1
|
Vitale A, De Musis C, Bimonte M, Rubert J, Fogliano V. In vitro cellular model systems provide a promising alternative to animal experiments for studying the intestine-organ axis. Crit Rev Biotechnol 2025:1-18. [PMID: 39848642 DOI: 10.1080/07388551.2025.2452620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 10/30/2024] [Accepted: 12/17/2024] [Indexed: 01/25/2025]
Abstract
Limiting animal experiments is essential for ethical issues and also because scientific evidence highlights the discrepancies between human and animal metabolism. This review aims to provide a critical discussion of the strengths and limitations of the most appropriate in vitro intestine model to answer complex research questions in pharmaceutical and nutraceutical fields. This review describes the components contributing to the definition of the gut barrier structure, from the outer mucus layer to the inner part of lamina propria, including endothelial and neuronal networks. We conclude that the main advantage of these co-culture models is their versatility since they are modulable systems in which each component can be added, changed, or removed to reproduce a specific physiological condition each time. Additionally, we compare intestinal organoid models and microfluidic systems with well-established co-culture models.
Collapse
Affiliation(s)
| | | | | | - Josep Rubert
- Food Quality and Design group, Wageningen University, Wageningen, The Netherlands
| | - Vincenzo Fogliano
- Arterra Biosciences.P.A, Naples, Italy
- Food Quality and Design group, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
2
|
Wang Q, Liu X, Song D, Wang Q, Wu M, Zhu Z, Jin M, Liu S, Zhang J, Wang R. Exploring the mechanism and effective compounds of Changan Granule on diarrhea-predominant irritable bowel syndrome via regulating 5-hydroxytryptamine signaling pathway in brain-gut axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156350. [PMID: 39756311 DOI: 10.1016/j.phymed.2024.156350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 10/25/2024] [Accepted: 12/24/2024] [Indexed: 01/07/2025]
Abstract
BACKGROUND Changan Granule (CAG) is a drug product developed from a traditional Chinese medicine (TCM) empirical prescription for diarrhea-predominant irritable bowel syndrome (IBS-D). The action mechanism and effective compounds of CAG in the treatment of IBS-D are not well understood. PURPOSE This study aimed to investigate the effectiveness, action mechanism and effective compounds of CAG for treating IBS-D. METHODS Network pharmacology was used to screen the related pathways and active compounds of CAG in the treatment of IBS-D. Neonatal mother-infant separation, acetic acid enema and colorectal dilation were employed to construct IBS-D model for in vivo study. The effectiveness of CAG was evaluated in accordance with the results of body weight measurement, fecal water content determination, abdominal withdraw reflex test, open field test, sucrose preference test, forced swimming test and hematoxylin-eosin (HE) staining. The protein and mRNA levels of key molecules regulated by CAG were assessed through enzyme-linked immunosorbent assay (ELISA), western blotting, and reverse transcription quantitative polymerase chain reaction (RT-qPCR). The active compounds from CAG screened by network pharmacology were investigated with Caco-2 and RIN-14B cell models in vitro. RESULTS Network pharmacological analysis showed that CAG regulated 5-hydroxytryptamine (5-HT) signaling pathway and tetrahydropalmatine, formononetin and corydaline might be the potential effective compounds. The validation experiments showed that CAG restored the decreased body weight, and alleviated intestinal sensitivity, low-grade inflammation, diarrhea, frequent defecation, anxiety and depression of IBS-D rats through regulating the expression levels of 5-HT, tryptophan hydroxylase (TPH)1/2, serotonin transporter (SERT), 5-hydroxytryptamine-3 and -4 receptors (5-HT3R and 5-HT4R) in brain-gut axis (BGA). Tetrahydropalmatine and formononetin were confirmed to be the potential effective compounds of CAG in regulating 5-HT signaling pathway. CONCLUSION CAG exhibits therapeutic effect on IBS-D rats through regulating 5-HT signaling pathway in BGA. Tetrahydropalmatine and formononetin are major potential effective compounds. Our findings provide scientific basis for the clinical use and drug development of CAG for IBS-D.
Collapse
Affiliation(s)
- Qiaoxia Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiaoxuan Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Dongxing Song
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Qingqing Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Mengjiao Wu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhihao Zhu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Mingxuan Jin
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Siqi Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jian Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Rufeng Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
3
|
Nunzi E, Pariano M, Costantini C, Garaci E, Puccetti P, Romani L. Host-microbe serotonin metabolism. Trends Endocrinol Metab 2025; 36:83-95. [PMID: 39142913 DOI: 10.1016/j.tem.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024]
Abstract
As a result of a long evolutionary history, serotonin plays a variety of physiological roles, including neurological, cardiovascular, gastrointestinal, and endocrine functions. While many of these activities can be accommodated within the serotoninergic activity, recent findings have revealed an unsuspected role of serotonin in orchestrating host and microbial dialogue at the tryptophan dining table, to the benefit of local and systemic homeostasis. Herein we review the dual role of serotonin at the host-microbe interface and discuss how unraveling the interconnections among the host and microbial pathways of tryptophan degradation may help to accommodate the versatility of serotonin in physiology and pathology.
Collapse
Affiliation(s)
- Emilia Nunzi
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Marilena Pariano
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Claudio Costantini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Paolo Puccetti
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Luigina Romani
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy; Casa di cura San Raffaele, Sulmona, L'Aquila, Italy.
| |
Collapse
|
4
|
Asaji S, Funai Y, Seki Y, Tamai I, Shirasaka Y. Contributions of multiple transport mechanisms to intestinal uptake of serotonin. J Pharm Sci 2024; 113:3216-3226. [PMID: 39278593 DOI: 10.1016/j.xphs.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 09/18/2024]
Abstract
This study aimed to analyze the contributions of multiple transport mechanisms to the intestinal uptake of serotonin (5-HT) by employing a variety of in vitro experimental techniques, focusing on organic cation transporters expressed in the gastrointestinal (GI) tract, such as SERT, PMAT, THTR2, OCT3, and OCTN2. Analysis of the concentration dependence of 5-HT uptake by Caco-2 cells revealed multi-affinity kinetics with high-affinity and low-affinity components, suggesting that multiple transporters are involved in the intestinal 5-HT uptake. Comparative analysis of transporters using Km values obtained in Xenopus oocyte expression systems suggested that SERT is responsible for the high-affinity transport, while PMAT, THTR2, and OCT3 contribute to the low-affinity transport. Further analysis indicated that the relative contributions of SERT and PMAT to the intestinal 5-HT uptake (0.01 µM) are approximately 94.9% and 1.1%, respectively. Interestingly, at the concentration of 10 µM, the reported steady-state concentration of 5-HT in the human colon, the contributions of SERT, PMAT, THTR2, and OCT3 were estimated to be approximately 37.0%, 1.0%, 18.2%, and 20.5%, respectively. In conclusion, the present study indicated that the contributions of multiple transporters to 5-HT uptake in the GI tract are dependent upon the colon luminal concentration of 5-HT.
Collapse
Affiliation(s)
- Suguru Asaji
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yuta Funai
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yuta Seki
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Ikumi Tamai
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yoshiyuki Shirasaka
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| |
Collapse
|
5
|
Jiang L, Han D, Hao Y, Song Z, Sun Z, Dai Z. Linking serotonin homeostasis to gut function: Nutrition, gut microbiota and beyond. Crit Rev Food Sci Nutr 2024; 64:7291-7310. [PMID: 36861222 DOI: 10.1080/10408398.2023.2183935] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Serotonin (5-HT) produced by enterochromaffin (EC) cells in the digestive tract is crucial for maintaining gut function and homeostasis. Nutritional and non-nutritional stimuli in the gut lumen can modulate the ability of EC cells to produce 5-HT in a temporal- and spatial-specific manner that toning gut physiology and immune response. Of particular interest, the interactions between dietary factors and the gut microbiota exert distinct impacts on gut 5-HT homeostasis and signaling in metabolism and the gut immune response. However, the underlying mechanisms need to be unraveled. This review aims to summarize and discuss the importance of gut 5-HT homeostasis and its regulation in maintaining gut metabolism and immune function in health and disease with special emphasis on different types of nutrients, dietary supplements, processing, and gut microbiota. Cutting-edge discoveries in this area will provide the basis for the development of new nutritional and pharmaceutical strategies for the prevention and treatment of serotonin homeostasis-related gut and systematic disorders and diseases.
Collapse
Affiliation(s)
- Lili Jiang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Youling Hao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Zhuan Song
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Zhiyuan Sun
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| |
Collapse
|
6
|
Wang S, Zhou S, Han Z, Yu B, Xu Y, Lin Y, Chen Y, Jin Z, Li Y, Cao Q, Xu Y, Zhang Q, Wang YC. From gut to brain: understanding the role of microbiota in inflammatory bowel disease. Front Immunol 2024; 15:1384270. [PMID: 38576620 PMCID: PMC10991805 DOI: 10.3389/fimmu.2024.1384270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/12/2024] [Indexed: 04/06/2024] Open
Abstract
With the proposal of the "biological-psychological-social" model, clinical decision-makers and researchers have paid more attention to the bidirectional interactive effects between psychological factors and diseases. The brain-gut-microbiota axis, as an important pathway for communication between the brain and the gut, plays an important role in the occurrence and development of inflammatory bowel disease. This article reviews the mechanism by which psychological disorders mediate inflammatory bowel disease by affecting the brain-gut-microbiota axis. Research progress on inflammatory bowel disease causing "comorbidities of mind and body" through the microbiota-gut-brain axis is also described. In addition, to meet the needs of individualized treatment, this article describes some nontraditional and easily overlooked treatment strategies that have led to new ideas for "psychosomatic treatment".
Collapse
Affiliation(s)
- Siyu Wang
- Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Shuwei Zhou
- Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhongyu Han
- Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Bin Yu
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yin Xu
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yumeng Lin
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yutong Chen
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zi Jin
- Department of Anesthesiology and Pain Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Yalong Li
- Anorectal Department, The Third Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, China
| | - Qinhan Cao
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine (TCM), Chengdu, China
| | - Yunying Xu
- Clinical Medical School, Affiliated Hospital of Chengdu University, Chengdu, China
| | - Qiang Zhang
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yuan-Cheng Wang
- Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
7
|
Grondin JA, Khan WI. Emerging Roles of Gut Serotonin in Regulation of Immune Response, Microbiota Composition and Intestinal Inflammation. J Can Assoc Gastroenterol 2024; 7:88-96. [PMID: 38314177 PMCID: PMC10836984 DOI: 10.1093/jcag/gwad020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2024] Open
Abstract
Although the exact etiology of inflammatory bowel diseases (IBD) is unknown, studies have shown that dysregulated immune responses, genetic factors, gut microbiota, and environmental factors contribute to their pathogenesis. Intriguingly, serotonin (5-hydroxytryptamine or 5-HT) seems to be a molecule with increasingly strong implications in the pathogenesis of intestinal inflammation, affecting host physiology, including autophagy and immune responses, as well as microbial composition and function. 5-HT may also play a role in mediating how environmental effects impact outcomes in IBD. In this review, we aim to explore the production and important functions of 5-HT, including its impact on the gut. In addition, we highlight the bidirectional impacts of 5-HT on the immune system, the gut microbiota, and the process of autophagy and how these effects contribute to the manifestation of intestinal inflammation. We also explore recent findings connecting 5-HT signalling and the influence of environmental factors, particularly diet, in the pathogenesis of IBD. Ultimately, we explore the pleiotropic effects of this ancient molecule on biology and health in the context of intestinal inflammation.
Collapse
Affiliation(s)
- Jensine A Grondin
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Waliul I Khan
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
8
|
Green PG, Levine JD. A novel anti-pruritic: Topical co-administration of high molecular weight hyaluronan (HMWH) with protamine, a transdermal transport enhancer. Mol Pain 2024; 20:17448069241254455. [PMID: 38728068 PMCID: PMC11088296 DOI: 10.1177/17448069241254455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/09/2024] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
Pruritis, the sensation of itch, is produced by multiple substances, exogenous and endogenous, that sensitizes specialized sensory neurons (pruriceptors and pruri-nociceptors). Unfortunately, many patients with acute and chronic pruritis obtain only partial relief when treated with currently available treatment modalities. We recently demonstrated that the topical application of high molecular weight hyaluronan (HMWH), when combined with vehicles containing transdermal transport enhancers, produce potent long-lasting reversal of nociceptor sensitization associated with inflammatory and neuropathic pain. In the present experiments we tested the hypothesis that the topical formulation of HMWH with protamine, a transdermal transport enhancer, can also attenuate pruritis. We report that this topical formulation of HMWH markedly attenuates scratching behavior at the nape of the neck induced by serotonin (5-hydroxytryptamine, 5-HT), in male and female rats. Our results support the hypothesis that topical HMWH in a transdermal transport enhancer vehicle is a strong anti-pruritic.
Collapse
Affiliation(s)
- Paul G Green
- Department of Oral & Maxillofacial Surgery, and UCSF Pain and Addiction Research Center, University of California at San Francisco, San Francisco, CA, USA
- Department of Preventative & Restorative Dental Sciences, and Division of Neuroscience, University of California at San Francisco, San Francisco, CA, USA
| | - Jon D Levine
- Department of Oral & Maxillofacial Surgery, and UCSF Pain and Addiction Research Center, University of California at San Francisco, San Francisco, CA, USA
- Department of Medicine, and Division of Neuroscience, University of California at San Francisco, San Francisco, CA, USA
| |
Collapse
|
9
|
Tao E, Zhu Z, Hu C, Long G, Chen B, Guo R, Fang M, Jiang M. Potential Roles of Enterochromaffin Cells in Early Life Stress-Induced Irritable Bowel Syndrome. Front Cell Neurosci 2022; 16:837166. [PMID: 35370559 PMCID: PMC8964523 DOI: 10.3389/fncel.2022.837166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/09/2022] [Indexed: 12/04/2022] Open
Abstract
Irritable bowel syndrome (IBS) is one of the most common functional gastrointestinal disorders, also known as disorders of the gut–brain interaction; however, the pathophysiology of IBS remains unclear. Early life stress (ELS) is one of the most common risk factors for IBS development. However, the molecular mechanisms by which ELS induces IBS remain unclear. Enterochromaffin cells (ECs), as a prime source of peripheral serotonin (5-HT), play a pivotal role in intestinal motility, secretion, proinflammatory and anti-inflammatory effects, and visceral sensation. ECs can sense various stimuli and microbiota metabolites such as short-chain fatty acids (SCFAs) and secondary bile acids. ECs can sense the luminal environment and transmit signals to the brain via exogenous vagal and spinal nerve afferents. Increasing evidence suggests that an ECs-5-HT signaling imbalance plays a crucial role in the pathogenesis of ELS-induced IBS. A recent study using a maternal separation (MS) animal model mimicking ELS showed that MS induced expansion of intestinal stem cells and their differentiation toward secretory lineages, including ECs, leading to ECs hyperplasia, increased 5-HT production, and visceral hyperalgesia. This suggests that ELS-induced IBS may be associated with increased ECs-5-HT signaling. Furthermore, ECs are closely related to corticotropin-releasing hormone, mast cells, neuron growth factor, bile acids, and SCFAs, all of which contribute to the pathogenesis of IBS. Collectively, ECs may play a role in the pathogenesis of ELS-induced IBS. Therefore, this review summarizes the physiological function of ECs and focuses on their potential role in the pathogenesis of IBS based on clinical and pre-clinical evidence.
Collapse
Affiliation(s)
- Enfu Tao
- Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
- Wenling Maternal and Child Health Care Hospital, Wenling, China
| | - Zhenya Zhu
- Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Chenmin Hu
- Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Gao Long
- Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Bo Chen
- Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Rui Guo
- Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Marong Fang
- Institute of Neuroscience and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mizu Jiang
- Department of Gastroenterology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
- *Correspondence: Mizu Jiang,
| |
Collapse
|
10
|
Fabà L, de Groot N, Ramis G, Cabrera-Gómez CG, Doelman J. Serotonin receptors and their association with the immune system in the gastrointestinal tract of weaning piglets. Porcine Health Manag 2022; 8:8. [PMID: 35090573 PMCID: PMC8796611 DOI: 10.1186/s40813-022-00250-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/19/2021] [Indexed: 11/12/2022] Open
Abstract
Background Immune cell activation and perpetuation of inflammation have been attributed to the neurotransmitter serotonin (5-hydroxytryptamine; 5-HT). Our hypothesis was that the 5-HT system plays a role in GI health and immunity in post-weaning piglets. A disruption of the 5-HT system post-weaning with transcriptional upregulation of 5-HT receptors may be linked to increased cytokine mRNA abundance and immune system activation.
Methods The objective of this exploratory study was to assess the relationship between 5-HT receptor expression and immune system biomarkers in piglets at 1 (n = 9) and 15 (n = 10) days post-weaning. The mRNA transcript abundance of three 5-HT receptors (5-HTR3, 5-HTR4, and 5-HTR7) measured in jejunum and colon tissues were used to determine the relationship with the immune system and jejunal morphometry at 2 timepoints post-weaning using correlations, mixed models, and multivariate analysis techniques. Results Overall, 5-HT receptor mRNA expression decreased from day 1 to day 15 post-weaning. Time × tissue interactions showed the lowest 5-HTR3 expression in the colon and lower 5-HTR7 expression in the jejunum at 15 days post-weaning. 5-HTR3 and 5-HTR4 expression were negatively associated with pro-inflammatory (IFN-ɣ) and anti-inflammatory (IL-10 and IL-12β) cytokines in jejunum, and with TNF-α in the colon at 1-day post-weaning. At 15 days post-weaning, 5-HTR3 in the colon was negatively associated with pro-inflammatory (IL-1α, IL-1β, TNF-α, IL-8, and IFN-ɣ) and anti-inflammatory (IL-10 and IL-12β) cytokines. Furthermore, 5-HTR7 expressed a predominantly pro-inflammatory profile (IFN-α, IL-1α, IL-1β, IL-8, TNF-α and IL-12α) in the jejunum at the same timepoint, whereas colonic 5-HTR7 expression was negatively correlated with IL-1α, IL-1β, IL-10 and TGF-β. Lastly, positive correlations were found for increased expression of 5-HTR4 receptor with villus height, 5-HTR7 receptor expression and crypt depth, and increased expression of 5-HTR3 and 5-HTR4 receptor with villus height to crypt depth ratio at 1-day post-weaning. Conclusions The 5-HT receptor mRNA abundance was associated with the immune system and intestinal morphometry in piglets. The 5-HT receptors were highly expressed at weaning in both jejunum and colon tissues relative to 15 days post-weaning. Although a clear relationship between immune system and 5-HTR expression is observed, particularly at day 15, a cause-consequence cannot be proven with current data. Further research is warranted to elucidate the effects of 5-HT on gastrointestinal inflammation during the weaning process in piglets, which could be the basis for new interventions to ease weaning stress.
Collapse
Affiliation(s)
- Lluís Fabà
- Trouw Nutrition R&D, Boxmeer, The Netherlands.
| | | | - Guillermo Ramis
- Dpto. Producción Animal, Facultad de Veterinaria, Universidad de Murcia, Murcia, Spain
| | | | | |
Collapse
|
11
|
Chiocchetti R, Galiazzo G, Giancola F, Tagliavia C, Bernardini C, Forni M, Pietra M. Localization of the Serotonin Transporter in the Dog Intestine and Comparison to the Rat and Human Intestines. Front Vet Sci 2022; 8:802479. [PMID: 35071391 PMCID: PMC8766808 DOI: 10.3389/fvets.2021.802479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/10/2021] [Indexed: 12/23/2022] Open
Abstract
Serotonin is crucial in gastrointestinal functions, including motility, sensitivity, secretion, and the inflammatory response. The serotonin transporter (SERT), responsible for serotonin reuptake and signaling termination, plays a prominent role in gastrointestinal physiology, representing a promising therapeutic target in digestive disorders. Serotonin transporter expression has been poorly investigated in veterinary medicine, under both healthy and pathological conditions, including canine chronic enteropathy, in which the serotonin metabolism seems to be altered. The aim of the present study was to determine the distribution of SERT immunoreactivity (SERT-IR) in the dog intestine and to compare the findings with those obtained in the rat and human intestines. Serotonin transporter-IR was observed in canine enterocytes, enteric neurons, lamina propria cells and the tunica muscularis. Data obtained in dogs were consistent with those obtained in rats and humans. Since the majority of the serotonin produced by the body is synthesized in the gastrointestinal tract, SERT-expressing cells may exert a role in the mechanism of serotonin reuptake.
Collapse
Affiliation(s)
- Roberto Chiocchetti
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Ozzano dell'Emilia, Italy
| | - Giorgia Galiazzo
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Ozzano dell'Emilia, Italy
| | - Fiorella Giancola
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Ozzano dell'Emilia, Italy
| | - Claudio Tagliavia
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Ozzano dell'Emilia, Italy
| | - Chiara Bernardini
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Ozzano dell'Emilia, Italy
| | - Monica Forni
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Ozzano dell'Emilia, Italy
| | - Marco Pietra
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Ozzano dell'Emilia, Italy
| |
Collapse
|
12
|
Engevik M, Ruan W, Visuthranukul C, Shi Z, Engevik KA, Engevik AC, Fultz R, Schady DA, Spinler JK, Versalovic J. Limosilactobacillus reuteri ATCC 6475 metabolites upregulate the serotonin transporter in the intestinal epithelium. Benef Microbes 2021; 12:583-599. [PMID: 34550056 DOI: 10.3920/bm2020.0216] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The serotonin transporter (SERT) readily takes up serotonin (5-HT), thereby regulating the availability of 5-HT within the intestine. In the absence of SERT, 5-HT remains in the interstitial space and has the potential to aberrantly activate the many 5-HT receptors distributed on the epithelium, immune cells and enteric neurons. Perturbation of SERT is common in many gastrointestinal disorders as well as mouse models of colitis. Select commensal microbes regulate intestinal SERT levels, but the mechanism of this regulation is poorly understood. Additionally, ethanol upregulates SERT in the brain and dendritic cells, but its effects in the intestine have never been examined. We report that the intestinal commensal microbe Limosilactobacillus (previously classified as Lactobacillus) reuteri ATCC PTA 6475 secretes 83.4 mM ethanol. Consistent with the activity of L. reuteri alcohol dehydrogenases, we found that L. reuteri tolerated various levels of ethanol. Application of L. reuteri conditioned media or exogenous ethanol to human colonic T84 cells was found to upregulate SERT at the level of mRNA. A 4-(4-(dimethylamino) phenyl)-1-methylpyridinium (APP+) uptake assay confirmed the functional activity of SERT. These findings were mirrored in mouse colonic organoids, where L. reuteri metabolites and ethanol were found to upregulate SERT at the apical membrane. Finally, in a trinitrobenzene sulphonic acid model of acute colitis, we observed that mice treated with L. reuteri maintained SERT at the colon membrane compared with mice receiving phosphate buffered saline vehicle control. These data suggest that L. reuteri metabolites, including ethanol, can upregulate SERT and may be beneficial for maintaining intestinal homeostasis with respect to serotonin signalling.
Collapse
Affiliation(s)
- M Engevik
- Department of Pathology & Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
- Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina, 173 Ashely Ave, BSB 626, Charleston, SC 29425, USA
| | - W Ruan
- Department of Pediatrics, Baylor College of Medicine, 6701 Fannin Street, Houston, TX 77030, USA
- Section of Gastroenterology, Hepatology, and Nutrition, Texas Children's Hospital, 6701 Fannin St, Houston, TX 77030, USA
| | - C Visuthranukul
- Department of Pathology & Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
- Pediatric Nutrition Research Unit, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Z Shi
- Department of Pathology & Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
- Department of Pathology, Texas Children's Hospital, 6621 Fannin St, Houston, TX 77030, USA
| | - K A Engevik
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 7703, USA
| | - A C Engevik
- Departments of Surgery, Vanderbilt University Medical Center, 1211 Medical Center Dr, Nashville, TN 37232, USA
| | - R Fultz
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0625, USA
| | - D A Schady
- Department of Pathology & Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
- Department of Pathology, Texas Children's Hospital, 6621 Fannin St, Houston, TX 77030, USA
| | - J K Spinler
- Department of Pathology & Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
- Department of Pathology, Texas Children's Hospital, 6621 Fannin St, Houston, TX 77030, USA
| | - J Versalovic
- Department of Pathology & Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
- Department of Pathology, Texas Children's Hospital, 6621 Fannin St, Houston, TX 77030, USA
| |
Collapse
|
13
|
Koopman N, Katsavelis D, Hove AST, Brul S, de Jonge WJ, Seppen J. The Multifaceted Role of Serotonin in Intestinal Homeostasis. Int J Mol Sci 2021; 22:9487. [PMID: 34502396 PMCID: PMC8431144 DOI: 10.3390/ijms22179487] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022] Open
Abstract
The monoamine serotonin, 5-hydroxytryptamine (5-HT), is a remarkable molecule with conserved production in prokaryotes and eukaryotes and a wide range of functions. In the gastrointestinal tract, enterochromaffin cells are the most important source for 5-HT production. Some intestinal bacterial species are also able to produce 5-HT. Besides its role as a neurotransmitter, 5-HT acts on immune cells to regulate their activation. Several lines of evidence indicate that intestinal 5-HT signaling is altered in patients with inflammatory bowel disease. In this review, we discuss the current knowledge on the production, secretion, and signaling of 5-HT in the intestine. We present an inventory of intestinal immune and epithelial cells that respond to 5-HT and describe the effects of these signaling processes on intestinal homeostasis. Further, we detail the mechanisms by which 5-HT could affect inflammatory bowel disease course and describe the effects of interventions that target intestinal 5-HT signaling.
Collapse
Affiliation(s)
- Nienke Koopman
- Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, 1098XH Amsterdam, The Netherlands; (N.K.); (D.K.); (S.B.)
| | - Drosos Katsavelis
- Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, 1098XH Amsterdam, The Netherlands; (N.K.); (D.K.); (S.B.)
| | - Anne S. ten Hove
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, Location AMC, 1105BK Amsterdam, The Netherlands; (A.S.t.H.); (W.J.d.J.)
| | - Stanley Brul
- Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, 1098XH Amsterdam, The Netherlands; (N.K.); (D.K.); (S.B.)
| | - Wouter J. de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, Location AMC, 1105BK Amsterdam, The Netherlands; (A.S.t.H.); (W.J.d.J.)
| | - Jurgen Seppen
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, Location AMC, 1105BK Amsterdam, The Netherlands; (A.S.t.H.); (W.J.d.J.)
| |
Collapse
|
14
|
Motoike S, Taguchi K, Harada K, Asano M, Hide I, Tanaka S, Irifune M, Sakai N. Syntaxin 3 interacts with serotonin transporter and regulates its function. J Pharmacol Sci 2021; 145:297-307. [PMID: 33712280 DOI: 10.1016/j.jphs.2021.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/16/2021] [Accepted: 01/19/2021] [Indexed: 10/22/2022] Open
Abstract
Herein, we investigated the functional association of the serotonin transporter (SERT) with syntaxin-3 (STX3). We first overexpressed SERT and STX3 in various cells and examined their interaction, localization, and functional association. Immunoprecipitation studies revealed that STX3 interacted with SERT when expressed in COS-7 cells. Immunocytochemical studies revealed that SERT and STX3 were colocalized in the endoplasmic reticulum (ER) and Golgi apparatus. STX3 overexpression significantly reduced the uptake activity of SERT by attenuating its plasma membrane expression, suggesting that overexpressed STX3 anchors SERT in the ER and Golgi apparatus. STX3 knockdown did not affect the uptake activity of SERT but altered its glycosylation state. To elucidate the association of STX3 with SERT under physiological conditions, rather than overexpressing cells, we investigated this interaction in polarized Caco-2 cells, which endogenously express both proteins. Immunocytochemical studies revealed that SERT and STX3 were localized in microvilli-like structures at the apical plasma membrane. STX3 knockdown marginally but significantly decreased the serotonin uptake activity of Caco-2 cells, suggesting that STX3 positively regulates SERT function in Caco-2 cells, as opposed to SERT regulation by STX3 in overexpressing cells. Collectively, STX3 may colocalize with SERT during SERT membrane trafficking and regulate SERT function in an STX3-expressing lesion-dependent manner.
Collapse
Affiliation(s)
- Serika Motoike
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kausmi, Minami-ku, Hiroshima 734-8551, Japan; Department of Dental Anesthesiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kausmi, Minami-ku, Hiroshima 734-8551, Japan
| | - Kei Taguchi
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kausmi, Minami-ku, Hiroshima 734-8551, Japan
| | - Kana Harada
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kausmi, Minami-ku, Hiroshima 734-8551, Japan
| | - Masaya Asano
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kausmi, Minami-ku, Hiroshima 734-8551, Japan
| | - Izumi Hide
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kausmi, Minami-ku, Hiroshima 734-8551, Japan
| | - Shigeru Tanaka
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kausmi, Minami-ku, Hiroshima 734-8551, Japan
| | - Masahiro Irifune
- Department of Dental Anesthesiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kausmi, Minami-ku, Hiroshima 734-8551, Japan
| | - Norio Sakai
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kausmi, Minami-ku, Hiroshima 734-8551, Japan.
| |
Collapse
|
15
|
Metry M, Shu Y, Abrahamsson B, Cristofoletti R, Dressman JB, Groot DW, Parr A, Langguth P, Shah VP, Tajiri T, Mehta MU, Polli JE. Biowaiver Monographs for Immediate Release Solid Oral Dosage Forms: Metformin Hydrochloride. J Pharm Sci 2021; 110:1513-1526. [PMID: 33450218 DOI: 10.1016/j.xphs.2021.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/30/2020] [Accepted: 01/07/2021] [Indexed: 01/11/2023]
Abstract
Data are examined regarding possible waiver of in vivo bioequivalence testing (i.e. biowaiver) for approval of metformin hydrochloride (metformin) immediate-release solid oral dosage forms. Data include metformin's Biopharmaceutics Classification System (BCS) properties, including potential excipient interactions. Metformin is a prototypical transporter-mediated drug and is highly soluble, but only 50% of an orally administered dose is absorbed from the gut. Therefore, metformin is a BCS Class III substance. A BCS-based approval approach for major changes to marketed products and new generics is admissible if test and reference dosage forms have the identical active pharmaceutical ingredient and if in vitro dissolution from both are very rapid (i.e. at least 85% within 15 min at pH 1.2, 4.5, and 6.8). Recent International Council for Harmonisation BCS guidance indicates all excipients for Class III biowaivers are recommended to be qualitatively the same and quantitatively similar (except for preservatives, flavor agents, colorant, or capsule shell or film coating excipients). However, despite metformin being a prototypical transporter-mediated drug, there is no evidence that commonly used excipients impact metformin absorption, such that this restriction on excipients for BCS III drugs merits regulatory relief. Commonly used excipients in usual amounts are not likely to impact metformin absorption.
Collapse
Affiliation(s)
- Melissa Metry
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, USA
| | - Yan Shu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, USA
| | - Bertil Abrahamsson
- Oral Product Development, Pharmaceutical Technology & Development, Operations AstraZeneca, Gothenburg, Sweden
| | - Rodrigo Cristofoletti
- Brazilian Health Surveillance Agency (Anvisa), Division of Bioequivalence, Brasilia, Brazil
| | - Jennifer B Dressman
- Institute of Pharmaceutical Technology, Goethe University, Frankfurt am Main, Germany
| | - D W Groot
- RIVM-National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Alan Parr
- Bioceutics LCC, Raleigh-Durham, North Carolina, USA
| | - Peter Langguth
- Department of Pharmaceutical Technology and Biopharmaceutics, Johannes Gutenberg University, Mainz, Germany
| | - Vinod P Shah
- International Pharmaceutical Federation (FIP), The Hague, the Netherlands
| | - Tomokazu Tajiri
- Astellas Pharma Inc, Analytical Research Laboratories, Yaizu, Japan
| | - Mehul U Mehta
- United States Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, MD, USA
| | - James E Polli
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, USA.
| |
Collapse
|
16
|
Jørandli JW, Thorsvik S, Skovdahl HK, Kornfeld B, Sæterstad S, Gustafsson BI, Sandvik AK, van Beelen Granlund A. The serotonin reuptake transporter is reduced in the epithelium of active Crohn's disease and ulcerative colitis. Am J Physiol Gastrointest Liver Physiol 2020; 319:G761-G768. [PMID: 32967429 DOI: 10.1152/ajpgi.00244.2020] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Serotonin is a highly conserved and ubiquitous signaling molecule involved in a vast variety of biological processes. A majority of serotonin is produced in the gastrointestinal epithelium, where it is suggested to act as a prominent regulatory molecule in the inflammatory bowel diseases (IBDs) Crohn's disease (CD) and ulcerative colitis (UC). Extracellular and circulating serotonin levels are thought to be elevated during intestinal inflammation, but the underlying mechanisms have been poorly understood. The data on human material are limited, contradictory, and in need of further investigation and substantiating. In this study, we show a potent and significant downregulation of the dominant serotonin reuptake transporter (SERT) mRNA (SLC6A4) in the epithelium from active CD ileitis, CD colitis, and UC colitis, compared with healthy controls. The mRNA of tryptophan hydroxylase 1, the rate-limiting enzyme in serotonin synthesis, was unregulated. Immunohistochemistry showed expression of the SERT protein in both the epithelium and the lamina propria and localized the downregulation to the epithelial monolayer. Laser capture microdissection followed by RNA sequencing confirmed downregulation of SLC6A4 in the epithelial monolayer during intestinal inflammation. Patient-derived colon epithelial cell lines (colonoids) incubated with the proinflammatory cytokine tumor necrosis factor alpha (TNF-α) reduced SERT expression. In summary, these results show that intestinal inflammation potently reduces the expression of SERT in both CD and UC and that TNF-α alone is sufficient to induce a similar reduction in colonoids. The reduced serotonin reuptake capacity may contribute to the increased interstitial serotonin level associated with intestinal inflammation.NEW & NOTEWORTHY The serotonin reuptake transporter is potently reduced in inflamed areas of Crohn's ileitis, Crohn's colitis, and ulcerative colitis. The changes are localized to the intestinal epithelium and can be induced by TNF-α. The serotonin synthesis through tryptophan hydroxylase 1 is unchanged. This regulation is suggested as a mechanism underlying the increased extracellular serotonin levels associated with intestinal inflammation.
Collapse
Affiliation(s)
- Jonas Woll Jørandli
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, Norway
| | - Silje Thorsvik
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, Norway.,Department of Gastroenterology and Hepatology, St. Olav's University Hospital, Trondheim, Norway.,Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Helene Kolstad Skovdahl
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, Norway.,Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Benedikt Kornfeld
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, Norway
| | - Siri Sæterstad
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, Norway
| | - Björn Inge Gustafsson
- Department of Gastroenterology and Hepatology, St. Olav's University Hospital, Trondheim, Norway.,Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Arne Kristian Sandvik
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, Norway.,Department of Gastroenterology and Hepatology, St. Olav's University Hospital, Trondheim, Norway.,Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Atle van Beelen Granlund
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, Norway.,Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
17
|
Tuntiteerawit P, Jarukamjorn K, Porasuphatana S. The effect of green tea catechins on breast cancer resistance protein activity and intestinal efflux of aflatoxin B 1 via breast cancer resistance protein in Caco-2 cells. Toxicol Res 2020; 36:293-300. [PMID: 33005588 DOI: 10.1007/s43188-019-00032-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/26/2019] [Accepted: 11/27/2019] [Indexed: 01/18/2023] Open
Abstract
Aflatoxin B1 (AFB1), a mycotoxin produced by Aspergillus spp., was proved as one of the major causes of human hepatocellular carcinoma (HCC) when chronically consumed. An efflux of AFB1 was reported to be associated with breast cancer resistance protein (BCRP) whose activity could also be modulated by green tea catechins. The purpose of this study was, therefore, to examine the impacts of green tea catechins on BCRP activity in Caco-2 cells by H33342 (bis-benzamide, BCRP substrate) accumulation and AFB1 efflux. Results showed a significant decrease (p < 0.05) of AFB1 in the efflux ratio following the incubation with Ko143, a specific BCRP inhibitor, and sodium fluoride, confirming the association of BCRP in AFB1 efflux transport across the cells. Pre-incubation with green tea and gallate catechins (ECG and EGCG) significantly reduced the efflux ratio of AFB1 (p < 0.05) and significantly increased the intracellular H33342 substrate (p < 0.05) in Caco-2 cells, clearly indicating the inhibitory effects of green tea and gallate catechins on BCRP function. Further study on H33342 accumulation revealed a dose-dependent increment of intracellular H33342 when co-administered with increasing concentrations of AFB1. This result implied a possible role of AFB1 as a BCRP competitive inhibitor. The findings from this study concluded the roles of BCRP as an efflux transporter for AFB1 and could be modulated by the exposure of green tea catechins. Owing to a reduction of its efflux, an inhibitory effect of BCRP when pre-exposed with green tea catechins could be crucial for AFB1 cellular accumulation.
Collapse
Affiliation(s)
- Peeradon Tuntiteerawit
- Graduate Program in Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002 Thailand
| | - Kanokwan Jarukamjorn
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002 Thailand.,Research Group for Pharmaceutical Activities of Natural Products Using Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002 Thailand
| | - Supatra Porasuphatana
- Graduate Program in Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002 Thailand.,Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002 Thailand
| |
Collapse
|
18
|
Manousiouthakis E, Chen Y, Cairns DM, Pollard R, Gerlovin K, Dente MJ, Razavi Y, Kaplan DL. Bioengineered in vitro enteric nervous system. J Tissue Eng Regen Med 2019; 13:1712-1723. [PMID: 31278844 DOI: 10.1002/term.2926] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 06/06/2019] [Accepted: 06/19/2019] [Indexed: 12/13/2022]
Abstract
Bidirectional interactions between the human central nervous system and the gastrointestinal tract, via the enteric nervous system, are unmapped and central to many human conditions. There is a critical need to develop 3D human in vitro intestinal tissue models to emulate the intricate cell interactions of the human enteric nervous system within the gastrointestinal tract in order to better understand these complex interactions that cannot be studied utilizing in vivo animal models. In vitro systems, if sufficiently replicative of some in vivo conditions, may assist with the study of individual cell interactions. Here, we describe a 3D-innervated tissue model of the human intestine consisting of human-induced neural stem cells differentiated into relevant enteric nervous system neural cell types. Enterocyte-like (Caco-2) and goblet-like (HT29-MTX) cells are used to form the intestinal epithelial layer, and intestinal myofibroblasts are utilized to simulate the stromal layer. In vitro enteric nervous system cultures supported survival and function of the various cell types, with mucosal and neural transcription factors evident over 5 weeks. The human-induced neural stem cells migrated from the seeding location on the peripheral layer of the hollow scaffolds toward the luminal epithelial cells, prompted by the addition of neural growth factor. nNOS-expressing neurons and the substance P precursor gene TAC1 were expressed within the in vitro enteric nervous system to support the utility of the tissue model to recapitulate enteric nervous system phenotypes. This innervated tissue system offers a new tool to use to help in understanding neural circuits controlling the human intestine and associated communication networks.
Collapse
Affiliation(s)
| | - Ying Chen
- Department of Biomedical Engineering, Tufts University, Medford, MA
| | - Dana M Cairns
- Department of Biomedical Engineering, Tufts University, Medford, MA
| | - Rachel Pollard
- Department of Biomedical Engineering, Tufts University, Medford, MA
| | - Kaia Gerlovin
- Department of Biomedical Engineering, Tufts University, Medford, MA
| | - Michael J Dente
- Department of Biomedical Engineering, Tufts University, Medford, MA
| | - Yasmin Razavi
- Department of Biomedical Engineering, Tufts University, Medford, MA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA
| |
Collapse
|
19
|
Singhal M, Turturice BA, Manzella CR, Ranjan R, Metwally AA, Theorell J, Huang Y, Alrefai WA, Dudeja PK, Finn PW, Perkins DL, Gill RK. Serotonin Transporter Deficiency is Associated with Dysbiosis and Changes in Metabolic Function of the Mouse Intestinal Microbiome. Sci Rep 2019; 9:2138. [PMID: 30765765 PMCID: PMC6375953 DOI: 10.1038/s41598-019-38489-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 12/19/2018] [Indexed: 02/07/2023] Open
Abstract
Serotonin transporter (SERT) plays a critical role in regulating extracellular availability of serotonin (5-HT) in the gut and brain. Mice with deletion of SERT develop metabolic syndrome as they age. Changes in the gut microbiota are being increasingly implicated in Metabolic Syndrome and Diabetes. To investigate the relationship between the gut microbiome and SERT, this study assessed the fecal and cecal microbiome profile of 11 to 12 week-old SERT+/+ and SERT-/- mice. Microbial DNA was isolated, processed for metagenomics shotgun sequencing, and taxonomic and functional profiles were assessed. 34 differentially abundant bacterial species were identified between SERT+/+ and SERT-/-. SERT-/- mice displayed higher abundances of Bacilli species including genera Lactobacillus, Streptococcus, Enterococcus, and Listeria. Furthermore, SERT-/- mice exhibited significantly lower abundances of Bifidobacterium species and Akkermansia muciniphilia. Bacterial community structure was altered in SERT-/- mice. Differential abundance of bacteria was correlated with changes in host gene expression. Bifidobacterium and Bacilli species exhibited significant associations with host genes involved in lipid metabolism pathways. Our results show that SERT deletion is associated with dysbiosis similar to that observed in obesity. This study contributes to the understanding as to how changes in gut microbiota are associated with metabolic phenotype seen in SERT deficiency.
Collapse
Affiliation(s)
- Megha Singhal
- Division of Gastroenterology & Hepatology, University of Illinois at Chicago, Chicago, USA
| | - Benjamin A Turturice
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, USA
- Department of Microbiology & Immunology, University of Illinois at Chicago, Chicago, USA
| | - Christopher R Manzella
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, USA
| | - Ravi Ranjan
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, USA
| | - Ahmed A Metwally
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, USA
| | - Juliana Theorell
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, USA
| | - Yue Huang
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, USA
| | - Waddah A Alrefai
- Division of Gastroenterology & Hepatology, University of Illinois at Chicago, Chicago, USA
- Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Pradeep K Dudeja
- Division of Gastroenterology & Hepatology, University of Illinois at Chicago, Chicago, USA
- Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Patricia W Finn
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, USA
| | - David L Perkins
- Division of Nephrology, University of Illinois at Chicago, Chicago, USA
- Department of Surgery, University of Illinois at Chicago, Chicago, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, USA
| | - Ravinder K Gill
- Division of Gastroenterology & Hepatology, University of Illinois at Chicago, Chicago, USA.
| |
Collapse
|
20
|
Elsheikh MA, Elnaggar YSR, Otify DY, Abdallah OY. Bioactive-Chylomicrons for Oral Lymphatic Targeting of Berberine Chloride: Novel Flow-Blockage Assay in Tissue-Based and Caco-2 Cell Line Models. Pharm Res 2018; 35:18. [DOI: 10.1007/s11095-017-2307-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 11/07/2017] [Indexed: 01/17/2023]
|
21
|
Singhal M, Manzella C, Soni V, Alrefai WA, Saksena S, Hecht GA, Dudeja PK, Gill RK. Role of SHP2 protein tyrosine phosphatase in SERT inhibition by enteropathogenic E. coli (EPEC). Am J Physiol Gastrointest Liver Physiol 2017; 312:G443-G449. [PMID: 28209599 PMCID: PMC5451565 DOI: 10.1152/ajpgi.00011.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 01/31/2023]
Abstract
Enteropathogenic Escherichia coli (EPEC), one of the diarrheagenic E. coli pathotypes, is among the most important food-borne pathogens infecting children worldwide. Inhibition of serotonin transporter (SERT), which regulates extracellular availability of serotonin (5-HT), has been implicated previously in EPEC-associated diarrhea. EPEC was shown to inhibit SERT via activation of protein tyrosine phosphatase (PTPase), albeit the specific PTPase involved is not known. Current studies aimed to identify EPEC-activated PTPase and its role in SERT inhibition. Infection of Caco-2 monolayers with EPEC strain E2348/69 for 30 min increased the activity of Src-homology-2 domain containing PTPase (SHP2) but not SHP1 or PTPase 1B. Similarly, Western blot studies showed increased tyrosine phosphorylation of (p-tyrosine) SHP2, indicative of its activation. Concomitantly, EPEC infection decreased SERT p-tyrosine levels. This was associated with increased interaction of SHP2 with SERT, as evidenced by coimmunoprecipitation studies. To examine whether SHP2 directly influences SERT phosphorylation status or function, SHP2 cDNA plasmid constructs (wild type, constitutively active, or dominant negative) were overexpressed in Caco-2 cells by Amaxa electroporation. In the cells overexpressing constitutively active SHP2, SERT polypeptide showed complete loss of p-tyrosine. In addition, there was a decrease in SERT function, as measured by Na+Cl--sensitive [3H]5-HT uptake, and an increase in association of SERT with SHP2 in Caco-2 cells expressing constitutively active SHP2 compared with dominant-negative SHP2. Our data demonstrate that intestinal SERT is a target of SHP2 and reveal a novel mechanism by which a common food-borne pathogen uses cellular SHP2 to inhibit SERT.NEW & NOTEWORTHY The data presented in the current study reveal that intestinal serotonin transporter (SERT) is a target of the tyrosine phosphatase SHP2 and show a novel mechanism by which a common diarrheagenic pathogen, EPEC, activates cellular SHP2 to inhibit SERT function. These studies highlight host-pathogen interactions, which may be of therapeutic relevance in the management of diarrhea associated with enteric infections.
Collapse
Affiliation(s)
- Megha Singhal
- 1Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, Illinois;
| | - Christopher Manzella
- 3Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois; and
| | - Vinay Soni
- 1Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, Illinois;
| | - Waddah A. Alrefai
- 1Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, Illinois; ,2Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois;
| | - Seema Saksena
- 1Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, Illinois; ,2Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois;
| | - Gail A. Hecht
- 4Division of Gastroenterology and Nutrition, Departments of Medicine, Microbiology/Immunology, Loyola University Chicago, Chicago, Illinois
| | - Pradeep K. Dudeja
- 1Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, Illinois; ,2Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois;
| | - Ravinder K. Gill
- 1Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, Illinois;
| |
Collapse
|
22
|
Anabazhagan AN, Chatterjee I, Priyamvada S, Kumar A, Tyagi S, Saksena S, Alrefai WA, Dudeja PK, Gill RK. Methods to Study Epithelial Transport Protein Function and Expression in Native Intestine and Caco-2 Cells Grown in 3D. J Vis Exp 2017. [PMID: 28362399 DOI: 10.3791/55304] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The intestinal epithelium has important transport and barrier functions that play key roles in normal physiological functions of the body while providing a barrier to foreign particles. Impaired epithelial transport (ion, nutrient, or drugs) has been associated with many diseases and can have consequences that extend beyond the normal physiological functions of the transporters, such as by influencing epithelial integrity and the gut microbiome. Understanding the function and regulation of transport proteins is critical for the development of improved therapeutic interventions. The biggest challenge in the study of epithelial transport is developing a suitable model system that recapitulates important features of the native intestinal epithelial cells. Several in vitro cell culture models, such as Caco-2, T-84, and HT-29-Cl.19A cells are typically used in epithelial transport research. These cell lines represent a reductionist approach to modeling the epithelium and have been used in many mechanistic studies, including their examination of epithelial-microbial interactions. However, cell monolayers do not accurately reflect cell-cell interactions and the in vivo microenvironment. Cells grown in 3D have shown to be promising models for drug permeability studies. We show that Caco-2 cells in 3D can be used to study epithelial transporters. It is also important that studies in Caco-2 cells are complemented with other models to rule out cell specific effects and to take into account the complexity of the native intestine. Several methods have been previously used to assess the functionality of transporters, such as everted sac and uptake in isolated epithelial cells or in isolated plasma membrane vesicles. Taking into consideration the challenges in the field with respect to models and the measurement of transport function, we demonstrate here a protocol to grow Caco-2 cells in 3D and describe the use of an Ussing chamber as an effective approach to measure serotonin transport, such as in intact polarized intestinal epithelia.
Collapse
Affiliation(s)
| | | | | | - Anoop Kumar
- Department of Medicine, University of Illinois at Chicago
| | - Sangeeta Tyagi
- Department of Medicine, University of Illinois at Chicago
| | - Seema Saksena
- Department of Medicine, University of Illinois at Chicago; Department of Research, Jesse Brown VA Medical Center
| | - Waddah A Alrefai
- Department of Medicine, University of Illinois at Chicago; Department of Research, Jesse Brown VA Medical Center
| | - Pradeep K Dudeja
- Department of Medicine, University of Illinois at Chicago; Department of Research, Jesse Brown VA Medical Center
| | | |
Collapse
|
23
|
Dong Y, Yang C, Wang Z, Qin Z, Cao J, Chen Y. The injury of serotonin on intestinal epithelium cell renewal of weaned diarrhoea mice. Eur J Histochem 2016; 60:2689. [PMID: 28076934 PMCID: PMC5381531 DOI: 10.4081/ejh.2016.2689] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 10/30/2016] [Accepted: 12/06/2016] [Indexed: 02/08/2023] Open
Abstract
Diarrhoea is a common cause of death in children and weaned animals. Recent research has found that serotonin (5-HT) in the gastrointestinal tract plays an important role in regulating growth and the maintenance of mucosa, which protect against diarrhoea. To determine the influence of 5-HT on intestinal epithelium cell renewal under weaned stress diarrhoea, a weaned-stress diarrhoea mouse model was established with senna infusion (15 mL/Kg) via intragastric administration and stress restraint (SR). Mice with an increase in 5-HT were induced by intraperitoneal injection with citalopram hydrobromide (CH, 10 mg/Kg). The results demonstrated that compared with the control animals, diarrhoea appeared in weaned stress mice and the 5-HT content in the small intestine was significantly increased (P<0.05). Further, the caspase-3 cells and cells undergoing apoptosis in the small intestine were significantly increased, but the VH (villus height), V/C (villus height /crypt depth), and PCNA-positive rate significantly decreased. Compared with the control animals, CH increased the intestinal 5-HT content, caspase-3 cells and cells undergoing apoptosis but decreased the VH and V/C. Compared with both control and weaned stress animals, weaned stress animals that were pre-treated with CH showed higher 5-HT concentrations, positive caspase-3 cells and cells undergoing apoptosis but lower VH, V/C and PCNA-positive rate. In vitro, a low concentration of 5-HT inhibit, IEC-6 cell line apoptosis but a higher concentration of 5-HT promoted it. Therefore, weaned stress diarrhoea mice were accompanied by a 5-HT increase in the small intestine and vice versa, and the increase in 5-HT induced by CH caused diarrhoea. In brief, 5-HT and diarrhoea slowed the intestinal epithelium cell renewal and injured the abortion function and mucosal barrier by decreasing VH, V/C and proliferation and increasing epithelium cell apoptosis.
Collapse
Affiliation(s)
- Y Dong
- China Agricultural University.
| | | | | | | | | | | |
Collapse
|
24
|
Bermingham DP, Blakely RD. Kinase-dependent Regulation of Monoamine Neurotransmitter Transporters. Pharmacol Rev 2016; 68:888-953. [PMID: 27591044 PMCID: PMC5050440 DOI: 10.1124/pr.115.012260] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Modulation of neurotransmission by the monoamines dopamine (DA), norepinephrine (NE), and serotonin (5-HT) is critical for normal nervous system function. Precise temporal and spatial control of this signaling in mediated in large part by the actions of monoamine transporters (DAT, NET, and SERT, respectively). These transporters act to recapture their respective neurotransmitters after release, and disruption of clearance and reuptake has significant effects on physiology and behavior and has been linked to a number of neuropsychiatric disorders. To ensure adequate and dynamic control of these transporters, multiple modes of control have evolved to regulate their activity and trafficking. Central to many of these modes of control are the actions of protein kinases, whose actions can be direct or indirectly mediated by kinase-modulated protein interactions. Here, we summarize the current state of our understanding of how protein kinases regulate monoamine transporters through changes in activity, trafficking, phosphorylation state, and interacting partners. We highlight genetic, biochemical, and pharmacological evidence for kinase-linked control of DAT, NET, and SERT and, where applicable, provide evidence for endogenous activators of these pathways. We hope our discussion can lead to a more nuanced and integrated understanding of how neurotransmitter transporters are controlled and may contribute to disorders that feature perturbed monoamine signaling, with an ultimate goal of developing better therapeutic strategies.
Collapse
Affiliation(s)
- Daniel P Bermingham
- Department of Pharmacology (D.P.B., R.D.B.) and Psychiatry (R.D.B.), Vanderbilt University Medical Center, Nashville, Tennessee; and Department of Biomedical Sciences, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, Florida (R.D.B.)
| | - Randy D Blakely
- Department of Pharmacology (D.P.B., R.D.B.) and Psychiatry (R.D.B.), Vanderbilt University Medical Center, Nashville, Tennessee; and Department of Biomedical Sciences, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, Florida (R.D.B.)
| |
Collapse
|
25
|
Abstract
Rotavirus (RV) has been shown to infect and stimulate secretion of serotonin from human enterochromaffin (EC) cells and to infect EC cells in the small intestine of mice. It remains to identify which intracellularly expressed viral protein(s) is responsible for this novel property and to further establish the clinical role of serotonin in RV infection. First, we found that siRNA specifically silencing NSP4 (siRNANSP4) significantly attenuated secretion of serotonin from Rhesus rotavirus (RRV) infected EC tumor cells compared to siRNAVP4, siRNAVP6 and siRNAVP7. Second, intracellular calcium mobilization and diarrhoeal capacity from virulent and avirulent porcine viruses correlated with the capacity to release serotonin from EC tumor cells. Third, following administration of serotonin, all (10/10) infants, but no (0/8) adult mice, responded with diarrhoea. Finally, blocking of serotonin receptors using Ondansetron significantly attenuated murine RV (strain EDIM) diarrhoea in infant mice (2.9 vs 4.5 days). Ondansetron-treated mice (n = 11) had significantly (p < 0.05) less diarrhoea, lower diarrhoea severity score and lower total diarrhoea output as compared to mock-treated mice (n = 9). Similarly, Ondansetron-treated mice had better weight gain than mock-treated animals (p < 0.05). A most surprising finding was that the serotonin receptor antagonist significantly (p < 0.05) also attenuated total viral shedding. In summary, we show that intracellularly expressed NSP4 stimulates release of serotonin from human EC tumor cells and that serotonin participates in RV diarrhoea, which can be attenuated by Ondansetron.
Collapse
|
26
|
Ripken D, van der Wielen N, Wortelboer HM, Meijerink J, Witkamp RF, Hendriks HFJ. Nutrient-induced glucagon like peptide-1 release is modulated by serotonin. J Nutr Biochem 2016; 32:142-50. [PMID: 27142747 DOI: 10.1016/j.jnutbio.2016.03.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 03/04/2016] [Accepted: 03/10/2016] [Indexed: 11/19/2022]
Abstract
Glucagon like peptide-1 (GLP-1) and serotonin are both involved in food intake regulation. GLP-1 release is stimulated upon nutrient interaction with G-protein coupled receptors by enteroendocrine cells (EEC), whereas serotonin is released from enterochromaffin cells (ECC). The central hypothesis for the current study was that nutrient-induced GLP-1 release from EECs is modulated by serotonin through a process involving serotonin receptor interaction. This was studied by assessing the effects of serotonin reuptake inhibition by fluoxetine on nutrient-induced GLP-1, PYY and CCK release from isolated pig intestinal segments. Next, serotonin-induced GLP-1 release was studied in enteroendocrine STC-1 cells, where effects of serotonin receptor inhibition were studied using specific and non-specific antagonists. Casein (1% w/v), safflower oil (3.35% w/v), sucrose (50mM) and rebaudioside A (12.5mM) stimulated GLP-1 release from intestinal segments, whereas casein only stimulated PYY and CCK release. Combining nutrients with fluoxetine further increased nutrient-induced GLP-1, PYY and CCK release. Serotonin release from intestinal tissue segments was stimulated by casein and safflower oil while sucrose and rebaudioside A had no effect. The combination with fluoxetine (0.155μM) further enhanced casein and safflower oil induced-serotonin release. Exposure of ileal tissue segments to serotonin (30μM) stimulated GLP-1 release whereas it did not induce PYY and CCK release. Serotonin (30 and 100μM) also stimulated GLP-1 release from STC-1 cells, which was inhibited by the non-specific 5HT receptor antagonist asenapine (1 and 10μM). These data suggest that nutrient-induced GLP-1 release is modulated by serotonin through a receptor mediated process.
Collapse
Affiliation(s)
- Dina Ripken
- Top Institute Food and Nutrition, Nieuwe Kanaal 9A, Wageningen, 6709 PA, The Netherlands; Netherlands Organization for Applied Scientific Research TNO, Utrechtseweg 48, 3704 HE, Zeist, The Netherlands; Division of Human Nutrition, Wageningen University, Bomenweg 2, 6703 HD, Wageningen, The Netherlands.
| | - Nikkie van der Wielen
- Top Institute Food and Nutrition, Nieuwe Kanaal 9A, Wageningen, 6709 PA, The Netherlands; Division of Human Nutrition, Wageningen University, Bomenweg 2, 6703 HD, Wageningen, The Netherlands
| | - Heleen M Wortelboer
- Netherlands Organization for Applied Scientific Research TNO, Utrechtseweg 48, 3704 HE, Zeist, The Netherlands
| | - Jocelijn Meijerink
- Division of Human Nutrition, Wageningen University, Bomenweg 2, 6703 HD, Wageningen, The Netherlands
| | - Renger F Witkamp
- Division of Human Nutrition, Wageningen University, Bomenweg 2, 6703 HD, Wageningen, The Netherlands
| | - Henk F J Hendriks
- Top Institute Food and Nutrition, Nieuwe Kanaal 9A, Wageningen, 6709 PA, The Netherlands
| |
Collapse
|
27
|
Kaji I, Akiba Y, Said H, Narimatsu K, Kaunitz JD. Luminal 5-HT stimulates colonic bicarbonate secretion in rats. Br J Pharmacol 2015; 172:4655-70. [PMID: 26061462 DOI: 10.1111/bph.13216] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 04/16/2015] [Accepted: 05/09/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE The bioactive monoamine 5-HT, implicated in the pathogenesis of functional gastrointestinal disorders, is abundantly synthesized and stored in rat proximal colonic mucosa and released to the gut lumen and subepithelial space. Despite much data regarding its expression and function, the effects of luminal 5-HT on colonic anion secretion have not been fully investigated. EXPERIMENTAL APPROACH We measured short-circuit current (Isc ) as an indicator of ion transport in mucosa-submucosa or mucosa-only preparations of rat proximal colon. Total CO2 output was measured in vitro and in vivo. Immunohistochemistry was performed to investigate the localization of 5-HT4 , NOS1 and NOS2. KEY RESULTS Luminal 5-HT gradually increased the amplitude and sustained the elevation of Isc . Luminal 5-HT-evoked ΔIsc was acetazolamide sensitive and HCO3 (-) dependent, consistent with cytosolic carbonic anhydrase-dependent electrogenic HCO3 (-) secretion, while not affected by tetrodotoxin (TTX), atropine or indomethacin. Pretreatment with the selective 5-HT4 antagonist GR113808, but not antagonists for 5-HT3 , 5-HT6 or 5-HT7 , inhibited luminal 5-HT-evoked ΔIsc . Furthermore, luminal cisapride and tegaserod increased Isc to the same extent as did 5-HT in the presence of indomethacin and TTX. Removal of the submucosa or pretreatment with NOS inhibitors enhanced luminal 5-HT-evoked ΔIsc , suggesting that NO synthesized in the submucosa suppresses mucosal anion secretion. NOS1 and NOS2 were immunostained in the submucosal neurons and glial cells respectively. Luminal 5-HT-evoked HCO3 (-) secretion was confirmed in vivo, inhibited by co-perfusion of GR113808, but not by ondansetron. CONCLUSIONS AND IMPLICATIONS A novel apical 5-HT4 -mediated HCO3 (-) secretory pathway and an NO-dependent inhibitory mechanism are present in the proximal colon. Luminal 5-HT-evoked HCO3 (-) secretion may be important for the maintenance of mucosal integrity by regulating luminal pH.
Collapse
Affiliation(s)
- I Kaji
- Department of Medicine, University of California, Los Angeles, CA, USA.,Brentwood Biomedical Research Institute, Los Angeles, CA, USA
| | - Y Akiba
- Department of Medicine, University of California, Los Angeles, CA, USA.,Brentwood Biomedical Research Institute, Los Angeles, CA, USA.,Greater Los Angeles Veterans Affairs Healthcare System, CA, USA
| | - H Said
- College of Letters and Sciences, University of California, Los Angeles, CA, USA
| | - K Narimatsu
- Department of Medicine, University of California, Los Angeles, CA, USA
| | - J D Kaunitz
- Department of Medicine, University of California, Los Angeles, CA, USA.,Department of Surgery, School of Medicine, University of California, Los Angeles, CA, USA.,Brentwood Biomedical Research Institute, Los Angeles, CA, USA.,Greater Los Angeles Veterans Affairs Healthcare System, CA, USA
| |
Collapse
|
28
|
Nazir S, Kumar A, Chatterjee I, Anbazhagan AN, Gujral T, Priyamvada S, Saksena S, Alrefai WA, Dudeja PK, Gill RK. Mechanisms of Intestinal Serotonin Transporter (SERT) Upregulation by TGF-β1 Induced Non-Smad Pathways. PLoS One 2015; 10:e0120447. [PMID: 25954931 PMCID: PMC4425666 DOI: 10.1371/journal.pone.0120447] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 01/22/2015] [Indexed: 01/01/2023] Open
Abstract
TGF-β1 is an important multifunctional cytokine with numerous protective effects on intestinal mucosa. The influence of TGF-β1 on serotonin transporter (SERT) activity, the critical mechanism regulating the extracellular availability of serotonin (5-HT), is not known. Current studies were designed to examine acute effects of TGF-β1 on SERT. Model human intestinal Caco-2 cells grown as monolayer’s or as cysts in 3D culture and ex vivo mouse model were utilized. Treatment of Caco-2 cells with TGF-β1 (10 ng/ml, 60 min) stimulated SERT activity (~2 fold, P<0.005). This stimulation of SERT function was dependent upon activation of TGF-β1 receptor (TGFRI) as SB-431542, a specific TGF-βRI inhibitor blocked the SERT stimulation. SERT activation in response to TGF-β1 was attenuated by inhibition of PI3K and occurred via enhanced recruitment of SERT-GFP to apical surface in a PI3K dependent manner. The exocytosis inhibitor brefeldin A (2.5 μM) attenuated the TGF-β1-mediated increase in SERT function. TGF-β1 increased the association of SERT with the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) syntaxin 3 (STX3) and promoted exocytosis of SERT. Caco-2 cells grown as cysts in 3D culture recapitulated the effects of TGF-β1 showing increased luminal staining of SERT. Ussing chamber studies revealed increase in 3H-5-HT uptake in mouse ileum treated ex vivo with TGF-β1 (10 ng/ml, 1h). These data demonstrate a novel mechanism rapidly regulating intestinal SERT via PI3K and STX3. Since decreased SERT is implicated in various gastro-intestinal disorders e.g IBD, IBS and diarrhea, understanding mechanisms stimulating SERT function by TGF-β1 offers a novel therapeutic strategy to treat GI disorders.
Collapse
Affiliation(s)
- Saad Nazir
- Division of Gastroenterology & Hepatology, Dept. of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Anoop Kumar
- Division of Gastroenterology & Hepatology, Dept. of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Ishita Chatterjee
- Division of Gastroenterology & Hepatology, Dept. of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Arivarasu N. Anbazhagan
- Division of Gastroenterology & Hepatology, Dept. of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Tarunmeet Gujral
- Division of Gastroenterology & Hepatology, Dept. of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Shubha Priyamvada
- Division of Gastroenterology & Hepatology, Dept. of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Seema Saksena
- Division of Gastroenterology & Hepatology, Dept. of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Waddah A. Alrefai
- Division of Gastroenterology & Hepatology, Dept. of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Jesse Brown VA Medical Center, Chicago, Illinois, United States of America
| | - Pradeep K. Dudeja
- Division of Gastroenterology & Hepatology, Dept. of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Jesse Brown VA Medical Center, Chicago, Illinois, United States of America
| | - Ravinder K. Gill
- Division of Gastroenterology & Hepatology, Dept. of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
29
|
Han TK, Proctor WR, Costales CL, Cai H, Everett RS, Thakker DR. Four cation-selective transporters contribute to apical uptake and accumulation of metformin in Caco-2 cell monolayers. J Pharmacol Exp Ther 2015; 352:519-28. [PMID: 25563903 PMCID: PMC4352590 DOI: 10.1124/jpet.114.220350] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 01/05/2015] [Indexed: 01/11/2023] Open
Abstract
Metformin is the frontline therapy for type II diabetes mellitus. The oral bioavailability of metformin is unexpectedly high, between 40 and 60%, given its hydrophilicity and positive charge at all physiologic pH values. Previous studies in Caco-2 cell monolayers, a cellular model of the human intestinal epithelium, showed that during absorptive transport metformin is taken up into the cells via transporters in the apical (AP) membrane; however, predominant transport to the basolateral (BL) side occurs via the paracellular route because intracellular metformin cannot egress across the BL membrane. Furthermore, these studies have suggested that the AP transporters can contribute to intestinal accumulation and absorption of metformin. Transporter-specific inhibitors as well as a novel approach involving a cocktail of transporter inhibitors with overlapping selectivity were used to identify the AP transporters that mediate metformin uptake in Caco-2 cell monolayers; furthermore, the relative contributions of these transporters in metformin AP uptake were also determined. The organic cation transporter 1, plasma membrane monoamine transporter (PMAT), serotonin reuptake transporter, and choline high-affinity transporter contributed to approximately 25%, 20%, 20%, and 15%, respectively, of the AP uptake of metformin. PMAT-knockdown Caco-2 cells were constructed to confirm the contribution of PMAT in metformin AP uptake because a PMAT-selective inhibitor is not available. The identification of four intestinal transporters that contribute to AP uptake and potentially intestinal absorption of metformin is a significant novel finding that can influence our understanding of metformin pharmacology and intestinal drug-drug interactions involving this highly prescribed drug.
Collapse
Affiliation(s)
- Tianxiang Kevin Han
- Division of Molecular Pharmaceutics (T.H., W.R.P., C.L.C.) and Division of Pharmacotherapy and Experimental Therapeutics (H.C., R.S.E., D.R.T.), UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - William R Proctor
- Division of Molecular Pharmaceutics (T.H., W.R.P., C.L.C.) and Division of Pharmacotherapy and Experimental Therapeutics (H.C., R.S.E., D.R.T.), UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Chester L Costales
- Division of Molecular Pharmaceutics (T.H., W.R.P., C.L.C.) and Division of Pharmacotherapy and Experimental Therapeutics (H.C., R.S.E., D.R.T.), UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Hao Cai
- Division of Molecular Pharmaceutics (T.H., W.R.P., C.L.C.) and Division of Pharmacotherapy and Experimental Therapeutics (H.C., R.S.E., D.R.T.), UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Ruth S Everett
- Division of Molecular Pharmaceutics (T.H., W.R.P., C.L.C.) and Division of Pharmacotherapy and Experimental Therapeutics (H.C., R.S.E., D.R.T.), UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Dhiren R Thakker
- Division of Molecular Pharmaceutics (T.H., W.R.P., C.L.C.) and Division of Pharmacotherapy and Experimental Therapeutics (H.C., R.S.E., D.R.T.), UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
30
|
Kim JJ, Khan WI. 5-HT7 receptor signaling: improved therapeutic strategy in gut disorders. Front Behav Neurosci 2014; 8:396. [PMID: 25565996 PMCID: PMC4263172 DOI: 10.3389/fnbeh.2014.00396] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 10/27/2014] [Indexed: 12/15/2022] Open
Abstract
Serotonin (5-hydroxytryptamine; 5-HT) is most commonly known for its role as a neurotransmitter in the central nervous system (CNS). However, the majority of the body’s 5-HT is produced in the gut by enterochromaffin (EC) cells. Alterations in 5-HT signaling have been associated with various gut disorders including inflammatory bowel disease (IBD), irritable bowel syndrome (IBS) and enteric infections. Recently, our studies have identified a key role for 5-HT in the pathogenesis of experimental colitis. 5-HT7 receptors are expressed in the gut and very recently, we have shown evidence of 5-HT7 receptor expression on intestinal immune cells and demonstrated a key role for 5-HT7 receptors in generation of experimental colitis. This review summarizes the key findings of these studies and provides a comprehensive overview of our current knowledge of the 5-HT7 receptor in terms of its pathophysiological relevance and therapeutic potential in intestinal inflammatory conditions, such as IBD.
Collapse
Affiliation(s)
- Janice J Kim
- Department of Pathology and Molecular Medicine, Farncombe Family Digestive Health Research Institute, McMaster University Hamilton, ON, Canada
| | - Waliul I Khan
- Department of Pathology and Molecular Medicine, Farncombe Family Digestive Health Research Institute, McMaster University Hamilton, ON, Canada
| |
Collapse
|
31
|
Cui XF, Zhou WM, Yang Y, Zhou J, Li XL, Lin L, Zhang HJ. Epidermal growth factor upregulates serotonin transporter and its association with visceral hypersensitivity in irritable bowel syndrome. World J Gastroenterol 2014; 20:13521-13529. [PMID: 25309082 PMCID: PMC4188903 DOI: 10.3748/wjg.v20.i37.13521] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 03/10/2014] [Accepted: 05/29/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the role of epidermal growth factor (EGF) in visceral hypersensitivity and its effect on the serotonin transporter (SERT).
METHODS: A rat model for visceral hypersensitivity was established by intra-colonic infusion of 0.5% acetic acid in 10-d-old Sprague-Dawley rats. The visceral sensitivity was assessed by observing the abdominal withdrawal reflex and recording electromyographic activity of the external oblique muscle in response to colorectal distension. An enzyme-linked immunosorbent assay was used to measure the EGF levels in plasma and colonic tissues. SERT mRNA expression was detected by real-time PCR while protein level was determined by Western blot. The correlation between EGF and SERT levels in colon tissues was analyzed by Pearson’s correlation analysis. SERT function was examined by tritiated serotonin (5-HT) uptake experiments. Rat intestinal epithelial cells (IEC-6) were used to examine the EGF regulatory effect on SERT expression and function via the EGF receptor (EGFR).
RESULTS: EGF levels were significantly lower in the rats with visceral hypersensitivity as measured in plasma (2.639 ± 0.107 ng/mL vs 4.066 ± 0.573 ng/mL, P < 0.01) and in colonic tissue (3.244 ± 0.135 ng/100 mg vs 3.582 ± 0.197 ng/100 mg colon tissue, P < 0.01) compared with controls. Moreover, the EGF levels were positively correlated with SERT levels (r = 0.820, P < 0.01). EGF displayed dose- and time-dependent increased SERT gene expressions in IEC-6 cells. An EGFR kinase inhibitor inhibited the effect of EGF on SERT gene upregulation. SERT activity was enhanced following treatment with EGF (592.908 ± 31.515 fmol/min per milligram vs 316.789 ± 85.652 fmol/min per milligram protein, P < 0.05) and blocked by the EGFR kinase inhibitor in IEC-6 cells (590.274 ± 25.954 fmol/min per milligram vs 367.834 ± 120.307 fmol/min per milligram protein, P < 0.05).
CONCLUSION: A decrease in EGF levels may contribute to the formation of visceral hypersensitivity through downregulation of SERT-mediated 5-HT uptake into enterocytes.
Collapse
|
32
|
Nicod N, Parker RS. Vitamin E secretion by Caco-2 monolayers to APOA1, but not to HDL, is vitamer selective. J Nutr 2013; 143:1565-72. [PMID: 23946344 PMCID: PMC3771812 DOI: 10.3945/jn.113.176834] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The aim of this study was to characterize the pathways of basolateral secretion of common dietary tocopherols from polarized Caco-2 monolayers, a model of intestinal absorption. Given differences in structure and physical properties, we hypothesized that secretion may differ between different forms of vitamin E, thus potentially contribute to the selectivity seen in vivo. Monolayers were incubated apically and simultaneously with 10 μmol/L α-, γ-, and δ-tocopherol (1:1:1) in lipid micelles. Treatment with the microsomal triglyceride transfer protein inhibitor BMS201038 revealed that the triglyceride-rich particle secretory pathway (apolipoprotein B-dependent pathway) accounted for ~ 80% of total tocopherol secretion, without selectivity among the three forms of vitamin E. Apolipoprotein B-independent secretion of tocopherols (and cholesterol) was greatly enhanced by the liver X receptor agonist T0901317. T0901317 induced ATP-binding cassette transporter A1 (ABCA1) protein expression and basolateral secretion of tocopherols to apolipoprotein A1. ABCA1-dependent secretion demonstrated vitamer selectivity such that efficiency of secretion of α- and γ-tocopherols exceeded that of δ-tocopherol. Basal addition of HDL stimulated vitamin E secretion but without selectivity among the three forms, whereas LDL had no effect. Basal addition of scavenger receptor class B member I (SR-BI) blocking antibody, which inhibits the interaction between SR-BI and HDL, increased basal accumulation of all tocopherols, demonstrating a role for SR-BI in cellular re-uptake of secreted vitamin E. These findings demonstrated that vitamin E and cholesterol utilize common pathways of secretion and that secretion via the ABCA1 pathway favors certain forms of vitamin E.
Collapse
|
33
|
Murphy SR, Schelegle ES, Miller LA, Hyde DM, Van Winkle LS. Ozone exposure alters serotonin and serotonin receptor expression in the developing lung. Toxicol Sci 2013; 134:168-79. [PMID: 23570994 DOI: 10.1093/toxsci/kft090] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ozone, a pervasive environmental pollutant, adversely affects functional lung growth in children. Animal studies demonstrate that altered lung development is associated with modified signaling within the airway epithelial mesenchymal trophic unit, including mediators that can change nerve growth. We hypothesized that ozone exposure alters the normal pattern of serotonin, its transporter (5-HTT), and two key receptors (5-HT2A and 5-HT4), a pathway involved in postnatal airway neural, epithelial, and immune processes. We exposed monkeys to acute or episodic ozone during the first 2 or 6 months of life. There were three exposure groups/age: (1) filtered air, (2) acute ozone challenge, and (3) episodic ozone + acute ozone challenge. Lungs were prepared for compartment-specific qRT-PCR, immunohistochemistry, and stereology. Airway epithelial serotonin immunopositive staining increased in all exposure groups with the most prominent in 2-month midlevel and 6-month distal airways. Gene expression of 5-HTT, 5-HT2AR, and 5-HT4R increased in an age-dependent manner. Overall expression was greater in distal compared with midlevel airways. Ozone exposure disrupted both 5-HT2AR and 5-HT4R protein expression in airways and enhanced immunopositive staining for 5-HT2AR (2 months) and 5-HT4R (6 months) on smooth muscle. Ozone exposure increases serotonin in airway epithelium regardless of airway level, age, and exposure history and changes the spatial pattern of serotonin receptor protein (5-HT2A and 5-HT4) and 5-HTT gene expression depending on compartment, age, and exposure history. Understanding how serotonin modulates components of reversible airway obstruction exacerbated by ozone exposure sets the foundation for developing clinically relevant therapies for airway disease.
Collapse
Affiliation(s)
- Shannon R Murphy
- Center for Health and the Environment, California National Primate Research Center, Davis, CA, USA
| | | | | | | | | |
Collapse
|
34
|
Li RWS, Yang C, Kwan YW, Chan SW, Lee SMY, Leung GPH. Involvement of organic cation transporter-3 and plasma membrane monoamine transporter in serotonin uptake in human brain vascular smooth muscle cells. Front Pharmacol 2013; 4:14. [PMID: 23407616 PMCID: PMC3569667 DOI: 10.3389/fphar.2013.00014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 01/25/2013] [Indexed: 02/01/2023] Open
Abstract
The serotonin (5-HT) uptake system is supposed to play a crucial part in vascular functions by “fine-tuning” the local concentration of 5-HT in the vicinity of 5-HT2 receptors in vascular smooth muscle cells. In this study, the mechanism of 5-HT uptake in human brain vascular smooth muscle cells (HBVSMCs) was investigated. [3H]5-HT uptake in HBVSMCs was Na+-independent. Kinetic analyses of [3H]5-HT uptake in HBVSMCs revealed a Km of 50.36 ± 10.2 mM and a Vmax of 1033.61 ± 98.86 pmol/mg protein/min. The specific serotonin re-uptake transporter (SERT) inhibitor citalopram, the specific norepinephrine transporter (NET) inhibitor desipramine, and the dopamine transporter (DAT) inhibitor GBR12935 inhibited 5-HT uptake in HBVSMCs with IC50 values of 97.03 ± 40.10, 10.49 ± 5.98, and 2.80 ± 1.04 μM, respectively. These IC50 values were 100-fold higher than data reported by other authors, suggesting that those inhibitors were not blocking their corresponding transporters. Reverse transcription-polymerase chain reaction results demonstrated the presence of mRNA for organic cation transporter (OCT)-3 and plasma membrane monoamine transporter (PMAT), but the absence of OCT-1, OCT-2, SERT, NET, and DAT. siRNA knockdown of OCT-3 and PMAT specifically attenuated 5-HT uptake in HBVSMCs. It is concluded that 5-HT uptake in HBVSMCs was mediated predominantly by a low-affinity and Na+-independent mechanism. The most probable candidates are OCT-3 and PMAT, but not the SERT.
Collapse
Affiliation(s)
- Rachel W S Li
- Department of Pharmacology and Pharmacy, The University of Hong Kong Pokfulam, Hong Kong
| | | | | | | | | | | |
Collapse
|
35
|
Gill RK, Kumar A, Malhotra P, Maher D, Singh V, Dudeja PK, Alrefai W, Saksena S. Regulation of intestinal serotonin transporter expression via epigenetic mechanisms: role of HDAC2. Am J Physiol Cell Physiol 2012. [PMID: 23195070 DOI: 10.1152/ajpcell.00361.2012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The serotonin (5-HT) transporter (SERT) facilitates clearance of extracellular 5-HT by its uptake and internalization. Decreased expression of SERT and consequent high 5-HT levels have been implicated in various diarrheal disorders. Thus, appropriate regulation of SERT is critical for maintenance of 5-HT homeostasis in health and disease. Previous studies demonstrated that SERT is regulated via posttranslational and transcriptional mechanisms. However, the role of epigenetic mechanisms in SERT regulation is not known. Current studies investigated the effects of histone deacetylase (HDAC) inhibition on SERT expression and delineated the mechanisms. Treatment of Caco-2 cells with the pan-HDAC inhibitors butyrate (5 mM) and trichostatin (TSA, 1 μM) decreased SERT mRNA and protein levels. Butyrate- or TSA-induced decrease in SERT was associated with decreased activity of human SERT (hSERT) promoter 1 (upstream of exon 1a), but not hSERT promoter 2 (upstream of exon 2). Butyrate + TSA did not show an additive effect on SERT expression, indicating that mechanisms involving histone hyperacetylation may be involved. Chromatin immunoprecipitation assays demonstrated enrichment of the hSERT promoter 1 (flanking nt -250/+2) with tetra-acetylated histone H3 or H4, which was increased (~3-fold) by butyrate. Interestingly, specific inhibition of HDAC2 (but not HDAC1) utilizing small interfering RNA decreased SERT mRNA and protein levels. The decrease in SERT expression by HDAC inhibition was recapitulated in an in vivo model. SERT mRNA levels were decreased in the ileum and colon of mice fed pectin (increased availability of butyrate) compared with controls fed a fiber-free diet (~50-60%). Our results identify a novel role of HDAC2 as a regulator of SERT gene expression in intestinal epithelial cells.
Collapse
Affiliation(s)
- Ravinder K Gill
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Kuda T, Nakamura S, An C, Takahashi H, Kimura B, Nishizawa M. Effects of holdfast of Laminaria japonica on listeria invasion on enterocyte-like Caco-2 cells and NO production of macrophage RAW 264.7 cells. Appl Biochem Biotechnol 2012; 168:928-35. [PMID: 22893519 DOI: 10.1007/s12010-012-9831-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 08/06/2012] [Indexed: 10/28/2022]
Abstract
Listeria monocytogenes (Lm) causes food poisoning in humans mainly through consumption of ready-to-eat foods. Immunocompromised persons are at the highest risk for infection. We investigated effects of crude soluble polysaccharides (SPS) and ethanolic extract (EE) fractions of frond (kombu) and holdfast (ganiashi) parts of Laminaria japonica on Lm invasion into human enterocyte-like Caco-2 cells and immune and/or inflammatory reactions of murine macrophage RAW 264.7 cells. Recovery and viscosity were high in kombu SPS. Total phenolic content and antioxidant activities (2,2-diphenyl-1-picrylhydrazyl radical scavenging capacity and Fe-reducing power) were higher in ganiashi EE. EE of ganiashi, rather than kombu, suppressed the Lm invasion into the differentiated Caco-2 cells, though the inhibitory effect of SPS was not significant. Ganiashi SPS increased the nitric oxide (NO) production of intact RAW 264.7 cells. On the other hand, the NO production from Escherichia coli O111 lipopolysaccharide-activated cells was suppressed by kombu SPS and ganiashi EE. These results suggest that L. japonica, particularly ganiashi, might suppress the invasion and infection of Lm and also the inflammation.
Collapse
Affiliation(s)
- Takashi Kuda
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Konan, Tokyo 108-8477, Japan.
| | | | | | | | | | | |
Collapse
|
37
|
Nakamura S, Kuda T, An C, Kanno T, Takahashi H, Kimura B. Inhibitory effects of Leuconostoc mesenteroides 1RM3 isolated from narezushi, a fermented fish with rice, on Listeria monocytogenes infection to Caco-2 cells and A/J mice. Anaerobe 2011; 18:19-24. [PMID: 22193553 DOI: 10.1016/j.anaerobe.2011.11.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 11/24/2011] [Indexed: 10/14/2022]
Abstract
Listeria monocytogenes causes listeriosis in humans mainly through consumption of ready-to-eat foods. Immunocompromised persons, the elderly, and pregnant women and their fetuses or newborns are at highest risk for the infection. To isolate probiotic lactic acid bacteria (LAB) with inhibitory effects against L. monocytogenes, we screened for acid and bile resistant LABs from narezushi, a traditional salted and long-fermented fish with cooked rice. Then, inhibitory effects of the selected LABs on L. monocytogenes invasion and infection of human enterocyte Caco-2 cells and Listeria-susceptible A/J mice were determined. From a total of 231 LAB isolates, we selected five acid and bile resistant isolates (four were Lactobacillus plantarum and one was Leuconostoc mesenteroides). Among the five isolates, Ln. mesenteroides (Lnm-1RM3) showed the highest inhibition against L. monocytogenes invasion into Caco-2 cells. In the case of L. monocytogenes orally infected A/J mice, recovery of the pathogen from the spleen was suppressed by drinking water containing 9 log CFU/ml of Lnm-1RM3 cells. The inhibitory effects were also shown by heat-killed Lnm-1RM3 cells. These results suggest that live and also heat-killed Lnm-1RM3 cell intake might prevent L. monocytogenes entero-gastric invasion and infection.
Collapse
Affiliation(s)
- Shinsuke Nakamura
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Konan, Tokyo 108-8477, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Hagan CE, Schenk JO, Neumaier JF. The contribution of low-affinity transport mechanisms to serotonin clearance in synaptosomes. Synapse 2011; 65:1015-23. [PMID: 21437992 PMCID: PMC3149756 DOI: 10.1002/syn.20929] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 03/01/2011] [Indexed: 01/11/2023]
Abstract
Although many studies assert that the serotonin (5-HT) transporter (SERT) is the predominant mechanism controlling extracellular 5-HT concentrations, accumulating evidence suggests that low affinity, high capacity transport mechanisms may contribute more to 5-HT clearance than previously thought. The goal of this study was to quantify the contributions of SERT relative to other mechanisms in clearing extracellular 5-HT concentrations ranging from 50 nM to 1 μM in synaptosomes prepared from wild-type and SERT knockout mice using rotating disk electrode voltammetry. SERT inhibitors combined with decynium-22 (D-22), a blocker of several low-affinity transporters, blocked all uptake of 5-HT into synaptosomes. We found that SERT is responsible for the majority of synaptosomal uptake only at relatively low 5-HT concentrations, but comprises a diminishing proportion of 5-HT clearance when extracellular 5-HT increases above 100 nM. The effect of D-22 was similar in wild-type and SERT knockout synaptosomes. Thus, there was no evidence of upregulation of low-affinity mechanisms in knockout mice across the concentrations of 5-HT tested. These are surprising results, in light of the prevailing view that SERT is the primary uptake mechanism for extracellular 5-HT at physiological concentrations. We conclude that non-SERT mediated 5-HT uptake is substantial even at modest 5-HT concentrations. These findings, in conjunction with other studies, have important implications for understanding serotonergic disorders and may explain the variable efficacy and stability of patients' responses to antidepressants, such as the selective serotonin reuptake inhibitors.
Collapse
Affiliation(s)
- Catherine E Hagan
- Department of Comparative Medicine, University of Washington, Seattle, Washington 98195, USA.
| | | | | |
Collapse
|
39
|
Gill RK, Anbazhagan AN, Esmaili A, Kumar A, Nazir S, Malakooti J, Alrefai WA, Saksena S. Epidermal growth factor upregulates serotonin transporter in human intestinal epithelial cells via transcriptional mechanisms. Am J Physiol Gastrointest Liver Physiol 2011; 300:G627-36. [PMID: 21273531 PMCID: PMC3074988 DOI: 10.1152/ajpgi.00563.2010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Serotonin transporter (SERT) regulates extracellular availability of serotonin and is a potential pharmacological target for gastrointestinal disorders. A decrease in SERT has been implicated in intestinal inflammatory and diarrheal disorders. However, little is known regarding regulation of SERT in the intestine. Epidermal growth factor (EGF) is known to influence intestinal electrolyte and nutrient transport processes and has protective effects on intestinal mucosa. Whether EGF regulates SERT in the human intestine is not known. The present studies examined the regulation of SERT by EGF, utilizing Caco-2 cells grown on Transwell inserts as an in vitro model. Treatment with EGF from the basolateral side (10 ng/ml, 24 h) significantly stimulated SERT activity (∼2-fold, P < 0.01) and mRNA levels compared with control. EGF increased the activities of the two alternate promoter constructs for human SERT gene: SERT promoter 1 (hSERTp1, upstream of exon 1a) and SERT promoter 2 (hSERTp2, upstream of exon 2). Inhibition of EGF receptor (EGFR) tyrosine kinase activity by PD168393 (1 nM) blocked the stimulatory effects of EGF on SERT promoters. Progressive deletions of the SERT promoter indicated that the putative EGF-responsive elements are present in the -672/-472 region of the hSERTp1 and regions spanning -1195/-738 and -152/+123 of hSERTp2. EGF markedly increased the binding of Caco-2 nuclear proteins to the potential AP-1 cis-elements present in EGF-responsive regions of hSERTp1 and p2. Overexpression of c-jun but not c-fos specifically transactivated hSERTp2, with no effects on hSERTp1. Our findings define novel mechanisms of transcriptional regulation of SERT by EGF via EGFR at the promoter level that may contribute to the beneficial effects of EGF in gut disorders.
Collapse
Affiliation(s)
- Ravinder K. Gill
- Section of Digestive Diseases & Nutrition, Department of Medicine, University of Illinois at Chicago and Jesse Brown VA Medical Center; Chicago, Illinois
| | - Arivarasu Natarajan Anbazhagan
- Section of Digestive Diseases & Nutrition, Department of Medicine, University of Illinois at Chicago and Jesse Brown VA Medical Center; Chicago, Illinois
| | - Ali Esmaili
- Section of Digestive Diseases & Nutrition, Department of Medicine, University of Illinois at Chicago and Jesse Brown VA Medical Center; Chicago, Illinois
| | - Anoop Kumar
- Section of Digestive Diseases & Nutrition, Department of Medicine, University of Illinois at Chicago and Jesse Brown VA Medical Center; Chicago, Illinois
| | - Saad Nazir
- Section of Digestive Diseases & Nutrition, Department of Medicine, University of Illinois at Chicago and Jesse Brown VA Medical Center; Chicago, Illinois
| | - Jaleh Malakooti
- Section of Digestive Diseases & Nutrition, Department of Medicine, University of Illinois at Chicago and Jesse Brown VA Medical Center; Chicago, Illinois
| | - Waddah A. Alrefai
- Section of Digestive Diseases & Nutrition, Department of Medicine, University of Illinois at Chicago and Jesse Brown VA Medical Center; Chicago, Illinois
| | - Seema Saksena
- Section of Digestive Diseases & Nutrition, Department of Medicine, University of Illinois at Chicago and Jesse Brown VA Medical Center; Chicago, Illinois
| |
Collapse
|
40
|
Hill JE, Makky K, Shrestha L, Hillard CJ, Gasser PJ. Natural and synthetic corticosteroids inhibit uptake 2-mediated transport in CNS neurons. Physiol Behav 2010; 104:306-11. [PMID: 21081135 DOI: 10.1016/j.physbeh.2010.11.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 11/04/2010] [Accepted: 11/09/2010] [Indexed: 10/18/2022]
Abstract
In addition to exerting actions via mineralocorticoid and glucocorticoid receptors, corticosteroids also act by inhibiting uptake(2), a high-capacity monoamine transport system originally described in peripheral tissues. Recent studies have demonstrated that uptake(2) transporters are expressed in the brain and play roles in monoamine clearance, suggesting that they mediate some corticosteroid effects on physiological and behavioral processes. However, the sensitivity of brain uptake(2) to many natural and synthetic corticosteroids has not been characterized. Cultured rat cerebellar granule neurons (CGNs) were previously shown to exhibit corticosterone-sensitive accumulation of the uptake(2) substrate 1-methyl-4-phenylpyridinium (MPP(+)). We examined the expression of uptake(1) and uptake(2) transporters in CGNs, and tested the effects of a variety of natural and synthetic corticosteroids on accumulation of [(3)H]-MPP(+) by these cells. Cultured rat CGNs expressed mRNA for three uptake(2)-like transporters: organic cation transporters 1 and 3, and the plasma membrane monoamine transporter. They did not express mRNA for the dopamine or norepinephrine transporters, and expressed very little mRNA for the serotonin reuptake transporter. Accumulation of [(3)H]-MPP(+) by CGNs was dose-dependently inhibited by corticosterone and decynium-22, known inhibitors of uptake(2). Accumulation of MPP(+) was also dose-dependently inhibited, with varying efficacies, by aldosterone, 11-deoxycorticosterone, cortisol, and cortisone, and by the synthetic glucocorticoids betamethasone, dexamethasone and prednisolone, and the glucocorticoid receptor antagonist RU38486. These studies demonstrate that uptake(2) in the CNS is inhibited by a variety of natural and synthetic corticosteroids, and suggest that inhibition of uptake(2)-mediated monoamine clearance may underlie some behavioral and physiological effects of these hormones.
Collapse
Affiliation(s)
- Jonathan E Hill
- Marquette University, Department of Biomedical Sciences, Milwaukee, WI 53233, USA
| | | | | | | | | |
Collapse
|
41
|
Prediction of the in vitro permeability determined in Caco-2 cells by using artificial neural networks. Eur J Pharm Sci 2010; 41:107-17. [DOI: 10.1016/j.ejps.2010.05.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2010] [Revised: 05/12/2010] [Accepted: 05/30/2010] [Indexed: 11/24/2022]
|
42
|
The effect of folate status on the uptake of physiologically relevant compounds by Caco-2 cells. Eur J Pharmacol 2010; 640:29-37. [DOI: 10.1016/j.ejphar.2010.04.056] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 03/19/2010] [Accepted: 04/23/2010] [Indexed: 12/25/2022]
|
43
|
Fischer W, Bernhagen J, Neubert RHH, Brandsch M. Uptake of codeine into intestinal epithelial (Caco-2) and brain endothelial (RBE4) cells. Eur J Pharm Sci 2010; 41:31-42. [PMID: 20510359 DOI: 10.1016/j.ejps.2010.05.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 04/27/2010] [Accepted: 05/16/2010] [Indexed: 01/11/2023]
Abstract
Orally administered codeine has to permeate both the intestinal and the blood-brain barrier in order to act as analgesic and cough suppressant. In this study we characterized the uptake of codeine at intestinal epithelial (Caco-2) and brain endothelial (RBE4) cells. At both cell types, uptake of [(3)H]codeine was independent of an inwardly directed Na(+) gradient. Uptake was, however, strongly stimulated by an outwardly directed H(+) gradient and inhibited by the protonophore FCCP. [(3)H]Codeine uptake into Caco-2 cells was strongly temperature dependent. In the presence of excess amounts of unlabeled codeine, the uptake was inhibited by up to 87% (Caco-2) or 94% (RBE4), respectively. Synthetic opioids and some non-opioid organic cations like propranolol, pyrilamine and quinidine potently inhibited [(3)H]codeine uptake. Several prototype substrates of known transporters for amino acids, neurotransmitters and organic cations were ineffective. Our data are consistent with a hypothetic saturable, H(+)-dependent (antiport) mechanism not yet identified on a molecular level. The pH dependence of codeine uptake and its intracellular accumulation can partially also be explained by a model comprising diffusional membrane permeation of unionized species of codeine followed by codeine sequestration into acidic vesicles and distribution into cellular lipids.
Collapse
Affiliation(s)
- Wiebke Fischer
- Membrane Transport Group, Biozentrum, Martin-Luther-University Halle-Wittenberg, Weinbergweg 22, D-06120 Halle, Germany
| | | | | | | |
Collapse
|
44
|
Chuenkitiyanon S, Pengsuparp T, Jianmongkol S. Protective effect of quercetin on hydrogen peroxide-induced tight junction disruption. Int J Toxicol 2010; 29:418-24. [PMID: 20445016 DOI: 10.1177/1091581810366487] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tight junction is a crucial structure in the control of paracellular transport across epithelial/endothelial barriers. This study investigated the protective effect of quercetin against hydrogen peroxide (H(2)O(2))-induced tight junction disruption and hyperpermeability in ECV304 monolayers. Nonlethal concentration of H(2)O(2) (100 micromol/L; 4 hours) decreased expression of the tight junction proteins zonular occudens (ZO)-1 and occludin as well as disrupted the junction structure at the cell border. Concurrently, the increased activities of extracellular signal-regulated kinase (ERK)1/2 and p38 mitogen-activated protein kinase (MAPK) were observed. Pretreatment with quercetin (10 micromol/L; 30 minutes) prior to H(2)O(2) prevented the loss of ZO-1 and occludin. In addition, the level of phosphorylated p38 MAPK, but not that of the phosphorylated ERK1/2, decreased in quercetin-pretreated group. These findings suggested that the protective effect of quercetin involved the inhibition of phosphorylated p38 MAP activity. Furthermore, quercetin could also preserve the functional integrity of ECV304 monolayers from H(2)O(2) exposure.
Collapse
Affiliation(s)
- Somrudee Chuenkitiyanon
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | | | | |
Collapse
|
45
|
Alteration of serotonin transporter messenger RNA level in the peripheral blood mononuclear cells from simian/human immunodeficiency virus infected Chinese rhesus macaques (Macaca mulatta). Brain Behav Immun 2010; 24:298-305. [PMID: 19854262 DOI: 10.1016/j.bbi.2009.10.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2009] [Revised: 10/08/2009] [Accepted: 10/17/2009] [Indexed: 11/23/2022] Open
Abstract
Serotonin transporter (SERT, 5-HTT) is a key element in the serotonergic system which is probably involved in the psychiatric disorders commonly observed in people living with HIV/AIDS. However, no information is available about the effects of HIV infection on SERT expression. In this study, a TaqMan real-time RT-PCR method was established, levels of SERT mRNA in the peripheral blood mononuclear cells (PBMCs) and various tissues from normal Chinese rhesus macaques, in PBMCs from 32 SHIV-sf162p4 infected rhesus macaques and from 8 rhesus macaques before and 7, 14, 21, 28 and 196 days after SHIV-sf162p4 infection, and in PBMCs before and after in vitro phytohemagglutinin (PHA) stimulation were examined. It was found that SERT mRNA was widely distributed in lymphoid tissues; the level of SERT mRNA was significantly reduced in PBMCs from SHIV infected rhesus macaques and in PBMCs stimulated with PHA. The most evident decrease (to about one-tenth) in SERT mRNA level was observed at day 7 after SHIV infection. Difference in PBMC SERT mRNA level between 5-HTTLPR genotypes was not statistically significant. These data indicated that, in addition to previously observed abnormality in serotonin metabolism, SERT expression might be affected in HIV/AIDS, which might be associated with depression and other psychiatric disorders in HIV/AIDS. Besides, this study provided a basis for quantitative analysis of SERT gene expression under effects of host and environmental factors, such as 5-HTTLPR genotypes, SERT targeting drugs or other infectious agents.
Collapse
|
46
|
Esmaili A, Nazir SF, Borthakur A, Yu D, Turner JR, Saksena S, Singla A, Hecht GA, Alrefai WA, Gill RK. Enteropathogenic Escherichia coli infection inhibits intestinal serotonin transporter function and expression. Gastroenterology 2009; 137:2074-83. [PMID: 19747920 PMCID: PMC3727418 DOI: 10.1053/j.gastro.2009.09.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 07/28/2009] [Accepted: 09/03/2009] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS Serotonin transporter (SERT) plays a critical role in regulating serotonin (5-hydroxytryptamine [5-HT]) availability in the gut. Elevated 5-HT levels are associated with diarrheal conditions such as irritable bowel syndrome and enteric infections. Whether alteration in SERT activity contributes to the pathophysiology of diarrhea induced by the food-borne pathogen enteropathogenic Escherichia coli (EPEC) is not known. The present studies examined the effects of EPEC infection on SERT activity and expression in intestinal epithelial cells and elucidated the underlying mechanisms. METHODS Caco-2 cells as a model of human intestinal epithelia and EPEC-infected C57BL/6J mouse model of infection were utilized. SERT activity was measured as Na(+) and Cl(-) dependent (3)[H] 5-HT uptake. SERT expression was measured by real-time quantitative reverse-transcription polymerase chain reaction, Western blotting, and immunofluorescence studies. RESULTS Infection of Caco-2 cells with EPEC for 30-120 minutes decreased apical SERT activity (P < .001) in a type 3 secretion system dependent manner and via involvement of protein tyrosine phosphatases. EPEC infection decreased V(max) of the transporter; whereas cell surface biotinylation studies revealed no alteration in the cellular or plasma membrane content of SERT in Caco-2 cells. EPEC infection of mice (24 hours) reduced SERT immunostaining with a corresponding decrease in SERT messenger RNA levels, 5-HT uptake, and mucosal 5-HT content in the small intestine. CONCLUSIONS Our results demonstrate inhibition of SERT by EPEC and define the mechanisms underlying these effects. These data may aid in the development of a novel pharmacotherapy to modulate the serotonergic system in treatment of infectious diarrheal diseases.
Collapse
Affiliation(s)
| | | | | | - Dan Yu
- Department of Pathology, University of Chicago, Chicago, Illinois
| | | | | | | | | | | | - Ravinder K. Gill
- Author to whom all correspondence including reprint requests should be addressed: Ravinder K. Gill, Ph.D., Research Assistant Professor, University of Illinois at Chicago, Jesse Brown V. A. Medical Center, Medical Research Service (600/151),820 South Damen Avenue, Chicago, IL 60612, , Tel: (312) 569-6498, Fax: (312) 569-7458
| |
Collapse
|
47
|
Bertrand PP, Bertrand RL. Serotonin release and uptake in the gastrointestinal tract. Auton Neurosci 2009; 153:47-57. [PMID: 19729349 DOI: 10.1016/j.autneu.2009.08.002] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 07/19/2009] [Accepted: 08/10/2009] [Indexed: 12/18/2022]
Abstract
The afferent innervation of the gastrointestinal (GI) tract consists of intrinsic and extrinsic sensory neurons that respond to nutrients, chemicals or mechanical stimuli within the gut lumen. Most stimuli do not interact directly with the afferent nerves but instead activate specialised cells in the epithelium in a process of sensory transduction. It is thought that one of the first steps in this process is the release of serotonin (5-HT) from the enterochromaffin (EC) cells. The EC cells are a sub-type of enteroendocrine (EE) cells which are found among the enterocytes of the intestinal epithelium. The EC cells are responsible for the production and storage of the largest pool of 5 HT in the body. Released 5-HT can act on the intrinsic nerves and vagal endings. This review will focus on the role of 5-HT in sensory transduction and examine how the EC cell produces and releases 5-HT. We will explore recent developments that have helped to elucidate some of the proteins that allow EC cells to sense the luminal environment. Finally, we will highlight some of the findings from new studies using electrochemical techniques which allow the real-time recording of 5-HT concentrations near to the EC cell.
Collapse
Affiliation(s)
- Paul P Bertrand
- Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney NSW 2052, Australia.
| | | |
Collapse
|
48
|
Mendoza C, Matheus N, Iceta R, Mesonero JE, Alcalde AI. Lipopolysaccharide induces alteration of serotonin transporter in human intestinal epithelial cells. Innate Immun 2009; 15:243-50. [PMID: 19587001 DOI: 10.1177/1753425909104781] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Intestinal serotoninergic activity and serotonin transporter (SERT) function have been shown to be altered in intestinal inflammatory diseases. Serotonin (5-HT) plays a critical role in the regulation of gastrointestinal physiology. Activity of 5-HT depends on its extracellular availability, partly modulated by SERT that transports 5-HT into the cell. Lipopolysaccharide (LPS) is a component of Gram-negative bacteria outer membrane, which acts as a potent activator of the inflammatory system in the intestine. The aim of this work was to determine, in the enterocyte-like cell line Caco-2, whether LPS treatment affects serotoninergic activity by acting on SERT. The results demonstrate that LPS treatment diminishes SERT activity in a dose- and period-dependent way. The kinetic study shows that V(max) was significantly reduced after treatment with LPS. The LPS effect on 5-HT uptake was, in part, mediated by protein kinase C (PKC) activation. The molecular expression of SERT revealed that LPS treatment did not affect the mRNA level or the SERT protein content in cell homogenate. The level of SERT protein, however, was reduced on brush border membrane. The LPS effect might be due to an alteration of the intracellular traffic of SERT which may, in part, be mediated by PKC activity.
Collapse
Affiliation(s)
- Carmen Mendoza
- Department of Pharmacology and Physiology, Faculty of Veterinary Sciences, University of Zaragoza, Zaragoza, Spain
| | | | | | | | | |
Collapse
|
49
|
Matheus N, Mendoza C, Iceta R, Mesonero JE, Alcalde AI. Regulation of serotonin transporter activity by adenosine in intestinal epithelial cells. Biochem Pharmacol 2009; 78:1198-204. [PMID: 19539610 DOI: 10.1016/j.bcp.2009.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 06/04/2009] [Accepted: 06/05/2009] [Indexed: 12/13/2022]
Abstract
Serotonin plays a critical role in the regulation of intestinal physiology. The serotonin transporter (SERT) expressed in the intestinal epithelium determines 5-HT availability and activity. The serotoninergic system and SERT activity have been described as being altered in chronic intestinal pathologies such as inflammatory diseases. Adenosine has also been shown to be involved in a variety of intestinal functions and to play a central role in the regulation of inflammatory responses of injured tissue. Since the modulation of SERT by adenosine in the intestine remains unknown, the aim of the present work was to study the effect of adenosine on SERT activity and expression and to determine the molecular mechanism involved. The study has been carried out using human enterocyte-like Caco-2 cells which endogenously express SERT. The results show that adenosine diminishes SERT activity in both the apical and basal membranes by acting in the intrinsic molecule with no alteration of either SERT mRNA or protein levels. The effect of adenosine appears to be mediated by A(2) receptors and activation of the cAMP/PKA signalling pathway. Moreover, the adenosine effect did not seem to involve the activation of AMP activated protein kinase. Adenosine effects are reached at high concentrations, which suggests that adenosine modulation of SERT may be significant under conditions of inflammation and tissue injury.
Collapse
Affiliation(s)
- N Matheus
- Department of Pharmacology and Physiology, Faculty of Veterinary Sciences, University of Zaragoza, Miguel Servet 177, Zaragoza, Spain
| | | | | | | | | |
Collapse
|
50
|
Feng N, Telefont M, Kelly KJ, Orchinik M, Forster GL, Renner KJ, Lowry CA. Local perfusion of corticosterone in the rat medial hypothalamus potentiates D-fenfluramine-induced elevations of extracellular 5-HT concentrations. Horm Behav 2009; 56:149-57. [PMID: 19371745 DOI: 10.1016/j.yhbeh.2009.03.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 03/27/2009] [Accepted: 03/31/2009] [Indexed: 01/11/2023]
Abstract
The dorsomedial hypothalamus (DMH) plays an important role in coordinating physiological and behavioral responses to stress-related stimuli. In vertebrates, DMH serotonin (5-HT) concentrations increase rapidly in response to acute stressors or corticosterone (CORT). Recent studies suggest that CORT inhibits postsynaptic clearance of 5-HT from the extracellular fluid in the DMH by blocking organic cation transporter 3 (OCT3), a polyspecific CORT-sensitive transport protein. Because OCTs are low-affinity, high-capacity transporters, we hypothesized that CORT effects on extracellular 5-HT are most pronounced in the presence of elevated 5-HT release. We predicted that local application of CORT into the DMH would potentiate the effects of d-fenfluramine, a 5-HT-releasing agent, on extracellular 5-HT. These experiments were conducted using in vivo microdialysis in freely-moving male Sprague-Dawley rats implanted with a microdialysis probe into the medial hypothalamus (MH), which includes the DMH. In Experiment 1, rats simultaneously received intraperitoneal (i.p.) injections of 1 mg/kg D-fenfluramine or saline and either 200 ng/mL CORT or dilute ethanol (EtOH) vehicle delivered to the MH by reverse-dialysis for 40 min. In Experiment 2, 5 microM D-fenfluramine and either 200 ng/mL CORT or EtOH vehicle were concurrently delivered to the MH for 40 min using reverse-dialysis. CORT potentiated the increases in extracellular 5-HT concentrations induced by either i.p. or intra-MH administration of D-fenfluramine. Furthermore, CORT and D-fenfluramine interacted to alter home cage behaviors. Our results support the hypothesis that CORT inhibition of OCT3-mediated 5-HT clearance from the extracellular fluid contributes to stress-induced increases in extracellular 5-HT and 5-HT signaling.
Collapse
Affiliation(s)
- Na Feng
- Department of Biology and Neuroscience Group, University of South Dakota, Vermillion, SD 57069, USA
| | | | | | | | | | | | | |
Collapse
|