactions for P-gp binding and efflux, with the membrane structural parameters for the confluent cell monolayer to predict drug transport over time. Binding of drug to P-gp occurs within the cytosolic monolayer of the apical membrane, according to (a) the molar partition coefficient of the drug to the cytosolic monolayer and (b) the association rate constant, k1 (M-1 s-1), of the drug from the basolateral or apical outer monolayers into the P-gp binding site. Release of substrate from P-gp back into the cytosolic monolayer occurs with a dissociation rate constant kr (s-1) or, much less frequently, into the apical aqueous chamber with an efflux rate constant k2 (s-1). The model fits the efflux active P-gp concentration, T(0), i.e., the P-gp whose effluxed drug actually reaches the apical aqueous chamber, as opposed to the majority of P-gp whose effluxed drug is reabsorbed back into the same or neighboring microvilli prior to reaching the apical aqueous chamber. Efflux active P-gp largely resides near the tips of the microvilli. We have shown using kinetics and structured illumination microscopy that: (a) efflux active P-gp is controlled by microvilli morphology; (b) there are apical (AT) and basolateral (BT) uptake transporters for P-gp substrates in most, if not all, P-gp expressing cell lines used in the pharmaceutical industry, which exist, but which remain unidentified; (c) the lab-to-lab variability in P-gp IC50 values observed in the P-gp IC50 initiative was due to the conflated inhibition of P-gp and the basolateral digoxin uptake transporters by all 15 P-gp substrates tested in that study; (d) even the IC50 values for P-gp inhibition alone do not obey the Cheng-Prusoff relationship; (e) the fitted elementary rate constants and the molecular dissociation constant Ki for this kinetic model are system independent; and (f) the time dependence of product formation for these confluent cell monolayers is correlated with the P-gp Vmax/Km, when defined by its fitted elementary rate constants and uptake transporter clearances, without any steady-state assumptions.
Collapse
Affiliation(s)
- Joe Bentz
- Department of Biology, Drexel University, Philadelphia, PA, USA.
| | - Harma Ellens
- GlaxoSmithKline Pharmaceuticals, Drug Metabolism and Pharmacokinetics, King of Prussia, PA, USA
| |
Collapse
|
7
|
Catalan-Figueroa J, García MA, Contreras P, Boisset CB, Gonzalez PM, Fiedler JL, Pérez MF, Morales JO. Poloxamer 188-Coated Ammonium Methacrylate Copolymer Nanocarriers Enhance Loperamide Permeability across Pgp-Expressing Epithelia. Mol Pharm 2020; 18:743-750. [PMID: 33044825 DOI: 10.1021/acs.molpharmaceut.0c00623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Loperamide is a μ-opioid agonist with poor gastrointestinal absorption, mainly because of its modest aqueous solubility and being a P-glycoprotein (Pgp) efflux substrate. Nevertheless, studies associated with therapeutic effects strongly suggest that loperamide holds potential pharmacological advantages over traditional μ-opioid agonists commonly used for analgesia. Thus, in this Communication, we assessed in MDCK-hMDR1 cell lines the effects over loperamide uptake and efflux ratio, when loaded into Eudragit RS (ERS) nanocarriers coated with poloxamer 188 (P188). ERS was chosen for enhancing loperamide aqueous dispersibility and P188 as a potential negative Pgp modulator. In uptake assays, it was observed that Pgp limited the accumulation of loperamide into cells and that preincubation with P188, but not coincubation, led to increasing loperamide uptake at a similar extent of Pgp pharmacological inhibition. On the other hand, the efflux ratio displayed no alterations when Pgp was pharmacologically inhibited, whereas ERS/P188 nanocarriers effectively enhanced loperamide uptake and absorptive transepithelial transport. The latter suggests that loperamide transport across cells is significantly influenced by the presence of the unstirred water layer (UWL), which could hinder the visualization of Pgp-efflux effects during transport assays. Thus, results in this work highlight that formulating loperamide into this nanocarrier enhances its uptake and transport permeability.
Collapse
Affiliation(s)
- Johanna Catalan-Figueroa
- Department of Pharmaceutical Science and Technology, School of Chemical and Pharmaceutical Sciences, University of Chile, Santiago 8380494, Chile.,Department of Biochemistry, School of Chemical and Pharmaceutical Sciences, University of Chile, Santiago 8380494, Chile.,Departamento Farmacología, Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Mauricio A García
- Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820244, Chile
| | - Pilar Contreras
- Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820244, Chile
| | - Constanza B Boisset
- Department of Pharmaceutical Science and Technology, School of Chemical and Pharmaceutical Sciences, University of Chile, Santiago 8380494, Chile
| | - Pablo M Gonzalez
- Innovation and Biopharmaceutical Evaluation (IBE) Center, Santiago 8441536, Chile
| | - Jenny L Fiedler
- Department of Biochemistry, School of Chemical and Pharmaceutical Sciences, University of Chile, Santiago 8380494, Chile
| | - Mariela F Pérez
- Departamento Farmacología, Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Javier O Morales
- Department of Pharmaceutical Science and Technology, School of Chemical and Pharmaceutical Sciences, University of Chile, Santiago 8380494, Chile.,Center of New Drugs for Hypertension (CENDHY), Santiago 8380494, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Santiago 8380494, Chile
| |
Collapse
|
8
|
Design, synthesis, antitrypanosomal activity, DNA/RNA binding and in vitro ADME profiling of novel imidazoline-substituted 2-arylbenzimidazoles. Eur J Med Chem 2020; 207:112802. [PMID: 32927230 DOI: 10.1016/j.ejmech.2020.112802] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/28/2020] [Accepted: 08/29/2020] [Indexed: 01/10/2023]
Abstract
Novel imidazoline benzimidazole derivatives containing diversely substituted phenoxy moieties were synthesized with the aim of evaluating their antitrypanosomal activity, DNA/RNA binding affinity and in vitro ADME properties. The presence of the diethylaminoethyl subunit in 18a-18c led to enhanced antitrypanosomal potency, particularly for 18a and 18c, which contain unsubstituted and methoxy-substituted phenoxy moieties. They were found to be > 2-fold more potent against African trypanosomes than nifurtimox. Fluorescence and CD spectroscopy, thermal denaturation assays and computational analysis indicated a preference of 18a-18c toward AT-rich DNA and their minor groove binding mode. Replacement of the amidine group with less basic and ionisable nitrogen-containing moieties failed to improve membrane permeability of the investigated compounds. Due to structural diversification, the compounds displayed a range of physico-chemical features resulting in variable in vitro ADME properties, leaving space for further optimization of the biological profiles.
Collapse
|
9
|
Rep V, Piškor M, Šimek H, Mišetić P, Grbčić P, Padovan J, Gabelica Marković V, Jadreško D, Pavelić K, Kraljević Pavelić S, Raić-Malić S. Purine and Purine Isostere Derivatives of Ferrocene: An Evaluation of ADME, Antitumor and Electrochemical Properties. Molecules 2020; 25:molecules25071570. [PMID: 32235404 PMCID: PMC7180452 DOI: 10.3390/molecules25071570] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/23/2022] Open
Abstract
Novel purine and purine isosteres containing a ferrocene motif and 4,1-disubstituted (11a-11c, 12a-12c, 13a-13c, 14a-14c, 15a-15c, 16a, 23a-23c, 24a-24c, 25a-25c) and 1,4-disubstituted (34a-34c and 35a-35c) 1,2,3-triazole rings were synthesized. The most potent cytotoxic effect on colorectal adenocarcinoma (SW620) was exerted by the 6-chloro-7-deazapurine 11c (IC50 = 9.07 µM), 6-chloropurine 13a (IC50 = 14.38 µM) and 15b (IC50 = 15.50 µM) ferrocenylalkyl derivatives. The N-9 isomer of 6-chloropurine 13a containing ferrocenylmethylene unit showed a favourable in vitro physicochemical and ADME properties including high solubility, moderate permeability and good metabolic stability in human liver microsomes.
Collapse
Affiliation(s)
- Valentina Rep
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb 10000, Croatia; (V.R.); (M.P.); (H.Š.)
| | - Martina Piškor
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb 10000, Croatia; (V.R.); (M.P.); (H.Š.)
| | - Helena Šimek
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb 10000, Croatia; (V.R.); (M.P.); (H.Š.)
| | - Petra Mišetić
- Fidelta d.o.o., Zagreb 10000, Croatia; (P.M.); (J.P.)
| | - Petra Grbčić
- Department of Biotechnology, Center for High-Throughput Technologies, University of Rijeka, Rijeka 51000, Croatia; (P.G.); (S.K.P.)
| | - Jasna Padovan
- Fidelta d.o.o., Zagreb 10000, Croatia; (P.M.); (J.P.)
| | - Vesna Gabelica Marković
- International Relations Office, Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb 10000, Croatia;
| | - Dijana Jadreško
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Zagreb 10000, Croatia;
| | - Krešimir Pavelić
- Faculty of Medicine, Juraj Dobrila University of Pula, Pula 52100, Croatia;
| | - Sandra Kraljević Pavelić
- Department of Biotechnology, Center for High-Throughput Technologies, University of Rijeka, Rijeka 51000, Croatia; (P.G.); (S.K.P.)
| | - Silvana Raić-Malić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb 10000, Croatia; (V.R.); (M.P.); (H.Š.)
- Correspondence: ; Tel.: +385-1-4597213
| |
Collapse
|
10
|
Cheong EJY, Teo DWX, Chua DXY, Chan ECY. Systematic Development and Verification of a Physiologically Based Pharmacokinetic Model of Rivaroxaban. Drug Metab Dispos 2019; 47:1291-1306. [PMID: 31506301 DOI: 10.1124/dmd.119.086918] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 08/28/2019] [Indexed: 02/13/2025] Open
Abstract
Rivaroxaban is indicated for stroke prevention in nonvalvular atrial fibrillation (AF). Its elimination is mediated by both hepatic metabolism and renal excretion. Consequently, its clearance is susceptible to both intrinsic (pathophysiological) and extrinsic (concomitant drugs) variabilities that in turn implicate bleeding risks. Upon systematic model verification, physiologically based pharmacokinetic (PBPK) models are qualified for the quantitative rationalization of complex drug-drug-disease interactions (DDDIs). Hence, this study aimed to develop and verify a PBPK model of rivaroxaban systematically. Key parameters required to define rivaroxaban's disposition were either obtained from in vivo data or generated via in vitro metabolism and transport kinetic assays. Our developed PBPK model successfully predicted rivaroxaban's clinical pharmacokinetic parameters within predefined success metrics. Consideration of basolateral organic anion transporter 3 (OAT3)-mediated proximal tubular uptake in tandem with apical P-glycoprotein (P-gp)-mediated efflux facilitated mechanistic characterization of the renal elimination of rivaroxaban in both healthy and renal impaired patients. Retrospective drug-drug interaction (DDI) simulations, incorporating in vitro metabolic inhibitory parameters, accurately recapitulated clinically observed attenuation of rivaroxaban's hepatic clearance due to enzyme-mediated DDIs with CYP3A4/2J2 inhibitors (verapamil and ketoconazole). Notably, transporter-mediated DDI simulations between rivaroxaban and the P-gp inhibitor ketoconazole yielded minimal increases in rivaroxaban's systemic exposure when P-gp-mediated efflux was solely inhibited, but were successfully characterized when concomitant basolateral uptake inhibition was incorporated in the simulation. In conclusion, our developed PBPK model of rivaroxaban is systematically verified for prospective interrogation and management of untested yet clinically relevant DDDIs pertinent to AF management using rivaroxaban. SIGNIFICANCE STATEMENT: Rivaroxaban is susceptible to DDDIs comprising renal impairment and P-gp and CYP3A4/2J2 inhibition. Here, systematic construction and verification of a PBPK model of rivaroxaban, with the inclusion of a mechanistic kidney component, provided insight into the previously arcane role of OAT3-mediated basolateral uptake in influencing both clinically observed renal elimination of rivaroxaban and differential extents of transporter-mediated DDIs. The verified model holds potential for investigating clinically relevant DDDIs involving rivaroxaban and designing dosing adjustments to optimize its pharmacotherapy in atrial fibrillation.
Collapse
Affiliation(s)
- Eleanor Jing Yi Cheong
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore (E.J.Y.C., D.W.X.T., D.X.Y.C., E.C.Y.C.); and National University Cancer Institute, National University Hospital Medical Centre, Singapore, Singapore (E.C.Y.C.)
| | - Denise Wun Xi Teo
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore (E.J.Y.C., D.W.X.T., D.X.Y.C., E.C.Y.C.); and National University Cancer Institute, National University Hospital Medical Centre, Singapore, Singapore (E.C.Y.C.)
| | - Denise Xin Yi Chua
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore (E.J.Y.C., D.W.X.T., D.X.Y.C., E.C.Y.C.); and National University Cancer Institute, National University Hospital Medical Centre, Singapore, Singapore (E.C.Y.C.)
| | - Eric Chun Yong Chan
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore (E.J.Y.C., D.W.X.T., D.X.Y.C., E.C.Y.C.); and National University Cancer Institute, National University Hospital Medical Centre, Singapore, Singapore (E.C.Y.C.)
| |
Collapse
|
11
|
Wu JD, Cui YJ, Zhou YG, Tang LQ, Zhang CM, Liu ZP. Tubulin colchicine site binding agent LL01 displays potent antitumor efficiency both in vitro and in vivo with suitable drug-like properties. Invest New Drugs 2019; 38:29-38. [DOI: 10.1007/s10637-019-00753-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 02/25/2019] [Indexed: 01/07/2023]
|
12
|
Ellens H, Meng Z, Le Marchand SJ, Bentz J. Mechanistic kinetic modeling generates system-independent P-glycoprotein mediated transport elementary rate constants for inhibition and, in combination with 3D SIM microscopy, elucidates the importance of microvilli morphology on P-glycoprotein mediated efflux activity. Expert Opin Drug Metab Toxicol 2018; 14:571-584. [PMID: 29788828 DOI: 10.1080/17425255.2018.1480720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
INTRODUCTION In vitro transporter kinetics are typically analyzed by steady-state Michaelis-Menten approximations. However, no clear evidence exists that these approximations, applied to multiple transporters in biological membranes, yield system-independent mechanistic parameters needed for reliable in vivo hypothesis generation and testing. Areas covered: The classical mass action model has been developed for P-glycoprotein (P-gp) mediated transport across confluent polarized cell monolayers. Numerical integration of the mass action equations for transport using a stable global optimization program yields fitted elementary rate constants that are system-independent. The efflux active P-gp was defined by the rate at which P-gp delivers drugs to the apical chamber, since as much as 90% of drugs effluxed by P-gp partition back into nearby microvilli prior to reaching the apical chamber. The efflux active P-gp concentration was 10-fold smaller than the total expressed P-gp for Caco-2 cells, due to their microvilli membrane morphology. The mechanistic insights from this analysis are readily extrapolated to P-gp mediated transport in vivo. Expert opinion: In vitro system-independent elementary rate constants for transporters are essential for the generation and validation of robust mechanistic PBPK models. Our modeling approach and programs have broad application potential. They can be used for any drug transporter with minor adaptations.
Collapse
Affiliation(s)
- Harma Ellens
- a Department of Biology , Drexel University , Philadelphia , PA , USA
| | - Zhou Meng
- a Department of Biology , Drexel University , Philadelphia , PA , USA
| | | | - Joe Bentz
- a Department of Biology , Drexel University , Philadelphia , PA , USA
| |
Collapse
|
13
|
Van Bocxlaer K, Gaukel E, Hauser D, Park SH, Schock S, Yardley V, Randolph R, Plattner JJ, Merchant T, Croft SL, Jacobs RT, Wring SA. Topical Treatment for Cutaneous Leishmaniasis: Dermato-Pharmacokinetic Lead Optimization of Benzoxaboroles. Antimicrob Agents Chemother 2018; 62:e02419-17. [PMID: 29507073 PMCID: PMC5923108 DOI: 10.1128/aac.02419-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 02/24/2018] [Indexed: 11/20/2022] Open
Abstract
Cutaneous leishmaniasis (CL) is caused by several species of the protozoan parasite Leishmania, affecting an estimated 10 million people worldwide. Previously reported strategies for the development of topical CL treatments have focused primarily on drug permeation and formulation optimization as the means to increase treatment efficacy. Our approach aims to identify compounds with antileishmanial activity and properties consistent with topical administration. Of the test compounds, five benzoxaboroles showed potent activity (50% effective concentration [EC50] < 5 μM) against intracellular amastigotes of at least one Leishmania species and acceptable activity (20 μM < EC50 < 30 μM) against two more species. Benzoxaborole compounds were further prioritized on the basis of the in vitro evaluation of progression criteria related to skin permeation, such as the partition coefficient and solubility. An MDCKII-hMDR1 cell assay showed overall good permeability and no significant interaction with the P-glycoprotein transporter for all substrates except LSH002 and LSH031. The benzoxaboroles were degraded, to some extent, by skin enzymes but had stability superior to that of para-hydroxybenzoate compounds, which are known skin esterase substrates. Evaluation of permeation through reconstructed human epidermis showed LSH002 to be the most permeant, followed by LSH003 and LSH001. Skin disposition studies following finite drug formulation application to mouse skin demonstrated the highest permeation for LSH001, followed by LSH003 and LSH002, with a significantly larger amount of LSH001 than the other compounds being retained in skin. Finally, the efficacy of the leads (LSH001, LSH002, and LSH003) against Leishmania major was tested in vivo LSH001 suppressed lesion growth upon topical application, and LSH003 reduced the lesion size following oral administration.
Collapse
Affiliation(s)
- Katrien Van Bocxlaer
- London School of Hygiene & Tropical Medicine, Faculty of Infections and Tropical Diseases, London, United Kingdom
| | - Eric Gaukel
- Scynexis Inc., Research Triangle Park, North Carolina, USA
| | - Deirdre Hauser
- Scynexis Inc., Research Triangle Park, North Carolina, USA
| | - Seong Hee Park
- Scynexis Inc., Research Triangle Park, North Carolina, USA
| | - Sara Schock
- Scynexis Inc., Research Triangle Park, North Carolina, USA
| | - Vanessa Yardley
- London School of Hygiene & Tropical Medicine, Faculty of Infections and Tropical Diseases, London, United Kingdom
| | - Ryan Randolph
- Scynexis Inc., Research Triangle Park, North Carolina, USA
| | | | - Tejal Merchant
- Anacor Pharmaceuticals, Inc., Palo Alto, California, USA
| | - Simon L Croft
- London School of Hygiene & Tropical Medicine, Faculty of Infections and Tropical Diseases, London, United Kingdom
| | | | | |
Collapse
|
14
|
Chaudhry A, Chung G, Lynn A, Yalvigi A, Brown C, Ellens H, O'Connor M, Lee C, Bentz J. Derivation of a System-Independent Ki for P-glycoprotein Mediated Digoxin Transport from System-Dependent IC 50 Data. Drug Metab Dispos 2018; 46:279-290. [PMID: 29317410 DOI: 10.1124/dmd.117.075606] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 01/03/2018] [Indexed: 11/22/2022] Open
Abstract
It has been previously demonstrated that IC50 values for inhibition of digoxin transport across confluent polarized cell monolayers are system-dependent. Digoxin IC50 data from five laboratories participating in the P-glycoprotein (P-gp) IC50 Initiative, using Caco-2, MDCKII-hMDR1 or LLC-PK1-hMDR1 cells, were fitted by the structural mass action kinetic model for P-gp-mediated transport across confluent cell monolayers. We determined their efflux-active P-gp concentration [T(0)], inhibitor elementary dissociation rate constant from P-gp (krQ), digoxin basolateral uptake clearance (kB), and inhibitor binding affinity to the digoxin basolateral uptake transporter (KQB). We also fitted the IC50 data for inhibition of digoxin transport through monolayers of primary human proximal tubule cells (HPTCs). All cell systems kinetically required a basolateral uptake transporter for digoxin, which also bound to all inhibitors. The inhibitor krQ was cell system-independent, thereby allowing calculation of a system-independent Ki. The variability in efflux-active P-gp concentrations and basolateral uptake clearances in the five laboratories was about an order of magnitude. These laboratory-to-laboratory variabilities can explain more than 60% of the IC50 variability found in the principal component analysis plot in a previous study, supporting the hypothesis that the observed IC50 variability is primarily due to differences in expression levels of efflux-active P-gp and the basolateral digoxin uptake transporter. HPTCs had 10- to 100-fold lower efflux-active P-gp concentrations than the overexpressing cell lines, whereas their digoxin basolateral uptake clearances were similar. HPTC basolateral uptake of digoxin was inhibited 50% by 10 μM ouabain, suggesting involvement of OATP4C1.
Collapse
Affiliation(s)
- Aqsaa Chaudhry
- Departments of Biology (A.C., A.L., A.Y., M.O., J.B.) and Biodiversity, Ecology and Earth Sciences (M.O.), Drexel University, Philadelphia, Pennsylvania; Newcastle University, Institute for Cell and Molecular Biosciences, Newcastle upon Tyne, United Kingdom (G.C., C.B.); GlaxoSmithKline Pharmaceuticals, Drug Metabolism and Pharmacokinetics, King of Prussia, Pennsylvania (H.E.); and Ardea Biosciences Inc., Translational Sciences, San Diego, California (C.L.)
| | - Git Chung
- Departments of Biology (A.C., A.L., A.Y., M.O., J.B.) and Biodiversity, Ecology and Earth Sciences (M.O.), Drexel University, Philadelphia, Pennsylvania; Newcastle University, Institute for Cell and Molecular Biosciences, Newcastle upon Tyne, United Kingdom (G.C., C.B.); GlaxoSmithKline Pharmaceuticals, Drug Metabolism and Pharmacokinetics, King of Prussia, Pennsylvania (H.E.); and Ardea Biosciences Inc., Translational Sciences, San Diego, California (C.L.)
| | - Adam Lynn
- Departments of Biology (A.C., A.L., A.Y., M.O., J.B.) and Biodiversity, Ecology and Earth Sciences (M.O.), Drexel University, Philadelphia, Pennsylvania; Newcastle University, Institute for Cell and Molecular Biosciences, Newcastle upon Tyne, United Kingdom (G.C., C.B.); GlaxoSmithKline Pharmaceuticals, Drug Metabolism and Pharmacokinetics, King of Prussia, Pennsylvania (H.E.); and Ardea Biosciences Inc., Translational Sciences, San Diego, California (C.L.)
| | - Akshata Yalvigi
- Departments of Biology (A.C., A.L., A.Y., M.O., J.B.) and Biodiversity, Ecology and Earth Sciences (M.O.), Drexel University, Philadelphia, Pennsylvania; Newcastle University, Institute for Cell and Molecular Biosciences, Newcastle upon Tyne, United Kingdom (G.C., C.B.); GlaxoSmithKline Pharmaceuticals, Drug Metabolism and Pharmacokinetics, King of Prussia, Pennsylvania (H.E.); and Ardea Biosciences Inc., Translational Sciences, San Diego, California (C.L.)
| | - Colin Brown
- Departments of Biology (A.C., A.L., A.Y., M.O., J.B.) and Biodiversity, Ecology and Earth Sciences (M.O.), Drexel University, Philadelphia, Pennsylvania; Newcastle University, Institute for Cell and Molecular Biosciences, Newcastle upon Tyne, United Kingdom (G.C., C.B.); GlaxoSmithKline Pharmaceuticals, Drug Metabolism and Pharmacokinetics, King of Prussia, Pennsylvania (H.E.); and Ardea Biosciences Inc., Translational Sciences, San Diego, California (C.L.)
| | - Harma Ellens
- Departments of Biology (A.C., A.L., A.Y., M.O., J.B.) and Biodiversity, Ecology and Earth Sciences (M.O.), Drexel University, Philadelphia, Pennsylvania; Newcastle University, Institute for Cell and Molecular Biosciences, Newcastle upon Tyne, United Kingdom (G.C., C.B.); GlaxoSmithKline Pharmaceuticals, Drug Metabolism and Pharmacokinetics, King of Prussia, Pennsylvania (H.E.); and Ardea Biosciences Inc., Translational Sciences, San Diego, California (C.L.)
| | - Michael O'Connor
- Departments of Biology (A.C., A.L., A.Y., M.O., J.B.) and Biodiversity, Ecology and Earth Sciences (M.O.), Drexel University, Philadelphia, Pennsylvania; Newcastle University, Institute for Cell and Molecular Biosciences, Newcastle upon Tyne, United Kingdom (G.C., C.B.); GlaxoSmithKline Pharmaceuticals, Drug Metabolism and Pharmacokinetics, King of Prussia, Pennsylvania (H.E.); and Ardea Biosciences Inc., Translational Sciences, San Diego, California (C.L.)
| | - Caroline Lee
- Departments of Biology (A.C., A.L., A.Y., M.O., J.B.) and Biodiversity, Ecology and Earth Sciences (M.O.), Drexel University, Philadelphia, Pennsylvania; Newcastle University, Institute for Cell and Molecular Biosciences, Newcastle upon Tyne, United Kingdom (G.C., C.B.); GlaxoSmithKline Pharmaceuticals, Drug Metabolism and Pharmacokinetics, King of Prussia, Pennsylvania (H.E.); and Ardea Biosciences Inc., Translational Sciences, San Diego, California (C.L.)
| | - Joe Bentz
- Departments of Biology (A.C., A.L., A.Y., M.O., J.B.) and Biodiversity, Ecology and Earth Sciences (M.O.), Drexel University, Philadelphia, Pennsylvania; Newcastle University, Institute for Cell and Molecular Biosciences, Newcastle upon Tyne, United Kingdom (G.C., C.B.); GlaxoSmithKline Pharmaceuticals, Drug Metabolism and Pharmacokinetics, King of Prussia, Pennsylvania (H.E.); and Ardea Biosciences Inc., Translational Sciences, San Diego, California (C.L.)
| |
Collapse
|
15
|
Meng Z, Le Marchand S, Agnani D, Szapacs M, Ellens H, Bentz J. Microvilli Morphology Can Affect Efflux Active P-Glycoprotein in Confluent MDCKII -hMDR1-NKI and Caco-2 Cell Monolayers. Drug Metab Dispos 2017; 45:145-151. [PMID: 27856525 DOI: 10.1124/dmd.116.072157] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/07/2016] [Indexed: 01/01/2023] Open
Abstract
From fits of drug transport kinetics across confluent MDCKII-hMDR1-NKI and Caco-2 cell monolayers we estimated the levels of efflux active P-glycoprotein (P-gp) in these two cell lines (companion paper). In the present work, we compared the efflux active P-gp number to the total P-gp level, using liquid chromatography-tandem mass spectrometry, and showed that in Caco-2 cells total P-gp is about 10-fold greater than efflux active P-gp, whereas in MDCKII-hMDR1-NKI cells these values are within twofold. We further visualized the microvilli in MDCKII-hMDR1-NKI and Caco-2 cells using three-dimensional structured illumination super-resolution microscopy and found that the microvilli in Caco-2 cells are taller and more densely packed than those in MDCK-hMDR1-NKI cells. We hypothesized over 10 years ago that only P-gp at the tips of the microvilli contribute significantly to efflux activity, whereas the remaining P-gp are involved in a futile cycle of efflux of amphipathic drugs from the microvillus membrane, followed by their reabsorption into the same or nearby microvillous membranes. The difference between the levels of total and efflux active P-gp in Caco-2 cells can be explained by the more densely packed microvilli in Caco-2 cells, which would lead to a substantial fraction of P-gp not contributing to final release of drug into the apical chamber. Our results suggest that the effect of microvilli morphology differences between in vitro and in vivo systems must be considered when scaling transporter activity for efflux transporters of amphipathic compounds, for example, P-gp.
Collapse
Affiliation(s)
- Zhou Meng
- Department of Biology, Drexel University, Philadelphia, Pennsylvania (Z.M., S.L.M., D.A., J.B.); and Drug Metabolism and Pharmacokinetics, GlaxoSmithKline Pharmaceuticals, King of Prussia, Pennsylvania (Z.M., M.S., H.E.)
| | - Sylvain Le Marchand
- Department of Biology, Drexel University, Philadelphia, Pennsylvania (Z.M., S.L.M., D.A., J.B.); and Drug Metabolism and Pharmacokinetics, GlaxoSmithKline Pharmaceuticals, King of Prussia, Pennsylvania (Z.M., M.S., H.E.)
| | - Deep Agnani
- Department of Biology, Drexel University, Philadelphia, Pennsylvania (Z.M., S.L.M., D.A., J.B.); and Drug Metabolism and Pharmacokinetics, GlaxoSmithKline Pharmaceuticals, King of Prussia, Pennsylvania (Z.M., M.S., H.E.)
| | - Matthew Szapacs
- Department of Biology, Drexel University, Philadelphia, Pennsylvania (Z.M., S.L.M., D.A., J.B.); and Drug Metabolism and Pharmacokinetics, GlaxoSmithKline Pharmaceuticals, King of Prussia, Pennsylvania (Z.M., M.S., H.E.)
| | - Harma Ellens
- Department of Biology, Drexel University, Philadelphia, Pennsylvania (Z.M., S.L.M., D.A., J.B.); and Drug Metabolism and Pharmacokinetics, GlaxoSmithKline Pharmaceuticals, King of Prussia, Pennsylvania (Z.M., M.S., H.E.)
| | - Joe Bentz
- Department of Biology, Drexel University, Philadelphia, Pennsylvania (Z.M., S.L.M., D.A., J.B.); and Drug Metabolism and Pharmacokinetics, GlaxoSmithKline Pharmaceuticals, King of Prussia, Pennsylvania (Z.M., M.S., H.E.)
| |
Collapse
|
16
|
Meng Z, Ellens H, Bentz J. Extrapolation of Elementary Rate Constants of P-glycoprotein-Mediated Transport from MDCKII-hMDR1-NKI to Caco-2 Cells. Drug Metab Dispos 2017; 45:190-197. [PMID: 27856526 DOI: 10.1124/dmd.116.072140] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 11/11/2016] [Indexed: 11/22/2022] Open
Abstract
The best parameters for incorporation into mechanistic physiologically based pharmacokinetic models for transporters are system-independent kinetic parameters and active (not total) transporter levels. Previously, we determined the elementary rate constants for P-glycoprotein (P-gp)-mediated transport (on- and off-rate constants from membrane to P-gp binding pocket and efflux rate constant into the apical chamber) using the structural mass action kinetic model in confluent MDCKII-hMDR1-NKI cell monolayers. In the present work, we extended the kinetic analysis to Caco-2 cells for the first time and showed that the elementary rate constants are very similar compared with MDCKII-hMDR1-NKI cells, suggesting they primarily depend on the interaction of the compound with P-gp and are therefore mostly independent of the in vitro system used. The level of efflux active (not total) P-gp is also fitted by our model. The estimated level of efflux active P-gp was 5.0 ± 1.4-fold lower in Caco-2 cells than in MDCKII-hMDR1-NKI cells. We also kinetically identified the involvement of a basolateral uptake transporter for both digoxin and loperamide in Caco-2 cells, as found previously in MDCKII-hMDR1-NKI cells, due to their low passive permeability. This demonstrates the value of our P-gp structural model as a diagnostic tool in detecting the importance of other transporters, which cannot be unambiguously done by the Michaelis-Menten approach. The system-independent elementary rate constants for P-gp obtained in vitro are more fundamental parameters than those obtained using Michaelis-Menten steady-state equations. This suggests they will be more robust mechanistic parameters for incorporation into physiologically based pharmacokinetic models for transporters.
Collapse
Affiliation(s)
- Zhou Meng
- Drexel University, Department of Biology, Philadelphia, Pennsylvania (Z.M., J.B.); and GlaxoSmithKline Pharmaceuticals, Drug Metabolism and Pharmacokinetics, King of Prussia, Pennsylvania (Z.M., H.E.)
| | - Harma Ellens
- Drexel University, Department of Biology, Philadelphia, Pennsylvania (Z.M., J.B.); and GlaxoSmithKline Pharmaceuticals, Drug Metabolism and Pharmacokinetics, King of Prussia, Pennsylvania (Z.M., H.E.)
| | - Joe Bentz
- Drexel University, Department of Biology, Philadelphia, Pennsylvania (Z.M., J.B.); and GlaxoSmithKline Pharmaceuticals, Drug Metabolism and Pharmacokinetics, King of Prussia, Pennsylvania (Z.M., H.E.)
| |
Collapse
|
17
|
Saaby L, Helms HCC, Brodin B. IPEC-J2 MDR1, a Novel High-Resistance Cell Line with Functional Expression of Human P-glycoprotein (ABCB1) for Drug Screening Studies. Mol Pharm 2016; 13:640-52. [PMID: 26651362 DOI: 10.1021/acs.molpharmaceut.5b00874] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The P-glycoprotein (P-gp) efflux pump has been shown to affect drug distribution and absorption in various organs and to cause drug resistance in cancer therapy. The aim of this work was to develop a cell line to serve as a screening system for potential substrates of P-gp. This requires a cell line with high paracellular tightness, low expression of nonhuman ABC transporters, and high expression of functional human P-gp (ABCB1). The porcine intestinal epithelial cell line, IPEC-J2, was selected as a transfection host, due to its ability to form extremely high-resistance monolayers (>10,000 Ω·cm(2)) and its low endogenous expression of ABC-type efflux transporters. The IPEC-J2 cells were transfected with a plasmid that contained the sequence of the human MDR1 gene, which encodes P-gp, followed by a selection of successfully transfected cells with geneticin and puromycin. The resulting cell line, IPEC-J2 MDR1, retained its high transepithelilal resistance (>15,000 Ω·cm(2)), which translated into low permeability of the small hydrophilic tracer, mannitol (P < 10(-7) cm·s(-1)). The lipophilic compound, diazepam, displayed high permeability resulting in a dynamic range of 1500 (PDiazepam/Pmannitol) to separate high and low permeability compounds. Human P-gp was expressed predominantly in the apical membrane, as demonstrated by immunocytochemistry, Western blots, and a high efflux ratios (Pbasolateral-apical/Papical-basolateral) of known P-gp substrates. P-gp was demonstrated to be responsible for the efflux transport by substrate profiling, combined with application of P-gp and BCRP inhibitors. Furthermore, the compounds atenolol, citalopram, and mitoxantrone were identified as P-gp substrates. Functional P-gp expression was shown to be stable through at least 10 cell passages. In conclusion, the IPEC-J2 MDR1 cell line displays high paracellular tightness combined with high expression of human P-gp and low expression of porcine ABC transporters, and it may serve as a useful tool in drug development studies.
Collapse
Affiliation(s)
- Lasse Saaby
- Bioneer-FARMA, Department of Pharmacy, Universitetsparken 2 , DK-2100 Copenhagen, Denmark
| | - Hans Christian Cederberg Helms
- Section of Pharmaceutical Design and Drug Delivery, Department of Pharmacy, Universitetsparken 2 , DK-2100 Copenhagen, Denmark
| | - Birger Brodin
- Section of Pharmaceutical Design and Drug Delivery, Department of Pharmacy, Universitetsparken 2 , DK-2100 Copenhagen, Denmark
| |
Collapse
|
18
|
Quantification of intracellular and extracellular digoxin and ouabain by liquid chromatography/electrospray ionization tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 972:73-80. [DOI: 10.1016/j.jchromb.2014.09.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 09/16/2014] [Accepted: 09/27/2014] [Indexed: 11/20/2022]
|
19
|
Korzekwa K, Nagar S. Compartmental models for apical efflux by P-glycoprotein: part 2--a theoretical study on transporter kinetic parameters. Pharm Res 2014; 31:335-46. [PMID: 23959852 PMCID: PMC3930629 DOI: 10.1007/s11095-013-1163-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 07/28/2013] [Indexed: 12/30/2022]
Abstract
PURPOSE The impact of efflux transporters in intracellular concentrations of a drug can be predicted with modeling techniques. In Part 1, several compartmental models were developed and evaluated. The goal of Part 2 was to apply these models to the characterization and interpretation of saturation kinetic data. METHODS The compartmental models from Part 1 were used to evaluate a previously published dataset from cell lines expressing varying levels of P-glycoprotein. Kinetic parameters for the transporter were estimated and compared across models. RESULTS Fits and errors for all compartmental models were identical. All compartmental models predicted more consistent parameters than the Michaelis-Menten model. The 5-compartment model with efflux out of the membrane predicted differential impact of P-gp upon apical versus basolateral drug exposure. Finally, the saturable kinetics of active efflux along with a permeability barrier was modeled to delineate a relationship between intracellular concentration with or without active efflux versus donor concentration. This relationship was not a rectangular hyperbola, but instead was shown to be a quadratic function. CONCLUSIONS One approach to estimate an in vivo transporter effect is to first model an intracellular Km value from in vitro data, and use this value along with the appropriate tissue transporter expression levels and relative surface area to calculate the relevant apparent Km (or Ki) values. Together with the results from Part 1, these studies suggest that compartmental models can provide a path forward to better utilize in vitro transporter data for in vivo predictions such as physiologically based pharmacokinetic modeling.
Collapse
Affiliation(s)
- Ken Korzekwa
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA
| | - Swati Nagar
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA
| |
Collapse
|
20
|
Nagar S, Tucker J, Weiskircher EA, Bhoopathy S, Hidalgo IJ, Korzekwa K. Compartmental models for apical efflux by P-glycoprotein--part 1: evaluation of model complexity. Pharm Res 2014; 31:347-59. [PMID: 24019023 PMCID: PMC3946900 DOI: 10.1007/s11095-013-1164-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 07/28/2013] [Indexed: 01/16/2023]
Abstract
PURPOSE With the goal of quantifying P-gp transport kinetics, Part 1 of these manuscripts evaluates different compartmental models and Part 2 applies these models to kinetic data. METHODS Models were developed to simulate the effect of apical efflux transporters on intracellular concentrations of six drugs. The effect of experimental variability on model predictions was evaluated. Several models were evaluated, and characteristics including membrane configuration, lipid content, and apical surface area (asa) were varied. RESULTS Passive permeabilities from MDCK-MDR1 cells in the presence of cyclosporine gave lower model errors than from MDCK control cells. Consistent with the results in Part 2, model configuration had little impact on calculated model errors. The 5-compartment model was the simplest model that reproduced experimental lag times. Lipid content and asa had minimal effect on model errors, predicted lag times, and intracellular concentrations. Including endogenous basolateral uptake activity can decrease model errors. Models with and without explicit membrane barriers differed markedly in their predicted intracellular concentrations for basolateral drug exposure. Single point data resulted in clearances similar to time course data. CONCLUSIONS Compartmental models are useful to evaluate the impact of efflux transporters on intracellular concentrations. Whereas a 3-compartment model may be sufficient to predict the impact of transporters that efflux drugs from the cell, a 5-compartment model with explicit membranes may be required to predict intracellular concentrations when efflux occurs from the membrane. More complex models including additional compartments may be unnecessary.
Collapse
Affiliation(s)
- Swati Nagar
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia PA
| | - Jalia Tucker
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia PA
| | | | | | | | - Ken Korzekwa
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia PA
| |
Collapse
|
21
|
Bentz J, Ellens H. A structural model for the mass action kinetic analysis of P-gp mediated transport through confluent cell monolayers. Methods Mol Biol 2014; 1113:289-316. [PMID: 24523118 DOI: 10.1007/978-1-62703-758-7_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The structural model for P-gp mediated transport across confluent cell monolayers uses the generally accepted mass action reactions for P-gp binding and efflux, together with the known structural parameters for P-gp (large substrate binding site accessible from the membrane) and the apical plasma membrane in which it resides (lipid bilayer partition coefficient of substrate and volume of apical plasma membrane allow estimation of substrate concentration at binding site). The model considers binding of substrate to P-gp from within the inner leaflet of the apical membrane, with an on rate constant, k 1 (M(-1)s(-1)), and off rate constant k r (s(-1)), as well as an efflux rate constant from P-gp into the apical chamber, k 2 (s(-1)). The model also explicitly estimates the active P-gp protein level, known as P-gp efflux active surface density T(0). For each new drug, fitting these parameters requires use of multiple initial drug concentrations and multiple time points at each concentration, until steady state is reached between P-gp-mediated efflux into the apical chamber and passive permeability from apical chamber back into the cytosol. Although this model optimally requires a larger than usual dataset for analysis, it does provide important mechanistic information through estimates of these on, off and efflux rate constants, as well as efflux active P-gp surface density. This more detailed description of efflux from polarized confluent cell monolayers has (1) provided insight into the unexpected relationship between P-gp IC50 and K i in this system, (2) highlighted the kinetic need for GF120918 inhibitable apical and basolateral uptake transporters for digoxin, and (3) provided possible explanations for the extreme lab-to-lab variability in P-gp IC50 values observed for inhibition of digoxin transport. This model can also be used to distinguish between efflux active P-gp and total apical plasma membrane P-gp, which may be important when P-gp is expressed in a microvillous membrane.
Collapse
Affiliation(s)
- Joe Bentz
- Drexel University, Philadelphia, PA, USA
| | | |
Collapse
|
22
|
Brewer E, Lowman AM. Assessing the transport of receptor-mediated drug-delivery devices across cellular monolayers. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2013; 25:455-73. [PMID: 24365379 PMCID: PMC4441268 DOI: 10.1080/09205063.2013.870026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Receptor-mediated endocytosis (RME) has been extensively studied as a method for augmenting the transport of therapeutic devices across monolayers. These devices range from simple ligand-therapeutic conjugates to complex ligand-nanocarrier systems. However, characterizing the uptake of these carriers typically relies on their comparisons to the native therapeutic, which provides no understanding of the ligand or cellular performance. To better understand the potential of the RME pathway, a model for monolayer transport was designed based on the endocytosis cycle of transferrin, a ligand often used in RME drug-delivery devices. This model established the correlation between apical receptor concentration and transport capability. Experimental studies confirmed this relationship, demonstrating an upper transport limit independent of the applied dose. This contrasts with the dose-proportional pathways that native therapeutics rely on for transport. Thus, the direct comparison of these two transport mechanisms can produce misleading results that change with arbitrarily chosen doses. Furthermore, transport potential was hindered by repeated use of the RME cycle. Future studies should base the success of this technology not on the performance of the therapeutic itself, but on the capabilities of the cell. Using receptor-binding studies, we were able to demonstrate how these capabilities can be predicted and potentially adopted for high-throughput screening methods.
Collapse
Affiliation(s)
- Erik Brewer
- Drexel University, 3201 Chestnut Street, Philadelphia, PA 19104 USA
| | | |
Collapse
|
23
|
Nader AM, Foster DR. Suitability of digoxin as a P-glycoprotein probe: Implications of other transporters on sensitivity and specificity. J Clin Pharmacol 2013; 54:3-13. [DOI: 10.1002/jcph.200] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Accepted: 09/30/2013] [Indexed: 02/05/2023]
Affiliation(s)
- Ahmed M. Nader
- Pharmaceutical Sciences Section; College of Pharmacy; Qatar University; Doha Qatar
| | - David R. Foster
- Department of Pharmacy Practice; College of Pharmacy; Purdue University; Indianapolis and West Lafayette IN USA
- Department of Medicine; School of Medicine; Indiana University; Indianapolis IN USA
| |
Collapse
|
24
|
Transport inhibition of digoxin using several common P-gp expressing cell lines is not necessarily reporting only on inhibitor binding to P-gp. PLoS One 2013; 8:e69394. [PMID: 23976943 PMCID: PMC3745465 DOI: 10.1371/journal.pone.0069394] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 06/13/2013] [Indexed: 12/03/2022] Open
Abstract
We have reported that the P-gp substrate digoxin required basolateral and apical uptake transport in excess of that allowed by digoxin passive permeability (as measured in the presence of GF120918) to achieve the observed efflux kinetics across MDCK-MDR1-NKI (The Netherlands Cancer Institute) confluent cell monolayers. That is, GF120918 inhibitable uptake transport was kinetically required. Therefore, IC50 measurements using digoxin as a probe substrate in this cell line could be due to inhibition of P-gp, of digoxin uptake transport, or both. This kinetic analysis is now extended to include three additional cell lines: MDCK-MDR1-NIH (National Institute of Health), Caco-2 and CPT-B2 (Caco-2 cells with BCRP knockdown). These cells similarly exhibit GF120918 inhibitable uptake transport of digoxin. We demonstrate that inhibition of digoxin transport across these cell lines by GF120918, cyclosporine, ketoconazole and verapamil is greater than can be explained by inhibition of P-gp alone. We examined three hypotheses for this non-P-gp inhibition. The inhibitors can: (1) bind to a basolateral digoxin uptake transporter, thereby inhibiting digoxin's cellular uptake; (2) partition into the basolateral membrane and directly reduce membrane permeability; (3) aggregate with digoxin in the donor chamber, thereby reducing the free concentration of digoxin, with concomitant reduction in digoxin uptake. Data and simulations show that hypothesis 1 was found to be uniformly acceptable. Hypothesis 2 was found to be uniformly unlikely. Hypothesis 3 was unlikely for GF120918 and cyclosporine, but further studies are needed to completely adjudicate whether hetero-dimerization contributes to the non-P-gp inhibition for ketoconazole and verapamil. We also find that P-gp substrates with relatively low passive permeability such as digoxin, loperamide and vinblastine kinetically require basolateral uptake transport over that allowed by +GF120918 passive permeability, while highly permeable P-gp substrates such as amprenavir, quinidine, ketoconazole and verapamil do not, regardless of whether they actually use the basolateral transporter.
Collapse
|
25
|
Bentz J, O'Connor MP, Bednarczyk D, Coleman J, Lee C, Palm J, Pak YA, Perloff ES, Reyner E, Balimane P, Brännström M, Chu X, Funk C, Guo A, Hanna I, Herédi-Szabó K, Hillgren K, Li L, Hollnack-Pusch E, Jamei M, Lin X, Mason AK, Neuhoff S, Patel A, Podila L, Plise E, Rajaraman G, Salphati L, Sands E, Taub ME, Taur JS, Weitz D, Wortelboer HM, Xia CQ, Xiao G, Yabut J, Yamagata T, Zhang L, Ellens H. Variability in P-glycoprotein inhibitory potency (IC₅₀) using various in vitro experimental systems: implications for universal digoxin drug-drug interaction risk assessment decision criteria. Drug Metab Dispos 2013; 41:1347-66. [PMID: 23620485 PMCID: PMC3684820 DOI: 10.1124/dmd.112.050500] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 04/24/2013] [Indexed: 11/22/2022] Open
Abstract
A P-glycoprotein (P-gp) IC₅₀ working group was established with 23 participating pharmaceutical and contract research laboratories and one academic institution to assess interlaboratory variability in P-gp IC₅₀ determinations. Each laboratory followed its in-house protocol to determine in vitro IC₅₀ values for 16 inhibitors using four different test systems: human colon adenocarcinoma cells (Caco-2; eleven laboratories), Madin-Darby canine kidney cells transfected with MDR1 cDNA (MDCKII-MDR1; six laboratories), and Lilly Laboratories Cells--Porcine Kidney Nr. 1 cells transfected with MDR1 cDNA (LLC-PK1-MDR1; four laboratories), and membrane vesicles containing human P-glycoprotein (P-gp; five laboratories). For cell models, various equations to calculate remaining transport activity (e.g., efflux ratio, unidirectional flux, net-secretory-flux) were also evaluated. The difference in IC₅₀ values for each of the inhibitors across all test systems and equations ranged from a minimum of 20- and 24-fold between lowest and highest IC₅₀ values for sertraline and isradipine, to a maximum of 407- and 796-fold for telmisartan and verapamil, respectively. For telmisartan and verapamil, variability was greatly influenced by data from one laboratory in each case. Excluding these two data sets brings the range in IC₅₀ values for telmisartan and verapamil down to 69- and 159-fold. The efflux ratio-based equation generally resulted in severalfold lower IC₅₀ values compared with unidirectional or net-secretory-flux equations. Statistical analysis indicated that variability in IC₅₀ values was mainly due to interlaboratory variability, rather than an implicit systematic difference between test systems. Potential reasons for variability are discussed and the simplest, most robust experimental design for P-gp IC₅₀ determination proposed. The impact of these findings on drug-drug interaction risk assessment is discussed in the companion article (Ellens et al., 2013) and recommendations are provided.
Collapse
Affiliation(s)
- Joe Bentz
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ellens H, Deng S, Coleman J, Bentz J, Taub ME, Ragueneau-Majlessi I, Chung SP, Herédi-Szabó K, Neuhoff S, Palm J, Balimane P, Zhang L, Jamei M, Hanna I, O'Connor M, Bednarczyk D, Forsgard M, Chu X, Funk C, Guo A, Hillgren KM, Li L, Pak AY, Perloff ES, Rajaraman G, Salphati L, Taur JS, Weitz D, Wortelboer HM, Xia CQ, Xiao G, Yamagata T, Lee CA. Application of receiver operating characteristic analysis to refine the prediction of potential digoxin drug interactions. Drug Metab Dispos 2013; 41:1367-74. [PMID: 23620486 PMCID: PMC3684818 DOI: 10.1124/dmd.112.050542] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 04/19/2013] [Indexed: 11/22/2022] Open
Abstract
In the 2012 Food and Drug Administration (FDA) draft guidance on drug-drug interactions (DDIs), a new molecular entity that inhibits P-glycoprotein (P-gp) may need a clinical DDI study with a P-gp substrate such as digoxin when the maximum concentration of inhibitor at steady state divided by IC₅₀ ([I₁]/IC₅₀) is ≥0.1 or concentration of inhibitor based on highest approved dose dissolved in 250 ml divide by IC₅₀ ([I₂]/IC₅₀) is ≥10. In this article, refined criteria are presented, determined by receiver operating characteristic analysis, using IC₅₀ values generated by 23 laboratories. P-gp probe substrates were digoxin for polarized cell-lines and N-methyl quinidine or vinblastine for P-gp overexpressed vesicles. Inhibition of probe substrate transport was evaluated using 15 known P-gp inhibitors. Importantly, the criteria derived in this article take into account variability in IC₅₀ values. Moreover, they are statistically derived based on the highest degree of accuracy in predicting true positive and true negative digoxin DDI results. The refined criteria of [I₁]/IC₅₀ ≥ 0.03 and [I₂]/IC₅₀ ≥ 45 and FDA criteria were applied to a test set of 101 in vitro-in vivo digoxin DDI pairs collated from the literature. The number of false negatives (none predicted but DDI observed) were similar, 10 and 12%, whereas the number of false positives (DDI predicted but not observed) substantially decreased from 51 to 40%, relative to the FDA criteria. On the basis of estimated overall variability in IC₅₀ values, a theoretical 95% confidence interval calculation was developed for single laboratory IC₅₀ values, translating into a range of [I₁]/IC₅₀ and [I₂]/IC₅₀ values. The extent by which this range falls above the criteria is a measure of risk associated with the decision, attributable to variability in IC₅₀ values.
Collapse
Affiliation(s)
- Harma Ellens
- Drug Metabolism and Pharmacokinetics, GlaxoSmithKline Pharmaceuticals, King of Prussia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Herédi-Szabó K, Palm JE, Andersson TB, Pál Á, Méhn D, Fekete Z, Beéry E, Jakab KT, Jani M, Krajcsi P. A P-gp vesicular transport inhibition assay – Optimization and validation for drug–drug interaction testing. Eur J Pharm Sci 2013; 49:773-81. [DOI: 10.1016/j.ejps.2013.04.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 02/18/2013] [Accepted: 04/30/2013] [Indexed: 12/16/2022]
|
28
|
Hutter V, Chau DYS, Hilgendorf C, Brown A, Cooper A, Zann V, Pritchard DI, Bosquillon C. Digoxin net secretory transport in bronchial epithelial cell layers is not exclusively mediated by P-glycoprotein/MDR1. Eur J Pharm Biopharm 2013; 86:74-82. [PMID: 23816640 DOI: 10.1016/j.ejpb.2013.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 05/24/2013] [Accepted: 06/10/2013] [Indexed: 01/05/2023]
Abstract
The impact of P-glycoprotein (MDR1, ABCB1) on drug disposition in the lungs as well as its presence and activity in in vitro respiratory drug absorption models remain controversial to date. Hence, we characterised MDR1 expression and the bidirectional transport of the common MDR1 probe (3)H-digoxin in air-liquid interfaced (ALI) layers of normal human bronchial epithelial (NHBE) cells and of the Calu-3 bronchial epithelial cell line at different passage numbers. Madin-Darby Canine Kidney (MDCKII) cells transfected with the human MDR1 were used as positive controls. (3)H-digoxin efflux ratio (ER) was low and highly variable in NHBE layers. In contrast, ER=11.4 or 3.0 were measured in Calu-3 layers at a low or high passage number, respectively. These were, however, in contradiction with increased MDR1 protein levels observed upon passaging. Furthermore, ATP depletion and the two MDR1 inhibitory antibodies MRK16 and UIC2 had no or only a marginal impact on (3)H-digoxin net secretory transport in the cell line. Our data do not support an exclusive role of MDR1 in (3)H-digoxin apparent efflux in ALI Calu-3 layers and suggest the participation of an ATP-independent carrier. Identification of this transporter might provide a better understanding of drug distribution in the lungs.
Collapse
Affiliation(s)
- Victoria Hutter
- Division of Drug Delivery and Tissue Engineering, School of Pharmacy, University of Nottingham, UK
| | - David Y S Chau
- Allergy Research Group, School of Molecular Medical Sciences, University of Nottingham, UK
| | | | - Alan Brown
- Immune Modulation Group, Division of Molecular and Cellular Science, School of Pharmacy, University of Nottingham, UK
| | | | | | - David I Pritchard
- Immune Modulation Group, Division of Molecular and Cellular Science, School of Pharmacy, University of Nottingham, UK
| | - Cynthia Bosquillon
- Division of Drug Delivery and Tissue Engineering, School of Pharmacy, University of Nottingham, UK.
| |
Collapse
|
29
|
Neuhoff S, Yeo KR, Barter Z, Jamei M, Turner DB, Rostami-Hodjegan A. Application of permeability-limited physiologically-based pharmacokinetic models: part I-digoxin pharmacokinetics incorporating P-glycoprotein-mediated efflux. J Pharm Sci 2013; 102:3145-60. [PMID: 23703021 DOI: 10.1002/jps.23594] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 04/16/2013] [Accepted: 04/17/2013] [Indexed: 01/22/2023]
Abstract
A prerequisite for the prediction of the magnitude of P-glycoprotein (P-gp)-mediated drug-drug interactions between digoxin and P-gp inhibitors (e.g. verapamil and its metabolite norverapamil) or P-gp inducers (e.g. rifampicin) is a predictive pharmacokinetic model for digoxin itself. Thus, relevant in vitro metabolic, transporter and inhibitory data incorporated into permeability-limited models, such as the "advanced dissolution, absorption and metabolism" (ADAM) module and the permeability-limited liver (PerL) module, integrated with a mechanistic physiologically-based pharmacokinetic (PBPK) model such as that of the Simcyp Simulator (version 12.2) are necessary. Simulated concentration-time profiles of digoxin generated using the developed model were consistent with observed data across 31 independent studies [13 intravenous single dose (SD), 12 per oral SD and six multiple dose studies]. The fact that predicted tmax (time of maximum plasma concentration observed) and Cmax (maximum plasma concentration observed) of oral digoxin were similar to observed values indicated that the relative contributions of permeation and P-gp-mediated efflux in the model were appropriate. There was no indication of departure from dose proportionality over the dose range studied (0.25-1.5 mg). All dose normalised area under the plasma concentration-time curve profiles (AUCs) for the 0.25, 0.5, 0.75 and 1 mg doses resembled each other. Thus, PBPK modelling in conjunction with mechanistic absorption and distribution models and reliable in vitro transporter data can be used to assess the impact of dose on P-gp-mediated efflux (or otherwise).
Collapse
Affiliation(s)
- Sibylle Neuhoff
- Simcyp Limited (a Certara company), Blades Enterprise Centre, John Street, Sheffield S2 4SU, UK.
| | | | | | | | | | | |
Collapse
|
30
|
Brouwer KLR, Keppler D, Hoffmaster KA, Bow DAJ, Cheng Y, Lai Y, Palm JE, Stieger B, Evers R. In Vitro Methods to Support Transporter Evaluation in Drug Discovery and Development. Clin Pharmacol Ther 2013; 94:95-112. [DOI: 10.1038/clpt.2013.81] [Citation(s) in RCA: 194] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
31
|
Korzekwa KR, Nagar S, Tucker J, Weiskircher EA, Bhoopathy S, Hidalgo IJ. Models to predict unbound intracellular drug concentrations in the presence of transporters. Drug Metab Dispos 2012; 40:865-76. [PMID: 22279052 DOI: 10.1124/dmd.111.044289] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Knowledge of free drug intracellular concentration is necessary to predict the impacts of drugs on intracellular targets. The goal of this study was to develop models to predict free intracellular drug concentrations in the presence of apical efflux transporters. The apical efflux transporter P-glycoprotein (P-gp), encoded by human gene multidrug resistance 1 (MDR1), was studied. Apparent permeabilities for 10 compounds in Madin-Darby canine kidney (MDCK) and MDR1-MDCK cell monolayers were obtained experimentally. Six of these compounds were evaluated additionally in the presence of the P-gp inhibitor cyclosporine A. A three-compartment model was developed, and passive and apical efflux clearances (CL(d) and CL(ae), respectively) were estimated. Endogenous canine transporters also were delineated. The three-compartment model was unable to simulate experimentally observed lag times and exhibited systematic bias across the simulations. Next, a five-compartment model with explicit membrane compartments was developed. This model resulted in lower systematic errors and simulated the lag time observed experimentally. Apical efflux was modeled out of the cell or out of the membrane. The five-compartment model with apical efflux out of the membrane predicted marked differences in unbound intracellular concentrations between the apical-to-basolateral and the basolateral-to-apical directions. Upon apical drug addition, large decreases in intracellular concentrations were observed with the efflux transporter. No such difference was predicted upon basolateral drug addition. This is consistent with experimental differences in the impact of P-gp on hepatic and brain distribution and supports the hypothesis that apical efflux occurs out of the apical membrane.
Collapse
Affiliation(s)
- Ken R Korzekwa
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, 3307 N. Broad St., Philadelphia, PA 19140, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Determining P-glycoprotein-drug interactions: evaluation of reconstituted P-glycoprotein in a liposomal system and LLC-MDR1 polarized cell monolayers. J Pharmacol Toxicol Methods 2012; 65:64-74. [PMID: 22394995 DOI: 10.1016/j.vascn.2012.02.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 02/14/2012] [Accepted: 02/17/2012] [Indexed: 11/22/2022]
Abstract
INTRODUCTION P-Glycoprotein (ABCB1, MDR1) is a multidrug efflux pump that is a member of the ATP-binding cassette (ABC) superfamily. Many drugs in common clinical use are either substrates or inhibitors of this transporter. Quantitative details of P-glycoprotein inhibition by pharmaceutical agents are essential for assessment of their pharmacokinetic behavior and prevention of negative patient reactions. Cell-based systems have been widely used for determination of drug interactions with P-glycoprotein, but they suffer from several disadvantages, and results are often widely variable between laboratories. We aimed to demonstrate that a novel liposomal system employing contemporary biochemical methodologies could measure the ability of clinically used drugs to inhibit the P-glycoprotein pump. To accomplish this we compared results with those of cell-based approaches. METHODS Purified transport-competent hamster Abcb1a P-glycoprotein was reconstituted into a unilamellar liposomal system, Fluorosome-trans-pgp, whose aqueous interior contains fluorescent drug sensors. This provides a well-defined system for measuring P-glycoprotein transport inhibition by test drugs in real time using rapid fluorescence-based technology. RESULTS Inhibition of ATP-driven transport by Fluorosome-trans-pgp employed a panel of 46 representative drugs. Resulting IC50 values correlated well (r2=0.80) with Kd values for drug binding to purified P-glycoprotein. They also showed a similar trend to transport inhibition data obtained using LLC-MDR1 cell monolayers. Fluorosome-trans-pgp IC50 values were in agreement with published results of digoxin drug-drug interaction studies in humans. DISCUSSION This novel approach using a liposomal system and fluorescence-based technology is shown to be suitable to study whether marketed drugs and drug candidates are P-glycoprotein inhibitors. The assay is rapid, allowing a 7-point IC50 determination in <6 min, and requires minimal quantities of test drug. The method is amenable to robotics and offers a cost advantage relative to conventional cell-based assays. The well-defined nature of this assay also obviates many of the inherent complications and ambiguities of cell-based systems.
Collapse
|
33
|
Mease K, Sane R, Podila L, Taub ME. Differential selectivity of efflux transporter inhibitors in Caco-2 and MDCK-MDR1 monolayers: a strategy to assess the interaction of a new chemical entity with P-gp, BCRP, and MRP2. J Pharm Sci 2012; 101:1888-97. [PMID: 22359351 DOI: 10.1002/jps.23069] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 01/10/2012] [Accepted: 01/12/2012] [Indexed: 01/05/2023]
Abstract
Determining the interaction of a molecule with membrane transporters is challenging because of overlapping substrate and inhibitor specificities and coexpression of multiple transporters. Caco-2 and MDCK-MDR1 cells were used to evaluate the selectivity of zosuquidar (LY335979), fumitremorgin C (FTC), and MK571 as inhibitors of P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), and multidrug resistance-associated protein 2 (MRP2), respectively. Although these compounds are commonly used as transporter inhibitors, the concentrations at which they selectively inhibit P-gp, BCRP, and MRP2 have not been definitively assessed. In Caco-2 cells, which express P-gp, BCRP, and MRP2, FTC (1 µM) selectively inhibited the efflux of BCRP substrates estrone-3-sulfate and genistein; however, at 10 µM, FTC partially inhibited the efflux of P-gp substrates paclitaxel and digoxin. MK571 (50 µM), commonly used to inhibit MRP2, inhibited the efflux of P-gp and BCRP probe substrates in Caco-2 cells. In MDCK-MDR1 cells, which express human P-gp but not BCRP or MRP2, MK571 (50 µM) and FTC (10 µM) did not inhibit paclitaxel and digoxin efflux. Using Caco-2 cell monolayers, selected probe substrates, and optimized concentrations of LY335979 (3 µM) and FTC (1 µM), we propose a strategy to evaluate the interaction of a molecule with P-gp, BCRP, and MRP2.
Collapse
Affiliation(s)
- Kirsten Mease
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, USA
| | | | | | | |
Collapse
|
34
|
Keogh JP. Membrane transporters in drug development. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2012; 63:1-42. [PMID: 22776638 DOI: 10.1016/b978-0-12-398339-8.00001-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Membrane transporters have wide, but specific tissue distributions. They can impact on multiple endogenous and xenobiotic processes. Knowledge and awareness within the pharmaceutical industry of their impact on drug absorption, distribution, metabolism and elimination (ADME) and drug safety is growing rapidly. Clinically important transporter-mediated drug-drug interactions (DDIs) have been observed. Up to nine diverse transporters are implicated in the DDIs of a number of widely prescribed drugs, posing a significant challenge to the pharmaceutical industry. There is a complex interplay between multiple transporters and/or enzymes in the ADME and pharmacogenomics of drugs. Integrating these different mechanisms to understand their relative contributions to ADME is a key challenge. Many different factors complicate the study of membrane transporters in drug development. These include a lack of specific substrates and inhibitors, non-standard in vitro tools, and competing/complementary mechanisms (e.g. passive permeability and metabolism). Discovering and contextualizing the contribution of membrane transporters to drug toxicity is a significant new challenge. Drug interactions with key membrane transporters are routinely assessed for central nervous system (CNS) drug discovery therapies, but are not generally considered across the wider drug discovery. But, there is interest in utilizing membrane transporters as drug delivery agents. Computational modeling approaches, notably physiology-based/pharmacokinetic (PB/PK) modeling are increasingly applied to transporter interactions, and permit integration of multiple ADME mechanisms. Because of the range of tissues and transporters of interest, robust transporter, in vitro to in vivo, scaling factors are required. Empirical factors have been applied, but absolute protein quantitation will probably be required.
Collapse
|
35
|
Taub ME, Mease K, Sane RS, Watson CA, Chen L, Ellens H, Hirakawa B, Reyner EL, Jani M, Lee CA. Digoxin is not a substrate for organic anion-transporting polypeptide transporters OATP1A2, OATP1B1, OATP1B3, and OATP2B1 but is a substrate for a sodium-dependent transporter expressed in HEK293 cells. Drug Metab Dispos 2011; 39:2093-102. [PMID: 21849517 DOI: 10.1124/dmd.111.040816] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Digoxin, an orally administered cardiac glycoside cardiovascular drug, has a narrow therapeutic window. Circulating digoxin levels (maximal concentration of ∼1.5 ng/ml) require careful monitoring, and the potential for drug-drug interactions (DDI) is a concern. Increases in digoxin plasma exposure caused by inhibition of P-glycoprotein (P-gp) have been reported. Digoxin has also been described as a substrate of various organic anion-transporting polypeptide (OATP) transporters, posing a risk that inhibition of OATPs may result in a clinically relevant DDI similar to what has been observed for P-gp. Although studies in rats have shown that Oatps contribute to the disposition of digoxin, the role of OATPs in the disposition of digoxin in humans has not been clearly defined. Using two methods, Boehringer Ingelheim, GlaxoSmithKline, Pfizer, and Solvo observed that digoxin is not a substrate of OATP1A2, OATP1B1, OATP1B3, and OATP2B1. However, digoxin inhibited the uptake of probe substrates of OATP1B1 (IC(50) of 47 μM), OATP1B3 (IC(50) > 8.1 μM), and OATP2B1 (IC(50) > 300 μM), but not OATP1A2 in transfected cell lines. It is interesting to note that digoxin is a substrate of a sodium-dependent transporter endogenously expressed in HEK293 cells because uptake of digoxin was significantly greater in cells incubated with sodium-fortified media compared with incubations conducted in media in which sodium was absent. Thus, although digoxin is not a substrate for the human OATP transporters evaluated in this study, in addition to P-gp-mediated efflux, its uptake and pharmacokinetic disposition may be partially facilitated by a sodium-dependent transporter.
Collapse
Affiliation(s)
- Mitchell E Taub
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Agnani D, Acharya P, Martinez E, Tran TT, Abraham F, Tobin F, Ellens H, Bentz J. Fitting the elementary rate constants of the P-gp transporter network in the hMDR1-MDCK confluent cell monolayer using a particle swarm algorithm. PLoS One 2011; 6:e25086. [PMID: 22028772 PMCID: PMC3196501 DOI: 10.1371/journal.pone.0025086] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 08/25/2011] [Indexed: 11/18/2022] Open
Abstract
P-glycoprotein, a human multidrug resistance transporter, has been extensively studied due to its importance to human health and disease. In order to understand transport kinetics via P-gp, confluent cell monolayers overexpressing P-gp are widely used. The purpose of this study is to obtain the mass action elementary rate constants for P-gp's transport and to functionally characterize members of P-gp's network, i.e., other transporters that transport P-gp substrates in hMDR1-MDCKII confluent cell monolayers and are essential to the net substrate flux. Transport of a range of concentrations of amprenavir, loperamide, quinidine and digoxin across the confluent monolayer of cells was measured in both directions, apical to basolateral and basolateral to apical. We developed a global optimization algorithm using the Particle Swarm method that can simultaneously fit all datasets to yield accurate and exhaustive fits of these elementary rate constants. The statistical sensitivity of the fitted values was determined by using 24 identical replicate fits, yielding simple averages and standard deviations for all of the kinetic parameters, including the efflux active P-gp surface density. Digoxin required additional basolateral and apical transporters, while loperamide required just a basolateral tranporter. The data were better fit by assuming bidirectional transporters, rather than active importers, suggesting that they are not MRP or active OATP transporters. The P-gp efflux rate constants for quinidine and digoxin were about 3-fold smaller than reported ATP hydrolysis rate constants from P-gp proteoliposomes. This suggests a roughly 3∶1 stoichiometry between ATP hydrolysis and P-gp transport for these two drugs. The fitted values of the elementary rate constants for these P-gp substrates support the hypotheses that the selective pressures on P-gp are to maintain a broad substrate range and to keep xenobiotics out of the cytosol, but not out of the apical membrane.
Collapse
Affiliation(s)
- Deep Agnani
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Poulomi Acharya
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Esteban Martinez
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Thuy Thanh Tran
- Preclinical Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, King of Prussia, Pennsylvania, United States of America
| | - Feby Abraham
- Scientific Computing and Mathematical Modeling, GlaxoSmithKline, King of Prussia, Pennsylvania, United States of America
| | - Frank Tobin
- Scientific Computing and Mathematical Modeling, GlaxoSmithKline, King of Prussia, Pennsylvania, United States of America
| | - Harma Ellens
- Preclinical Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, King of Prussia, Pennsylvania, United States of America
| | - Joe Bentz
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
37
|
Patil AG, D’Souza R, Dixit N, Damre A. Validation of quinidine as a probe substrate for the in vitro P-gp inhibition assay in Caco-2 cell monolayer. Eur J Drug Metab Pharmacokinet 2011; 36:115-9. [DOI: 10.1007/s13318-011-0046-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 06/06/2011] [Indexed: 11/28/2022]
|
38
|
Mitra P, Audus K, Williams G, Yazdanian M, Galinis D. A comprehensive study demonstrating that p-glycoprotein function is directly affected by changes in pH: implications for intestinal pH and effects on drug absorption. J Pharm Sci 2011; 100:4258-68. [PMID: 21538355 DOI: 10.1002/jps.22596] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 03/11/2011] [Accepted: 04/12/2011] [Indexed: 02/03/2023]
Abstract
The purpose of this study was to investigate whether changes in the pH of the gastrointestinal tract can directly affect P-glycoprotein (P-gp) function. The effect of changes in extracellular pH on P-gp functionality was examined by testing colchicine (a nonionizable P-gp substrate) in bidirectional Caco-2 and MDR1-Madine Darby canine kidney (MDCK) cell permeability assays, in which the pH of the apical and basolateral chambers was varied. Reduction of the pH from 7.4 to 5.0 and 4.5 markedly increased the apical-to-basolateral flux of colchicine and reduced the basolateral-to-apical flux. The efflux ratio for colchicine was reduced to 1.2 at pH 4.5, compared with values greater than 20 that were measured in the pH range of 5.5-7.4. A similar result was obtained when MDR1-MDCK cells were used in the bidirectional permeability studies. Other nonionizable P-gp substrates (digoxin, dexamethasone, paclitaxel, and etoposide) responded to acidic pH (4.5) in a manner similar to colchicine. Reduced P-gp ATPase activity is a reason for the diminished P-gp function observed at pH 4.5.
Collapse
Affiliation(s)
- Pallabi Mitra
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas
| | | | | | | | | |
Collapse
|
39
|
Vandenbossche J, Huisman M, Xu Y, Sanderson-Bongiovanni D, Soons P. Loperamide and P-glycoprotein inhibition: assessment of the clinical relevance. J Pharm Pharmacol 2011; 62:401-12. [PMID: 20604828 DOI: 10.1211/jpp.62.04.0001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES Loperamide is a peripherally acting mu opioid receptor agonist and an avid substrate for P-glycoprotein. This may give rise to drug-drug interactions and increased risk for central adverse effects. The objective of this study was to re-evaluate the predictability of non-clinical data using loperamide as a probe P-glycoprotein substrate. We searched the literature for papers containing data on drug-drug interactions of loperamide-containing products in humans. We also reviewed the internal worldwide safety database of Johnson & Johnson for spontaneous case reports suggestive of a central opioid effect after coadministration of loperamide with a P-glycoprotein inhibitor or substrate. KEY FINDINGS Only one of the ten studies in our review supported the finding that inhibition of P-glycoprotein is associated with clinically relevant signs or symptoms of central nervous system (CNS) depression/opioid toxicity of loperamide. None of the 25 spontaneous case reports of interest were suggestive of signs or symptoms of CNS depression/opioid toxicity due to coadministration of loperamide and a P-glycoprotein inhibitor or substrate. SUMMARY Based on a review of the literature and a cumulative review of the spontaneous case reports, there is insufficient evidence that an interaction between loperamide and a P-glycoprotein inhibitor or substrate is associated with clinical symptoms of CNS depression/opioid toxicity when loperamide is taken at the recommended dose.
Collapse
Affiliation(s)
- Joris Vandenbossche
- Clinical Pharmacology, Johnson & Johnson Pharmaceutical Research & Development, Beerse, Belgium.
| | | | | | | | | |
Collapse
|
40
|
Cook JA, Feng B, Fenner KS, Kempshall S, Liu R, Rotter C, Smith DA, Troutman MD, Ullah M, Lee CA. Refining the in vitro and in vivo critical parameters for P-glycoprotein, [I]/IC50 and [I2]/IC50, that allow for the exclusion of drug candidates from clinical digoxin interaction studies. Mol Pharm 2010; 7:398-411. [PMID: 20025245 DOI: 10.1021/mp900174z] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The objective of this work was to further investigate the reasons for disconcordant clinical digoxin drug interactions (DDIs) particularly for false negative where in vitro data suggests no P-glycoprotein (P-gp) related DDI but a clinically relevant DDI is evident. Applying statistical analyses of binary classification and receiver operating characteristic (ROC), revised cutoff values for ratio of [I]/IC(50) < 0.1 and [I(2)]/IC(50) < 5 were identified to minimize the error rate, a reduction of false negative rate to 9% from 36% (based on individual ratios). The steady state total C(max) at highest dose of the inhibitor is defined as [I] and the ratio of the nominal maximal gastrointestinal concentration determined for highest dose per 250 mL volume defined [I(2)](.) We also investigated the reliability of the clinical data to see if recommendations can be made on values that would allow predictions of 25% change in digoxin exposure. The literature derived clinical digoxin interaction studies were statistically powered to detect relevant changes in exposure associated with digitalis toxicities. Our analysis identified that many co-meds administered with digoxin are cardiovascular (CV) agents. Moreover, our investigations also suggest that the presence of CV agents may alter cardiac output and/or kidney function that may act alone or are additional components to enhance digoxin exposure along with P-gp interaction. While we recommend digoxin as the probe substrate to define P-gp inhibitory potency for clinical assessment, we observed high concordance in P-gp inhibitory potency for calcein AM as a probe substrate.
Collapse
Affiliation(s)
- Jack A Cook
- Departments of Clinical Pharmacology, Pharmacokinetics, Groton/New London, Connecticut, Sandwich, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Ma JD, Tsunoda SM, Bertino JS, Trivedi M, Beale KK, Nafziger AN. Evaluation of in vivo P-glycoprotein phenotyping probes: a need for validation. Clin Pharmacokinet 2010; 49:223-37. [PMID: 20214407 DOI: 10.2165/11318000-000000000-00000] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Drug transporters are involved in clinically relevant drug-drug interactions. P-glycoprotein (P-gp) is an efflux transporter that displays genetic polymorphism. Phenotyping permits evaluation of real-time, in vivo P-gp activity and P-gp-mediated drug-drug interactions. Digoxin, fexofenadine, talinolol and quinidine are commonly used probe drugs for P-gp phenotyping. Although current regulatory guidance documents highlight methodologies for evaluating transporter-based drug-drug interactions, whether current probe drugs are suitable for phenotyping has not been established, and validation criteria are lacking. This review proposes validation criteria and evaluates P-gp probes to determine probe suitability. Based on these criteria, digoxin, fexofenadine, talinolol and quinidine have limitations to their use and are not recommended for P-gp phenotyping.
Collapse
Affiliation(s)
- Joseph D Ma
- University of California, San Diego, La Jolla, 92093, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Lumen AA, Acharya P, Polli JW, Ayrton A, Ellens H, Bentz J. If the KI is defined by the free energy of binding to P-glycoprotein, which kinetic parameters define the IC50 for the Madin-Darby canine kidney II cell line overexpressing human multidrug resistance 1 confluent cell monolayer? Drug Metab Dispos 2010; 38:260-9. [PMID: 19889884 DOI: 10.1124/dmd.109.029843] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
From previous fits of drug transport kinetics across confluent Madin-Darby canine kidney II cell line overexpressing human multidrug resistance 1 cell monolayers, we found that a drug's binding constant to P-glycoprotein (P-gp) was significantly smaller than its IC(50) when that drug was used as an inhibitor against another P-gp substrate. We tested several IC(50) candidate functions, including the standard function, the Kalvass-Pollack function, and the efflux ratio, to determine whether any of them yielded an IC(50) = K(I), as would be expected for water-soluble enzymes. For the confluent cell monolayer, the IC(50)/K(I) ratio is greater than 1 for all candidate functions tested. From the mass action kinetic model, we have derived a simple approximate equation that shows how the IC(50)/K(I) ratio depends on the elementary rate constants from our mass action model. Thus, the IC(50) will differ between cell lines and tissues, for the same probe substrate and inhibitor, if there are different membrane concentrations of P-gp, or the probe substrate's elementary rate constants, partition coefficient, binding constant to P-gp, passive permeability, and ability to access the other transporters (if any) in the two cell lines. The mass action model and the approximate equation for the IC(50)/K(I) ratio derived here can be used to estimate the elementary rate constants needed to extrapolate in vitro drug-drug interactions for compounds to the in vivo environment.
Collapse
Affiliation(s)
- Annie Albin Lumen
- Department of Biology, Drexel University, 32nd and Chestnut Sts., Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
43
|
Kamiyama E, Sugiyama D, Nakai D, Miura SI, Okazaki O. Culture period-dependent change of function and expression of ATP-binding cassette transporters in Caco-2 cells. Drug Metab Dispos 2009; 37:1956-62. [PMID: 19505989 DOI: 10.1124/dmd.109.027490] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The objective of this study was to determine an appropriate culture period to assess whether a compound of interest is transported by efflux transporters such as human multidrug resistance 1 (hMDR1), human multidrug resistance-associated protein 2 (hMRP2), and human breast cancer resistance protein (hBCRP) in Caco-2 cells. Caco-2 cells were cultured on a Transwell for 1 to 6 weeks. The expression of these transporters in the mRNA and protein levels was examined using a real-time polymerase chain reaction and Western blotting, respectively. Transcellular transport activities using digoxin, ochratoxin A, olmesartan, and estrone-3-sulfate were also examined. Except for digoxin, the permeability coefficient (P(app)) ratio of the three compounds at 2 weeks was the highest in the periods tested. The P(app) ratio of digoxin at 2 weeks was higher than that at 3 weeks. The temporal expression profile of each transporter in the mRNA level was similar to that in the protein level, and the functions of hMRP2 and hBCRP were roughly correlated with the expression in the mRNA and protein levels, but that of hMDR1 was not. These data suggest that among all the culture periods evaluated a 2-week culture is the best culture period for transport studies to identify whether a compound is a substrate for hMDR1, hMRP2, and hBCRP.
Collapse
Affiliation(s)
- Emi Kamiyama
- Drug Metabolism and Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan.
| | | | | | | | | |
Collapse
|
44
|
Gannon MK, Holt JJ, Bennett SM, Wetzel BR, Loo TW, Bartlett MC, Clarke DM, Sawada GA, Higgins JW, Tombline G, Raub TJ, Detty MR. Rhodamine inhibitors of P-glycoprotein: an amide/thioamide "switch" for ATPase activity. J Med Chem 2009; 52:3328-41. [PMID: 19402665 DOI: 10.1021/jm900253g] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have examined 46 tetramethylrosamine/rhodamine derivatives with structural diversity in the heteroatom of the xanthylium core, the amino substituents of the 3- and 6-positions, and the alkyl, aryl, or heteroaryl group at the 9-substituent. These compounds were examined for affinity and ATPase stimulation in isolated MDR3 CL P-gp and human P-gp-His(10), for their ability to promote uptake of calcein AM and vinblastine in multidrug-resistant MDCKII-MDR1 cells, and for transport in monolayers of MDCKII-MDR1 cells. Thioamide 31-S gave K(M) of 0.087 microM in human P-gp. Small changes in structure among this set of compounds affected affinity as well as transport rate (or flux) even though all derivatives examined were substrates for P-gp. With isolated protein, tertiary amide groups dictate high affinity and high stimulation while tertiary thioamide groups give high affinity and inhibition of ATPase activity. In MDCKII-MDR1 cells, the tertiary thioamide-containing derivatives promote uptake of calcein AM and have very slow passive, absorptive, and secretory rates of transport relative to transport rates for tertiary amide-containing derivatives. Thioamide 31-S promoted uptake of calcein AM and inhibited efflux of vinblastine with IC(50)'s of approximately 2 microM in MDCKII-MDR1 cells.
Collapse
Affiliation(s)
- Michael K Gannon
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Wang L, Leggas M, Goswami M, Empey PE, McNamara PJ. N-(4-[2-(1,2,3,4-tetrahydro-6,7-dimethoxy-2-isoquinolinyl)ethyl]-phenyl)-9,10-dihydro-5-methoxy-9-oxo-4-acridine carboxamide (GF120918) as a chemical ATP-binding cassette transporter family G member 2 (Abcg2) knockout model to study nitrofurantoin transfer into milk. Drug Metab Dispos 2008; 36:2591-6. [PMID: 18799806 PMCID: PMC2837273 DOI: 10.1124/dmd.108.021980] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Genetic knockout mice studies suggested ATP-binding cassette transporter family G member 2 (ABCG2)/Abcg2 translocates nitrofurantoin at the mammary-blood barrier, resulting in drug accumulation in milk. The purpose of this study was to establish the role of Abcg2 in nitrofurantoin accumulation in rat milk using N-(4-[2-(1,2,3,4-tetrahydro-6,7-dimethoxy-2-isoquinolinyl)ethyl]-phenyl)-9,10-dihydro-5-methoxy-9-oxo-4-acridine carboxamide (GF120918) as a "chemical knockout" equivalent. The inhibitory effect of GF120918 was verified in Madin-Darby canine kidney II cells stably expressing rat Abcg2 with Hoechst 33342 and nitrofurantoin flux in Transwells. Nitrofurantoin was infused (0.5 mg/h) in the absence and presence of GF120918 (10 mg/kg in dimethyl sulfoxide) to Sprague-Dawley lactating female rats using a balanced crossover design. Administration of GF120918 increased nitrofurantoin concentration in serum (from 443 +/- 51 to 650 +/- 120 ng/ml) and decreased concentration in milk (from 18.1 +/- 0.9 to 1.9 +/- 1.2 microg/ml), resulting in corresponding mean values for milk to serum concentration ratio (M/S) of 41.4 +/- 19.1 versus 3.04 +/- 2.27 in the absence and presence of GF120918 (p < 0.05), respectively. There was a decrease in systemic clearance with GF120918 (2.8 +/- 0.5 l/h/kg) compared with vehicle controls (4.1 +/- 0.5 l/h/kg; p < 0.05). Western blot analysis revealed good expression of Abcg2 and no P-glycoprotein (P-gp) expression in mammary gland, whereas immunohistochemistry confirmed the apical expression of Abcg2 in lactating mammary gland epithelia. Nitrofurantoin active transport into rat milk can be inhibited by GF120918 resulting in a 10-fold lower M/S. Although GF120918 inhibits both Abcg2 and P-gp, the high expression of Abcg2 and the absence of detectable P-gp expression in lactating mammary gland validate an important role for Abcg2 in nitrofurantoin accumulation in rat milk. GF120918 is particularly useful as a rat chemical knockout model to establish ABCG2's role in drug transfer into milk during breastfeeding.
Collapse
Affiliation(s)
- Lipeng Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 725 Rose Street, Lexington, KY 40536, USA
| | | | | | | | | |
Collapse
|
46
|
Sawada GA, Raub TJ, William Higgins J, Brennan NK, Moore TM, Tombline G, Detty MR. Chalcogenopyrylium dyes as inhibitors/modulators of P-glycoprotein in multidrug-resistant cells. Bioorg Med Chem 2008; 16:9745-56. [PMID: 18849167 DOI: 10.1016/j.bmc.2008.09.065] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 09/24/2008] [Accepted: 09/26/2008] [Indexed: 10/21/2022]
Abstract
A series of chalcogenopyrylium dyes were evaluated as modulators/inhibitors of P-glycoprotein (Pgp). Their ability to inhibit verapamil (VER)-dependent ATPase activity (IC(50) values) in lipid-activated, mouse Cys-less mdr3 Pgp was determined. Their ability to promote calcein-AM (CAM) uptake in MDCKII-MDR1 cells and their capacity to be transported by Pgp in monolayers of MDCKII-MDR1 cells were also evaluated. The chalcogenopyrylium dyes promoted CAM uptake with values of EC(50) between 5 x 10(-6) and 3.5 x 10(-5)M and 7 of the 9 dyes examined in transport studies were substrates for Pgp with efflux ratios (P(BA/AB)) between 14 and 390. Binding of three compounds (1-S, 3-S, and 4-S) to Pgp was also assessed by fluorescence. These three thiopyrylium dyes showed increased fluorescence upon binding to Pgp, giving apparent binding constants, K(app), on the order of 10(-7) to 10(-6)M. Compound 8-Te was particularly intriguing since it appeared to influence Pgp at low micromolar concentrations as evidenced by its influence on VER-stimulated ATPase activity (IC(50) of 1.2 x 10(-6)M), CAM uptake (EC(50) of 5.4 x 10(-6)M), as well as [(3)H]-vinblastine transport by Pgp in cells (IC(50) of 4.3 x 10(-6)M) and within inside-out membrane vesicles (IC(50) of 9.6 x 10(-6)M). Yet, Pgp did not influence the distribution of 8-Te in MDCKII-MDR1 monolayers suggesting that 8-Te may bind to an allosteric site.
Collapse
Affiliation(s)
- Geri A Sawada
- Drug Disposition, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Bareford LM, Phelps MA, Foraker AB, Swaan PW. Intracellular Processing of Riboflavin in Human Breast Cancer Cells. Mol Pharm 2008; 5:839-48. [DOI: 10.1021/mp800046m] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Lisa M. Bareford
- Department of Pharmaceutical Sciences, Center for Nanomedicine and Cellular Delivery, University of Maryland, Baltimore, Maryland 21201, and Biophysics Program and Division of Pharmaceutics, The Ohio State University, Columbus, Ohio 43210
| | - Mitch A. Phelps
- Department of Pharmaceutical Sciences, Center for Nanomedicine and Cellular Delivery, University of Maryland, Baltimore, Maryland 21201, and Biophysics Program and Division of Pharmaceutics, The Ohio State University, Columbus, Ohio 43210
| | - Amy B. Foraker
- Department of Pharmaceutical Sciences, Center for Nanomedicine and Cellular Delivery, University of Maryland, Baltimore, Maryland 21201, and Biophysics Program and Division of Pharmaceutics, The Ohio State University, Columbus, Ohio 43210
| | - Peter W. Swaan
- Department of Pharmaceutical Sciences, Center for Nanomedicine and Cellular Delivery, University of Maryland, Baltimore, Maryland 21201, and Biophysics Program and Division of Pharmaceutics, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
48
|
von Richter O, Glavinas H, Krajcsi P, Liehner S, Siewert B, Zech K. A novel screening strategy to identify ABCB1 substrates and inhibitors. Naunyn Schmiedebergs Arch Pharmacol 2008; 379:11-26. [PMID: 18758752 DOI: 10.1007/s00210-008-0345-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Accepted: 08/04/2008] [Indexed: 12/19/2022]
Abstract
We tested the hypothesis whether data on ABCB1 ATPase activity and passive permeability can be used in combination to identify ABCB1 substrates and inhibitors. We determined passive permeability using an artificial membrane permeability assay (HDM-PAMPA) and ABCB1 function, i.e., vanadate-sensitive ATPase activity for a training set (40 INN drugs) and a validation set (26 development compounds). In parallel experiments, we determined ABCB1 function, i.e., vectorial transport in a Caco-2 cell monolayer, and ABCB1 inhibition, i.e., calcein AM extrusion out of K562-MDR cells, to cross-validate the results with cellular assays. We found that compounds that did not modulate ABCB1-ATPase did also not affect calcein AM extrusion and were not actively transported by ABCB1 in Caco-2 cell monolayers. The results corroborated the effect of passive permeability as an important covariate of active transport: active transport in Caco-2 monolayer was only apparent for compounds showing low passive permeability (<5.0 cmx10(-6)/s) in the HDM-PAMPA assay whereas compounds with high passive permeability (>50 cmx10(-6)/s) were shown to inhibit calcein AM efflux with IC50 values close to their respective Km value obtained for ABCB1-ATPase. The use of HDM-PAMPA in combination with ABCB1-ATPase offers a simple, inexpensive experimental approach capable of identifying ABCB1 inhibitors as well as transported substrates.
Collapse
Affiliation(s)
- Oliver von Richter
- Division of Drug Metabolism and Pharmacokinetics, Altana Pharma AG, Konstanz, Germany.
| | | | | | | | | | | |
Collapse
|