1
|
Hu P, Liu W, Huang J, Su Y, Jiang H, Wu Q, Tao J, Liang S, Lin J, Zheng J. Navarixin alleviates cardiac remodeling after myocardial infarction by decreasing neutrophil infiltration and the inflammatory response. Front Pharmacol 2025; 16:1535703. [PMID: 40183084 PMCID: PMC11966465 DOI: 10.3389/fphar.2025.1535703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/20/2025] [Indexed: 04/05/2025] Open
Abstract
Coronary atherosclerotic heart disease is an important, worldwide burden on human health. Central muscle infarction is the most dangerous condition, has the highest mortality and disability rates, and is gradually becoming more common among young people. After myocardial infarction, neutrophils recruited to the infarcted area promote the myocardial inflammatory response by releasing proinflammatory factors and chemokines and release matrix metalloproteinases and myeloperoxidases that degrade the extracellular matrix and produce reactive oxygen species, resulting in irreversible myocardial damage and thereby promoting ventricular remodeling. In this study, we constructed a mouse model of myocardial infarction and utilized the CXCR2 receptor inhibitor navarixin (Nav) to reduce neutrophil recruitment after MI. We observed that Nav improved cardiac function, reduced myocardial damage, reduced neutrophil infiltration, reduced inflammatory factor expression and improved cardiac fibrosis in mice. Through transcriptomic analysis, we found that Nav affects signaling pathways such as the innate immune response and the chemokine signaling pathway, thereby decreasing the inflammatory response by reducing neutrophil chemotaxis. This study provides new insights for the use of CXCR2 inhibitors as new therapeutic options for myocardial infarction in the future.
Collapse
Affiliation(s)
- Peikun Hu
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Liu
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jungang Huang
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yangfan Su
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huiqi Jiang
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qinyu Wu
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Jun Tao
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shi Liang
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jun Lin
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Junmeng Zheng
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
2
|
Hussain MS, Goyal A, Goyal K, S. RJ, Nellore J, Shahwan M, Rekha A, Ali H, Dhanasekaran M, MacLoughlin R, Dua K, Gupta G. Targeting CXCR2 signaling in inflammatory lung diseases: neutrophil-driven inflammation and emerging therapies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025. [DOI: 10.1007/s00210-025-03970-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 02/20/2025] [Indexed: 05/04/2025]
|
3
|
Fang X, Mo C, Zheng L, Gao F, Xue F, Zheng X. Transfusion-Related Acute Lung Injury: from Mechanistic Insights to Therapeutic Strategies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413364. [PMID: 39836498 PMCID: PMC11923913 DOI: 10.1002/advs.202413364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/08/2024] [Indexed: 01/23/2025]
Abstract
Transfusion-related acute lung injury (TRALI) is a potentially lethal complication of blood transfusions, characterized by the rapid onset of pulmonary edema and hypoxemia within six hours post-transfusion. As one of the primary causes of transfusion-related mortality, TRALI carries a significant mortality rate of 6-12%. However, effective treatment strategies for TRALI are currently lacking, underscoring the urgent need for a comprehensive and in-depth understanding of its pathogenesis. This comprehensive review provides an updated and detailed analysis of the current landscape of TRALI, including its clinical presentation, pathogenetic hypotheses, animal models, cellular mechanisms, signaling pathways, and potential therapeutic targets. By highlighting the critical roles of these pathways and therapies, this review offers valuable insights to inform the development of preventative and therapeutic strategies and to guide future research efforts aimed at addressing this life-threatening condition.
Collapse
Affiliation(s)
- Xiaobin Fang
- Department of Anesthesiology/Critical Care MedicineFuzhou University Affiliated Provincial HospitalSchool of MedicineFuzhou UniversityShengli Clinical Medical College of Fujian Medical UniversityFujian Provincial Key Laboratory of Critical Care MedicineFujian Provincial HospitalFuzhouFujian350001China
| | - Chunheng Mo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOEState Key Laboratory of BiotherapyWest China Second University HospitalSichuan UniversityChengdu610041China
| | - Ling Zheng
- Department of Anesthesiology/Critical Care MedicineFuzhou University Affiliated Provincial HospitalSchool of MedicineFuzhou UniversityShengli Clinical Medical College of Fujian Medical UniversityFujian Provincial Key Laboratory of Critical Care MedicineFujian Provincial HospitalFuzhouFujian350001China
| | - Fei Gao
- Department of Anesthesiology/Critical Care MedicineFuzhou University Affiliated Provincial HospitalSchool of MedicineFuzhou UniversityShengli Clinical Medical College of Fujian Medical UniversityFujian Provincial Key Laboratory of Critical Care MedicineFujian Provincial HospitalFuzhouFujian350001China
| | - Fu‐Shan Xue
- Department of Anesthesiology/Critical Care MedicineFuzhou University Affiliated Provincial HospitalSchool of MedicineFuzhou UniversityShengli Clinical Medical College of Fujian Medical UniversityFujian Provincial Key Laboratory of Critical Care MedicineFujian Provincial HospitalFuzhouFujian350001China
| | - Xiaochun Zheng
- Department of AnesthesiologyFujian Provincial HospitalShengli Clinical Medical College of Fujian Medical University & Fujian Emergency Medical CenterFujian Provincial Key Laboratory of Emergency MedicineFujian Provincial Key Laboratory of Critical MedicineFujian Provincial Co‐constructed Laboratory of “Belt and Road,”FuzhouFujianChina
| |
Collapse
|
4
|
Spatz P, Chen X, Reichau K, Huber ME, Mühlig S, Matsusaka Y, Schiedel M, Higuchi T, Decker M. Development and Initial Characterization of the First 18F-CXCR2-Targeting Radiotracer for PET Imaging of Neutrophils. J Med Chem 2024; 67:6327-6343. [PMID: 38570909 DOI: 10.1021/acs.jmedchem.3c02285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
The interleukin-8 receptor beta (CXCR2) is a highly promising target for molecular imaging of inflammation and inflammatory diseases. This is due to its almost exclusive expression on neutrophils. Modified fluorinated ligands were designed based on a squaramide template, with different modification sites and synthetic strategies explored. Promising candidates were then tested for affinity to CXCR2 in a NanoBRET competition assay, resulting in tracer candidate 16b. As direct 18F-labeling using established tosyl chemistry did not yield the expected radiotracer, an indirect labeling approach was developed. The radiotracer [18F]16b was obtained with a radiochemical yield of 15% using tert-butyl (S)-3-(tosyloxy)pyrrolidine carboxylate and a pentafluorophenol ester. The subsequent time-dependent uptake of [18F]16b in CXCR2-negative and CXCR2-overexpressing human embryonic kidney cells confirmed the radiotracer's specificity. Further studies with human neutrophils revealed its diagnostic potential for functional imaging of neutrophils.
Collapse
Affiliation(s)
- Philipp Spatz
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, University of Würzburg, Würzburg 97074, Germany
| | - Xinyu Chen
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg 86156, Germany
- Department of Nuclear Medicine and Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg 97080, Germany
| | - Kora Reichau
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, University of Würzburg, Würzburg 97074, Germany
| | - Max E Huber
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen 91058, Germany
| | - Saskia Mühlig
- Department of Nuclear Medicine and Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg 97080, Germany
| | - Yohji Matsusaka
- Department of Nuclear Medicine and Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg 97080, Germany
| | - Matthias Schiedel
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen 91058, Germany
- Pharmaceutical and Medicinal Chemistry, Institute of Medicinal and Pharmaceutical Chemistry, Technical University of Braunschweig, Braunschweig 38106, Germany
| | - Takahiro Higuchi
- Department of Nuclear Medicine and Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg 97080, Germany
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-0082, Japan
| | - Michael Decker
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, University of Würzburg, Würzburg 97074, Germany
| |
Collapse
|
5
|
Li G, Tanaka T, Ouchida T, Kaneko MK, Suzuki H, Kato Y. Cx 1Mab-1: A Novel Anti-mouse CXCR1 Monoclonal Antibody for Flow Cytometry. Monoclon Antib Immunodiagn Immunother 2024; 43:59-66. [PMID: 38593439 DOI: 10.1089/mab.2023.0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
The C-X-C motif chemokine receptor-1 (CXCR1) is a rhodopsin-like G-protein-coupled receptor, expressed on the cell surface of immune cells and tumors. CXCR1 interacts with some C-X-C chemokines, such as CXCL6, CXCL7, and CXCL8/interleukin-8, which are produced by various cells. Since CXCR1 is involved in several diseases including tumors and diabetes mellitus, drugs targeting CXCR1 have been developed. Therefore, the development of sensitive monoclonal antibodies (mAbs) for CXCR1 has been desired for the diagnosis and treatment. This study established a novel anti-mouse CXCR1 (mCXCR1) mAb, Cx1Mab-1 (rat IgG1, kappa), using the Cell-Based Immunization and Screening method. Cx1Mab-1 reacted with mCXCR1-overexpressed Chinese hamster ovary-K1 (CHO/mCXCR1) and mCXCR1-overexpressed LN229 glioblastoma (LN229/mCXCR1) in flow cytometry. Cx1Mab-1 demonstrated a high binding affinity for CHO/mCXCR1 and LN229/mCXCR1 with a dissociation constant of 2.6 × 10-9 M and 2.1 × 10-8 M, respectively. Furthermore, Cx1Mab-1 could detect mCXCR1 by Western blot analysis. These results indicated that Cx1Mab-1 is useful for detecting mCXCR1, and provides a possibility for targeting mCXCR1-expressing cells in vivo experiments.
Collapse
Affiliation(s)
- Guanjie Li
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tsunenori Ouchida
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Suzuki
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
6
|
Kim S, Lee SK, Son A, Lee J, Kim HG. A Comparative Inflammation-on-a-Chip with a Complete 3D Interface: Pharmacological Applications in COPD-Induced Neutrophil Migration. Adv Healthc Mater 2023; 12:e2301673. [PMID: 37505448 PMCID: PMC11469264 DOI: 10.1002/adhm.202301673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/06/2023] [Indexed: 07/29/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a slow-progressing inflammatory lung disease that is associated with high mortality and disability. There is a lack of appropriate preclinical models of COPD, which hampers drug discovery efforts. Herein, a comparative inflammation-on-a-chip (IoC) is developed with a complete 3D interface without the formation of any micropillar and phaseguide structures that replicated chemoattractant-induced neutrophil transendothelial migration (NTEM), a key feature of COPD. The IoC model is used to evaluate the pharmacological effects of CXCR2 inhibitors (MK-7123, AZD5069, and SB225002) on the migration of neutrophil-like cells in the presence of plasma samples from patients with COPD. This is the first study to evaluate inhibitors of CXCR2-dependent NTEM in a comparative IoC model that mimics the physiological 3D microenvironment, consisting of an endothelial barrier, extracellular compartment, and inflammatory conditions. This IoC model will be useful to investigate COPD severity using patient samples, and will aid basic and translational research involving NTEM.
Collapse
Affiliation(s)
- Soohyun Kim
- Center for Infectious Disease Vaccine and Diagnosis InnovationKorea Research Institute of Chemical TechnologyDaejeon34114Republic of Korea
| | - Sung Kyun Lee
- Center for Infectious Disease Vaccine and Diagnosis InnovationKorea Research Institute of Chemical TechnologyDaejeon34114Republic of Korea
| | - Ahryeong Son
- Center for Infectious Disease Vaccine and Diagnosis InnovationKorea Research Institute of Chemical TechnologyDaejeon34114Republic of Korea
| | - Jong‐Hwan Lee
- Center for Infectious Disease Vaccine and Diagnosis InnovationKorea Research Institute of Chemical TechnologyDaejeon34114Republic of Korea
| | - Hong Gi Kim
- Center for Infectious Disease Vaccine and Diagnosis InnovationKorea Research Institute of Chemical TechnologyDaejeon34114Republic of Korea
| |
Collapse
|
7
|
Chabry Y, Dhayni K, Kamel S, Caus T, Bennis Y. Prevention by the CXCR2 antagonist SCH527123 of the calcification of porcine heart valve cusps implanted subcutaneously in rats. Front Cardiovasc Med 2023; 10:1227589. [PMID: 37781314 PMCID: PMC10540224 DOI: 10.3389/fcvm.2023.1227589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/08/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction Calcification is a main cause of bioprosthetic heart valves failure. It may be promoted by the inflammation developed in the glutaraldehyde (GA)-fixed cusps of the bioprosthesis. We tested the hypothesis that antagonizing the C-X-C chemokines receptor 2 (CXCR2) may prevent the calcification of GA-fixed porcine aortic valves. Materiel and methods Four-week-old Sprague Dawley males were transplanted with 2 aortic valve cusps isolated from independent pigs and implanted into the dorsal wall. Four groups of 6 rats were compared: rats transplanted with GA-free or GA-fixed cusps and rats transplanted with GA-fixed cusps and treated with 1 mg/kg/day SCH5217123 (a CXCR2 antagonist) intraperitoneally (IP) or subcutaneously (SC) around the xenograft, for 14 days. Then, rats underwent blood count before xenografts have been explanted for histology and biochemistry analyses. Results A strong calcification of the xenografts was induced by GA pre-incubation. However, we observed a significant decrease in this effect in rats treated with SCH527123 IP or SC. Implantation of GA-fixed cusps was associated with a significant increase in the white blood cell count, an effect that was significantly prevented by SCH527123. In addition, the expression of the CD3, CD68 and CXCR2 markers was reduced in the GA-fixed cusps explanted from rats treated with SCH527123 as compared to those explanted from non-treated rats. Conclusion The calcification of GA-fixed porcine aortic valve cusps implanted subcutaneously in rats was significantly prevented by antagonizing CXCR2 with SCH527123. This effect may partly result from an inhibition of the GA-induced infiltration of T-cells and macrophages into the xenograft.
Collapse
Affiliation(s)
- Yuthiline Chabry
- MP3CV Laboratory, UR UPJV 7517, Amiens, France
- Department of Cardiac Surgery, Bichat Hospital, Paris, France
- LVTS unit, INSERM, Paris, France
| | | | - Saïd Kamel
- MP3CV Laboratory, UR UPJV 7517, Amiens, France
- Department of Clinical Biochemistry, CHU Amiens-Picardie, Amiens, France
| | - Thierry Caus
- MP3CV Laboratory, UR UPJV 7517, Amiens, France
- Department of Cardiac Surgery, CHU Amiens-Picardie, Amiens, France
| | - Youssef Bennis
- MP3CV Laboratory, UR UPJV 7517, Amiens, France
- Department of Clinical Pharmacology, CHU Amiens-Picardie, Amiens, France
| |
Collapse
|
8
|
Sitaru S, Budke A, Bertini R, Sperandio M. Therapeutic inhibition of CXCR1/2: where do we stand? Intern Emerg Med 2023; 18:1647-1664. [PMID: 37249756 PMCID: PMC10227827 DOI: 10.1007/s11739-023-03309-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/10/2023] [Indexed: 05/31/2023]
Abstract
Mounting experimental evidence from in vitro and in vivo animal studies points to an essential role of the CXCL8-CXCR1/2 axis in neutrophils in the pathophysiology of inflammatory and autoimmune diseases. In addition, the pathogenetic involvement of neutrophils and the CXCL8-CXCR1/2 axis in cancer progression and metastasis is increasingly recognized. Consequently, therapeutic targeting of CXCR1/2 or CXCL8 has been intensively investigated in recent years using a wide array of in vitro and animal disease models. While a significant benefit for patients with unwanted neutrophil-mediated inflammatory conditions may be expected from a potential clinical use of inhibitors, their use in severe infections or sepsis might be problematic and should be carefully and thoroughly evaluated in animal models and clinical trials. Translating the approaches using inhibitors of the CXCL8-CXCR1/2 axis to cancer therapy is definitively a new and promising research avenue, which parallels the ongoing efforts to clearly define the involvement of neutrophils and the CXCL8-CXCR1/2 axis in neoplastic diseases. Our narrative review summarizes the current literature on the activation and inhibition of these receptors in neutrophils, key inhibitor classes for CXCR2 and the therapeutic relevance of CXCR2 inhibition focusing here on gastrointestinal diseases.
Collapse
Affiliation(s)
- Sebastian Sitaru
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilian University, Großhaderner Str. 9, Planegg-Martinsried, 82152, Munich, Germany
- Department of Dermatology and Allergy, School of Medicine, Technical University of Munich, Munich, Germany
| | - Agnes Budke
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilian University, Großhaderner Str. 9, Planegg-Martinsried, 82152, Munich, Germany
| | | | - Markus Sperandio
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilian University, Großhaderner Str. 9, Planegg-Martinsried, 82152, Munich, Germany.
| |
Collapse
|
9
|
Fadanni GP, Calixto JB. Recent progress and prospects for anti-cytokine therapy in preclinical and clinical acute lung injury. Cytokine Growth Factor Rev 2023; 71-72:13-25. [PMID: 37481378 DOI: 10.1016/j.cytogfr.2023.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 07/24/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is a heterogeneous cause of respiratory failure that has a rapid onset, a high mortality rate, and for which there is no effective pharmacological treatment. Current evidence supports a critical role of excessive inflammation in ARDS, resulting in several cytokines, cytokine receptors, and proteins within their downstream signalling pathways being putative therapeutic targets. However, unsuccessful trials of anti-inflammatory drugs have thus far hindered progress in the field. In recent years, the prospects of precision medicine and therapeutic targeting of cytokines coevolving into effective treatments have gained notoriety. There is an optimistic and growing understanding of ARDS subphenotypes as well as advances in treatment strategies and clinical trial design. Furthermore, large trials of anti-cytokine drugs in patients with COVID-19 have provided an unprecedented amount of information that could pave the way for therapeutic breakthroughs. While current clinical and nonclinical ARDS research suggest relatively limited potential in monotherapy with anti-cytokine drugs, combination therapy has emerged as an appealing strategy and may provide new perspectives on finding safe and effective treatments. Accurate evaluation of these drugs, however, also relies on well-founded experimental research and the implementation of biomarker-guided stratification in future trials. In this review, we provide an overview of anti-cytokine therapy for acute lung injury and ARDS, highlighting the current preclinical and clinical evidence for targeting the main cytokines individually and the therapeutic prospects for combination therapy.
Collapse
Affiliation(s)
- Guilherme Pasetto Fadanni
- Centre of Innovation and Preclinical Studies (CIEnP), Florianópolis, Santa Catarina, Brazil; Department of Pharmacology, Centre of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil.
| | - João Batista Calixto
- Centre of Innovation and Preclinical Studies (CIEnP), Florianópolis, Santa Catarina, Brazil; Department of Pharmacology, Centre of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
10
|
Cambier S, Gouwy M, Proost P. The chemokines CXCL8 and CXCL12: molecular and functional properties, role in disease and efforts towards pharmacological intervention. Cell Mol Immunol 2023; 20:217-251. [PMID: 36725964 PMCID: PMC9890491 DOI: 10.1038/s41423-023-00974-6] [Citation(s) in RCA: 194] [Impact Index Per Article: 97.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/12/2022] [Indexed: 02/03/2023] Open
Abstract
Chemokines are an indispensable component of our immune system through the regulation of directional migration and activation of leukocytes. CXCL8 is the most potent human neutrophil-attracting chemokine and plays crucial roles in the response to infection and tissue injury. CXCL8 activity inherently depends on interaction with the human CXC chemokine receptors CXCR1 and CXCR2, the atypical chemokine receptor ACKR1, and glycosaminoglycans. Furthermore, (hetero)dimerization and tight regulation of transcription and translation, as well as post-translational modifications further fine-tune the spatial and temporal activity of CXCL8 in the context of inflammatory diseases and cancer. The CXCL8 interaction with receptors and glycosaminoglycans is therefore a promising target for therapy, as illustrated by multiple ongoing clinical trials. CXCL8-mediated neutrophil mobilization to blood is directly opposed by CXCL12, which retains leukocytes in bone marrow. CXCL12 is primarily a homeostatic chemokine that induces migration and activation of hematopoietic progenitor cells, endothelial cells, and several leukocytes through interaction with CXCR4, ACKR1, and ACKR3. Thereby, it is an essential player in the regulation of embryogenesis, hematopoiesis, and angiogenesis. However, CXCL12 can also exert inflammatory functions, as illustrated by its pivotal role in a growing list of pathologies and its synergy with CXCL8 and other chemokines to induce leukocyte chemotaxis. Here, we review the plethora of information on the CXCL8 structure, interaction with receptors and glycosaminoglycans, different levels of activity regulation, role in homeostasis and disease, and therapeutic prospects. Finally, we discuss recent research on CXCL12 biochemistry and biology and its role in pathology and pharmacology.
Collapse
Affiliation(s)
- Seppe Cambier
- Laboratory of Molecular Immunology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.
| |
Collapse
|
11
|
Mir MA, Bashir M, Ishfaq. Role of the CXCL8–CXCR1/2 Axis in Cancer and Inflammatory Diseases. CYTOKINE AND CHEMOKINE NETWORKS IN CANCER 2023:291-329. [DOI: 10.1007/978-981-99-4657-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Zippoli M, Ruocco A, Novelli R, Rocchio F, Miscione MS, Allegretti M, Cesta MC, Amendola PG. The role of extracellular vesicles and interleukin-8 in regulating and mediating neutrophil-dependent cancer drug resistance. Front Oncol 2022; 12:947183. [PMID: 36591453 PMCID: PMC9800989 DOI: 10.3389/fonc.2022.947183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/24/2022] [Indexed: 12/23/2022] Open
Abstract
Tumor drug resistance is a multifactorial and heterogenous condition that poses a serious burden in clinical oncology. Given the increasing incidence of resistant tumors, further understanding of the mechanisms that make tumor cells able to escape anticancer drug effects is pivotal for developing new effective treatments. Neutrophils constitute a considerable proportion of tumor infiltrated immune cells, and studies have linked elevated neutrophil counts with poor prognosis. Tumor-associated neutrophils (TANs) can acquire in fact immunoregulatory capabilities, thus regulating tumor progression and resistance, or response to therapy. In this review, we will describe TANs' actions in the tumor microenvironment, with emphasis on the analysis of the role of interleukin-8 (IL-8) and extracellular vesicles (EVs) as crucial modulators and mediators of TANs biology and function in tumors. We will then discuss the main mechanisms through which TANs can induce drug resistance, finally reporting emerging therapeutic approaches that target these mechanisms and can thus be potentially used to reduce or overcome neutrophil-mediated tumor drug resistance.
Collapse
Affiliation(s)
- Mara Zippoli
- Research and Development (R&D), Dompé farmaceutici S.p.A., Naples, Italy
| | - Anna Ruocco
- Research and Development (R&D), Dompé farmaceutici S.p.A., Naples, Italy
| | - Rubina Novelli
- Research and Development (R&D), Dompé farmaceutici S.p.A., Milan, Italy
| | - Francesca Rocchio
- Research and Development (R&D), Dompé farmaceutici S.p.A., Naples, Italy
| | - Martina Sara Miscione
- Research and Development (R&D), Dompé farmaceutici S.p.A., Naples, Italy,Department of Biotechnological and Applied Clinical Science, University of L'Aquila, L'Aquila, Italy
| | | | | | - Pier Giorgio Amendola
- Research and Development (R&D), Dompé farmaceutici S.p.A., Naples, Italy,*Correspondence: Pier Giorgio Amendola,
| |
Collapse
|
13
|
Guo ZC, Jing SL, Jumatai S, Gong ZC. Porphyromonas gingivalis promotes the progression of oral squamous cell carcinoma by activating the neutrophil chemotaxis in the tumour microenvironment. Cancer Immunol Immunother 2022; 72:1523-1539. [PMID: 36513851 DOI: 10.1007/s00262-022-03348-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND We aimed to determine the significance of Porphyromonas gingivalis (P. gingivalis) in promoting tumour progression in the tumour microenvironment (TME) of oral squamous cell carcinoma (OSCC). METHODS The Gene Expression Omnibus (GEO) was used to screen out the differentially expressed genes from the two datasets of GEO138206 and GSE87539. Immunohistochemistry and immunofluorescence analysis of samples, cell biological behaviour experiments, and tumour-bearing animal experiments were used to verify the results in vivo and in vitro. The mechanism was revealed at the molecular level, and rescue experiments were carried out by using inhibitors and lentiviruses. RESULTS CXCL2 was selected by bioinformatics analysis and was found to be related to a poor prognosis in OSCC patients. Samples with P. gingivalis infection in the TME of OSCC had the strongest cell invasion and proliferation and the largest tumour volume in tumour-bearing animal experiments and exhibited JAK1/STAT3 signalling pathway activation and epithelial-mesenchymal transition (EMT). The expression of P. gingivalis, CXCL2 and TANs were independent risk factors for poor prognosis in OSCC patients. A CXCL2/CXCR2 signalling axis inhibitor significantly decreased the invasion and proliferation ability of cells and the tumour volume in mice. When lentivirus was used to block the CXCL2/CXCR2 signalling axis, the activity of the JAK1/STAT3 signalling pathway was decreased, and the phenotype of EMT was reversed. CONCLUSION Porphyromonas gingivalis promotes OSCC progression by recruiting TANs via activation of the CXCL2/CXCR2 axis in the TME of OSCC.
Collapse
Affiliation(s)
- Zhi-Chen Guo
- Oncological Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital of The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region Institute of Stomatology, No.137, Li Yu Shan South Road, Urumqi, 830054, Xinjiang, People's Republic of China
| | - Si-Li Jing
- Department of Ophthalmology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Sakendeke Jumatai
- Oncological Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital of The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region Institute of Stomatology, No.137, Li Yu Shan South Road, Urumqi, 830054, Xinjiang, People's Republic of China
| | - Zhong-Cheng Gong
- Oncological Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital of The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region Institute of Stomatology, No.137, Li Yu Shan South Road, Urumqi, 830054, Xinjiang, People's Republic of China.
| |
Collapse
|
14
|
Targeting CXCR1 and CXCR2 receptors in cardiovascular diseases. Pharmacol Ther 2022; 237:108257. [PMID: 35908611 DOI: 10.1016/j.pharmthera.2022.108257] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/22/2022]
|
15
|
Han ZJ, Li YB, Yang LX, Cheng HJ, Liu X, Chen H. Roles of the CXCL8-CXCR1/2 Axis in the Tumor Microenvironment and Immunotherapy. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010137. [PMID: 35011369 PMCID: PMC8746913 DOI: 10.3390/molecules27010137] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/12/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022]
Abstract
In humans, Interleukin-8 (IL-8 or CXCL8) is a granulocytic chemokine with multiple roles within the tumor microenvironment (TME), such as recruiting immunosuppressive cells to the tumor, increasing tumor angiogenesis, and promoting epithelial-to-mesenchymal transition (EMT). All of these effects of CXCL8 on individual cell types can result in cascading alterations to the TME. The changes in the TME components such as the cancer-associated fibroblasts (CAFs), the immune cells, the extracellular matrix, the blood vessels, or the lymphatic vessels further influence tumor progression and therapeutic resistance. Emerging roles of the microbiome in tumorigenesis or tumor progression revealed the intricate interactions between inflammatory response, dysbiosis, metabolites, CXCL8, immune cells, and the TME. Studies have shown that CXCL8 directly contributes to TME remodeling, cancer plasticity, and the development of resistance to both chemotherapy and immunotherapy. Further, clinical data demonstrate that CXCL8 could be an easily measurable prognostic biomarker in patients receiving immune checkpoint inhibitors. The blockade of the CXCL8-CXCR1/2 axis alone or in combination with other immunotherapy will be a promising strategy to improve antitumor efficacy. Herein, we review recent advances focusing on identifying the mechanisms between TME components and the CXCL8-CXCR1/2 axis for novel immunotherapy strategies.
Collapse
Affiliation(s)
- Zhi-Jian Han
- The Key Laboratory of the Digestive System Tumors of Gansu Province, Tumor Center, Lanzhou University Second Hospital, Lanzhou 730000, China; (Y.-B.L.); (L.-X.Y.); (H.-J.C.)
- Correspondence: (Z.-J.H.); (H.C.); Tel.: +86-186-9310-9388 (Z.-J.H.); +86-150-0946-7790 (H.C.)
| | - Yang-Bing Li
- The Key Laboratory of the Digestive System Tumors of Gansu Province, Tumor Center, Lanzhou University Second Hospital, Lanzhou 730000, China; (Y.-B.L.); (L.-X.Y.); (H.-J.C.)
| | - Lu-Xi Yang
- The Key Laboratory of the Digestive System Tumors of Gansu Province, Tumor Center, Lanzhou University Second Hospital, Lanzhou 730000, China; (Y.-B.L.); (L.-X.Y.); (H.-J.C.)
| | - Hui-Juan Cheng
- The Key Laboratory of the Digestive System Tumors of Gansu Province, Tumor Center, Lanzhou University Second Hospital, Lanzhou 730000, China; (Y.-B.L.); (L.-X.Y.); (H.-J.C.)
| | - Xin Liu
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730000, China;
| | - Hao Chen
- The Key Laboratory of the Digestive System Tumors of Gansu Province, Tumor Center, Lanzhou University Second Hospital, Lanzhou 730000, China; (Y.-B.L.); (L.-X.Y.); (H.-J.C.)
- Correspondence: (Z.-J.H.); (H.C.); Tel.: +86-186-9310-9388 (Z.-J.H.); +86-150-0946-7790 (H.C.)
| |
Collapse
|
16
|
Recent trends of NFκB decoy oligodeoxynucleotide-based nanotherapeutics in lung diseases. J Control Release 2021; 337:629-644. [PMID: 34375688 DOI: 10.1016/j.jconrel.2021.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023]
Abstract
Nuclear factor κB (NFκB) is a unique protein complex that plays a major role in lung inflammation and respiratory dysfunction. The NFκB signaling pathway, therefore becomes an avenue for the development of potential pharmacological interventions, especially in situations where chronic inflammation is often constitutively active and plays a key role in the pathogenesis and progression of the disease. NFκB decoy oligodeoxynucleotides (ODNs) are double-stranded and carry NFκB binding sequences. They prevent the formation of NFκB-mediated inflammatory cytokines and thus have been employed in the treatment of a variety of chronic inflammatory diseases. However, the systemic administration of naked decoy ODNs restricts their therapeutic effectiveness because of their poor pharmacokinetic profile, instability, degradation by cellular enzymes and their low cellular uptake. Both structural modification and nanotechnology have shown promising results in enhancing the pharmacokinetic profiles of potent therapeutic substances and have also shown great potential in the treatment of respiratory diseases such as asthma, chronic obstructive pulmonary disease and cystic fibrosis. In this review, we examine the contribution of NFκB activation in respiratory diseases and recent advancements in the therapeutic use of decoy ODNs. In addition, we also highlight the limitations and challenges in use of decoy ODNs as therapeutic molecules, cellular uptake of decoy ODNs, and the current need for novel delivery systems to provide efficient delivery of decoy ODNs. Furthermore, this review provides a common platform for discussion on the existence of decoy ODNs, as well as outlining perspectives on the latest generation of delivery systems that encapsulate decoy ODNs and target NFκB in respiratory diseases.
Collapse
|
17
|
Huitema L, Phillips T, Alexeev V, Igoucheva O. Immunological mechanisms underlying progression of chronic wounds in recessive dystrophic epidermolysis bullosa. Exp Dermatol 2021; 30:1724-1733. [PMID: 34142388 PMCID: PMC9290674 DOI: 10.1111/exd.14411] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022]
Abstract
Hereditary epidermolysis bullosa (EB) is a mechanobullous skin fragility disorder characterized by defective epithelial adhesion, leading to mechanical stress‐induced skin blistering. Based on the level of tissue separation within the dermal‐epidermal junction, EB is categorized into simplex (EBS), junctional (JEB), dystrophic (DEB) and Kindler syndrome. There is no cure for EB, and painful chronic cutaneous wounds are one of the major complications in recessive (RDEB) patients. Although RDEB is considered a cutaneous disease, recent data support the underlying systemic immunological defects. Furthermore, chronic wounds are often colonized with pathogenic microbiota, leading to excessive inflammation and altered wound healing. Consequently, patients with RDEB suffer from a painful sensation of chronic, cutaneous itching/burning and an endless battle with bacterial infections. To improve their quality of life and life expectancy, it is important to prevent cutaneous infections, dampen chronic inflammation and stimulate wound healing. A clear scientific understanding of the immunological events underlying the maintenance of chronic poorly healing wounds in RDEB patients is necessary to improve disease management and better understand other wound healing disorders. In this review, we summarize current knowledge of the role of professional phagocytes, such as neutrophils, macrophages and dendritic cells, the role of T‐cell‐mediated immunity in lymphoid organs, and the association of microbiota with poor wound healing in RDEB. We conclude that RDEB patients have an underlying immunity defect that seems to affect antibacterial immunity.
Collapse
Affiliation(s)
- Leonie Huitema
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Taylor Phillips
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Vitali Alexeev
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Olga Igoucheva
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
18
|
Khalil BA, Elemam NM, Maghazachi AA. Chemokines and chemokine receptors during COVID-19 infection. Comput Struct Biotechnol J 2021; 19:976-988. [PMID: 33558827 PMCID: PMC7859556 DOI: 10.1016/j.csbj.2021.01.034] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/17/2022] Open
Abstract
Chemokines are crucial inflammatory mediators needed during an immune response to clear pathogens. However, their excessive release is the main cause of hyperinflammation. In the recent COVID-19 outbreak, chemokines may be the direct cause of acute respiratory disease syndrome, a major complication leading to death in about 40% of severe cases. Several clinical investigations revealed that chemokines are directly involved in the different stages of SARS-CoV-2 infection. Here, we review the role of chemokines and their receptors in COVID-19 pathogenesis to better understand the disease immunopathology which may aid in developing possible therapeutic targets for the infection.
Collapse
Key Words
- AECs, airway epithelial cells
- AP-1, Activator Protein 1
- ARDS
- ARDS, acute respiratory disease syndrome
- BALF, bronchial alveolar lavage fluid
- CAP, community acquired pneumonia
- COVID-19
- CRS, cytokine releasing syndrome
- Chemokine Receptors
- Chemokines
- DCs, dendritic cells
- ECM, extracellular matrix
- GAGs, glycosaminoglycans
- HIV, human immunodeficiency virus
- HRSV, human respiratory syncytial virus
- IFN, interferon
- IMM, inflammatory monocytes and macrophages
- IP-10, IFN-γ-inducible protein 10
- IRF, interferon regulatory factor
- Immunity
- MERS-CoV, Middle East respiratory syndrome coronavirus
- NETs, neutrophil extracellular traps
- NF-κB, Nuclear Factor kappa-light-chain-enhancer of activated B cells
- NK cells, natural killer cells
- PBMCs, peripheral blood mononuclear cells
- PRR, pattern recognition receptors
- RSV, rous sarcoma virus
- SARS-CoV, severe acute respiratory syndrome coronavirus
- SARS-CoV-2
- TLR, toll like receptor
- TRIF, TIR-domain-containing adapter-inducing interferon-β
Collapse
Affiliation(s)
- Bariaa A. Khalil
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Immuno-Oncology Group, Sharjah Institute for Medical Research (SIMR), Sharjah, United Arab Emirates
| | - Noha Mousaad Elemam
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Immuno-Oncology Group, Sharjah Institute for Medical Research (SIMR), Sharjah, United Arab Emirates
| | - Azzam A. Maghazachi
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Immuno-Oncology Group, Sharjah Institute for Medical Research (SIMR), Sharjah, United Arab Emirates
| |
Collapse
|
19
|
Rawat K, Syeda S, Shrivastava A. Neutrophil-derived granule cargoes: paving the way for tumor growth and progression. Cancer Metastasis Rev 2021; 40:221-244. [PMID: 33438104 PMCID: PMC7802614 DOI: 10.1007/s10555-020-09951-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/22/2020] [Indexed: 01/31/2023]
Abstract
Neutrophils are the key cells of our innate immune system mediating host defense via a range of effector functions including phagocytosis, degranulation, and NETosis. For this, they employ an arsenal of anti-microbial cargoes packed in their readily mobilizable granule subsets. Notably, the release of granule content is tightly regulated; however, under certain circumstances, their unregulated release can aggravate tissue damage and could be detrimental to the host. Several constituents of neutrophil granules have also been associated with various inflammatory diseases including cancer. In cancer setting, their excessive release may modulate tissue microenvironment which ultimately leads the way for tumor initiation, growth and metastasis. Neutrophils actively infiltrate within tumor tissues, wherein they show diverse phenotypic and functional heterogeneity. While most studies are focused at understanding the phenotypic heterogeneity of neutrophils, their functional heterogeneity, much of which is likely orchestrated by their granule cargoes, is beginning to emerge. Therefore, a better understanding of neutrophil granules and their cargoes will not only shed light on their diverse role in cancer but will also reveal them as novel therapeutic targets. This review provides an overview on existing knowledge of neutrophil granules and detailed insight into the pathological relevance of their cargoes in cancer. In addition, we also discuss the therapeutic approach for targeting neutrophils or their microenvironment in disease setting that will pave the way forward for future research.
Collapse
Affiliation(s)
- Kavita Rawat
- grid.8195.50000 0001 2109 4999Department of Zoology, University of Delhi, Delhi, 110007 India
| | - Saima Syeda
- grid.8195.50000 0001 2109 4999Department of Zoology, University of Delhi, Delhi, 110007 India
| | - Anju Shrivastava
- grid.8195.50000 0001 2109 4999Department of Zoology, University of Delhi, Delhi, 110007 India
| |
Collapse
|
20
|
Alam MJ, Xie L, Ang C, Fahimi F, Willingham SB, Kueh AJ, Herold MJ, Mackay CR, Robert R. Therapeutic blockade of CXCR2 rapidly clears inflammation in arthritis and atopic dermatitis models: demonstration with surrogate and humanized antibodies. MAbs 2020; 12:1856460. [PMID: 33347356 PMCID: PMC7757791 DOI: 10.1080/19420862.2020.1856460] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Neutrophils are the most abundant effector cells of the innate immune system and represent the first line of defense against infection. However, in many common pathologies, including autoimmune diseases, excessive recruitment and activation of neutrophils can drive a chronic inflammatory response leading to unwanted tissue destruction. Several strategies have been investigated to tackle pathologic neutrophil biology, and thus provide a novel therapy for chronic inflammatory diseases. The chemokine receptor CXCR2 plays a crucial role in regulating neutrophil homeostasis and is a promising pharmaceutical target. In this study, we report the discovery and validation of a humanized anti-human CXCR2 monoclonal antibody. To enable in vivo studies, we developed a surrogate anti-mouse CXCR2 antibody, as well as a human knock-in CXCR2 mouse. When administered in models of atopic dermatitis (AD) and rheumatoid arthritis (RA), the antibodies rapidly clear inflammation. Our findings support further developments of anti-CXCR2 mAb approaches not only for RA and AD, but also for other neutrophil-mediated inflammatory conditions where neutrophils are pathogenic and medical needs are unmet.
Collapse
Affiliation(s)
- Md Jahangir Alam
- Department of Microbiology, Biomedicine Discovery Institute, Monash University , Clayton, Victoria, Australia
| | - Liang Xie
- Department of Microbiology, Biomedicine Discovery Institute, Monash University , Clayton, Victoria, Australia
| | - Caroline Ang
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University , Clayton, Victoria, Australia
| | - Farnaz Fahimi
- Department of Physiology, Biomedicine Discovery Institute, Monash University , Clayton, Victoria, Australia
| | | | - Andrew J Kueh
- Walter and Eliza Hall Institute of Medical Research , Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne , Parkville, VIC, Australia
| | - Marco J Herold
- Walter and Eliza Hall Institute of Medical Research , Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne , Parkville, VIC, Australia
| | - Charles R Mackay
- Department of Microbiology, Biomedicine Discovery Institute, Monash University , Clayton, Victoria, Australia
| | - Remy Robert
- Department of Physiology, Biomedicine Discovery Institute, Monash University , Clayton, Victoria, Australia
| |
Collapse
|
21
|
Mattos MS, Ferrero MR, Kraemer L, Lopes GAO, Reis DC, Cassali GD, Oliveira FMS, Brandolini L, Allegretti M, Garcia CC, Martins MA, Teixeira MM, Russo RC. CXCR1 and CXCR2 Inhibition by Ladarixin Improves Neutrophil-Dependent Airway Inflammation in Mice. Front Immunol 2020; 11:566953. [PMID: 33123138 PMCID: PMC7566412 DOI: 10.3389/fimmu.2020.566953] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/14/2020] [Indexed: 12/17/2022] Open
Abstract
Rationale Increased IL-8 levels and neutrophil accumulation in the airways are common features found in patients affected by pulmonary diseases such as Asthma, Idiopathic Pulmonary Fibrosis, Influenza-A infection and COPD. Chronic neutrophilic inflammation is usually corticosteroid insensitive and may be relevant in the progression of those diseases. Objective To explore the role of Ladarixin, a dual CXCR1/2 antagonist, in several mouse models of airway inflammation with a significant neutrophilic component. Findings Ladarixin was able to reduce the acute and chronic neutrophilic influx, also attenuating the Th2 eosinophil-dominated airway inflammation, tissue remodeling and airway hyperresponsiveness. Correspondingly, Ladarixin decreased bleomycin-induced neutrophilic inflammation and collagen deposition, as well as attenuated the corticosteroid resistant Th17 neutrophil-dominated airway inflammation and hyperresponsiveness, restoring corticosteroid sensitivity. Finally, Ladarixin reduced neutrophilic airway inflammation during cigarette smoke-induced corticosteroid resistant exacerbation of Influenza-A infection, improving lung function and mice survival. Conclusion CXCR1/2 antagonist Ladarixin offers a new strategy for therapeutic treatment of acute and chronic neutrophilic airway inflammation, even in the context of corticosteroid-insensitivity.
Collapse
Affiliation(s)
- Matheus Silverio Mattos
- Laboratory of Comparative Pathology, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Lucas Kraemer
- Laboratory of Comparative Pathology, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Gabriel Augusto Oliveira Lopes
- Laboratory of Comparative Pathology, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Diego Carlos Reis
- Laboratory of Comparative Pathology, Department of General Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Geovanni Dantas Cassali
- Laboratory of Comparative Pathology, Department of General Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fabricio Marcus Silva Oliveira
- Laboratory of Comparative Pathology, Department of General Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Cristiana Couto Garcia
- Laboratory of Respiratory Virus and Measles, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | | | - Mauro Martins Teixeira
- Laboratory of Immunopharmacology, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Remo Castro Russo
- Laboratory of Comparative Pathology, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Laboratory of Immunopharmacology, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
22
|
Mandlik DS, Mandlik SK. New perspectives in bronchial asthma: pathological, immunological alterations, biological targets, and pharmacotherapy. Immunopharmacol Immunotoxicol 2020; 42:521-544. [PMID: 32938247 DOI: 10.1080/08923973.2020.1824238] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Asthma is the most common, long-lasting inflammatory airway disease that affects more than 10% of the world population. It is characterized by bronchial narrowing, airway hyperresponsiveness, vasodilatation, airway edema, and stimulation of sensory nerve endings that lead to recurring events of breathlessness, wheezing, chest tightness, and coughing. It is the main reason for global morbidity and occurs as a result of the weakening of the immune system in response to exposure to allergens or environmental exposure. In asthma condition, it results in the activation of numerous inflammatory cells like the mast and dendritic cells along with the accumulation of activated eosinophils and lymphocytes at the inflammation site. The structural cells such as airway epithelial cells and smooth muscle cells release inflammatory mediators that promote the bronchial inflammation. Long-lasting bronchial inflammation can cause pathological alterations, viz. the improved thickness of the bronchial epithelium and friability of airway epithelial cells, epithelium fibrosis, hyperplasia, and hypertrophy of airway smooth muscle, angiogenesis, and mucus gland hyperplasia. The stimulation of bronchial epithelial cell would result in the release of inflammatory cytokines and chemokines that attract inflammatory cells into bronchial airways and plays an important role in asthma. Asthma patients who do not respond to marketed antiasthmatic drugs needed novel biological medications to regulate the asthmatic situation. The present review enumerates various types of asthma, etiological factors, and in vivo animal models for the induction of asthma. The underlying pathological, immunological mechanism of action, the role of inflammatory mediators, the effect of inflammation on the bronchial airways, newer treatment approaches, and novel biological targets of asthma have been discussed in this review.
Collapse
Affiliation(s)
- Deepa S Mandlik
- Department of Pharmacology, Bharat Vidyapeeth Deemed University, Poona College of Pharmacy, Erandawane, India
| | - Satish K Mandlik
- Department of Pharmaceutics, Sinhgad College of Pharmacy, Vadgaon, Maharashtra, India
| |
Collapse
|
23
|
Lee J, Mandava S, Ahn SH, Bae MA, So KS, Kwon KS, Kim HP. Potential Moracin M Prodrugs Strongly Attenuate Airway Inflammation In Vivo. Biomol Ther (Seoul) 2020; 28:344-353. [PMID: 32388942 PMCID: PMC7327141 DOI: 10.4062/biomolther.2019.212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/09/2020] [Accepted: 04/22/2020] [Indexed: 11/05/2022] Open
Abstract
This study aims to develop new potential therapeutic moracin M prodrugs acting on lung inflammatory disorders. Potential moracin M prodrugs (KW01-KW07) were chemically synthesized to obtain potent orally active derivatives, and their pharmacological activities against lung inflammation were, for the first time, examined in vivo using lipopolysaccharide (LPS)-induced acute lung injury model. In addition, the metabolism of KW02 was also investigated using microsomal stability test and pharmacokinetic study in rats. When orally administered, some of these compounds (30 mg/kg) showed higher inhibitory action against LPSinduced lung inflammation in mice compared to moracin M. Of them, 2-(3,5-bis((dimethylcarbamoyl)oxy)phenyl)benzofuran-6-yl acetate (KW02) showed potent and dose-dependent inhibitory effect on the same animal model of lung inflammation at 1, 3, and 10 mg/kg. This compound at 10 mg/kg also significantly reduced IL-1β concentration in the bronchoalveolar lavage fluid of the inflamed-lungs. KW02 was rapidly metabolized to 5-(6-hydroxybenzofuran-2-yl)-1,3-phenylene bis(dimethylcarbamate) (KW06) and moracin M when it was incubated with rat serum and liver microsome as expected. When KW02 was administered to rats via intravenous or oral route, KW06 was detected in the serum as a metabolite. Thus, it is concluded that KW02 has potent inhibitory action against LPS-induced lung inflammation. It could behave as a potential prodrug of moracin M to effectively treat lung inflammatory disorders.
Collapse
Affiliation(s)
- Jongkook Lee
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Suresh Mandava
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sung-Hoon Ahn
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Myung-Ae Bae
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Kyung Soo So
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ki Sun Kwon
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyun Pyo Kim
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
24
|
Taghizadeh H, Marhold M, Tomasich E, Udovica S, Merchant A, Krainer M. Immune checkpoint inhibitors in mCRPC - rationales, challenges and perspectives. Oncoimmunology 2019; 8:e1644109. [PMID: 31646092 PMCID: PMC6791446 DOI: 10.1080/2162402x.2019.1644109] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 01/21/2023] Open
Abstract
The advancement of immune-therapeutics in cancer treatment has proven to be promising in various malignant diseases. However, in castration resistant prostate cancer (mCRPC) major Phase III trials have been unexpectedly disappointing. To contribute to a broader understanding of the role and use of immune-therapeutics in mCRPC, we conducted a systematic review. We searched the websites ClinicalTrials.gov, PubMed and ASCO Meeting Library for clinical trials employing immune checkpoint inhibitors in mCRPC. This article not only describes the rationale of individual trials, but it also summarizes the current status of the field and sheds light on strategies for future success.
Collapse
Affiliation(s)
- H. Taghizadeh
- Department of Medicine I, Clinical Division of Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - M. Marhold
- Department of Medicine I, Clinical Division of Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - E. Tomasich
- Department of Medicine I, Clinical Division of Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - S. Udovica
- Department of Medicine I, Clinical Division of Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - A. Merchant
- Department of Medicine I, Clinical Division of Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - M. Krainer
- Department of Medicine I, Clinical Division of Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
25
|
Esteban-Gorgojo I, Antolín-Amérigo D, Domínguez-Ortega J, Quirce S. Non-eosinophilic asthma: current perspectives. J Asthma Allergy 2018; 11:267-281. [PMID: 30464537 PMCID: PMC6211579 DOI: 10.2147/jaa.s153097] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although non-eosinophilic asthma (NEA) is not the best known and most prevalent asthma phenotype, its importance cannot be underestimated. NEA is characterized by airway inflammation with the absence of eosinophils, subsequent to activation of non-predominant type 2 immunologic pathways. This phenotype, which possibly includes several not well-defined subphenotypes, is defined by an eosinophil count <2% in sputum. NEA has been associated with environmental and/or host factors, such as smoking cigarettes, pollution, work-related agents, infections, and obesity. These risk factors, alone or in conjunction, can activate specific cellular and molecular pathways leading to non-type 2 inflammation. The most relevant clinical trait of NEA is its poor response to standard asthma treatments, especially to inhaled corticosteroids, leading to a higher severity of disease and to difficult-to-control asthma. Indeed, NEA constitutes about 50% of severe asthma cases. Since most current and forthcoming biologic therapies specifically target type 2 asthma phenotypes, such as uncontrolled severe eosinophilic or allergic asthma, there is a dramatic lack of effective treatments for uncontrolled non-type 2 asthma. Research efforts are now focusing on elucidating the phenotypes underlying the non-type 2 asthma, and several studies are being conducted with new drugs and biologics aiming to develop effective strategies for this type of asthma, and various immunologic pathways are being scrutinized to optimize efficacy and to abolish possible adverse effects.
Collapse
Affiliation(s)
| | | | - Javier Domínguez-Ortega
- Department of Allergy, Hospital La Paz Institute for Health Research (IdiPAZ).,CIBER de Enfermedades Respiratorias, CIBERES, Madrid, Spain
| | - Santiago Quirce
- Department of Allergy, Hospital La Paz Institute for Health Research (IdiPAZ).,CIBER de Enfermedades Respiratorias, CIBERES, Madrid, Spain
| |
Collapse
|
26
|
Zhu L, Ciaccio CE, Casale TB. Potential new targets for drug development in severe asthma. World Allergy Organ J 2018; 11:30. [PMID: 30386455 PMCID: PMC6203275 DOI: 10.1186/s40413-018-0208-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 09/21/2018] [Indexed: 02/08/2023] Open
Abstract
In recent years there has been increasing recognition of varying asthma phenotypes that impact treatment response. This has led to the development of biological therapies targeting specific immune cells and cytokines in the inflammatory cascade. Currently, there are two primary asthma phenotypes, Type 2 hi and Type 2 lo, which are defined by eosinophilic and neutrophilic/pauci- granulocytic pattern of inflammation respectively. Most biologics focus on Type 2 hi asthma, including all four biologics approved for treatment of uncontrolled asthma in the United States — omalizumab, mepolizumab, reslizumab, and benralizumab. Potential new targets for drug development are being investigated, such as IL-13, IL-4α receptor, CRTH2, TSLP, IL-25, IL-13, IL-17A receptor, and CXCR2/IL-8. This review will discuss the role of these molecules on the inflammatory response in uncontrolled asthma and the emerging biologics that address them. Through the delineation of distinct immunological mechanisms in severe asthma, targeted biologics are promising new therapies that have the potential to improve asthma control and quality of life.
Collapse
Affiliation(s)
- Linda Zhu
- 1Department of Internal Medicine, The University of Chicago, Chicago, IL USA.,Department of Internal Medicine, NorthShore Health System, Chicago, IL USA
| | - Christina E Ciaccio
- Department of Internal Medicine, NorthShore Health System, Chicago, IL USA.,3Department of Pediatrics, The University of Chicago, 5841 South Maryland Avenue MC 5042, Chicago, IL 60637 USA
| | - Thomas B Casale
- 4Department of Medicine, The University of South Florida, Tampa, Florida, USA
| |
Collapse
|
27
|
Yamashiro LH, de Souza GEP, de Melo Soares D. Role of CINC-1 and CXCR2 receptors on LPS-induced fever in rats. Pflugers Arch 2018; 471:301-311. [PMID: 30349936 DOI: 10.1007/s00424-018-2222-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/08/2018] [Accepted: 10/10/2018] [Indexed: 10/28/2022]
Abstract
The classic model of fever induction is based on the administration of lipopolysaccharide (LPS) from Gram-negative bacteria in experimental animals. LPS-induced fever results in the synthesis/release of many mediators that assemble an LPS-fever cascade. We have previously demonstrated that cytokine-induced neutrophil chemoattractant (CINC)-1, a Glu-Leu-Arg (ELR) + chemokine, centrally administered to rats, induces fever and increases prostaglandin E2 in the cerebrospinal fluid. We now attempt to investigate the involvement of CINC-1 and its functional receptor CXCR2 on the fever induced by exogenous and endogenous pyrogens in rats. We also investigated the effect of reparixin, an allosteric inhibitor of CXCR1/CXCR2 receptors, on fever induced by either systemic administration of LPS or intracerebroventricular injection of CINC-1, as well as TNF-α, IL-1β, IL-6, or ET-1, known mediators of febrile response. Our results show increased CINC-1 mRNA expression in the liver, hypothalamus, CSF, and plasma following LPS injection. Moreover, reparixin administered right before CINC-1 or LPS abolished the fever induced by CINC-1 and significantly reduced the response induced by LPS. In spite of these results, reparixin does not modify the fever induced by IL-1β, TNF-α, and IL-6, but significantly reduces ET-1-induced fever. Therefore, it is plausible to suggest that CINC-1 might contribute to LPS-induced fever in rats by activating CXCR2 receptor on the CNS. Moreover, it can be hypothesized that CINC-1 is placed upstream TNF-α, IL-1β, and IL-6 among the prostaglandin-dependent fever-mediator cascade and amidst the prostaglandin-independent synthesis pathway of fever.
Collapse
Affiliation(s)
- Lívia Harumi Yamashiro
- Laboratory of Pharmacology, Department of Physic and Chemistry, Faculty of Pharmaceutical Science, University of São Paulo, Ribeirão Preto, SP, Brazil.,Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Glória Emília Petto de Souza
- Laboratory of Pharmacology, Department of Physic and Chemistry, Faculty of Pharmaceutical Science, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Denis de Melo Soares
- Faculdade de Farmácia, Universidade Federal da Bahia, Rua Barão do Jeremoabo, no. 147, Ondina, Salvador, Bahia, 40170-115, Brazil.
| |
Collapse
|
28
|
Lazaar AL, Miller BE, Tabberer M, Yonchuk J, Leidy N, Ambery C, Bloomer J, Watz H, Tal-Singer R. Effect of the CXCR2 antagonist danirixin on symptoms and health status in COPD. Eur Respir J 2018; 52:13993003.01020-2018. [PMID: 30139779 DOI: 10.1183/13993003.01020-2018] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 08/02/2018] [Indexed: 11/05/2022]
Affiliation(s)
| | | | | | | | | | | | | | - Henrik Watz
- Pulmonary Research Institute Lungen Clinic Grosshansdorf, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Grosshansdorf, Germany
| | | |
Collapse
|
29
|
Lee JH, Min DS, Lee CW, Song KH, Kim YS, Kim HP. Ginsenosides from Korean Red Ginseng ameliorate lung inflammatory responses: inhibition of the MAPKs/NF-κB/c-Fos pathways. J Ginseng Res 2018; 42:476-484. [PMID: 30337808 PMCID: PMC6187099 DOI: 10.1016/j.jgr.2017.05.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 02/07/2017] [Accepted: 05/17/2017] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Korean Red Ginseng (steamed and dried white ginseng, Panax ginseng Meyer) is well known for enhancing vital energy and immune capacity and for inhibiting cancer cell growth. Some clinical studies also demonstrated a therapeutic potential of ginseng extract for treating lung inflammatory disorders. This study was conducted to establish the therapeutic potential of ginseng saponins on the lung inflammatory response. METHODS From Korean Red Ginseng, 11 ginsenosides (Rb1, Rb2, Rb3, Rc, Rd, Re, Rf, Rg1, Rg2, Rg3, and Rh2) were isolated. Their inhibitory potential and action mechanism were evaluated using a mouse model of lung inflammation, acute lung injury induced by intranasal lipopolysaccharide administration. Their anti-inflammatory activities were also examined in lung epithelial cell line (A549) and alveolar macrophage (MH-S). RESULTS All ginsenosides orally administered at 20 mg/kg showed 11.5-51.6% reduction of total cell numbers in bronchoalveolar lavage fluid (BALF). Among the ginsenosides, Rc, Re, Rg1, and Rh2 exhibited significant inhibitory action by reducing total cell numbers in the BALF by 34.1-51.6% (n = 5). Particularly, Re showed strong and comparable inhibitory potency with that of dexamethasone, as judged by the number of infiltrated cells and histological observations. Re treatment clearly inhibited the activation of mitogen-activated protein kinases, nuclear factor-κB, and the c-Fos component in the lung tissue (n = 3). CONCLUSION Certain ginsenosides inhibit lung inflammatory responses by interrupting these signaling molecules and they are potential therapeutics for inflammatory lung diseases.
Collapse
Affiliation(s)
- Ju Hee Lee
- College of Pharmacy, Kangwon National University, Chuncheon, Republic of Korea
| | - Dong Suk Min
- College of Pharmacy, Kangwon National University, Chuncheon, Republic of Korea
| | - Chan Woo Lee
- College of Pharmacy, Kangwon National University, Chuncheon, Republic of Korea
| | - Kwang Ho Song
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Yeong Shik Kim
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Hyun Pyo Kim
- College of Pharmacy, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
30
|
Gollomp K, Kim M, Johnston I, Hayes V, Welsh J, Arepally GM, Kahn M, Lambert MP, Cuker A, Cines DB, Rauova L, Kowalska MA, Poncz M. Neutrophil accumulation and NET release contribute to thrombosis in HIT. JCI Insight 2018; 3:99445. [PMID: 30232279 PMCID: PMC6237233 DOI: 10.1172/jci.insight.99445] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 08/14/2018] [Indexed: 12/25/2022] Open
Abstract
Heparin-induced thrombocytopenia (HIT) is an immune-mediated thrombocytopenic disorder associated with a severe prothrombotic state. We investigated whether neutrophils and neutrophil extracellular traps (NETs) contribute to the development of thrombosis in HIT. Using an endothelialized microfluidic system and a murine passive immunization model, we show that HIT induction leads to increased neutrophil adherence to venous endothelium. In HIT mice, endothelial adherence is enhanced immediately downstream of nascent venous thrombi, after which neutrophils undergo retrograde migration via a CXCR2-dependent mechanism to accumulate into the thrombi. Using a microfluidic system, we found that PF4 binds to NETs, leading them to become compact and DNase resistant. PF4-NET complexes selectively bind HIT antibodies, which further protect them from nuclease digestion. In HIT mice, inhibition of NET formation through Padi4 gene disruption or DNase treatment limited venous thrombus size. PAD4 inactivation did affect arterial thrombi or severity of thrombocytopenia in HIT. Thus, neutrophil activation contributes to the development of venous thrombosis in HIT by enhancing neutrophil-endothelial adhesion and neutrophil clot infiltration, where incorporated PF4-NET-HIT antibody complexes lead to thrombosis propagation. Inhibition of neutrophil endothelial adhesion, prevention of neutrophil chemokine-dependent recruitment of neutrophils to thrombi, or suppression of NET release should be explored as strategies to prevent venous thrombosis in HIT.
Collapse
Affiliation(s)
- Kandace Gollomp
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pediatrics
| | - Minna Kim
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | | | - John Welsh
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gowthami M Arepally
- Deparment of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Mark Kahn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michele P Lambert
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pediatrics
| | - Adam Cuker
- Department of Pathology, and.,Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Douglas B Cines
- Department of Pathology, and.,Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lubica Rauova
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pediatrics
| | - M Anna Kowalska
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Institute of Medical Biology, Polish Academy of Science, Lodz, Poland
| | - Mortimer Poncz
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pediatrics
| |
Collapse
|
31
|
Fu S, Chen X, Lin HJ, Lin J. Inhibition of interleukin 8/C‑X-C chemokine receptor 1,/2 signaling reduces malignant features in human pancreatic cancer cells. Int J Oncol 2018; 53:349-357. [PMID: 29749433 DOI: 10.3892/ijo.2018.4389] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/31/2018] [Indexed: 11/05/2022] Open
Abstract
Interactions between interleukin (IL)-8 and its receptors, C‑X-C chemokine receptor 1, (CXCR1) and CXCR2 serve crucial roles in increasing cancer progression. Inhibition of this signaling pathway has yielded promising results in a number of human cancers, including breast, melanoma and colon. However, the effects of CXCR1/2 antagonist treatment on pancreatic cancer remain unclear. The present study aimed to demonstrate that treatment with the clinical grade CXCR1/2 antagonist, reparixin, or the newly discovered CXCR1/2 antagonist, SCH527123, may result in a reduction of the malignant features associated with this lethal cancer. The effects of reparixin or SCH527123 exposure on human pancreatic cancer cell lines BxPC‑3, HPAC, Capan‑1, MIA PaCa‑2, and AsPC‑1 were examined in regard to cell proliferation, cell viability, colony formation and migration. The effects of CXCR1/2 inhibition on the protein expression of well-known downstream effectors, including phosphorylated (p)-signal transducer and activator of transcription 3 (STAT3), p‑RAC‑α serine/threonine-protein kinase (p‑AKT), p‑extracellular signal-regulated kinase (p‑ERK1/2) and p‑ribosomal protein S6 (p‑S6), were assessed by western blotting assays. The effects of IL‑8 signaling on the proliferative activities intrinsic to the human pancreatic cancer cell lines Capan‑1, AsPC‑1 and HPAC were examined by bromodeoxyuridine assay. Treatment with either reparixin or SCH527123 yielded dose-dependent growth suppressive effects on HPAC, Capan‑1 and AsPC‑1 cells that may have otherwise undergone robust proliferation upon IL‑8 stimulation. In addition, reparixin or SCH527123 treatment inhibited CXCR1/2-mediated signal transduction, as demonstrated by the decreased phosphorylation levels of effector molecules STAT3, AKT, ERK and S6 that are downstream of the IL‑8/CXCR1/2 signaling cascade in HPAC cells. These data were in close agreement with the reduced cell migration and colony formation. Results from the present study suggested that reparixin and SCH527123 may be promising therapeutic agents for the treatment of pancreatic cancer by inhibiting the IL‑8/CXCR1/2 signaling cascade.
Collapse
Affiliation(s)
- Shengling Fu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Xiang Chen
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Huey-Jen Lin
- Department of Medical Laboratory Sciences, University of Delaware, Newark, DE 19716, USA
| | - Jiayuh Lin
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| |
Collapse
|
32
|
Kwon KS, Lee JH, So KS, Park BK, Lim H, Choi JS, Kim HP. Aurantio-obtusin, an anthraquinone from cassiae semen, ameliorates lung inflammatory responses. Phytother Res 2018; 32:1537-1545. [PMID: 29675883 DOI: 10.1002/ptr.6082] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 03/06/2018] [Accepted: 03/07/2018] [Indexed: 01/04/2023]
Abstract
The purpose of the present study is to find the natural compound(s) having a therapeutic potential to treat lung inflammatory disorders. In our screening procedure, the methanol extract of the seeds of Cassia obtusifolia (cassiae semen) inhibited inducible nitric oxide synthase-catalyzed nitric oxide production in alveolar macrophages (MH-S). From the extract, 8 major anthraquinone derivatives were successfully isolated. They are chrysophanol, physcion, 2-hydroxy-emodin 1-methyl ether, obtusifolin, obtusin, aurantio-obtusin, chryso-obtusin, and gluco-obtusifolin, among which aurantio-obtusin (IC50 = 71.7 μM) showed significant inhibitory action on nitric oxide production from lipopolysaccharide-treated MH-S cells, mainly by downregulation of inducible nitric oxide synthase expression. This down-regulatory action of aurantio-obtusin was mediated at least in part via interrupting c-Jun N-terminal kinase/IκB kinase/nuclear transcription factor-κB pathways. Aurantio-obtusin also inhibited IL-6 production in IL-1β-treated lung epithelial cells, A549. Importantly, this compound (10 and 100 mg/kg) by oral administration attenuated lung inflammatory responses in a mouse model of lipopolysaccharide-induced acute lung injury. Therefore, it is for the first time found that aurantio-obtusin may have a therapeutic potential for treating lung inflammatory diseases.
Collapse
Affiliation(s)
- Ki Sun Kwon
- College of Pharmacy, Kangwon National University, Chuncheon, 24341, South Korea
| | - Ju Hee Lee
- College of Pharmacy, Kangwon National University, Chuncheon, 24341, South Korea
| | - Kyung Su So
- College of Pharmacy, Kangwon National University, Chuncheon, 24341, South Korea
| | - Byung Kyu Park
- College of Pharmacy, Kangwon National University, Chuncheon, 24341, South Korea
| | - Hyun Lim
- College of Pharmacy, Kangwon National University, Chuncheon, 24341, South Korea
| | - Jae Sue Choi
- Department of Food Science and Nutrition, Pukyong National University, Busan, 48513, South Korea
| | - Hyun Pyo Kim
- College of Pharmacy, Kangwon National University, Chuncheon, 24341, South Korea
| |
Collapse
|
33
|
Chen K, Bao Z, Gong W, Tang P, Yoshimura T, Wang JM. Regulation of inflammation by members of the formyl-peptide receptor family. J Autoimmun 2017; 85:64-77. [PMID: 28689639 PMCID: PMC5705339 DOI: 10.1016/j.jaut.2017.06.012] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 06/29/2017] [Indexed: 12/14/2022]
Abstract
Inflammation is associated with a variety of diseases. The hallmark of inflammation is leukocyte infiltration at disease sites in response to pathogen- or damage-associated chemotactic molecular patterns (PAMPs and MAMPs), which are recognized by a superfamily of seven transmembrane, Gi-protein-coupled receptors (GPCRs) on cell surface. Chemotactic GPCRs are composed of two major subfamilies: the classical GPCRs and chemokine GPCRs. Formyl-peptide receptors (FPRs) belong to the classical chemotactic GPCR subfamily with unique properties that are increasingly appreciated for their expression on diverse host cell types and the capacity to interact with a plethora of chemotactic PAMPs and MAMPs. Three FPRs have been identified in human: FPR1-FPR3, with putative corresponding mouse counterparts. FPR expression was initially described in myeloid cells but subsequently in many non-hematopoietic cells including cancer cells. Accumulating evidence demonstrates that FPRs possess multiple functions in addition to controlling inflammation, and participate in the processes of many pathophysiologic conditions. They are not only critical mediators of myeloid cell trafficking, but are also implicated in tissue repair, angiogenesis and protection against inflammation-associated tumorigenesis. A series recent discoveries have greatly expanded the scope of FPRs in host defense which uncovered the essential participation of FPRs in step-wise trafficking of myeloid cells including neutrophils and dendritic cells (DCs) in host responses to bacterial infection, tissue injury and wound healing. Also of great interest is the FPRs are exploited by malignant cancer cells for their growth, invasion and metastasis. In this article, we review the current understanding of FPRs concerning their expression in a vast array of cell types, their involvement in guiding leukocyte trafficking in pathophysiological conditions, and their capacity to promote the differentiation of immune cells, their participation in tumor-associated inflammation and cancer progression. The close association of FPRs with human diseases and cancer indicates their potential as targets for the development of therapeutics.
Collapse
Affiliation(s)
- Keqiang Chen
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Zhiyao Bao
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA; Department of Pulmonary & Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Wanghua Gong
- Basic Research Program, Leidos Biomedical Research, Inc., Frederick, MD, 21702, USA
| | - Peng Tang
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA; Breast and Thyroid Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Teizo Yoshimura
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Ji Ming Wang
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA.
| |
Collapse
|
34
|
Ladarixin, a dual CXCR1/2 inhibitor, attenuates experimental melanomas harboring different molecular defects by affecting malignant cells and tumor microenvironment. Oncotarget 2017; 8:14428-14442. [PMID: 28129639 PMCID: PMC5362416 DOI: 10.18632/oncotarget.14803] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 01/11/2017] [Indexed: 12/11/2022] Open
Abstract
CXCR1 and CXCR2 chemokine receptors and their ligands (CXCL1/2/3/7/8) play an important role in tumor progression. Tested to date CXCR1/2 antagonists and chemokine-targeted antibodies were reported to affect malignant cells in vitro and in animal models. Yet, redundancy of chemotactic signals and toxicity hinder further clinical development of these approaches. In this pre-clinical study we investigated the capacity of a novel small molecule dual CXCR1/2 inhibitor, Ladarixin (LDX), to attenuate progression of experimental human melanomas. Our data showed that LDX-mediated inhibition of CXCR1/2 abrogated motility and induced apoptosis in cultured cutaneous and uveal melanoma cells and xenografts independently of the molecular defects associated with the malignant phenotype. These effects were mediated by the inhibition of AKT and NF-kB signaling pathways. Moreover, systemic treatment of melanoma-bearing mice with LDX also polarized intratumoral macrophages to M1 phenotype, abrogated intratumoral de novo angiogenesis and inhibited melanoma self-renewal. Collectively, these studies outlined the pre-requisites of the successful CXCR1/2 inhibition on malignant cells and demonstrated multifactorial effects of Ladarixin on cutaneous and uveal melanomas, suggesting therapeutic utility of LDX in treatment of various melanoma types.
Collapse
|
35
|
Cockx M, Gouwy M, Godding V, De Boeck K, Van Damme J, Boon M, Struyf S. Neutrophils from Patients with Primary Ciliary Dyskinesia Display Reduced Chemotaxis to CXCR2 Ligands. Front Immunol 2017; 8:1126. [PMID: 29018439 PMCID: PMC5614927 DOI: 10.3389/fimmu.2017.01126] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/28/2017] [Indexed: 12/15/2022] Open
Abstract
Primary ciliary dyskinesia (PCD), cystic fibrosis (CF), and chronic obstructive airway disease are characterized by neutrophilic inflammation in the lungs. In CF and chronic obstructive airway disease, improper functioning of neutrophils has been demonstrated. We hypothesized that the pulmonary damage in PCD might be aggravated by abnormal functioning neutrophils either as a primary consequence of the PCD mutation or secondary to chronic inflammation. We analyzed chemotactic responses and chemoattractant receptor expression profiles of peripheral blood neutrophils from 36 patients with PCD, 21 healthy children and 19 healthy adults. We stimulated peripheral blood monocytes from patients and healthy controls and measured CXCL8 and IL-1β production with ELISA. PCD neutrophils displayed reduced migration toward CXCR2 ligands (CXCL5 and CXCL8) in the shape change, microchamber and microslide chemotaxis assays, whereas leukotriene B4 and complement component 5a chemotactic responses were not significantly different. The reduced response to CXCL8 was observed in all subgroups of patients with PCD (displaying either normal ultrastructure, dynein abnormalities or central pair deficiencies) and correlated with lung function. CXCR2 was downregulated in about 65% of the PCD patients, suggestive for additional mechanisms causing CXCR2 impairment. After treatment with the TLR ligands lipopolysaccharide and peptidoglycan, PCD monocytes produced more CXCL8 and IL-1β compared to controls. Moreover, PCD monocytes also responded stronger to IL-1β stimulation in terms of CXCL8 production. In conclusion, we revealed a potential link between CXCR2 and its ligand CXCL8 and the pathogenesis of PCD.
Collapse
Affiliation(s)
- Maaike Cockx
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Véronique Godding
- Unité de Pneumologie Pédiatrique et Mucoviscidose, Clinique Universitaire Saint-Luc UCL Brussels, Brussels, Belgium
| | - Kris De Boeck
- Pediatric Pulmonology and Cystic Fibrosis Unit, Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Jo Van Damme
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Mieke Boon
- Pediatric Pulmonology and Cystic Fibrosis Unit, Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| |
Collapse
|
36
|
Calverley PMA, Sethi S, Dawson M, Ward CK, Finch DK, Penney M, Newbold P, van der Merwe R. A randomised, placebo-controlled trial of anti-interleukin-1 receptor 1 monoclonal antibody MEDI8968 in chronic obstructive pulmonary disease. Respir Res 2017; 18:153. [PMID: 28793896 PMCID: PMC5551010 DOI: 10.1186/s12931-017-0633-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/31/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Interleukin-1 receptor 1 (IL-1R1) inhibition is a potential strategy for treating patients with chronic obstructive pulmonary disease (COPD). MEDI8968, a fully human monoclonal antibody, binds selectively to IL-1R1, inhibiting activation by IL-1α and IL-1β. We studied the efficacy and safety/tolerability of MEDI8968 in adults with symptomatic, moderate-to-very severe COPD. METHODS This was a phase II, randomised, double-blind, placebo-controlled, multicentre, parallel-group study. Subjects aged 45-75 years and receiving standard maintenance therapy with ≥2 exacerbations in the past year were randomised 1:1 to receive placebo or MEDI8968 300 mg (600 mg intravenous loading dose) subcutaneously every 4 weeks, for 52 weeks. The primary endpoint was the moderate/severe acute exacerbations of COPD (AECOPD) rate (week 56 post-randomisation). Secondary endpoints were severe AECOPD rate and St George's Respiratory Questionnaire-COPD (SGRQ-C) score (week 56 post-randomisation). RESULTS Of subjects randomised to placebo (n = 164) and MEDI8968 (n = 160), 79.3% and 75.0%, respectively, completed the study. There were neither statistically significant differences between treatment groups in moderate/severe AECOPD rate ([90% confidence interval]: 0.78 [0.63, 0.96], placebo; 0.71 [0.57, 0.90], MEDI8968), nor in severe AECOPD rate or SGRQ-C scores. Post-hoc analysis of subject subgroups (by baseline neutrophil count or tertiles of circulating neutrophil counts) did not alter the study outcome. The incidence of treatment-emergent adverse events (TEAEs) with placebo and MEDI8968 treatment was similar. The most common TEAE was worsening of COPD. CONCLUSIONS In this phase II study, MEDI8968 did not produce statistically significant improvements in AECOPD rate, lung function or quality of life. TRIAL REGISTRATION ClinicalTrials.gov, NCT01448850 , date of registration: 06 October 2011.
Collapse
Affiliation(s)
- Peter M. A. Calverley
- School of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
- Clinical Science Centre, University Hospital Aintree, Longmoor Lane, Liverpool, L9 7AL UK
| | - Sanjay Sethi
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Buffalo, State University of New York, Buffalo, NY USA
| | | | - Christine K. Ward
- MedImmmune, Gaithersburg, MD USA
- Present address: Bristol-Myers Squibb, Princeton, NJ USA
| | | | - Mark Penney
- MedImmune, Cambridge, UK
- Present address: UCB Pharma, Slough, UK
| | | | | |
Collapse
|
37
|
Young HL, Rowling EJ, Bugatti M, Giurisato E, Luheshi N, Arozarena I, Acosta JC, Kamarashev J, Frederick DT, Cooper ZA, Reuben A, Gil J, Flaherty KT, Wargo JA, Vermi W, Smith MP, Wellbrock C, Hurlstone A. An adaptive signaling network in melanoma inflammatory niches confers tolerance to MAPK signaling inhibition. J Exp Med 2017; 214:1691-1710. [PMID: 28450382 PMCID: PMC5460994 DOI: 10.1084/jem.20160855] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 12/16/2016] [Accepted: 03/10/2017] [Indexed: 12/22/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) pathway antagonists induce profound clinical responses in advanced cutaneous melanoma, but complete remissions are frustrated by the development of acquired resistance. Before resistance emerges, adaptive responses establish a mutation-independent drug tolerance. Antagonizing these adaptive responses could improve drug effects, thereby thwarting the emergence of acquired resistance. In this study, we reveal that inflammatory niches consisting of tumor-associated macrophages and fibroblasts contribute to treatment tolerance through a cytokine-signaling network that involves macrophage-derived IL-1β and fibroblast-derived CXCR2 ligands. Fibroblasts require IL-1β to produce CXCR2 ligands, and loss of host IL-1R signaling in vivo reduces melanoma growth. In tumors from patients on treatment, signaling from inflammatory niches is amplified in the presence of MAPK inhibitors. Signaling from inflammatory niches counteracts combined BRAF/MEK (MAPK/extracellular signal-regulated kinase kinase) inhibitor treatment, and consequently, inhibiting IL-1R or CXCR2 signaling in vivo enhanced the efficacy of MAPK inhibitors. We conclude that melanoma inflammatory niches adapt to and confer drug tolerance toward BRAF and MEK inhibitors early during treatment.
Collapse
Affiliation(s)
- Helen L Young
- Manchester Cancer Research Centre, Faculty of Biology, Medicine, and Health, School of Medical Sciences, Division of Molecular and Clinical Cancer Studies, The University of Manchester, Manchester M13 9PT, England, UK
| | - Emily J Rowling
- Manchester Cancer Research Centre, Faculty of Biology, Medicine, and Health, School of Medical Sciences, Division of Molecular and Clinical Cancer Studies, The University of Manchester, Manchester M13 9PT, England, UK
| | - Mattia Bugatti
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, 25123 Brescia, Italy
| | - Emanuele Giurisato
- Manchester Cancer Research Centre, Faculty of Biology, Medicine, and Health, School of Medical Sciences, Division of Molecular and Clinical Cancer Studies, The University of Manchester, Manchester M13 9PT, England, UK
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Nadia Luheshi
- Division of Oncology, MedImmune Ltd, Cambridge CB21 6GH, England, UK
| | - Imanol Arozarena
- Manchester Cancer Research Centre, Faculty of Biology, Medicine, and Health, School of Medical Sciences, Division of Molecular and Clinical Cancer Studies, The University of Manchester, Manchester M13 9PT, England, UK
| | - Juan-Carlos Acosta
- Edinburgh Cancer Research Centre, Medical Research Council Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh EH4 2XR, Scotland, UK
| | - Jivko Kamarashev
- Department of Dermatology, University Hospital Zürich, 8091 Zürich, Switzerland
| | - Dennie T Frederick
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA 02114
| | - Zachary A Cooper
- Division of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Alexandre Reuben
- Division of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Jesus Gil
- Medical Research Council London Institute of Medical Sciences, London W12 0NN, England, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, England, UK
| | - Keith T Flaherty
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA 02114
| | - Jennifer A Wargo
- Division of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - William Vermi
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, 25123 Brescia, Italy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Michael P Smith
- Manchester Cancer Research Centre, Faculty of Biology, Medicine, and Health, School of Medical Sciences, Division of Molecular and Clinical Cancer Studies, The University of Manchester, Manchester M13 9PT, England, UK
| | - Claudia Wellbrock
- Manchester Cancer Research Centre, Faculty of Biology, Medicine, and Health, School of Medical Sciences, Division of Molecular and Clinical Cancer Studies, The University of Manchester, Manchester M13 9PT, England, UK
| | - Adam Hurlstone
- Manchester Cancer Research Centre, Faculty of Biology, Medicine, and Health, School of Medical Sciences, Division of Molecular and Clinical Cancer Studies, The University of Manchester, Manchester M13 9PT, England, UK
| |
Collapse
|
38
|
Targets of Neutrophil Influx and Weaponry: Therapeutic Opportunities for Chronic Obstructive Airway Disease. J Immunol Res 2017; 2017:5273201. [PMID: 28596972 PMCID: PMC5449733 DOI: 10.1155/2017/5273201] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/23/2017] [Accepted: 03/30/2017] [Indexed: 12/31/2022] Open
Abstract
Neutrophils are important effector cells of antimicrobial immunity in an acute inflammatory response, with a primary role in the clearance of extracellular pathogens. However, in respiratory diseases such as asthma and chronic obstructive pulmonary disease (COPD), there is excessive infiltration and activation of neutrophils, subsequent production of reactive oxygen species, and release of serine proteases, matrix metalloproteinases, and myeloperoxidase—resulting in collateral damage as the cells infiltrate into the tissue. Increased neutrophil survival through dysregulated apoptosis facilitates continued release of neutrophil-derived mediators to perpetuate airway inflammation and tissue injury. Several target mechanisms have been investigated to address pathologic neutrophil biology and thereby provide a novel therapy for respiratory disease. These include neutrophil influx through inhibition of chemokine receptors CXCR2, CXCR1, and PI3Kγ signaling and neutrophil weaponry by protease inhibitors, targeting matrix metalloproteinases and neutrophil serine proteases. In addition, neutrophil function can be modulated using selective PI3Kδ inhibitors. This review highlights the latest advances in targeting neutrophils and their function, discusses the opportunities and risks of neutrophil inhibition, and explores how we might better develop future strategies to regulate neutrophil influx and function for respiratory diseases in dire need of novel effective therapies.
Collapse
|
39
|
Lerner CA, Lei W, Sundar IK, Rahman I. Genetic Ablation of CXCR2 Protects against Cigarette Smoke-Induced Lung Inflammation and Injury. Front Pharmacol 2016; 7:391. [PMID: 27826243 PMCID: PMC5078490 DOI: 10.3389/fphar.2016.00391] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 10/06/2016] [Indexed: 12/27/2022] Open
Abstract
Antagonism of CXCR2 receptors, predominately located on neutrophils and critical for their immunomodulatory activity, is an attractive pharmacological therapeutic approach aimed at reducing the potentially damaging effects of heightened neutrophil influx into the lung. The role CXCR2 in lung inflammation in response to cigarette smoke (CS) inhalation using the mutant mouse approach is not known. We hypothesized that genetic ablation of CXCR2 would protect mice against CS-induced inflammation and DNA damage response. We used CXCR2−/− deficient/mutant (knock-out, KO) mice, and assessed the changes in critical lung inflammatory NF-κB-driven chemokines released from the parenchyma of CS-exposed mice. The extent of tissue damage was assessed by the number of DNA damaging γH2AX positive cells. CXCR2 KO mice exhibited protection from heightened levels of neutrophils measured in BALF taken from mice exposed to CS. IL-8 (KC mouse) levels in the BALF from CS-exposed CXCR2 KO were elevated compared to WT. IL-6 levels in BALF were refractory to increase by CS in CXCR2 KO mice. There were no significant changes to MIP-2, MCP-1, or IL-1β. Total levels of NF-κB were maintained at lower levels in CS-exposed CXCR2 KO mice compared to WT mice exposed to CS. Finally, CXCR2 KO mice were protected from lung cells positive for DNA damage response and senescence marker γH2AX. CXCR2 KO mice are protected from heightened inflammatory response mediated by increased neutrophil response as a result of acute 3 day CS exposure. This is also associated with changes in pro-inflammatory chemokines and reduced incursion of γH2AX indicating CXCR2 deficient mice are protected from lung injury. Thus, CXCR2 may be a pharmacological target in setting of inflammation and DNA damage in the pathogenesis of COPD.
Collapse
Affiliation(s)
- Chad A Lerner
- Department of Environmental Medicine, University of Rochester Medical Center Rochester, NY, USA
| | - Wei Lei
- Department of Environmental Medicine, University of Rochester Medical Center Rochester, NY, USA
| | - Isaac K Sundar
- Department of Environmental Medicine, University of Rochester Medical Center Rochester, NY, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center Rochester, NY, USA
| |
Collapse
|
40
|
O'Byrne PM, Metev H, Puu M, Richter K, Keen C, Uddin M, Larsson B, Cullberg M, Nair P. Efficacy and safety of a CXCR2 antagonist, AZD5069, in patients with uncontrolled persistent asthma: a randomised, double-blind, placebo-controlled trial. THE LANCET RESPIRATORY MEDICINE 2016; 4:797-806. [PMID: 27574788 DOI: 10.1016/s2213-2600(16)30227-2] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/14/2016] [Accepted: 07/14/2016] [Indexed: 02/03/2023]
Abstract
BACKGROUND Airway neutrophilic inflammation is a pathological feature in some patients with severe asthma. Stimulation of the chemokine receptor CXCR2 mediates neutrophil migration into the airways. We investigated the safety and efficacy of AZD5069, a CXCR2 antagonist, as an add-on therapy in patients with uncontrolled severe asthma. METHODS In this multicentre, randomised, double-blind, placebo-controlled, dose-finding trial, we enrolled patients aged 18 years or older with uncontrolled asthma despite combination therapy with long-acting β2 agonists and medium-dose or high-dose inhaled corticosteroids. Patients were randomised in a 1:1:1:1 ratio via an interactive voice-response or web-response system to receive 5, 15, or 45 mg oral AZD5069 twice daily or matched placebo. The primary endpoint was the number of severe asthma exacerbations in 6 months. Safety was assessed in the 6-month treatment period and an optional 6-month safety extension. This trial is registered with ClinicalTrials.gov, number NCT01704495. FINDINGS 640 patients with a mean age of 52 (SD 11·8) years were randomised, 478 to receive AZD5069 (5 mg n=160, 15 mg n=156, and 45 mg n=162) and 162 placebo. No dose of AZD5069 reduced the rate of severe exacerbations compared with placebo (rate ratio for 5 mg 1·29, 90% CI 0·79-2·11; for 15 mg 1·53, 0·95-2·46; and for 45 mg 1·56, 0·98-2·49). Treatment with AZD5069 was generally well tolerated. The most commonly reported adverse event overall was nasopharyngitis, seen in 18 (11·5%) receiving 5 mg, 13 (8·5%) receiving 15 mg, and 18 (11·2%) receiving 45 mg AZD5069, and 31 (19·5%) of those receiving placebo. INTERPRETATION Treatment with this selective CXCR2 antagonist did not reduce the frequency of severe exacerbations in patients with uncontrolled severe asthma. These findings bring into question the role of CXCR2-mediated neutrophil recruitment in the pathobiology of exacerbations in severe refractory asthma. FUNDING AstraZeneca.
Collapse
Affiliation(s)
- Paul M O'Byrne
- Firestone Institute for Respiratory Health, St Joseph's Healthcare and McMaster University, Hamilton, ON, Canada.
| | | | | | | | | | | | | | | | - Parameswaran Nair
- Firestone Institute for Respiratory Health, St Joseph's Healthcare and McMaster University, Hamilton, ON, Canada
| |
Collapse
|
41
|
Abstract
Abstract
Cystic fibrosis (CF) lung disease is characterized by chronic infection and inflammation. Among inflammatory cells, neutrophils represent the major cell population accumulating in the airways of CF patients. While neutrophils provide the first defensive cellular shield against bacterial and fungal pathogens, in chronic disease conditions such as CF these short-lived immune cells release their toxic granule contents that cause tissue remodeling and irreversible structural damage to the host. A variety of human and murine studies have analyzed neutrophils and their products in the context of CF, yet their precise functional role and therapeutic potential remain controversial and incompletely understood. Here, we summarize the current evidence in this field to shed light on the complex and multi-faceted role of neutrophils in CF lung disease.
Collapse
|
42
|
Lee JH, Ko HJ, Woo ER, Lee SK, Moon BS, Lee CW, Mandava S, Samala M, Lee J, Kim HP. Moracin M inhibits airway inflammation by interrupting the JNK/c-Jun and NF-κB pathways in vitro and in vivo. Eur J Pharmacol 2016; 783:64-72. [PMID: 27138708 DOI: 10.1016/j.ejphar.2016.04.055] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 04/14/2016] [Accepted: 04/28/2016] [Indexed: 11/18/2022]
Abstract
The therapeutic effectiveness of moracins as 2-arylbenzofuran derivatives against airway inflammation was examined. Moracin M, O, and R were isolated from the root barks of Morus alba, and they inhibited interleukin (IL)-6 production from IL-1β-treated lung epithelial cells (A549) at 101-00μM. Among them, moracin M showed the strongest inhibitory effect (IC50=8.1μM). Downregulation of IL-6 expression by moracin M was mediated by interrupting the c-Jun N-terminal kinase (JNK)/c-Jun pathway. Moracin derivatives inhibited inducible nitric oxide synthase (iNOS)-catalyzed NO production from lipopolysaccharide (LPS)-treated alveolar macrophages (MH-S) at 50-100μM. In particular, moracin M inhibited NO production by downregulating iNOS. When orally administered, moracin M (20-60mg/kg) showed comparable inhibitory action with dexamethasone (30mg/kg) against LPS-induced lung inflammation, acute lung injury, in mice with that of dexamethasone (30mg/kg). The action mechanism included interfering with the activation of nuclear transcription factor-κB in inflamed lungs. Therefore, it is concluded that moracin M inhibited airway inflammation in vitro and in vivo, and it has therapeutic potential for treating lung inflammatory disorders.
Collapse
Affiliation(s)
- Ju Hee Lee
- College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Hae Ju Ko
- College of Pharmacy, Chosun University, Kwangjoo 61452, Republic of Korea
| | - Eun-Rhan Woo
- College of Pharmacy, Chosun University, Kwangjoo 61452, Republic of Korea
| | - Sang Kook Lee
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Bong Soo Moon
- College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Chan Woo Lee
- College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Suresh Mandava
- College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Mallesham Samala
- College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Jongkook Lee
- College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Hyun Pyo Kim
- College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea.
| |
Collapse
|
43
|
Raafat H. Biological therapy in severe asthma: A gem or a jam. THE EGYPTIAN JOURNAL OF BRONCHOLOGY 2016. [DOI: 10.4103/1687-8426.176658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
44
|
Li L, Chen K, Xiang Y, Yoshimura T, Su S, Zhu J, Bian XW, Wang JM. New development in studies of formyl-peptide receptors: critical roles in host defense. J Leukoc Biol 2016; 99:425-35. [PMID: 26701131 PMCID: PMC4750370 DOI: 10.1189/jlb.2ri0815-354rr] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 11/29/2015] [Accepted: 12/01/2015] [Indexed: 12/12/2022] Open
Abstract
Formyl-peptide receptors are a family of 7 transmembrane domain, Gi-protein-coupled receptors that possess multiple functions in many pathophysiologic processes because of their expression in a variety of cell types and their capacity to interact with a variety of structurally diverse, chemotactic ligands. Accumulating evidence demonstrates that formyl-peptide receptors are critical mediators of myeloid cell trafficking in the sequential chemotaxis signal relays in microbial infection, inflammation, and immune responses. Formyl-peptide receptors are also involved in the development and progression of cancer. In addition, one of the formyl-peptide receptor family members, Fpr2, is expressed by normal mouse-colon epithelial cells, mediates cell responses to microbial chemotactic agonists, participates in mucosal development and repair, and protects against inflammation-associated tumorigenesis. These novel discoveries greatly expanded the current understanding of the role of formyl-peptide receptors in host defense and as potential molecular targets for the development of therapeutics.
Collapse
Affiliation(s)
- Liangzhu Li
- *Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China; Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA; Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Department of Pulmonary Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China; and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Keqiang Chen
- *Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China; Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA; Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Department of Pulmonary Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China; and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yi Xiang
- *Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China; Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA; Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Department of Pulmonary Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China; and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Teizo Yoshimura
- *Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China; Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA; Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Department of Pulmonary Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China; and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Shaobo Su
- *Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China; Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA; Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Department of Pulmonary Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China; and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jianwei Zhu
- *Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China; Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA; Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Department of Pulmonary Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China; and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xiu-wu Bian
- *Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China; Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA; Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Department of Pulmonary Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China; and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ji Ming Wang
- *Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China; Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA; Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Department of Pulmonary Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China; and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
45
|
Shelfoon C, Shariff S, Traves SL, Kooi C, Leigh R, Proud D. Chemokine release from human rhinovirus-infected airway epithelial cells promotes fibroblast migration. J Allergy Clin Immunol 2016; 138:114-122.e4. [PMID: 26883463 DOI: 10.1016/j.jaci.2015.12.1308] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 11/05/2015] [Accepted: 12/05/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND Thickening of the lamina reticularis, a feature of remodeling in the asthmatic airways, is now known to be present in young children who wheeze. Human rhinovirus (HRV) infection is a common trigger for childhood wheezing, which is a risk factor for subsequent asthma development. We hypothesized that HRV-infected epithelial cells release chemoattractants to recruit fibroblasts that could potentially contribute to thickening of the lamina reticularis. OBJECTIVE We sought to investigate whether conditioned medium from HRV-infected epithelial cells can trigger directed migration of fibroblasts. METHODS Human bronchial epithelial cells were exposed to medium alone or infected with HRV-16. Conditioned medium from both conditions were tested as chemoattractants for human bronchial fibroblasts in the xCELLigence cell migration apparatus. RESULTS HRV-conditioned medium was chemotactic for fibroblasts. Treatment of fibroblasts with pertussis toxin, an inhibitor of Gαi-coupled receptors, prevented their migration. Production of epithelial chemoattractants required HRV replication. Multiplex analysis of epithelial supernatants identified CXCL10, CXCL8, and CCL5 as Gαi-coupled receptor agonists of potential interest. Subsequent analysis confirmed that fibroblasts express CXCR3 and CXCR1 receptors and that CXCL10 and, to a lesser extent, CXCL8, but not CCL5, are major contributors to fibroblast migration caused by HRV-conditioned medium. CONCLUSION CXCL10 and CXCL8 produced from HRV-infected epithelial cells are chemotactic for fibroblasts. This raises the possibility that repeated HRV infections in childhood could contribute to the initiation and progression of airway remodeling in asthmatic patients by recruiting fibroblasts that produce matrix proteins and thicken the lamina reticularis.
Collapse
Affiliation(s)
- Christopher Shelfoon
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sami Shariff
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Suzanne L Traves
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Cora Kooi
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Richard Leigh
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - David Proud
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
46
|
Lee JH, Sun YN, Kim YH, Lee SK, Kim HP. Inhibition of Lung Inflammation by Acanthopanax divaricatus var. Albeofructus and Its Constituents. Biomol Ther (Seoul) 2016; 24:67-74. [PMID: 26759704 PMCID: PMC4703355 DOI: 10.4062/biomolther.2015.070] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/06/2015] [Accepted: 08/07/2015] [Indexed: 11/05/2022] Open
Abstract
In order to find potential therapeutic agents on lung inflammatory conditions, the extracts of Acanthopanax divaricatus var. albeofructus were prepared and its constituents were isolated. They include lignans such as (+)-syringaresinol (1), acanthoside B (2), salvadoraside (3) and acanthoside D (4), lariciresinol-9-O-β-D-glucopyranoside (5) and phenylpropanoids such as 4-[(1E)-3-methoxy-1-propenyl]phenol (6), coniferin (7), and methyl caffeate (8). The extracts and several constituents such as compound 1, 6 and 8 inhibited the production of inflammatory markers, IL-6 and nitric oxide, from IL-1β-treated lung epithelial cells and lipopolysaccharide (LPS)-treated alveolar macrophages. Furthermore, the extracts and compound 4 significantly inhibited lung inflammation in lipolysaccharide-treated acute lung injury in mice by oral administration. Thus it is suggested that A. divaricatus var. albeofructus and its several constituents may be effective against lung inflammation.
Collapse
Affiliation(s)
- Ju Hee Lee
- College of Pharmacy, Kangwon National University, Chuncheon 24341,
Republic of Korea
| | - Ya Nan Sun
- College of Pharmacy, Chungnam National University, Daejeon 34134,
Republic of Korea
| | - Young Ho Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134,
Republic of Korea
| | - Sang Kook Lee
- College of Pharmacy, Seoul National University, Seoul 08826,
Republic of Korea
| | - Hyun Pyo Kim
- College of Pharmacy, Kangwon National University, Chuncheon 24341,
Republic of Korea
| |
Collapse
|
47
|
Jurcevic S, Humfrey C, Uddin M, Warrington S, Larsson B, Keen C. The effect of a selective CXCR2 antagonist (AZD5069) on human blood neutrophil count and innate immune functions. Br J Clin Pharmacol 2015; 80:1324-36. [PMID: 26182832 DOI: 10.1111/bcp.12724] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 07/10/2015] [Accepted: 07/13/2015] [Indexed: 12/11/2022] Open
Abstract
AIMS The aim of the present study was to investigate whether selective antagonism of the cysteine-X-cysteine chemokine receptor-2 (CXCR2) receptor has any adverse effects on the key innate effector functions of human neutrophils for defence against microbial pathogens. METHODS In a double-blind, crossover study, 30 healthy volunteers were randomized to treatment with the CXCR2 antagonist AZD5069 (100 mg) or placebo, twice daily orally for 6 days. The peripheral blood neutrophil count was assessed at baseline, daily during treatment and in response to exercise challenge and subcutaneous injection of granulocyte-colony stimulating factor (G-CSF). Neutrophil function was evaluated by phagocytosis of Escherichia coli and by the oxidative burst response to E. coli. RESULTS AZD5069 treatment reversibly reduced circulating neutrophil count from baseline by a mean [standard deviation (SD)] of -1.67 (0.67) ×10(9) l(-1) vs. 0.19 (0.78) ×10(9) l(-1) for placebo on day 2, returning to baseline by day 7 after the last dose. Despite low counts on day 4, a 10-min exercise challenge increased absolute blood neutrophil count, but the effect with AZD5069 was smaller and not sustained, compared with placebo treatment. Subcutaneous G-CSF on day 5 caused a substantial increase in blood neutrophil count in both placebo- and AZD5069-treated subjects. Superoxide anion production in E. coli-stimulated neutrophils and phagocytosis of E. coli were unaffected by AZD5069 (P = 0.375, P = 0.721, respectively vs. baseline, Day 4). AZD5069 was well tolerated. CONCLUSIONS CXCR2 antagonism did not appear adversely to affect the mobilization of neutrophils from bone marrow into the peripheral circulation, phagocytosis or the oxidative burst response to bacterial pathogens. This supports the potential of CXCR2 antagonists as a treatment option for diseases in which neutrophils play a pathological role.
Collapse
Affiliation(s)
- Stipo Jurcevic
- Division of Transplantation Immunology & Mucosal Biology, King's College London, London, UK
| | | | | | | | | | | |
Collapse
|
48
|
De Soyza A, Pavord I, Elborn JS, Smith D, Wray H, Puu M, Larsson B, Stockley R. A randomised, placebo-controlled study of the CXCR2 antagonist AZD5069 in bronchiectasis. Eur Respir J 2015; 46:1021-32. [PMID: 26341987 DOI: 10.1183/13993003.00148-2015] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 05/28/2015] [Indexed: 11/05/2022]
Abstract
This randomised double-blind placebo-controlled parallel-group multicentre phase IIa study evaluated the effect of the CXCR2 antagonist AZD5069 on sputum neutrophil counts in adults with bronchiectasis.Patients were randomised 1:1 to receive AZD5069 80 mg or placebo orally twice daily for 28 days. Assessments included blood cell counts, inflammatory markers in blood, morning spontaneous sputum, lung function, safety and tolerability and patients completed daily BronkoTest diary cards. The primary outcome measure was the change in absolute sputum neutrophil count.Of 52 randomised patients, 45 completed treatment, 20 (76.9%) out of 26 receiving AZD5069 and 25 (96.2%) out of 26 receiving placebo. AZD5069 reduced the absolute neutrophil cell count in morning sputum by 69% versus placebo (p=0.004); percentage sputum neutrophil count was reduced by 36% (p=0.008). The number of infections/exacerbations was similar with AZD5069 and placebo (nine versus eight), but these led to more study discontinuations with AZD5069 (four versus zero). Sputum interleukin (IL)-6 and growth-regulated oncogene (GRO)-α and serum GRO-α, IL-1ß and IL-8 levels increased with AZD5069 versus placebo (all p<0.001), while serum high-sensitivity C-reactive protein levels did not change. AZD5069 was well tolerated.AZD5069 markedly reduced absolute sputum neutrophil counts in bronchiectasis patients, although this was not associated with improvements in clinical outcomes in this exploratory study.
Collapse
Affiliation(s)
- Anthony De Soyza
- Institute of Cellular Medicine, Newcastle University and Freeman Hospital, Sir William Leech Research Centre, Respiratory Department, Newcastle upon Tyne, UK
| | - Ian Pavord
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - J Stuart Elborn
- Centre for Infection and Immunity, Queens University, Belfast, UK
| | - David Smith
- Respiratory Research Unit, Southmead Hospital, Bristol, UK
| | - Heather Wray
- Innovative Medicines, Respiratory, Inflammation and Autoimmunity (iMED RIA), AstraZeneca R&D, Mölndal, Sweden
| | - Margareta Puu
- Innovative Medicines, Respiratory, Inflammation and Autoimmunity (iMED RIA), AstraZeneca R&D, Mölndal, Sweden
| | - Bengt Larsson
- Innovative Medicines, Respiratory, Inflammation and Autoimmunity (iMED RIA), AstraZeneca R&D, Mölndal, Sweden
| | - Robert Stockley
- Respiratory Department, Queen Elizabeth Hospital, Birmingham, UK
| |
Collapse
|
49
|
Lee JH, Lim HJ, Lee CW, Son KH, Son JK, Lee SK, Kim HP. Methyl Protodioscin from the Roots of Asparagus cochinchinensis Attenuates Airway Inflammation by Inhibiting Cytokine Production. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2015; 2015:640846. [PMID: 26379748 PMCID: PMC4562339 DOI: 10.1155/2015/640846] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 07/14/2015] [Accepted: 07/21/2015] [Indexed: 11/17/2022]
Abstract
The present study was designed to find pharmacologically active compound against airway inflammation from the roots of Asparagus cochinchinensis. The 70% ethanol extract of the roots of A. cochinchinensis (ACE) was found to inhibit IL-6 production from IL-1β-treated lung epithelial cells (A549) and the major constituent, methyl protodioscin (MP), also strongly inhibited the production of IL-6, IL-8, and tumor necrosis factor- (TNF-) α from A549 cells at 10-100 μM. This downregulating effect of proinflammatory cytokine production was found to be mediated, at least in part, via inhibition of c-Jun N-terminal kinase (JNK) and c-Jun activation pathway. When examined on an in vivo model of airway inflammation in mice, lipopolysaccharide- (LPS-) induced acute lung injury, ACE, and MP significantly inhibited cell infiltration in the bronchoalveolar lavage fluid by the oral treatment at doses of 100-400 mg/kg and 30-60 mg/kg, respectively. MP also inhibited the production of proinflammatory cytokines such as IL-6, TNF-α, and IL-1β in lung tissue. All of these findings provide scientific evidence supporting the role of A. cochinchinensis as a herbal remedy in treating airway inflammation and also suggest a therapeutic value of MP on airway inflammatory disorders.
Collapse
Affiliation(s)
- Ju Hee Lee
- College of Pharmacy, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Hun Jai Lim
- College of Pharmacy, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Chan Woo Lee
- College of Pharmacy, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Kun-Ho Son
- Department of Food and Nutrition, Andong National University, Andong 760-749, Republic of Korea
| | - Jong-Keun Son
- College of Pharmacy, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| | - Sang Kook Lee
- College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Hyun Pyo Kim
- College of Pharmacy, Kangwon National University, Chuncheon 200-701, Republic of Korea
| |
Collapse
|
50
|
Planagumà A, Domènech T, Pont M, Calama E, García-González V, López R, Aulí M, López M, Fonquerna S, Ramos I, de Alba J, Nueda A, Prats N, Segarra V, Miralpeix M, Lehner MD. Combined anti CXC receptors 1 and 2 therapy is a promising anti-inflammatory treatment for respiratory diseases by reducing neutrophil migration and activation. Pulm Pharmacol Ther 2015; 34:37-45. [PMID: 26271598 DOI: 10.1016/j.pupt.2015.08.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 08/03/2015] [Accepted: 08/06/2015] [Indexed: 11/16/2022]
Abstract
Neutrophil infiltration and activation in the lung are important pathophysiological features in COPD, severe asthma and bronchiectasis mostly mediated by CXCL8 and CXCL1 via CXCR1 and CXCR2. No thorough study to date has been performed to compare the anti-inflammatory effect profile of dual CXCR1/2 vs. selective CXCR2 antagonists in relevant human neutrophil assays and pulmonary inflammation models. Dual CXCR1/2 (SCH527123, diaminocyclobutandione-1) and selective CXCR2 (SB265610, thiopyrimidine-1) antagonist activity and receptor residence time were determined by [(35)S]GTPγS binding in human (h)- and guinea pig (gp)-CXCR1 and CXCR2 overexpressing membranes. h-neutrophil chemotaxis, degranulation and ROS production were established using CXCL8 or CXCL1 to evaluate dual CXCR1/2- or selective CXCR2-dependent activities. LPS-induced lung inflammation in gp was selected to assess in vivo potency. Dual CXCR1/2 antagonists blocked both CXCL8 and CXCL1-induced h-neutrophil functions and [(35)S]GTPγS binding. In contrary, selective CXCR2 antagonists displayed significantly reduced potency in CXCL8 -mediated h-neutrophil responses despite being active in CXCR2 assays. Upon LPS challenge in gp, administration of SCH527123 inhibited the increase of neutrophils in BALF, modestly reduced blood neutrophils and induced minor neutrophil accumulation in bone marrow. Differentiation of CXCR1/2 vs. CXCR2 antagonists could not be extended to in vivo due to differences in CXCR1 receptor homology between h and gp. Dual CXCR1/2 therapy may represent a promising anti-inflammatory treatment for respiratory diseases reducing more effectively neutrophil migration and activation in the lung than a CXCR2 selective treatment. However, the in vivo confirmation of this claim is still missing due to species differences in CXCR1.
Collapse
Affiliation(s)
- A Planagumà
- Respiratory Therapeutic Area-Discovery, Almirall, R&D Centre, Laureà Miró 408-410, 08980 Sant Feliu de Llobregat, Barcelona, Spain.
| | - T Domènech
- Biological Reagents and Assay Development Screening, Almirall, R&D Centre, Laureà Miró 408-410, 08980 Sant Feliu de Llobregat, Barcelona, Spain
| | - M Pont
- Respiratory Therapeutic Area-Discovery, Almirall, R&D Centre, Laureà Miró 408-410, 08980 Sant Feliu de Llobregat, Barcelona, Spain
| | - E Calama
- Respiratory Therapeutic Area-Discovery, Almirall, R&D Centre, Laureà Miró 408-410, 08980 Sant Feliu de Llobregat, Barcelona, Spain
| | - V García-González
- Biological Reagents and Assay Development Screening, Almirall, R&D Centre, Laureà Miró 408-410, 08980 Sant Feliu de Llobregat, Barcelona, Spain
| | - R López
- Biological Reagents and Assay Development Screening, Almirall, R&D Centre, Laureà Miró 408-410, 08980 Sant Feliu de Llobregat, Barcelona, Spain
| | - M Aulí
- Pathology and Predictive Toxicology Section, Almirall, R&D Centre, Laureà Miró 408-410, 08980 Sant Feliu de Llobregat, Barcelona, Spain
| | - M López
- Computational and Structural Drug Discovery Department, Almirall, R&D Centre, Laureà Miró 408-410, 08980 Sant Feliu de Llobregat, Barcelona, Spain
| | - S Fonquerna
- Medicinal Chemistry Department, Almirall, R&D Centre, Laureà Miró 408-410, 08980 Sant Feliu de Llobregat, Barcelona, Spain
| | - I Ramos
- Biological Reagents and Assay Development Screening, Almirall, R&D Centre, Laureà Miró 408-410, 08980 Sant Feliu de Llobregat, Barcelona, Spain
| | - J de Alba
- Respiratory Therapeutic Area-Discovery, Almirall, R&D Centre, Laureà Miró 408-410, 08980 Sant Feliu de Llobregat, Barcelona, Spain
| | - A Nueda
- Biological Reagents and Assay Development Screening, Almirall, R&D Centre, Laureà Miró 408-410, 08980 Sant Feliu de Llobregat, Barcelona, Spain
| | - N Prats
- Pathology and Predictive Toxicology Section, Almirall, R&D Centre, Laureà Miró 408-410, 08980 Sant Feliu de Llobregat, Barcelona, Spain
| | - V Segarra
- Computational and Structural Drug Discovery Department, Almirall, R&D Centre, Laureà Miró 408-410, 08980 Sant Feliu de Llobregat, Barcelona, Spain
| | - M Miralpeix
- Respiratory Therapeutic Area-Discovery, Almirall, R&D Centre, Laureà Miró 408-410, 08980 Sant Feliu de Llobregat, Barcelona, Spain
| | - M D Lehner
- Respiratory Therapeutic Area-Discovery, Almirall, R&D Centre, Laureà Miró 408-410, 08980 Sant Feliu de Llobregat, Barcelona, Spain
| |
Collapse
|