1
|
Poulter S, Austin N, Watson SP, Bucknell SJ, O'Brien MA, Tolonen A, Lassila T, Stott LA, Mead A, MacSweeney C. Preclinical pharmacokinetics, metabolism, and disposition of NXE0041178, a novel orally bioavailable agonist of the GPR52 receptor with potential for treatment of schizophrenia and related psychiatric disorders. Xenobiotica 2025:1-16. [PMID: 40367121 DOI: 10.1080/00498254.2025.2501593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/24/2025] [Accepted: 04/30/2025] [Indexed: 05/16/2025]
Abstract
The physico-chemical properties, protein binding, metabolism, permeability, transporter interactions, chemical toxicity, and drug-drug interaction potential of the novel GPR52 agonist NXE0041178 were characterised.NXE0041178 demonstrated high cellular permeability, little interaction with efflux transporters P-gp and BCRP, and extensive brain exposure in rodent, consistent with its intended use in CNS disorders.In vivo pharmacokinetic profiling in mouse, rat and monkey demonstrated that NXE0041178 was well-absorbed, with low clearance, a moderate volume-of-distribution and moderate terminal half-life. Oxidative metabolism was the major elimination pathway, with negligible renal or biliary excretion.NXE0041178 displayed good in vitro-to-in vivo correlation in metabolic clearance in preclinical species and low turnover in human in vitro metabolic systems, suggestive of a human pharmacokinetic profile commensurate with once-daily dosing.Early in vitro metabolite identification studies suggested similar metabolic pathways in human and preclinical species, but a distinct metabolic profile in dog.NXE0041178 caused weak heterotropic catalytic activation of CYP3A4, and weak transcriptional induction of CYP3A4 and CYP2B6. No reactive metabolites of NXE0041178 were detected, and no genotoxicity or clinically relevant inhibition of P450 enzymes were observed.These findings extend our knowledge of the preclinical ADME profile of NXE0041178, supporting its continued development.
Collapse
Affiliation(s)
| | | | | | | | | | - Ari Tolonen
- Admescope, Symeres Finland Oy, Oulu, Finland
| | | | | | - Andy Mead
- Nxera Pharma Ltd, Cambridge, United Kingdom
| | | |
Collapse
|
2
|
Werner S, Pamies D, Zurich MG, Suter-Dick L. Hepatic and extra-hepatic metabolism of propylene glycol ethers in the context of central nervous system toxicity. Toxicology 2025; 512:154081. [PMID: 39929342 DOI: 10.1016/j.tox.2025.154081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/14/2025]
Abstract
Propylene glycol ethers (PGEs) are mixtures of an α-isomer and a β-isomer (β-PGE) that is oxidized via alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) to potentially neurotoxic alkoxy propionic acids (β-metabolites). While the liver is the primary organ for ADH- and ALDH-mediated metabolism, the contribution to the metabolism of β-PGEs by the blood-brain barrier (BBB) and the brain remains unknown. Here, we aimed to assess the neurotoxic potential of PGEs after systemic exposure by (1) comparing 3D HepaRG and human liver subcellular fraction (S9) for the in vitro determination of the kinetics of hepatic metabolism for β-PGEs, (2) evaluating the BBB-permeability of PGEs and β-metabolites, (3) determining the presence of ADH1 and ALDH2 and the extent of metabolization of β-PGEs in the BBB and brain. The results show that 3D HepaRG and S9 served as competent systems to estimate the enzymatic kinetic (clearance) for β-metabolite formation. We observed that PGEs and the β-metabolites could cross the BBB, based on their permeance across a cellular barrier consisting of the hCMEC/D3 cell line. Metabolic enzymes were not exclusive to the liver, as expression of ADH1 and ALDH2 was demonstrated using RT-qPCR, Western blot, and immunostainings in the BBB in vitro models and in BrainSpheres. Furthermore, LC-MS/MS quantification of the β-metabolites in all in vitro models revealed that 3D HepaRG had a similar metabolic capacity to primary human hepatocytes and that the amount of β-metabolite formed per protein in the BBB was approximately 10-30 % of that in the liver. We also demonstrated active metabolism in the BrainSpheres. In conclusion, the hepatic in vitro models provided data that will help to refine toxicokinetic models and predict internal exposures, thereby supporting the risk assessment of PGEs. In addition, the high permeance of the PGEs and the β-metabolites across the BBB increases the plausibility of neurotoxicity upon systemic exposure. This is further supported by the presence of active ADH1 and ALDH2 enzymes in the BBB in vitro systems and in BrainSpheres, suggesting metabolite formation in the central nervous system. Hence, we suggest that BBB-permeance and extra-hepatic metabolism of the β-PGEs may contribute to the neurotoxicity of PGEs.
Collapse
Affiliation(s)
- Sophie Werner
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Muttenz, Switzerland; Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland.
| | - David Pamies
- Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland; Department of Biomedical Science, University of Lausanne, Lausanne, Switzerland.
| | - Marie-Gabrielle Zurich
- Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland; Department of Biomedical Science, University of Lausanne, Lausanne, Switzerland.
| | - Laura Suter-Dick
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Muttenz, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland.
| |
Collapse
|
3
|
Kukla DA, Schulz Pauly JA, Lesniak PR, Sande E, Wang YT, Kalvass JC, Stresser DM. Clearance prediction with three novel plated human hepatocyte models compared to conventional suspension assays: Assessment with 50 compounds and multiple donors. Drug Metab Dispos 2025; 53:100032. [PMID: 40023578 DOI: 10.1016/j.dmd.2024.100032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/06/2024] [Indexed: 03/04/2025] Open
Abstract
Incubation of drugs with suspension hepatocytes (SH) to determine intrinsic clearance is common in drug discovery. However, the limited duration of SH assays hampers clearance assessment of metabolically stable compounds. In turn, this has driven the development of alternative in vitro approaches to generate intrinsic clearance estimates. Culturing primary hepatocytes with supportive cells as co/tricultures has been shown to maintain morphology, viability, and drug-metabolizing enzyme function for weeks, permitting extended incubations. Another assay from our laboratory is the preloaded hepatocyte assay (preload assay), which involves preloading plated monoculture hepatocytes with compounds and measuring the loss from cells in drug-free media. This approach increases analytical sensitivity compared to assays that measure bulk compound loss in the cells plus medium. We conducted a systematic evaluation of the ability of coculture, triculture, and preload assay models to predict human in vivo clearance for 50 predominantly low-clearance compounds with a range of physicochemical properties, including equal numbers of compounds following or violating Lipinski's rule of 5, across 3 hepatocyte donors. The results were compared with SH. Co/tricultures exhibited lower inter-donor differences compared to the preload and SH assays, likely due to the blunting of environmental cues after 5 days in culture prior to compound introduction. All 3 plated models significantly reduced the number of compounds with insufficient turnover to calculate CLint,u compared to SH (SH: 40%; preload: 18%; cocultures: 8%; tricultures: 4%), exhibited strong interexperimental reproducibility and robust predictions of blood clearance (preload: 26/41; cocultures: 31/46; tricultures: 30/48 within 3-fold of observed). SIGNIFICANCE STATEMENT: Preloading plated hepatocytes with compounds and measuring the loss in drug-free media, or culturing hepatocytes with supportive cells as co/tricultures, facilitate quantitation of metabolically stable compounds in substrate depletion assays compared to suspension hepatocytes (SH). All 4 models exhibit robust estimates of CLint,u and CLb, but plated models allowed assessment of several compounds found to be too stable to evaluate in SH.
Collapse
Affiliation(s)
- David A Kukla
- Quantitative, Translational, & ADME Sciences (QTAS), AbbVie Inc, North Chicago, Illinois
| | - Julia A Schulz Pauly
- Quantitative, Translational, & ADME Sciences (QTAS), AbbVie Inc, North Chicago, Illinois
| | - Paul R Lesniak
- Quantitative, Translational, & ADME Sciences (QTAS), AbbVie Inc, North Chicago, Illinois
| | - Elizabeth Sande
- Quantitative, Translational, & ADME Sciences (QTAS), AbbVie Inc, North Chicago, Illinois
| | - Yue-Ting Wang
- Quantitative, Translational, & ADME Sciences (QTAS), AbbVie Inc, North Chicago, Illinois
| | - John Cory Kalvass
- Quantitative, Translational, & ADME Sciences (QTAS), AbbVie Inc, North Chicago, Illinois
| | - David M Stresser
- Quantitative, Translational, & ADME Sciences (QTAS), AbbVie Inc, North Chicago, Illinois.
| |
Collapse
|
4
|
Aravindakshan MR, Mandal C, Pothen A, Schaller S, Maass C. DigiLoCS: A leap forward in predictive organ-on-chip simulations. PLoS One 2025; 20:e0314083. [PMID: 39787162 PMCID: PMC11717216 DOI: 10.1371/journal.pone.0314083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 11/05/2024] [Indexed: 01/12/2025] Open
Abstract
Digital twins, driven by data and mathematical modelling, have emerged as powerful tools for simulating complex biological systems. In this work, we focus on modelling the clearance on a liver-on-chip as a digital twin that closely mimics the clearance functionality of the human liver. Our approach involves the creation of a compartmental physiological model of the liver using ordinary differential equations (ODEs) to estimate pharmacokinetic (PK) parameters related to on-chip liver clearance. The objectives of this study were twofold: first, to predict human clearance values, and second, to propose a framework for bridging the gap between in vitro findings and their clinical relevance. The methodology integrated quantitative Organ-on-Chip (OoC) and cell-based assay analyses of drug depletion kinetics and is further enhanced by incorporating an OoC-digital twin model to simulate drug depletion kinetics in humans. The in vitro liver clearance for 32 drugs was predicted using a digital-twin model of the liver-on-chip and in vitro to in vivo extrapolation (IVIVE) was assessed using time series PK data. Three ODEs in the model define the drug concentrations in media, interstitium and intracellular compartments based on biological, hardware, and physicochemical information. A key issue in determining liver clearance appears to be the insufficient drug concentration within the intracellular compartment. The digital twin establishes a connection between the hardware chip structure and an advanced mapping of the underlying biology, specifically focusing on the intracellular compartment. Our modelling offers the following benefits: i) better prediction of intrinsic liver clearance of drugs compared to the conventional model and ii)explainability of behaviour based on physiological parameters. Finally, we illustrate the clinical significance of this approach by applying the findings to humans, utilising propranolol as a proof-of-concept example. This study stands out as the biggest cross-organ-on-chip platform investigation to date, systematically analysing and predicting human clearance values using data obtained from various in vitro liver-on-chip systems. Accurate prediction of in vivo clearance from in vitro data is important as inadequate understanding of the clearance of a compound can lead to unexpected and undesirable outcomes in clinical trials, ranging from underdosing to toxicity. Physiologically based pharmacokinetic (PBPK) model estimation of liver clearance is explored. The aim is to develop digital twins capable of determining better predictions of clinical outcomes, ultimately reducing the time, cost, and patient burden associated with drug development. Various hepatic in vitro systems are compared and their effectiveness for predicting human clearance is investigated. The developed tool, DigiLoCs, focuses explicitly on accurately describing complex biological processes within liver-chip systems. ODE-constrained optimisation is applied to estimate the clearance of compounds. DigiLoCs enable differentiation between active biological processes (metabolism) and passive processes (permeability and partitioning) by incorporating detailed information on compound-specific characteristics and hardware-specific data. These findings signify a significant stride towards more accurate and efficient drug development methodologies.
Collapse
Affiliation(s)
| | - Chittaranjan Mandal
- Department of Computer Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Alex Pothen
- Department of Computer Science, Purdue University, West Lafayette, Indiana, United States
| | | | - Christian Maass
- ESQlabs Gmbh, Saterland, Germany
- MPSlabs, ESQlabs Gmbh, Saterland, Germany
| |
Collapse
|
5
|
Nandre RM, Newman AH, Terse PS. In vitro safety evaluation of dopamine D3R antagonist, R-VK4-116, as a potential medication for the treatment of opioid use disorder. PLoS One 2024; 19:e0315569. [PMID: 39680602 DOI: 10.1371/journal.pone.0315569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
R-VK4-116 is currently being developed as a medication to treat opioid use disorder (OUD). To characterize in vitro safety properties of R-VK4-116, metabolic stability in hepatocytes or liver microsomes, metabolite identification, metabolism/transporter-mediated drug interactions, lysosomal perturbation, mitochondrial toxicity, off-target enzyme effects, cellular and nuclear receptor functional assays, electrophysiological assays, CiPA, KINOMEscanTM, plasma protein binding, phospholipidosis and steatosis assays were performed. Overall, R-VK4-116 was metabolically stable in hepatocytes and microsomes. Four major metabolites were detected: two mono-oxidation products, one di-oxidation product, and one demethylated plus di-oxidation product. CYP2D6 and CYP3A4 were major contributors in R-VK4-116 metabolism. Further, R-VK4-116 did not induce/inhibit CYP enzymes. However, R-VK4-116 inhibited BCRP/P-gp, and showed antagonist effects on α1A(h), H1(h) and agonist effect on hGABAA∞1β2γ2 at 10 μM. R-VK4-116 inhibited hERG and Kir2.1 at a high concentration of 100 μM. KINOMEscanTM provided 5 hits (CHEK2, HPK1, MARK3, SRPK2 and TNK1) with Kds of >10 μM. Further, R-VK4-116 was bound to human, rat and dog plasma proteins (~83-93%). R-VK4-116 did not induce lysosome perturbation, mitochondrial toxicity, phospholipidosis, or steatosis at ≤10 μM. These results demonstrated that R-VK4-116 possesses favorable in vitro safety properties and supports further development as a potential medication for OUD.
Collapse
Affiliation(s)
- Rahul M Nandre
- Therapeutic Development Branch, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institute of Health, Rockville, Maryland, United States of America
| | - Amy Hauck Newman
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, National Institute of Health, Baltimore, Maryland, United States of America
| | - Pramod S Terse
- Therapeutic Development Branch, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institute of Health, Rockville, Maryland, United States of America
| |
Collapse
|
6
|
Werner S, Hegg L, Hopf NB, Borgatta M, Suter‐Dick L. In Vitro Hepatic Metabolism Input Parameters Support Toxicokinetic Simulations for the Formation of Methoxy Propionic Acid From β-Isomer Propylene Glycol Methyl Ether. Pharmacol Res Perspect 2024; 12:e70037. [PMID: 39655648 PMCID: PMC11629119 DOI: 10.1002/prp2.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 11/01/2024] [Indexed: 12/13/2024] Open
Abstract
Propylene glycol ethers (PGEs) are organic solvents commonly found as technical grade on the commercial market, as mixtures of secondary (α-isomer) and primary (β-isomer, generally < 5%) alcohols. After handling products containing PGEs, they readily enter the human body where they are metabolized. The minor β-isomer is oxidized by alcohol dehydrogenase (ADH) followed by aldehyde dehydrogenase (ALDH) to a potentially harmful metabolite. Although the enzymatic rate is needed to estimate both parent and metabolite internal exposures, kinetic data for many PGEs are still scarce. Therefore, we generated in vitro hepatic intrinsic clearance data for propylene glycol methyl ether β-isomer (β-PGME) and its metabolite methoxy propionic acid (2-MPA) and integrated these data into an in silico toxicokinetic (TK) model. Hepatic clearance values for the model were generated using an established in vitro 3D culture of the human HepaRG cell line and human S9 liver fraction. Our results showed the presence of ADH and ALDH and consequently, the formation of 2-MPA in the 3D HepaRG and S9 fraction, which was slow to medium. We integrated the hepatic clearance values into the TK model to predict urinary 2-MPA concentrations. The simulated urinary 2-MPA concentrations fitted well (within twofold error from observed experimental data) for both liver systems, showing that they were both able to reliably predict the hepatic clearance of β-PGME. Although S9 is suitable for short-term studies, 3D cell culture models maintain metabolic competence over days and weeks. This opens the opportunity for long-term metabolism studies applying the 3D HepaRG model alone or in multi-organ systems.
Collapse
Affiliation(s)
- Sophie Werner
- School of Life SciencesUniversity of Applied Sciences and Arts Northwestern SwitzerlandMuttenzSwitzerland
- Department of Pharmaceutical SciencesUniversity of BaselBaselSwitzerland
- Swiss Centre for Applied Human Toxicology (SCAHT)BaselSwitzerland
| | - Lucie Hegg
- Swiss Centre for Applied Human Toxicology (SCAHT)BaselSwitzerland
- Center for Primary Care and Public Health (Unisanté)University of LausanneLausanneSwitzerland
| | - Nancy B. Hopf
- Swiss Centre for Applied Human Toxicology (SCAHT)BaselSwitzerland
- Center for Primary Care and Public Health (Unisanté)University of LausanneLausanneSwitzerland
| | - Myriam Borgatta
- Swiss Centre for Applied Human Toxicology (SCAHT)BaselSwitzerland
- Center for Primary Care and Public Health (Unisanté)University of LausanneLausanneSwitzerland
| | - Laura Suter‐Dick
- School of Life SciencesUniversity of Applied Sciences and Arts Northwestern SwitzerlandMuttenzSwitzerland
- Swiss Centre for Applied Human Toxicology (SCAHT)BaselSwitzerland
| |
Collapse
|
7
|
Savaryn JP, Coe K, Cerny MA, Colizza K, Moliner P, King L, Ma B, Atherton J, Auclair A, Cancilla MT, Eno M, Jurva U, Yue Q, Zhu SX, Freiberger E, Zhong G, Barlock B, Nachtigall J, Laboureur L, Pusalkar S, Guo R, Niehues M, Hauri S, Carreras ET, Maurer C, Prakash C, Jenkins GJ. The Current State of Biotransformation Science - Industry Survey of In Vitro and In Vivo Practices, Clinical Translation, and Future Trends. Pharm Res 2024; 41:2079-2093. [PMID: 39496990 PMCID: PMC11599300 DOI: 10.1007/s11095-024-03787-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/17/2024] [Indexed: 11/06/2024]
Abstract
Embedded within the field of drug metabolism and pharmacokinetics (DMPK), biotransformation is a discipline that studies the origins, disposition, and structural identity of metabolites to provide a comprehensive safety assessment, including the assessment of exposure coverage in toxicological species. Spanning discovery and development, metabolite identification (metID) scientists employ various strategies and tools to address stage-specific questions aimed at guiding the maturation of early chemical matter into drug candidates. During this process, the identity of major (and minor) circulating human metabolites is ascertained to comply with the regulatory requirements such as the Metabolites in Safety Testing (MIST) guidance. Through the International Consortium for Innovation and Quality in Pharmaceutical Development (IQ), the "Translatability of MetID In Vitro Systems Working Group" was created within the Translational and ADME Sciences Leadership Group. The remit of this group was to objectively determine how accurate commonly employed in vitro systems have been with respect to prediction of circulating human metabolites, both qualitatively and quantitatively. A survey composed of 34 questions was conducted across 26 pharmaceutical companies to obtain a foundational understanding of current metID practices, preclinically and clinically, as well as to provide perspective on how successful these practices have been at predicting circulating human metabolites. The results of this survey are presented as an initial snapshot of current industry-based metID practices, including our perspective on how a harmonized framework for the conduct of in vitro metID studies could be established. Future perspectives from current practices to emerging advances with greater translational capability are also provided.
Collapse
Affiliation(s)
- John P Savaryn
- AbbVie, Quantitative, Translational & ADME Sciences, North Chicago, IL, USA.
| | - Kevin Coe
- J&J, Translational PKPD & Investigational Toxicology, San Diego, CA, USA
| | | | - Kevin Colizza
- GSK, DMPK Disposition and Biotransformation, Collegeville, PA, USA.
| | | | - Lloyd King
- UCB Biopharma, Dept. of DMPK, Slough, UK
| | - Bin Ma
- Genentech, Inc., Department of Drug Metabolism and Pharmacokinetics, South San Francisco, CA, USA
| | - Jim Atherton
- Incyte Research Institute, Translational Sciences, Wilmington, DE, USA
| | - Adam Auclair
- Boehringer Ingelheim Pharmaceuticals, Inc.,Drug Metabolism and Pharmacokinetics, Ridgefield, CT, USA
| | - Mark T Cancilla
- Merck & Co., Inc., Pharmacokinetics, Dynamics, Metabolism, and Bioanalysis, Rahway, NJ, USA
| | - Marsha Eno
- Eisai Inc., Global Drug Metabolism and Pharmacokinetics, Cambridge, MA, USA
| | - Ulrik Jurva
- AstraZeneca, Drug Metabolism and Pharmacokinetics (DMPK), Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, Gothenburg, Sweden
| | - Qin Yue
- Gilead Sciences, Inc., Drug Metabolism Dept, Foster City, CA, USA
| | - Sean Xiaochun Zhu
- Takeda Development Center Americas, Inc., Drug Metabolism and Pharmacokinetics & Modeling, Cambridge, MA, USA
| | - Elyse Freiberger
- AbbVie, Quantitative, Translational & ADME Sciences, North Chicago, IL, USA
| | - Guo Zhong
- Amgen, Pharmacokinetics and Drug Metabolism Department, South San Francisco, CA, USA
| | | | | | | | | | - Runcong Guo
- Beigene, DMPK, Department of Biology, Shanghai, China
| | - Michael Niehues
- Bayer AG, In Vitro ADME & Isotope Chemistry, Berlin, Germany
| | - Simon Hauri
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | - Ester Tor Carreras
- Novartis Pharma AG, Novartis Institute for Biomedical Research, Basel, Switzerland
| | | | - Chandra Prakash
- DMPK/Clinical Pharmacology, Agios Pharmaceuticals, Cambridge, MA, USA
| | - Gary J Jenkins
- AbbVie, Quantitative, Translational & ADME Sciences, North Chicago, IL, USA
| |
Collapse
|
8
|
Schulz Pauly JA, Sande E, Feng M, Wang YT, Stresser DM, Kalvass JC. Proof of Concept of an All-in-One System for Measuring Hepatic Influx, Egress, and Metabolic Clearance Based on the Extended Clearance Concept. Drug Metab Dispos 2024; 52:1048-1059. [PMID: 39095207 DOI: 10.1124/dmd.124.001768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024] Open
Abstract
Hepatic clearance (CLH ) prediction is a critical parameter to estimate human dose. However, CLH underpredictions are common, especially for slowly metabolized drugs, and may be attributable to drug properties that pose challenges for conventional in vitro absorption, distribution, metabolism, and elimination (ADME) assays, resulting in nonvalid data, which prevents in vitro to in vivo extrapolation and CLH predictions. Other processes, including hepatocyte and biliary distribution via transporters, can also play significant roles in CLH Recent advances in understanding the interplay of metabolism and drug transport for clearance processes have aided in developing the extended clearance model. In this study, we demonstrate proof of concept of a novel two-step assay enabling the measurement of multiple kinetic parameters from a single experiment in plated human primary hepatocytes with and without transporter and cytochrome P450 inhibitors-the hepatocyte uptake and loss assay (HUpLA). HUpLA accurately predicted the CLH of eight of the nine drugs (within twofold of the observed CLH ). Distribution clearances were within threefold of observed literature values in standard uptake and efflux assays. In comparison, the conventional suspension hepatocyte stability assay poorly predicted the CLH The CLH of only two drugs was predicted within twofold of the observed CLH Therefore, HUpLA is advantageous by enabling the measurement of enzymatic and transport processes concurrently within the same system, alleviating the need for applying scaling factors independently. The use of primary human hepatocytes enables physiologically relevant exploration of transporter-enzyme interplay. Most importantly, HUpLA shows promise as a sensitive measure for low-turnover drugs. Further evaluation across different drug characteristics is needed to demonstrate method robustness. SIGNIFICANCE STATEMENT: The hepatocyte uptake and loss assay involves measuring four commonly derived in vitro hepatic clearance endpoints. Since endpoints are generated within a single test system, it blunts experimental error originating from assays otherwise conducted independently. A key advantage is the concept of removing drug-containing media following intracellular drug loading, enabling the measurement of drug reappearance rate in media as well as the measurement of loss of total drug in the test system unencumbered by background quantities of drug in media otherwise present in a conventional assay.
Collapse
Affiliation(s)
- Julia A Schulz Pauly
- Quantitative, Translational, and ADME Sciences, Abbvie Inc., North Chicago, Illinois
| | - Elizabeth Sande
- Quantitative, Translational, and ADME Sciences, Abbvie Inc., North Chicago, Illinois
| | - Mei Feng
- Quantitative, Translational, and ADME Sciences, Abbvie Inc., North Chicago, Illinois
| | - Yue-Ting Wang
- Quantitative, Translational, and ADME Sciences, Abbvie Inc., North Chicago, Illinois
| | - David M Stresser
- Quantitative, Translational, and ADME Sciences, Abbvie Inc., North Chicago, Illinois
| | - John Cory Kalvass
- Quantitative, Translational, and ADME Sciences, Abbvie Inc., North Chicago, Illinois
| |
Collapse
|
9
|
Mehta V, Karnam G, Madgula V. Liver-on-chips for drug discovery and development. Mater Today Bio 2024; 27:101143. [PMID: 39070097 PMCID: PMC11279310 DOI: 10.1016/j.mtbio.2024.101143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/07/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024] Open
Abstract
Recent FDA modernization act 2.0 has led to increasing industrial R&D investment in advanced in vitro 3D models such as organoids, spheroids, organ-on-chips, 3D bioprinting, and in silico approaches. Liver-related advanced in vitro models remain the prime area of interest, as liver plays a central role in drug clearance of compounds. Growing evidence indicates the importance of recapitulating the overall liver microenvironment to enhance hepatocyte maturity and culture longevity using liver-on-chips (LoC) in vitro. Hence, pharmaceutical industries have started exploring LoC assays in the two of the most challenging areas: accurate in vitro-in vivo extrapolation (IVIVE) of hepatic drug clearance and drug-induced liver injury. We examine the joint efforts of commercial chip manufacturers and pharmaceutical companies to present an up-to-date overview of the adoption of LoC technology in the drug discovery. Further, several roadblocks are identified to the rapid adoption of LoC assays in the current drug development framework. Finally, we discuss some of the underexplored application areas of LoC models, where conventional 2D hepatic models are deemed unsuitable. These include clearance prediction of metabolically stable compounds, immune-mediated drug-induced liver injury (DILI) predictions, bioavailability prediction with gut-liver systems, hepatic clearance prediction of drugs given during pregnancy, and dose adjustment studies in disease conditions. We conclude the review by discussing the importance of PBPK modeling with LoC, digital twins, and AI/ML integration with LoC.
Collapse
Affiliation(s)
- Viraj Mehta
- Organoid Technology Lab, DMPK Department, Sai Life Sciences, Hyderabad, 500078, India
| | - Guruswamy Karnam
- Organoid Technology Lab, DMPK Department, Sai Life Sciences, Hyderabad, 500078, India
| | - Vamsi Madgula
- Organoid Technology Lab, DMPK Department, Sai Life Sciences, Hyderabad, 500078, India
| |
Collapse
|
10
|
Kukla DA, Belair DG, Stresser DM. Evaluation and Optimization of a Microcavity Plate-Based Human Hepatocyte Spheroid Model for Predicting Clearance of Slowly Metabolized Drug Candidates. Drug Metab Dispos 2024; 52:797-812. [PMID: 38777596 DOI: 10.1124/dmd.124.001653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
In vitro clearance assays are routinely conducted in drug discovery to predict in vivo clearance, but low metabolic turnover compounds are often difficult to evaluate. Hepatocyte spheroids can be cultured for days, achieving higher drug turnover, but have been hindered by limitations on cell number per well. Corning Elplasia microcavity 96-well microplates enable the culture of 79 hepatocyte spheroids per well. In this study, microcavity spheroid properties (size, hepatocyte function, longevity, culturing techniques) were assessed and optimized for clearance assays, which were then compared with microsomes, hepatocyte suspensions, two-dimensional-plated hepatocytes, and macrowell spheroids cultured as one per well. Higher enzyme activity coupled with greater hepatocyte concentrations in microcavity spheroids enabled measurable turnover of all 17 test compounds, unlike the other models that exhibited less drug turnover. Microcavity spheroids also predicted intrinsic clearance (CLint) and blood clearance (CLb) within threefold for 53% [9/17; average absolute fold error (AAFE), 3.9] and 82% (14/17; AAFE, 2.6) of compounds using a linear regression correction model, respectively. An alternate method incorporating mechanistic modeling that accounts for mass transport (permeability and diffusion) within spheroids demonstrated improved predictivity for CLint (12/17; AAFE, 4.0) and CLb (14/17; AAFE, 2.1) without the need for empirical scaling factors. The estimated fraction of drug metabolized by cytochrome P450 3A4 (fm,CYP3A4) using 3 μM itraconazole was within 25% of observed values for 6 of 8 compounds, with 5 of 8 compounds within 10%. In sum, spheroid cultures in microcavity plates permit the ability to test and predict clearance as well as fm,CYP3A4 of low metabolic turnover compounds and represent a valuable complement to conventional in vitro clearance assays. SIGNIFICANCE STATEMENT: Culturing multiple spheroids in ultralow attachment microcavities permits accurate quantitation of metabolically stable compounds in substrate depletion assays, overcoming limitations with singly cultured spheroids. In turn, this permits robust estimates of intrinsic clearance, which is improved with the consideration of mass transport within the spheroid. Incubations with 3 μM itraconazole enabled assessments of CYP3A4 involvement in hepatic clearance.
Collapse
Affiliation(s)
- David A Kukla
- Quantitative, Translational, and ADME Sciences, AbbVie Inc., North Chicago, Illinois
| | - David G Belair
- Quantitative, Translational, and ADME Sciences, AbbVie Inc., North Chicago, Illinois
| | - David M Stresser
- Quantitative, Translational, and ADME Sciences, AbbVie Inc., North Chicago, Illinois
| |
Collapse
|
11
|
Preiss LC, Georgi K, Lauschke VM, Petersson C. Comparison of Human Long-Term Liver Models for Clearance Prediction of Slowly Metabolized Compounds. Drug Metab Dispos 2024; 52:539-547. [PMID: 38604730 DOI: 10.1124/dmd.123.001638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/06/2024] [Accepted: 03/19/2024] [Indexed: 04/13/2024] Open
Abstract
The accurate prediction of human clearance is an important task during drug development. The proportion of low clearance compounds has increased in drug development pipelines across the industry since such compounds may be dosed in lower amounts and at lower frequency. These type of compounds present new challenges to in vitro systems used for clearance extrapolation. In this study, we compared the accuracy of clearance predictions of suspension culture to four different long-term stable in vitro liver models, including HepaRG sandwich culture, the Hµrel stochastic co-culture, the Hepatopac micropatterned co-culture (MPCC), and a micro-array spheroid culture. Hepatocytes in long-term stable systems remained viable and active over several days of incubation. Although intrinsic clearance values were generally high in suspension culture, clearance of low turnover compounds could frequently not be determined using this method. Metabolic activity and intrinsic clearance values from HepaRG cultures were low and, consequently, many compounds with low turnover did not show significant decline despite long incubation times. Similarly, stochastic co-cultures occasionally failed to show significant turnover for multiple low and medium turnover compounds. Among the different methods, MPCCs and spheroids provided the most consistent measurements. Notably, all culture methods resulted in underprediction of clearance; this could, however, be compensated for by regression correction. Combined, the results indicate that spheroid culture as well as the MPCC system provide adequate in vitro tools for human extrapolation for compounds with low metabolic turnover. SIGNIFICANCE STATEMENT: In this study, we compared suspension cultures, HepaRG sandwich cultures, the Hµrel liver stochastic co-cultures, the Hepatopac micropatterned co-cultures (MPCC), and micro-array spheroid cultures for low clearance determination and prediction. Overall, HepaRG and suspension cultures showed modest value for the low determination and prediction of clearance compounds. The micro-array spheroid culture resulted in the most robust clearance measurements, whereas using the MPCC resulted in the most accurate prediction for low clearance compounds.
Collapse
Affiliation(s)
- Lena C Preiss
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (L.C.P., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), The Healthcare Business of Merck KGaA, Darmstadt, Germany (L.C.P., K.G., C.P.); Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.); and University of Tuebingen, Tuebingen, Germany (V.M.L.)
| | - Katrin Georgi
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (L.C.P., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), The Healthcare Business of Merck KGaA, Darmstadt, Germany (L.C.P., K.G., C.P.); Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.); and University of Tuebingen, Tuebingen, Germany (V.M.L.)
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (L.C.P., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), The Healthcare Business of Merck KGaA, Darmstadt, Germany (L.C.P., K.G., C.P.); Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.); and University of Tuebingen, Tuebingen, Germany (V.M.L.)
| | - Carl Petersson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (L.C.P., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), The Healthcare Business of Merck KGaA, Darmstadt, Germany (L.C.P., K.G., C.P.); Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.); and University of Tuebingen, Tuebingen, Germany (V.M.L.)
| |
Collapse
|
12
|
Francis L, Ogungbenro K, De Bruyn T, Houston JB, Hallifax D. Exploring the Boundaries for In Vitro-In Vivo Extrapolation: Use of Isolated Rat Hepatocytes in Co-culture and Impact of Albumin Binding Properties in the Prediction of Clearance of Various Drug Types. Drug Metab Dispos 2023; 51:1463-1473. [PMID: 37580106 DOI: 10.1124/dmd.123.001309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/15/2023] [Accepted: 08/08/2023] [Indexed: 08/16/2023] Open
Abstract
Prediction of hepatic clearance of drugs (via uptake or metabolism) from in vitro systems continues to be problematic, particularly when plasma protein binding is high. The following work explores simultaneous assessment of both clearance processes, focusing on a commercial hepatocyte-fibroblast co-culture system (HμREL) over a 24-hour period using six probe drugs (ranging in metabolic and transporter clearance and low-to-high plasma protein binding). A rat hepatocyte co-culture assay was established using drug depletion (measuring both medium and total concentrations) and cell uptake kinetic analysis, both in the presence and absence of plasma protein (1% bovine serum albumin). Secretion of endogenous albumin was monitored as a marker of viability, and this reached 0.004% in incubations (at a rate similar to in vivo synthesis). Binding to stromal cells was substantial and required appropriate correction factors. Drug concentration-time courses were analyzed both by conventional methods and a mechanistic cell model prior to in vivo extrapolation. Clearance assayed by drug depletion in conventional suspended rat hepatocytes provided a benchmark to evaluate co-culture value. Addition of albumin appeared to improve predictions for some compounds (where fraction unbound in the medium is less than 0.1); however, for high-binding drugs, albumin significantly limited quantification and thus predictions. Overall, these results highlight ongoing challenges concerning in vitro hepatocyte system complexity and limitations of practical expediency. Considering this, more reliable measurement of hepatically cleared compounds seems possible through judicious use of available hepatocyte systems, including co-culture systems, as described herein; this would include those compounds with low metabolic turnover but high active uptake clearance. SIGNIFICANCE STATEMENT: Co-culture systems offer a more advanced tool than standard hepatocytes, with the ability to be cultured for longer periods of time, yet their potential as an in vitro tool has not been extensively assessed. We evaluate the strengths and limitations of the HμREL system using six drugs representing various metabolic and transporter-mediated clearance pathways with various degrees of albumin binding. Studies in the presence/absence of albumin allow in vitro-in vivo extrapolation and a framework to maximize their utility.
Collapse
Affiliation(s)
- Laura Francis
- 1Centre of Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom (L.F., K.O., J.B.H., D.H.) and Genentech, Inc., South San Francisco, California (T.D.B.)
| | - Kayode Ogungbenro
- 1Centre of Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom (L.F., K.O., J.B.H., D.H.) and Genentech, Inc., South San Francisco, California (T.D.B.)
| | - Tom De Bruyn
- 1Centre of Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom (L.F., K.O., J.B.H., D.H.) and Genentech, Inc., South San Francisco, California (T.D.B.)
| | - J Brian Houston
- 1Centre of Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom (L.F., K.O., J.B.H., D.H.) and Genentech, Inc., South San Francisco, California (T.D.B.)
| | - David Hallifax
- 1Centre of Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom (L.F., K.O., J.B.H., D.H.) and Genentech, Inc., South San Francisco, California (T.D.B.)
| |
Collapse
|
13
|
Rajan SAP, Sherfey J, Ohri S, Nichols L, Smith JT, Parekh P, Kadar EP, Clark F, George BT, Gregory L, Tess D, Gosset JR, Liras J, Geishecker E, Obach RS, Cirit M. A Novel Milli-fluidic Liver Tissue Chip with Continuous Recirculation for Predictive Pharmacokinetics Applications. AAPS J 2023; 25:102. [PMID: 37891356 DOI: 10.1208/s12248-023-00870-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
A crucial step in lead selection during drug development is accurate estimation and optimization of hepatic clearance using in vitro methods. However, current methods are limited by factors such as lack of physiological relevance, short culture/incubation times that are not consistent with drug exposure patterns in patients, use of drug absorbing materials, and evaporation during long-term incubation. To address these technological needs, we developed a novel milli-fluidic human liver tissue chip (LTC) that was designed with continuous media recirculation and optimized for hepatic cultures using human primary hepatocytes. Here, we characterized the LTC using a series of physiologically relevant metrics and test compounds to demonstrate that we could accurately predict the PK of both low- and high-clearance compounds. The non-biological characterization indicated that the cyclic olefin copolymer (COC)-based LTC exhibited negligible evaporation and minimal non-specific binding of drugs of varying ionic states and lipophilicity. Biologically, the LTC exhibited functional and polarized hepatic culture with sustained metabolic CYP activity for at least 15 days. This long-term culture was then used for drug clearance studies for low- and high-clearance compounds for at least 12 days, and clearance was estimated for a range of compounds with high in vitro-in vivo correlation (IVIVC). We also demonstrated that LTC can be induced by rifampicin, and the culture age had insignificant effect on depletion kinetic and predicted clearance value. Thus, we used advances in bioengineering to develop a novel purpose-built platform with high reproducibility and minimal variability to address unmet needs for PK applications.
Collapse
Affiliation(s)
| | - Jason Sherfey
- Javelin Biotech Inc, 299 Washington street, Woburn, Massachusetts, 01801, USA
| | - Shivam Ohri
- Javelin Biotech Inc, 299 Washington street, Woburn, Massachusetts, 01801, USA
| | - Lauren Nichols
- Javelin Biotech Inc, 299 Washington street, Woburn, Massachusetts, 01801, USA
| | - J Tyler Smith
- Javelin Biotech Inc, 299 Washington street, Woburn, Massachusetts, 01801, USA
| | - Paarth Parekh
- Javelin Biotech Inc, 299 Washington street, Woburn, Massachusetts, 01801, USA
| | - Eugene P Kadar
- Pfizer Global Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut, 06340, USA
| | - Frances Clark
- Pfizer Global Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut, 06340, USA
| | - Billy T George
- Pfizer Global Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut, 06340, USA
| | - Lauren Gregory
- Pfizer Global Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut, 06340, USA
| | - David Tess
- Pfizer Global Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut, 06340, USA
| | - James R Gosset
- Pfizer Worldwide Research and Development, 610 Main Street, Cambridge, Massachusetts, 02139, USA
| | - Jennifer Liras
- Pfizer Worldwide Research and Development, 610 Main Street, Cambridge, Massachusetts, 02139, USA
| | - Emily Geishecker
- Javelin Biotech Inc, 299 Washington street, Woburn, Massachusetts, 01801, USA
| | - R Scott Obach
- Pfizer Global Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut, 06340, USA
| | - Murat Cirit
- Javelin Biotech Inc, 299 Washington street, Woburn, Massachusetts, 01801, USA.
| |
Collapse
|
14
|
Di L. Recent advances in measurement of metabolic clearance, metabolite profile and reaction phenotyping of low clearance compounds. Expert Opin Drug Discov 2023; 18:1209-1219. [PMID: 37526497 DOI: 10.1080/17460441.2023.2238606] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/17/2023] [Indexed: 08/02/2023]
Abstract
INTRODUCTION Low metabolic clearance is usually a highly desirable property of drug candidates in order to reduce dose and dosing frequency. However, measurement of low clearance can be challenging in drug discovery. A number of new tools have recently been developed to address the gaps in the measurement of intrinsic clearance, identification of metabolites, and reaction phenotyping of low clearance compounds. AREAS COVERED The new methodologies of low clearance measurements are discussed, including the hepatocyte relay, HepatoPac®, HμREL®, and spheroid systems. In addition, metabolite formation rate determination and in vivo allometric scaling approaches are covered as alternative methods for low clearance measurements. With these new methods, measurement of ~ 20-fold lower limit of intrinsic clearance can be achieved. The advantages and limitations of each approach are highlighted. EXPERT OPINION Although several novel methods have been developed in recent years to address the challenges of low clearance, these assays tend to be time and labor intensive and costly. Future innovations focusing on developing systems with high enzymatic activities, ultra-sensitive universal quantifiable detectors, and artificial intelligence will further enhance our ability to explore the low clearance space.
Collapse
Affiliation(s)
- Li Di
- Research Fellow, Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Groton, CT, USA
| |
Collapse
|
15
|
Qi B, Gijsen M, De Vocht T, Deferm N, Van Brantegem P, Abza GB, Nauwelaerts N, Wauters J, Spriet I, Annaert P. Unravelling the Hepatic Elimination Mechanisms of Colistin. Pharm Res 2023; 40:1723-1734. [PMID: 37258948 DOI: 10.1007/s11095-023-03536-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 05/13/2023] [Indexed: 06/02/2023]
Abstract
PURPOSE Colistin is an antibiotic which is increasingly used as a last-resort therapy in critically-ill patients with multidrug resistant Gram-negative infections. The purpose of this study was to evaluate the mechanisms underlying colistin's pharmacokinetic (PK) behavior and to characterize its hepatic metabolism. METHODS In vitro incubations were performed using colistin sulfate with rat liver microsomes (RLM) and with rat and human hepatocytes (RH and HH) in suspension. The uptake of colistin in RH/HH and thefraction of unbound colistin in HH (fu,hep) was determined. In vitro to in vivo extrapolation (IVIVE) was employed to predict the hepatic clearance (CLh) of colistin. RESULTS Slow metabolism was detected in RH/HH, with intrinsic clearance (CLint) values of 9.34± 0.50 and 3.25 ± 0.27 mL/min/kg, respectively. Assuming the well-stirred model for hepatic drug elimination, the predicted rat CLh was 3.64± 0.22 mL/min/kg which could explain almost 70% of the reported non-renal in vivo clearance. The predicted human CLh was 91.5 ± 8.83 mL/min, which was within two-fold of the reported plasma clearance in healthy volunteers. When colistin was incubated together with the multidrug resistance-associated protein (MRP/Mrp) inhibitor benzbromarone, the intracellular accumulation of colistin in RH/HH increased significantly. CONCLUSION These findings indicate the major role of hepatic metabolism in the non-renal clearance of colistin, while MRP/Mrp-mediated efflux is involved in the hepatic disposition of colistin. Our data provide detailed quantitative insights into the hereto unknown mechanisms responsible for non-renal elimination of colistin.
Collapse
Affiliation(s)
- Bing Qi
- Drug Delivery and Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, Leuven, Belgium
- The Second Affiliated Hospital, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Matthias Gijsen
- Clinical Pharmacology and Pharmacotherapy, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, Leuven, Belgium
- Pharmacy Department, University Hospitals Leuven, Leuven, Belgium
| | - Tom De Vocht
- Drug Delivery and Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, Leuven, Belgium
| | - Neel Deferm
- Drug Delivery and Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, Leuven, Belgium
| | - Pieter Van Brantegem
- Drug Delivery and Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, Leuven, Belgium
| | - Getahun B Abza
- Drug Delivery and Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, Leuven, Belgium
| | - Nina Nauwelaerts
- Drug Delivery and Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, Leuven, Belgium
| | - Joost Wauters
- Clinical Infectious and Inflammatory Disorders, KU Leuven Department of Microbiology and Immunology; Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Isabel Spriet
- Clinical Pharmacology and Pharmacotherapy, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, Leuven, Belgium
- Pharmacy Department, University Hospitals Leuven, Leuven, Belgium
| | - Pieter Annaert
- Drug Delivery and Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, Leuven, Belgium.
| |
Collapse
|
16
|
Cortopassi WA, Gunderson E, Annunciato Y, Silva A, dos Santos Ferreira A, Garcia Teles CB, Pimentel AS, Ramamoorthi R, Gazarini ML, Meneghetti MR, Guido R, Pereira DB, Jacobson MP, Krettli AU, Caroline C Aguiar A. Fighting Plasmodium chloroquine resistance with acetylenic chloroquine analogues. Int J Parasitol Drugs Drug Resist 2022; 20:121-128. [PMID: 36375339 PMCID: PMC9771834 DOI: 10.1016/j.ijpddr.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022]
Abstract
Malaria is among the tropical diseases that cause the most deaths in Africa. Around 500,000 malaria deaths are reported yearly among African children under the age of five. Chloroquine (CQ) is a low-cost antimalarial used worldwide for the treatment of Plasmodium vivax malaria. Due to resistance mechanisms, CQ is no longer effective against most malaria cases caused by P. falciparum. The World Health Organization recommends artemisinin combination therapies for P. falciparum malaria, but resistance is emerging in Southeast Asia and some parts of Africa. Therefore, new medicines for treating malaria are urgently needed. Previously, our group identified the 4-aminoquinoline DAQ, a CQ analog containing an acetylenic bond in its side chain, which overcomes CQ resistance in K1 P. falciparum strains. In this work, the antiplasmodial profile, drug-like properties, and pharmacokinetics of DAQ were further investigated. DAQ showed no cross-resistance against standard CQ-resistant strains (e.g., Dd2, IPC 4912, RF12) nor against P. falciparum and P. vivax isolates from patients in the Brazilian Amazon. Using drug pressure assays, DAQ showed a low propensity to generate resistance. DAQ showed considerable solubility but low metabolic stability. The main metabolite was identified as a mono N-deethylated derivative (DAQM), which also showed significant inhibitory activity against CQ-resistant P. falciparum strains. Our findings indicated that the presence of a triple bond in CQ-analogues may represent a low-cost opportunity to overcome known mechanisms of resistance in the malaria parasite.
Collapse
Affiliation(s)
- Wilian A. Cortopassi
- Department of Pharmaceutical Chemistry, University of California, San Francisco, USA
| | - Emma Gunderson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, USA
| | - Yasmin Annunciato
- Department of Biosciences, Federal University of São Paulo, Santos, SP, Brazil
| | - Antony.E.S. Silva
- Group of Catalysis and Chemical Reactivity Group, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, AL, Brazil
| | | | | | - Andre S. Pimentel
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro, RJ, Brazil
| | | | - Marcos L Gazarini
- Department of Biosciences, Federal University of São Paulo, Santos, SP, Brazil
| | - Mario R. Meneghetti
- Group of Catalysis and Chemical Reactivity Group, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, AL, Brazil
| | - Rafael.V.C. Guido
- São Carlos Institute of Physics, University of Sao Paulo, Av. João Dagnone, 1100 - Santa Angelina, São Carlos, SP, 13563-120, Brazil
| | - Dhelio B. Pereira
- Research Center in Tropical Medicine of Rondônia, Porto Velho, Rondônia, Brazil
| | - Matthew P. Jacobson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, USA
| | - Antoniana U. Krettli
- Malaria Laboratory, René Rachou Research Center, FIOCRUZ, Belo Horizonte, MG, Brazil,Corresponding author.
| | - Anna Caroline C Aguiar
- Department of Biosciences, Federal University of São Paulo, Santos, SP, Brazil,São Carlos Institute of Physics, University of Sao Paulo, Av. João Dagnone, 1100 - Santa Angelina, São Carlos, SP, 13563-120, Brazil,Corresponding author.Department of Biosciences, Federal University of São Paulo, Santos, SP, Brazil.
| |
Collapse
|
17
|
Cecere G, Guasch L, Olivares-Morales AM, Umehara K, Stepan AF. LipMetE (Lipophilic Metabolism Efficiency) as a Simple Guide for Half-Life and Dosing Regimen Prediction of Oral Drugs. ACS Med Chem Lett 2022; 13:1444-1451. [PMID: 36105329 PMCID: PMC9465707 DOI: 10.1021/acsmedchemlett.2c00183] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/19/2022] [Indexed: 11/28/2022] Open
Abstract
The in vivo half-life is a key property of every drug molecule, as it determines dosing regimens, peak-to-trough ratios and often dose. However, half-life optimization can be challenging due to its multifactorial nature, with in vitro metabolic turnover, plasma protein binding and volume of distribution all impacting half-life. We here propose that the medicinal chemistry design parameter Lipophilic Metabolism Efficiency (LipMetE) can greatly simplify half-life optimization of neutral and basic compounds. Using mathematical transformations, examples from preclinical GABAA projects and clinical compounds with human pharmacokinetic data, we show that LipMetE is directly proportional to the logarithm of half-life. As the design parameter LipMetE can be swiftly calculated using the readily available parameters LogD, intrinsic clearance and fraction unbound in human liver microsomes or hepatocytes, this approach enables rational half-life optimization from the early stages of drug discovery projects.
Collapse
Affiliation(s)
- Giuseppe Cecere
- Roche
Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, 4070 Basel, Switzerland
| | - Laura Guasch
- Roche
Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, 4070 Basel, Switzerland
| | - Andres M. Olivares-Morales
- Roche
Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, 4070 Basel, Switzerland
| | - Kenichi Umehara
- Roche
Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, 4070 Basel, Switzerland
| | - Antonia F. Stepan
- Roche
Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, 4070 Basel, Switzerland
| |
Collapse
|
18
|
Petersson C, Zhou X, Berghausen J, Cebrian D, Davies M, DeMent K, Eddershaw P, Riedmaier AE, Leblanc AF, Manveski N, Marathe P, Mavroudis PD, McDougall R, Parrott N, Reichel A, Rotter C, Tess D, Volak LP, Xiao G, Yang Z, Baker J. Current Approaches for Predicting Human PK for Small Molecule Development Candidates: Findings from the IQ Human PK Prediction Working Group Survey. AAPS J 2022; 24:85. [DOI: 10.1208/s12248-022-00735-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/05/2022] [Indexed: 11/30/2022] Open
|
19
|
Lai Y, Chu X, Di L, Gao W, Guo Y, Liu X, Lu C, Mao J, Shen H, Tang H, Xia CQ, Zhang L, Ding X. Recent advances in the translation of drug metabolism and pharmacokinetics science for drug discovery and development. Acta Pharm Sin B 2022; 12:2751-2777. [PMID: 35755285 PMCID: PMC9214059 DOI: 10.1016/j.apsb.2022.03.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 02/08/2023] Open
Abstract
Drug metabolism and pharmacokinetics (DMPK) is an important branch of pharmaceutical sciences. The nature of ADME (absorption, distribution, metabolism, excretion) and PK (pharmacokinetics) inquiries during drug discovery and development has evolved in recent years from being largely descriptive to seeking a more quantitative and mechanistic understanding of the fate of drug candidates in biological systems. Tremendous progress has been made in the past decade, not only in the characterization of physiochemical properties of drugs that influence their ADME, target organ exposure, and toxicity, but also in the identification of design principles that can minimize drug-drug interaction (DDI) potentials and reduce the attritions. The importance of membrane transporters in drug disposition, efficacy, and safety, as well as the interplay with metabolic processes, has been increasingly recognized. Dramatic increases in investments on new modalities beyond traditional small and large molecule drugs, such as peptides, oligonucleotides, and antibody-drug conjugates, necessitated further innovations in bioanalytical and experimental tools for the characterization of their ADME properties. In this review, we highlight some of the most notable advances in the last decade, and provide future perspectives on potential major breakthroughs and innovations in the translation of DMPK science in various stages of drug discovery and development.
Collapse
Affiliation(s)
- Yurong Lai
- Drug Metabolism, Gilead Sciences Inc., Foster City, CA 94404, USA
| | - Xiaoyan Chu
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Li Di
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Groton, CT 06340, USA
| | - Wei Gao
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Yingying Guo
- Eli Lilly and Company, Indianapolis, IN 46221, USA
| | - Xingrong Liu
- Drug Metabolism and Pharmacokinetics, Biogen, Cambridge, MA 02142, USA
| | - Chuang Lu
- Drug Metabolism and Pharmacokinetics, Accent Therapeutics, Inc. Lexington, MA 02421, USA
| | - Jialin Mao
- Department of Drug Metabolism and Pharmacokinetics, Genentech, A Member of the Roche Group, South San Francisco, CA 94080, USA
| | - Hong Shen
- Drug Metabolism and Pharmacokinetics Department, Bristol-Myers Squibb Company, Princeton, NJ 08540, USA
| | - Huaping Tang
- Bioanalysis and Biomarkers, Glaxo Smith Kline, King of the Prussia, PA 19406, USA
| | - Cindy Q. Xia
- Department of Drug Metabolism and Pharmacokinetics, Takeda Pharmaceuticals International Co., Cambridge, MA 02139, USA
| | - Lei Zhang
- Office of Research and Standards, Office of Generic Drugs, CDER, FDA, Silver Spring, MD 20993, USA
| | - Xinxin Ding
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
20
|
Preiss LC, Lauschke VM, Georgi K, Petersson C. Multi-Well Array Culture of Primary Human Hepatocyte Spheroids for Clearance Extrapolation of Slowly Metabolized Compounds. AAPS J 2022; 24:41. [PMID: 35277751 DOI: 10.1208/s12248-022-00689-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/04/2022] [Indexed: 12/13/2022] Open
Abstract
Accurate prediction of human pharmacokinetics using in vitro tools is an important task during drug development. Albeit, currently used in vitro systems for clearance extrapolation such as microsomes and primary human hepatocytes in suspension culture show reproducible turnover, the utility of these systems is limited by a rapid decline of activity of drug metabolizing enzymes. In this study, a multi-well array culture of primary human hepatocyte spheroids was compared to suspension and single spheroid cultures from the same donor. Multi-well spheroids remained viable and functional over the incubation time of 3 days, showing physiological excretion of albumin and α-AGP. Their metabolic activity was similar compared to suspension and single spheroid cultures. This physiological activity, the high cell concentration, and the prolonged incubation time resulted in significant turnover of all tested low clearance compounds (n = 8). In stark contrast, only one or none of the compounds showed significant turnover when single spheroid or suspension cultures were used. Using multi-well spheroids and a regression offset approach (log(CLint) = 1.1 × + 0.85), clearance was predicted within 3-fold for 93% (13/14) of the tested compounds. Thus, multi-well spheroids represent a novel and valuable addition to the ADME in vitro tool kit for the determination of low clearance and overall clearance prediction. Graphical Abstract.
Collapse
Affiliation(s)
- Lena C Preiss
- Department of Drug Metabolism and Pharmacokinetics (DMPK), The Healthcare Business of Merck KGaA, Frankfurter Str. 250, 64293, Darmstadt, Germany.,Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tuebingen, Tuebingen, Germany
| | - Katrin Georgi
- Department of Drug Metabolism and Pharmacokinetics (DMPK), The Healthcare Business of Merck KGaA, Frankfurter Str. 250, 64293, Darmstadt, Germany
| | - Carl Petersson
- Department of Drug Metabolism and Pharmacokinetics (DMPK), The Healthcare Business of Merck KGaA, Frankfurter Str. 250, 64293, Darmstadt, Germany.
| |
Collapse
|
21
|
Stanley LA, Wolf CR. Through a glass, darkly? HepaRG and HepG2 cells as models of human phase I drug metabolism. Drug Metab Rev 2022; 54:46-62. [PMID: 35188018 DOI: 10.1080/03602532.2022.2039688] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The pharmacokinetic and safety assessment of drug candidates is becoming increasingly dependent upon in vitro models of hepatic metabolism and toxicity. Predominant among these is the HepG2 cell line, although HepaRG is becoming increasingly popular because of its perceived closer resemblance to human hepatocytes. We review the functionality of these cell lines in terms of Phase I protein expression, basal cytochrome P450-dependent activity, and utility in P450 induction studies. Our analysis indicates that HepG2 cells are severely compromised: proteomic studies show that they express few key proteins in common with hepatocytes and they lack drug-metabolizing capacity. Differentiated HepaRGs are more hepatocyte-like than HepG2s, but they also have limitations, and it is difficult to assess their utility because of the enormous variability in data reported, possibly arising from the complex differentiation protocols required to obtain hepatocyte-like cells. This is exacerbated by the use of DMSO in the induction protocol, together with proprietary supplements whose composition is a commercial secret. We conclude that, while currently available data on the utility of HepaRG generates a confusing picture, this line does have potential utility in drug metabolism studies. However, to allow studies to be compared directly a standardized, reproducible differentiation protocol is essential and the cell line's functionality in terms of known mechanisms of P450 regulation must be demonstrated. We, therefore, support the development of regulatory guidelines for the use of HepaRGs in induction studies as a first step in generating a database of consistent, reliable data.
Collapse
Affiliation(s)
- Lesley A Stanley
- Consultant in Investigative Toxicology, Linlithgow, UK.,School of Applied Sciences, Edinburgh Napier University, Edinburgh, UK
| | - C Roland Wolf
- Systems Medicine, School of Medicine, University of Dundee, Jacqui Wood Cancer Centre, Ninewells Hospital, Dundee, UK
| |
Collapse
|
22
|
Youhanna S, Kemas AM, Preiss L, Zhou Y, Shen JX, Cakal SD, Paqualini FS, Goparaju SK, Shafagh RZ, Lind JU, Sellgren CM, Lauschke VM. Organotypic and Microphysiological Human Tissue Models for Drug Discovery and Development-Current State-of-the-Art and Future Perspectives. Pharmacol Rev 2022; 74:141-206. [PMID: 35017176 DOI: 10.1124/pharmrev.120.000238] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 10/12/2021] [Indexed: 12/11/2022] Open
Abstract
The number of successful drug development projects has been stagnant for decades despite major breakthroughs in chemistry, molecular biology, and genetics. Unreliable target identification and poor translatability of preclinical models have been identified as major causes of failure. To improve predictions of clinical efficacy and safety, interest has shifted to three-dimensional culture methods in which human cells can retain many physiologically and functionally relevant phenotypes for extended periods of time. Here, we review the state of the art of available organotypic culture techniques and critically review emerging models of human tissues with key importance for pharmacokinetics, pharmacodynamics, and toxicity. In addition, developments in bioprinting and microfluidic multiorgan cultures to emulate systemic drug disposition are summarized. We close by highlighting important trends regarding the fabrication of organotypic culture platforms and the choice of platform material to limit drug absorption and polymer leaching while supporting the phenotypic maintenance of cultured cells and allowing for scalable device fabrication. We conclude that organotypic and microphysiological human tissue models constitute promising systems to promote drug discovery and development by facilitating drug target identification and improving the preclinical evaluation of drug toxicity and pharmacokinetics. There is, however, a critical need for further validation, benchmarking, and consolidation efforts ideally conducted in intersectoral multicenter settings to accelerate acceptance of these novel models as reliable tools for translational pharmacology and toxicology. SIGNIFICANCE STATEMENT: Organotypic and microphysiological culture of human cells has emerged as a promising tool for preclinical drug discovery and development that might be able to narrow the translation gap. This review discusses recent technological and methodological advancements and the use of these systems for hit discovery and the evaluation of toxicity, clearance, and absorption of lead compounds.
Collapse
Affiliation(s)
- Sonia Youhanna
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Aurino M Kemas
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Lena Preiss
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Yitian Zhou
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Joanne X Shen
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Selgin D Cakal
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Francesco S Paqualini
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Sravan K Goparaju
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Reza Zandi Shafagh
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Johan Ulrik Lind
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Carl M Sellgren
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| |
Collapse
|
23
|
Smith S, Lyman M, Ma B, Tweedie D, Menzel K. Reaction Phenotyping of Low-Turnover Compounds in Long-Term Hepatocyte Cultures Through Persistent Selective Inhibition of Cytochromes P450. Drug Metab Dispos 2021; 49:995-1002. [PMID: 34407991 DOI: 10.1124/dmd.121.000601] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/10/2021] [Indexed: 11/22/2022] Open
Abstract
Recognizing the challenges of determining the relative contribution of different drug metabolizing enzymes to the metabolism of slowly metabolized compounds, a cytochrome P450 reaction phenotyping (CRP) method using cocultured human hepatocytes (HEPATOPAC) has been established. In this study, the emphasis on the relative contribution of different cytochrome P450 (P450) isoforms was assessed by persistently inhibiting P450 isoforms over 7 days with human HEPATOPAC. P450 isoform-selective inhibition was achieved with the chemical inhibitors furafylline (CYP1A2), tienilic acid (CYP2C9), (+)-N-3-benzylnirvanol (CYP2C19), paroxetine (CYP2D6), azamulin (CYP3A), and a combination of 1-aminobenzotriazole and tienilic acid (broad spectrum inhibition of P450s). We executed this CRP method using HEPATOPAC by optimizing for the choice of P450 inhibitors, their selectivity, and the temporal effect of inhibitor concentrations on maintaining selectivity of inhibition. In general, the established CRP method using potent and selective chemical inhibitors allows to measure the relative contribution of P450s and to calculate the fraction of metabolism (f m) of low-turnover compounds. Several low-turnover compounds were used to validate this CRP method by determining their hepatic intrinsic clearance and f m, with comparison with literature values. We established the foundation of a robust CRP for low-turnover compound test system which can be expanded to include inhibition of other drug metabolizing enzymes. This generic CRP assay, using human long-term hepatocyte cultures, will be an essential tool in drug development for new chemical entities in the quantitative assessment of the risk as a victim of drug-drug interactions. SIGNIFICANCE STATEMENT: An ongoing trend is to develop drug candidates which have limited metabolic clearance. The current studies report a generic approach to conducting reaction phenotyping studies with human HEPATOPAC, focusing on P450 metabolism of low-turnover compounds. Potent and selective chemical inhibitors were used to assess the relative contribution of the major human P450s. Validation was achieved by confirming hepatic intrinsic clearance and fraction of metabolism for previously reported low-turnover compounds. This approach is adaptable for assessment of all drug metabolizing enzymes.
Collapse
Affiliation(s)
- Sheri Smith
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., Kenilworth, New Jersey
| | - Michael Lyman
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., Kenilworth, New Jersey
| | - Bennett Ma
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., Kenilworth, New Jersey
| | - Donald Tweedie
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., Kenilworth, New Jersey
| | - Karsten Menzel
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., Kenilworth, New Jersey
| |
Collapse
|
24
|
Yang Q, Li AP. Messenger RNA Expression of Albumin, Transferrin, Transthyretin, Asialoglycoprotein Receptor, Cytochrome P450 Isoform, Uptake Transporter, and Efflux Transporter Genes as a Function of Culture Duration in Prolonged Cultured Cryopreserved Human Hepatocytes as Collagen-Matrigel Sandwich Cultures: Evidence for Redifferentiation upon Prolonged Culturing. Drug Metab Dispos 2021; 49:790-802. [PMID: 34135090 DOI: 10.1124/dmd.121.000424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/10/2021] [Indexed: 01/04/2023] Open
Abstract
Hepatic gene expression as a function of culture duration was evaluated in prolonged cultured human hepatocytes. Human hepatocytes from seven donors were maintained as near-confluent collagen-Matrigelsandwich cultures, with messenger RNA expression for genes responsible for key hepatic functions quantified by real-time polymerase chain reaction at culture durations of 0 (day of plating), 2, 7, 9, 16, 23, 26, 29, 36, and 43 days. Key hepatocyte genes were evaluated, including the differentiation markers albumin, transferrin, and transthyretin; the hepatocyte-specific asialoglycoprotein receptor 1 cytochrome P450 isoforms CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP3A4, and CYP3A7; uptake transporter isoforms SLC10A1, SLC22A1, SLC22A7, SLCO1B1, SLCO1B3, and SLCO2B1; efflux transporter isoforms ATP binding cassette (ABC)B1, ABCB11, ABCC2, ABCC3, ABCC4, and ABCG2; and the nonspecific housekeeping gene hypoxanthine ribosyl transferase 1 (HPRT1). The well established dedifferentiation phenomenon was observed on day 2, with substantial (>80%) decreases in gene expression in day 2 cultures observed for all genes evaluated except HPRT1 and efflux transporters ABCB1, ABCC2, ABCC3 (<50% decrease in expression), ABCC4 (>400% increase in expression), and ABCG2 (no decrease in expression). All genes with a >80% decrease in expression were found to have increased levels of expression on day 7, with peak expression observed on either day 7 or day 9, followed by a gradual decrease in expression up to the longest duration evaluated of 43 days. Our results provide evidence that cultured human hepatocytes undergo redifferentiation upon prolonged culturing. SIGNIFICANCE STATEMENT: This study reports that although human hepatocytes underwent dedifferentiation upon 2 days of culture, prolonged culturing resulted in redifferentiation based on gene expression of differentiation markers, uptake and efflux transporters, and cytochrome P450 isoforms. The observed redifferentiation suggests that prolonged (>7 days) culturing of human hepatocyte cultures may represent an experimental approach to overcome the initial dedifferentiation process, resulting in "stabilized" hepatocytes that can be applied toward the evaluation of drug properties requiring an extended period of treatment and evaluation.
Collapse
Affiliation(s)
- Qian Yang
- In Vitro ADMET Laboratories Inc., Columbia, Maryland
| | - Albert P Li
- In Vitro ADMET Laboratories Inc., Columbia, Maryland
| |
Collapse
|
25
|
Reddy MB, Bolger MB, Fraczkiewicz G, Del Frari L, Luo L, Lukacova V, Mitra A, Macwan JS, Mullin JM, Parrott N, Heikkinen AT. PBPK Modeling as a Tool for Predicting and Understanding Intestinal Metabolism of Uridine 5'-Diphospho-glucuronosyltransferase Substrates. Pharmaceutics 2021; 13:pharmaceutics13091325. [PMID: 34575401 PMCID: PMC8468656 DOI: 10.3390/pharmaceutics13091325] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/15/2022] Open
Abstract
Uridine 5′-diphospho-glucuronosyltransferases (UGTs) are expressed in the small intestines, but prediction of first-pass extraction from the related metabolism is not well studied. This work assesses physiologically based pharmacokinetic (PBPK) modeling as a tool for predicting intestinal metabolism due to UGTs in the human gastrointestinal tract. Available data for intestinal UGT expression levels and in vitro approaches that can be used to predict intestinal metabolism of UGT substrates are reviewed. Human PBPK models for UGT substrates with varying extents of UGT-mediated intestinal metabolism (lorazepam, oxazepam, naloxone, zidovudine, cabotegravir, raltegravir, and dolutegravir) have demonstrated utility for predicting the extent of intestinal metabolism. Drug–drug interactions (DDIs) of UGT1A1 substrates dolutegravir and raltegravir with UGT1A1 inhibitor atazanavir have been simulated, and the role of intestinal metabolism in these clinical DDIs examined. Utility of an in silico tool for predicting substrate specificity for UGTs is discussed. Improved in vitro tools to study metabolism for UGT compounds, such as coculture models for low clearance compounds and better understanding of optimal conditions for in vitro studies, may provide an opportunity for improved in vitro–in vivo extrapolation (IVIVE) and prospective predictions. PBPK modeling shows promise as a useful tool for predicting intestinal metabolism for UGT substrates.
Collapse
Affiliation(s)
- Micaela B. Reddy
- Early Clinical Development, Department of Clinical Pharmacology Oncology, Pfizer, Boulder, CO 80301, USA
- Correspondence: ; Tel.: +1-303-842-4123
| | - Michael B. Bolger
- Simulations Plus Inc., Lancaster, CA 93534, USA; (M.B.B.); (G.F.); (V.L.); (J.S.M.); (J.M.M.)
| | - Grace Fraczkiewicz
- Simulations Plus Inc., Lancaster, CA 93534, USA; (M.B.B.); (G.F.); (V.L.); (J.S.M.); (J.M.M.)
| | | | - Laibin Luo
- Material & Analytical Sciences, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT 06877, USA;
| | - Viera Lukacova
- Simulations Plus Inc., Lancaster, CA 93534, USA; (M.B.B.); (G.F.); (V.L.); (J.S.M.); (J.M.M.)
| | - Amitava Mitra
- Clinical Pharmacology and Pharmacometrics, Janssen Research & Development, Springhouse, PA 19477, USA;
| | - Joyce S. Macwan
- Simulations Plus Inc., Lancaster, CA 93534, USA; (M.B.B.); (G.F.); (V.L.); (J.S.M.); (J.M.M.)
| | - Jim M. Mullin
- Simulations Plus Inc., Lancaster, CA 93534, USA; (M.B.B.); (G.F.); (V.L.); (J.S.M.); (J.M.M.)
| | - Neil Parrott
- Pharmaceutical Sciences, Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, 4070 Basel, Switzerland;
| | | |
Collapse
|
26
|
Abstract
There are many factors which are known to cause variability in human in vitro enzyme kinetic data. Factors such as the source of enzyme and how it was prepared, the genetics and background of the donor, how the in vitro studies are designed, and how the data are analyzed contribute to variability in the resulting kinetic parameters. It is important to consider not only the factors which cause variability within an experiment, such as selection of a probe substrate, but also those that cause variability when comparing kinetic data across studies and laboratories. For example, the artificial nature of the microsomal lipid membrane and microenvironment in some recombinantly expressed enzymes, relative to those found in native tissue microsomes, has been shown to influence enzyme activity and thus can be a source of variability when comparing across the two different systems. All of these factors, and several others, are discussed in detail in the chapter below. In addition, approaches which can be used to visualize the uncertainty arising from the use of enzyme kinetic data within the context of predicting human pharmacokinetics are discussed.
Collapse
|
27
|
Xu R, Hu P, Li Y, Tian A, Li J, Zhu C. Advances in HBV infection and replication systems in vitro. Virol J 2021; 18:105. [PMID: 34051803 PMCID: PMC8164799 DOI: 10.1186/s12985-021-01580-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 05/18/2021] [Indexed: 12/17/2022] Open
Abstract
Background Hepatitis B virus (HBV) is a DNA virus belonging to the Hepadnaviridae family that has limited tissue and species specificity. Due to the persistence of HBV covalently closed circular DNA (cccDNA) in host cells after HBV infection, current antiviral drugs cannot eradicate HBV. Therefore, the development of an active cell culture system supporting HBV infection has become the key to studying HBV and developing effective therapeutic drugs. Main body This review summarizes the significant research achievements in HBV cell culture systems in vitro, including embryonic hepatocytes and primary hepatocytes, which support the virus infection process most similar to that in the body and various liver tumor cells. The discovery of the bile-acid pump sodium-taurocholate co-transporting polypeptide (NTCP) as the receptor of HBV has advanced our understanding of HBV biology. Subsequently, various liver cancer cells overexpressing NTCP that support HBV infection have been established, opening a new door for studying HBV infection. The fact that induced pluripotent stem cells that differentiate into hepatocyte-like cells support HBV infection provides a novel idea for the establishment of an HBV cell culture system. Conclusion Because of the host and tissue specificity of HBV, a suitable in vitro HBV infection system is critical for the study of HBV pathogenesis. Nevertheless, recent advances regarding HBV infection in vitro offer hope for better studying the biological characteristics of HBV, the pathogenesis of hepatitis B, the screening of anti-HBV drugs and the mechanism of carcinogenesis.
Collapse
Affiliation(s)
- Ruirui Xu
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Pingping Hu
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Yuwen Li
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Anran Tian
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Jun Li
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Chuanlong Zhu
- Department of Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan, China.
| |
Collapse
|
28
|
Yadav J, El Hassani M, Sodhi J, Lauschke VM, Hartman JH, Russell LE. Recent developments in in vitro and in vivo models for improved translation of preclinical pharmacokinetics and pharmacodynamics data. Drug Metab Rev 2021; 53:207-233. [PMID: 33989099 DOI: 10.1080/03602532.2021.1922435] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Improved pharmacokinetics/pharmacodynamics (PK/PD) prediction in the early stages of drug development is essential to inform lead optimization strategies and reduce attrition rates. Recently, there have been significant advancements in the development of new in vitro and in vivo strategies to better characterize pharmacokinetic properties and efficacy of drug leads. Herein, we review advances in experimental and mathematical models for clearance predictions, advancements in developing novel tools to capture slowly metabolized drugs, in vivo model developments to capture human etiology for supporting drug development, limitations and gaps in these efforts, and a perspective on the future in the field.
Collapse
Affiliation(s)
- Jaydeep Yadav
- Department of Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Inc., Boston, MA, USA
| | | | - Jasleen Sodhi
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jessica H Hartman
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | | |
Collapse
|
29
|
Sodhi JK, Benet LZ. Successful and Unsuccessful Prediction of Human Hepatic Clearance for Lead Optimization. J Med Chem 2021; 64:3546-3559. [PMID: 33765384 PMCID: PMC8504179 DOI: 10.1021/acs.jmedchem.0c01930] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Development of new chemical entities is costly, time-consuming, and has a low success rate. Accurate prediction of pharmacokinetic properties is critical to progress compounds with favorable drug-like characteristics in lead optimization. Of particular importance is the prediction of hepatic clearance, which determines drug exposure and contributes to projection of dose, half-life, and bioavailability. The most commonly employed methodology to predict hepatic clearance is termed in vitro to in vivo extrapolation (IVIVE) that involves measuring drug metabolism in vitro, scaling-up this in vitro intrinsic clearance to a prediction of in vivo intrinsic clearance by reconciling the enzymatic content between the incubation and an average human liver, and applying a model of hepatic disposition to account for limitations of protein binding and blood flow to predict in vivo clearance. This manuscript reviews common in vitro techniques used to predict hepatic clearance as well as current challenges and recent theoretical advancements in IVIVE.
Collapse
Affiliation(s)
- Jasleen K Sodhi
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California 94143, United States
| | - Leslie Z Benet
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California 94143, United States
| |
Collapse
|
30
|
Sung JH. Multi-organ-on-a-chip for pharmacokinetics and toxicokinetic study of drugs. Expert Opin Drug Metab Toxicol 2021; 17:969-986. [PMID: 33764248 DOI: 10.1080/17425255.2021.1908996] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Accurate prediction of pharmacokinetic (PK) and toxicokinetics (TK) of drugs is imperative for successful development of new pharmaceutics. Although conventional in vitro methods for predicting the PK and TK of drugs are well established, limitations still exist and more advanced chip-based in vitro platforms combined with mathematical models can help researchers overcome the limitations. Areas covered: We will review recent progress in the development of multi-organ-on-a-chip platforms for predicting PK and TK of drugs, as well as mathematical approaches that can be combined with these platforms for experiment design, data analysis and in vitro-in vivo extrapolation (IVIVE) for application to humans. Expert opinion: Although there remain some challenges to be addressed, the remarkable progress in the area of multi-organ-on-a-chip in recent years indicate that we will see tangible outcomes that can be utilized in the pharmaceutical industry in near future.
Collapse
Affiliation(s)
- Jong Hwan Sung
- Department of Chemical Engineering, Hongik University, Seoul, sejong, Republic of Korea
| |
Collapse
|
31
|
Serras AS, Rodrigues JS, Cipriano M, Rodrigues AV, Oliveira NG, Miranda JP. A Critical Perspective on 3D Liver Models for Drug Metabolism and Toxicology Studies. Front Cell Dev Biol 2021; 9:626805. [PMID: 33732695 PMCID: PMC7957963 DOI: 10.3389/fcell.2021.626805] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/21/2021] [Indexed: 12/12/2022] Open
Abstract
The poor predictability of human liver toxicity is still causing high attrition rates of drug candidates in the pharmaceutical industry at the non-clinical, clinical, and post-marketing authorization stages. This is in part caused by animal models that fail to predict various human adverse drug reactions (ADRs), resulting in undetected hepatotoxicity at the non-clinical phase of drug development. In an effort to increase the prediction of human hepatotoxicity, different approaches to enhance the physiological relevance of hepatic in vitro systems are being pursued. Three-dimensional (3D) or microfluidic technologies allow to better recapitulate hepatocyte organization and cell-matrix contacts, to include additional cell types, to incorporate fluid flow and to create gradients of oxygen and nutrients, which have led to improved differentiated cell phenotype and functionality. This comprehensive review addresses the drug-induced hepatotoxicity mechanisms and the currently available 3D liver in vitro models, their characteristics, as well as their advantages and limitations for human hepatotoxicity assessment. In addition, since toxic responses are greatly dependent on the culture model, a comparative analysis of the toxicity studies performed using two-dimensional (2D) and 3D in vitro strategies with recognized hepatotoxic compounds, such as paracetamol, diclofenac, and troglitazone is performed, further highlighting the need for harmonization of the respective characterization methods. Finally, taking a step forward, we propose a roadmap for the assessment of drugs hepatotoxicity based on fully characterized fit-for-purpose in vitro models, taking advantage of the best of each model, which will ultimately contribute to more informed decision-making in the drug development and risk assessment fields.
Collapse
Affiliation(s)
- Ana S. Serras
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Joana S. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Madalena Cipriano
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Armanda V. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Nuno G. Oliveira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Joana P. Miranda
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
32
|
Abstract
Accurate estimation of in vivo clearance in human is pivotal to determine the dose and dosing regimen for drug development. In vitro-in vivo extrapolation (IVIVE) has been performed to predict drug clearance using empirical and physiological scalars. Multiple in vitro systems and mathematical modeling techniques have been employed to estimate in vivo clearance. The models for predicting clearance have significantly improved and have evolved to become more complex by integrating multiple processes such as drug metabolism and transport as well as passive diffusion. This chapter covers the use of conventional as well as recently developed methods to predict metabolic and transporter-mediated clearance along with the advantages and disadvantages of using these methods and the associated experimental considerations. The general approaches to improve IVIVE by use of appropriate scalars, incorporation of extrahepatic metabolism and transport and application of physiologically based pharmacokinetic (PBPK) models with proteomics data are also discussed. The chapter also provides an overview of the advantages of using such dynamic mechanistic models over static models for clearance predictions to improve IVIVE.
Collapse
|
33
|
Kanebratt KP, Janefeldt A, Vilén L, Vildhede A, Samuelsson K, Milton L, Björkbom A, Persson M, Leandersson C, Andersson TB, Hilgendorf C. Primary Human Hepatocyte Spheroid Model as a 3D In Vitro Platform for Metabolism Studies. J Pharm Sci 2020; 110:422-431. [PMID: 33122050 DOI: 10.1016/j.xphs.2020.10.043] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022]
Abstract
3D cultures of primary human hepatocytes (PHH) are emerging as a more in vivo-like culture system than previously available hepatic models. This work describes the characterisation of drug metabolism in 3D PHH spheroids. Spheroids were formed from three different donors of PHH and the expression and activities of important cytochrome P450 enzymes (CYP1A2, 2B6, 2C9, 2D6, and 3A4) were maintained for up to 21 days after seeding. The activity of CYP2B6 and 3A4 decreased, while the activity of CYP2C9 and 2D6 increased over time (P < 0.05). For six test compounds, that are metabolised by multiple enzymes, intrinsic clearance (CLint) values were comparable to standard in vitro hepatic models and successfully predicted in vivo CLint within 3-fold from observed values for low clearance compounds. Remarkably, the metabolic turnover of these low clearance compounds was reproducibly measured using only 1-3 spheroids, each composed of 2000 cells. Importantly, metabolites identified in the spheroid cultures reproduced the major metabolites observed in vivo, both primary and secondary metabolites were captured. In summary, the 3D PHH spheroid model shows promise to be used in drug discovery projects to study drug metabolism, including unknown mechanisms, over an extended period of time.
Collapse
Affiliation(s)
- Kajsa P Kanebratt
- DMPK, Research and Early Development Cardiovascular Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca Gothenburg, Sweden.
| | - Annika Janefeldt
- DMPK, Research and Early Development Cardiovascular Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca Gothenburg, Sweden
| | - Liisa Vilén
- DMPK, Research and Early Development Cardiovascular Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca Gothenburg, Sweden
| | - Anna Vildhede
- DMPK, Research and Early Development Cardiovascular Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca Gothenburg, Sweden
| | - Kristin Samuelsson
- DMPK, Research and Early Development Cardiovascular Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca Gothenburg, Sweden
| | - Lucas Milton
- DMPK, Research and Early Development Cardiovascular Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca Gothenburg, Sweden
| | - Anders Björkbom
- DMPK, Research and Early Development Cardiovascular Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca Gothenburg, Sweden
| | - Marie Persson
- DMPK, Research and Early Development Cardiovascular Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca Gothenburg, Sweden
| | - Carina Leandersson
- Physical & Analytical Chemistry, Research and Early Development Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca Gothenburg, Sweden
| | - Tommy B Andersson
- DMPK, Research and Early Development Cardiovascular Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca Gothenburg, Sweden
| | - Constanze Hilgendorf
- DMPK, Research and Early Development Cardiovascular Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca Gothenburg, Sweden
| |
Collapse
|
34
|
Docci L, Klammers F, Ekiciler A, Molitor B, Umehara K, Walter I, Krähenbühl S, Parrott N, Fowler S. In Vitro to In Vivo Extrapolation of Metabolic Clearance for UGT Substrates Using Short-Term Suspension and Long-Term Co-cultured Human Hepatocytes. AAPS JOURNAL 2020; 22:131. [DOI: 10.1208/s12248-020-00482-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/10/2020] [Indexed: 01/08/2023]
|
35
|
Nirogi R, Bhyrapuneni G, Muddana NR, Manoharan A, Shinde AK, Mohammed AR, Padala NP, Ajjala DR, Subramanian R, Palacharla VRC. Absorption, distribution, metabolism, excretion (ADME), drug-drug interaction potential and prediction of human pharmacokinetics of SUVN-G3031, a novel histamine 3 receptor (H3R) inverse agonist in clinical development for the treatment of narcolepsy. Eur J Pharm Sci 2020; 152:105425. [DOI: 10.1016/j.ejps.2020.105425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/22/2020] [Accepted: 06/09/2020] [Indexed: 01/26/2023]
|
36
|
Ballard TE, Kratochwil N, Cox LM, Moen MA, Klammers F, Ekiciler A, Goetschi A, Walter I. Simplifying the Execution of HepatoPac MetID Experiments: Metabolite Profile and Intrinsic Clearance Comparisons. Drug Metab Dispos 2020; 48:804-810. [PMID: 32623369 DOI: 10.1124/dmd.120.000013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/12/2020] [Indexed: 02/02/2023] Open
Abstract
The HepatoPac micropatterned coculture (MPCC) hepatocyte system has been shown to be an effective tool to investigate the qualitative human and preclinical species' metabolite profiles of new drug candidates. However, additional improvements to the overall study conditions and execution, layout, and human-donor count could be made. To that end, we have evaluated several ways to increase the amount of data one can generate per MPCC plate and how to more efficiently execute a MPCC study for the purpose of metabolite generation. Herein, we compare a set of compounds using single- and 10-donor pooled human MPCC hepatocytes. Intrinsic clearance and mean metabolic activities assessed by diverse enzyme markers were comparable between the single- and 10-donor pool. We have confirmed that the generated metabolite profiles were indistinguishable between the single- and 10-donor pool and also that rat MPCC can be performed at 400 µl media volume, which greatly simplifies study execution. Additional tips for successful study execution are also described. SIGNIFICANCE STATEMENT: When using the HepatoPac micropatterned coculture (MPCC) system, sometimes simple experimental condition variables or problematic plate designs can hamper productive study execution. We evaluated conditions to increase the amount of data one can generate per MPCC plate and, perhaps more importantly, execute that study more efficiently with less likelihood of error. We describe some of our key learnings, provide an examination of enzyme activity levels and clearance values, and provide some recommendations to simplify the execution of a HepatoPac experiment.
Collapse
Affiliation(s)
- T Eric Ballard
- Pharmacokinetics, Dynamics and Metabolism, Pfizer, Inc., Groton, Connecticut (T.E.B., L.M.C., M.A.M.) and Drug Disposition and Safety, Roche Pharmaceutical Research and Early Development, Roche Innovation Center, Basel, Switzerland (N.K., F.K., A.E., A.G., I.W.)
| | - N Kratochwil
- Pharmacokinetics, Dynamics and Metabolism, Pfizer, Inc., Groton, Connecticut (T.E.B., L.M.C., M.A.M.) and Drug Disposition and Safety, Roche Pharmaceutical Research and Early Development, Roche Innovation Center, Basel, Switzerland (N.K., F.K., A.E., A.G., I.W.)
| | - Loretta M Cox
- Pharmacokinetics, Dynamics and Metabolism, Pfizer, Inc., Groton, Connecticut (T.E.B., L.M.C., M.A.M.) and Drug Disposition and Safety, Roche Pharmaceutical Research and Early Development, Roche Innovation Center, Basel, Switzerland (N.K., F.K., A.E., A.G., I.W.)
| | - Mark A Moen
- Pharmacokinetics, Dynamics and Metabolism, Pfizer, Inc., Groton, Connecticut (T.E.B., L.M.C., M.A.M.) and Drug Disposition and Safety, Roche Pharmaceutical Research and Early Development, Roche Innovation Center, Basel, Switzerland (N.K., F.K., A.E., A.G., I.W.)
| | - F Klammers
- Pharmacokinetics, Dynamics and Metabolism, Pfizer, Inc., Groton, Connecticut (T.E.B., L.M.C., M.A.M.) and Drug Disposition and Safety, Roche Pharmaceutical Research and Early Development, Roche Innovation Center, Basel, Switzerland (N.K., F.K., A.E., A.G., I.W.)
| | - A Ekiciler
- Pharmacokinetics, Dynamics and Metabolism, Pfizer, Inc., Groton, Connecticut (T.E.B., L.M.C., M.A.M.) and Drug Disposition and Safety, Roche Pharmaceutical Research and Early Development, Roche Innovation Center, Basel, Switzerland (N.K., F.K., A.E., A.G., I.W.)
| | - A Goetschi
- Pharmacokinetics, Dynamics and Metabolism, Pfizer, Inc., Groton, Connecticut (T.E.B., L.M.C., M.A.M.) and Drug Disposition and Safety, Roche Pharmaceutical Research and Early Development, Roche Innovation Center, Basel, Switzerland (N.K., F.K., A.E., A.G., I.W.)
| | - I Walter
- Pharmacokinetics, Dynamics and Metabolism, Pfizer, Inc., Groton, Connecticut (T.E.B., L.M.C., M.A.M.) and Drug Disposition and Safety, Roche Pharmaceutical Research and Early Development, Roche Innovation Center, Basel, Switzerland (N.K., F.K., A.E., A.G., I.W.)
| |
Collapse
|
37
|
Mayumi K, Akazawa T, Kanazu T, Ohnishi S, Hasegawa H. Successful Prediction of Human Pharmacokinetics After Oral Administration by Optimized Physiologically Based Pharmacokinetics Approach and Permeation Assay Using Human Induced Pluripotent Stem Cell–Derived Intestinal Epithelial Cells. J Pharm Sci 2020; 109:1605-1614. [DOI: 10.1016/j.xphs.2019.12.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 12/29/2022]
|
38
|
Williamson B, Colclough N, Fretland AJ, Jones BC, Jones RDO, McGinnity DF. Further Considerations Towards an Effective and Efficient Oncology Drug Discovery DMPK Strategy. Curr Drug Metab 2020; 21:145-162. [PMID: 32164508 DOI: 10.2174/1389200221666200312104837] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/06/2020] [Accepted: 02/25/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND DMPK data and knowledge are critical in maximising the probability of developing successful drugs via the application of in silico, in vitro and in vivo approaches in drug discovery. METHODS The evaluation, optimisation and prediction of human pharmacokinetics is now a mainstay within drug discovery. These elements are at the heart of the 'right tissue' component of AstraZeneca's '5Rs framework' which, since its adoption, has resulted in increased success of Phase III clinical trials. With the plethora of DMPK related assays and models available, there is a need to continually refine and improve the effectiveness and efficiency of approaches best to facilitate the progression of quality compounds for human clinical testing. RESULTS This article builds on previously published strategies from our laboratories, highlighting recent discoveries and successes, that brings our AstraZeneca Oncology DMPK strategy up to date. We review the core aspects of DMPK in Oncology drug discovery and highlight data recently generated in our laboratories that have influenced our screening cascade and experimental design. We present data and our experiences of employing cassette animal PK, as well as re-evaluating in vitro assay design for metabolic stability assessments and expanding our use of freshly excised animal and human tissue to best inform first time in human dosing and dose escalation studies. CONCLUSION Application of our updated drug-drug interaction and central nervous system drug exposure strategies are exemplified, as is the impact of physiologically based pharmacokinetic and pharmacokinetic-pharmacodynamic modelling for human predictions.
Collapse
Affiliation(s)
- Beth Williamson
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Nicola Colclough
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Adrian John Fretland
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Oncology R&D, AstraZeneca, Boston MA, United States
| | - Barry Christopher Jones
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Rhys Dafydd Owen Jones
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Dermot Francis McGinnity
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| |
Collapse
|
39
|
Louisse J, Alewijn M, Peijnenburg AA, Cnubben NH, Heringa MB, Coecke S, Punt A. Towards harmonization of test methods for in vitro hepatic clearance studies. Toxicol In Vitro 2020; 63:104722. [DOI: 10.1016/j.tiv.2019.104722] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/07/2019] [Accepted: 11/13/2019] [Indexed: 12/26/2022]
|
40
|
Fowler S, Chen WLK, Duignan DB, Gupta A, Hariparsad N, Kenny JR, Lai WG, Liras J, Phillips JA, Gan J. Microphysiological systems for ADME-related applications: current status and recommendations for system development and characterization. LAB ON A CHIP 2020; 20:446-467. [PMID: 31932816 DOI: 10.1039/c9lc00857h] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Over the last decade, progress has been made on the development of microphysiological systems (MPS) for absorption, distribution, metabolism, and excretion (ADME) applications. Central to this progress has been proof of concept data generated by academic and industrial institutions followed by broader characterization studies, which provide evidence for scalability and applicability to drug discovery and development. In this review, we describe some of the advances made for specific tissue MPS and outline the desired functionality for such systems, which are likely to make them applicable for practical use in the pharmaceutical industry. Single organ MPS platforms will be valuable for modelling tissue-specific functions. However, dynamic organ crosstalk, especially in the context of disease or toxicity, can only be obtained with the use of inter-linked MPS models which will enable scientists to address questions at the intersection of pharmacokinetics (PK) and efficacy, or PK and toxicity. In the future, successful application of MPS platforms that closely mimic human physiology may ultimately reduce the need for animal models to predict ADME outcomes and decrease the overall risk and cost associated with drug development.
Collapse
Affiliation(s)
- Stephen Fowler
- Pharma Research and Early Development, F.Hoffmann-La Roche Ltd, Grenzacherstrasse 124, CH4070, Basel, Switzerland
| | | | - David B Duignan
- Department of Drug Metabolism, Pharmacokinetics & Bioanalysis, AbbVie Bioresearch Center, Worcester, Massachusetts 01605, USA
| | - Anshul Gupta
- Amgen Research, 360 Binney St, Cambridge, MA 02141, USA
| | - Niresh Hariparsad
- Department of Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, 50 Northern Ave, Boston, MA, USA
| | - Jane R Kenny
- DMPK, Genentech, 1 DNA Way, South San Francisco 94080, USA
| | | | - Jennifer Liras
- Medicine Design, Pfizer Inc, 1 Portland Ave, Cambridge, MA 02139, USA
| | | | - Jinping Gan
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb R&D, PO Box 4000, Princeton, NJ 08543-4000, USA.
| |
Collapse
|
41
|
Winer BY, Gaska JM, Lipkowitz G, Bram Y, Parekh A, Parsons L, Leach R, Jindal R, Cho CH, Shrirao A, Novik E, Schwartz RE, Ploss A. Analysis of Host Responses to Hepatitis B and Delta Viral Infections in a Micro-scalable Hepatic Co-culture System. Hepatology 2020; 71:14-30. [PMID: 31206195 PMCID: PMC6917996 DOI: 10.1002/hep.30815] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 06/05/2019] [Indexed: 12/30/2022]
Abstract
Hepatitis B virus (HBV) remains a major global health problem with 257 million chronically infected individuals worldwide, of whom approximately 20 million are co-infected with hepatitis delta virus (HDV). Progress toward a better understanding of the complex interplay between these two viruses and the development of novel therapies have been hampered by the scarcity of suitable cell culture models that mimic the natural environment of the liver. Here, we established HBV and HBV/HDV co-infections and super-infections in self-assembling co-cultured primary human hepatocytes (SACC-PHHs) for up to 28 days in a 384-well format and highlight the suitability of this platform for high-throughput drug testing. We performed RNA sequencing at days 8 and 28 on SACC-PHHs, either HBV mono-infected or HBV/HDV co-infected. Our transcriptomic analysis demonstrates that hepatocytes in SACC-PHHs maintain a mature hepatic phenotype over time, regardless of infection condition. We confirm that HBV is a stealth virus, as it does not induce a strong innate immune response; rather, oxidative phosphorylation and extracellular matrix-receptor interactions are dysregulated to create an environment that promotes persistence. Notably, HDV co-infection also did not lead to statistically significant transcriptional changes across multiple donors and replicates. The lack of innate immune activation is not due to SACC-PHHs being impaired in their ability to induce interferon stimulated genes (ISGs). Rather, polyinosinic:polycytidylic acid exposure activates ISGs, and this stimulation significantly inhibits HBV infection, yet only minimally affects the ability of HDV to infect and persist. Conclusion: These data demonstrate that the SACC-PHH system is a versatile platform for studying HBV/HDV co-infections and holds promise for performing chemical library screens and improving our understanding of the host response to such infections.
Collapse
Affiliation(s)
- Benjamin Y. Winer
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Jenna M. Gaska
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Gabriel Lipkowitz
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Yaron Bram
- Division of Gastroenterology & Hepatology, Department of Medicine, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Amit Parekh
- Hurel® Corporation, North Brunswick, NJ 08902, USA
| | - Lance Parsons
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Robert Leach
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Rohit Jindal
- Hurel® Corporation, North Brunswick, NJ 08902, USA
| | - Cheul H. Cho
- Hurel® Corporation, North Brunswick, NJ 08902, USA
| | - Anil Shrirao
- Hurel® Corporation, North Brunswick, NJ 08902, USA
| | - Eric Novik
- Hurel® Corporation, North Brunswick, NJ 08902, USA
| | - Robert E. Schwartz
- Division of Gastroenterology & Hepatology, Department of Medicine, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
42
|
Kenna JG, Taskar KS, Battista C, Bourdet DL, Brouwer KLR, Brouwer KR, Dai D, Funk C, Hafey MJ, Lai Y, Maher J, Pak YA, Pedersen JM, Polli JW, Rodrigues AD, Watkins PB, Yang K, Yucha RW. Can Bile Salt Export Pump Inhibition Testing in Drug Discovery and Development Reduce Liver Injury Risk? An International Transporter Consortium Perspective. Clin Pharmacol Ther 2019; 104:916-932. [PMID: 30137645 PMCID: PMC6220754 DOI: 10.1002/cpt.1222] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/06/2018] [Indexed: 12/15/2022]
Abstract
Bile salt export pump (BSEP) inhibition has emerged as an important mechanism that may contribute to the initiation of human drug‐induced liver injury (DILI). Proactive evaluation and understanding of BSEP inhibition is recommended in drug discovery and development to aid internal decision making on DILI risk. BSEP inhibition can be quantified using in vitro assays. When interpreting assay data, it is important to consider in vivo drug exposure. Currently, this can be undertaken most effectively by consideration of total plasma steady state drug concentrations (Css,plasma). However, because total drug concentrations are not predictive of pharmacological effect, the relationship between total exposure and BSEP inhibition is not causal. Various follow‐up studies can aid interpretation of in vitro BSEP inhibition data and may be undertaken on a case‐by‐case basis. BSEP inhibition is one of several mechanisms by which drugs may cause DILI, therefore, it should be considered alongside other mechanisms when evaluating possible DILI risk.
Collapse
Affiliation(s)
| | - Kunal S Taskar
- Mechanistic Safety and Disposition, IVIVT, GlaxoSmithKline, Ware, Hertfordshire, UK
| | - Christina Battista
- DILIsym Services Inc., a Simulations Plus Company, Research Triangle Park, North Carolina, USA
| | - David L Bourdet
- Drug Metabolism and Pharmacokinetics, Theravance Biopharma, South San Francisco, California, USA
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - David Dai
- Clinical Pharmacology, Research and Development Sciences, Agios Pharmaceuticals, Cambridge, Massachusetts, USA
| | - Christoph Funk
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Michael J Hafey
- Department of Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Inc, Kenilworth, New Jersey, USA
| | - Yurong Lai
- Drug Metabolism, Gilead Sciences Inc., Foster City, California, USA
| | - Jonathan Maher
- Safety Assessment, Genentech, South San Francisco, California, USA
| | - Y Anne Pak
- Lilly Research Laboratory, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Jenny M Pedersen
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Novum, Huddinge, Sweden
| | - Joseph W Polli
- Mechanistic Safety and Drug Disposition, GlaxoSmithKline, King of Prussia, Pennsylvania, USA
| | | | - Paul B Watkins
- Institute for Drug Safety Sciences, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Kyunghee Yang
- DILIsym Services Inc., a Simulations Plus Company, Research Triangle Park, North Carolina, USA
| | - Robert W Yucha
- Takeda Pharmaceuticals, Global Drug Metabolism and Pharmacokinetics, Cambridge, Massachusetts, USA
| | | |
Collapse
|
43
|
Murgasova R. Further Assessment of the Relay Hepatocyte Assay for Determination of Intrinsic Clearance of Slowly Metabolised Compounds Using Radioactivity Monitoring and LC-MS Methods. Eur J Drug Metab Pharmacokinet 2019; 44:817-826. [PMID: 31422548 DOI: 10.1007/s13318-019-00571-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND OBJECTIVES Low-clearance drugs are widely used by industry mostly because of their often longer half-life, allowing for lower or less frequent dosing. Nevertheless, prediction of human clearance for these molecules from in vitro models presents a great challenge for pharmaceutical scientists. The objective of this study was to further characterise the predictive accuracy of the relay hepatocyte assay using 14C and 3H labelled proprietary compounds with a low extraction ratio and the known clearance mechanism in rats. Highly permeable compounds cleared by metabolism as well as rate limitation by transport were included in this study. METHODS Blood clearance was determined from concentration-time profiles following intravenous dosing to rats. In vitro clearance was determined from the single concentration parent depletion-time profiles throughout the incubation period of up to 20 h (five relays) using radioactivity monitoring in tandem with mass spectrometry. A new approach was proposed to correct concentrations for loss and dilution during the relay steps. Clearance was predicted with a standard well-stirred model for the liver and predicted values were then compared with observed data to evaluate method accuracy. RESULTS The results showed that intrinsic clearance values predicted using the relay hepatocyte assay from either radioactivity or mass spectrometry concentration data were comparable. A significant difference in prediction accuracy between the permeable compounds cleared by hepatic metabolism (about 2-fold) and the compound that was the hepatic uptake substrate (5- to 6-fold of actual) was demonstrated. CONCLUSIONS The relay method is effective in predicting in vivo clearance for the compounds that are cleared via hepatic metabolism but tends to be notably underpredictive for drugs that rely on uptake transport. Consistent with the overall trend toward underprediction of hepatic clearance from the in vitro models prevalently used in the pharmaceutical industry, all values predicted from the hepatocyte relay method were lower than observed.
Collapse
Affiliation(s)
- Renata Murgasova
- PKS, Novartis Institute for Biomedical Research, Novartis Pharma AG, WSJ-153.1.14, 4002, Basel, Switzerland.
| |
Collapse
|
44
|
Gardiner P, Cox RJ, Grime K. Plasma Protein Binding as an Optimizable Parameter for Acidic Drugs. Drug Metab Dispos 2019; 47:865-873. [PMID: 31113795 DOI: 10.1124/dmd.119.087163] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/17/2019] [Indexed: 02/13/2025] Open
Abstract
The low volume of distribution associated with acidic molecules means that clearance (CL) must also be very low to achieve an effective half-life commensurate with once or twice daily dosing. Plasma protein binding (PPB) should not usually be considered a parameter for optimization, but in the particular case of acidic molecules, raising the PPB above a certain level can result in distribution volume becoming a constant low value equal to the distribution volume of albumin while acting to reduce CL through restricting hepatic and renal access of unbound drug. Thus effective half-life can be increased. Here we detail the approaches and lessons learned at AstraZeneca during the optimization of acidic CXC chemokine receptor 2 (CXCR2) antagonists for the oral drug treatment of inflammatory diseases, resulting in discovery and clinical testing of N-[2-[(2,3-difluorophenyl)methylsulfanyl]-6-[(2R,3S)-3,4-dihydroxybutan-2-yl]oxypyrimidin-4-yl]azetidine-1-sulfonamide (AZD5069) and AZD4721, orally bioavailable acidic molecules with PPB of <1%, human hepatocyte intrinsic clearance values <5 µl/min per 106 cells and predicted human volume of distribution at steady state (V ss) <0.3 l/kg, resulting in effective half-lives in humans of 4 and 17 hours, respectively. SIGNIFICANCE STATEMENT: Provided that the pharmacologic potency is high enough, modulation of plasma protein binding can form part of a viable strategy in drug discovery to optimize the effective half-life of drug candidates in humans.
Collapse
Affiliation(s)
- Philip Gardiner
- Clinical Pharmacology & Safety Sciences, Medicinal Chemistry and DMPK, Respiratory, Inflammation and Autoimmune (RIA), R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Rhona J Cox
- Clinical Pharmacology & Safety Sciences, Medicinal Chemistry and DMPK, Respiratory, Inflammation and Autoimmune (RIA), R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Ken Grime
- Clinical Pharmacology & Safety Sciences, Medicinal Chemistry and DMPK, Respiratory, Inflammation and Autoimmune (RIA), R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
45
|
Successful Prediction of Human Pharmacokinetics by Improving Calculation Processes of Physiologically Based Pharmacokinetic Approach. J Pharm Sci 2019; 108:2718-2727. [DOI: 10.1016/j.xphs.2019.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/27/2019] [Accepted: 03/05/2019] [Indexed: 11/22/2022]
|
46
|
Evaluation of Drug Biliary Excretion Using Sandwich-Cultured Human Hepatocytes. Eur J Drug Metab Pharmacokinet 2019; 44:13-30. [PMID: 30167999 DOI: 10.1007/s13318-018-0502-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Evaluation of hepatobiliary transport of drugs is an important challenge, notably during the development of new molecular identities. In this context, sandwich-cultured human hepatocytes (SCHH) have been proposed as an interesting and integrated tool for predicting in vitro biliary excretion of drugs. The present review was therefore designed to summarize key findings about SCHH, including their establishment, their main functional features and their use for the determination of canalicular transport and the prediction of in vivo biliary clearance and hepatobiliary excretion-related drug-drug interactions. Reviewed data highlight the fact that SCHH represent an original and probably unique holistic in vitro approach to predict biliary clearance in humans, through taking into account sinusoidal drug uptake, passive drug diffusion, drug metabolism and sinusoidal and canalicular drug efflux. Limits and proposed refinements for SCHH-based analysis of drug biliary excretion, as well as putative human alternative in vitro models to SCHH are also discussed.
Collapse
|
47
|
Docci L, Parrott N, Krähenbühl S, Fowler S. Application of New Cellular and Microphysiological Systems to Drug Metabolism Optimization and Their Positioning Respective to In Silico Tools. SLAS DISCOVERY 2019; 24:523-536. [PMID: 30817893 DOI: 10.1177/2472555219831407] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
New cellular model systems for drug metabolism applications, such as advanced 2D liver co-cultures, spheroids, and microphysiological systems (MPSs), offer exciting opportunities to reproduce human biology more closely in vitro with the aim of improving predictions of pharmacokinetics, drug-drug interactions, and efficacy. These advanced cellular systems have quickly become established for human intrinsic clearance determination and have been validated for several other absorption, distribution, metabolism, and excretion (ADME) applications. Adoption will be driven through the demonstration of clear added value, for instance, by more accurate and precise clearance predictions and by more reliable extrapolation of drug interaction potential leading to faster progression to pivotal proof-of-concept studies. New experimental systems are attractive when they can (1) increase experimental capacity, removing optimization bottlenecks; (2) improve measurement quality of ADME properties that impact pharmacokinetics; and (3) enable measurements to be made that were not previously possible, reducing risk in ADME prediction and candidate selection. As new systems become established, they will find their place in the repository of tools used at different stages of the research and development process, depending on the balance of value, throughput, and cost. In this article, we give a perspective on the integration of these new methodologies into ADME optimization during drug discovery, and the likely applications and impacts on drug development.
Collapse
Affiliation(s)
- Luca Docci
- 1 Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Centre Basel, Basel, Switzerland.,2 Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Neil Parrott
- 1 Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Centre Basel, Basel, Switzerland
| | | | - Stephen Fowler
- 1 Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Centre Basel, Basel, Switzerland
| |
Collapse
|
48
|
Burton RD, Hieronymus T, Chamem T, Heim D, Anderson S, Zhu X, Hutzler JM. Assessment of the Biotransformation of Low-Turnover Drugs in the H µREL Human Hepatocyte Coculture Model. Drug Metab Dispos 2018; 46:1617-1625. [PMID: 30135244 DOI: 10.1124/dmd.118.082867] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/15/2018] [Indexed: 01/24/2023] Open
Abstract
Metabolic profiles of four drugs possessing diverse metabolic pathways (timolol, meloxicam, linezolid, and XK469) were compared following incubations in both suspended cryopreserved human hepatocytes and the HμREL hepatocyte coculture model. In general, minimal metabolism was observed following 4-hour incubations in both suspended hepatocytes and the HμREL model, whereas incubations conducted up to 7 days in the HμREL coculture model resulted in more robust metabolic turnover. In the case of timolol, in vivo human data suggest that 22% of the dose is transformed via multistep oxidative opening of the morpholine moiety. Only the first-step oxidation was detected in suspended hepatocytes, whereas the relevant downstream metabolites were produced in the HµREL model. For meloxicam, both the hydroxymethyl and subsequent carboxylic acid metabolites were abundant following incubation in the HμREL model, while only a trace amount of the hydroxymethyl metabolite was observed in suspension. Similar to timolol, linezolid generated substantially higher levels of morpholine ring-opened carboxylic acid metabolites in the HμREL model. Finally, while the major aldehyde oxidase-mediated mono-oxidative metabolite of XK469 was minimally produced in hepatocyte suspension, the HμREL model robustly produced this metabolite, consistent with a pathway reported to account for 54% of the total urinary excretion in human. In addition, low-level taurine and glycine conjugates were identified in the HµREL model. In summary, continuous metabolite production was observed for up to 7 days of incubation in the HµREL model, covering cytochrome P450, aldehyde oxidase, and numerous conjugative pathways, while predominant metabolites correlated with relevant metabolites reported in human in vivo studies.
Collapse
Affiliation(s)
- Richard D Burton
- Q Solutions, a Quintiles Quest Joint Venture, Bioanalytical and ADME Laboratories, Indianapolis, Indiana
| | - Todd Hieronymus
- Q Solutions, a Quintiles Quest Joint Venture, Bioanalytical and ADME Laboratories, Indianapolis, Indiana
| | - Taysir Chamem
- Q Solutions, a Quintiles Quest Joint Venture, Bioanalytical and ADME Laboratories, Indianapolis, Indiana
| | - David Heim
- Q Solutions, a Quintiles Quest Joint Venture, Bioanalytical and ADME Laboratories, Indianapolis, Indiana
| | - Shelby Anderson
- Q Solutions, a Quintiles Quest Joint Venture, Bioanalytical and ADME Laboratories, Indianapolis, Indiana
| | - Xiaochun Zhu
- Q Solutions, a Quintiles Quest Joint Venture, Bioanalytical and ADME Laboratories, Indianapolis, Indiana
| | - J Matthew Hutzler
- Q Solutions, a Quintiles Quest Joint Venture, Bioanalytical and ADME Laboratories, Indianapolis, Indiana
| |
Collapse
|
49
|
Lancett P, Williamson B, Barton P, Riley RJ. Development and Characterization of a Human Hepatocyte Low Intrinsic Clearance Assay for Use in Drug Discovery. Drug Metab Dispos 2018; 46:1169-1178. [PMID: 29880630 DOI: 10.1124/dmd.118.081596] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/16/2018] [Indexed: 12/21/2022] Open
Abstract
Progression of new chemical entities is a multiparametric process involving a balance of potency; absorption, distribution, metabolism, and excretion; and safety properties. To accurately predict human pharmacokinetics and estimate human efficacious dose, the use of in vitro measures of clearance is often essential. Low metabolic clearance is often targeted to facilitate in vivo exposure and achieve appropriate half-life. Suspension primary human hepatocytes (PHHs) have been successfully used in predictions of clearance. However, incubation times are limited, hindering the limit of quantification. The aims herein were to evaluate the ability of a novel PHH media supplement, HepExtend, in order to maintain cell function, increase culture times, and define the clearance of stable compounds. Cell activity was analyzed with a range of cytochrome P450 (P450) and UDP-glucuronosyltransferase (UGT) substrates, and the mRNA expression of drug disposition and toxicity marker genes was determined. HepExtend and Geltrex were essential to maintain cell activity and viability for 5 days (N = 3 donors). In comparison with CM4000 ± Geltrex, HepExtend + Geltrex displayed a higher level of gene expression on day 1, particularly for the P450s, nuclear receptors, and UGTs. The novel medium, HepExtend + Geltrex, was robust and reproducible in generating statistically significant intrinsic clearance values at 0.1 µl/min/106 cells over a 30-hour period (P < 0.05), which was lower than previously demonstrated. Following regression correction, human hepatic in vivo clearance was predicted within 3-fold for 83% of compounds tested for three human donors, with an average fold error of 2.2. The novel PHH medium, HepExtend, with matrix overlay offers significant improvement in determining compounds with low intrinsic clearance when compared with alternative approaches.
Collapse
Affiliation(s)
- Paul Lancett
- Drug Metabolism and Pharmacokinetics, Evotec, Abingdon, Oxford, United Kingdom
| | - Beth Williamson
- Drug Metabolism and Pharmacokinetics, Evotec, Abingdon, Oxford, United Kingdom
| | - Patrick Barton
- Drug Metabolism and Pharmacokinetics, Evotec, Abingdon, Oxford, United Kingdom
| | - Robert J Riley
- Drug Metabolism and Pharmacokinetics, Evotec, Abingdon, Oxford, United Kingdom
| |
Collapse
|
50
|
Schadt S, Bister B, Chowdhury SK, Funk C, Hop CECA, Humphreys WG, Igarashi F, James AD, Kagan M, Khojasteh SC, Nedderman ANR, Prakash C, Runge F, Scheible H, Spracklin DK, Swart P, Tse S, Yuan J, Obach RS. A Decade in the MIST: Learnings from Investigations of Drug Metabolites in Drug Development under the "Metabolites in Safety Testing" Regulatory Guidance. Drug Metab Dispos 2018; 46:865-878. [PMID: 29487142 DOI: 10.1124/dmd.117.079848] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 02/21/2018] [Indexed: 02/13/2025] Open
Abstract
Since the introduction of metabolites in safety testing (MIST) guidance by the Food and Drug Administration in 2008, major changes have occurred in the experimental methods for the identification and quantification of metabolites, ways to evaluate coverage of metabolites, and the timing of critical clinical and nonclinical studies to generate this information. In this cross-industry review, we discuss how the increased focus on human drug metabolites and their potential contribution to safety and drug-drug interactions has influenced the approaches taken by industry for the identification and quantitation of human drug metabolites. Before the MIST guidance was issued, the method of choice for generating comprehensive metabolite profile was radio chromatography. The MIST guidance increased the focus on human drug metabolites and their potential contribution to safety and drug-drug interactions and led to changes in the practices of drug metabolism scientists. In addition, the guidance suggested that human metabolism studies should also be accelerated, which has led to more frequent determination of human metabolite profiles from multiple ascending-dose clinical studies. Generating a comprehensive and quantitative profile of human metabolites has become a more urgent task. Together with technological advances, these events have led to a general shift of focus toward earlier human metabolism studies using high-resolution mass spectrometry and to a reduction in animal radiolabel absorption/distribution/metabolism/excretion studies. The changes induced by the MIST guidance are highlighted by six case studies included herein, reflecting different stages of implementation of the MIST guidance within the pharmaceutical industry.
Collapse
Affiliation(s)
- Simone Schadt
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (S.S., C.F.); Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach a.d. Riß, Germany (B.B., F.R.); Drug Metabolism and Pharmacokinetics Department, Takeda Pharmaceutical International Co., Cambridge, Massachusetts (S.K.C., J.Y.); Genentech, Inc., Drug Metabolism and Pharmacokinetics, South San Francisco, California (C.E.C.A.H., S.C.K.); Bristol-Myers Squibb Pharmaceutical Co., Princeton, New Jersey (W.G.H.); Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Japan (F.I.); PK Sciences (ADME), Novartis Institutes for Biomedical Research, Basel, Switzerland (A.D.J.); PK Sciences (ADME), Novartis Institutes for Biomedical Research, One Health Plaza, East Hanover, New Jersey (M.K.); Unilabs York Bioanalytical Solutions, Discovery Park House, Discovery Park, Sandwich, Kent, United Kingdom (A.N.R.N); Drug Metabolism, Pharmacokinetics and Clinical Pharmacology, Agios, Cambridge, Massachusetts (C.P.); Merck Biopharma, Quantitative Pharmacology and Drug Disposition, NCE Drug Disposition, Darmstadt, Germany (H.S., P.S.); and Pfizer, Pharmacokinetics, Dynamics and Metabolism, Groton, Connecticut (D.K.S., S.T., R.S.O.)
| | - Bojan Bister
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (S.S., C.F.); Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach a.d. Riß, Germany (B.B., F.R.); Drug Metabolism and Pharmacokinetics Department, Takeda Pharmaceutical International Co., Cambridge, Massachusetts (S.K.C., J.Y.); Genentech, Inc., Drug Metabolism and Pharmacokinetics, South San Francisco, California (C.E.C.A.H., S.C.K.); Bristol-Myers Squibb Pharmaceutical Co., Princeton, New Jersey (W.G.H.); Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Japan (F.I.); PK Sciences (ADME), Novartis Institutes for Biomedical Research, Basel, Switzerland (A.D.J.); PK Sciences (ADME), Novartis Institutes for Biomedical Research, One Health Plaza, East Hanover, New Jersey (M.K.); Unilabs York Bioanalytical Solutions, Discovery Park House, Discovery Park, Sandwich, Kent, United Kingdom (A.N.R.N); Drug Metabolism, Pharmacokinetics and Clinical Pharmacology, Agios, Cambridge, Massachusetts (C.P.); Merck Biopharma, Quantitative Pharmacology and Drug Disposition, NCE Drug Disposition, Darmstadt, Germany (H.S., P.S.); and Pfizer, Pharmacokinetics, Dynamics and Metabolism, Groton, Connecticut (D.K.S., S.T., R.S.O.)
| | - Swapan K Chowdhury
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (S.S., C.F.); Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach a.d. Riß, Germany (B.B., F.R.); Drug Metabolism and Pharmacokinetics Department, Takeda Pharmaceutical International Co., Cambridge, Massachusetts (S.K.C., J.Y.); Genentech, Inc., Drug Metabolism and Pharmacokinetics, South San Francisco, California (C.E.C.A.H., S.C.K.); Bristol-Myers Squibb Pharmaceutical Co., Princeton, New Jersey (W.G.H.); Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Japan (F.I.); PK Sciences (ADME), Novartis Institutes for Biomedical Research, Basel, Switzerland (A.D.J.); PK Sciences (ADME), Novartis Institutes for Biomedical Research, One Health Plaza, East Hanover, New Jersey (M.K.); Unilabs York Bioanalytical Solutions, Discovery Park House, Discovery Park, Sandwich, Kent, United Kingdom (A.N.R.N); Drug Metabolism, Pharmacokinetics and Clinical Pharmacology, Agios, Cambridge, Massachusetts (C.P.); Merck Biopharma, Quantitative Pharmacology and Drug Disposition, NCE Drug Disposition, Darmstadt, Germany (H.S., P.S.); and Pfizer, Pharmacokinetics, Dynamics and Metabolism, Groton, Connecticut (D.K.S., S.T., R.S.O.)
| | - Christoph Funk
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (S.S., C.F.); Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach a.d. Riß, Germany (B.B., F.R.); Drug Metabolism and Pharmacokinetics Department, Takeda Pharmaceutical International Co., Cambridge, Massachusetts (S.K.C., J.Y.); Genentech, Inc., Drug Metabolism and Pharmacokinetics, South San Francisco, California (C.E.C.A.H., S.C.K.); Bristol-Myers Squibb Pharmaceutical Co., Princeton, New Jersey (W.G.H.); Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Japan (F.I.); PK Sciences (ADME), Novartis Institutes for Biomedical Research, Basel, Switzerland (A.D.J.); PK Sciences (ADME), Novartis Institutes for Biomedical Research, One Health Plaza, East Hanover, New Jersey (M.K.); Unilabs York Bioanalytical Solutions, Discovery Park House, Discovery Park, Sandwich, Kent, United Kingdom (A.N.R.N); Drug Metabolism, Pharmacokinetics and Clinical Pharmacology, Agios, Cambridge, Massachusetts (C.P.); Merck Biopharma, Quantitative Pharmacology and Drug Disposition, NCE Drug Disposition, Darmstadt, Germany (H.S., P.S.); and Pfizer, Pharmacokinetics, Dynamics and Metabolism, Groton, Connecticut (D.K.S., S.T., R.S.O.)
| | - Cornelis E C A Hop
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (S.S., C.F.); Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach a.d. Riß, Germany (B.B., F.R.); Drug Metabolism and Pharmacokinetics Department, Takeda Pharmaceutical International Co., Cambridge, Massachusetts (S.K.C., J.Y.); Genentech, Inc., Drug Metabolism and Pharmacokinetics, South San Francisco, California (C.E.C.A.H., S.C.K.); Bristol-Myers Squibb Pharmaceutical Co., Princeton, New Jersey (W.G.H.); Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Japan (F.I.); PK Sciences (ADME), Novartis Institutes for Biomedical Research, Basel, Switzerland (A.D.J.); PK Sciences (ADME), Novartis Institutes for Biomedical Research, One Health Plaza, East Hanover, New Jersey (M.K.); Unilabs York Bioanalytical Solutions, Discovery Park House, Discovery Park, Sandwich, Kent, United Kingdom (A.N.R.N); Drug Metabolism, Pharmacokinetics and Clinical Pharmacology, Agios, Cambridge, Massachusetts (C.P.); Merck Biopharma, Quantitative Pharmacology and Drug Disposition, NCE Drug Disposition, Darmstadt, Germany (H.S., P.S.); and Pfizer, Pharmacokinetics, Dynamics and Metabolism, Groton, Connecticut (D.K.S., S.T., R.S.O.)
| | - W Griffith Humphreys
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (S.S., C.F.); Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach a.d. Riß, Germany (B.B., F.R.); Drug Metabolism and Pharmacokinetics Department, Takeda Pharmaceutical International Co., Cambridge, Massachusetts (S.K.C., J.Y.); Genentech, Inc., Drug Metabolism and Pharmacokinetics, South San Francisco, California (C.E.C.A.H., S.C.K.); Bristol-Myers Squibb Pharmaceutical Co., Princeton, New Jersey (W.G.H.); Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Japan (F.I.); PK Sciences (ADME), Novartis Institutes for Biomedical Research, Basel, Switzerland (A.D.J.); PK Sciences (ADME), Novartis Institutes for Biomedical Research, One Health Plaza, East Hanover, New Jersey (M.K.); Unilabs York Bioanalytical Solutions, Discovery Park House, Discovery Park, Sandwich, Kent, United Kingdom (A.N.R.N); Drug Metabolism, Pharmacokinetics and Clinical Pharmacology, Agios, Cambridge, Massachusetts (C.P.); Merck Biopharma, Quantitative Pharmacology and Drug Disposition, NCE Drug Disposition, Darmstadt, Germany (H.S., P.S.); and Pfizer, Pharmacokinetics, Dynamics and Metabolism, Groton, Connecticut (D.K.S., S.T., R.S.O.)
| | - Fumihiko Igarashi
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (S.S., C.F.); Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach a.d. Riß, Germany (B.B., F.R.); Drug Metabolism and Pharmacokinetics Department, Takeda Pharmaceutical International Co., Cambridge, Massachusetts (S.K.C., J.Y.); Genentech, Inc., Drug Metabolism and Pharmacokinetics, South San Francisco, California (C.E.C.A.H., S.C.K.); Bristol-Myers Squibb Pharmaceutical Co., Princeton, New Jersey (W.G.H.); Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Japan (F.I.); PK Sciences (ADME), Novartis Institutes for Biomedical Research, Basel, Switzerland (A.D.J.); PK Sciences (ADME), Novartis Institutes for Biomedical Research, One Health Plaza, East Hanover, New Jersey (M.K.); Unilabs York Bioanalytical Solutions, Discovery Park House, Discovery Park, Sandwich, Kent, United Kingdom (A.N.R.N); Drug Metabolism, Pharmacokinetics and Clinical Pharmacology, Agios, Cambridge, Massachusetts (C.P.); Merck Biopharma, Quantitative Pharmacology and Drug Disposition, NCE Drug Disposition, Darmstadt, Germany (H.S., P.S.); and Pfizer, Pharmacokinetics, Dynamics and Metabolism, Groton, Connecticut (D.K.S., S.T., R.S.O.)
| | - Alexander D James
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (S.S., C.F.); Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach a.d. Riß, Germany (B.B., F.R.); Drug Metabolism and Pharmacokinetics Department, Takeda Pharmaceutical International Co., Cambridge, Massachusetts (S.K.C., J.Y.); Genentech, Inc., Drug Metabolism and Pharmacokinetics, South San Francisco, California (C.E.C.A.H., S.C.K.); Bristol-Myers Squibb Pharmaceutical Co., Princeton, New Jersey (W.G.H.); Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Japan (F.I.); PK Sciences (ADME), Novartis Institutes for Biomedical Research, Basel, Switzerland (A.D.J.); PK Sciences (ADME), Novartis Institutes for Biomedical Research, One Health Plaza, East Hanover, New Jersey (M.K.); Unilabs York Bioanalytical Solutions, Discovery Park House, Discovery Park, Sandwich, Kent, United Kingdom (A.N.R.N); Drug Metabolism, Pharmacokinetics and Clinical Pharmacology, Agios, Cambridge, Massachusetts (C.P.); Merck Biopharma, Quantitative Pharmacology and Drug Disposition, NCE Drug Disposition, Darmstadt, Germany (H.S., P.S.); and Pfizer, Pharmacokinetics, Dynamics and Metabolism, Groton, Connecticut (D.K.S., S.T., R.S.O.)
| | - Mark Kagan
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (S.S., C.F.); Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach a.d. Riß, Germany (B.B., F.R.); Drug Metabolism and Pharmacokinetics Department, Takeda Pharmaceutical International Co., Cambridge, Massachusetts (S.K.C., J.Y.); Genentech, Inc., Drug Metabolism and Pharmacokinetics, South San Francisco, California (C.E.C.A.H., S.C.K.); Bristol-Myers Squibb Pharmaceutical Co., Princeton, New Jersey (W.G.H.); Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Japan (F.I.); PK Sciences (ADME), Novartis Institutes for Biomedical Research, Basel, Switzerland (A.D.J.); PK Sciences (ADME), Novartis Institutes for Biomedical Research, One Health Plaza, East Hanover, New Jersey (M.K.); Unilabs York Bioanalytical Solutions, Discovery Park House, Discovery Park, Sandwich, Kent, United Kingdom (A.N.R.N); Drug Metabolism, Pharmacokinetics and Clinical Pharmacology, Agios, Cambridge, Massachusetts (C.P.); Merck Biopharma, Quantitative Pharmacology and Drug Disposition, NCE Drug Disposition, Darmstadt, Germany (H.S., P.S.); and Pfizer, Pharmacokinetics, Dynamics and Metabolism, Groton, Connecticut (D.K.S., S.T., R.S.O.)
| | - S Cyrus Khojasteh
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (S.S., C.F.); Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach a.d. Riß, Germany (B.B., F.R.); Drug Metabolism and Pharmacokinetics Department, Takeda Pharmaceutical International Co., Cambridge, Massachusetts (S.K.C., J.Y.); Genentech, Inc., Drug Metabolism and Pharmacokinetics, South San Francisco, California (C.E.C.A.H., S.C.K.); Bristol-Myers Squibb Pharmaceutical Co., Princeton, New Jersey (W.G.H.); Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Japan (F.I.); PK Sciences (ADME), Novartis Institutes for Biomedical Research, Basel, Switzerland (A.D.J.); PK Sciences (ADME), Novartis Institutes for Biomedical Research, One Health Plaza, East Hanover, New Jersey (M.K.); Unilabs York Bioanalytical Solutions, Discovery Park House, Discovery Park, Sandwich, Kent, United Kingdom (A.N.R.N); Drug Metabolism, Pharmacokinetics and Clinical Pharmacology, Agios, Cambridge, Massachusetts (C.P.); Merck Biopharma, Quantitative Pharmacology and Drug Disposition, NCE Drug Disposition, Darmstadt, Germany (H.S., P.S.); and Pfizer, Pharmacokinetics, Dynamics and Metabolism, Groton, Connecticut (D.K.S., S.T., R.S.O.)
| | - Angus N R Nedderman
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (S.S., C.F.); Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach a.d. Riß, Germany (B.B., F.R.); Drug Metabolism and Pharmacokinetics Department, Takeda Pharmaceutical International Co., Cambridge, Massachusetts (S.K.C., J.Y.); Genentech, Inc., Drug Metabolism and Pharmacokinetics, South San Francisco, California (C.E.C.A.H., S.C.K.); Bristol-Myers Squibb Pharmaceutical Co., Princeton, New Jersey (W.G.H.); Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Japan (F.I.); PK Sciences (ADME), Novartis Institutes for Biomedical Research, Basel, Switzerland (A.D.J.); PK Sciences (ADME), Novartis Institutes for Biomedical Research, One Health Plaza, East Hanover, New Jersey (M.K.); Unilabs York Bioanalytical Solutions, Discovery Park House, Discovery Park, Sandwich, Kent, United Kingdom (A.N.R.N); Drug Metabolism, Pharmacokinetics and Clinical Pharmacology, Agios, Cambridge, Massachusetts (C.P.); Merck Biopharma, Quantitative Pharmacology and Drug Disposition, NCE Drug Disposition, Darmstadt, Germany (H.S., P.S.); and Pfizer, Pharmacokinetics, Dynamics and Metabolism, Groton, Connecticut (D.K.S., S.T., R.S.O.)
| | - Chandra Prakash
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (S.S., C.F.); Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach a.d. Riß, Germany (B.B., F.R.); Drug Metabolism and Pharmacokinetics Department, Takeda Pharmaceutical International Co., Cambridge, Massachusetts (S.K.C., J.Y.); Genentech, Inc., Drug Metabolism and Pharmacokinetics, South San Francisco, California (C.E.C.A.H., S.C.K.); Bristol-Myers Squibb Pharmaceutical Co., Princeton, New Jersey (W.G.H.); Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Japan (F.I.); PK Sciences (ADME), Novartis Institutes for Biomedical Research, Basel, Switzerland (A.D.J.); PK Sciences (ADME), Novartis Institutes for Biomedical Research, One Health Plaza, East Hanover, New Jersey (M.K.); Unilabs York Bioanalytical Solutions, Discovery Park House, Discovery Park, Sandwich, Kent, United Kingdom (A.N.R.N); Drug Metabolism, Pharmacokinetics and Clinical Pharmacology, Agios, Cambridge, Massachusetts (C.P.); Merck Biopharma, Quantitative Pharmacology and Drug Disposition, NCE Drug Disposition, Darmstadt, Germany (H.S., P.S.); and Pfizer, Pharmacokinetics, Dynamics and Metabolism, Groton, Connecticut (D.K.S., S.T., R.S.O.)
| | - Frank Runge
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (S.S., C.F.); Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach a.d. Riß, Germany (B.B., F.R.); Drug Metabolism and Pharmacokinetics Department, Takeda Pharmaceutical International Co., Cambridge, Massachusetts (S.K.C., J.Y.); Genentech, Inc., Drug Metabolism and Pharmacokinetics, South San Francisco, California (C.E.C.A.H., S.C.K.); Bristol-Myers Squibb Pharmaceutical Co., Princeton, New Jersey (W.G.H.); Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Japan (F.I.); PK Sciences (ADME), Novartis Institutes for Biomedical Research, Basel, Switzerland (A.D.J.); PK Sciences (ADME), Novartis Institutes for Biomedical Research, One Health Plaza, East Hanover, New Jersey (M.K.); Unilabs York Bioanalytical Solutions, Discovery Park House, Discovery Park, Sandwich, Kent, United Kingdom (A.N.R.N); Drug Metabolism, Pharmacokinetics and Clinical Pharmacology, Agios, Cambridge, Massachusetts (C.P.); Merck Biopharma, Quantitative Pharmacology and Drug Disposition, NCE Drug Disposition, Darmstadt, Germany (H.S., P.S.); and Pfizer, Pharmacokinetics, Dynamics and Metabolism, Groton, Connecticut (D.K.S., S.T., R.S.O.)
| | - Holger Scheible
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (S.S., C.F.); Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach a.d. Riß, Germany (B.B., F.R.); Drug Metabolism and Pharmacokinetics Department, Takeda Pharmaceutical International Co., Cambridge, Massachusetts (S.K.C., J.Y.); Genentech, Inc., Drug Metabolism and Pharmacokinetics, South San Francisco, California (C.E.C.A.H., S.C.K.); Bristol-Myers Squibb Pharmaceutical Co., Princeton, New Jersey (W.G.H.); Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Japan (F.I.); PK Sciences (ADME), Novartis Institutes for Biomedical Research, Basel, Switzerland (A.D.J.); PK Sciences (ADME), Novartis Institutes for Biomedical Research, One Health Plaza, East Hanover, New Jersey (M.K.); Unilabs York Bioanalytical Solutions, Discovery Park House, Discovery Park, Sandwich, Kent, United Kingdom (A.N.R.N); Drug Metabolism, Pharmacokinetics and Clinical Pharmacology, Agios, Cambridge, Massachusetts (C.P.); Merck Biopharma, Quantitative Pharmacology and Drug Disposition, NCE Drug Disposition, Darmstadt, Germany (H.S., P.S.); and Pfizer, Pharmacokinetics, Dynamics and Metabolism, Groton, Connecticut (D.K.S., S.T., R.S.O.)
| | - Douglas K Spracklin
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (S.S., C.F.); Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach a.d. Riß, Germany (B.B., F.R.); Drug Metabolism and Pharmacokinetics Department, Takeda Pharmaceutical International Co., Cambridge, Massachusetts (S.K.C., J.Y.); Genentech, Inc., Drug Metabolism and Pharmacokinetics, South San Francisco, California (C.E.C.A.H., S.C.K.); Bristol-Myers Squibb Pharmaceutical Co., Princeton, New Jersey (W.G.H.); Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Japan (F.I.); PK Sciences (ADME), Novartis Institutes for Biomedical Research, Basel, Switzerland (A.D.J.); PK Sciences (ADME), Novartis Institutes for Biomedical Research, One Health Plaza, East Hanover, New Jersey (M.K.); Unilabs York Bioanalytical Solutions, Discovery Park House, Discovery Park, Sandwich, Kent, United Kingdom (A.N.R.N); Drug Metabolism, Pharmacokinetics and Clinical Pharmacology, Agios, Cambridge, Massachusetts (C.P.); Merck Biopharma, Quantitative Pharmacology and Drug Disposition, NCE Drug Disposition, Darmstadt, Germany (H.S., P.S.); and Pfizer, Pharmacokinetics, Dynamics and Metabolism, Groton, Connecticut (D.K.S., S.T., R.S.O.)
| | - Piet Swart
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (S.S., C.F.); Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach a.d. Riß, Germany (B.B., F.R.); Drug Metabolism and Pharmacokinetics Department, Takeda Pharmaceutical International Co., Cambridge, Massachusetts (S.K.C., J.Y.); Genentech, Inc., Drug Metabolism and Pharmacokinetics, South San Francisco, California (C.E.C.A.H., S.C.K.); Bristol-Myers Squibb Pharmaceutical Co., Princeton, New Jersey (W.G.H.); Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Japan (F.I.); PK Sciences (ADME), Novartis Institutes for Biomedical Research, Basel, Switzerland (A.D.J.); PK Sciences (ADME), Novartis Institutes for Biomedical Research, One Health Plaza, East Hanover, New Jersey (M.K.); Unilabs York Bioanalytical Solutions, Discovery Park House, Discovery Park, Sandwich, Kent, United Kingdom (A.N.R.N); Drug Metabolism, Pharmacokinetics and Clinical Pharmacology, Agios, Cambridge, Massachusetts (C.P.); Merck Biopharma, Quantitative Pharmacology and Drug Disposition, NCE Drug Disposition, Darmstadt, Germany (H.S., P.S.); and Pfizer, Pharmacokinetics, Dynamics and Metabolism, Groton, Connecticut (D.K.S., S.T., R.S.O.)
| | - Susanna Tse
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (S.S., C.F.); Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach a.d. Riß, Germany (B.B., F.R.); Drug Metabolism and Pharmacokinetics Department, Takeda Pharmaceutical International Co., Cambridge, Massachusetts (S.K.C., J.Y.); Genentech, Inc., Drug Metabolism and Pharmacokinetics, South San Francisco, California (C.E.C.A.H., S.C.K.); Bristol-Myers Squibb Pharmaceutical Co., Princeton, New Jersey (W.G.H.); Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Japan (F.I.); PK Sciences (ADME), Novartis Institutes for Biomedical Research, Basel, Switzerland (A.D.J.); PK Sciences (ADME), Novartis Institutes for Biomedical Research, One Health Plaza, East Hanover, New Jersey (M.K.); Unilabs York Bioanalytical Solutions, Discovery Park House, Discovery Park, Sandwich, Kent, United Kingdom (A.N.R.N); Drug Metabolism, Pharmacokinetics and Clinical Pharmacology, Agios, Cambridge, Massachusetts (C.P.); Merck Biopharma, Quantitative Pharmacology and Drug Disposition, NCE Drug Disposition, Darmstadt, Germany (H.S., P.S.); and Pfizer, Pharmacokinetics, Dynamics and Metabolism, Groton, Connecticut (D.K.S., S.T., R.S.O.)
| | - Josh Yuan
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (S.S., C.F.); Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach a.d. Riß, Germany (B.B., F.R.); Drug Metabolism and Pharmacokinetics Department, Takeda Pharmaceutical International Co., Cambridge, Massachusetts (S.K.C., J.Y.); Genentech, Inc., Drug Metabolism and Pharmacokinetics, South San Francisco, California (C.E.C.A.H., S.C.K.); Bristol-Myers Squibb Pharmaceutical Co., Princeton, New Jersey (W.G.H.); Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Japan (F.I.); PK Sciences (ADME), Novartis Institutes for Biomedical Research, Basel, Switzerland (A.D.J.); PK Sciences (ADME), Novartis Institutes for Biomedical Research, One Health Plaza, East Hanover, New Jersey (M.K.); Unilabs York Bioanalytical Solutions, Discovery Park House, Discovery Park, Sandwich, Kent, United Kingdom (A.N.R.N); Drug Metabolism, Pharmacokinetics and Clinical Pharmacology, Agios, Cambridge, Massachusetts (C.P.); Merck Biopharma, Quantitative Pharmacology and Drug Disposition, NCE Drug Disposition, Darmstadt, Germany (H.S., P.S.); and Pfizer, Pharmacokinetics, Dynamics and Metabolism, Groton, Connecticut (D.K.S., S.T., R.S.O.)
| | - R Scott Obach
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (S.S., C.F.); Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach a.d. Riß, Germany (B.B., F.R.); Drug Metabolism and Pharmacokinetics Department, Takeda Pharmaceutical International Co., Cambridge, Massachusetts (S.K.C., J.Y.); Genentech, Inc., Drug Metabolism and Pharmacokinetics, South San Francisco, California (C.E.C.A.H., S.C.K.); Bristol-Myers Squibb Pharmaceutical Co., Princeton, New Jersey (W.G.H.); Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Japan (F.I.); PK Sciences (ADME), Novartis Institutes for Biomedical Research, Basel, Switzerland (A.D.J.); PK Sciences (ADME), Novartis Institutes for Biomedical Research, One Health Plaza, East Hanover, New Jersey (M.K.); Unilabs York Bioanalytical Solutions, Discovery Park House, Discovery Park, Sandwich, Kent, United Kingdom (A.N.R.N); Drug Metabolism, Pharmacokinetics and Clinical Pharmacology, Agios, Cambridge, Massachusetts (C.P.); Merck Biopharma, Quantitative Pharmacology and Drug Disposition, NCE Drug Disposition, Darmstadt, Germany (H.S., P.S.); and Pfizer, Pharmacokinetics, Dynamics and Metabolism, Groton, Connecticut (D.K.S., S.T., R.S.O.)
| |
Collapse
|