1
|
Tak J, Kim YS, Kim SG. Roles of X-box binding protein 1 in liver pathogenesis. Clin Mol Hepatol 2025; 31:1-31. [PMID: 39355873 PMCID: PMC11791611 DOI: 10.3350/cmh.2024.0441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/06/2024] [Accepted: 09/27/2024] [Indexed: 10/03/2024] Open
Abstract
The prevalence of drug-induced liver injury (DILI) and viral liver infections presents significant challenges in modern healthcare and contributes to considerable morbidity and mortality worldwide. Concurrently, metabolic dysfunctionassociated steatotic liver disease (MASLD) has emerged as a major public health concern, reflecting the increasing rates of obesity and leading to more severe complications such as fibrosis and hepatocellular carcinoma. X-box binding protein 1 (XBP1) is a distinct transcription factor with a basic-region leucine zipper structure, whose activity is regulated by alternative splicing in response to disruptions in endoplasmic reticulum (ER) homeostasis and the unfolded protein response (UPR) activation. XBP1 interacts with a key signaling component of the highly conserved UPR and is critical in determining cell fate when responding to ER stress in liver diseases. This review aims to elucidate the emerging roles and molecular mechanisms of XBP1 in liver pathogenesis, focusing on its involvement in DILI, viral liver infections, MASLD, fibrosis/cirrhosis, and liver cancer. Understanding the multifaceted functions of XBP1 in these liver diseases offers insights into potential therapeutic strategies to restore ER homeostasis and mitigate liver damage.
Collapse
Affiliation(s)
- Jihoon Tak
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang, Korea
| | - Yun Seok Kim
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Seoul, Korea
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Sang Geon Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang, Korea
| |
Collapse
|
2
|
Dewald Z, Adesanya O, Bae H, Gupta A, Derham JM, Chembazhi UV, Kalsotra A. Altered drug metabolism and increased susceptibility to fatty liver disease in a mouse model of myotonic dystrophy. Nat Commun 2024; 15:9062. [PMID: 39433769 PMCID: PMC11494077 DOI: 10.1038/s41467-024-53378-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024] Open
Abstract
Myotonic Dystrophy type 1 (DM1), a highly prevalent form of muscular dystrophy, is caused by (CTG)n repeat expansion in the DMPK gene. Much of DM1 research has focused on the effects within the muscle and neurological tissues; however, DM1 patients also suffer from various metabolic and liver dysfunctions such as increased susceptibility to metabolic dysfunction-associated fatty liver disease (MAFLD) and heightened sensitivity to certain drugs. Here, we generated a liver-specific DM1 mouse model that reproduces molecular and pathological features of the disease, including susceptibility to MAFLD and reduced capacity to metabolize specific analgesics and muscle relaxants. Expression of CUG-expanded (CUG)exp repeat RNA within hepatocytes sequestered muscleblind-like proteins and triggered widespread gene expression and RNA processing defects. Mechanistically, we demonstrate that increased expression and alternative splicing of acetyl-CoA carboxylase 1 drives excessive lipid accumulation in DM1 livers, which is exacerbated by high-fat, high-sugar diets. Together, these findings reveal that (CUG)exp RNA toxicity disrupts normal hepatic functions, predisposing DM1 livers to injury, MAFLD, and drug clearance pathologies that may jeopardize the health of affected individuals and complicate their treatment.
Collapse
Affiliation(s)
- Zachary Dewald
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | | | - Haneui Bae
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Andrew Gupta
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Jessica M Derham
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Ullas V Chembazhi
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Auinash Kalsotra
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, IL, USA.
- Cancer Center@Illinois, University of Illinois, Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL, USA.
- Division of Nutritional Sciences, University of Illinois, Urbana-Champaign, Urbana, IL, USA.
- Chan Zuckerburg Biohub, Chicago, IL, USA.
| |
Collapse
|
3
|
Wang W, Qiao J, Su Z, Wei H, Wu J, Liu Y, Lin R, Michael N. Serum metabolites and hypercholesterolemia: insights from a two-sample Mendelian randomization study. Front Cardiovasc Med 2024; 11:1410006. [PMID: 39171325 PMCID: PMC11337230 DOI: 10.3389/fcvm.2024.1410006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/12/2024] [Indexed: 08/23/2024] Open
Abstract
Background Hypercholesterolemia, a critical contributor to cardiovascular disease, is not fully understood in terms of its relationship with serum metabolites and their role in disease pathogenesis. Methods This study leveraged GWAS data to explore the relationship between serum metabolites and hypercholesterolemia, pinpointing significant metabolites via Mendelian Randomization (MR) and KEGG pathway enrichment analysis. Data on metabolites were sourced from a European population, with analysis focusing on individuals diagnosed with hypercholesterolemia. Results Out of 486 metabolites analyzed, ten showed significant associations with hypercholesterolemia, categorized into those enhancing risk and those with protective effects. Specifically, 2-methoxyacetaminophen sulfate and 1-oleoylglycerol (1-monoolein) were identified as risk-enhancing, with odds ratios (OR) of 1.545 (95% CI: 1.230-1.939; P_FDR = 3E-04) and 1.462 (95% CI: 1.036-2.063; P_FDR = 0.037), respectively. On the protective side, 3-(cystein-S-yl)acetaminophen, hydroquinone sulfate, and 2-hydroxyacetaminophen sulfate demonstrated ORs of 0.793 (95% CI: 0.735-0.856; P_FDR = 6.18E-09), 0.641 (95% CI: 0.423-0.971; P_FDR = 0.042), and 0.607 (95% CI: 0.541-0.681; P_FDR = 5.39E-17), respectively. In addition, KEGG pathway enrichment analysis further revealed eight critical pathways, comprising "biosynthesis of valine, leucine, and isoleucine", "phenylalanine metabolism", and "pyruvate metabolism", emphasizing their significant role in the pathogenesis of hypercholesterolemia. Conclusion This study underscores the potential causal links between particular serum metabolites and hypercholesterolemia, offering innovative viewpoints on the metabolic basis of the disease. The identified metabolites and pathways offer promising targets for therapeutic intervention and warrant further investigation.
Collapse
Affiliation(s)
- Weitao Wang
- The First Clinical College of Medicine, Lanzhou University, Lanzhou, China
| | - Jingwen Qiao
- Graduate Department of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhaoyin Su
- The First Clinical College of Medicine, Lanzhou University, Lanzhou, China
| | - Hui Wei
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Jincan Wu
- The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yatao Liu
- Department of Anesthesia, First Hospital of Lanzhou University, Lanzhou, China
| | - Rubing Lin
- Department of Orthopedics, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| | - Nerich Michael
- Department of Trauma Surgery, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
4
|
Indumathi MC, Swetha K, Abhilasha KV, Siddappa S, Kumar SM, Prasad GK, Chen CH, Marathe GK. Selenium Ameliorates Acetaminophen-Induced Oxidative Stress via MAPK and Nrf2 Pathways in Mice. Biol Trace Elem Res 2024; 202:2598-2615. [PMID: 37702962 DOI: 10.1007/s12011-023-03845-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023]
Abstract
Overdose of acetaminophen (paracetamol), a widely used non-prescriptive analgesic and antipyretic medication, is one of the main causes of drug-induced acute liver failure around the world. Oxidative stress contributes to this hepatotoxicity. Antioxidants are known to protect the liver from oxidative stress. Selenium, a potent antioxidant, is a commonly used micronutrient. Here, we evaluated the protective effect of selenium on acetaminophen-induced hepatotoxicity. Treating Wistar albino mice with sodium selenite (1 mg/kg) before or after inducing hepatotoxicity with acetaminophen (150 mg/kg) significantly reduced the levels of liver injury biomarkers such as serum glutamate oxaloacetate transaminase and serum glutamate pyruvate transaminase. In addition, selenium-treated mice showed decreased levels of oxidative stress markers such as protein carbonyls and myeloperoxidase. Acetaminophen treatment stimulated all three mitogen-activated protein kinases (MAPKs) and Keap1 and decreased the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 in liver and in isolated mouse peritoneal macrophages, which was reversed by selenium treatment. Our findings suggest that the reactive oxygen species-mediated Nrf2 and MAPK pathways are critical players in acetaminophen-induced hepatotoxicity. These key findings offer an alternative therapeutic target for addressing acetaminophen-induced hepatotoxicity.
Collapse
Affiliation(s)
| | - Kamatam Swetha
- Department of Studies in Biochemistry, 8J8C+98P, University of Mysore, Manasagangotri, Mysore, 570006, Karnataka, India
| | | | - Shiva Siddappa
- Division of Biochemistry, School of Life Sciences, 8MV2+MPG, Sri Shivarathreeshwara Nagara, JSS Academy of Higher Education and Research, Bannimantap A Layout, Bannimantap, Mysuru, Karnataka, 570015, India
| | - Shivamadhaiah Manjula Kumar
- Department of Studies in Biochemistry, 8J8C+98P, University of Mysore, Manasagangotri, Mysore, 570006, Karnataka, India
| | - Govinda Keerthi Prasad
- Department of Studies in Biochemistry, 8J8C+98P, University of Mysore, Manasagangotri, Mysore, 570006, Karnataka, India
| | - Chu-Huang Chen
- Vascular and Medicinal Research, The Texas Heart Institute, 6770 Bertner Avenue, Houston, TX, 77030, USA
| | - Gopal Kedihithlu Marathe
- Department of Studies in Biochemistry, 8J8C+98P, University of Mysore, Manasagangotri, Mysore, 570006, Karnataka, India.
- Department of Studies in Molecular Biology, 8J8C+JFP, University of Mysore, Manasagangotri, Mysore, 570006, Karnataka, India.
| |
Collapse
|
5
|
Pall ML. Central Causation of Autism/ASDs via Excessive [Ca 2+]i Impacting Six Mechanisms Controlling Synaptogenesis during the Perinatal Period: The Role of Electromagnetic Fields and Chemicals and the NO/ONOO(-) Cycle, as Well as Specific Mutations. Brain Sci 2024; 14:454. [PMID: 38790433 PMCID: PMC11119459 DOI: 10.3390/brainsci14050454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
The roles of perinatal development, intracellular calcium [Ca2+]i, and synaptogenesis disruption are not novel in the autism/ASD literature. The focus on six mechanisms controlling synaptogenesis, each regulated by [Ca2+]i, and each aberrant in ASDs is novel. The model presented here predicts that autism epidemic causation involves central roles of both electromagnetic fields (EMFs) and chemicals. EMFs act via voltage-gated calcium channel (VGCC) activation and [Ca2+]i elevation. A total of 15 autism-implicated chemical classes each act to produce [Ca2+]i elevation, 12 acting via NMDA receptor activation, and three acting via other mechanisms. The chronic nature of ASDs is explained via NO/ONOO(-) vicious cycle elevation and MeCP2 epigenetic dysfunction. Genetic causation often also involves [Ca2+]i elevation or other impacts on synaptogenesis. The literature examining each of these steps is systematically examined and found to be consistent with predictions. Approaches that may be sed for ASD prevention or treatment are discussed in connection with this special issue: The current situation and prospects for children with ASDs. Such approaches include EMF, chemical avoidance, and using nutrients and other agents to raise the levels of Nrf2. An enriched environment, vitamin D, magnesium, and omega-3s in fish oil may also be helpful.
Collapse
Affiliation(s)
- Martin L Pall
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
6
|
He J, Chen L, Wang P, Cen B, Li J, Wei Y, Yao X, Xu Z. Network pharmacology and experimental validation of effects of total saponins extracted from Abrus cantoniensis Hance on acetaminophen-induced liver injury. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117740. [PMID: 38219885 DOI: 10.1016/j.jep.2024.117740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/06/2024] [Accepted: 01/07/2024] [Indexed: 01/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Abrus cantoniensis Hance (AC), an abrus cantoniensis herb, is a Chinese medicinal herb used for the treatment of hepatitis. Total saponins extracted from AC (ACS) are a compound of triterpenoid saponins, which have protective properties against both chemical and immunological liver injuries. Nevertheless, ACS has not been proven to have an influence on drug-induced liver injury (DILI). AIM OF THE STUDY This study used network pharmacology and experiments to investigate the effects of ACS on acetaminophen (APAP)-induced liver injury. MATERIALS AND METHODS The targets associated with ACS and DILI were obtained from online databases. Cytoscape software was utilized to construct a "compound-target" network. In addition, Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were used to analyze the related signaling pathways impacted by ACS. AutoDock Vina was utilized to evaluate the binding affinity between bioactive compounds and the key targets. To validate the findings of network pharmacology, in vitro and in vivo experiments were conducted. Cell viability assay, transaminase activity detection, immunofluorescence assay, immunohistochemistry staining, RT-qPCR, and western blotting were utilized to explore the effects of ACS. RESULTS 25 active compounds and 217 targets of ACS were screened, of which 94 common targets were considered as potential targets for ACS treating APAP-induced liver injury. GO and KEGG analyses showed that the effects of ACS exert their effects on liver injury through suppressing inflammatory response, oxidative stress, and apoptosis. Molecular docking results demonstrated that core active compounds of ACS were successfully docked to core targets such as CASP3, BCL2L1, MAPK8, MAPK14, PTGS2, and NOS2. In vitro experiments showed that ACS effectively attenuated APAP-induced damage through suppressing transaminase activity and attenuating apoptosis. Furthermore, in vivo studies demonstrated that ACS alleviated pathological changes in APAP-treated mice and attenuated inflammatory response. Additionally, ACS downregulated the expression of iNOS, COX2, and Caspase-3, and upregulated the expression of Bcl-2. ACS also suppressed the MAPK signaling pathway. CONCLUSIONS This study demonstrated that ACS is a hepatoprotective drug through the combination of network pharmacology and in vitro and in vivo experiments. The findings reveal that ACS effectively attenuate APAP-induced oxidative stress, apoptosis, and inflammation through inhibiting the MAPK signaling pathway. Consequently, this research offers novel evidence supporting the potential preventive efficacy of ACS.
Collapse
Affiliation(s)
- Jiali He
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China; National Medical Products Administration Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Leping Chen
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China; Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Ping Wang
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China; National Medical Products Administration Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Bohong Cen
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China; National Medical Products Administration Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Jinxia Li
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China; National Medical Products Administration Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Yerong Wei
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China; National Medical Products Administration Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Xiangcao Yao
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China; National Medical Products Administration Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong Province, China.
| | - Zhongyuan Xu
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China; National Medical Products Administration Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong Province, China.
| |
Collapse
|
7
|
Zhao X, Yin F, Huang Y, Fu L, Ma Y, Ye L, Fan W, Gao W, Cai Y, Mou X. Oral administration of grape-derived nanovesicles for protection against LPS/D-GalN-induced acute liver failure. Int J Pharm 2024; 652:123812. [PMID: 38237707 DOI: 10.1016/j.ijpharm.2024.123812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/11/2024] [Accepted: 01/13/2024] [Indexed: 01/27/2024]
Abstract
Although the exploration of the molecular mechanisms of Acute liver failure (ALF) is supported by a growing number of studies, the lack of effective therapeutic agents and measures indicates an urgent clinical need for the development of new drugs and treatment strategies. Herein, we focused on the treatment of ALF with grape-derived nanovesicles (GDNVs), and assessed its protective effects and molecular mechanisms against liver injury. In the mice model of ALF, prophylactic administration for three consecutive days and treatment with GDNVs after successful induction of ALF showed a significant reduction of ALT and AST activity in mouse serum, as well as a blockade of the release of inflammatory cytokines IL6, IL-1β and TNF-α. Treatment with GDNVs significantly prevented the massive apoptosis of hepatocytes caused by LPS/D-GalN and down-regulated the activation and expression of the mitochondrial apoptosis-related proteins p53, Caspase 9, Caspase 8, Caspase 3 and Bax. GDNVs downregulated the release of chemokines during the inflammatory eruption in mice and inhibited the infiltration of peripheral monocytes into the liver by inhibiting CCR2/CCR5. Moreover, the pro-inflammatory phenotype of macrophages in the liver was reversed by GDNVs. GDNVs further reduced the activation of NLRP3-related pathways, and treatment with GDNVs activated the expression of autophagy-related proteins Foxo3a, Sirt1 and LC3-II in the damaged mouse liver, inducing autophagy to occur. GDNVs could exert hepatoprotective and inflammatory suppressive functions by increasing nuclear translocation of Nrf2 and upregulating HO-1 expression against exogenous toxin-induced oxidative stress in the liver. In conclusion, these results demonstrate that GDNVs alleviate LPS/D-GalN-induced ALF and have the potential to be used as a novel hepatoprotective agent for clinical treatment.
Collapse
Affiliation(s)
- Xin Zhao
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China; College of Pharmacy, Hangzhou Medical College, Hangzhou 310059, China; Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Fang Yin
- Shanghai Engineering Research Center of Human Intestinal Microflora Function Development, Shanghai Tenth People's Hospital, Shanghai 200072, China
| | - Yilin Huang
- College of Pharmacy, Hangzhou Medical College, Hangzhou 310059, China
| | - Luoqin Fu
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Yingyu Ma
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Luyi Ye
- College of Pharmacy, Hangzhou Medical College, Hangzhou 310059, China
| | - Weijiao Fan
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Wenxue Gao
- Clinical Research Unit, Shanghai Tenth People's Hospital, Shanghai 200072, China.
| | - Yu Cai
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China; College of Pharmacy, Hangzhou Medical College, Hangzhou 310059, China; Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China.
| | - Xiaozhou Mou
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China; College of Pharmacy, Hangzhou Medical College, Hangzhou 310059, China; Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China.
| |
Collapse
|
8
|
Kurogi K, Sakakibara Y, Hashiguchi T, Kakuta Y, Kanekiyo M, Teramoto T, Fukushima T, Bamba T, Matsumoto J, Fukusaki E, Kataoka H, Suiko M. A new type of sulfation reaction: C-sulfonation for α,β-unsaturated carbonyl groups by a novel sulfotransferase SULT7A1. PNAS NEXUS 2024; 3:pgae097. [PMID: 38487162 PMCID: PMC10939482 DOI: 10.1093/pnasnexus/pgae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/20/2024] [Indexed: 03/17/2024]
Abstract
Cytosolic sulfotransferases (SULTs) are cytosolic enzymes that catalyze the transfer of sulfonate group to key endogenous compounds, altering the physiological functions of their substrates. SULT enzymes catalyze the O-sulfonation of hydroxy groups or N-sulfonation of amino groups of substrate compounds. In this study, we report the discovery of C-sulfonation of α,β-unsaturated carbonyl groups mediated by a new SULT enzyme, SULT7A1, and human SULT1C4. Enzymatic assays revealed that SULT7A1 is capable of transferring the sulfonate group from 3'-phosphoadenosine 5'-phosphosulfate to the α-carbon of α,β-unsaturated carbonyl-containing compounds, including cyclopentenone prostaglandins as representative endogenous substrates. Structural analyses of SULT7A1 suggest that the C-sulfonation reaction is catalyzed by a novel mechanism mediated by His and Cys residues in the active site. Ligand-activity assays demonstrated that sulfonated 15-deoxy prostaglandin J2 exhibits antagonist activity against the prostaglandin receptor EP2 and the prostacyclin receptor IP. Modification of α,β-unsaturated carbonyl groups via the new prostaglandin-sulfonating enzyme, SULT7A1, may regulate the physiological function of prostaglandins in the gut. Discovery of C-sulfonation of α,β-unsaturated carbonyl groups will broaden the spectrum of potential substrates and physiological functions of SULTs.
Collapse
Affiliation(s)
- Katsuhisa Kurogi
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Yoichi Sakakibara
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Takuyu Hashiguchi
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Yoshimitsu Kakuta
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Miho Kanekiyo
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Takamasa Teramoto
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Tsuyoshi Fukushima
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Takeshi Bamba
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Jin Matsumoto
- Department of Applied Chemistry, Faculty of Engineering, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Eiichiro Fukusaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| | - Hiroaki Kataoka
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Masahito Suiko
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| |
Collapse
|
9
|
Aktas Senocak E, Utlu N, Kurt S, Kucukler S, Kandemir FM. Sodium Pentaborate Prevents Acetaminophen-Induced Hepatorenal Injury by Suppressing Oxidative Stress, Lipid Peroxidation, Apoptosis, and Inflammatory Cytokines in Rats. Biol Trace Elem Res 2024; 202:1164-1173. [PMID: 37393388 DOI: 10.1007/s12011-023-03755-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 06/24/2023] [Indexed: 07/03/2023]
Abstract
Acetaminophen (N-acetyl-p-aminophenol, APAP, or paracetamol) is one of the drugs that may be damaging to the kidneys and liver when used in excess. In this context, it is vital to treat these side effects on the liver and kidneys with various antioxidants. Diseases have been treated using herbal and mineral remedies since ancient times. The mineral boron, found in rocks and water, is a crucial ingredient with multiple positive biological effects. The primary objective of this research is to determine whether or not boron has a protective effect against the toxicity generated by APAP in rats. Male Sprague-Dawley rats were pretreated orally with boron-source sodium pentaborate (B50 and B100 mg/kg) for 6 days by gastric gavage in order to counteract the toxicity caused by a single dose of APAP (1g/kg). APAP increased lipid peroxidation as well as serum BUN, creatinine concentrations, and serum activities of AST, ALP, and ALT by consuming GSH in liver and kidney tissues. In addition, the activity of antioxidative enzymes, including SOD, CAT, and GPx, was diminished. Inflammatory indicators such as TNF-α, IL-1β, and IL-33 were elevated in conjunction with APAP toxicity. In kidney and liver tissues, APAP dramatically increased the activity of caspase-3 and triggered apoptosis. Sodium pentaborate therapy on a short-term basis reduced biochemical levels despite these effects of APAP. This study showed that boron protects rats from the harmful effects of APAP by acting as an anti-inflammatory, antioxidant, and anti-apoptotic agent.
Collapse
Affiliation(s)
| | - Necati Utlu
- Vocational School Health Services, Atatürk University, Erzurum, Türkiye
| | - Seyda Kurt
- Department of Biochemistry, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Türkiye
| | - Sefa Kucukler
- Department of Biochemistry, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Türkiye
| | - Fatih Mehmet Kandemir
- Department of Medical Biochemistry, Faculty of Medicine, Aksaray University, Aksaray, Türkiye
| |
Collapse
|
10
|
Xu C, Yan F, Zhao Y, Jaeschke H, Wu J, Fang L, Zhao L, Zhao Y, Wang L. Hepatocyte miR-21-5p-deficiency alleviates APAP-induced liver injury by inducing PPARγ and autophagy. Toxicol Sci 2024; 198:50-60. [PMID: 38180883 PMCID: PMC11491925 DOI: 10.1093/toxsci/kfad132] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024] Open
Abstract
Acetaminophen (APAP)-induced liver injury is one of the most frequent causes of acute liver failure worldwide. Significant increases in the levels of miRNA-21 in both liver tissues and plasma have been observed in APAP-overdosed animals and humans. However, the mechanistic effect of miRNA-21 on acute liver injury remains unknown. In this study, we generated a new hepatocyte-specific miRNA-21 knockout (miR-21-HKO) mouse line. miR-21-HKO and the background-matched sibling wild-type (WT) mice were treated with a toxic dose of APAP. Compared with WT mice, miR-21 HKO mice showed an increased survival, a reduction of necrotic hepatocytes, and an increased expression of light chain 3 beta, which suggested an autophagy activation. The expression of PPARγ was highly induced in the livers of miR-21-HKO mice after a 2-h APAP treatment, which preceded the activation of LC3B at the 12 h APAP treatment. miR-21 negatively regulated PPARγ protein expression by targeting its 3'-UTR. When PPARγ function was blocked by a potent antagonist GW9662 in miR-21-HKO mice, the autophage activation was significantly diminished, suggesting an indispensable role of PPARγ signaling pathway in miR-21-mediated hepatotoxicity. Taken together, hepatocyte-specific depletion of miRNA-21 alleviated APAP-induced hepatotoxicity by activating PPARγ and autophagy, demonstrating a crucial new regulatory role of miR-21 in APAP-mediated liver injury.
Collapse
Affiliation(s)
- Chao Xu
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, China
| | - Fang Yan
- Department of Pain Management, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Yulan Zhao
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Jianguo Wu
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44195, USA
| | - Li Fang
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, China
| | - Lifang Zhao
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, China
| | - Yuanfei Zhao
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, 100029, China
| | - Li Wang
- Independent Researcher, Tucson, Arizona 85004, USA
| |
Collapse
|
11
|
Paustenbach DJ, Brown SE, Heywood JJ, Donnell MT, Eaton DL. Risk characterization of N-nitrosodimethylamine in pharmaceuticals. Food Chem Toxicol 2024; 186:114498. [PMID: 38341171 DOI: 10.1016/j.fct.2024.114498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/23/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
Since 2018, N-nitrosodimethylamine (NDMA) has been a reported contaminant in numerous pharmaceutical products. To guide the pharmaceutical industry, FDA identified an acceptable intake (AI) of 96 ng/day NDMA. The approach assumed a linear extrapolation from the Carcinogenic Potency Database (CPDB) harmonic-mean TD50 identified in chronic studies in rats. Although NDMA has been thought to act as a mutagenic carcinogen in experimental animals, it has not been classified as a known human carcinogen by any regulatory agency. Humans are exposed to high daily exogenous and endogenous doses of NDMA. Due to the likelihood of a threshold dose for NDMA-related tumors in animals, we believe that there is ample scientific basis to utilize the threshold-based benchmark dose or point-of-departure (POD) approach when estimating a Permissible Daily Exposure limit (PDE) for NDMA. We estimated that 29,000 ng/kg/day was an appropriate POD for calculating a PDE. Assuming an average bodyweight of 50 kg, we expect that human exposures to NDMA at doses below 5800 ng/day in pharmaceuticals would not result in an increased risk of liver cancer, and that there is little, if any, risk for any other type of cancer, when accounting for the mode-of-action in humans.
Collapse
Affiliation(s)
- D J Paustenbach
- Paustenbach and Associates, 970 West Broadway, Suite E, Jackson, WY, USA
| | - S E Brown
- Paustenbach and Associates, 207 Canyon Blvd, Boulder, CO, USA.
| | - J J Heywood
- Paustenbach and Associates, 207 Canyon Blvd, Boulder, CO, USA
| | - M T Donnell
- Valeo Sciences LLC, 333 Corporate Drive, Suite 130, Ladera Ranch, CA, USA
| | - D L Eaton
- Professor Emeritus, Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
12
|
Bhat MA, Raina R, Verma PK, Sood S, Bhat ZF. Ameliorative and protective effect of Bergenia ciliata (Haw.) Sternb. extract against acetaminophen-induced hepato-renal damage in rats. PHYTOMEDICINE PLUS 2024; 4:100522. [DOI: 10.1016/j.phyplu.2023.100522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
|
13
|
Liu FC, Yu HP, Lee HC, Chen CY, Liao CC. The Modulation of Phospho-Extracellular Signal-Regulated Kinase and Phospho-Protein Kinase B Signaling Pathways plus Activity of Macrophage-Stimulating Protein Contribute to the Protective Effect of Stachydrine on Acetaminophen-Induced Liver Injury. Int J Mol Sci 2024; 25:1484. [PMID: 38338766 PMCID: PMC10855734 DOI: 10.3390/ijms25031484] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Stachydrine, a prominent bioactive alkaloid derived from Leonurus heterophyllus, is a significant herb in traditional medicine. It has been noted for its anti-inflammatory and antioxidant characteristics. Consequently, we conducted a study of its hepatoprotective effect and the fundamental mechanisms involved in acetaminophen (APAP)-induced liver injury, utilizing a mouse model. Mice were intraperitoneally administered a hepatotoxic dose of APAP (300 mg/kg). Thirty minutes after APAP administration, mice were treated with different concentrations of stachydrine (0, 2.5, 5, and 10 mg/kg). Animals were sacrificed 16 h after APAP injection for serum and liver tissue assays. APAP overdose significantly elevated the serum alanine transferase levels, hepatic pro-inflammatory cytokines, malondialdehyde activity, phospho-extracellular signal-regulated kinase (ERK), phospho-protein kinase B (AKT), and macrophage-stimulating protein expression. Stachydrine treatment significantly decreased these parameters in mice with APAP-induced liver damage. Our results suggest that stachydrine may be a promising beneficial target in the prevention of APAP-induced liver damage through attenuation of the inflammatory response, inhibition of the ERK and AKT pathways, and expression of macrophage-stimulating proteins.
Collapse
Affiliation(s)
- Fu-Chao Liu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (F.-C.L.); (H.-P.Y.); (H.-C.L.); (C.-Y.C.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Huang-Ping Yu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (F.-C.L.); (H.-P.Y.); (H.-C.L.); (C.-Y.C.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Hung-Chen Lee
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (F.-C.L.); (H.-P.Y.); (H.-C.L.); (C.-Y.C.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chun-Yu Chen
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (F.-C.L.); (H.-P.Y.); (H.-C.L.); (C.-Y.C.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chia-Chih Liao
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (F.-C.L.); (H.-P.Y.); (H.-C.L.); (C.-Y.C.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
14
|
Li D, Chen Y, Wan M, Mei F, Wang F, Gu P, Zhang X, Wei R, Zeng Y, Zheng H, Chen B, Xiong Q, Xue T, Guan T, Guo J, Tian Y, Zeng LY, Liu Z, Yuan H, Yang L, Liu H, Dai L, Yu Y, Qiu Y, Wu P, Win S, Than TA, Wei R, Schnabl B, Kaplowitz N, Jiang Y, Ma Q, Chen P. Oral magnesium prevents acetaminophen-induced acute liver injury by modulating microbial metabolism. Cell Host Microbe 2024; 32:48-62.e9. [PMID: 38056458 DOI: 10.1016/j.chom.2023.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/10/2023] [Accepted: 11/08/2023] [Indexed: 12/08/2023]
Abstract
Acetaminophen overuse is a common cause of acute liver failure (ALF). During ALF, toxins are metabolized by enzymes such as CYP2E1 and transformed into reactive species, leading to oxidative damage and liver failure. Here, we found that oral magnesium (Mg) alleviated acetaminophen-induced ALF through metabolic changes in gut microbiota that inhibit CYP2E1. The gut microbiota from Mg-supplemented humans prevented acetaminophen-induced ALF in mice. Mg exposure modulated Bifidobacterium metabolism and enriched indole-3-carboxylic acid (I3C) levels. Formate C-acetyltransferase (pflB) was identified as a key Bifidobacterium enzyme involved in I3C generation. Accordingly, a Bifidobacterium pflB knockout showed diminished I3C generation and reduced the beneficial effects of Mg. Conversely, treatment with I3C or an engineered bacteria overexpressing Bifidobacterium pflB protected against ALF. Mechanistically, I3C bound and inactivated CYP2E1, thus suppressing formation of harmful reactive intermediates and diminishing hepatocyte oxidative damage. These findings highlight how interactions between Mg and gut microbiota may help combat ALF.
Collapse
Affiliation(s)
- Dongping Li
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yu Chen
- Department of Gastroenterology, The Seventh Affiliated Hospital of Southern Medical University, Foshan 528244, China
| | - Meijuan Wan
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Fengyi Mei
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Fangzhao Wang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Peng Gu
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xianglong Zhang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Rongjuan Wei
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yunong Zeng
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hanzhao Zheng
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Bangguo Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qingquan Xiong
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Tao Xue
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Tianshan Guan
- Department of Gastroenterology, The Seventh Affiliated Hospital of Southern Medical University, Foshan 528244, China
| | - Jiayin Guo
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yuanxin Tian
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Li-Yan Zeng
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Zhanguo Liu
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Hang Yuan
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ling Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hongbin Liu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lei Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yao Yu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yifeng Qiu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Peng Wu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Sanda Win
- Research Center for Liver Disease, Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Tin Aung Than
- Research Center for Liver Disease, Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Riqing Wei
- Department of Biopharmaceutics, Guangdong Provincial Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Bernd Schnabl
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA MC0063, USA
| | - Neil Kaplowitz
- Research Center for Liver Disease, Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Yong Jiang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Qiang Ma
- Department of Biopharmaceutics, Guangdong Provincial Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China.
| | - Peng Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| |
Collapse
|
15
|
Xu Y, Xia Y, Liu Q, Jing X, Tang Q, Zhang J, Jia Q, Zhang Z, Li J, Chen J, Xiong Y, Li Y, He J. Glutaredoxin-1 alleviates acetaminophen-induced liver injury by decreasing its toxic metabolites. J Pharm Anal 2023; 13:1548-1561. [PMID: 38223455 PMCID: PMC10785153 DOI: 10.1016/j.jpha.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/06/2023] [Accepted: 08/07/2023] [Indexed: 01/16/2024] Open
Abstract
Excessive N-acetyl-p-benzoquinone imine (NAPQI) formation is a starting event that triggers oxidative stress and subsequent hepatocyte necrosis in acetaminophen (APAP) overdose caused acute liver failure (ALF). S-glutathionylation is a reversible redox post-translational modification and a prospective mechanism of APAP hepatotoxicity. Glutaredoxin-1 (Glrx1), a glutathione-specific thioltransferase, is a primary enzyme to catalyze deglutathionylation. The objective of this study was to explored whether and how Glrx1 is associated with the development of ALF induced by APAP. The Glrx1 knockout mice (Glrx1-/-) and liver-specific overexpression of Glrx1 (AAV8-Glrx1) mice were produced and underwent APAP-induced ALF. Pirfenidone (PFD), a potential inducer of Glrx1, was administrated preceding APAP to assess its protective effects. Our results revealed that the hepatic total protein S-glutathionylation (PSSG) increased and the Glrx1 level reduced in mice after APAP toxicity. Glrx1-/- mice were more sensitive to APAP overdose, with higher oxidative stress and more toxic metabolites of APAP. This was attributed to Glrx1 deficiency increasing the total hepatic PSSG and the S-glutathionylation of cytochrome p450 3a11 (Cyp3a11), which likely increased the activity of Cyp3a11. Conversely, AAV8-Glrx1 mice were defended against liver damage caused by APAP overdose by inhibiting the S-glutathionylation and activity of Cyp3a11, which reduced the toxic metabolites of APAP and oxidative stress. PFD precede administration upregulated Glrx1 expression and alleviated APAP-induced ALF by decreasing oxidative stress. We have identified the function of Glrx1 mediated PSSG in liver injury caused by APAP overdose. Increasing Glrx1 expression may be investigated for the medical treatment of APAP-caused hepatic injury.
Collapse
Affiliation(s)
| | | | - Qinhui Liu
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiandan Jing
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qin Tang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinhang Zhang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qingyi Jia
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zijing Zhang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiahui Li
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiahao Chen
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yimin Xiong
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanping Li
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinhan He
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
16
|
Hu J, Nieminen AL, Weemhoff JL, Jaeschke H, Murphy LG, Dent JA, Lemasters JJ. The mitochondrial calcium uniporter mediates mitochondrial Fe 2+ uptake and hepatotoxicity after acetaminophen. Toxicol Appl Pharmacol 2023; 479:116722. [PMID: 37848124 PMCID: PMC10872750 DOI: 10.1016/j.taap.2023.116722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/23/2023] [Accepted: 10/11/2023] [Indexed: 10/19/2023]
Abstract
Acetaminophen (APAP) overdose disrupts hepatocellular lysosomes, which release ferrous iron (Fe2+) that translocates into mitochondria putatively via the mitochondrial calcium uniporter (MCU) to induce oxidative/nitrative stress, the mitochondrial permeability transition (MPT), and hepatotoxicity. To investigate how MCU deficiency affects mitochondrial Fe2+ uptake and hepatotoxicity after APAP overdose, global MCU knockout (KO), hepatocyte specific (hs) MCU KO, and wildtype (WT) mice were treated with an overdose of APAP both in vivo and in vitro. Compared to strain-specific WT mice, serum ALT decreased by 88 and 56%, respectively, in global and hsMCU KO mice at 24 h after APAP (300 mg/kg). Hepatic necrosis also decreased by 84 and 56%. By contrast, when MCU was knocked out in Kupffer cells, ALT release and necrosis were unchanged after overdose APAP. Intravital multiphoton microscopy confirmed loss of viability and mitochondrial depolarization in pericentral hepatocytes of WT mice, which was decreased in MCU KO mice. CYP2E1 expression, hepatic APAP-protein adduct formation, and JNK activation revealed that APAP metabolism was equivalent between WT and MCU KO mice. In cultured hepatocytes after APAP, loss of cell viability decreased in hsMCU KO compared to WT hepatocytes. Using fructose plus glycine to prevent cell killing, mitochondrial Fe2+ increased progressively after APAP, as revealed with mitoferrofluor (MFF), a mitochondrial Fe2+ indicator. By contrast in hsMCU KO hepatocytes, mitochondrial Fe2+ uptake after APAP was suppressed. Rhod-2 measurements showed that Ca2+ did not increase in mitochondria after APAP in either WT or KO hepatocytes. In conclusion, MCU mediates uptake of Fe2+ into mitochondria after APAP and plays a central role in mitochondrial depolarization and cell death during APAP-induced hepatotoxicity.
Collapse
Affiliation(s)
- Jiangting Hu
- Center for Cell Death, Injury & Regeneration, Medical University of South Carolina, Charleston, SC, United States of America; Departments of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States of America
| | - Anna-Liisa Nieminen
- Center for Cell Death, Injury & Regeneration, Medical University of South Carolina, Charleston, SC, United States of America; Departments of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States of America; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States of America
| | - James L Weemhoff
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States of America
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States of America
| | - Laura G Murphy
- Center for Cell Death, Injury & Regeneration, Medical University of South Carolina, Charleston, SC, United States of America; Departments of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States of America
| | - Judith A Dent
- Center for Cell Death, Injury & Regeneration, Medical University of South Carolina, Charleston, SC, United States of America; Departments of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States of America
| | - John J Lemasters
- Center for Cell Death, Injury & Regeneration, Medical University of South Carolina, Charleston, SC, United States of America; Departments of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States of America; Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, United States of America; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States of America.
| |
Collapse
|
17
|
Rousar T, Handl J, Capek J, Nyvltova P, Rousarova E, Kubat M, Smid L, Vanova J, Malinak D, Musilek K, Cesla P. Cysteine conjugates of acetaminophen and p-aminophenol are potent inducers of cellular impairment in human proximal tubular kidney HK-2 cells. Arch Toxicol 2023; 97:2943-2954. [PMID: 37639014 PMCID: PMC10504157 DOI: 10.1007/s00204-023-03569-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/02/2023] [Indexed: 08/29/2023]
Abstract
Acetaminophen (APAP) belong among the most used analgesics and antipyretics. It is structurally derived from p-aminophenol (PAP), a potent inducer of kidney toxicity. Both compounds can be metabolized to oxidation products and conjugated with glutathione. The glutathione-conjugates can be cleaved to provide cysteine conjugates considered as generally nontoxic. The aim of the present report was to synthesize and to purify both APAP- and PAP-cysteine conjugates and, as the first study at all, to evaluate their biological effects in human kidney HK-2 cells in comparison to parent compounds. HK-2 cells were treated with tested compounds (0-1000 µM) for up to 24 h. Cell viability, glutathione levels, ROS production and mitochondrial function were determined. After 24 h, we found that both APAP- and PAP-cysteine conjugates (1 mM) were capable to induce harmful cellular damage observed as a decrease of glutathione levels to 10% and 0%, respectively, compared to control cells. In addition, we detected the disappearance of mitochondrial membrane potential in these cells. In the case of PAP-cysteine, the extent of cellular impairment was comparable to that induced by PAP at similar doses. On the other hand, 1 mM APAP-cysteine induced even larger damage of HK-2 cells compared to 1 mM APAP after 6 or 24 h. We conclude that cysteine conjugates with aminophenol are potent inducers of oxidative stress causing significant injury in kidney cells. Thus, the harmful effects cysteine-aminophenolic conjugates ought to be considered in the description of APAP or PAP toxicity.
Collapse
Affiliation(s)
- Tomas Rousar
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 95, 532 10, Pardubice, Czech Republic.
| | - Jiri Handl
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 95, 532 10, Pardubice, Czech Republic
| | - Jan Capek
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 95, 532 10, Pardubice, Czech Republic
| | - Pavlina Nyvltova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 95, 532 10, Pardubice, Czech Republic
| | - Erika Rousarova
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentska 95, 532 10, Pardubice, Czech Republic
| | - Miroslav Kubat
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentska 95, 532 10, Pardubice, Czech Republic
| | - Lenka Smid
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 95, 532 10, Pardubice, Czech Republic
| | - Jana Vanova
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentska 95, 532 10, Pardubice, Czech Republic
| | - David Malinak
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic
| | - Kamil Musilek
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic
| | - Petr Cesla
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentska 95, 532 10, Pardubice, Czech Republic
| |
Collapse
|
18
|
Moneo-Corcuera D, Viedma-Poyatos Á, Stamatakis K, Pérez-Sala D. Desmin Reorganization by Stimuli Inducing Oxidative Stress and Electrophiles: Role of Its Single Cysteine Residue. Antioxidants (Basel) 2023; 12:1703. [PMID: 37760006 PMCID: PMC10525603 DOI: 10.3390/antiox12091703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/23/2023] [Accepted: 08/27/2023] [Indexed: 09/29/2023] Open
Abstract
The type III intermediate filament proteins vimentin and GFAP are modulated by oxidants and electrophiles, mainly through perturbation of their single cysteine residues. Desmin, the type III intermediate filament protein specific to muscle cells, is critical for muscle homeostasis, playing a key role in sarcomere organization and mitochondrial function. Here, we have studied the impact of oxidants and cysteine-reactive agents on desmin behavior. Our results show that several reactive species and drugs induce covalent modifications of desmin in vitro, of which its single cysteine residue, C333, is an important target. Moreover, stimuli eliciting oxidative stress or lipoxidation, including H2O2, 15-deoxy-prostaglandin J2, and CoCl2-elicited chemical hypoxia, provoke desmin disorganization in H9c2 rat cardiomyoblasts transfected with wild-type desmin, which is partially attenuated in cells expressing a C333S mutant. Notably, in cells lacking other cytoplasmic intermediate filaments, network formation by desmin C333S appears less efficient than that of desmin wt, especially when these proteins are expressed as fluorescent fusion constructs. Nevertheless, in these cells, the desmin C333S organization is also protected from disruption by oxidants. Taken together, our results indicate that desmin is a target for oxidative and electrophilic stress, which elicit desmin remodeling conditioned by the presence of its single cysteine residue.
Collapse
Affiliation(s)
- Diego Moneo-Corcuera
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas (CSIC), 28040 Madrid, Spain; (D.M.-C.); (Á.V.-P.)
| | - Álvaro Viedma-Poyatos
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas (CSIC), 28040 Madrid, Spain; (D.M.-C.); (Á.V.-P.)
| | - Konstantinos Stamatakis
- Departamento de Biología Molecular, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain;
- Centro de Biología Molecular Severo Ochoa (UAM/CSIC), 28049 Madrid, Spain
| | - Dolores Pérez-Sala
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas (CSIC), 28040 Madrid, Spain; (D.M.-C.); (Á.V.-P.)
| |
Collapse
|
19
|
Hussain S, Alshahrani S, Siddiqui R, Khan A, Elhassan Taha MM, Ahmed RA, Jali AM, Qadri M, Khairat KHM, Ashafaq M. Cinnamon Oil Alleviates Acetaminophen-Induced Uterine Toxicity in Rats by Abrogation of Oxidative Stress, Apoptosis, and Inflammation. PLANTS (BASEL, SWITZERLAND) 2023; 12:2290. [PMID: 37375915 DOI: 10.3390/plants12122290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/18/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023]
Abstract
Paracetamol, or acetaminophen (APAP), is one of the first-line medications that is used for fever and pain. However, APAP can induce uterine toxicity when overused. The mode of action of APAP toxicity is due to the production of free radicals. The main goal of our study is to determine uterine toxicity from APAP overdose and the antioxidative activity of cinnamon oil (CO) in female rats. The effect of different doses of CO (50-200 mg/kg b.w.) was assessed in the uterus toxicity induced by APAP. Additionally, the imbalance in oxidative parameters, interleukins, and caspases was evaluated for the protective effects of CO. A single dose of APAP (2 g/kg b.w.) resulted in uterus toxicity, indicated by a significant increase in the level of lipid peroxidation (LPO), inflammatory interleukins cytokines (IL-1 and 6), expression of caspases 3 and 9, and a marked change in uterus tissue architecture evaluated by histopathology. Co-treatment of CO resulted in a significant amelioration of all the parameters such as LPO, interleukins IL-1β, IL-6, caspases 3 and 9 expression, and distortion of tissue architecture in a dose-dependent manner. Therefore, we can conclude that APAP-induced uterine injury due to oxidative stress can be restored by co-treatment with cinnamon oil (CO).
Collapse
Affiliation(s)
- Sohail Hussain
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Saeed Alshahrani
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Rahimullah Siddiqui
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | | | - Rayan A Ahmed
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Abdulmajeed M Jali
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Marwa Qadri
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Khairat H M Khairat
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Mohammad Ashafaq
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
20
|
Lu Y, Hu J, Chen L, Li S, Yuan M, Tian X, Cao P, Qiu Z. Ferroptosis as an emerging therapeutic target in liver diseases. Front Pharmacol 2023; 14:1196287. [PMID: 37256232 PMCID: PMC10225528 DOI: 10.3389/fphar.2023.1196287] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/02/2023] [Indexed: 06/01/2023] Open
Abstract
Ferroptosis is an iron-dependently nonapoptotic cell death characterized by excessive accumulation of lipid peroxides and cellular iron metabolism disturbances. Impaired iron homeostasis and dysregulation of metabolic pathways are contributors to ferroptosis. As a major metabolic hub, the liver synthesizes and transports plasma proteins and endogenous fatty acids. Also, it acts as the primary location of iron storage for hepcidin generation and secretion. To date, although the intricate correlation between ferroptosis and liver disorders needs to be better defined, there is no doubt that ferroptosis participates in the pathogenesis of liver diseases. Accordingly, pharmacological induction and inhibition of ferroptosis show significant potential for the treatment of hepatic disorders involved in lipid peroxidation. In this review, we outline the prominent features, molecular mechanisms, and modulatory networks of ferroptosis and its physiopathologic functions in the progression of liver diseases. Further, this review summarizes the underlying mechanisms by which ferroptosis inducers and inhibitors ameliorate liver diseases. It is noteworthy that natural active ingredients show efficacy in preclinical liver disease models by regulating ferroptosis. Finally, we analyze crucial concepts and urgent issues concerning ferroptosis as a novel therapeutic target in the diagnosis and therapy of liver diseases.
Collapse
Affiliation(s)
- Yuzhen Lu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Junjie Hu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Liang Chen
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Shan Li
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
- Department of Biochemistry, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Ming Yuan
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Xianxiang Tian
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Peng Cao
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenpeng Qiu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
21
|
Ben Chabchoubi I, Lam SS, Pane SE, Ksibi M, Guerriero G, Hentati O. Hazard and health risk assessment of exposure to pharmaceutical active compounds via toxicological evaluation by zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:120698. [PMID: 36435277 DOI: 10.1016/j.envpol.2022.120698] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
The uncontrolled or continuous release of effluents from wastewater treatment plants leads to the omnipresence of pharmaceutical active compounds (PhACs) in the aquatic media. Today, this is a confirmed problem becoming a main subject of twin public and scientific concerns. However, still little information is available about the long-term impacts of these PhACs on aquatic organisms. In this review, efforts were made to reveal correlation between the occurrence in the environment, ecotoxicological and health risks of different PhACs via toxicological evaluation by zebrafish (Danio rerio). This animal model served as a bioindicator for any health impacts after the exposure to these contaminants and to better understand the responses in relation to human diseases. This review paper focused on the calculation of Risk Quotients (RQs) of 34 PhACs based on environmental and ecotoxicological data available in the literature and prediction from the ECOSAR V2.2 software. To the best of the authors' knowledge, this is the first report on the risk assessment of PhACs by the two different methods as mentioned above. RQs showed greater difference in potential environmental risks of the PhACs. These differences in risk values underline the importance of environmental and experimental factors in exposure conditions and the interpretation of RQ values. While the results showed high risk to Danio rerio of the majority of PhACs, risk qualification of the others varied between moderate to insignifiant. Further research is needed to assess pharmaceutical hazards when present in wastewater before discharge and monitor the effectiveness of treatment processes. The recent new advances in the morphological assessment of toxicant-exposed zebrafish larvae for the determination of test compounds effects on the developmental endpoints were also discussed. This review emphasizes the need for strict regulations on the release of PhACs into environmental media in order to minimize their toxicity to aquatic organisms.
Collapse
Affiliation(s)
- Imen Ben Chabchoubi
- Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Rue Taher Haddad, 5000, Monastir, Tunisia; Laboratoire Génie de l'Environnement et Ecotechnologie (GEET), Université de Sfax, Ecole Nationale d'Ingénieurs de Sfax (ENIS), Route de Soukra, Km 3.5, B.P. 1173, 3038, Sfax, Tunisia
| | - Su Shiung Lam
- Higher Institution Center of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), University Malaysia Terengganu, Kuala Nerus, 21030, Terengganu, Malaysia; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India
| | - Stacey Ellen Pane
- Department of Biology, Federico II University of Naples, Via Cinthia 26, 80126, Napoli, Italy
| | - Mohamed Ksibi
- Laboratoire Génie de l'Environnement et Ecotechnologie (GEET), Université de Sfax, Ecole Nationale d'Ingénieurs de Sfax (ENIS), Route de Soukra, Km 3.5, B.P. 1173, 3038, Sfax, Tunisia
| | - Giulia Guerriero
- Department of Biology, Federico II University of Naples, Via Cinthia 26, 80126, Napoli, Italy
| | - Olfa Hentati
- Laboratoire Génie de l'Environnement et Ecotechnologie (GEET), Université de Sfax, Ecole Nationale d'Ingénieurs de Sfax (ENIS), Route de Soukra, Km 3.5, B.P. 1173, 3038, Sfax, Tunisia; Institut Supérieur de Biotechnologie de Sfax, Université de Sfax, Route de Soukra, Km 4.5, B.P 1175, 3038, Sfax, Tunisia.
| |
Collapse
|
22
|
Jaber MA, Ghanim BY, Al-Natour M, Arqoub DA, Abdallah Q, Abdelrazig S, Alkrad JA, Kim DH, Qinna NA. Potential biomarkers and metabolomics of acetaminophen-induced liver injury during alcohol consumption: A preclinical investigation on C57/BL6 mice. Toxicol Appl Pharmacol 2023; 465:116451. [PMID: 36894070 DOI: 10.1016/j.taap.2023.116451] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
The toxic effects of alcohol consumption on population health are significant worldwide and the synergistic toxic effects of concurrent intake of Acetaminophen and alcohol is of clinical concern. The understanding of molecular mechanisms beneath such synergism and acute toxicity may be enhanced through assessing underlying metabolomics changes. The molecular toxic activities of the model hereby, is assessed though metabolomics profile with a view to identifying metabolomics targets which could aid in the management of drug-alcohol interactions. In vivo exposure of C57/BL6 mice to APAP (70 mg/kg), single dose of ethanol (6 g/kg of 40%) and APAP after alcohol consumption was employed. Plasma samples were prepared and subjected to biphasic extraction for complete LC-MS profiling, and tandem mass MS2 analysis. Among the detected ions, 174 ions had significant (VIP scores >1 and FDR <0.05) changes between groups and were selected as potential biomarkers and significant variables. The presented metabolomics approach highlighted several affected metabolic pathways, including nucleotide and amino acid metabolism; aminoacyl-tRNA biosynthesis as well as bioenergetics of TCA and Krebs cycle. The impact of APAP on the concurrent administration of alcohol showed great biological interactions in the vital ATP and amino acid producing processes. The metabolomics changes show distinct metabolites which are altered to alcohol-APAP consumption while presenting several unneglectable risks on the vitality of metabolites and cellular molecules which shall be concerned.
Collapse
Affiliation(s)
- Malak A Jaber
- Department of Medicinal Chemistry and Analysis, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | - Bayan Y Ghanim
- University of Petra Pharmaceutical Center (UPPC), Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | - Mohammad Al-Natour
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | - Duaa Abu Arqoub
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | - Qasem Abdallah
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | - Salah Abdelrazig
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Khartoum, Khartoum, Sudan
| | | | - Dong-Hyun Kim
- Centre for Analytical Bioscience, Advanced Material and Healthcare Technologies Division, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Nidal A Qinna
- University of Petra Pharmaceutical Center (UPPC), Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan; Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan.
| |
Collapse
|
23
|
Wu K, Lu W, Yan X. Potential adverse actions of prenatal exposure of acetaminophen to offspring. Front Pharmacol 2023; 14:1094435. [PMID: 37089952 PMCID: PMC10113502 DOI: 10.3389/fphar.2023.1094435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/28/2023] [Indexed: 04/08/2023] Open
Abstract
Acetaminophen (APAP) is a widely used as analgesic and antipyretic drug. APAP is also added as an active ingredient in various medications to relieve pain and reduce fever. APAP has been widely used in pregnant women in the past decades because it is considered a relatively safe drug with recommended dose in different countries. However, an increasing number of epidemiological and experimental studies have shown that APAP exposure during pregnancy may increase the risk of inducing reproductive and neurobehavior dysfunctions, hepatotoxicity in offspring. This review aims to assess the potential effects of prenatal APAP exposure on offspring growth and development.
Collapse
Affiliation(s)
- Ka Wu
- Department of Pharmacy, The Second People’s Hospital of Nanning City, The Third Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wensheng Lu
- Department of Pharmacy, The Second People’s Hospital of Nanning City, The Third Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xin Yan
- Department of Endocrinology, The Second People’s Hospital of Nanning City, The Third Affiliated Hospital ofGuangxi Medical University, Nanning, China
- *Correspondence: Xin Yan,
| |
Collapse
|
24
|
Kamimura N, Wolf AM, Yokota T, Nito C, Takahashi H, Ohta S. Transgenic type2 diabetes mouse models for in vivo redox measurement of hepatic mitochondrial oxidative stress. Biochim Biophys Acta Gen Subj 2023; 1867:130302. [PMID: 36577487 DOI: 10.1016/j.bbagen.2022.130302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/02/2022] [Accepted: 12/21/2022] [Indexed: 12/26/2022]
Abstract
BACKGROUND Oxidative stress is involved in the progression of diabetes and its associated complications. However, it is unclear whether increased oxidative stress plays a primary role in the onset of diabetes or is a secondary indicator caused by tissue damage. Previous methods of analyzing oxidative stress have involved measuring the changes in oxidative stress biomarkers. Our aim is to identify a novel approach to clarify whether oxidative stress plays a primary role in the onset of diabetes. METHODS We constructed transgenic type 2 diabetes mouse models expressing redox-sensitive green fluorescent proteins (roGFPs) that distinguished between mitochondria and whole cells. Pancreas, liver, skeletal muscle, and kidney redox states were measured in vivo. RESULTS Hepatic mitochondrial oxidation increased when the mice were 4 weeks old and continued to increase in an age-dependent manner. The increase in hepatic mitochondrial oxidation occurred simultaneously with weight gain and increased blood insulin levels before the blood glucose levels increased. Administering the oxidative stress inducer acetaminophen increased the vulnerability of the liver mitochondria to oxidative stress. CONCLUSIONS This study demonstrates that oxidative stress in liver mitochondria in mice begins at the onset of diabetes rather than after the disease has progressed. GENERAL SIGNIFICANCE RoGFP-expressing transgenic type 2 diabetes mouse models are effective and convenient tools for measuring hepatic mitochondrial redox statuses in vivo. These models may be used to assess mitochondria-targeting antioxidants and establish the role of oxidative stress in type 2 diabetes.
Collapse
Affiliation(s)
- Naomi Kamimura
- Department of Biochemistry and Cell Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan; Laboratory for Clinical Research, Collaborative Research Center, Nippon Medical School, Tokyo, Japan.
| | - Alexander M Wolf
- Department of Biochemistry and Cell Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Takashi Yokota
- Department of Biochemistry and Cell Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Chikako Nito
- Laboratory for Clinical Research, Collaborative Research Center, Nippon Medical School, Tokyo, Japan
| | - Hiroshi Takahashi
- Laboratory for Clinical Research, Collaborative Research Center, Nippon Medical School, Tokyo, Japan; Department of Ophthalmology, Nippon Medical School, Tokyo, Japan
| | - Shigeo Ohta
- Department of Biochemistry and Cell Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan; Department of Neurology Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
25
|
El-Kashef DH, Sharawy MH. Hepatoprotective effect of nicorandil against acetaminophen-induced oxidative stress and hepatotoxicity in mice via modulating NO synthesis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:14253-14264. [PMID: 36149558 PMCID: PMC9908717 DOI: 10.1007/s11356-022-23139-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Acetaminophen (APAP) overdose can produce hepatotoxicity and consequently liver damage. This study investigated the hepatoprotective impacts of nicorandil on hepatic damage induced by APAP. Nicorandil was administered orally (100 mg/kg) for seven days before APAP challenge (500 mg/kg, ip). Pretreatment with nicorandil reduced serum levels of aminotransferases, bilirubin, GGT and LDH, and increased serum level of albumin. Moreover, nicorandil inhibited the increase in liver MDA levels and reversed the decline in GSH content and SOD activity. Besides, it notably alleviated APAP-induced necrosis observed in histopathological findings. Additionally, nicorandil alleviated APAP-induced NO overproduction and iNOS expression; however, the protein expression of eNOS was significantly increased. Moreover, nicorandil markedly reduced hepatic TNF-α and NF-κB levels, in addition to decreasing the protein expression of MPO in hepatic tissues. Furthermore, flow cytometry (annexin V-FITC/PI) displayed a significant decline in late apoptotic and necrotic cells, and an increase in viable cells in nicorandil group. Also, nicorandil caused a significant boost in hepatic antiapoptotic marker bcl-2 level. The presented data proposed that the protective effect of nicorandil might be attributed to its antioxidant, its impact on NO homeostasis, and its anti-inflammatory properties. Therefore, nicorandil may be a promising candidate for protection from liver injury induced by APAP.
Collapse
Affiliation(s)
- Dalia H. El-Kashef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516 Egypt
| | - Maha H. Sharawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516 Egypt
| |
Collapse
|
26
|
Bouwmeester MC, Tao Y, Proença S, van Steenbeek FG, Samsom RA, Nijmeijer SM, Sinnige T, van der Laan LJW, Legler J, Schneeberger K, Kramer NI, Spee B. Drug Metabolism of Hepatocyte-like Organoids and Their Applicability in In Vitro Toxicity Testing. Molecules 2023; 28:molecules28020621. [PMID: 36677681 PMCID: PMC9867526 DOI: 10.3390/molecules28020621] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/22/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Emerging advances in the field of in vitro toxicity testing attempt to meet the need for reliable human-based safety assessment in drug development. Intrahepatic cholangiocyte organoids (ICOs) are described as a donor-derived in vitro model for disease modelling and regenerative medicine. Here, we explored the potential of hepatocyte-like ICOs (HL-ICOs) in in vitro toxicity testing by exploring the expression and activity of genes involved in drug metabolism, a key determinant in drug-induced toxicity, and the exposure of HL-ICOs to well-known hepatotoxicants. The current state of drug metabolism in HL-ICOs showed levels comparable to those of PHHs and HepaRGs for CYP3A4; however, other enzymes, such as CYP2B6 and CYP2D6, were expressed at lower levels. Additionally, EC50 values were determined in HL-ICOs for acetaminophen (24.0−26.8 mM), diclofenac (475.5−>500 µM), perhexiline (9.7−>31.5 µM), troglitazone (23.1−90.8 µM), and valproic acid (>10 mM). Exposure to the hepatotoxicants showed EC50s in HL-ICOs comparable to those in PHHs and HepaRGs; however, for acetaminophen exposure, HL-ICOs were less sensitive. Further elucidation of enzyme and transporter activity in drug metabolism in HL-ICOs and exposure to a more extensive compound set are needed to accurately define the potential of HL-ICOs in in vitro toxicity testing.
Collapse
Affiliation(s)
- Manon C. Bouwmeester
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Regenerative Medicine Center Utrecht, Utrecht University, 3584 CT Utrecht, The Netherlands
| | - Yu Tao
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Regenerative Medicine Center Utrecht, Utrecht University, 3584 CT Utrecht, The Netherlands
| | - Susana Proença
- Division of Toxicology, Wageningen University, 6700 EA Wageningen, The Netherlands
- Institute for Risk Assessment Sciences, Utrecht University, 3584 CM Utrecht, The Netherlands
| | - Frank G. van Steenbeek
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Regenerative Medicine Center Utrecht, Utrecht University, 3584 CT Utrecht, The Netherlands
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands
| | - Roos-Anne Samsom
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Regenerative Medicine Center Utrecht, Utrecht University, 3584 CT Utrecht, The Netherlands
| | - Sandra M. Nijmeijer
- Institute for Risk Assessment Sciences, Utrecht University, 3584 CM Utrecht, The Netherlands
| | - Theo Sinnige
- Institute for Risk Assessment Sciences, Utrecht University, 3584 CM Utrecht, The Netherlands
| | - Luc J. W. van der Laan
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, 3015 CN Rotterdam, The Netherlands
| | - Juliette Legler
- Institute for Risk Assessment Sciences, Utrecht University, 3584 CM Utrecht, The Netherlands
| | - Kerstin Schneeberger
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Regenerative Medicine Center Utrecht, Utrecht University, 3584 CT Utrecht, The Netherlands
| | - Nynke I. Kramer
- Division of Toxicology, Wageningen University, 6700 EA Wageningen, The Netherlands
- Institute for Risk Assessment Sciences, Utrecht University, 3584 CM Utrecht, The Netherlands
| | - Bart Spee
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Regenerative Medicine Center Utrecht, Utrecht University, 3584 CT Utrecht, The Netherlands
- Correspondence:
| |
Collapse
|
27
|
Chipangura JK, Ntamo Y, Mohr B, Chellan N. A review of challenges and prospects of 3D cell-based culture models used for studying drug induced liver injury during early phases of drug development. Hum Exp Toxicol 2023; 42:9603271221147884. [PMID: 36879529 DOI: 10.1177/09603271221147884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Drug-induced liver injury (DILI) is the leading cause of compound attrition during drug development. Over the years, a battery of in-vitro cell culture toxicity tests is being conducted to evaluate the toxicity of compounds prior to testing in laboratory animals. Two-dimensional (2D) in-vitro cell culture models are commonly used and have provided a great deal of knowledge; however, these models often fall short in mimicking natural structures of tissues in-vivo. Testing in humans is the most logical method, but unfortunately there are ethical limitations associated with human tests. To overcome these limitations better human-relevant, predictive models are required. The past decade has witnessed significant efforts towards the development of three-dimensional (3D) in-vitro cell culture models better mimicking in-vivo physiology. 3D cell culture has advantages in being representative of the interactions of cells in-vivo and when validated can act as an interphase between 2D cell culture models and in-vivo animal models. The current review seeks to provide an overview of the challenges that make biomarkers used for detection of DILI not to be sensitive enough during drug development and explore how 3D cell culture models can be used to address the gap with the current models.
Collapse
Affiliation(s)
- John K Chipangura
- Faculty of Health Science, University of Cape Town Research Animal Facility, South Africa
| | - Yonela Ntamo
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
| | - Bert Mohr
- Faculty of Health Science, University of Cape Town Research Animal Facility, South Africa
| | - Nireshni Chellan
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
- Centre for Cardio-metabolic Research in Africa (CARMA), Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, South Africa
| |
Collapse
|
28
|
Ahmed MJ, Perveen S, Hussain SG, Khan AA, Ejaz SMW, Rizvi SMA. Design of a facile, green and efficient graphene oxide-based electrochemical sensor for analysis of acetaminophen drug. CHEMICAL PAPERS 2023; 77:2275-2294. [PMID: 36589858 PMCID: PMC9792318 DOI: 10.1007/s11696-022-02628-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 12/10/2022] [Indexed: 12/28/2022]
Abstract
In this study an efficient and environment friendly electrochemical sensor has been designed for the analysis of acetaminophen (APAP) drug. Electrochemical impedance spectroscopy, differential pulse voltammetry and cyclic voltammetric techniques were used to demonstrate the fabricated erGO/GCE sensor performance. Voltammetric assessment of acetaminophen drug was done using bare GC electrode, drop-casted GO/GC electrode and erGO/GCE electrochemical sensor. Proposed sensor was precisely validated for APAP detection by differential pulse voltammetric technique. Subsequently LOD, LOQ, sensitivity and linearity were determined and found to be 7.23 nM, 21.909 nM, 20.14 μA nM-1 cm-2 and 0.0219-2.30 μM, respectively. The diffusion coefficient of APAP was determined by chronoamperometry, and it was found to be 2.24 × 10-5 cm2.s-1. The synthetic and analytical steps were assessed as per the Green Chemistry's 12 Principles giving a 66 score (acceptable) and 93 score (excellent) for the said steps, respectively. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s11696-022-02628-9.
Collapse
Affiliation(s)
- Muzamil Jalil Ahmed
- Department of Chemistry, NED University of Engineering & Technology, University Road, Karachi, Sindh 75270 Pakistan
| | - Shazia Perveen
- Department of Chemistry, NED University of Engineering & Technology, University Road, Karachi, Sindh 75270 Pakistan
| | - Syed Ghazanfar Hussain
- Department of Chemistry, NED University of Engineering & Technology, University Road, Karachi, Sindh 75270 Pakistan
| | - Arsalan Ahmed Khan
- Department of Chemistry, NED University of Engineering & Technology, University Road, Karachi, Sindh 75270 Pakistan
| | - Syed Muhammad Wahaj Ejaz
- Department of Chemistry, NED University of Engineering & Technology, University Road, Karachi, Sindh 75270 Pakistan
| | - Syed Muhammad Ali Rizvi
- Department of Chemistry, NED University of Engineering & Technology, University Road, Karachi, Sindh 75270 Pakistan
| |
Collapse
|
29
|
Rofaeil RR, Welson NN, Fawzy MA, Ahmed AF, Atta M, Bahaa El-Deen MA, Abdelzaher WY. The IL-6/HO-1/STAT3 signaling pathway is implicated in the amelioration of acetaminophen-induced hepatic toxicity: A neonatal rat model. Hum Exp Toxicol 2023; 42:9603271231151376. [PMID: 36625353 DOI: 10.1177/09603271231151376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The widespread use of acetaminophen (APAP) in children as an over-the-counter treatment can cause acute liver failure through accidental overdose or ingestion. Therefore, the current research sought to investigate the function of hemin in mitigating the acute hepatotoxic effect of APAP in rat offspring. Thirty-two rats were assigned into four groups: control, hemin, APAP, and hemin/APAP groups. Liver enzymes were measured in serum along with oxidative stress indicators, tumor necrosis factor-α (TNF-α), interleukin-1beta (IL-1β), total nitrites (NOx), and caspase 3 in liver. Immunoblotting of heme oxygenase-1 (HO-1), interleukin-6 (IL-6), Janus kinase 2 (Jak2), and signal transducer and activator of transcription 3 (STAT3) was carried out. The Bax/Bcl2 mRNA expression ratio was determined. A histological study and an immunohistochemical study of phosphorylated STAT3 were also done. Hemin reduced liver enzymes, MDA, TNF-α, NOx, caspase 3, IL-1β, p-STAT3 expression, p-Jak2 expression, IL-6 expression, and Bax/Bcl2 mRNA expression ratio. In contrast, hemin increased GSH, TAC, and the expression of HO-1, improving the histopathological picture of liver tissue. Thus, hemin could ameliorate APAP-induced hepatic toxicity in rat offspring through anti-oxidant, anti-apoptotic, and anti-inflammatory actions with a possible role for the IL-6/HO-1/Jak2/STAT3 pathway.
Collapse
Affiliation(s)
- Remon Roshdy Rofaeil
- Department of Pharmacology, Faculty of Medicine, 68877Minia University, Minia, Egypt.,Department of Pharmacology, Deraya University, New Minia City, Egypt
| | - Nermeen N Welson
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, 158411Beni-Suef University, Beni-Suef, Egypt
| | - Michael A Fawzy
- Department of Biochemistry, Faculty of Pharmacy, 68877Minia University, Minia, Egypt
| | - Amira F Ahmed
- Department of Histology and Cell Biology, Faculty of Medicine, 68877Minia University, Minia, Egypt.,Department of Histology and Cell Biology, Misr University for Science and Technology, October City, Egypt
| | - Medhat Atta
- Department of Anatomy, Faculty of Medicine, 68877Minia University, Minia, Egypt
| | | | | |
Collapse
|
30
|
Chilvery S, Yelne A, Khurana A, Saifi MA, Bansod S, Anchi P, Godugu C. Acetaminophen induced hepatotoxicity: An overview of the promising protective effects of natural products and herbal formulations. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154510. [PMID: 36332383 DOI: 10.1016/j.phymed.2022.154510] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 08/06/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The liver plays an important role in regulating the metabolic processes and is the most frequently targeted organ by toxic chemicals. Acetaminophen (APAP) is a well-known anti-allergic, anti-pyretic, non-steroidal anti-inflammatory drug (NSAID), which upon overdose leads to hepatotoxicity, the major adverse event of this over-the-counter drug. PURPOSE APAP overdose induced acute liver injury is the second most common cause that often requires liver transplantation worldwide, for which N-acetyl cysteine is the only synthetic drug clinically approved as an antidote. So, it was felt that there is a need for the novel therapeutic approach for the treatment of liver diseases with less adverse effects. This review provides detailed analysis of the different plant extracts; phytochemicals and herbal formulations for the amelioration of APAP-induced liver injury. METHOD The data was collected using different online resources including PubMed, ScienceDirect, Google Scholar, Springer, and Web of Science using keywords given below. RESULTS Over the past decades various reports have revealed that plant-based approaches may be a better treatment choice for the APAP-induced hepatotoxicity in pre-clinical experimental conditions. Moreover, herbal compounds provide several advantages over the synthetic drugs with fewer side effects, easy availability and less cost for the treatment of life-threatening diseases. CONCLUSION The current review summarizes the hepatoprotective effects and therapeutic mechanisms of various plant extracts, active phytoconstituents and herbal formulations with potential application against APAP induced hepatotoxicity as the numbers of hepatoprotective natural products are more without clinical relativity. Further, pre-clinical pharmacological research will contribute to the designing of natural products as medicines with encouraging prospects for clinical application.
Collapse
Affiliation(s)
- Shrilekha Chilvery
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Amit Yelne
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Amit Khurana
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Mohd Aslam Saifi
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Sapana Bansod
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Pratibha Anchi
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India.
| |
Collapse
|
31
|
Boffel L, Delahaye L, De Baerdemaeker L, Stove CP. Application of a Volumetric Absorptive Microsampling (VAMS)-Based Method for the Determination of Paracetamol and Four of its Metabolites as a Tool for Pharmacokinetic Studies in Obese and Non-Obese Patients. Clin Pharmacokinet 2022; 61:1719-1733. [PMID: 36451028 DOI: 10.1007/s40262-022-01187-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2022] [Indexed: 12/05/2022]
Abstract
BACKGROUND The pharmacokinetic (PK) profile of a drug is influenced by several factors, which can lead to a suboptimal dosing regimen in specific patient populations. As obesity becomes increasingly prevalent, it is important that optimized dosing schemes are available for these patients. To set up such dosing schemes, PK studies should be performed in this population. Regarding paracetamol (acetaminophen [APAP]), obese patients would benefit from a tailored dosing scheme, as both the volume of distribution and metabolism are increased compared with non-obese patients. This includes metabolism by cytochrome P450 2E1, which is involved in APAP-associated hepatotoxicity. To decrease the burden for patients in these PK studies, finger-prick sampling could be used. OBJECTIVE The aim of this study was to compare the quantitative determination of APAP and four metabolites in different blood-based matrices and to determine if capillary dried blood samples, collected directly following finger-prick, could serve as a tool to investigate APAP PK in obese and non-obese patients. METHODS In this study, we performed a clinical validation of methods for the determination of APAP and four of its metabolites (APAP-glucuronide, APAP-sulfate, APAP-mercapturate, and APAP-cysteine) in blood, plasma, and dried blood. The latter was obtained by volumetric absorptive microsampling (VAMS), either starting from the venous blood or collected directly following a finger-prick. Results were compared between the different matrices and, in addition, blood:plasma (B:P) ratios were determined for the different analytes. RESULTS Liquid and dried venous blood results were in good agreement. Furthermore, differences between capillary (finger-prick) and venous VAMS blood samples remained limited for most analytes. However, for APAP-cysteine, caution should be paid to the interpretation of concentrations in (dried) blood. With the exception of APAP, concentrations were higher in plasma compared with blood, with B:P ratios ranging between 0.52 and 0.65. A time-dependent change in median B:P ratio was observed for APAP and APAP-cysteine. Additionally, a time-dependent trend was seen for APAP, as well as for APAP-glucuronide and APAP-mercapturate, for the distribution between capillary and venous blood. CONCLUSIONS We demonstrated that finger-prick sampling is a viable alternative to conventional venous blood sampling to investigate the PK of APAP and its metabolites in obese and non-obese patients.
Collapse
Affiliation(s)
- Laura Boffel
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Lisa Delahaye
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | | | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium.
| |
Collapse
|
32
|
Li Q, Chen F, Wang F. The immunological mechanisms and therapeutic potential in drug-induced liver injury: lessons learned from acetaminophen hepatotoxicity. Cell Biosci 2022; 12:187. [PMID: 36414987 PMCID: PMC9682794 DOI: 10.1186/s13578-022-00921-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/01/2022] [Indexed: 11/24/2022] Open
Abstract
Acute liver failure caused by drug overdose is a significant clinical problem in developed countries. Acetaminophen (APAP), a widely used analgesic and antipyretic drug, but its overdose can cause acute liver failure. In addition to APAP-induced direct hepatotoxicity, the intracellular signaling mechanisms of APAP-induced liver injury (AILI) including metabolic activation, mitochondrial oxidant stress and proinflammatory response further affect progression and severity of AILI. Liver inflammation is a result of multiple interactions of cell death molecules, immune cell-derived cytokines and chemokines, as well as damaged cell-released signals which orchestrate hepatic immune cell infiltration. The immunoregulatory interplay of these inflammatory mediators and switching of immune responses during AILI lead to different fate of liver pathology. Thus, better understanding the complex interplay of immune cell subsets in experimental models and defining their functional involvement in disease progression are essential to identify novel therapeutic targets for the treatment of AILI. Here, this present review aims to systematically elaborate on the underlying immunological mechanisms of AILI, its relevance to immune cells and their effector molecules, and briefly discuss great therapeutic potential based on inflammatory mediators.
Collapse
Affiliation(s)
- Qianhui Li
- grid.511083.e0000 0004 7671 2506Division of Gastroenterology, Seventh Affiliated Hospital of Sun Yat-sen University, No.628, Zhenyuan Road, Shenzhen, 518107 China
| | - Feng Chen
- grid.511083.e0000 0004 7671 2506Division of Gastroenterology, Seventh Affiliated Hospital of Sun Yat-sen University, No.628, Zhenyuan Road, Shenzhen, 518107 China
| | - Fei Wang
- grid.511083.e0000 0004 7671 2506Division of Gastroenterology, Seventh Affiliated Hospital of Sun Yat-sen University, No.628, Zhenyuan Road, Shenzhen, 518107 China
| |
Collapse
|
33
|
Afful EY, Frimpong-Manso S, Bekoe SO, Barfi CO, Opuni KFM, Oppong MB. The Unethical Use of Paracetamol As a Food Tenderizer in Four Selected African Countries: A Major Public Health Concern? DRUG METABOLISM AND BIOANALYSIS LETTERS 2022; 15:159-165. [PMID: 35950247 DOI: 10.2174/2949681015666220810125820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/23/2022] [Accepted: 05/31/2022] [Indexed: 11/29/2022]
Abstract
Paracetamol poisoning is the commonest cause of acute liver injury. Therefore, the unethical use of paracetamol as a food tenderizer poses a threat to human health. Although this is a common practice in Ghana, Uganda, Nigeria, and Kenya, there are few or no scientific records on the use of paracetamol as a food tenderizer and its deleterious effects, thus making it difficult to regulate this practice. This review aims to fully collate and present a systematic overview of the literature on the use of paracetamol as a food tenderizer in these countries, the potentially harmful effects posed by the practice, and measures in place to curb the situation. Additionally, this review aims to reveal the scientific gaps and areas requiring more research, thus providing a reference for further research to regulate this unscrupulous practice. From our extensive review of the literature, the high cost of fuel used in cooking and longer cooking times are the main reasons for the inappropriate use of paracetamol as a food tenderizer. Also, this review concludes that little has been done to create public awareness of this unethical practice. Furthermore, few ways to monitor, control and regulate this practice have been proposed.
Collapse
Affiliation(s)
- Ewurabena Y Afful
- Department of Pharmaceutical Chemistry, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Samuel Frimpong-Manso
- Department of Pharmaceutical Chemistry, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Samuel O Bekoe
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, PMB, Kumasi, Ghana
| | - Chris O Barfi
- Department of Pharmaceutical Chemistry, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Kwabena F M Opuni
- Department of Pharmaceutical Chemistry, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Mahmood B Oppong
- Department of Pharmaceutical Chemistry, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Ghana
| |
Collapse
|
34
|
Nilotinib alleviated acetaminophen-induced acute hepatic injury in mice through inhibiting HIF-1alpha/VEGF-signaling pathway. Int Immunopharmacol 2022; 112:109268. [PMID: 36182876 DOI: 10.1016/j.intimp.2022.109268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/14/2022] [Accepted: 09/17/2022] [Indexed: 11/20/2022]
Abstract
The current study inspects the impact of nilotinib (Nil) on liver damage caused by acetaminophen (APAP). Adult male mice were pre-treated with nilotinib (Nil,5 and 10 mg/kg) orally once daily for 7 days followed by a single intraperitoneal administration of acetaminophen (APAP, 200 mg/kg) on the 7th day. The results indicated that nilotinib significantly decreased APAP-induced elevation of biochemical markers (ALT, AST, ALP, LDH, ɤ GT, and total bilirubin). Additionally, nilotinib significantly increased hepatic GSH and SOD content, while decreased MDA content. Nil significantly suppressed the expression of HIF-1α and VEGF. Histopathological examination of hepatic tissue from Nil-treated mice revealed that Nil reduced acetaminophen-induced necrosis.
Collapse
|
35
|
Li J, Tang X, Wen X, Ren X, Zhang H, Du Y, Lu J. Mitochondrial Glrx2 Knockout Augments Acetaminophen-Induced Hepatotoxicity in Mice. Antioxidants (Basel) 2022; 11:antiox11091643. [PMID: 36139718 PMCID: PMC9495392 DOI: 10.3390/antiox11091643] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Acetaminophen (APAP) is one of the most widely used drugs with antipyretic and analgesic effects, and thus hepatotoxicity from the overdose of APAP becomes one of the most common forms of drug-induced liver injury. The reaction towards thiol molecules, such as GSH by APAP metabolite, N-acetyl-p-benzo-quinonimine (NAPQI), is the main cause of APAP-induced hepatotoxicity. However, the role of many other thiol-related regulators in toxicity caused by APAP is still unclear. Here we have found that knockout of the Glrx2 gene, which encodes mitochondrial glutaredoxin2 (Grx2), sensitized mice to APAP-caused hepatotoxicity. Glrx2 deletion hindered Nrf2-mediated compensatory recovery of thiol-dependent redox systems after acetaminophen challenge, resulting in a more oxidized cellular state with a further decrease in GSH level, thioredoxin reductase activity, and GSH/GSSG ratio. The weakened feedback regulation capacity of the liver led to higher levels of protein glutathionylation and thioredoxin (both Trx1 and Trx2) oxidation in Glrx2−/− mice. Following the cellular environment oxidation, nuclear translocation of apoptosis-inducing factor (AIF) was elevated in the liver of Glrx2−/− mice. Taken together, these results demonstrated that mitochondrial Grx2 deficiency deteriorated APAP-induced hepatotoxicity by interrupting thiol-redox compensatory response, enhancing the AIF pathway-mediated oxidative damage.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education (Southwest University), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Xuewen Tang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education (Southwest University), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xing Wen
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education (Southwest University), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xiaoyuan Ren
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Huihui Zhang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yatao Du
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Institute of Early Life Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jun Lu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education (Southwest University), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
- Correspondence: ; Tel.: +86-13594206128
| |
Collapse
|
36
|
Potęga A. Glutathione-Mediated Conjugation of Anticancer Drugs: An Overview of Reaction Mechanisms and Biological Significance for Drug Detoxification and Bioactivation. Molecules 2022; 27:molecules27165252. [PMID: 36014491 PMCID: PMC9412641 DOI: 10.3390/molecules27165252] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 11/26/2022] Open
Abstract
The effectiveness of many anticancer drugs depends on the creation of specific metabolites that may alter their therapeutic or toxic properties. One significant route of biotransformation is a conjugation of electrophilic compounds with reduced glutathione, which can be non-enzymatic and/or catalyzed by glutathione-dependent enzymes. Glutathione usually combines with anticancer drugs and/or their metabolites to form more polar and water-soluble glutathione S-conjugates, readily excreted outside the body. In this regard, glutathione plays a role in detoxification, decreasing the likelihood that a xenobiotic will react with cellular targets. However, some drugs once transformed into thioethers are more active or toxic than the parent compound. Thus, glutathione conjugation may also lead to pharmacological or toxicological effects through bioactivation reactions. My purpose here is to provide a broad overview of the mechanisms of glutathione-mediated conjugation of anticancer drugs. Additionally, I discuss the biological importance of glutathione conjugation to anticancer drug detoxification and bioactivation pathways. I also consider the potential role of glutathione in the metabolism of unsymmetrical bisacridines, a novel prosperous class of anticancer compounds developed in our laboratory. The knowledge on glutathione-mediated conjugation of anticancer drugs presented in this review may be noteworthy for improving cancer therapy and preventing drug resistance in cancers.
Collapse
Affiliation(s)
- Agnieszka Potęga
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
37
|
Yu F, Liu Y, Zhang R, Zhu L, Zhang T, Shi Y. Recent advances in circadian-regulated pharmacokinetics and its implications for chronotherapy. Biochem Pharmacol 2022; 203:115185. [PMID: 35902039 DOI: 10.1016/j.bcp.2022.115185] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 11/02/2022]
Abstract
Dependence of pharmacokinetics and drug effects (efficacy and toxicity) on dosing time has long been recognized. However, significant progress has only recently been made in our understanding of circadian rhythms and their regulation on drug pharmacokinetics, efficacy and toxicity. This review will cover the relevant literature and a series of publications from our work summarizing the effects of circadian rhythms on drug pharmacokinetics, and propose that the influence of circadian rhythms on pharmacokinetics are ultimately translated into therapeutic effects and side effects of drugs. Evidence suggests that daily rhythmicity in expression of drug-metabolizing enzymes and transporters necessary for drug ADME (absorption, distribution, metabolism and excretion) are key factors determining circadian pharmacokinetics. Newly discovered mechanisms for circadian control of the enzymes and transporters are covered. We also discuss how the rhythms of drug-processing proteins are translated into circadian pharmacokinetics and drug chronoefficacy/chronotoxicity, which has direct implications for chronotherapy. More importantly, we will present perspectives on the challenges that are still needed for a breakthrough in translational research. In addition, knowledge of the circadian influence on drug disposition has provided new possibilities for novel pharmacological strategies. Careful application of pharmacokinetics-based chronotherapy strategies can improve efficacy and reduce toxicity. Circadian rhythm-mediated metabolic and transport strategies can also be implemented to design drugs.
Collapse
Affiliation(s)
- Fangjun Yu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuanyuan Liu
- School of Fundamental Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rong Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lijun Zhu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tianpeng Zhang
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Yafei Shi
- School of Fundamental Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
38
|
Mohamed Kamel GA, Harahsheh E, Hussein S. Diacerein ameliorates acetaminophen hepatotoxicity in rats via inhibiting HMGB1/TLR4/NF-κB and upregulating PPAR-γ signal. Mol Biol Rep 2022; 49:5863-5874. [PMID: 35366176 PMCID: PMC8975726 DOI: 10.1007/s11033-022-07366-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/10/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND Acetaminophen (APAP) is a worldwide antipyretic as well as an analgesic medication. It has been extensively utilized during the outbreak of coronavirus 2019 (COVID-19). APAP misuse would lead to liver injury. Diacerein (DIA), an anthraquinone derivative, has antioxidant and inflammatory properties. Hence, this study attempted to evaluate the impact of DIA treatment on liver injury induced by APAP and its influence on nuclear factor-κB (NF-κB) /toll-like receptor 4 (TLR4)/high mobility group box-1(HMGB-1) signaling as well as the expression of peroxisome proliferator-activated receptor-gamma (PPAR-γ) expression. METHODS Male albino rats received 25 as well as 50 mg/kg/day DIA orally for seven days. One hour after the last administration, rats received APAP (1gm/kg, orally). For histopathological analysis, liver tissues and blood were collected, immunohistochemical (IHC) assay, biochemical assay, as well as quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS DIA markedly reduced liver injury markers and ameliorated histopathological changes. Moreover, DIA dose-dependently alleviated oxidative stress status caused by APAP administration along with inflammatory markers, including the level of interleukin-1 beta (IL-1β), myeloperoxidase (MPO), tumor necrosis factor-alpha (TNF-α), and interleukin 6 (IL-6). Furthermore, DIA downregulated protein levels as well as mRNA of HMGB-1, TLR4, NF-κB p65 expression, and enhanced PPAR-γ expression. Moreover, DIA ameliorated apoptotic (Bax) and caspase-3 expressions and increased the anti-apoptotic (Bcl2) expression. CONCLUSIONS This study demonstrated that DIA exerts anti-apoptotic, anti-inflammatory, and antioxidant properties against liver injury induced by APAP that is attributed to inhibition of the HMGB1/TLR4/NF-κB pathway, besides upregulation of the expression of PPAR-γ.
Collapse
Affiliation(s)
- Gellan Alaa Mohamed Kamel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo, 11754, Egypt.
| | - Eman Harahsheh
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, Hashemite University, Zarqa, Jordan
| | - Shaimaa Hussein
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf, Saudi Arabia
| |
Collapse
|
39
|
Xu Y, Xu B, Wang J, Jin H, Xu S, Wang G, Zhen L. Peroxynitrite‐Promoted Persulfide Prodrugs with Protective Potential against Paracetamol Poisoning. Chemistry 2022; 28:e202200540. [DOI: 10.1002/chem.202200540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Ya‐Wen Xu
- Key Laboratory of Drug Metabolism and Pharmacokinetics China Pharmaceutical University 24 Tongjia Xiang Nanjing 210009 Jiangsu P. R. China
| | - Bi‐Xin Xu
- Key Laboratory of Drug Metabolism and Pharmacokinetics China Pharmaceutical University 24 Tongjia Xiang Nanjing 210009 Jiangsu P. R. China
| | - Jiankun Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics China Pharmaceutical University 24 Tongjia Xiang Nanjing 210009 Jiangsu P. R. China
| | - Hao‐Wen Jin
- Key Laboratory of Drug Metabolism and Pharmacokinetics China Pharmaceutical University 24 Tongjia Xiang Nanjing 210009 Jiangsu P. R. China
| | - Si‐Tao Xu
- Key Laboratory of Drug Metabolism and Pharmacokinetics China Pharmaceutical University 24 Tongjia Xiang Nanjing 210009 Jiangsu P. R. China
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics China Pharmaceutical University 24 Tongjia Xiang Nanjing 210009 Jiangsu P. R. China
| | - Le Zhen
- Key Laboratory of Drug Metabolism and Pharmacokinetics China Pharmaceutical University 24 Tongjia Xiang Nanjing 210009 Jiangsu P. R. China
| |
Collapse
|
40
|
Dewanjee S, Dua TK, Paul P, Dey A, Vallamkondu J, Samanta S, Kandimalla R, De Feo V. Probiotics: Evolving as a Potential Therapeutic Option against Acetaminophen-Induced Hepatotoxicity. Biomedicines 2022; 10:1498. [PMID: 35884803 PMCID: PMC9312935 DOI: 10.3390/biomedicines10071498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 12/03/2022] Open
Abstract
Acetaminophen (APAP) is the most common prescription medicine around the world for the treatment of pain and fever and is considered to be a safe drug at its therapeutic dose. However, a single overdose or frequent use of APAP can cause severe acute liver injury. APAP hepatotoxicity is a prevalent cause of acute liver disease around the world and the lack of suitable treatment makes it a serious problem. In recent years, there has been a surge in interest in using probiotics and probiotic-derived products, known as postbiotics, as health and disease negotiators. A growing body of evidence revealed that they can be equally effective against APAP hepatotoxicity. Different probiotic bacteria were found to be pre-clinically effective against APAP hepatotoxicity. Different postbiotics have also shown exciting results in preclinical models of APAP hepatotoxicity. This review summarized the protective roles and mechanisms of the different probiotic bacteria and postbiotics against APAP hepatotoxicity, with critical discussion. A brief discussion on potential novel probiotics and postbiotics for oxidative liver injury was also included. This review was written in an attempt to pique the interest of researchers in developing a safe therapeutic option against oxidative liver damage using probiotics and/or postbiotics as dietary supplements.
Collapse
Affiliation(s)
- Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Tarun K. Dua
- Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur 734013, India; (T.K.D.); (P.P.)
| | - Paramita Paul
- Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur 734013, India; (T.K.D.); (P.P.)
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, India;
| | | | - Sonalinandini Samanta
- Department of Dermatology (Skin & Venereology), Employee’s State Insurance Corporation Medical College & Hospital, Patna 801103, India;
| | - Ramesh Kandimalla
- Department of Biochemistry, Kakatiya Medical College, Warangal 506007, India;
- Applied Biology, Council of Scientific and Industrial Research-Indian Institute of Chemical Technology, Tarnaka 500007, India
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| |
Collapse
|
41
|
Lin HH, Hsu JY, Tseng CY, Huang XY, Tseng HC, Chen JH. Hepatoprotective Activity of Nelumbo nucifera Gaertn. Seedpod Extract Attenuated Acetaminophen-Induced Hepatotoxicity. Molecules 2022; 27:molecules27134030. [PMID: 35807275 PMCID: PMC9268144 DOI: 10.3390/molecules27134030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 01/27/2023] Open
Abstract
The aim is to investigate the effect of lotus (Nelumbo nucifera Gaertn.) seedpod extract (LSE) on acetaminophen (APAP)-induced hepatotoxicity. LSE is rich in polyphenols and has potent antioxidant capacity. APAP is a commonly used analgesic, while APAP overdose is the main reason for drug toxicity in the liver. Until now, there has been no in vitro test of LSE in drug-induced hepatotoxicity responses. LSEs were used to evaluate the effect on APAP-induced cytotoxicity, ROS level, apoptotic rate, and molecule mechanisms. The co-treatment of APAP and LSEs elevated the survival rate and decreased intracellular ROS levels on HepG2 cells. LSEs treatment could significantly reduce APAP-induced HepG2 apoptosis assessed by DAPI and Annexin V/PI. The further molecule mechanisms indicated that LSEs decreased Fas/FasL binding and reduced Bax and tBid to restore mitochondrial structure and subsequently suppress downstream apoptosis cascade activation. These declines in COX-2, NF-κB, and iNOS levels were observed in co-treatment APAP and LSEs, which indicated that LSEs could ameliorate APAP-induced inflammation. LSE protected APAP-induced apoptosis by preventing extrinsic, intrinsic, and JNK-mediated pathways. In addition, the restoration of mitochondria and inflammatory suppression in LSEs treatments indicated that LSEs could decrease oxidative stress induced by toxic APAP. Therefore, LSE could be a novel therapeutic option for an antidote against overdose of APAP.
Collapse
Affiliation(s)
- Hui-Hsuan Lin
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung City 40201, Taiwan;
| | - Jen-Ying Hsu
- Department of Nutrition, Chung Shan Medical University, Taichung City 40201, Taiwan; (J.-Y.H.); (C.-Y.T.); (X.-Y.H.)
| | - Chiao-Yun Tseng
- Department of Nutrition, Chung Shan Medical University, Taichung City 40201, Taiwan; (J.-Y.H.); (C.-Y.T.); (X.-Y.H.)
| | - Xiao-Yin Huang
- Department of Nutrition, Chung Shan Medical University, Taichung City 40201, Taiwan; (J.-Y.H.); (C.-Y.T.); (X.-Y.H.)
| | - Hsien-Chun Tseng
- Department of Radiation Oncology, Chung Shan Medical University Hospital, Taichung City 40201, Taiwan
- Department of Radiation Oncology, School of Medicine, Chung Shan Medical University, Taichung City 40201, Taiwan
- Correspondence: (H.-C.T.); (J.-H.C.); Tel.: +886-4-24730022 (ext. 12195) (J.-H.C.); Fax: +886-4-23248175 (J.-H.C.)
| | - Jing-Hsien Chen
- Department of Nutrition, Chung Shan Medical University, Taichung City 40201, Taiwan; (J.-Y.H.); (C.-Y.T.); (X.-Y.H.)
- Department of Radiation Oncology, Chung Shan Medical University Hospital, Taichung City 40201, Taiwan
- Correspondence: (H.-C.T.); (J.-H.C.); Tel.: +886-4-24730022 (ext. 12195) (J.-H.C.); Fax: +886-4-23248175 (J.-H.C.)
| |
Collapse
|
42
|
Ficus exasperata Attenuates Acetaminophen-Induced Hepatic Damage via NF-κB Signaling Mechanism in Experimental Rat Model. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6032511. [PMID: 35655487 PMCID: PMC9155960 DOI: 10.1155/2022/6032511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/12/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022]
Abstract
Ficus exasperata has been used to treat ulcer, diabetes, fever, and a variety of stress-related disorders. Acetaminophen (APAP) overdose is the most common cause of drug-induced acute liver injury. In this study, we evaluated the hepatoprotective effect and antioxidant capacity of ethanolic extract of F. exasperata (EFE) on acetaminophen-induced hepatotoxicity in albino rats. Rats were pretreated with EFE (150, 250, 500 mg/kg) and thereafter received 250 mg/kg APA intraperitoneally (i.p.). The normal control group received distilled water, while the negative control group received 250 mg/kg APAP, respectively. Hepatotoxicity and oxidative stress-antioxidant parameters were then assessed. Flavonoids, saponins, steroids, and glycosides, but not phenolics were detected by EFE phytochemical analysis. No mortality was recorded on acute exposure of rats to varying concentrations of APAP after 24 h; however, a dose-dependent increase in severity of convulsion, urination, and hyperactivity was observed. APAP overdose induced high AST, ALT, ALP, and total bilirubin levels in the serum, invoked lipid peroxidation, depleted GSH, decreased CAT, SOD, and GST levels, respectively. Nitric oxide (NO) level, myeloperoxidase activity, TNF-α, IL-1β, NF-κB, COX-2, MCP-1, and IL-6 were also increased. Importantly, pretreatment of rats with EFE before acetaminophen ameliorated and restored cellular antioxidant status to levels comparable to the control group. Our results show and suggest the hepatoprotective effect of F. exasperata and its ability to modulate cellular antioxidant status supports its use in traditional medicine and renders it safe in treating an oxidative stress-induced hepatic injury.
Collapse
|
43
|
Negoro R, Tasaka M, Deguchi S, Takayama K, Fujita T. Generation of HepG2 Cells with High Expression of Multiple Drug-Metabolizing Enzymes for Drug Discovery Research Using a PITCh System. Cells 2022; 11:cells11101677. [PMID: 35626714 PMCID: PMC9140068 DOI: 10.3390/cells11101677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 12/10/2022] Open
Abstract
HepG2 cells are an inexpensive hepatocyte model that can be used for repeated experiments, but HepG2 cells do not express major cytochrome P450s (CYPs) and UDP glucuronosyltransferase family 1 member A1 (UGT1A1). In this study, we established CYP3A4–POR–UGT1A1–CYP1A2–CYP2C19–CYP2C9–CYP2D6 (CYPs–UGT1A1) knock-in (KI)-HepG2 cells using a PITCh system to evaluate whether they could be a new hepatocyte model for pharmaceutical studies. To evaluate whether CYPs–UGT1A1 KI-HepG2 cells express and function with CYPs and UGT1A1, gene expression levels of CYPs and UGT1A1 were analyzed by using real-time PCR, and metabolites of CYPs or UGT1A1 substrates were quantified by HPLC. The expression levels of CYPs and UGT1A1 in the CYPs–UGT1A1 KI-HepG2 cells were comparable to those in primary human hepatocytes (PHHs) cultured for 48 h. The CYPs and UGT1A1 activity levels in the CYPs–UGT1A1 KI-HepG2 cells were much higher than those in the wild-type (WT)-HepG2 cells. These results suggest that the CYPs–UGT1A1 KI-HepG2 cells expressed functional CYPs and UGT1A1. We also confirmed that the CYPs–UGT1A1 KI-HepG2 cells were more sensitive to drug-induced liver toxicity than the WT-HepG2 cells. CYPs–UGT1A1 KI-HepG2 cells could be used to predict drug metabolism and drug-induced liver toxicity, and they promise to be a helpful new hepatocyte model for drug discovery research.
Collapse
Affiliation(s)
- Ryosuke Negoro
- Laboratory of Molecular Pharmacokinetics, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan;
- Correspondence: ; Tel.: +81-77-599-3353
| | - Mitsuki Tasaka
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan;
| | - Sayaka Deguchi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan; (S.D.); (K.T.)
| | - Kazuo Takayama
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan; (S.D.); (K.T.)
- Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Takuya Fujita
- Laboratory of Molecular Pharmacokinetics, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan;
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan;
- Research Center for Drug Discovery and Development, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan
| |
Collapse
|
44
|
Wang M, Sun J, Yu T, Wang M, Jin L, Liang S, Luo W, Wang Y, Li G, Liang G. Diacerein protects liver against APAP-induced injury via targeting JNK and inhibiting JNK-mediated oxidative stress and apoptosis. Biomed Pharmacother 2022; 149:112917. [PMID: 36068777 DOI: 10.1016/j.biopha.2022.112917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 11/02/2022] Open
|
45
|
D’Amico R, Cordaro M, Fusco R, Peritore AF, Genovese T, Gugliandolo E, Crupi R, Mandalari G, Caccamo D, Cuzzocrea S, Di Paola R, Siracusa R, Impellizzeri D. Consumption of Cashew ( Anacardium occidentale L.) Nuts Counteracts Oxidative Stress and Tissue Inflammation in Mild Hyperhomocysteinemia in Rats. Nutrients 2022; 14:1474. [PMID: 35406088 PMCID: PMC9002620 DOI: 10.3390/nu14071474] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 02/01/2023] Open
Abstract
Hyperhomocysteinemia (HHcy) is a methionine metabolism problem that causes a variety of inflammatory illnesses. Oxidative stress is among the processes thought to be involved in the pathophysiology of the damage produced by HHcy. HHcy is likely to involve the dysfunction of several organs, such as the kidney, liver, or gut, which are currently poorly understood. Nuts are regarded as an important part of a balanced diet since they include protein, good fatty acids, and critical nutrients. The aim of this work was to evaluate the anti-inflammatory and antioxidant effects of cashew nuts in HHcy induced by oral methionine administration for 30 days, and to examine the possible pathways involved. In HHcy rats, cashew nuts (100 mg/kg orally, daily) were able to counteract clinical biochemical changes, oxidative and nitrosative stress, reduced antioxidant enzyme levels, lipid peroxidation, proinflammatory cytokine release, histological tissue injuries, and apoptosis in the kidney, colon, and liver, possibly by the modulation of the antioxidant nuclear factor erythroid 2-related factor 2 NRF-2 and inflammatory nuclear factor NF-kB pathways. Thus, the results suggest that the consumption of cashew nuts may be beneficial for the treatment of inflammatory conditions associated with HHcy.
Collapse
Affiliation(s)
- Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Via F. Stagno D’Alcontres 31, 98166 Messina, Italy; (R.D.); (A.F.P.); (T.G.); (G.M.); (R.S.); (D.I.)
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (M.C.); (D.C.)
| | - Roberta Fusco
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy;
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Via F. Stagno D’Alcontres 31, 98166 Messina, Italy; (R.D.); (A.F.P.); (T.G.); (G.M.); (R.S.); (D.I.)
| | - Tiziana Genovese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Via F. Stagno D’Alcontres 31, 98166 Messina, Italy; (R.D.); (A.F.P.); (T.G.); (G.M.); (R.S.); (D.I.)
| | - Enrico Gugliandolo
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (E.G.); (R.C.)
| | - Rosalia Crupi
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (E.G.); (R.C.)
| | - Giuseppina Mandalari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Via F. Stagno D’Alcontres 31, 98166 Messina, Italy; (R.D.); (A.F.P.); (T.G.); (G.M.); (R.S.); (D.I.)
| | - Daniela Caccamo
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (M.C.); (D.C.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Via F. Stagno D’Alcontres 31, 98166 Messina, Italy; (R.D.); (A.F.P.); (T.G.); (G.M.); (R.S.); (D.I.)
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO 63104, USA
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (E.G.); (R.C.)
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Via F. Stagno D’Alcontres 31, 98166 Messina, Italy; (R.D.); (A.F.P.); (T.G.); (G.M.); (R.S.); (D.I.)
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Via F. Stagno D’Alcontres 31, 98166 Messina, Italy; (R.D.); (A.F.P.); (T.G.); (G.M.); (R.S.); (D.I.)
| |
Collapse
|
46
|
Rousta AM, Mirahmadi SMS, Shahmohammadi A, Mehrabi Z, Fallah S, Baluchnejadmojarad T, Roghani M. Therapeutic Potential of Isorhamnetin following Acetaminophen-Induced Hepatotoxicity through Targeting NLRP3/NF-κB/Nrf2. Drug Res (Stuttg) 2022; 72:245-254. [PMID: 35359022 DOI: 10.1055/a-1792-2678] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Acetaminophen (APAP)-induced acute liver injury (ALI) is the principal cause of acute liver failure (ALF) in some countries including the United States and with few available treatments. Isorhamnetin is a bioflavonoid that is found in medicinal plants like Hippophae rhamnoides L. and Ginkgo biloba L. with promising potential to regulate inflammatory responses. In this study, we evaluated the possible effect of isorhamnetin in prevention of APAP-induced ALI and analyzed further the involvement of oxidative stress and inflammation-associated factors. Male C57BL/6 mice were given isorhamnetin (25 or 100 mg/kg b.w., p.o.) three times at 48, 24, and 1 h before APAP administration (300 mg/kg b.w., i.p.). Functional indicators of liver injury were measured as well as analysis of oxidative stress- and inflammation-associated indices and liver histopathology was also conducted. Isorhamnetin at the higher dose of 100 mg/kg significantly lowered serum levels of ALT, ALP, and AST in addition to reduction of ROS, TBARS, IL-6, TNFα, NF-kB, NLRP3, caspase 1, and MPO and significantly prevented reduction of GSH, SOD activity, sirtuin 1, and Nrf2. Additionally, isorhamnetin alleviated pathological changes of the liver tissue and suitably reversed NF-kB and Nrf2 immunoreactivity. These findings show protective effect of isorhamnetin against acetaminophen-induced liver injury through reducing oxidative stress, inflammation, and pyroptosis which is attributed to its regulation of NF-kB, Nrf2, NLRP3, and sirtuin 1.
Collapse
Affiliation(s)
| | | | | | - Zhila Mehrabi
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Soudabeh Fallah
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran
| |
Collapse
|
47
|
Watanabe T, Takada S, Onozato M, Fukushima T, Mizuta R. The difference of chows affects mouse physiological conditions. J Vet Med Sci 2022; 84:582-584. [PMID: 35173100 PMCID: PMC9096044 DOI: 10.1292/jvms.21-0457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Acetaminophen-induced liver injury in mice is a model system of human acetaminophen
overdose and oxidative stress in vivo. The system is technically
established, and we usually obtain severe liver damage in the treated mice; however, it is
possible that the degree of liver damage is affected by the type of chow fed to mice.
Thus, in this experiment, we investigated the effect of different chows on mice by
comparing acetaminophen-induced liver damage, liver antioxidant level, and serum
amino-acid concentrations. The results showed that differences in chows, even standard
ones, affected mouse physiological conditions, with the response to oxidative stress
greatly affected.
Collapse
Affiliation(s)
- Taiki Watanabe
- Research Institute for Biomedical Sciences, Tokyo University of Science
| | - Shuhei Takada
- Research Institute for Biomedical Sciences, Tokyo University of Science
| | - Mayu Onozato
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Toho University
| | - Takeshi Fukushima
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Toho University
| | - Ryushin Mizuta
- Research Institute for Biomedical Sciences, Tokyo University of Science
| |
Collapse
|
48
|
Prooxidant activity of aminophenol compounds: copper-dependent generation of reactive oxygen species. Biometals 2022; 35:329-334. [PMID: 35157172 DOI: 10.1007/s10534-022-00367-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/24/2022] [Indexed: 12/29/2022]
Abstract
Prooxidant properties of aminophenol, the constituent of acetaminophen and mesalamine, were examined. Aminophenol compounds/copper-dependent formation of reactive oxygen species was analyzed by the inactivation of aconitase, the most sensitive enzyme to oxidative stress in permeabilized yeast cells. Aminophenol compounds of 2 (ortho)- and 4 (para)- substituents, but not 3 (meta)-isomer produced reactive oxygen species in the presence of copper (cupric) ion or iron. The inactivation required sodium azide the inhibitor of catalase, suggesting that the superoxide radical produced from the 2- and 4-aminophenol in the presence of copper is responsible for the inactivation of aconitase. Aminophenols of 2- and 4-substituents showed a potent reducing activity of copper (cupric) ion, and further potent reactivity with DPPH radical, but 3-aminophenol showed only a little reactivity. Reduced copper ion can generate superoxide radical with the production of oxidized metal. Aminophenols can reduce the copper ion, and further stimulate the continuous production of reactive oxygen species. Cytotoxic effect of acetaminophen, the N-acetylated-p-aminophenol and mesalamine, the 4-aminophenol derivatives may be accounted for by the prooxidant properties of their constituents, aminophenol.
Collapse
|
49
|
Panday R, Monckton CP, Khetani SR. The Role of Liver Zonation in Physiology, Regeneration, and Disease. Semin Liver Dis 2022; 42:1-16. [PMID: 35120381 DOI: 10.1055/s-0041-1742279] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
As blood flows from the portal triad to the central vein, cell-mediated depletion establishes gradients of soluble factors such as oxygen, nutrients, and hormones, which act through molecular pathways (e.g., Wnt/β-catenin, hedgehog) to spatially regulate hepatocyte functions along the sinusoid. Such "zonation" can lead to the compartmentalized initiation of several liver diseases, including alcoholic/non-alcoholic fatty liver diseases, chemical/drug-induced toxicity, and hepatocellular carcinoma, and can also modulate liver regeneration. Transgenic rodent models provide valuable information on the key molecular regulators of zonation, while in vitro models allow for subjecting cells to precisely controlled factor gradients and elucidating species-specific differences in zonation. Here, we discuss the latest advances in both in vivo and in vitro models of liver zonation and pending questions to be addressed moving forward. Ultimately, obtaining a deeper understanding of zonation can lead to the development of more effective therapeutics for liver diseases, microphysiological systems, and scalable cell-based therapies.
Collapse
Affiliation(s)
- Regeant Panday
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois
| | - Chase P Monckton
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois
| | - Salman R Khetani
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
50
|
Zhang Z, Yang K, Mao R, Zhong D, Xu Z, Xu J, Xiong M. Ginsenoside Rg1 inhibits oxidative stress and inflammation in rats with spinal cord injury via Nrf2/HO-1 signaling pathway. Neuroreport 2022; 33:81-89. [PMID: 34954769 DOI: 10.1097/wnr.0000000000001757] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES In this study, our objective was to investigate the underlying mechanism of the neuroprotective role of ginsenoside Rg1 in attenuating spinal cord injury (SCI). METHODS A rat SCI model was established and treated with ginsenoside Rg1 and nuclear factor erythroid 2-related factor2(Nrf2) inhibitor all-trans retinoic acid (ATRA). The protective effects of ginsenoside Rg1 were evaluated by Basso, Beattie and Bresnahan (BBB) scale, hematoxylin/eosin staining, ELISA assay, western blotting and quantitative reverse transcription PCR (RT-qPCR). RESULTS Ginsenoside Rg1 alleviated neuronal edema and bleeding in the injured spinal cord, reduced inflammatory cell infiltration and cell necrosis, further repaired the injured spinal cord structure, improved BBB motor score in the SCI rat model and improved hind limb motor function. Meanwhile, ginsenoside Rg1 significantly increased the content of antioxidant enzymes superoxide dismutase and glutathione, and inhibited the production of oxidative marker malondialdehyde. In addition, ginsenoside Rg1also significantly inhibits the activities of the inflammatory factors tumor necrosis factor-α, interleukin-1β (IL-1β) and interleukin-6 (IL-6) to reduce the inflammatory response after trauma. Furthermore, western blot and RT-qPCR also suggested that ginsenoside Rg1 could activate the protein expression of Nrf2 and heme oxygenase-1 (HO-1) after SCI, and the inhibition of ATRA on these improvements further verified the neuroprotective effect of Nrf2 and HO-1 in ginsenoside Rg1 on SCI. CONCLUSION Ginsenoside Rg1 has a neuroprotective effect on SCI and can improve motor dysfunction caused by injury. The underlying mechanism may play antioxidative stress and anti-inflammatory effect by regulating the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
| | | | - Rui Mao
- Neurology, Sinopharm Dongfeng General Hospital
| | | | | | - Jie Xu
- Department of Institute of Clinical Medcine, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | | |
Collapse
|