1
|
Schulz JA, Stresser DM, Kalvass JC. Plasma Protein-Mediated Uptake and Contradictions to the Free Drug Hypothesis: A Critical Review. Drug Metab Rev 2023:1-34. [PMID: 36971325 DOI: 10.1080/03602532.2023.2195133] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
According to the free drug hypothesis (FDH), only free, unbound drug is available to interact with biological targets. This hypothesis is the fundamental principle that continues to explain the vast majority of all pharmacokinetic and pharmacodynamic processes. Under the FDH, the free drug concentration at the target site is considered the driver of pharmacodynamic activity and pharmacokinetic processes. However, deviations from the FDH are observed in hepatic uptake and clearance predictions, where observed unbound intrinsic hepatic clearance (CLint,u) is larger than expected. Such deviations are commonly observed when plasma proteins are present and form the basis of the so-called plasma protein-mediated uptake effect (PMUE). This review will discuss the basis of plasma protein binding as it pertains to hepatic clearance based on the FDH, as well as several hypotheses that may explain the underlying mechanisms of PMUE. Notably, some, but not all, potential mechanisms remained aligned with the FDH. Finally, we will outline possible experimental strategies to elucidate PMUE mechanisms. Understanding the mechanisms of PMUE and its potential contribution to clearance underprediction is vital to improving the drug development process.
Collapse
|
2
|
Denisov IG, Grinkova YV, McLean MA, Camp T, Sligar SG. Midazolam as a Probe for Heterotropic Drug-Drug Interactions Mediated by CYP3A4. Biomolecules 2022; 12:853. [PMID: 35740978 PMCID: PMC9221276 DOI: 10.3390/biom12060853] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022] Open
Abstract
Human cytochrome P450 CYP3A4 is involved in the processing of more than 35% of current pharmaceuticals and therefore is responsible for multiple drug-drug interactions (DDI). In order to develop a method for the detection and prediction of the possible involvement of new drug candidates in CYP3A4-mediated DDI, we evaluated the application of midazolam (MDZ) as a probe substrate. MDZ is hydroxylated by CYP3A4 in two positions: 1-hydroxy MDZ formed at lower substrate concentrations, and up to 35% of 4-hydroxy MDZ at high concentrations. The ratio of the formation rates of these two products (the site of metabolism ratio, SOM) was used as a measure of allosteric heterotropic interactions caused by effector molecules using CYP3A4 incorporated in lipid nanodiscs. The extent of the changes in the SOM in the presence of effectors is determined by chemical structure and is concentration-dependent. MD simulations of CYP3A4 in the lipid bilayer suggest that experimental results can be explained by the movement of the F-F' loop and concomitant changes in the shape and volume of the substrate-binding pocket. As a result of PGS binding at the allosteric site, several residues directly contacting MDZ move away from the substrate molecule, enabling the repositioning of the latter for minor product formation.
Collapse
Affiliation(s)
- Ilia G. Denisov
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (I.G.D.); (Y.V.G.); (M.A.M.); (T.C.)
| | - Yelena V. Grinkova
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (I.G.D.); (Y.V.G.); (M.A.M.); (T.C.)
| | - Mark A. McLean
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (I.G.D.); (Y.V.G.); (M.A.M.); (T.C.)
| | - Tyler Camp
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (I.G.D.); (Y.V.G.); (M.A.M.); (T.C.)
| | - Stephen G. Sligar
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (I.G.D.); (Y.V.G.); (M.A.M.); (T.C.)
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
3
|
Structural dynamics of the cooperative binding of small inhibitors in human cytochrome P450 2C9. J Mol Graph Model 2022; 113:108151. [DOI: 10.1016/j.jmgm.2022.108151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/03/2022] [Accepted: 02/03/2022] [Indexed: 11/23/2022]
|
4
|
Johnson JL, Huang J, Rooney M, Gu C. Optimal pH 8.5 to 9 for the Hydrolysis of Vixotrigine and Other Basic Substrates of Carboxylesterase-1 in Human Liver Microsomes. Xenobiotica 2021; 52:105-112. [PMID: 34904522 DOI: 10.1080/00498254.2021.2018629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Vixotrigine is a voltage- and use-dependent sodium channel blocker under investigation for the potential treatment of neuropathic pain. One of the major in vivo metabolic pathways of vixotrigine in humans is the hydrolysis of the carboxamide to form the carboxylic acid metabolite M14.The in vitro formation of M14 in human hepatocytes was inhibited by the carboxylesterase (CES) inhibitor Bis(4-nitrophenyl) phosphate in a concentration-dependent manner. The hydrolysis reaction was identified to be catalyzed by recombinant human CES1b.Initial observation of only trace level formation of M14 in human liver microsomes at pH 7.4 caused us to doubt the involvement of CES1, an enzyme localized at the endoplasmic reticulum and the dominant carboxylesterase in human liver. Further investigation has revealed that optimal pH for the hydrolysis of vixotrigine and two other basic substrates of CES1, methylphenidate and oseltamivir, in human liver microsomes was pH 8.5 to 9 which is higher than their respective pKa(base), suggesting that neutral form of basic substrates is probably preferred for CES1 catalysis in liver microsomes.
Collapse
Affiliation(s)
- Joshua L Johnson
- Drug Metabolism and Pharmacokinetics.,Current affiliation of JLJ: Drug Metabolism and Pharmacokinetics, Takeda, San Diego, CA, USA
| | | | - Michael Rooney
- Clinical Pharmacology and Pharmacometrics, Biogen, Cambridge, MA, USA
| | | |
Collapse
|
5
|
Gaohua L, Miao X, Dou L. Crosstalk of physiological pH and chemical pKa under the umbrella of physiologically based pharmacokinetic modeling of drug absorption, distribution, metabolism, excretion, and toxicity. Expert Opin Drug Metab Toxicol 2021; 17:1103-1124. [PMID: 34253134 DOI: 10.1080/17425255.2021.1951223] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Introduction: Physiological pH and chemical pKa are two sides of the same coin in defining the ionization of a drug in the human body. The Henderson-Hasselbalch equation and pH-partition hypothesis form the theoretical base to define the impact of pH-pKa crosstalk on drug ionization and thence its absorption, distribution, metabolism, excretion, and toxicity (ADMET).Areas covered: Human physiological pH is not constant, but a diverse, dynamic state regulated by various biological mechanisms, while the chemical pKa is generally a constant defining the acidic dissociation of the drug at various environmental pH. Works on pH-pKa crosstalk are scattered in the literature, despite its significant contributions to drug pharmacokinetics, pharmacodynamics, safety, and toxicity. In particular, its impacts on drug ADMET have not been effectively linked to the physiologically based pharmacokinetic (PBPK) modeling and simulation, a powerful tool increasingly used in model-informed drug development (MIDD).Expert opinion: Lacking a full consideration of the interactions of physiological pH and chemical pKa in a PBPK model limits scientists' capability in mechanistically describing the drug ADMET. This mini-review compiled literature knowledge on pH-pKa crosstalk and its impacts on drug ADMET, from the viewpoint of PBPK modeling, to pave the way to a systematic incorporation of pH-pKa crosstalk into PBPK modeling and simulation.
Collapse
Affiliation(s)
- Lu Gaohua
- Research & Early Development, Princeton, New Jersey, USA
| | - Xiusheng Miao
- Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Liu Dou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Dixit VA, Warwicker J, Visser SP. How Do Metal Ions Modulate the Rate‐Determining Electron‐Transfer Step in Cytochrome P450 Reactions? Chemistry 2020; 26:15270-15281. [DOI: 10.1002/chem.202003024] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Vaibhav A. Dixit
- Department of Pharmacy Birla Institute of Technology and Sciences Pilani (BITS-Pilani) Vidya Vihar Campus 41 Pilani 333031 Rajasthan India
| | - Jim Warwicker
- Manchester Institute of Biotechnology The University of Manchester 131 Princess Street Manchester M17DN United Kingdom
- Department of Chemistry The University of Manchester Oxford Road Manchester M139PL United Kingdom
| | - Sam P. Visser
- Manchester Institute of Biotechnology The University of Manchester 131 Princess Street Manchester M17DN United Kingdom
- Department of Chemical Engineering and Analytical Science The University of Manchester Oxford Road Manchester M13 9PL United Kingdom
| |
Collapse
|
7
|
Yadav J, Paragas E, Korzekwa K, Nagar S. Time-dependent enzyme inactivation: Numerical analyses of in vitro data and prediction of drug-drug interactions. Pharmacol Ther 2020; 206:107449. [PMID: 31836452 PMCID: PMC6995442 DOI: 10.1016/j.pharmthera.2019.107449] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cytochrome P450 (CYP) enzyme kinetics often do not conform to Michaelis-Menten assumptions, and time-dependent inactivation (TDI) of CYPs displays complexities such as multiple substrate binding, partial inactivation, quasi-irreversible inactivation, and sequential metabolism. Additionally, in vitro experimental issues such as lipid partitioning, enzyme concentrations, and inactivator depletion can further complicate the parameterization of in vitro TDI. The traditional replot method used to analyze in vitro TDI datasets is unable to handle complexities in CYP kinetics, and numerical approaches using ordinary differential equations of the kinetic schemes offer several advantages. Improvement in the parameterization of CYP in vitro kinetics has the potential to improve prediction of clinical drug-drug interactions (DDIs). This manuscript discusses various complexities in TDI kinetics of CYPs, and numerical approaches to model these complexities. The extrapolation of CYP in vitro TDI parameters to predict in vivo DDIs with static and dynamic modeling is discussed, along with a discussion on current gaps in knowledge and future directions to improve the prediction of DDI with in vitro data for CYP catalyzed drug metabolism.
Collapse
Affiliation(s)
- Jaydeep Yadav
- Amgen Inc., 360 Binney Street, Cambridge, MA 02142, United States; Department of Pharmaceutical Sciences, Temple University, Philadelphia, PA 19140, United States
| | - Erickson Paragas
- Department of Pharmaceutical Sciences, Temple University, Philadelphia, PA 19140, United States
| | - Ken Korzekwa
- Department of Pharmaceutical Sciences, Temple University, Philadelphia, PA 19140, United States
| | - Swati Nagar
- Department of Pharmaceutical Sciences, Temple University, Philadelphia, PA 19140, United States.
| |
Collapse
|
8
|
Miura T, Uehara S, Shimizu M, Murayama N, Utoh M, Suemizu H, Yamazaki H. Different Roles of Human Cytochrome P450 2C9 and 3A Enzymes in Diclofenac 4'- and 5-Hydroxylations Mediated by Metabolically Inactivated Human Hepatocytes in Previously Transplanted Chimeric Mice. Chem Res Toxicol 2019; 33:634-639. [PMID: 31854189 DOI: 10.1021/acs.chemrestox.9b00446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To investigate the respective roles of cytochromes P450 2C9 and 3A in drug oxidation in human livers, the in vivo pharmacokinetics of S-warfarin and diclofenac were analyzed after intravenous administrations in chimeric mice that had been transplanted with human hepatocytes. P450 2C9 was metabolically inactivated in the humanized mice by orally pretreating them with tienilic acid. After intravenous administration of S-warfarin, a significant difference in the concentration-time profiles of the primary metabolite 7-hydroxywarfarin between untreated mice and mice treated with tienilic acid was observed. In contrast, there were no apparent differences in the profiles for S-warfarin between the treated and untreated groups. The mean values of the maximum concentrations (Cmax) and the areas under the plasma concentration versus time curves (AUCinfinity) for 7-hydroxywarfarin were significantly lower (22 and 16% of the untreated values, respectively) in the treated group. This presumably resulted from suppressed P450 2C9 activity in the primary oxidative metabolism in vivo in the treated group. After diclofenac administration, plasma levels of diclofenac, 5-hydroxydiclofenac, and diclofenac acylglucuronide were roughly similar in pretreated and untreated mice. However, the mean Cmax and AUCinfinity values for 4'-hydroxydiclofenac were significantly lower (38 and 53% of the untreated group, respectively) in the treated group. The reported value of ∼0.8 for the fraction of S-warfarin metabolized to 7-hydroxywarfarin mediated by P450 2C9 in in vitro systems was similar to the value implied by the present humanized-liver mouse model pretreated with tienilic acid in which the AUC of 7-hydroxywarfarin was reduced by 84%. In contrast, the fractions of diclofenac metabolized to 4'-hydroxydiclofenac in in vitro and in vivo experiments were inconsistent. These results suggested that humanized-liver mice orally treated with tienilic acid might constitute an in vivo model for metabolically inactivated P450 2C9 in human hepatocytes transplanted into chimeric mice. Moreover, diclofenac, a typical in vitro P450 2C9 probe substrate, was cleared differently in vitro and in humanized-liver mice in vivo.
Collapse
Affiliation(s)
- Tomonori Miura
- Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Tokyo 194-8543 , Japan
| | - Shotaro Uehara
- Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Tokyo 194-8543 , Japan.,Laboratory Animal Research Department , Central Institute for Experimental Animals , Kawasaki 210-0821 , Japan
| | - Makiko Shimizu
- Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Tokyo 194-8543 , Japan
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Tokyo 194-8543 , Japan
| | - Masahiro Utoh
- Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Tokyo 194-8543 , Japan
| | - Hiroshi Suemizu
- Laboratory Animal Research Department , Central Institute for Experimental Animals , Kawasaki 210-0821 , Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Tokyo 194-8543 , Japan
| |
Collapse
|
9
|
Bojić M, Kondža M, Rimac H, Benković G, Maleš Ž. The Effect of Flavonoid Aglycones on the CYP1A2, CYP2A6, CYP2C8 and CYP2D6 Enzymes Activity. Molecules 2019; 24:E3174. [PMID: 31480528 PMCID: PMC6749521 DOI: 10.3390/molecules24173174] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 08/25/2019] [Accepted: 08/31/2019] [Indexed: 12/16/2022] Open
Abstract
Cytochromes P450 are major metabolic enzymes involved in the biotransformation of xenobiotics. The majority of xenobiotics are metabolized in the liver, in which the highest levels of cytochromes P450 are expressed. Flavonoids are natural compounds to which humans are exposed through everyday diet. In the previous study, selected flavonoid aglycones showed inhibition of CYP3A4 enzyme. Thus, the objective of this study was to determine if these flavonoids inhibit metabolic activity of CYP1A2, CYP2A6, CYP2C8, and CYP2D6 enzymes. For this purpose, the O-deethylation reaction of phenacetin was used for monitoring CYP1A2 enzyme activity, coumarin 7-hydroxylation for CYP2A6 enzyme activity, 6-α-hydroxylation of paclitaxel for CYP2C8 enzyme activity, and dextromethorphan O-demethylation for CYP2D6 enzyme activity. The generated metabolites were monitored by high-performance liquid chromatography coupled with diode array detection. Hesperetin, pinocembrin, chrysin, isorhamnetin, and morin inhibited CYP1A2 activity; apigenin, tangeretin, galangin, and isorhamnetin inhibited CYP2A6 activity; and chrysin, chrysin-dimethylether, and galangin inhibited CYP2C8. None of the analyzed flavonoids showed inhibition of CYP2D6. The flavonoids in this study were mainly reversible inhibitors of CYP1A2 and CYP2A6, while the inhibition of CYP2C8 was of mixed type (reversible and irreversible). The most prominent reversible inhibitor of CYP1A2 was chrysin, and this was confirmed by the docking study.
Collapse
Affiliation(s)
- Mirza Bojić
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10000 Zagreb, Croatia.
| | - Martin Kondža
- Matice hrvatske, Faculty of Pharmacy, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
| | - Hrvoje Rimac
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10000 Zagreb, Croatia
| | - Goran Benković
- Agency for Medicinal Products and Medical Devices, Ksaverska cesta 4, 10000 Zagreb, Croatia
| | - Željan Maleš
- Department of Pharmaceutical Botany, Faculty of Pharmacy and Biochemistry, University of Zagreb, Schrottova 39, 10000 Zagreb, Croatia
| |
Collapse
|
10
|
Yadav J, Korzekwa K, Nagar S. Impact of Lipid Partitioning on the Design, Analysis, and Interpretation of Microsomal Time-Dependent Inactivation. Drug Metab Dispos 2019; 47:732-742. [PMID: 31043439 PMCID: PMC6556519 DOI: 10.1124/dmd.118.085969] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/30/2019] [Indexed: 12/20/2022] Open
Abstract
Nonspecific drug partitioning into microsomal membranes must be considered for in vitro-in vivo correlations. This work evaluated the effect of including lipid partitioning in the analysis of complex TDI kinetics with numerical methods. The covariance between lipid partitioning and multiple inhibitor binding was evaluated. Simulations were performed to test the impact of lipid partitioning on the interpretation of TDI kinetics, and experimental TDI datasets for paroxetine (PAR) and itraconazole (ITZ) were modeled. For most kinetic schemes, modeling lipid partitioning results in statistically better fits. For MM-IL simulations (KI,u = 0.1 µM, kinact = 0.1 minute-1), concurrent modeling of lipid partitioning for an fumic range (0.01, 0.1, and 0.5) resulted in better fits compared with post hoc correction (AICc: -526 vs. -496, -579 vs. -499, and -636 vs. -579, respectively). Similar results were obtained with EII-IL. Lipid partitioning may be misinterpreted as double binding, leading to incorrect parameter estimates. For the MM-IL datasets, when fumic = 0.02, MM-IL, and EII model fits were indistinguishable (δAICc = 3). For less partitioned datasets (fumic = 0.1 or 0.5), the inclusion of partitioning resulted in better models. The inclusion of lipid partitioning can lead to markedly different estimates of KI,u and kinact A reasonable alternate experimental design is nondilution TDI assays, with post hoc fumic incorporation. The best fit models for PAR (MIC-M-IL) and ITZ (MIC-EII-M-IL and MIC-EII-M-Seq-IL) were consistent with their reported mechanism and kinetics. Overall, experimental fumic values should be concurrently incorporated into TDI models with complex kinetics, when dilution protocols are used.
Collapse
Affiliation(s)
- Jaydeep Yadav
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania
| | - Ken Korzekwa
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania
| | - Swati Nagar
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania
| |
Collapse
|
11
|
Zhang X, Zhang X, Wang X, Zhao M. Influence of andrographolide on the pharmacokinetics of warfarin in rats. PHARMACEUTICAL BIOLOGY 2018; 56:351-356. [PMID: 29983086 PMCID: PMC6130436 DOI: 10.1080/13880209.2018.1478431] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 03/26/2018] [Accepted: 05/15/2018] [Indexed: 05/27/2023]
Abstract
CONTEXT Andrographolide and warfarin are often used together in clinics in China. However, the herb-drug interaction between andrographolide and warfarin is still unknown. OBJECTIVE This study investigates the herb-drug interaction between andrographolide and warfarin in vivo and in vitro. MATERIALS AND METHODS A sensitive and reliable LC-MS/MS method was developed for the determination of warfarin in male Sprague-Dawley rats plasma, and then the pharmacokinetics of orally administered warfarin (0.5 mg/kg) with or without andrographolide (30 mg/kg/day for 7 days) pretreatment was investigated. In addition, Sprague-Dawley rat liver microsomes incubation systems were used to support the in vivo pharmacokinetic data and investigate its potential mechanism. RESULTS The method validation results showed that a sensitive and reliable LC-MS/MS method was developed for the determination of warfarin in rat plasma samples. The pharmacokinetic results indicated that co-administration of andrographolide could increase the systemic exposure of warfarin significantly, including area under the curve (118.92 ± 18.08 vs. 60.58 ± 9.46 μg × h/mL), maximum plasma concentration (3.32 ± 0.41 vs. 2.35 ± 0.25 μg/mL) and t1/2 (22.73 ± 3.28 vs. 14.27 ± 2.67 h). Additionally, the metabolic stability of warfarin increased from 23.5 ± 4.7 to 38.7 ± 6.1 min with the pretreatment of andrographolide, and the difference was significant (p < 0.05). DISCUSSION AND CONCLUSION In conclusion, andrographolide could increase the systemic exposure of warfarin in rats when andrographolide and warfarin were co-administered, and possibly by slowing down the metabolism of warfarin in rat liver by inhibiting the activity of CYP3A4 or CYP2C9.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Department of Nephrology, Yidu Central Hospital of Weifang, Shandong, China
- Department of Nursing, Yidu Central Hospital of Weifang, Shandong, China
| | - Xiaosu Zhang
- Department of Nephrology, Yidu Central Hospital of Weifang, Shandong, China
| | - Xiaocui Wang
- Department of Nephrology, Yidu Central Hospital of Weifang, Shandong, China
| | - Meijun Zhao
- Department of Nursing, Yidu Central Hospital of Weifang, Shandong, China
| |
Collapse
|
12
|
Prediction of drug–drug interaction potential using physiologically based pharmacokinetic modeling. Arch Pharm Res 2017; 40:1356-1379. [DOI: 10.1007/s12272-017-0976-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 10/19/2017] [Indexed: 12/22/2022]
|