1
|
Mavridis T, Choratta T, Papadopoulou A, Sawafta A, Archontakis-Barakakis P, Laou E, Sakellakis M, Chalkias A. Protease-Activated Receptors (PARs): Biology and Therapeutic Potential in Perioperative Stroke. Transl Stroke Res 2025; 16:933-951. [PMID: 38326662 DOI: 10.1007/s12975-024-01233-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/12/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
Perioperative stroke is a devastating complication that occurs during surgery or within 30 days following the surgical procedure. Its prevalence ranges from 0.08 to 10% although it is most likely an underestimation, as sedatives and narcotics can substantially mask symptomatology and clinical presentation. Understanding the underlying pathophysiology and identifying potential therapeutic targets are of paramount importance. Protease-activated receptors (PARs), a unique family of G-protein-coupled receptors, are widely expressed throughout the human body and play essential roles in various physiological and pathological processes. This review elucidates the biology and significance of PARs, outlining their diverse functions in health and disease, and their intricate involvement in cerebrovascular (patho)physiology and neuroprotection. PARs exhibit a dual role in cerebral ischemia, which underscores their potential as therapeutic targets to mitigate the devastating effects of stroke in surgical patients.
Collapse
Affiliation(s)
- Theodoros Mavridis
- Department of Neurology, Tallaght University Hospital (TUH)/The Adelaide and Meath Hospital, Dublin, incorporating the National Children's Hospital (AMNCH), Dublin, D24 NR0A, Ireland
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, 11528, Athens, Greece
| | - Theodora Choratta
- Department of General Surgery, Metaxa Hospital, 18537, Piraeus, Greece
| | - Androniki Papadopoulou
- Department of Anesthesiology, G. Gennimatas General Hospital, 54635, Thessaloniki, Greece
| | - Assaf Sawafta
- Department of Cardiology, University Hospital of Larisa, 41110, Larisa, Greece
| | | | - Eleni Laou
- Department of Anesthesiology, Agia Sophia Children's Hospital, 15773, Athens, Greece
| | - Minas Sakellakis
- Department of Medicine, Jacobi Medical Center-North Central Bronx Hospital, Bronx, NY, 10467, USA
| | - Athanasios Chalkias
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104-5158, USA.
- Outcomes Research Consortium, Cleveland, OH, 44195, USA.
| |
Collapse
|
2
|
Xu K, Wang L, Lin M, He G. Update on protease-activated receptor 2 in inflammatory and autoimmune dermatological diseases. Front Immunol 2024; 15:1449126. [PMID: 39364397 PMCID: PMC11446762 DOI: 10.3389/fimmu.2024.1449126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/03/2024] [Indexed: 10/05/2024] Open
Abstract
Protease-activated receptor 2 (PAR2) is a cell-surface receptor expressed in various cell types, including keratinocytes, neurons, immune and inflammatory cells. Activation of PAR2, whether via its canonical or biased pathways, triggers a series of signaling cascades that mediate numerous functions. This review aims to highlight the emerging roles and interactions of PAR2 in different skin cells. It specifically summarizes the latest insights into the roles of PAR2 in skin conditions such as atopic dermatitis (AD), psoriasis, vitiligo and melasma. It also considers these roles from the perspective of the cutaneous microenvironment in relation to other inflammatory and autoimmune dermatological disorders. Additionally, the review explores PAR2's involvement in associated comorbidities from both cutaneous and extracutaneous diseases. Therefore, PAR2 may serve as a key target for interactions among various cells within the local skin environment.
Collapse
Affiliation(s)
- Kejia Xu
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lin Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Mao Lin
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Gu He
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Julovi SM, McKelvey K, Minhas N, Chan YKA, Xue M, Jackson CJ. Involvement of PAR-2 in the Induction of Cell-Specific Matrix Metalloproteinase-2 by Activated Protein C in Cutaneous Wound Healing. Int J Mol Sci 2023; 25:370. [PMID: 38203540 PMCID: PMC10779272 DOI: 10.3390/ijms25010370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/23/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
We previously reported that human keratinocytes express protease-activated receptor (PAR)-2 and play an important role in activated protein C (APC)-induced cutaneous wound healing. This study investigated the involvement of PAR-2 in the production of gelatinolytic matrix metalloproteinases (MMP)-2 and -9 by APC during cutaneous wound healing. Full-thickness excisional wounds were made on the dorsum of male C57BL/6 mice. Wounds were treated with APC on days 1, 2, and 3 post-wounding. Cultured neonatal foreskin keratinocytes were treated with APC with or without intact PAR-2 signalling to examine the effects on MMP-2 and MMP-9 production. Murine dermal fibroblasts from PAR-2 knock-out (KO) mice were also assessed. MMP-2 and -9 were measured via gelatin zymography, fluorometric assay, and immunohistochemistry. APC accelerated wound healing in WT mice, but had a negligible effect in PAR-2 KO mice. APC-stimulated murine cutaneous wound healing was associated with the differential and temporal production of MMP-2 and MMP-9, with the latter peaking on day 1 and the former on day 6. Inhibition of PAR-2 in human keratinocytes reduced APC-induced MMP-2 activity by 25~50%, but had little effect on MMP-9. Similarly, APC-induced MMP-2 activation was reduced by 40% in cultured dermal fibroblasts derived from PAR-2 KO mice. This study shows for the first time that PAR-2 is essential for APC-induced MMP-2 production. Considering the important role of MMP-2 in wound healing, this work helps explain the underlying mechanisms of action of APC to promote wound healing through PAR-2.
Collapse
Affiliation(s)
- Sohel M. Julovi
- Sutton Arthritis Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Pacific Highway, St. Leonards, NSW 2065, Australia; (K.M.); (N.M.); (Y.-K.A.C.); (M.X.); (C.J.J.)
- Kidney Injury Group, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, NSW 2045, Australia
| | - Kelly McKelvey
- Sutton Arthritis Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Pacific Highway, St. Leonards, NSW 2065, Australia; (K.M.); (N.M.); (Y.-K.A.C.); (M.X.); (C.J.J.)
| | - Nikita Minhas
- Sutton Arthritis Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Pacific Highway, St. Leonards, NSW 2065, Australia; (K.M.); (N.M.); (Y.-K.A.C.); (M.X.); (C.J.J.)
| | - Yee-Ka Agnes Chan
- Sutton Arthritis Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Pacific Highway, St. Leonards, NSW 2065, Australia; (K.M.); (N.M.); (Y.-K.A.C.); (M.X.); (C.J.J.)
| | - Meilang Xue
- Sutton Arthritis Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Pacific Highway, St. Leonards, NSW 2065, Australia; (K.M.); (N.M.); (Y.-K.A.C.); (M.X.); (C.J.J.)
| | - Christopher J. Jackson
- Sutton Arthritis Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Pacific Highway, St. Leonards, NSW 2065, Australia; (K.M.); (N.M.); (Y.-K.A.C.); (M.X.); (C.J.J.)
| |
Collapse
|
4
|
Peach CJ, Edgington-Mitchell LE, Bunnett NW, Schmidt BL. Protease-activated receptors in health and disease. Physiol Rev 2023; 103:717-785. [PMID: 35901239 PMCID: PMC9662810 DOI: 10.1152/physrev.00044.2021] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 07/08/2022] [Accepted: 07/10/2022] [Indexed: 11/22/2022] Open
Abstract
Proteases are signaling molecules that specifically control cellular functions by cleaving protease-activated receptors (PARs). The four known PARs are members of the large family of G protein-coupled receptors. These transmembrane receptors control most physiological and pathological processes and are the target of a large proportion of therapeutic drugs. Signaling proteases include enzymes from the circulation; from immune, inflammatory epithelial, and cancer cells; as well as from commensal and pathogenic bacteria. Advances in our understanding of the structure and function of PARs provide insights into how diverse proteases activate these receptors to regulate physiological and pathological processes in most tissues and organ systems. The realization that proteases and PARs are key mediators of disease, coupled with advances in understanding the atomic level structure of PARs and their mechanisms of signaling in subcellular microdomains, has spurred the development of antagonists, some of which have advanced to the clinic. Herein we review the discovery, structure, and function of this receptor system, highlight the contribution of PARs to homeostatic control, and discuss the potential of PAR antagonists for the treatment of major diseases.
Collapse
Affiliation(s)
- Chloe J Peach
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York
- Department of Neuroscience and Physiology and Neuroscience Institute, Grossman School of Medicine, New York University, New York, New York
| | - Laura E Edgington-Mitchell
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
- Bluestone Center for Clinical Research, Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, New York
| | - Nigel W Bunnett
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York
- Department of Neuroscience and Physiology and Neuroscience Institute, Grossman School of Medicine, New York University, New York, New York
| | - Brian L Schmidt
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York
- Bluestone Center for Clinical Research, Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, New York
| |
Collapse
|
5
|
Lee-Rivera I, López E, López-Colomé AM. Diversification of PAR signaling through receptor crosstalk. Cell Mol Biol Lett 2022; 27:77. [PMID: 36088291 PMCID: PMC9463773 DOI: 10.1186/s11658-022-00382-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Protease activated receptors (PARs) are among the first receptors shown to transactivate other receptors: noticeably, these interactions are not limited to members of the same family, but involve receptors as diverse as receptor kinases, prostanoid receptors, purinergic receptors and ionic channels among others. In this review, we will focus on the evidence for PAR interactions with members of their own family, as well as with other types of receptors. We will discuss recent evidence as well as what we consider as emerging areas to explore; from the signalling pathways triggered, to the physiological and pathological relevance of these interactions, since this additional level of molecular cross-talk between receptors and signaling pathways is only beginning to be explored and represents a novel mechanism providing diversity to receptor function and play important roles in physiology and disease.
Collapse
|
6
|
Jiang Y, Zhuo X, Wu Y, Fu X, Mao C. PAR2 blockade reverses osimertinib resistance in non-small-cell lung cancer cells via attenuating ERK-mediated EMT and PD-L1 expression. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1869:119144. [PMID: 34599981 DOI: 10.1016/j.bbamcr.2021.119144] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/28/2021] [Accepted: 09/09/2021] [Indexed: 12/25/2022]
Abstract
Osimertinib, as the third-generation EGFR tyrosine kinase inhibitors (EGFR-TKIs), is a first-line molecularly targeted drug for non-small cell lung cancer (NSCLC). However, the emergence of therapeutic resistance to osimertinib markedly impairs its efficiency and efficacy, leading to the failure of clinical applications. Novel molecular targets and drugs are urgently needed for reversing osimertinib resistance in NSCLC. Protease-activated receptor 2 (PAR2) that belongs to a subfamily of G protein-coupled receptors can stimulate the transactivation of EGFR to regulate multiple cellular signalling, actively participating in tumour progression. This study firstly discovered that PAR2 expression was notably enhanced when NSCLC cells became resistant to osimertinib. A PAR2 inhibitor facilitated osimertinib to attenuate EGFR transactivation, ERK phosphorylation, EMT and PD-L1 expression which were associated to osimertinib resistance. The combination of the PAR2 inhibitor and osimertinib also notably blocked cell viability, migration, 3D sphere formation and in vivo tumour growth whereas osimertinib itself lost such inhibitory effects in osimertinib-resistant NSCLC cells. Importantly, this reversal effect of PAR2 blockade was uncovered to depend on ERK-mediated EMT and PD-L1, since inhibition of β-arrestin or ERK, which could be modulated by PAR2, sensitized osimertinib to prevent EMT, PD-L1 expression and consequently overcame osimertinib resistance. Thus, this study demonstrated that PAR2 antagonism could limit ERK-mediated EMT and immune checkpoints, consequently attenuating EGFR transactivation and reactivate osimertinib. It suggested that PAR2 may be a novel drug target for osimertinib resistance, and PAR2 inhibition may be a promising strategy candidate for reversing EGFR-TKI resistance in NSCLC.
Collapse
Affiliation(s)
- Yuhong Jiang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, PR China.
| | - Xin Zhuo
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, PR China
| | - Yue Wu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, PR China
| | - Xiujuan Fu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, PR China
| | - Canquan Mao
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, PR China.
| |
Collapse
|
7
|
Kountz TS, Jairaman A, Kountz CD, Stauderman KA, Schleimer RP, Prakriya M. Differential Regulation of ATP- and UTP-Evoked Prostaglandin E 2 and IL-6 Production from Human Airway Epithelial Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:1275-1287. [PMID: 34389624 PMCID: PMC8816324 DOI: 10.4049/jimmunol.2100127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/07/2021] [Indexed: 11/19/2022]
Abstract
The airway epithelial cells (AECs) lining the conducting passageways of the lung secrete a variety of immunomodulatory factors. Among these, PGE2 limits lung inflammation and promotes bronchodilation. By contrast, IL-6 drives intense airway inflammation, remodeling, and fibrosis. The signaling that differentiates the production of these opposing mediators is not understood. In this study, we find that the production of PGE2 and IL-6 following stimulation of human AECs by the damage-associated molecular pattern extracellular ATP shares a common requirement for Ca2+ release-activated Ca2+ (CRAC) channels. ATP-mediated synthesis of PGE2 required activation of metabotropic P2Y2 receptors and CRAC channel-mediated cytosolic phospholipase A2 signaling. By contrast, ATP-evoked synthesis of IL-6 occurred via activation of ionotropic P2X receptors and CRAC channel-mediated calcineurin/NFAT signaling. In contrast to ATP, which elicited the production of both PGE2 and IL-6, the uridine nucleotide, UTP, stimulated PGE2 but not IL-6 production. These results reveal that human AECs employ unique receptor-specific signaling mechanisms with CRAC channels as a signaling nexus to regulate release of opposing immunomodulatory mediators. Collectively, our results identify P2Y2 receptors, CRAC channels, and P2X receptors as potential intervention targets for airway diseases.
Collapse
Affiliation(s)
- Timothy S Kountz
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Amit Jairaman
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Candace D Kountz
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | | | - Robert P Schleimer
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Murali Prakriya
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL;
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
8
|
Jiang Y, Zhuo X, Fu X, Wu Y, Mao C. Targeting PAR2 Overcomes Gefitinib Resistance in Non-Small-Cell Lung Cancer Cells Through Inhibition of EGFR Transactivation. Front Pharmacol 2021; 12:625289. [PMID: 33967759 PMCID: PMC8100583 DOI: 10.3389/fphar.2021.625289] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/25/2021] [Indexed: 12/25/2022] Open
Abstract
Drug resistance can notably restrict clinical applications of gefitinib that is a commonly used EGFR-tyrosine kinase inhibitors (EGFR-TKIs) for non-small cell lung cancer (NSCLC). The attempts in exploring novel drug targets and reversal strategies are still needed, since gefitinib resistance has not been fully addressed. Protease-activated receptor 2 (PAR2), a G protein-coupled receptor, possesses a transactivation with EGFR to initiate a variety of intracellular signal transductions, but there is a lack of investigations on the role of PAR2 in gefitinib resistance. This study established that protease-activated receptor 2 (PAR2), actively participated in NSCLC resistant to gefitinib. PAR2 expression was significantly up-regulated when NSCLC cells or tumor tissues became gefitinib resistance. PAR2 inhibition notably enhanced gefitinib to modulate EGFR transactivation, cell viability, migration and apoptosis in gefitinib-sensitive and-resistant NSCLC cells, suggesting its reversal effects in gefitinib resistance. Meanwhile, the combination of a PAR2 inhibitor (P2pal-18S) and gefitinib largely blocked ERK phosphorylation and epithelial-mesenchymal transition (EMT) compared to gefitinib alone. Importantly, we probed its underlying mechanism and uncovered that PAR2 blockade sensitized gefitinib and reversed its resistance mainly via β-arrestin-EGFR-ERK signaling axis. These effects of PAR2 inhibition were further confirmed by the in vivo study which showed that P2pal-18S reactivated gefitinib to inhibit tumor growth via restricting ERK activation. Taken together, this study could not only reveal a new mechanism of receptor-mediated transactivation to modulate drug resistance, but also provide a novel drug target and direction for overcoming gefitinib resistance in NSCLC.
Collapse
Affiliation(s)
- Yuhong Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Xin Zhuo
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Xiujuan Fu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Yue Wu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Canquan Mao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
9
|
Wong GS, Redes JL, Balenga N, McCullough M, Fuentes N, Gokhale A, Koziol-White C, Jude JA, Madigan LA, Chan EC, Jester WH, Biardel S, Flamand N, Panettieri RA, Druey KM. RGS4 promotes allergen- and aspirin-associated airway hyperresponsiveness by inhibiting PGE2 biosynthesis. J Allergy Clin Immunol 2020; 146:1152-1164.e13. [PMID: 32199913 PMCID: PMC7501178 DOI: 10.1016/j.jaci.2020.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 02/21/2020] [Accepted: 03/11/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Allergens elicit host production of mediators acting on G-protein-coupled receptors to regulate airway tone. Among these is prostaglandin E2 (PGE2), which, in addition to its role as a bronchodilator, has anti-inflammatory actions. Some patients with asthma develop bronchospasm after the ingestion of aspirin and other nonsteroidal anti-inflammatory drugs, a disorder termed aspirin-exacerbated respiratory disease. This condition may result in part from abnormal dependence on the bronchoprotective actions of PGE2. OBJECTIVE We sought to understand the functions of regulator of G protein signaling 4 (RGS4), a cytoplasmic protein expressed in airway smooth muscle and bronchial epithelium that regulates the activity of G-protein-coupled receptors, in asthma. METHODS We examined RGS4 expression in human lung biopsies by immunohistochemistry. We assessed airways hyperresponsiveness (AHR) and lung inflammation in germline and airway smooth muscle-specific Rgs4-/- mice and in mice treated with an RGS4 antagonist after challenge with Aspergillus fumigatus. We examined the role of RGS4 in nonsteroidal anti-inflammatory drug-associated bronchoconstriction by challenging aspirin-exacerbated respiratory disease-like (ptges1-/-) mice with aspirin. RESULTS RGS4 expression in respiratory epithelium is increased in subjects with severe asthma. Allergen-induced AHR was unexpectedly diminished in Rgs4-/- mice, a finding associated with increased airway PGE2 levels. RGS4 modulated allergen-induced PGE2 secretion in human bronchial epithelial cells and prostanoid-dependent bronchodilation. The RGS4 antagonist CCG203769 attenuated AHR induced by allergen or aspirin challenge of wild-type or ptges1-/- mice, respectively, in association with increased airway PGE2 levels. CONCLUSIONS RGS4 may contribute to the development of AHR by reducing airway PGE2 biosynthesis in allergen- and aspirin-induced asthma.
Collapse
Affiliation(s)
- Gordon S Wong
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID)/National Institutes of Health (NIH), Bethesda, Md
| | - Jamie L Redes
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID)/National Institutes of Health (NIH), Bethesda, Md
| | - Nariman Balenga
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID)/National Institutes of Health (NIH), Bethesda, Md
| | - Morgan McCullough
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID)/National Institutes of Health (NIH), Bethesda, Md
| | - Nathalie Fuentes
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID)/National Institutes of Health (NIH), Bethesda, Md
| | - Ameya Gokhale
- Food Allergy Research Unit, Laboratory of Allergic Diseases, NIAID/NIH, Bethesda, Md
| | - Cynthia Koziol-White
- Rutgers Institute for Translational Medicine and Science, Child Health Institute of New Jersey, Rutgers University School of Medicine, New Brunswick, NJ
| | - Joseph A Jude
- Rutgers Institute for Translational Medicine and Science, Child Health Institute of New Jersey, Rutgers University School of Medicine, New Brunswick, NJ
| | - Laura A Madigan
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID)/National Institutes of Health (NIH), Bethesda, Md
| | - Eunice C Chan
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID)/National Institutes of Health (NIH), Bethesda, Md
| | - William H Jester
- Rutgers Institute for Translational Medicine and Science, Child Health Institute of New Jersey, Rutgers University School of Medicine, New Brunswick, NJ
| | - Sabrina Biardel
- Centre de recherche de l'IUCPQ, Département de médecine, Faculté de médecine, Université Laval, Québec, Canada
| | - Nicolas Flamand
- Centre de recherche de l'IUCPQ, Département de médecine, Faculté de médecine, Université Laval, Québec, Canada
| | - Reynold A Panettieri
- Rutgers Institute for Translational Medicine and Science, Child Health Institute of New Jersey, Rutgers University School of Medicine, New Brunswick, NJ
| | - Kirk M Druey
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID)/National Institutes of Health (NIH), Bethesda, Md.
| |
Collapse
|
10
|
Hagras MM, Kamel FO. Effect of Protease-Activated Receptor-2-Activating Peptide on Guinea Pig Airway Resistance and Isolated Tracheal Strips. J Microsc Ultrastruct 2019; 8:7-13. [PMID: 32166058 PMCID: PMC7045621 DOI: 10.4103/jmau.jmau_55_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 12/10/2018] [Indexed: 12/31/2022] Open
Abstract
Purpose: Protease-activated receptors (PARs) are a family of G-protein-coupled receptors distributed in a number of tissues. PAR-2 is expressed on airway epithelium and smooth muscles and overexpressed under pathological conditions, such as asthma and chronic obstructive pulmonary disease. However, the role of PAR-2 in airways has not yet been defined. In this study, we investigated the role of PAR-2-activating peptide (SLIGRL) on histamine-induced bronchoconstriction and the mechanisms underlying the bronchoprotective effect both in vivo and in vitro. Materials and Methods: The effect of SLIGRL was tested in vivo using histamine-induced bronchoconstriction in the guinea pig and in vitro using isolated tracheal spiral strips. Results: In vivo pretreatment with SLIGRL significantly reduced the histamine-induced increased bronchoconstriction. Neither propranolol nor vagotomy abolished the inhibitory effect of SLIGRL. Furthermore, indomethacin or glibenclamide did not antagonize the inhibitory response to SLIGRL. In isolated tracheal spiral strips in vitro, SLIGRL did not affect the contractile response to acetylcholine or potassium chloride; however, histamine-induced contraction was inhibited in a dose-dependent manner. Conclusion: Our data demonstrate the protective effect of SLIGRL in airways; however, this effect appears to be mediated independently of prostanoids, nitric oxide, circulating adrenaline, ATP-sensitive K + channels, and vagal stimulation.
Collapse
Affiliation(s)
- Magda M Hagras
- Department of Pharmacology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Fatemah O Kamel
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
11
|
Fernando EH, Gordon MH, Beck PL, MacNaughton WK. Inhibition of Intestinal Epithelial Wound Healing through Protease-Activated Receptor-2 Activation in Caco2 Cells. J Pharmacol Exp Ther 2018; 367:382-392. [PMID: 30190338 DOI: 10.1124/jpet.118.249524] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 08/31/2018] [Indexed: 01/02/2025] Open
Abstract
The mechanisms of epithelial wound healing are not completely understood, especially in the context of proteases and their receptors. It was recently shown that activation of protease-activated receptor-2 (PAR2) on intestinal epithelial cells induced the expression of cyclooxygenase-2 (COX-2), which has protective functions in the gastrointestinal tract. It was hypothesized that PAR2-induced COX-2 could enhance wound healing in intestinal epithelial cells. Caco2 cells were used to model epithelial wound healing of circular wounds. Cellular proliferation was studied with a 5-ethynyl-2'-deoxyuridine assay, and migration was studied during wound healing in the absence of proliferation. Immunofluorescence was used to visualize E-cadherin and F-actin, and the cellular transcription profile during wound healing and PAR2 activation was explored with RNA sequencing. PAR2 activation inhibited Caco2 wound healing by reducing cell migration, independently of COX-2 activity. Interestingly, even though migration was reduced, proliferation was increased. When the actin dynamics and cell-cell junctions were investigated, PAR2 activation was found to induce actin cabling and prevent the internalization of E-cadherin. To further investigate the effect of PAR2 on transcriptionally dependent wound healing, RNA sequencing was performed. This analysis revealed that PAR2 activation, in the absence of wounding, induced a similar transcriptional profile compared with wounding alone. These findings represent a novel effect of PAR2 activation on the mechanisms of epithelial cell wound healing that could influence the resolution of intestinal inflammation.
Collapse
Affiliation(s)
- Elizabeth H Fernando
- Departments of Physiology and Pharmacology (E.H.F., M.H.G., W.K.M.) and Medicine (P.L.B.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Marilyn H Gordon
- Departments of Physiology and Pharmacology (E.H.F., M.H.G., W.K.M.) and Medicine (P.L.B.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Paul L Beck
- Departments of Physiology and Pharmacology (E.H.F., M.H.G., W.K.M.) and Medicine (P.L.B.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Wallace K MacNaughton
- Departments of Physiology and Pharmacology (E.H.F., M.H.G., W.K.M.) and Medicine (P.L.B.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
12
|
Little PJ, Hollenberg MD, Kamato D, Thomas W, Chen J, Wang T, Zheng W, Osman N. Integrating the GPCR transactivation-dependent and biased signalling paradigms in the context of PAR1 signalling. Br J Pharmacol 2016; 173:2992-3000. [PMID: 26624252 DOI: 10.1111/bph.13398] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 10/07/2015] [Accepted: 11/29/2015] [Indexed: 12/22/2022] Open
Abstract
Classically, receptor-mediated signalling was conceived as a linear process involving one agonist, a variety of potential targets within a receptor family (e.g. α- and β-adrenoceptors) and a second messenger (e.g. cAMP)-triggered response. If distinct responses were stimulated by the same receptor in different tissues (e.g. lipolysis in adipocytes vs. increased beating rate in the heart caused by adrenaline), the differences were attributed to different second messenger targets in the different tissues. It is now realized that an individual receptor can couple to multiple effectors (different G proteins and different β-arrestins), even in the same cell, to drive very distinct responses. Furthermore, tailored agonists can mould the receptor conformation to activate one signal pathway versus another by a process termed 'biased signalling'. Complicating issues further, we now know that activating one receptor can rapidly trigger the local release of agonists for a second receptor via a process termed 'transactivation'. Thus, the end response can represent a cooperative signalling process involving two or more receptors linked by transactivation. This overview, with a focus on the GPCR, protease-activated receptor-1, integrates both of these processes to predict the complex array of responses that can arise when biased receptor signalling also involves the receptor transactivation process. The therapeutic implications of this signalling matrix are also briefly discussed. Linked Articles This article is part of a themed section on Molecular Pharmacology of G Protein-Coupled Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v173.20/issuetoc.
Collapse
Affiliation(s)
- P J Little
- School of Pharmacy, The University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD, Australia. .,School of Medical Sciences and Diabetes Complications Group, Health Innovations Research Institute, RMIT University, Bundoora, VIC, Australia. .,Xinhua College of Sun Yat-sen University, Guangzhou, China.
| | - M D Hollenberg
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - D Kamato
- School of Medical Sciences and Diabetes Complications Group, Health Innovations Research Institute, RMIT University, Bundoora, VIC, Australia
| | - W Thomas
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD, Australia
| | - J Chen
- Xinhua College of Sun Yat-sen University, Guangzhou, China
| | - T Wang
- Xinhua College of Sun Yat-sen University, Guangzhou, China.,Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - W Zheng
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China.,Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangzhou, China
| | - N Osman
- School of Medical Sciences and Diabetes Complications Group, Health Innovations Research Institute, RMIT University, Bundoora, VIC, Australia.,Department of Immunology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
13
|
Suzuki N, Mihara H, Nishizono H, Tominaga M, Sugiyama T. Protease-Activated Receptor-2 Up-Regulates Transient Receptor Potential Vanilloid 4 Function in Mouse Esophageal Keratinocyte. Dig Dis Sci 2015; 60:3570-8. [PMID: 26233549 DOI: 10.1007/s10620-015-3822-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 07/20/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND The reflux of pancreatic-duodenal fluids is implicated in the pathophysiology of proton-pump inhibitor-resistant gastroesophageal reflux disease (GERD). Protease-activated receptor-2 (PAR-2) is activated by proteases, the pancreatic enzyme, trypsin, and the activated PAR-2 enhances transient receptor potential vanilloid 4 (TRPV4) function in neurons. TRPV4 stimulates ATP exocytosis in conjunction with the vesicular nucleotide transporter, which mediates mechano-transduction and vagal stimulation. The aim of the present study was to verify whether the activated PAR-2 up-regulates TRPV4 function in mouse esophageal keratinocytes, which may link to the pathophysiology in PPI-resistant GERD. METHODS TRPV4 and PAR-2 expressions were detected by RT-PCR, immunostaining, and western blotting in mouse esophageal keratinocytes. The functional response of TRPV4 to esophageal keratinocytes was analyzed using a Ca(2+) imaging system. Cellular ATP release was examined by luciferase-luciferin reaction. TRPV4 phosphorylation was studied by immunoprecipitation and western blotting. RESULTS PAR-2 and TRPV4 mRNAs and proteins were expressed in esophageal keratinocytes. Pre-treatment with trypsin significantly increased the responses to TRPV4 activator in esophageal keratinocytes, probably via the phosphorylation of serine residue of TRPV4 by protein kinase C and resulted in cellular ATP release from the cells. CONCLUSIONS Activated PAR-2 with trypsin exposure up-regulated TRPV4 function and increased ATP release in mouse esophageal keratinocytes. This mechanism might be related to the pathophysiology of GERD, especially non-erosive GERD.
Collapse
Affiliation(s)
- Nobuhiro Suzuki
- Department of Gastroenterology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan.
| | - Hiroshi Mihara
- Department of Gastroenterology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan.
| | - Hirofumi Nishizono
- Division of Animal Experimental Laboratory, Life Science Research Center, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan.
| | - Makoto Tominaga
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585, Japan.
| | - Toshiro Sugiyama
- Department of Gastroenterology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan.
| |
Collapse
|
14
|
Jairaman A, Yamashita M, Schleimer RP, Prakriya M. Store-Operated Ca2+ Release-Activated Ca2+ Channels Regulate PAR2-Activated Ca2+ Signaling and Cytokine Production in Airway Epithelial Cells. THE JOURNAL OF IMMUNOLOGY 2015; 195:2122-33. [PMID: 26238490 DOI: 10.4049/jimmunol.1500396] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 06/30/2015] [Indexed: 01/11/2023]
Abstract
The G-protein-coupled protease-activated receptor 2 (PAR2) plays an important role in the pathogenesis of various inflammatory and auto-immune disorders. In airway epithelial cells (AECs), stimulation of PAR2 by allergens and proteases triggers the release of a host of inflammatory mediators to regulate bronchomotor tone and immune cell recruitment. Activation of PAR2 turns on several cell signaling pathways of which the mobilization of cytosolic Ca(2+) is likely a critical but poorly understood event. In this study, we show that Ca(2+) release-activated Ca(2+) (CRAC) channels encoded by stromal interaction molecule 1 and Orai1 are a major route of Ca(2+) entry in primary human AECs and drive the Ca(2+) elevations seen in response to PAR2 activation. Activation of CRAC channels induces the production of several key inflammatory mediators from AECs including thymic stromal lymphopoietin, IL-6, and PGE2, in part through stimulation of gene expression via nuclear factor of activated T cells (NFAT). Furthermore, PAR2 stimulation induces the production of many key inflammatory mediators including PGE2, IL-6, IL-8, and GM-CSF in a CRAC channel-dependent manner. These findings indicate that CRAC channels are the primary mechanism for Ca(2+) influx in AECs and a vital checkpoint for the induction of PAR2-induced proinflammatory cytokines.
Collapse
Affiliation(s)
- Amit Jairaman
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611; and
| | - Megumi Yamashita
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611; and
| | - Robert P Schleimer
- Division of Allergy/Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Murali Prakriya
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611; and
| |
Collapse
|
15
|
El-Daly M, Saifeddine M, Mihara K, Ramachandran R, Triggle CR, Hollenberg MD. Proteinase-activated receptors 1 and 2 and the regulation of porcine coronary artery contractility: a role for distinct tyrosine kinase pathways. Br J Pharmacol 2014; 171:2413-25. [PMID: 24506284 DOI: 10.1111/bph.12593] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 12/23/2013] [Accepted: 01/17/2014] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE Because angiotensin-II-mediated porcine coronary artery (PCA) vasoconstriction is blocked by protein tyrosine kinase (PYK) inhibitors, we hypothesized that proteinase-activated receptors (PARs), known to regulate vascular tension, like angiotensin-II, would also cause PCA contractions via PYK-dependent signalling pathways. EXPERIMENTAL APPROACH Contractions of intact and endothelium-free isolated PCA rings, stimulated by PAR1 /PAR2 -activating peptides, angiotensin-II, PGF2α , EGF, PDGF and KCl, were monitored with/without multiple signalling pathway inhibitors, including AG-tyrphostins AG18 (non-specific PYKs), AG1478 (EGF-receptor kinase), AG1296 (PDGF receptor kinase), PP1 (Src kinase), U0126 and PD98059 (MEK/MAPKinase kinase), indomethacin/SC-560/NS-398 (COX-1/2) and L-NAME (NOS). KEY RESULTS AG18 inhibited the contractions induced by all the agonists except KCl, whereas U0126 attenuated contractions induced by PAR1 /PAR2 agonists, EGF and angiotensin-II, but not by PGF2α , the COX-produced metabolites of arachidonate and KCl. PP1 only affected the responses to PAR1 /PAR2 -activating peptides and angiotensin-II. The EGF-kinase inhibitor, AG1478, attenuated contractions initiated by the PARs (PAR2 >> PAR1 ) and EGF itself, but not by angiotensin-II, PGF2α or KCl. COX-1/2 inhibitors blocked the contractions induced by all the agonists, except KCl and PGF2α . CONCLUSION AND IMPLICATIONS PAR1/2 -mediated contractions of the PCA are dependent on Src and MAPKinase and, in part, involve EGF-receptor-kinase transactivation and the generation of a COX-derived contractile agonist. However, the PYK signalling pathways used by PARs are distinct from each other and from those triggered by angiotensin-II and EGF. These signalling pathways may be therapeutic targets for managing coagulation-proteinase-induced coronary vasospasm.
Collapse
Affiliation(s)
- Mahmoud El-Daly
- Libin Cardiovascular Institute of Alberta and the Snyder Institute for Chronic Diseases, Calgary, AB, Canada; Department of Physiology and Pharmacology, The University of Calgary Faculty of Medicine, Calgary, AB, Canada
| | | | | | | | | | | |
Collapse
|
16
|
Chien PTY, Hsieh HL, Chi PL, Yang CM. PAR1-dependent COX-2/PGE2 production contributes to cell proliferation via EP2 receptors in primary human cardiomyocytes. Br J Pharmacol 2014; 171:4504-19. [PMID: 24902855 PMCID: PMC4209155 DOI: 10.1111/bph.12794] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 05/15/2014] [Accepted: 05/26/2014] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Different protease-activated receptors (PARs) activated by thrombin are involved in cardiovascular disease, via up-regulation of inflammatory proteins including COX-2. However, the mechanisms underlying thrombin-regulated COX-2 expression in human cardiomyocytes remain unclear. EXPERIMENTAL APPROACH Human cardiomyocytes were used in the study. Thrombin-induced COX-2 protein and mRNA expression, and signalling pathways were determined by Western blot, real-time PCR and COX-2 promoter luciferase reporter assays, and pharmacological inhibitors or siRNAs. PGE2 generation and cell proliferation were also determined. KEY RESULTS Thrombin-induced COX-2 protein and mRNA expression, promoter activity and PGE2 release was attenuated by the PAR1 antagonist (SCH79797) or the inhibitors of proteinase activity (PPACK), MEK1/2 (U0126), p38 MAPK (SB202190) or JNK1/2 (SP600125), and transfection with small interfering RNA (siRNA) of PAR1, p38, p42 or JNK2. These results suggested that PAR1-dependent MAPKs participate in thrombin-induced COX-2 expression in human cardiomyocytes. Moreover, thrombin stimulated phosphorylation of MAPKs, which was attenuated by PPACK and SCH79797. Furthermore, thrombin-induced COX-2 expression was blocked by the inhibitors of AP-1 (tanshinone IIA) and NF-κB (helenalin). Moreover, thrombin-stimulated phosphorylation of c-Jun/AP-1 and p65/NF-κB was attenuated by tanshinone IIA and helenalin, respectively, suggesting that thrombin induces COX-2 expression via PAR1/MAPKs/AP-1 or the NF-κB pathway. Functionally, thrombin increased human cardiomyocyte proliferation through the COX-2/PGE2 system linking to EP2 receptors, as determined by proliferating cell nuclear antigen and cyclin D1 expression. CONCLUSIONS AND IMPLICATIONS These findings demonstrate that MAPKs-mediated activation of AP-1/NF-κB pathways is, at least in part, required for COX-2/PGE2 /EP2 -triggered cell proliferation in human cardiomyocytes.
Collapse
Affiliation(s)
- Peter Tzu-Yu Chien
- Graduate Institute of Biomedical Science, Chang Gung UniversityTao-Yuan, Taiwan
- Department of Physiology and Pharmacology and Health Ageing Research Center, College of Medicine, Chang Gung UniversityTao-Yuan, Taiwan
| | - Hsi-Lung Hsieh
- Division of Basic Medical Sciences, Department of Nursing, Chang Gung University of Science and TechnologyTao-Yuan, Taiwan
| | - Pei-Ling Chi
- Department of Physiology and Pharmacology and Health Ageing Research Center, College of Medicine, Chang Gung UniversityTao-Yuan, Taiwan
| | - Chuen-Mao Yang
- Graduate Institute of Biomedical Science, Chang Gung UniversityTao-Yuan, Taiwan
- Department of Physiology and Pharmacology and Health Ageing Research Center, College of Medicine, Chang Gung UniversityTao-Yuan, Taiwan
| |
Collapse
|
17
|
Gieseler F, Ungefroren H, Settmacher U, Hollenberg MD, Kaufmann R. Proteinase-activated receptors (PARs) - focus on receptor-receptor-interactions and their physiological and pathophysiological impact. Cell Commun Signal 2013; 11:86. [PMID: 24215724 PMCID: PMC3842752 DOI: 10.1186/1478-811x-11-86] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 10/25/2013] [Indexed: 02/07/2023] Open
Abstract
Proteinase-activated receptors (PARs) are a subfamily of G protein-coupled receptors (GPCRs) with four members, PAR1, PAR2, PAR3 and PAR4, playing critical functions in hemostasis, thrombosis, embryonic development, wound healing, inflammation and cancer progression. PARs are characterized by a unique activation mechanism involving receptor cleavage by different proteinases at specific sites within the extracellular amino-terminus and the exposure of amino-terminal “tethered ligand“ domains that bind to and activate the cleaved receptors. After activation, the PAR family members are able to stimulate complex intracellular signalling networks via classical G protein-mediated pathways and beta-arrestin signalling. In addition, different receptor crosstalk mechanisms critically contribute to a high diversity of PAR signal transduction and receptor-trafficking processes that result in multiple physiological effects. In this review, we summarize current information about PAR-initiated physical and functional receptor interactions and their physiological and pathological roles. We focus especially on PAR homo- and heterodimerization, transactivation of receptor tyrosine kinases (RTKs) and receptor serine/threonine kinases (RSTKs), communication with other GPCRs, toll-like receptors and NOD-like receptors, ion channel receptors, and on PAR association with cargo receptors. In addition, we discuss the suitability of these receptor interaction mechanisms as targets for modulating PAR signalling in disease.
Collapse
Affiliation(s)
| | | | | | | | - Roland Kaufmann
- Department of General, Visceral and Vascular Surgery, Experimental Transplantation Surgery, Jena University Hospital, Drackendorfer Str, 1, D-07747, Jena, Germany.
| |
Collapse
|
18
|
Song JS, Kang CM, Park CK, Yoon HK. Thrombin induces epithelial-mesenchymal transition via PAR-1, PKC, and ERK1/2 pathways in A549 cells. Exp Lung Res 2013; 39:336-48. [PMID: 23919450 PMCID: PMC3793269 DOI: 10.3109/01902148.2013.820809] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Thrombin activates protease-activated receptor (PAR)-1 and induces a myofibroblast phenotype in normal lung fibroblasts. The origins of myofibroblasts are resident fibroblasts, fibrocytes, and epithelial-mesenchymal transition (EMT). We investigated the effects of thrombin, an important mediator of interstitial lung fibrosis, on EMT in A549 human alveolar epithelial cells. We show that thrombin induced EMT and collagen I secretion through the activation of PAR-1, and PKC and ERK1/2 phosphorylation in A549 cells. These effects were largely prevented by a specific PAR-1 antagonist, short interfering RNA (siRNA) directed against PAR-1, or specific PKCα/β, δ, and ε inhibitors. These data indicated that interaction with thrombin and alveolar epithelial cells might directly contribute to the pathogenesis of pulmonary fibrosis through EMT. Targeting PAR-1 on the pulmonary epithelium or specific inhibitors to PKCα/β, δ, and ε might stop the fibrotic processes in human idiopathic pulmonary fibrosis by preventing thrombin-induced EMT.
Collapse
Affiliation(s)
- Jeong Sup Song
- Department of Internal Medicine, Yeouido St Mary's Hospital, Catholic University Medical College , Seoul, Korea
| | | | | | | |
Collapse
|
19
|
Choi JH, Cha DS, Jeon H. Anti-inflammatory and anti-nociceptive properties of Prunus padus. JOURNAL OF ETHNOPHARMACOLOGY 2012; 144:379-386. [PMID: 23010365 DOI: 10.1016/j.jep.2012.09.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 09/12/2012] [Accepted: 09/16/2012] [Indexed: 06/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Prunus padus Linne has been widely used as a traditional medicine, with beneficial effects in numerous diseases, including stroke, neuralgia and hepatitis. In this study, we demonstrated anti-inflammatory and anti-nociceptive activities of the methylene chloride fraction of P. padus (MPP). MATERIALS AND METHODS In vitro studies, the anti-inflammatory effects of MPP were examined using IFN-γ/LPS-activated murine peritoneal macrophage model. To confirm the anti-inflammatory effects of MPP in vivo, trypsin-induced paw edema test was also conducted. The anti-nociceptive activities of MPP were measured using various experimental pain models including thermal nociception methods such as the tail immersion test and the hot plate test as well as chemical nociception methods like acetic acid-induced writhing test and formalin test. To determine whether analgesic activity of MPP is connected with the opioid receptor, we carried out combination test with naloxone, a nonselective opioid receptor antagonist. RESULTS In the current study, MPP showed potent inhibitory effect on IFN-γ/LPS-induced NO production. MPP also suppressed not only iNOS enzyme activity but also iNOS expression. Moreover, MPP inhibited COX-2 expression dose dependently. IFN-γ/LPS stimulation induced the translocation of NF-κB to nucleus but it was attenuated in the presence of MPP. In vivo study revealed that MPP could reduce paw volume after subplantar injection of trypsin. In addition, MPP showed potent analgesic activities both thermal and chemical nociception compared to tramadol and indomethacin. Furthermore, pre-treatment of naloxone slightly suppress the analgesic activity of MPP indicating that MPP acts as a partial opioid receptor agonist. CONCLUSIONS In the present study, MPP showed potent anti-inflammatory properties through not only by suppressing various inflammatory mediators in vitro, but reducing the inflammatory edema in vivo. MPP also exhibited strong anti-nociceptive activities via both central and peripheral mechanism by acting as a partial opioid agonist. Based on these results we suggest that P. padus has the potential to provide a therapeutic approach to inflammation-mediated chronic diseases as an effective anti-inflammatory agent and painkiller.
Collapse
Affiliation(s)
- Jae Hyuk Choi
- College of Pharmacy, Woosuk University, Jeonbuk, Republic of Korea
| | | | | |
Collapse
|
20
|
Nichols HL, Saffeddine M, Theriot BS, Hegde A, Polley D, El-Mays T, Vliagoftis H, Hollenberg MD, Wilson EH, Walker JKL, DeFea KA. β-Arrestin-2 mediates the proinflammatory effects of proteinase-activated receptor-2 in the airway. Proc Natl Acad Sci U S A 2012; 109:16660-5. [PMID: 23012429 PMCID: PMC3478622 DOI: 10.1073/pnas.1208881109] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Proteinase-Activated receptor-2 (PAR(2)), a G-protein-coupled Receptor, activated by serine proteinases, is reported to have both protective and proinflammatory effects in the airway. Given these opposing actions, both inhibitors and activators of PAR(2) have been proposed for treating asthma. PAR(2) can signal through two independent pathways: a β-arrestin-dependent one that promotes leukocyte migration, and a G-protein/Ca(2+) one that is required for prostaglandin E(2) (PGE(2)) production and bronchiolar smooth muscle relaxation. We hypothesized that the proinflammatory responses to PAR(2) activation are mediated by β-arrestins, whereas the protective effects are not. Using a mouse ovalbumin model for PAR(2)-modulated airway inflammation, we observed decreased leukocyte recruitment, cytokine production, and mucin production in β-arrestin-2(-/-) mice. In contrast, PAR(2)-mediated PGE(2) production, smooth muscle relaxation, and decreased baseline airway resistance (measures of putative PAR(2) "protective" effects) were independent of β-arrestin-2. Flow cytometry and cytospins reveal that lung eosinophil and CD4 T-cell infiltration, and production of IL-4, IL-6, IL-13, and TNFα, were enhanced in wild-type but not β-arrestin-2(-/-) mice. Using the forced oscillation technique to measure airway resistance reveals that PAR(2) activation protects against airway hyperresponsiveness by an unknown mechanism, possibly involving smooth muscle relaxation. Our data suggest that the PAR(2)-enhanced inflammatory process is β-arrestin-2 dependent, whereas the protective anticonstrictor effect of bronchial epithelial PAR(2) may be β-arrestin independent.
Collapse
Affiliation(s)
- Heddie L. Nichols
- Division of Biomedical Sciences, University of California, Riverside, CA 92521
| | | | - Barbara S. Theriot
- Pulmonary, Allergy and Critical Care Medicine, Duke University Medical Center, Durham, NC 27710; and
| | - Akhil Hegde
- Pulmonary, Allergy and Critical Care Medicine, Duke University Medical Center, Durham, NC 27710; and
| | | | - Tamer El-Mays
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada T2N 1N4
| | | | | | - Emma H. Wilson
- Division of Biomedical Sciences, University of California, Riverside, CA 92521
| | - Julia K. L. Walker
- Pulmonary, Allergy and Critical Care Medicine, Duke University Medical Center, Durham, NC 27710; and
| | - Kathryn A. DeFea
- Division of Biomedical Sciences, University of California, Riverside, CA 92521
| |
Collapse
|
21
|
Hirota CL, Moreau F, Iablokov V, Dicay M, Renaux B, Hollenberg MD, MacNaughton WK. Epidermal growth factor receptor transactivation is required for proteinase-activated receptor-2-induced COX-2 expression in intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 2012; 303:G111-9. [PMID: 22517768 DOI: 10.1152/ajpgi.00358.2011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Proteinase-activated receptor (PAR)(2), a G protein-coupled receptor activated by serine proteinases, has been implicated in both intestinal inflammation and epithelial proliferation. Cyclooxygenase (COX)-2 is overexpressed in the gut during inflammation as well as in colon cancer. We hypothesized that PAR(2) drives COX-2 expression in intestinal epithelial cells. Treatment of Caco-2 colon cancer cells with the PAR(2)-activating peptide 2-furoyl-LIGRLO-NH(2) (2fLI), but not by its reverse-sequence PAR(2)-inactive peptide, for 3 h led to an increase in intracellular COX-2 protein expression accompanied by a COX-2-dependent increase in prostaglandin E(2) production. 2fLI treatment for 30 min significantly increased metalloproteinase activity in the culture supernatant. Increased epidermal growth factor receptor (EGFR) phosphorylation was observed in cell lysates following 40 min of treatment with 2fLI. The broad-spectrum metalloproteinase inhibitor marimastat inhibited both COX-2 expression and EGFR phosphorylation. The EGFR tyrosine kinase inhibitor PD153035 also abolished 2fLI-induced COX-2 expression. Although PAR(2) activation increased ERK MAPK phosphorylation, neither ERK pathway inhibitors nor a p38 MAPK inhibitor affected 2fLI-induced COX-2 expression. However, inhibition of either Src tyrosine kinase signaling by PP2, Rho kinase signaling by Y27632, or phosphatidylinositol 3 (PI3) kinase signaling by LY294002 prevented 2fLI-induced COX-2 expression. Trypsin increased COX-2 expression through PAR(2) in Caco-2 cells and in an EGFR-dependent manner in the noncancerous intestinal epithelial cell-6 cell line. In conclusion, PAR(2) activation drives COX-2 expression in Caco-2 cells via metalloproteinase-dependent EGFR transactivation and activation of Src, Rho, and PI3 kinase signaling. Our findings provide a mechanism whereby PAR(2) can participate in the progression from chronic inflammation to cancer in the intestine.
Collapse
Affiliation(s)
- Christina L Hirota
- Dept. of Physiology and Pharmacology, University of Calgary, 3330 Hospital Dr. NW, Calgary, AB, Canada
| | | | | | | | | | | | | |
Collapse
|
22
|
Sekiguchi F, Ohi A, Maeda Y, Takaoka K, Sekimoto T, Nishikawa H, Kawabata A. Delayed production of arachidonic acid contributes to the delay of proteinase-activated receptor-1 (PAR1)-triggered prostaglandin E2 release in rat gastric epithelial RGM1 cells. J Cell Biochem 2011; 112:909-15. [PMID: 21328464 DOI: 10.1002/jcb.23005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Proteinase-activated receptor-1 (PAR1), upon activation, exerts prostanoid-dependent gastroprotection, and increases prostaglandin E(2) (PGE(2)) release through cyclooxygenase-2 (COX-2) upregulation in rat gastric mucosal epithelial RGM1 cells. However, there is a big time lag between the PAR1-triggered PGE(2) release and COX-2 upregulation in RGM1 cells; that is, the former event takes 18 h to occur, while the latter rapidly develops and reaches a plateau in 6 h. The present study thus aimed at clarifying mechanisms for the delay of PGE(2) release after PAR1 activation in RGM1 cells. Although a PAR1-activating peptide, TFLLR-NH(2), alone caused PGE(2) release at 18 h, but not 6 h, TFLLR-NH(2) in combination with arachidonic acid dramatically enhanced PGE(2) release even for 1-6 h. TFLLR-NH(2) plus linoleic acid caused a similar rapid response. CP-24879, a Δ(5)/Δ(6)-desaturase inhibitor, abolished the PGE(2) release induced by TFLLR-NH(2) plus linoleic acid, but not by TFLLR-NH(2) alone. The TFLLR-NH(2)-induced PGE(2) release was not affected by inhibitors of cytosolic phospholipase A(2) (cPLA(2)), Ca(2+)-independent PLA(2) (cPLA(2)) or secretory PLA(2) (sPLA(2)), but was abolished by their mixture or a pan-PLA(2) inhibitor. Among PLA(2) isozymes, mRNA of group IIA sPLA(2) (sPLA(2)-IIA) was upregulated following PAR1 stimulation for 6-18 h, whereas protein levels of PGE synthases were unchanged. These data suggest that the delay of PGE(2) release after COX-2 upregulation triggered by PAR1 is due to the poor supply of free arachidonic acid at the early stage in RGM1 cells, and that plural isozymes of PLA(2) including sPLA(2)-IIA may complementarily contribute to the liberation of free arachidonic acid.
Collapse
Affiliation(s)
- Fumiko Sekiguchi
- Division of Pharmacology and Pathophysiology, Kinki University School of Pharmacy, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Hurley BP, Pirzai W, Mumy KL, Gronert K, McCormick BA. Selective eicosanoid-generating capacity of cytoplasmic phospholipase A2 in Pseudomonas aeruginosa-infected epithelial cells. Am J Physiol Lung Cell Mol Physiol 2010; 300:L286-94. [PMID: 21097525 DOI: 10.1152/ajplung.00147.2010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Airway neutrophil infiltration is a pathological hallmark observed in multiple lung diseases including pneumonia and cystic fibrosis. Bacterial pathogens such as Pseudomonas aeruginosa instigate neutrophil recruitment to the air space. Excessive accumulation of neutrophils in the lung often contributes to tissue destruction. Previous studies have unveiled hepoxilin A(3) as the key molecular signal driving neutrophils across epithelial barriers. The eicosanoid hepoxilin A(3) is a potent neutrophil chemoattractant produced by epithelial cells in response to infection with P. aeruginosa. The enzyme phospholipase A(2) liberates arachidonic acid from membrane phospholipids, the rate-limiting step in the synthesis of all eicosanoids, including hepoxilin A(3). Once generated, aracidonic acid is acted upon by multiple cyclooxygenases and lipoxygenases producing an array of functionally diverse eicosanoids. Although there are numerous phospholipase A(2) isoforms capable of generating arachidonic acid, the isoform most often associated with eicosanoid generation is cytoplasmic phospholipase A(2)α. In the current study, we observed that the cytoplasmic phospholipase A(2)α isoform is required for mediating P. aeruginosa-induced production of certain eicosanoids such as prostaglandin E(2). However, we found that neutrophil transepithelial migration induced by P. aeruginosa does not require cytoplasmic phospholipase A(2)α. Furthermore, P. aeruginosa-induced hepoxilin A(3) production persists despite cytoplasmic phospholipase A(2)α suppression and generation of the 12-lipoxygenase metabolite 12-HETE is actually enhanced in this context. These results suggest that alterative phospholipase A(2) isoforms are utilized to synthesize 12-lipoxygenase metabolites. The therapeutic implications of these findings are significant when considering anti-inflammatory therapies based on targeting eicosanoid synthesis pathways.
Collapse
Affiliation(s)
- Bryan P Hurley
- Mucosal Immunology, Massachusetts General Hospital, Charlestown, 02129, USA.
| | | | | | | | | |
Collapse
|
24
|
Peters T, Mann TS, Henry PJ. Inhibitory influence of protease-activated receptor 2 and E-prostanoid receptor stimulants in lipopolysaccharide models of acute airway inflammation. J Pharmacol Exp Ther 2010; 335:424-33. [PMID: 20688975 DOI: 10.1124/jpet.109.163253] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Protease-activated receptors (PARs) are widely expressed throughout the respiratory tract, and PAR(2) has been investigated as a potential drug target for inflammatory airway diseases. The primary focus of this study was to determine the extent to which PAR(2)-activating peptides modulate lipopolysaccharide (LPS)-induced airway neutrophilia in mice and establish the underlying mechanisms. Intranasal administration of LPS induced dose- and time-dependent increases in the number of neutrophils recovered from bronchoalveolar lavage (BAL) fluid of mice. Coadministration of the PAR(2)-activating peptide f-LIGRL inhibited LPS-induced neutrophilia at 3 and 6 h after inoculation. PAR(2)-mediated inhibition of LPS-induced neutrophilia was mimicked by prostaglandin E(2) (PGE(2)) and butaprost [selective E-prostanoid (EP(2)) receptor agonist], and blocked by parecoxib (cyclooxygenase 2 inhibitor) and 6-isopropoxy-9-oxoxanthene-2-carboxylic acid (AH6809) (EP(1)/EP(2) receptor antagonist). PAR(2)-activating peptides also blunted early increases in the levels of the key neutrophil chemoattractants keratinocyte-derived chemokine and macrophage inflammatory protein 2 (MIP-2) in the BAL of LPS-exposed mice. However, neither PAR(2)-activating peptides nor PGE(2) inhibited LPS-induced generation of MIP-2 in cultures of primary murine alveolar macrophages In summary, PAR(2)-activating peptides and PGE(2) suppressed LPS-induced neutrophilia in murine airways, independently of an inhibitory action on MIP-2 generation by alveolar macrophages.
Collapse
Affiliation(s)
- Terence Peters
- School of Medicine and Pharmacology, University of Western Australia, Stirling Highway, Nedlands, Australia, 6009.
| | | | | |
Collapse
|
25
|
Moriyuki K, Sekiguchi F, Matsubara K, Nishikawa H, Kawabata A. Curcumin Inhibits the proteinase-activated receptor-2-triggered prostaglandin E2 production by suppressing cyclooxygenase-2 upregulation and Akt-dependent activation of nuclear factor-κB in human lung epithelial cells. J Pharmacol Sci 2010; 114:225-9. [PMID: 20838026 DOI: 10.1254/jphs.10126sc] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
We performed this study to determine if curcumin affects pro-inflammatory responses to activation of proteinase-activated receptor-2 (PAR2) in human pulmonary adenocarcinoma A549 cells. Curcumin completely inhibited the PAR2-triggered prostaglandin E(2) (PGE(2)) production, but notably not interleukin-8 release. Cyclooxygenase-2 (COX-2) upregulation, but not its upstream activation of mitogen-activated protein kinases, caused by PAR2 stimulation was partially inhibited by curcumin. Curcumin inhibited the PAR2-triggered phosphorylation of I-κB, an indicator for nuclear factor-κB (NF-κB) activation, and also its upstream signal Akt, which is known to contribute to PAR2-triggered PGE(2) formation, but not COX-2 upregulation. Collectively, curcumin inhibits the PAR2-triggered PGE(2) production by suppressing COX-2 upregulation and Akt/NF-κB signals in A549 cells.
Collapse
Affiliation(s)
- Kazumi Moriyuki
- Division of Pharmacology and Pathophysiology, Kinki University School of Pharmacy, Japan
| | | | | | | | | |
Collapse
|
26
|
Eguchi H, Iwaki K, Shibata K, Ogawa T, Ohta M, Kitano S. Protease-activated receptor-2 regulates cyclooxygenase-2 expression in human bile duct cancer via the pathways of mitogen-activated protein kinases and nuclear factor kappa B. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2010; 18:147-53. [PMID: 20740367 DOI: 10.1007/s00534-010-0318-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND/PURPOSE Recent studies have suggested that protease-activated receptor-2 (PAR-2) activity correlates with cell proliferation and tumor growth, and its activation induces expression of cyclooxygenase-2 (COX-2). However, no previous reports have investigated PAR-2 signaling pathways in bile duct cancer. The aim of this study was to determine whether PAR-2 activation can regulate COX-2 expression via mitogen-activated protein kinases (MAPKs) and nuclear factor kappa B (NF-κB) in human bile duct cancer cells. METHODS We immunohistochemically examined PAR-2 and COX-2 expression in 104 resected human specimens of extrahepatic bile duct cancer. We then determined how inhibitors of MAPKs and NF-κB signaling pathways influence COX-2 expression under PAR-2 activation in HuCCT1 and TKKK, human bile duct cancer cell lines. RESULTS PAR-2 and COX-2 proteins were immunohistochemically recognized in 63 and 57% of specimens and were significantly correlated. PAR-2 agonist peptide activated mRNA and protein expression of COX-2 in HuCCT1 and TKKK. Pharmacologic blockade of p44/42 or p38 MAPK significantly inhibited PAR-2-activated mRNA and protein expression of COX-2 in both cells. COX-2 protein expression was also inhibited by the blocker of NF-κB pathway in both cells. CONCLUSIONS PAR-2 may regulate COX-2 expression in human bile duct cancer via the MAPKs and NF-κB pathways.
Collapse
Affiliation(s)
- Hidetoshi Eguchi
- Department of Surgery I, Oita University Faculty of Medicine, 1-1 Hasama-machi, Yufu, Oita 879-5593, Japan.
| | | | | | | | | | | |
Collapse
|
27
|
Moriyuki K, Sekiguchi F, Matsubara K, Nishikawa H, Kawabata A. Proteinase-activated receptor-2-triggered prostaglandin E(2) release, but not cyclooxygenase-2 upregulation, requires activation of the phosphatidylinositol 3-kinase/Akt / nuclear factor-kappaB pathway in human alveolar epithelial cells. J Pharmacol Sci 2009; 111:269-75. [PMID: 19881225 DOI: 10.1254/jphs.09155fp] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Proteinase-activated receptor-2 (PAR2) triggers upregulation of cyclooxygenase-2 (COX-2) and prostaglandin E(2) (PGE(2)) formation in human alveolar epithelial A549 cells. This COX-2 upregulation appears to involve the Src / epidermal growth factor (EGF) receptor / p38 MAP kinase (p38MAPK) pathway and also the cAMP-response element-binding protein (CREB) pathway. Here, we investigated the roles of nuclear factor-kappaB (NF-kappaB)-related signals in the PAR2-triggered PGE(2) release / COX-2 upregulation in A549 cells. The PAR2-triggered PGE(2) release was clearly blocked by an inhibitor of the NF-kappaB pathway. Stimulation of PAR2 actually caused phosphorylation of inhibitor-kappaB, an indicator of NF-kappaB activation, an effect being blocked by inhibitors of MEK, phosphatidylinositol 3-kinase (PI3-kinase), and Akt, but little or not by inhibitors of p38MAPK and JNK. Stimulation of PAR2 also caused phosphorylation of Akt, an effect suppressed by inhibitors of PI3-kinase and MEK. Nonetheless, the PAR2-triggered upregulation of COX-2 was resistant to inhibitors of NF-kappaB, PI3-kinase, and Akt, but was attenuated by inhibitors of MEK and JNK. Stimulation of PAR2 induced phosphorylation of CREB, an effect abolished by an inhibitor of MEK but not inhibitors of p38MAPK and EGF receptor. These findings demonstrate that the MEK / ERK / PI3-kinase / Akt / NF-kappaB pathway is involved in PAR2-triggered PGE(2) formation, but not upregulation of COX-2 that is dependent on activation of ERK/CREB and JNK in addition to p38MAPK.
Collapse
Affiliation(s)
- Kazumi Moriyuki
- Division of Pharmacology and Pathophysiology, Kinki University School of Pharmacy, Japan
| | | | | | | | | |
Collapse
|
28
|
Peters T, Henry PJ. Protease-activated receptors and prostaglandins in inflammatory lung disease. Br J Pharmacol 2009; 158:1017-33. [PMID: 19845685 PMCID: PMC2785524 DOI: 10.1111/j.1476-5381.2009.00449.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 06/11/2009] [Accepted: 07/08/2009] [Indexed: 12/17/2022] Open
Abstract
Protease-activated receptors (PARs) are a novel family of G protein-coupled receptors. Signalling through PARs typically involves the cleavage of an extracellular region of the receptor by endogenous or exogenous proteases, which reveals a tethered ligand sequence capable of auto-activating the receptor. A considerable body of evidence has emerged over the past 20 years supporting a prominent role for PARs in a variety of human physiological and pathophysiological processes, and thus substantial attention has been directed towards developing drug-like molecules that activate or block PARs via non-proteolytic pathways. PARs are widely expressed within the respiratory tract, and their activation appears to exert significant modulatory influences on the level of bronchomotor tone, as well as on the inflammatory processes associated with a range of respiratory tract disorders. Nevertheless, there is debate as to whether the principal response to PAR activation is an augmentation or attenuation of airways inflammation. In this context, an important action of PAR activators may be to promote the generation and release of prostanoids, such as prostglandin E(2), which have well-established anti-inflammatory effects in the lung. In this review, we primarily focus on the relationship between PARs, prostaglandins and inflammatory processes in the lung, and highlight their potential role in selected respiratory tract disorders, including pulmonary fibrosis, asthma and chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Terence Peters
- School of Medicine and Pharmacology, University of Western Australia, Nedlands, Australia
| | | |
Collapse
|
29
|
Wang ZY, Wang P, Bjorling DE. Role of mast cells and protease-activated receptor-2 in cyclooxygenase-2 expression in urothelial cells. Am J Physiol Regul Integr Comp Physiol 2009; 297:R1127-35. [PMID: 19675284 DOI: 10.1152/ajpregu.00310.2009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mast cells have been shown to play a role in development and persistence of various inflammatory bladder disorders. Mast cell-derived tryptase specifically activates protease-activated receptor-2 (PAR-2), and PAR-2 is known to be involved in inflammation. We investigated whether mast cells participate in increase of cyclooxygenase-2 (COX-2) protein abundance in urothelium/suburothelium of bladders of mice subsequent to cyclophosphamide (CYP)-induced bladder inflammation. We also used primary cultures of human urothelial cells to investigate cellular mechanisms underlying activation of PAR-2 resulting in increased COX-2 expression. We found that treatment of mice with CYP (150 mg/kg ip) increased COX-2 protein abundance in bladder urothelium/suburothelium 3, 6, and 24 h after CYP (P < 0.01), and increased COX-2 protein abundance was prevented by treatment of mice with the mast cell stabilizer sodium cromolyn (10 mg/kg ip) for 4 consecutive days before CYP treatment. Incubation of freshly isolated mouse urothelium/suburothelium with a selective PAR-2 agonist, 2-furoyl-LIGRLO-amide (3 microM), also increased COX-2 protein abundance (P < 0.05). We further demonstrated that 2-furoyl-LIGRLO-amide (3 microM) increased COX-2 mRNA expression and protein abundance in primary cultures of human urothelial cells (P < 0.01), and the effects of PAR-2 activation were mediated primarily by the ERK1/2 MAP kinase pathway. These data indicate that there are functional interactions among mast cells, PAR-2 activation, and increased expression of COX-2 in bladder inflammation.
Collapse
Affiliation(s)
- Zun-Yi Wang
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53719, USA.
| | | | | |
Collapse
|
30
|
Christerson U, Keita AV, Söderholm JD, Gustafson-Svärd C. Potential role of protease-activated receptor-2-stimulated activation of cytosolic phospholipase A(2) in intestinal myofibroblast proliferation: Implications for stricture formation in Crohn's disease. J Crohns Colitis 2009; 3:15-24. [PMID: 21172243 DOI: 10.1016/j.crohns.2008.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 09/17/2008] [Accepted: 10/01/2008] [Indexed: 01/25/2023]
Abstract
BACKGROUND AND AIMS Myofibroblast hyperplasia contributes to muscularis mucosae thickening and stricture formation in Crohn's disease (CD). Protease-activated receptor-2 (PAR-2) and cytosolic phospholipase A(2) (cPLA(2)) are known regulators of cell growth, but their significance in intestinal myofibroblast proliferation remain to be elucidated. The principle aims of the present study were to investigate if PAR-2 is expressed in the expanded muscularis mucosa in ileal CD specimens, if inflammatory cytokines may stimulate PAR-2 expression in intestinal myofibroblasts, and if PAR-2 and cPLA(2) may regulate intestinal myofibroblast growth. METHODS Immunohistochemistry was used for detection of PAR-2 in ileal CD specimens. Studies on PAR-2 expression, PLA(2) activation and cell growth were performed in a human intestinal myofibroblast cell line, CCD-18Co. PAR-2 expression was investigated by RT-PCR and immunocytochemistry. PLA(2) activity was analyzed by quantification of released (14)C-arachidonic acid ((14)C-AA). Cell growth was examined by (3)H-thymidine incorporation and cell counting. RESULTS The thickened muscularis mucosae of the CD specimens showed strong PAR-2 expression. In cultured myofibroblasts, tumor necrosis factor-α (TNF-α) up-regulated PAR-2 mRNA and protein, and potentiated PAR-2-stimulated (14)C-AA release by two known PAR-2 activators, trypsin and SLIGRL-NH(2). The release of (14)C-AA was dependent on cPLA(2). Trypsin stimulated the proliferation of serum-starved cells, and inhibition of cPLA(2) reduced normal cell growth and abolished the growth-promoting effect of trypsin. CONCLUSIONS The results suggest that PAR-2-mediated cPLA(2) activation might be of importance in intestinal myofibroblast proliferation. The results also point to the possibility that PAR-2 up-regulation by inflammatory cytokines, like TNF-α, may modulate this effect.
Collapse
Affiliation(s)
- Ulrika Christerson
- School of Pure and Applied Natural Sciences, University of Kalmar, SE-391 82 Kalmar, Sweden
| | | | | | | |
Collapse
|
31
|
Lin CB, Chen N, Scarpa R, Guan F, Babiarz-Magee L, Liebel F, Li WH, Kizoulis M, Shapiro S, Seiberg M. LIGR, a protease-activated receptor-2-derived peptide, enhances skin pigmentation without inducing inflammatory processes. Pigment Cell Melanoma Res 2008; 21:172-83. [PMID: 18426410 DOI: 10.1111/j.1755-148x.2008.00441.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The protease-activated receptor-2 (PAR-2) is a seven transmembrane G-protein-coupled receptor that could be activated by serine protease cleavage or by synthetic peptide agonists. We showed earlier that activation of PAR-2 with Ser-Leu-Ile-Gly-Arg-Leu-NH(2) (SLIGRL), a known PAR-2 activating peptide, induces keratinocyte phagocytosis and increases skin pigmentation, indicating that PAR-2 regulates pigmentation by controlling phagocytosis of melanosomes. Here, we show that Leu-Ile-Gly-Arg-NH(2) (LIGR) can also induce skin pigmentation. Both SLIGRL and LIGR increased melanin deposition in vitro and in vivo, and visibly darkened human skins grafted onto severe combined immuno-deficient (SCID) mice. Both SLIGRL and LIGR stimulated Rho-GTP activation resulting in keratinocyte phagocytosis. Interestingly, LIGR activates only a subset of the PAR-2 signaling pathways, and unlike SLIGRL, it does not induce inflammatory processes. LIGR did not affect many PAR-2 signaling pathways, including [Ca(2+)] mobilization, cAMP induction, the induction of cyclooxgenase-2 (COX-2) expression and the secretion of prostaglandin E2, interleukin-6 and -8. PAR-2 siRNA inhibited LIGR-induced phagocytosis, indicating that LIGR signals via PAR-2. Our data suggest that LIGR is a more specific regulator of PAR-2-induced pigmentation relative to SLIGRL. Therefore, enhancing skin pigmentation by topical applications of LIGR may result in a desired tanned-like skin color, without enhancing inflammatory processes, and without the need of UV exposure.
Collapse
Affiliation(s)
- Connie B Lin
- The Johnson & Johnson Skin Research Center, Consumer Product Worldwide, A division of Johnson & Johnson Consumer Companies, Inc., 199 Grandview Rd., Skillman, NJ 08558, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Tanaka Y, Sekiguchi F, Hong H, Kawabata A. PAR2 triggers IL-8 release via MEK/ERK and PI3-kinase/Akt pathways in GI epithelial cells. Biochem Biophys Res Commun 2008; 377:622-626. [PMID: 18854173 DOI: 10.1016/j.bbrc.2008.10.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 10/07/2008] [Indexed: 12/18/2022]
Abstract
Proteinase-activated receptor-2 (PAR2) plays pro-inflammatory roles in many organs including the gastrointestinal (GI) tract. To clarify the downstream pro-inflammatory signaling of PAR2 in the GI tract, we examined interleukin-8 (IL-8) release and the underlying cellular signaling following PAR2 stimulation in human colorectal cancer-derived HCT-15 cells and human gastric adenocarcinoma-derived MKN-45 cells. A PAR2-activating peptide, but not a PAR2-inactive scrambled peptide or a PAR1- activating peptide, caused IL-8 release in these GI epithelial cells. The PAR2-triggered IL-8 release was suppressed by inhibitors of MEK (U0126) or PI3-kinase (LY294002), and PAR2 stimulation indeed activated the downstream kinases, ERK and Akt. U0126 blocked the phosphorylation of ERK, but not Akt, and LY294002 blocked the phosphorylation of Akt, but not ERK. Together, PAR2 triggers IL-8 release via two independent signaling pathways, MEK/ERK and PI3-kinase/Akt, suggesting a role of PAR2 as a pro-inflammatory receptor in the GI tract.
Collapse
Affiliation(s)
- Yusuke Tanaka
- Division of Pharmacology and Pathophysiology, Kinki University School of Pharmacy, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Japan
| | - Fumiko Sekiguchi
- Division of Pharmacology and Pathophysiology, Kinki University School of Pharmacy, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Japan
| | - Hao Hong
- Division of Pharmacology and Pathophysiology, Kinki University School of Pharmacy, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Japan
| | - Atsufumi Kawabata
- Division of Pharmacology and Pathophysiology, Kinki University School of Pharmacy, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Japan.
| |
Collapse
|
33
|
Nagataki M, Moriyuki K, Sekiguchi F, Kawabata A. Evidence that PAR2-triggered prostaglandin E2 (PGE2) formation involves the ERK-cytosolic phospholipase A2-COX-1-microsomal PGE synthase-1 cascade in human lung epithelial cells. Cell Biochem Funct 2008; 26:279-82. [PMID: 17708577 DOI: 10.1002/cbf.1434] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We investigated possible involvement of three isozymes of prostaglandin E synthase (PGES), microsomal PGES-1 (mPGES-1), mPGES-2 and cytosolic PGES (cPGES) in COX-2-dependent prostaglandin E(2) (PGE(2)) formation following proteinase-activated receptor-2 (PAR2) stimulation in human lung epithelial cells. PAR2 stimulation up-regulated mPGES-1 as well as COX-2, but not mPGES-2 or cPGES, leading to PGE(2) formation. The PAR2-triggered up-regulation of mPGES-1 was suppressed by inhibitors of COX-1, cytosolic phospholipase A(2) (cPLA(2)) and MEK, but not COX-2. Finally, a selective inhibitor of mPGES-1 strongly suppressed the PAR2-evoked PGE(2) formation. PAR2 thus appears to trigger specific up-regulation of mPGES-1 that is dependent on prostanoids formed via the MEK/ERK/cPLA(2)/COX-1 pathway, being critical for PGE(2) formation.
Collapse
Affiliation(s)
- Mami Nagataki
- Division of Physiology and Pathophysiology, Kinki University School of Pharmacy, Higashi-Osaka, Japan
| | | | | | | |
Collapse
|
34
|
Morla L, Crambert G, Mordasini D, Favre G, Doucet A, Imbert-Teboul M. Proteinase-activated receptor 2 stimulates Na,K-ATPase and sodium reabsorption in native kidney epithelium. J Biol Chem 2008; 283:28020-8. [PMID: 18678869 DOI: 10.1074/jbc.m804399200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Proteinase-activated receptors 2 (PAR2) are expressed in kidney, but their function is mostly unknown. Since PAR2 control ion transport in several epithelia, we searched for an effect on sodium transport in the cortical thick ascending limb of Henle's loop, a nephron segment that avidly reabsorbs NaCl, and for its signaling. Activation of PAR2, by either trypsin or a specific agonist peptide, increased the maximal activity of Na,K-ATPase, its apparent affinity for sodium, the sodium permeability of the paracellular pathway, and the lumen-positive transepithelial voltage, featuring increased NaCl reabsorption. PAR2 activation induced calcium signaling and phosphorylation of ERK1,2. PAR2-induced stimulation of Na,K-ATPase Vmax was fully prevented by inhibition of phospholipase C, of changes in intracellular concentration of calcium, of classical protein kinases C, and of ERK1,2 phosphorylation. PAR2-induced increase in paracellular sodium permeability was mediated by the same signaling cascade. In contrast, increase in the apparent affinity of Na,K-ATPase for sodium, although dependent on phospholipase C, was independent of calcium signaling, was insensitive to inhibitors of classical protein kinases C and of ERK1,2 phosphorylation, but was fully prevented by the nonspecific protein kinase inhibitor staurosporine, as was the increase in transepithelial voltage. In conclusion, PAR2 increases sodium reabsorption in rat thick ascending limb of Henle's loop along both the transcellular and the paracellular pathway. PAR2 effects are mediated in part by a phospholipase C/protein kinase C/ERK1,2 cascade, which increases Na,K-ATPase maximal activity and the paracellular sodium permeability, and by a different phospholipase C-dependent, staurosporine-sensitive cascade that controls the sodium affinity of Na,K-ATPase.
Collapse
Affiliation(s)
- Luciana Morla
- Université Pierre et Marie Curie, Univ Paris 06, UMR 7134, 75005 Paris
| | | | | | | | | | | |
Collapse
|
35
|
de Oliveira ACP, Candelario-Jalil E, Bhatia HS, Lieb K, Hüll M, Fiebich BL. Regulation of prostaglandin E2 synthase expression in activated primary rat microglia: evidence for uncoupled regulation of mPGES-1 and COX-2. Glia 2008; 56:844-55. [PMID: 18383341 DOI: 10.1002/glia.20658] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Prostaglandin E2 (PGE2) is among the most important mediators involved in neuroinflammatory processes. The final step of its synthesis is regulated by enzymes termed prostaglandin E2 synthases (PGES). Three PGES are known, cytosolic (c)PGES, membrane-associated (m)PGES-1 and mPGES-2. The expression of mPGES-1 is induced by inflammatory stimuli such as lipopolysaccharide (LPS), interleukin (IL)-1beta, and tumor necrosis factor (TNF)-alpha. Although some roles of mPGES-1 have already been suggested, its function in the CNS and the signaling pathways involved in its upregulation are poorly understood. In this study, we examined the regulation of mPGES-1 in primary rat microglia and the signaling pathways involved in its expression. Whereas the expression of cPGES and mPGES-2 was not stimulated by LPS, low doses of LPS (0.1-1 ng/mL) sufficiently stimulated mPGES-1 mRNA expression. A corresponding protein synthesis, however, was obtained only with higher doses (10-100 ng/mL). The LPS-induced increase of mPGES-1 was inhibited by different signaling pathway inhibitors, such as SP600125, LY294002, GF109203X, and SC-514, suggesting the involvement of c-Jun N-terminal kinase (JNK), phosphatidylinositol 3-kinase (PI-3K)/Akt, protein kinase C (PKC) pathways, and the nuclear factor (NF)-kappaB, respectively. In contrast to other reports, LPS-induced mPGES-1 synthesis was not invariably coupled to the synthesis of COX-2, since inhibition of PI-3K with LY294002 decreased mPGES-1 but increased COX-2 levels. This detailed view of the intracellular signaling pathways involved in mPGES-1 expression in activated microglia opens a new avenue in the search for novel potential therapeutic targets to reduce neuroinflammation, and demonstrates that mPGES-1 expression is not strictly coupled to the expression of COX-2.
Collapse
|
36
|
Saleh SM, Mann TS, Peters T, Betts RJ, Henry PJ. Influence of dexamethasone on protease-activated receptor 2-mediated responses in the airways. J Pharmacol Exp Ther 2008; 324:622-30. [PMID: 18003863 DOI: 10.1124/jpet.107.132753] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Stimulants of protease-activated receptor (PAR)(2) promote the generation of the bronchoprotective prostanoid prostaglandin (PG) E(2) by airway epithelial cells. In contrast, glucocorticoids reduce the levels of PGE(2) in airway epithelial cell cultures by concomitantly inhibiting pathways required for PGE(2) synthesis and facilitating pathways involved in PGE(2) inactivation. The aim of this study was to determine whether glucocorticoids inhibited PAR(2)-mediated, PGE(2)-dependent responses in epithelial cell cultures, in intact airway preparations, and in whole animals. In cultures of A549 cells, a PAR(2)-activating peptide SLI-GRL-NH(2) produced concentration and time-dependent increases in PGE(2) levels, which were significantly enhanced after exposure to lipopolysaccharide (LPS). However, SLIGRL-NH(2)-induced increases in PGE(2) levels were abolished by pretreatment of cells with the glucocorticoid, dexamethasone. In mouse isolated tracheal preparations, SLIGRL-NH(2) and PGE(2) induced concentration-dependent relaxation responses that were unaffected by dexamethasone, irrespective of whether dexamethasone exposure occurred in vitro or in vivo. Intranasal administration of LPS produced a pronounced increase in the numbers of neutrophils recovered from the bronchoalveolar lavage fluid of BALB/c mice. Numbers of recovered neutrophils were 40 to 60% lower in mice that received f-LIGRL-NH(2) (PAR(2)-activating peptide, 30 microg intranasally), PGE(2) (10 mugintranasally), or dexamethasone (1 mg/kg i.p.). In the combined presence of dexamethasone and f-LIGRL-NH(2) or dexamethasone and PGE(2), the number of neutrophils was suppressed further (80-83% lower). Thus, although dexamethasone abolished PAR(2)-mediated generation of PGE(2) in A549 cells, neither the smooth muscle relaxant nor the anti-inflammatory effects of PAR(2)-activating peptides (and PGE(2)) were diminished by in vitro or in vivo exposure to dexamethasone.
Collapse
Affiliation(s)
- Sham Mohd Saleh
- School of Medicine and Pharmacology, University of Western Australia, Stirling Highway, Nedlands, Australia
| | | | | | | | | |
Collapse
|
37
|
van der Merwe JQ, Hollenberg MD, MacNaughton WK. EGF receptor transactivation and MAP kinase mediate proteinase-activated receptor-2-induced chloride secretion in intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 2008; 294:G441-51. [PMID: 18032480 DOI: 10.1152/ajpgi.00303.2007] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We examined the stimulus-secretion pathways whereby proteinase-activated receptor 2 (PAR-2) stimulates Cl(-) secretion in intestinal epithelial cells. SCBN and T84 epithelial monolayers grown on Snapwell supports and mounted in modified Ussing chambers were activated by the PAR-2-activating peptides SLIGRL-NH(2) and 2-furoyl-LIGRLO-NH(2). Short-circuit current (I(sc)) was used as a measure of net electrogenic ion transport. Basolateral, but not apical, application of SLIGRL-NH(2) or 2-furoyl-LIGRLO-NH(2) caused a concentration-dependent change in I(sc) that was significantly reduced in Cl(-)-free buffer and by the intracellular Ca(2+) blockers thapsigargin and BAPTA-AM, but not by the Ca(2+) channel blocker verapamil. Inhibitors of PKA (H-89) and CFTR (glibenclamide) also significantly reduced PAR-2-stimulated Cl(-) transport. PAR-2 activation was associated with increases in cAMP and intracellular Ca(2+). Immunoblot analysis revealed increases in phosphorylation of epidermal growth factor (EGF) receptor (EGFR) tyrosine kinase, Src, Pyk2, cRaf, and ERK1/2 in response to PAR-2 activation. Pretreatment with inhibitors of cyclooxygenases (indomethacin), tyrosine kinases (genistein), EGFR (PD-153035), MEK (PD-98059 or U-0126), and Src (PP1) inhibited SLIGRL-NH(2)-induced increases in I(sc). Inhibition of Src, but not matrix metalloproteinases, reduced EGFR phosphorylation. Reduced EGFR phosphorylation paralleled the reduction in PAR-2-stimulated I(sc). We conclude that activation of basolateral, but not apical, PAR-2 induces epithelial Cl(-) secretion via cAMP- and Ca(2+)-dependent mechanisms. The secretory effect involves EGFR transactivation by Src, leading to subsequent ERK1/2 activation and increased cyclooxygenase activity.
Collapse
Affiliation(s)
- Jacques Q van der Merwe
- Inflammation Research Network, Department of Physiology, University of Calgary, Calgary, AB, Canada T2N 4N1
| | | | | |
Collapse
|
38
|
Iwaki K, Shibata K, Ohta M, Endo Y, Uchida H, Tominaga M, Okunaga R, Kai S, Kitano S. A small interfering RNA targeting proteinase-activated receptor-2 is effective in suppression of tumor growth in a Panc1 xenograft model. Int J Cancer 2008; 122:658-63. [PMID: 17935125 DOI: 10.1002/ijc.23123] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Proteinase-activated receptor-2 (PAR-2), which is a G protein-coupled receptor, is activated in inflammatory processes and cell proliferation. We previously demonstrated that an anti-PAR-2 antibody suppresses proliferation of human pancreatic cells in vitro. However, there have been no studies of PAR-2 signaling pathways in vivo. The aim of this study was to determine whether blockade of PAR-2 by RNA interference influences pancreatic tumor growth. We originally constructed small interfering RNAs (siRNAs) targeting human PAR-2, and performed cell proliferation assays of Panc1 human pancreatic cancer cell line with these siRNAs. Intratumoral treatment with these PAR-2 siRNAs and atelocollagen was also performed in a xenograft model with nude mice and Panc1 cells. siRNAs against human PAR-2 inhibited proliferation of Panc1 cells, whereas control scramble siRNAs had no effect on proliferation. The PAR-2 siRNAs dramatically suppressed tumor growth in the xenograft model. PAR-2-specific siRNA inhibited growth of human pancreatic cancer cells both in vitro and in vivo. Blockade of PAR-2 signaling by siRNA may be a novel strategy to treat pancreatic cancer.
Collapse
Affiliation(s)
- Kentaro Iwaki
- Department of Surgery I, Oita University Faculty of Medicine, Oita, Japan. iwaki@ med.oita-u.ac.jp
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Kawabata A, Matsunami M, Sekiguchi F. Gastrointestinal roles for proteinase-activated receptors in health and disease. Br J Pharmacol 2007; 153 Suppl 1:S230-40. [PMID: 17994114 DOI: 10.1038/sj.bjp.0707491] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
It has been almost a decade since the molecular cloning of all four members of the proteinase-activated receptor (PAR) family was completed. This unique family of G protein-coupled receptors (GPCRs) mediates specific cellular actions of various endogenous proteinases including thrombin, trypsin, tryptase, etc. and also certain exogenous enzymes. Increasing evidence has been clarifying the emerging roles played by PARs in health and disease. PARs, particularly PAR1 and PAR2, are distributed throughout the gastrointestinal (GI) tract, modulating various GI functions. One of the most important GI functions of PARs is regulation of exocrine secretion in the salivary glands, pancreas and GI mucosal epithelium. PARs also modulate motility of GI smooth muscle, involving multiple mechanisms. PAR2 appears to play dual roles in pancreatitis and related pain, being pro-inflammatory/pro-nociceptive and anti-inflammatory/anti-nociceptive. Similarly, dual roles for PAR1 and PAR2 have been demonstrated in mucosal inflammation/damage throughout the GI tract. There is also fundamental and clinical evidence for involvement of PAR2 in colonic pain. PARs are thus considered key molecules in regulation of GI functions and targets for development of drugs for treatment of various GI diseases.
Collapse
Affiliation(s)
- A Kawabata
- Division of Pharmacology and Pathophysiology, Kinki University School of Pharmacy, Higashi-Osaka, Japan.
| | | | | |
Collapse
|
40
|
Wang H, Wen S, Bunnett NW, Leduc R, Hollenberg MD, MacNaughton WK. Proteinase-activated receptor-2 induces cyclooxygenase-2 expression through beta-catenin and cyclic AMP-response element-binding protein. J Biol Chem 2007; 283:809-15. [PMID: 17962194 DOI: 10.1074/jbc.m703021200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Chronic inflammation of mucosae is associated with an increased cancer risk. Tumorigenesis in these tissues is associated with the activity of some proteinases, cyclooxygenase-2 (COX-2), and beta-catenin. Serine proteinases participate in both inflammation and tumorigenesis through the activation of proteinase-activated receptor-2 (PAR(2)), which up-regulates COX-2 by an unknown mechanism. We sought to determine whether beta-catenin participated in PAR(2)-induced COX-2 expression and through what cellular mechanism. In A549 epithelial cells, we showed that PAR(2) activation increased COX-2 expression through the beta-catenin/T cell factor transcription pathway. This effect was dependent upon ERK1/2 MAPK, which inhibited the beta-catenin-regulating protein, glycogen synthase kinase-3beta, and induced the activity of the cAMP-response element-binding protein (CREB). Knockdown of CREB by small interfering RNA revealed that PAR(2)-induced beta-catenin transcriptional activity and COX-2 expression were CREB-dependent. A co-immunoprecipitation assay revealed a physical interaction between CREB and beta-catenin. Thus, PAR(2) up-regulated COX-2 expression via an ERK1/2-mediated activation of the beta-catenin/Tcf-4 and CREB pathways. These findings reveal new cellular mechanisms by which serine proteinases may participate in tumor development and are particularly relevant to cancers associated with chronic mucosal inflammation, where serine proteinases are abundant and COX-2 overexpression is a common feature.
Collapse
Affiliation(s)
- Hongying Wang
- Inflammation Research Network, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | | | | | | | | |
Collapse
|
41
|
Ostrowska E, Sokolova E, Reiser G. PAR-2 activation and LPS synergistically enhance inflammatory signaling in airway epithelial cells by raising PAR expression level and interleukin-8 release. Am J Physiol Lung Cell Mol Physiol 2007; 293:L1208-18. [PMID: 17766588 DOI: 10.1152/ajplung.00137.2007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Protease-activated receptors (PARs) are involved in the contribution of airway epithelial cells to the development of inflammation by release of pro- and anti-inflammatory mediators. Here, we evaluated in epithelial cells the influence of LPS and continuous PAR activation on PAR expression level and the release of the proinflammatory chemokine IL-8. We studied primary human small airway epithelial cells and two airway epithelial cell lines, A549 and HBE cells. LPS specifically upregulated expression of PAR-2 but not of PAR-1. Exposure of epithelial cells to PAR-1 or PAR-2 agonists increased the PAR-1 expression level. The PAR-2 agonist exhibited higher potency than PAR-1 activators. However, the combined exposure of epithelial cells to LPS and PAR agonists abrogated the PAR-1 upregulation. The PAR-2 expression level was also upregulated after exposure to PAR-1 or PAR-2 agonists. This elevation was higher than the effect of PAR agonists on the PAR-1 level. In contrast to the PAR-1 level, the PAR-2 level remained elevated under concomitant stimulation with LPS and PAR-2 agonist. Furthermore, activation of PAR-2, but not of PAR-1, caused production of IL-8 from the epithelial cells. Interestingly, both in the epithelial cell line and in primary epithelial cells, there was a potentiation of the stimulation of the IL-8 synthesis and release by PAR-2 agonist together with LPS. In summary, these results underline the important role of PAR-2 in human lung epithelial cells. Moreover, our study shows an intricate interplay between LPS and PAR agonists in affecting PAR regulation and IL-8 production.
Collapse
Affiliation(s)
- Ewa Ostrowska
- Otto-von-Guericke-Universität Magdeburg, Medizinische Fakultät, Institut für Neurobiochemie, Leipziger Strasse 44, D-39120, Magdeburg, Germany
| | | | | |
Collapse
|
42
|
Moriyuki K, Nagataki M, Sekiguchi F, Nishikawa H, Kawabata A. Signal transduction for formation/release of interleukin-8 caused by a PAR2-activating peptide in human lung epithelial cells. ACTA ACUST UNITED AC 2007; 145:42-8. [PMID: 17854923 DOI: 10.1016/j.regpep.2007.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Proteinase-activated receptor-2 (PAR2) plays a dual role in the respiratory system, being pro- and anti-inflammatory. In human lung epithelial cells (A549), PAR2 activation causes release of interleukin-8 (IL-8) in addition to prostaglandin E(2) (PGE(2)). In the present study, we thus investigated PAR2-triggered signal transduction pathways causing IL-8 formation in A549 cells. SLIGRL-NH(2), a PAR2-activating peptide, but not LSIGRL-NH(2), a scrambled peptide, elicited release of IL-8 from A549 cells for 18 h, as measured by the ELISA method, an effect being suppressed by inhibitors of MEK, JNK, EGF receptor-tyrosine kinase (EGFR-TK), Src, pan-tyrosine kinases and protein kinase C, but not p38 MAP kinase or cyclooxygenase. SLIGRL-NH(2) also up-regulated IL-8 at protein and mRNA levels, as determined by Western blotting and RT-PCR, respectively. The PAR2-triggered up-regulation of IL-8 protein and mRNA was blocked by an inhibitor of MEK, but not clearly by inhibitors of JNK and EGFR-TK. SLIGRL-NH(2) actually phosphorylated JNK as well as ERK, the JNK activation being resistant to inhibitors of Src, pan-tyrosine kinases, protein kinase C and EGFR-TK. Our data suggest that PAR2-triggered IL-8 formation involves transcriptional up-regulation of IL-8 via the MEK-ERK pathway, while the JNK and EGF receptor pathways might rather contribute to a post-transcriptional process for the release of IL-8.
Collapse
Affiliation(s)
- Kazumi Moriyuki
- Division of Physiology and Pathophysiology, School of Pharmacy, Kinki University, Higashi-Osaka 577-8502, Japan
| | | | | | | | | |
Collapse
|
43
|
Ando S, Otani H, Yagi Y, Kawai K, Araki H, Fukuhara S, Inagaki C. Proteinase-activated receptor 4 stimulation-induced epithelial-mesenchymal transition in alveolar epithelial cells. Respir Res 2007; 8:31. [PMID: 17433115 PMCID: PMC1855055 DOI: 10.1186/1465-9921-8-31] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Accepted: 04/16/2007] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Proteinase-activated receptors (PARs; PAR1-4) that can be activated by serine proteinases such as thrombin and neutrophil catepsin G are known to contribute to the pathogenesis of various pulmonary diseases including fibrosis. Among these PARs, especially PAR4, a newly identified subtype, is highly expressed in the lung. Here, we examined whether PAR4 stimulation plays a role in the formation of fibrotic response in the lung, through alveolar epithelial-mesenchymal transition (EMT) which contributes to the increase in myofibroblast population. METHODS EMT was assessed by measuring the changes in each specific cell markers, E-cadherin for epithelial cell, alpha-smooth muscle actin (alpha-SMA) for myofibroblast, using primary cultured mouse alveolar epithelial cells and human lung carcinoma-derived alveolar epithelial cell line (A549 cells). RESULTS Stimulation of PAR with thrombin (1 U/ml) or a synthetic PAR4 agonist peptide (AYPGKF-NH2, 100 muM) for 72 h induced morphological changes from cobblestone-like structure to elongated shape in primary cultured alveolar epithelial cells and A549 cells. In immunocytochemical analyses of these cells, such PAR4 stimulation decreased E-cadherin-like immunoreactivity and increased alpha-SMA-like immunoreactivity, as observed with a typical EMT-inducer, tumor growth factor-beta (TGF-beta). Western blot analyses of PAR4-stimulated A549 cells also showed similar changes in expression of these EMT-related marker proteins. Such PAR4-mediated changes were attenuated by inhibitors of epidermal growth factor receptor (EGFR) kinase and Src. PAR4-mediated morphological changes in primary cultured alveolar epithelial cells were reduced in the presence of these inhibitors. PAR4 stimulation increased tyrosine phosphorylated EGFR or tyrosine phosphorylated Src level in A549 cells, and the former response being inhibited by Src inhibitor. CONCLUSION PAR4 stimulation of alveolar epithelial cells induced epithelial-mesenchymal transition (EMT) as monitored by cell shapes, and epithelial or myofibroblast marker at least partly through EGFR transactivation via receptor-linked Src activation.
Collapse
Affiliation(s)
- Seijitsu Ando
- Department of Pharmacology, Kansai Medical University, 10-15, Fumizono-Cho, Moriguchi, Osaka 570-8506, Japan
- The First Department of Internal Medicine, Kansai Medical University, 10-15, Fumizono-Cho, Moriguchi, Osaka 570-8506, Japan
| | - Hitomi Otani
- Department of Pharmacology, Kansai Medical University, 10-15, Fumizono-Cho, Moriguchi, Osaka 570-8506, Japan
| | - Yasuhiro Yagi
- The First Department of Internal Medicine, Kansai Medical University, 10-15, Fumizono-Cho, Moriguchi, Osaka 570-8506, Japan
| | - Kenzo Kawai
- Fuso Pharmaceutical Industries, Ltd., Joto-ku, Osaka 536-8523, Japan
| | - Hiromasa Araki
- Fuso Pharmaceutical Industries, Ltd., Joto-ku, Osaka 536-8523, Japan
| | - Shirou Fukuhara
- The First Department of Internal Medicine, Kansai Medical University, 10-15, Fumizono-Cho, Moriguchi, Osaka 570-8506, Japan
| | - Chiyoko Inagaki
- Department of Pharmacology, Kansai Medical University, 10-15, Fumizono-Cho, Moriguchi, Osaka 570-8506, Japan
| |
Collapse
|
44
|
Kubo S, Ishiki T, Doe I, Sekiguchi F, Nishikawa H, Kawai K, Matsui H, Kawabata A. Distinct activity of peptide mimetic intracellular ligands (pepducins) for proteinase-activated receptor-1 in multiple cells/tissues. Ann N Y Acad Sci 2007; 1091:445-59. [PMID: 17341635 DOI: 10.1196/annals.1378.087] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Proteinase-activated receptor-1 (PAR1), a G protein-coupled receptor (GPCR) for thrombin, can be activated not only by PAR1-activating peptides (PAR1APs) based on the N-terminal cryptic tethered ligand sequence but also by an N-palmitoylated (Pal) peptide, Pal-RCLSSSAVANRSKKSRALF-amide (P1pal-19), based on the intracellular loop 3 of PAR1, designated pepducin, in human platelets or PAR1-transfected cells. The present article evaluated the actions of P1pal-19 and also the shorter peptide, Pal-RCLSSSAVANRS-amide (P1pal-12), known as a possible PAR1 antagonist, in multiple cells/tissues that naturally express PAR1. P1pal-19 as well as a PAR1AP, TFLLR-amide, evoked cytosolic Ca(2+) mobilization in cultured human lung epithelial cells (A549) and rat gastric mucosal epithelial cells (RGM1). P1pal-19 and TFLLR-amide, but not a PAR2-activating peptide, SLIGRL-amide, caused delayed prostaglandin E(2) formation in RGM1 cells. P1pal-19, like TFLLR-amide, produced endothelial NO-dependent relaxation in rat aorta and epithelial prostanoid-dependent relaxation in mouse bronchus. The P1pal-19-induced relaxation remained constant even after desensitization of PAR1 with TFLLR-amide in either tissue. P1pal-19 failed to mimic the contractile effects of TFLLR-amide in the endothelium-denuded preparations of rat aorta or superior mesenteric artery and the rat gastric longitudinal smooth muscle strips. P1pal-12 partially inhibited the vasorelaxation caused by TFLLR-amide and P1pal-19, but not SLIGRL-amide, in the rat aorta. Our data thus indicate that P1pal-19 is capable of mimicking the effects of PAR1APs in the endothelial and epithelial, but not smooth muscle, cells/tissues, and suggest that P1pal-12 may act as a PAR1 antagonist in the vascular endothelium.
Collapse
Affiliation(s)
- Satoko Kubo
- Division of Physiology and Pathophysiology, School of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Japan
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Sekiguchi F, Saito S, Takaoka K, Hayashi H, Nagataki M, Nagasawa K, Nishikawa H, Matsui H, Kawabata A. Mechanisms for prostaglandin E2 formation caused by proteinase-activated receptor-1 activation in rat gastric mucosal epithelial cells. Biochem Pharmacol 2006; 73:103-14. [PMID: 17069767 DOI: 10.1016/j.bcp.2006.09.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Revised: 09/14/2006] [Accepted: 09/15/2006] [Indexed: 12/24/2022]
Abstract
Proteinase-activated receptor-1 (PAR1), a thrombin receptor, plays a protective role in gastric mucosa via prostanoid formation. Thus, we studied effects of PAR1 stimulation on prostaglandin E(2) (PGE(2)) formation in rat normal gastric mucosal epithelial RGM1 cells and analyzed the underlying signal transduction mechanisms. The PAR1-activating peptide (PAR1-AP) and thrombin increased PGE(2) release from RGM1 cells for 18h, an effect being suppressed by inhibitors of COX-1, COX-2, MEK, p38 MAP kinase (p38 MAPK), protein kinase C (PKC), Src and EGF receptor-tyrosine kinase (EGFR-TK), but not JNK and matrix metalloproteinase (MMP)/a disintegrin and metalloproteinases (ADAMs). PAR1-AP caused persistent (6h or more) and transient (5min) phosphorylation of ERK and p38 MAPK, respectively, followed by delayed reinforcement at 18h. PAR1-AP up-regulated COX-2 in a manner dependent on MEK and EGFR-TK, but not p38 MAPK. The PAR1-mediated persistent ERK phosphorylation was reduced by inhibitors of Src and EGFR-TK. PAR1-AP actually phosphorylated EGF receptors and up-regulated mRNA for heparin-binding-EGF (HB-EGF), the latter effect being blocked by inhibitors of Src, EGFR-TK and MEK. Heparin, an inhibitor for HB-EGF, suppressed PAR1-mediated PGE(2) formation and persistent ERK phosphorylation. These results suggest that PAR1 up-regulates COX-2 via persistent activation of MEK/ERK that is dependent on EGFR-TK activation following induction of HB-EGF, leading to PGE(2) formation. In addition, our data also indicate involvement of COX-1, PKC and p38 MAPK in PAR1-triggered PGE(2) formation. PAR1, thus stimulates complex multiple signaling pathways responsible for PGE(2) formation in RGM1 cells.
Collapse
Affiliation(s)
- Fumiko Sekiguchi
- Division of Physiology and Pathophysiology, School of Pharmacy, Kinki University, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
|