1
|
Nam K, Dos Santos HT, Maslow FM, Small T, Shanbhag V, Petris MJ, Baker OJ. Copper chelation reduces early collagen deposition and preserves saliva secretion in irradiated salivary glands. Heliyon 2024; 10:e24368. [PMID: 38298614 PMCID: PMC10828693 DOI: 10.1016/j.heliyon.2024.e24368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 02/02/2024] Open
Abstract
Radiation therapy is a first-line treatment for head and neck cancer; however, it typically leads to hyposalivation stemming from fibrosis of the salivary gland. Current strategies to restore glandular function are dependent on the presence of residual functional salivary gland tissue, a condition commonly not met in patients with extensive fibrotic coverage of the salivary gland resulting from radiation therapy. Fibrosis is defined by the pathological accumulation of connective tissue (i.e., extracellular matrix) and excessive deposition of crosslinked (fibrillar) collagen that can impact a range of tissues and given that collagen crosslinking is necessary for fibrosis formation, inhibiting this process is a reasonable focus for developing anti-fibrotic therapies. Collagen crosslinking is catalyzed by the lysyl oxidase family of secreted copper-dependent metalloenzymes, and since that copper is an essential cofactor in all lysyl oxidase family members, we tested whether localized delivery of a copper chelator into the submandibular gland of irradiated mice could suppress collagen deposition and preserve the structure and function of this organ. Our results demonstrate that transdermal injection of tetrathiomolybdate into salivary glands significantly reduced the early deposition of fibrillar collagen in irradiated mice and preserved the integrity and function of submandibular gland epithelial tissue. Together, these studies identify copper metabolism as a novel therapeutic target to control radiation induced damage to the salivary gland and the current findings further indicate the therapeutic potential of repurposing clinically approved copper chelators as neoadjuvant treatments for radiation therapy.
Collapse
Affiliation(s)
- Kihoon Nam
- Christopher S. Bond Life Sciences Center, United States
- School of Medicine Department of Otolaryngology-Head and Neck Surgery, United States
| | - Harim Tavares Dos Santos
- Christopher S. Bond Life Sciences Center, United States
- School of Medicine Department of Otolaryngology-Head and Neck Surgery, United States
| | - Frank M. Maslow
- Christopher S. Bond Life Sciences Center, United States
- School of Medicine Department of Otolaryngology-Head and Neck Surgery, United States
| | - Travis Small
- Christopher S. Bond Life Sciences Center, United States
- School of Medicine Department of Otolaryngology-Head and Neck Surgery, United States
| | - Vinit Shanbhag
- Christopher S. Bond Life Sciences Center, United States
- Department of Biochemistry, United States
| | - Michael J. Petris
- Christopher S. Bond Life Sciences Center, United States
- Department of Biochemistry, United States
- Department of Ophthalmology, University of Missouri, Columbia, MO, 65211, United States
| | - Olga J. Baker
- Christopher S. Bond Life Sciences Center, United States
- School of Medicine Department of Otolaryngology-Head and Neck Surgery, United States
- Department of Biochemistry, United States
| |
Collapse
|
2
|
Luangmonkong T, Parichatikanond W, Olinga P. Targeting collagen homeostasis for the treatment of liver fibrosis: Opportunities and challenges. Biochem Pharmacol 2023; 215:115740. [PMID: 37567319 DOI: 10.1016/j.bcp.2023.115740] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/24/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Liver fibrosis is an excessive production, aberrant deposition, and deficit degradation of extracellular matrix (ECM). Patients with unresolved fibrosis ultimately undergo end-stage liver diseases. To date, the effective and safe strategy to cease fibrosis progression remains an unmet clinical need. Since collagens are the most abundant ECM protein which play an essential role in fibrogenesis, the suitable regulation of collagen homeostasis could be an effective strategy for the treatment of liver fibrosis. Therefore, this review provides a brief overview on the dysregulation of ECM homeostasis, focusing on collagens, in the pathogenesis of liver fibrosis. Most importantly, promising therapeutic mechanisms related to biosynthesis, deposition and extracellular interactions, and degradation of collagens, together with preclinical and clinical antifibrotic evidence of drugs affecting each target are orderly criticized. In addition, challenges for targeting collagen homeostasis in the treatment of liver fibrosis are discussed.
Collapse
Affiliation(s)
- Theerut Luangmonkong
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Thailand; Centre of Biopharmaceutical Science for Healthy Ageing (BSHA), Faculty of Pharmacy, Mahidol University, Bangkok, Thailand.
| | - Warisara Parichatikanond
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Thailand; Centre of Biopharmaceutical Science for Healthy Ageing (BSHA), Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Peter Olinga
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, The Netherlands
| |
Collapse
|
3
|
Yin Y, Peng J, Zhou J, Chen H, Peng D, Li D, Gan Y, Yin G, Tang Y. Tetrathiomolybdate Partially Alleviates Erectile Dysfunction of Type 1 Diabetic Rats Through Affecting Ceruloplasmin/eNOS and Inhibiting Corporal Fibrosis and Systemic Inflammation. Sex Med 2021; 10:100455. [PMID: 34818604 PMCID: PMC8847815 DOI: 10.1016/j.esxm.2021.100455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 11/28/2022] Open
Abstract
INTRODUCTION Patients with erectile dysfunction induced by diabetes mellitus (DMED) show a poor effect rate for oral phosphodiesterase type 5 inhibitors (PDE5is). Therefore, the new therapeutic strategy is necessary in patients with DMED. AIM To investigate whether Tetrathiomolybdate (TM) supplementation could ameliorate DMED by activation of eNOS. METHODS Twenty-four diabetic rats were induced by intraperitoneal injection of streptozotocin (STZ) and the other 6 normal rats constituted the control group. Eight weeks later, the erectile function of rats was assessed with an apomorphine test. Only some rats with DMED were treated with TM orally every day for 4 weeks; the other rats remained in the same condition for 4 weeks. After 1 week washout, the erectile function of rats in each group was evaluated. Then, the serum concentration of IL-6 and histologic changes of corpus cavernosum were measured. MAIN OUTCOME MEASURE Erectile function was measured after DMED rats treated with TM. The cavernosum level of Ceruloplasmin (Cp), eNOS, endothelial cell content, corporal fibrosis, apoptosis rate and the serum level of IL-6 were also assayed. RESULTS Erectile function in the DMED group was significantly impaired compared with the control group and was partly, but significantly, improved in the DMED+TM group. The DMED group showed upregulation of Cp and inhibition of eNOS, but the inhibition was partly reversed in the DMED+TM group. The DMED group showed serious corporal fibrosis. However, TM supplementation partly increased the ratio of smooth muscle to collagen, decreased the ratio of apoptosis. What's more, gavage administration of TM profoundly decreased the serum level of IL-6 in DMED rats. CONCLUSION TM supplementation inhibits endothelial dysfunction, corporal fibrosis, and systemic inflammation, ultimately leading to partial improvement of DMED in rats. Yin Y, Peng J, Zhou J, et al., Tetrathiomolybdate Partially Alleviates Erectile Dysfunction of Type 1 Diabetic Rats Through Affecting Ceruloplasmin/eNOS and Inhibiting Corporal Fibrosis and Systemic Inflammation. Sex Med 2021;XX:XXXXXX.
Collapse
Affiliation(s)
- Yinghao Yin
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jingxuan Peng
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jun Zhou
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hanfei Chen
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Dongyi Peng
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Dongjie Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China; Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, China; Xiangya International Medical Center, Department of Geriatric Urology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Yu Gan
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Guangming Yin
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, China.
| | - Yuxin Tang
- Department of Urology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China.
| |
Collapse
|
4
|
Lin SN, Mao R, Qian C, Bettenworth D, Wang J, Li J, Bruining D, Jairath V, Feagan B, Chen M, Rieder F. Development of Anti-fibrotic Therapy in Stricturing Crohn's Disease: Lessons from Randomized Trials in Other Fibrotic Diseases. Physiol Rev 2021; 102:605-652. [PMID: 34569264 DOI: 10.1152/physrev.00005.2021] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Intestinal fibrosis is considered an inevitable complication of Crohn's disease (CD) that results in symptoms of obstruction and stricture formation. Endoscopic or surgical treatment is required to treat the majority of patients. Progress in the management of stricturing CD is hampered by the lack of effective anti-fibrotic therapy; however, this situation is likely to change because of recent advances in other fibrotic diseases of the lung, liver and skin. In this review, we summarized data from randomized controlled trials (RCT) of anti-fibrotic therapies in these conditions. Multiple compounds have been tested for the anti-fibrotic effects in other organs. According to their mechanisms, they were categorized into growth factor modulators, inflammation modulators, 5-hydroxy-3-methylgultaryl-coenzyme A (HMG-CoA) reductase inhibitors, intracellular enzymes and kinases, renin-angiotensin system (RAS) modulators and others. From our review of the results from the clinical trials and discussion of their implications in the gastrointestinal tract, we have identified several molecular candidates that could serve as potential therapies for intestinal fibrosis in CD.
Collapse
Affiliation(s)
- Si-Nan Lin
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio, United States
| | - Ren Mao
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio, United States
| | - Chenchen Qian
- Department of Internal Medicine, UPMC Pinnacle, Harrisburg, Pennsylvania, United States
| | - Dominik Bettenworth
- Department of Medicine B, Gastroenterology and Hepatology, University Hospital Münster, Münster, Germany
| | - Jie Wang
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio, United States.,Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Jiannan Li
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio, United States
| | - David Bruining
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States
| | - Vipul Jairath
- Alimentiv Inc., London, ON, Canada.,Department of Medicine, Western University, London, ON, Canada.,Department of Biostatistics and Epidemiology, Western University, London, ON, Canada
| | - Brian Feagan
- Alimentiv Inc., London, ON, Canada.,Department of Medicine, Western University, London, ON, Canada.,Department of Biostatistics and Epidemiology, Western University, London, ON, Canada
| | - Minhu Chen
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | | | - Florian Rieder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio, United States
| |
Collapse
|
5
|
Chen W, Yang A, Jia J, Popov YV, Schuppan D, You H. Lysyl Oxidase (LOX) Family Members: Rationale and Their Potential as Therapeutic Targets for Liver Fibrosis. Hepatology 2020; 72:729-741. [PMID: 32176358 DOI: 10.1002/hep.31236] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 01/30/2020] [Accepted: 03/06/2020] [Indexed: 12/24/2022]
Abstract
The cross-linking of structural extracellular matrix (ECM) components, especially fibrillar collagens and elastin, is strongly implicated in fibrosis progression and resistance to fibrosis reversal. Lysyl oxidase family members (LOX and LOXL1 [lysyl oxidase-like 1], LOXL2 [lysyl oxidase-like 2], LOXL3 [lysyl oxidase-like 3], and LOXL4 [lysyl oxidase like 4]) are extracellular copper-dependent enzymes that play a key role in ECM cross-linking, but have also other intracellular functions relevant to fibrosis and carcinogenesis. Although the expression of most LOX family members is elevated in experimental liver fibrosis of diverse etiologies, their individual contribution to fibrosis is incompletely understood. Inhibition of the LOX family as a whole and of LOX, LOXL1, and LOXL2 specifically has been shown to suppress fibrosis progression and accelerate its reversal in rodent models of cardiac, renal, pulmonary, and liver fibrosis. Recent disappointing clinical trials with a monoclonal antibody against LOXL2 (simtuzumab) in patients with pulmonary and liver fibrosis dampened enthusiasm for LOX family member inhibition. However, this unexpected negative outcome may be related to the inefficient antibody, rather than to LOXL2, not qualifying as a relevant antifibrotic target. Moreover, LOX family members other than LOXL2 may prove to be attractive therapeutic targets. In this review, we summarize the structural hallmarks, expression patterns, covalent cross-linking activities, and modes of regulation of LOX family members and discuss the clinical potential of their inhibition to treat fibrosis in general and liver fibrosis in particular.
Collapse
Affiliation(s)
- Wei Chen
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Aiting Yang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jidong Jia
- Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yury V Popov
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Detlef Schuppan
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.,Institute of Translational Immunology and Research, Center for Immunotherapy, University of Mainz Medical Center, Mainz, Germany
| | - Hong You
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Zhang Y, Lu Y, Ji H, Li Y. Anti-inflammatory, anti-oxidative stress and novel therapeutic targets for cholestatic liver injury. Biosci Trends 2019; 13:23-31. [PMID: 30814402 DOI: 10.5582/bst.2018.01247] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cholestasis is a pathological process in which bile drainage is poor for a variety of reasons. Many studies have shown that cholestatic liver injury is a neutrophil-mediated inflammatory response, and oxidative stress induced by neutrophils is the main mechanism of liver cell death. The literature summarizes the bile acid signaling pathway, the neutrophil chemotaxis recruitment process during cholestasis, and the oxidative stress damage produced by neutrophil activation, summarizes the latest research progress. Sphingosine-1-phosphate receptor (S1PR) is a potential therapeutic target for cholestasis that reduces neutrophil aggregation without inhibiting systemic immune status. Early growth response factor 1 (Egr-1) may play a central role in the inflammation induced by cholestasis, and it is also a potential therapeutic target to inhibit the inflammation induced by cholestasis. Strengthening the antioxidant system of hepatocytes to cope with oxidative stress of neutrophils is a feasible treatment for cholestatic liver injury.
Collapse
Affiliation(s)
- Yafei Zhang
- Department of General Surgery, Second Affiliated Hospital of Xi'an Jiaotong University
| | - Yuxuan Lu
- The High School Affiliated to xi'an Jiaotong University
| | - Hong Ji
- Department of General Surgery, Second Affiliated Hospital of Xi'an Jiaotong University
| | - Yiming Li
- Department of General Surgery, Second Affiliated Hospital of Xi'an Jiaotong University
| |
Collapse
|
7
|
Song M, Vos MB, McClain CJ. Copper-Fructose Interactions: A Novel Mechanism in the Pathogenesis of NAFLD. Nutrients 2018; 10:E1815. [PMID: 30469339 PMCID: PMC6266129 DOI: 10.3390/nu10111815] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/08/2018] [Accepted: 11/16/2018] [Indexed: 12/13/2022] Open
Abstract
Compelling epidemiologic data support the critical role of dietary fructose in the epidemic of obesity, metabolic syndrome and nonalcoholic fatty liver disease (NAFLD). The metabolic effects of fructose on the development of metabolic syndrome and NAFLD are not completely understood. High fructose intake impairs copper status, and copper-fructose interactions have been well documented in rats. Altered copper-fructose metabolism leads to exacerbated experimental metabolic syndrome and NAFLD. A growing body of evidence has demonstrated that copper levels are low in NAFLD patients. Moreover, hepatic and serum copper levels are inversely correlated with the severity of NAFLD. Thus, high fructose consumption and low copper availability are considered two important risk factors in NAFLD. However, the causal effect of copper-fructose interactions as well as the effects of fructose intake on copper status remain to be evaluated in humans. The aim of this review is to summarize the role of copper-fructose interactions in the pathogenesis of the metabolic syndrome and discuss the potential underlying mechanisms. This review will shed light on the role of copper homeostasis and high fructose intake and point to copper-fructose interactions as novel mechanisms in the fructose induced NAFLD.
Collapse
Affiliation(s)
- Ming Song
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, USA.
- Hepatobiology&Toxicology Center, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | - Miriam B Vos
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30307, USA.
- Children's Healthcare of Atlanta, Atlanta, GA 30322, USA.
| | - Craig J McClain
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, USA.
- Hepatobiology&Toxicology Center, University of Louisville School of Medicine, Louisville, KY 40202, USA.
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
- University of Louisville Alcohol Research Center, University of Louisville School of Medicine, Louisville, KY 40202, USA.
- Robley Rex Veterans Affairs Medical Center, Louisville, KY 40206, USA.
| |
Collapse
|
8
|
Wang Z, Zhang YH, Guo C, Gao HL, Zhong ML, Huang TT, Liu NN, Guo RF, Lan T, Zhang W, Wang ZY, Zhao P. Tetrathiomolybdate Treatment Leads to the Suppression of Inflammatory Responses through the TRAF6/NFκB Pathway in LPS-Stimulated BV-2 Microglia. Front Aging Neurosci 2018. [PMID: 29535623 PMCID: PMC5835334 DOI: 10.3389/fnagi.2018.00009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Although the positive relationship between copper and Alzheimer's disease (AD) was reported by a lot of epidemiological data, the mechanism is not completely known. Copper is a redox metal and serves as a mediator of inflammation. Because the homeostasis of copper is altered in Aβ precursor protein (APP) and presenilin 1 (PS1) transgenic (Tg) mice, the using of copper chelators is a potential therapeutic strategy for AD. Here we report that a copper chelator, tetrathiomolybdate (TM), is a potential therapeutic drug of AD. We investigated whether TM treatment led to a decrease of pro-inflammatory cytokines in vivo and in vitro, and found that TM treatment reduced the expression of iNOS and TNF-α in APP/PS1 Tg mice through up-regulating superoxide dismutase 1 (SOD1) activity. In vitro, once stimulated, microglia secretes a variety of proinflammatory cytokines, so we utilized LPS-stimulated BV-2 cells as the inflammatory cell model to detect the anti-inflammatory effects of TM. Our results indicated that TM-pretreatment suppressed the ubiquitination of TRAF6 and the activation of NFκB without affecting the expression of TLR4 and Myd88 in vitro. By detecting the activity of SOD1 and the production of reactive oxygen species (ROS), we found that the anti-inflammatory effects of TM could be attributed to its ability to reduce the amount of intracellular bioavailable copper, and the production of ROS which is an activator of the TRAF6 auto-ubiquitination. Hence, our results revealed that TM-treatment could reduce the production of inflammatory cytokines by the suppression of ROS/TRAF6/AKT/NFκB signaling pathway.
Collapse
Affiliation(s)
- Zhuo Wang
- Department of Neurobiology, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Ya-Hong Zhang
- Department of Neurobiology, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Chuang Guo
- Department of Neurobiology, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Hui-Ling Gao
- Department of Neurobiology, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Man-Li Zhong
- Department of Neurobiology, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Ting-Ting Huang
- Department of Neurobiology, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Na-Na Liu
- Department of Neurobiology, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Rui-Fang Guo
- Department of Neurobiology, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Tian Lan
- Department of Neurobiology, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Wei Zhang
- Department of Hepatobiliary Surgery, General Hospital of Shenyang Military Area Command, Shenyang, China
| | - Zhan-You Wang
- Department of Neurobiology, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Pu Zhao
- Department of Neurobiology, College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
9
|
Saffioti F, Gurusamy KS, Eusebi LH, Tsochatzis E, Davidson BR, Thorburn D, Cochrane Hepato‐Biliary Group. Pharmacological interventions for primary biliary cholangitis: an attempted network meta-analysis. Cochrane Database Syst Rev 2017; 3:CD011648. [PMID: 28350426 PMCID: PMC6464661 DOI: 10.1002/14651858.cd011648.pub2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND Primary biliary cholangitis (previously primary biliary cirrhosis) is a chronic liver disease caused by the destruction of small intra-hepatic bile ducts resulting in stasis of bile (cholestasis), liver fibrosis, and liver cirrhosis. The optimal pharmacological treatment of primary biliary cholangitis remains uncertain. OBJECTIVES To assess the comparative benefits and harms of different pharmacological interventions in the treatment of primary biliary cholangitis through a network meta-analysis and to generate rankings of the available pharmacological interventions according to their safety and efficacy. However, it was not possible to assess whether the potential effect modifiers were similar across different comparisons. Therefore, we did not perform the network meta-analysis, and instead, assessed the comparative benefits and harms of different interventions using standard Cochrane methodology. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (CENTRAL; 2017, Issue 2), MEDLINE, Embase, Science Citation Index Expanded, World Health Organization International Clinical Trials Registry Platform, and randomised controlled trials registers to February 2017 to identify randomised clinical trials on pharmacological interventions for primary biliary cholangitis. SELECTION CRITERIA We included only randomised clinical trials (irrespective of language, blinding, or publication status) in participants with primary biliary cholangitis. We excluded trials which included participants who had previously undergone liver transplantation. We considered any of the various pharmacological interventions compared with each other or with placebo or no intervention. DATA COLLECTION AND ANALYSIS We used standard methodological procedures expected by Cochrane. We calculated the odds ratio (OR) and rate ratio with 95% confidence intervals (CI) using both fixed-effect and random-effects models based on available-participant analysis with Review Manager 5. We assessed risk of bias according to Cochrane, controlled risk of random errors with Trial Sequential Analysis, and assessed the quality of the evidence using GRADE. MAIN RESULTS We identified 74 trials including 5902 participants that met the inclusion criteria of this review. A total of 46 trials (4274 participants) provided information for one or more outcomes. All the trials were at high risk of bias in one or more domains. Overall, all the evidence was low or very low quality. The proportion of participants with symptoms varied from 19.9% to 100% in the trials that reported this information. The proportion of participants who were antimitochondrial antibody (AMA) positive ranged from 80.8% to 100% in the trials that reported this information. It appeared that most trials included participants who had not received previous treatments or included participants regardless of the previous treatments received. The follow-up in the trials ranged from 1 to 96 months.The proportion of people with mortality (maximal follow-up) was higher in the methotrexate group versus the no intervention group (OR 8.83, 95% CI 1.01 to 76.96; 60 participants; 1 trial; low quality evidence). The proportion of people with mortality (maximal follow-up) was lower in the azathioprine group versus the no intervention group (OR 0.56, 95% CI 0.32 to 0.98; 224 participants; 2 trials; I2 = 0%; low quality evidence). However, it has to be noted that a large proportion of participants (25%) was excluded from the trial that contributed most participants to this analysis and the results were not reliable. There was no evidence of a difference in any of the remaining comparisons. The proportion of people with serious adverse events was higher in the D-penicillamine versus no intervention group (OR 28.77, 95% CI 1.57 to 526.67; 52 participants; 1 trial; low quality evidence). The proportion of people with serious adverse events was higher in the obeticholic acid plus ursodeoxycholic acid (UDCA) group versus the UDCA group (OR 3.58, 95% CI 1.02 to 12.51; 216 participants; 1 trial; low quality evidence). There was no evidence of a difference in any of the remaining comparisons for serious adverse events (proportion) or serious adverse events (number of events). None of the trials reported health-related quality of life at any time point. FUNDING nine trials had no special funding or were funded by hospital or charities; 31 trials were funded by pharmaceutical companies; and 34 trials provided no information on source of funding. AUTHORS' CONCLUSIONS Based on very low quality evidence, there is currently no evidence that any intervention is beneficial for primary biliary cholangitis. However, the follow-up periods in the trials were short and there is significant uncertainty in this issue. Further well-designed randomised clinical trials are necessary. Future randomised clinical trials ought to be adequately powered; performed in people who are generally seen in the clinic rather than in highly selected participants; employ blinding; avoid post-randomisation dropouts or planned cross-overs; should have sufficient follow-up period (e.g. five or 10 years or more); and use clinically important outcomes such as mortality, health-related quality of life, cirrhosis, decompensated cirrhosis, and liver transplantation. Alternatively, very large groups of participants should be randomised to facilitate shorter trial duration.
Collapse
Affiliation(s)
- Francesca Saffioti
- Royal Free Hospital and the UCL Institute of Liver and Digestive HealthSheila Sherlock Liver CentrePond StreetHampsteadLondonUKNW3 2QG
- University of MessinaDepartment of Clinical and Experimental Medicine, Division of Clinical and Molecular HepatologyVia Consolare Valeria, 1MessinaMessinaItaly98125
| | - Kurinchi Selvan Gurusamy
- Royal Free Campus, UCL Medical SchoolDepartment of SurgeryRoyal Free HospitalRowland Hill StreetLondonUKNW3 2PF
| | - Leonardo Henry Eusebi
- Royal Free Hampstead NHS Foundation Trust and UCL Institute of Liver and Digestive HealthThe Royal Free Sheila Sherlock Liver CentreLondonUK
- University of BolognaDepartment of Medical and Surgical Sciences (DIMEC)BolognaItaly
| | - Emmanuel Tsochatzis
- Royal Free Hospital and the UCL Institute of Liver and Digestive HealthSheila Sherlock Liver CentrePond StreetHampsteadLondonUKNW3 2QG
| | - Brian R Davidson
- Royal Free Campus, UCL Medical SchoolDepartment of SurgeryRoyal Free HospitalRowland Hill StreetLondonUKNW3 2PF
| | - Douglas Thorburn
- Royal Free Hospital and the UCL Institute of Liver and Digestive HealthSheila Sherlock Liver CentrePond StreetHampsteadLondonUKNW3 2QG
| | | |
Collapse
|
10
|
Rupp C, Stremmel W, Weiss KH. Novel perspectives on Wilson disease treatment. WILSON DISEASE 2017; 142:225-230. [DOI: 10.1016/b978-0-444-63625-6.00019-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
11
|
Ovet H, Oztay F. The copper chelator tetrathiomolybdate regressed bleomycin-induced pulmonary fibrosis in mice, by reducing lysyl oxidase expressions. Biol Trace Elem Res 2014; 162:189-99. [PMID: 25349139 DOI: 10.1007/s12011-014-0142-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 09/29/2014] [Indexed: 11/25/2022]
Abstract
Pulmonary fibrosis (PF) is characterized by an increase in the number of fibroblasts and an accumulation of collagen fibers in the extracellular matrix (ECM). The members of the copper-dependent lysyl oxidase (LOX) enzyme family regulate the collagen accumulation in the ECM. Tetrathiomolybdate (TM) is a copper chelator. The present study reported the effect of TM on the expression of LOX proteins (LOX, LOXL1, and LOXL2), collagen digestion enzymes (MMP2 and MMP8), and TIMP1 (a collagenase inhibitor) in PF. The PF in mice was induced by intratracheal bleomycin instillation. Adult mice were divided into four groups: mice dissected after 21 days of the first bleomycin (0.08 mg/kg, single dose) treatment (I) and their controls (II), and mice treated with TM for 1 week (1.2 mg/day/mice for the first 4 days and 0.9 mg/day/mice for the last 3 days) after 14 days of the first bleomycin instillation and dissected in the 21st day of the experiment (III) and their controls (IV). Mice in groups III and IV were fed a low-copper (2 mg/kg) diet during the last 7 days of the experiment. The fibrosis score in the lung was determined under a microscope. The expressions of collagen-I, LOX, MMP, and TIMP1 proteins were analyzed by Western blotting in the lung. Mice lungs with fibrosis were characterized by an overexpression of collagen-I, LOX, MMP, and TIMP1 proteins in addition to an accumulation of collagen fibers. TM treatments significantly regressed the overexpression of these proteins in the fibrotic mice lung. In conclusion, TM treatments can be used for the regression of PF, by decreasing collagen-I protein expression and accumulation.
Collapse
Affiliation(s)
- Hale Ovet
- Department of Biology, Faculty of Science, Istanbul University, Vezneciler, 34134, Istanbul, Turkey,
| | | |
Collapse
|
12
|
Brewer GJ. The promise of copper lowering therapy with tetrathiomolybdate in the cure of cancer and in the treatment of inflammatory disease. J Trace Elem Med Biol 2014; 28:372-8. [PMID: 25194954 DOI: 10.1016/j.jtemb.2014.07.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Tetrathiomolybdate (TM) is a unique anticopper drug developed for the treatment of the neurologic presentation of Wilson's disease, for which it is excellent. Since it was known copper was required for angiogenesis, TM was tested on mouse cancer models to see if it would inhibit tumor growth based on an antiangiogenic effect. TM was extremely effective in these models, but all the tumors in the models started small in size - micrometastatic in size. Later, TM was tested in numerous human cancer trials, where it showed only modest effects. However, the mouse lesson of efficacy against micro disease was forgotten - all the trials were against bulky, advanced cancer. Now, the mouse evidence is coming back to life. Three groups are curing, or having major efficacy of TM, against advanced human cancers, heretofore virtually incurable, particularly if the cancer has been reduced to no evidence of disease (NED) status by conventional therapy. In that situation, where the remaining disease is micrometastatic, TM therapy appears to be curative. We have designed and initiated a study of TM in canine osteosarcoma at the micrometastatic phase to help put these findings on a firm scientific basis. TM also has major anti-inflammatory properties by inhibiting copper dependent cytokines involved in inflammation. This anti-inflammatory effect may be involved in TM's anticancer effect because cancers, as they advance, attract inflammatory cells that provide a plethora of additional proangiogenic agents.
Collapse
Affiliation(s)
- George J Brewer
- Department of Human Genetics and Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA; Cypris LLC, Ann Arbor, MI, USA.
| |
Collapse
|
13
|
Zimnicka AM, Tang H, Guo Q, Kuhr FK, Oh MJ, Wan J, Chen J, Smith KA, Fraidenburg DR, Choudhury MSR, Levitan I, Machado RF, Kaplan JH, Yuan JXJ. Upregulated copper transporters in hypoxia-induced pulmonary hypertension. PLoS One 2014; 9:e90544. [PMID: 24614111 PMCID: PMC3948681 DOI: 10.1371/journal.pone.0090544] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 02/02/2014] [Indexed: 11/18/2022] Open
Abstract
Pulmonary vascular remodeling and increased arterial wall stiffness are two major causes for the elevated pulmonary vascular resistance and pulmonary arterial pressure in patients and animals with pulmonary hypertension. Cellular copper (Cu) plays an important role in angiogenesis and extracellular matrix remodeling; increased Cu in vascular smooth muscle cells has been demonstrated to be associated with atherosclerosis and hypertension in animal experiments. In this study, we show that the Cu-uptake transporter 1, CTR1, and the Cu-efflux pump, ATP7A, were both upregulated in the lung tissues and pulmonary arteries of mice with hypoxia-induced pulmonary hypertension. Hypoxia also significantly increased expression and activity of lysyl oxidase (LOX), a Cu-dependent enzyme that causes crosslinks of collagen and elastin in the extracellular matrix. In vitro experiments show that exposure to hypoxia or treatment with cobalt (CoCl2) also increased protein expression of CTR1, ATP7A, and LOX in pulmonary arterial smooth muscle cells (PASMC). In PASMC exposed to hypoxia or treated with CoCl2, we also confirmed that the Cu transport is increased using 64Cu uptake assays. Furthermore, hypoxia increased both cell migration and proliferation in a Cu-dependent manner. Downregulation of hypoxia-inducible factor 1α (HIF-1α) with siRNA significantly attenuated hypoxia-mediated upregulation of CTR1 mRNA. In summary, the data from this study indicate that increased Cu transportation due to upregulated CTR1 and ATP7A in pulmonary arteries and PASMC contributes to the development of hypoxia-induced pulmonary hypertension. The increased Cu uptake and elevated ATP7A also facilitate the increase in LOX activity and thus the increase in crosslink of extracellular matrix, and eventually leading to the increase in pulmonary arterial stiffness.
Collapse
Affiliation(s)
- Adriana M. Zimnicka
- Department of Medicine, Section of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Haiyang Tang
- Department of Medicine, Section of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Qiang Guo
- Department of Medicine, Section of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Frank K. Kuhr
- Department of Medicine, Section of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Myung-Jin Oh
- Department of Medicine, Section of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Jun Wan
- Department of Medicine, Section of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Jiwang Chen
- Department of Medicine, Section of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Kimberly A. Smith
- Department of Medicine, Section of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Dustin R. Fraidenburg
- Department of Medicine, Section of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Moumita S. R. Choudhury
- Department of Medicine, Section of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Irena Levitan
- Department of Medicine, Section of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Roberto F. Machado
- Department of Medicine, Section of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Jack H. Kaplan
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Jason X.-J. Yuan
- Department of Medicine, Section of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
14
|
Minomo A, Ishima Y, Chuang VT, Suwa Y, Kragh-Hansen U, Narisoko T, Morioka H, Maruyama T, Otagiri M. Albumin domain II mutant with high bilirubin binding affinity has a great potential as serum bilirubin excretion enhancer for hyperbilirubinemia treatment. Biochim Biophys Acta Gen Subj 2013; 1830:2917-23. [DOI: 10.1016/j.bbagen.2013.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 12/14/2012] [Accepted: 01/07/2013] [Indexed: 11/24/2022]
|
15
|
Brewer GJ. Metals in the causation and treatment of Wilson’s disease and Alzheimer’s disease, and copper lowering therapy in medicine. Inorganica Chim Acta 2012. [DOI: 10.1016/j.ica.2012.06.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Han JM, Kim HG, Choi MK, Lee JS, Park HJ, Wang JH, Lee JS, Son SW, Hwang SY, Son CG. Aqueous extract of Artemisia iwayomogi Kitamura attenuates cholestatic liver fibrosis in a rat model of bile duct ligation. Food Chem Toxicol 2012; 50:3505-3513. [PMID: 22824087 DOI: 10.1016/j.fct.2012.07.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Revised: 07/11/2012] [Accepted: 07/12/2012] [Indexed: 12/15/2022]
Abstract
Cholestatic liver fibrosis, characterized by excessive accumulation of extracellular matrix (ECM) proteins, is associated with bile acid-induced oxidative stress and lipid peroxidation. We evaluated the therapeutic or protective effect of an aqueous extract of Artemisia iwayomogi Kitamura (WAI) in a rat bile duct ligation (BDL)-induced hepatic fibrogenesis model. After BDL, rats were treated once daily with 25 or 50 mg/kg of WAI for 2weeks. The serum bilirubin, aspartate transaminase, alanine transaminase, malondialdehyde, and liver hydroxyproline levels were drastically increased in the BDL group. WAI administration significantly reduced these markers and restored BDL-induced depletion of glutathione content and glutathione peroxidase activity. Cholestatic liver injury and collagen deposition were markedly attenuated by WAI treatment, and these changes were paralleled by significantly suppressed gene and protein expression of fibrogenic factors, including hepatic alphasmooth muscle actin, platelet-derived growth factor, and transforming growth factor β. Our data suggest that WAI may have antifibrotic properties via both improvement of antioxidant activities and inhibition of ECM protein production in the rat model of BDL.
Collapse
Affiliation(s)
- Jong-Min Han
- Liver and Immunology Research Center, Institute of Traditional Medicine and Bioscience of Daejeon University, 22-5, Daeheung-dong, Jung-gu, Daejeon 301-724, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Song M, Zhou Z, Chen T, Zhang J, McClain CJ. Copper deficiency exacerbates bile duct ligation-induced liver injury and fibrosis in rats. J Pharmacol Exp Ther 2011; 339:298-306. [PMID: 21784888 PMCID: PMC3186282 DOI: 10.1124/jpet.111.184325] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 07/21/2011] [Indexed: 01/22/2023] Open
Abstract
Copper levels are elevated in a variety of liver fibrosis conditions. Lowering copper to a certain level protects against fibrosis. However, whether severe copper deficiency is protective against liver fibrosis is not known. The purpose of the present study is to evaluate this question by inducing severe copper deficiency using the copper chelator, tetrathiomolybdate (TM), in a bile duct ligation (BDL) rat model. Male Sprague-Dawley rats were divided into four groups: sham, sham plus TM, BDL, and BDL plus TM. TM was given in a daily dose of 10 mg/kg by body weight by means of intragastric gavage, beginning 5 days after BDL. All animals were killed 2 weeks after surgery. Severe copper deficiency was induced by TM overdose in either sham or BDL rats, as shown by decreased plasma ceruloplasmin activity. Liver injury and fibrosis were exacerbated in BDL rats with TM treatment, as illustrated by robustly increased plasma aspartate aminotransferase and hepatic collagen accumulation. Iron stores, as measured by plasma ferritin, were significantly increased in copper-deficient BDL rats. Moreover, hepatic heme oxygenase-1 expression was markedly down-regulated by copper deficiency in BDL rats. In addition, hepatic gene expression involving mitochondrial biogenesis and β-oxidation was significantly up-regulated in BDL rats, and this increase was abolished by copper deficiency. In summary, severe copper deficiency exacerbates BDL-induced liver injury and liver fibrosis, probably caused by increased iron overload and decreased antioxidant defenses and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Ming Song
- Department of Medicine, Division of Gastroenterology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | | | | | | | | |
Collapse
|
18
|
Gümüş M, Yüksel H, Evliyaoğlu O, Kapan M, Böyük A, Önder A, Aldemir M. Effects of ellagic acid on copper, zinc, and biochemical values in serum and liver of experimental cholestatic rats. Biol Trace Elem Res 2011; 143:386-93. [PMID: 20882364 DOI: 10.1007/s12011-010-8863-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 09/21/2010] [Indexed: 01/02/2023]
Abstract
Ellagic acid (EA) is a natural polyphenolic compound. Although, modulator effects of EA on copper (Cu) and zinc (Zn) levels in some liver diseases have been reported in experimental animals, its effects in obstructive jaundice (OJ) has not been clarified. We aimed to evaluate potential effects of EA on Cu and Zn levels in liver and serum of cholestatic rats. Forty Wistar albino rats were equally divided into four groups. First group was used as controls. Second group received EA (60 mg(-1) kg(-1) day(-1)) for 8 days. Third was OJ group, and fourth group was OJ plus EA group. After 8 days, blood and liver samples were obtained. Higher serum and liver Cu and lower serum and liver Zn levels were found in OJ group (p < 0.05) compared with other groups. However, these differences reached to significant levels for Cu in serum and for Zn in lever. Higher serum copper levels were decreased, and lower liver Zn levels were increased by EA treatment in cholestatic rats (p < 0.05). Also, higher Cu/Zn ratio in OJ group was decreased by EA treatment both in liver (p < 0.05) and in serum (p < 0.05). Significantly higher serum bilirubin, alkaline phosphatase, alanine aminotransferase, and aspartate aminotransferase values were found in OJ and OJ + EA groups compared with the control and EA groups (p < 0.05). In conclusion, result of the current study indicated that ellagic acid has modulator effects on Cu and Zn levels in liver and serum of cholestatic rats.
Collapse
Affiliation(s)
- Metehan Gümüş
- Department of General Surgery, Medical School, Dicle University, Yenişehir, 21280 Diyarbakir, Turkey.
| | | | | | | | | | | | | |
Collapse
|
19
|
Mitchell C, Mahrouf-Yorgov M, Mayeuf A, Robin MA, Mansouri A, Fromenty B, Gilgenkrantz H. Overexpression of Bcl-2 in hepatocytes protects against injury but does not attenuate fibrosis in a mouse model of chronic cholestatic liver disease. J Transl Med 2011; 91:273-82. [PMID: 20856227 DOI: 10.1038/labinvest.2010.163] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The role of hepatocyte apoptosis in the physiopathology of obstructive cholestasis is still controversial. Although some data have strongly suggested that hepatocellular cholestatic injury is due to Fas-mediated hepatocyte apoptosis, some others concluded that necrosis, rather than apoptosis, represents the main type of hepatocyte death in chronic cholestasis. Moreover, it has also been suggested that the reduced liver injury observed in the absence of Fas receptor after bile duct ligation was not due to lower hepatocyte apoptosis but to the indirect role of this receptor in non-hepatocytic cells such as cholangiocytes and inflammatory cells. The aim of this work was therefore to determine whether a protection against cell death limited to hepatocytes could be sufficient to reduce liver injury and delay cholestatic fibrosis. With this purpose, we performed bile duct ligation in transgenic mice overexpressing Bcl-2 in hepatocytes and in wild-type littermates. We found that, compared with necrosis, apoptosis was negligible in this model. Our results also showed that hepatocyte Bcl-2 expression protected hepatocytes against liver injury only in the early steps of the disease. This protection was correlated with reduced mitochondrial dysfunction and lipid peroxidation. However, in contrast to Fas receptor-deficient lpr mice, fibrosis progression was not hampered and liver inflammatory response was not reduced by Bcl-2 overexpression. These results therefore comfort the hypothesis that Fas-mediated apoptotic hepatocyte pathway is not a significant contributing factor to the clinical features observed in cholestasis. Moreover, in the absence of a blunted inflammatory response in transgenic mice, Bcl-2 protection against hepatocyte mitochondrial dysfunction and lipid peroxidation was not sufficient to block fibrosis progression.
Collapse
Affiliation(s)
- Claudia Mitchell
- Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France
| | | | | | | | | | | | | |
Collapse
|
20
|
Askari F, Innis D, Dick RB, Hou G, Marrero J, Greenson J, Brewer GJ. Treatment of primary biliary cirrhosis with tetrathiomolybdate: results of a double-blind trial. Transl Res 2010; 155:123-30. [PMID: 20171597 DOI: 10.1016/j.trsl.2009.09.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 09/22/2009] [Accepted: 09/23/2009] [Indexed: 11/19/2022]
Abstract
The results of a double-blind trial of tetrathiomolybdate therapy and standard of care, versus placebo and standard of care treatment, in primary biliary cirrhosis patients are presented. Baseline studies of liver function, various safety variables, ceruloplasmin, a liver biopsy for histologic analysis, and for various cytokine analyses were carried out. Patients were observed every 4 months for up to 2 years of treatment by a hepatologist for clinical evaluation and repeat of all the baseline studies except liver biopsy, which was repeated at 2 years. The primary end points were improvement in 2 liver function tests and in 1 inflammatory cytokine. Fifteen placebo patients were followed for an average of 13 months, and 13 tetrathiomolybdate patients were followed for an average of 14 months. The predefined primary end points for efficacy were met. Tetrathiomolybdate was well tolerated. Because tetrathiomolybdate has been shown in numerous animal studies to inhibit autoimmune and inflammatory processes, and because primary biliary cirrhosis is an autoimmune attack on bile ducts, these positive findings on efficacy of tetrathiomolybdate therapy in primary biliary cirrhosis fit with the animal studies and suggest the need for a longer clinical trial to examine transplant-free survival.
Collapse
Affiliation(s)
- Fred Askari
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109-5720, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Silveira MG, Lindor KD. Is there a role for tetrathiomolybdate in the treatment of primary biliary cirrhosis? Transl Res 2010; 155:120-2. [PMID: 20171596 DOI: 10.1016/j.trsl.2009.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Accepted: 10/28/2009] [Indexed: 01/10/2023]
Affiliation(s)
- Marina G Silveira
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
22
|
Dong MX, Jia Y, Zhang YB, Li CC, Geng YT, Zhou L, Li XY, Liu JC, Niu YC. Emodin protects rat liver from CCl 4-induced fibrogenesis via inhibition of hepatic stellate cells activation. World J Gastroenterol 2009; 15:4753-62. [PMID: 19824107 PMCID: PMC2761551 DOI: 10.3748/wjg.15.4753] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the role of emodin in protecting the liver against fibrogenesis caused by carbon tetrachloride (CCl4) in rats and to further explore the underlying mechanisms.
METHODS: Rat models of experimental hepatic fibrosis were established by injection with CCl4; the treated rats received emodin via oral administration at a dosage of 20 mg/kg twice a week at the same time. Rats injected with olive oil served as a normal group. Histopathological changes were observed by hematoxylin and eosin staining. The activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in serum and hepatic hydroxyproline content were assayed by biochemical analyses. The mRNA and protein relevant to hepatic stellate cell (HSC) activation in the liver were assessed using real-time reverse transcription-polymerase chain reaction (RT-PCR), immunohistochemistry, western blotting and enzyme-linked immunosorbent assay.
RESULTS: The degree of hepatic fibrosis increased markedly in the CCl4 group compared to the normal group (P < 0.01), and decreased markedly in the emodin group compared to the CCl4 group according to METAVIR scale (P < 0.01) compared with those in the normal control group (51.02 ± 10.64 IU/L and 132.28 ± 18.14 IU/L). The activities of serum ALT and AST were significantly higher in rats injected with CCl4 (289.25 ± 68.84 IU/L and 423.89 ± 35.67 IU/L, both P < 0.05). The activities of serum ALT and AST were significantly reduced by administration of emodin (176.34 ± 47.29 IU/L and 226.1 ± 44.52 IU/L, both P < 0.05). Compared with the normal controls (54.53 ± 13.46 mg/g), hepatic hydroxyproline content was significantly higher in rats injected with CCl4 (120.27 ± 28.47 mg/g, P < 0.05). Hepatic hydroxyproline content was significantly reduced in the rats treated with emodin at 20 mg/kg (71.25 ± 17.02 mg/g, P < 0.05). Emodin significantly protected the liver from injury by reducing serum AST and ALT activities and reducing hepatic hydroxyproline content. The mRNA levels of transforming growth factor-β1 (TGF-β1), Smad4 and α-SMA in liver tissues were significantly down-regulated in SD rats that received emodin treatment. Furthermore, significant down-regulation of serum TGF-β1 protein levels and protein expression of Smad4 and α-SMA in liver tissues was also observed in the rats. Emodin inhibited HSC activation by reducing the abundance of TGF-β1 and Smad4.
CONCLUSION: Emodin protects the rat liver from CCl4-induced fibrogenesis by inhibiting HSC activation. Emodin might be a therapeutic antifibrotic agent for the treatment of hepatic fibrosis.
Collapse
|
23
|
Reversible surgical model of biliary inflammation and obstructive jaundice in mice. J Surg Res 2009; 164:221-7. [PMID: 19932898 DOI: 10.1016/j.jss.2009.08.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 08/01/2009] [Accepted: 08/10/2009] [Indexed: 11/27/2022]
Abstract
Common bile duct (CBD) ligation is used in animal models to induce biliary inflammation, fibrosis, and cholestatic liver injury, but results in a high early postoperative mortality rate, probably from traumatic pancreatitis. We modified the CBD ligation model in mice by placing a small metal clip across the lower end of the CBD. To reverse biliary obstruction, a suture was incorporated within the clip during its placement. The suture and clip were removed on postoperative d 5 or 10 for biliary decompression. After 5 d of biliary obstruction, the gallbladder showed an 8-fold increase in wall thickness and a 17-fold increase in tissue myeloperoxidase activity. Markedly elevated serum levels of alkaline phosphatase and bilirubin indicated injury to the biliary epithelium and hepatocytes. Early postoperative (d 0-2) survival was 100% and later (d 3-5) survival was 85% (n=54 mice). We successfully reversed biliary obstruction in 20 mice (37%). Overall survival after reversal was 70%. In surviving mice, biliary decompression was complete, inflammation was reduced, and jaundice resolved. Histologic features confirmed reduced epithelial damage, edema, and neutrophil infiltration. Our technique minimized postoperative death, maintained an effective inflammatory response, and was easily reversible without requiring repeat laparotomy. This reversible model can be used to further define molecular mechanisms of biliary inflammation, fibrosis, and liver injury in genetically altered mice.
Collapse
|
24
|
Brewer GJ. Zinc and tetrathiomolybdate for the treatment of Wilson's disease and the potential efficacy of anticopper therapy in a wide variety of diseases. Metallomics 2009; 1:199-206. [PMID: 21305118 DOI: 10.1039/b901614g] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Wilson's disease, an autosomal recessive disease of copper accumulation and copper toxicity primarily in the liver and brain, has been the engine that has driven the development of anticopper drugs. Here we first briefly review Wilson's disease, then review the four anticopper drugs used to treat Wilson's disease. We then discuss the results of therapy with anticopper drugs in Wilson's disease, with special emphasis on the newer and better drugs, zinc and tetrathiomolybdate. We then discuss new areas of anticopper therapy, lowering copper availability with tetrathiomolybdate as a therapy in fibrotic, inflammatory, and autoimmune disorders. Many of the cytokines which promote these disorders are copper dependent, and lowering copper availability lessens the activity of these cytokines, favorably influencing a variety of disease processes. Copper in the blood can be thought of as in two pools. One pool is covalently bound in ceruloplasmin, a protein containing six coppers, synthesized by the liver and secreted into the blood. Ceruloplasmin copper accounts for almost 85 to 90% of the blood copper in normal people. This copper is tightly bound and not readily available for cellular uptake and copper toxicity. The other 10-15% of copper is more loosely bound to albumin and other small molecules in the blood, and is readily and freely available to cells and available to cause copper toxicity, if this pool of copper is increased. We call this latter pool of copper "free" copper because of its more ready availability. However, it should be understood that it is not completely free, always being bound to albumin and other molecules. It is this pool of free copper that is greatly expanded in untreated Wilson's patients undergoing copper toxicity.
Collapse
Affiliation(s)
- George J Brewer
- Department of Human Genetics, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109-5720, USA.
| |
Collapse
|
25
|
Khan G, Merajver S. Copper chelation in cancer therapy using tetrathiomolybdate: an evolving paradigm. Expert Opin Investig Drugs 2009; 18:541-8. [DOI: 10.1517/13543780902845622] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Gazala Khan
- University of Michigan, 1500E Medical Center Drive, C409 MIB SPC 5848, Ann Arbor, Michigan, USA ;
| | - Sofia Merajver
- University of Michigan, 1500E Medical Center Drive, C409 MIB SPC 5848, Ann Arbor, Michigan, USA ;
| |
Collapse
|
26
|
Hou G, Dick R, Brewer GJ. Improvement in dissolution of liver fibrosis in an animal model by tetrathiomolybdate. Exp Biol Med (Maywood) 2009; 234:662-5. [PMID: 19307461 DOI: 10.3181/0811-rm-319] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The background for this study is that we have observed some improvement in cirrhosis in Wilson's disease patients treated with the anticopper medicine, zinc, and another anticopper drug, tetrathiomolybdate, has completely prevented hepatic fibrosis in the carbon tetrachloride mouse model. We hypothesize that in existing cirrhosis, there may be a fine balance between fibrosis formation and fibrosis dissolution, which may be pushed in the direction of dissolution by anticopper drugs. Thus, in this study, we produced hepatic fibrosis in mice by treatment with carbon tetrachloride, then gave half the fibrotic mice tetrathiomolybdate for 3 months, while the other half of the fibrotic mice received nothing for 3 months and served as controls. Tetrathiomolybdate caused a dramatic and significant reduction in fibrosis as measured by hydroxyproline (the major amino acid constituent of collagen) levels, almost back to baseline levels, compared to controls, who had only a slight and nonsignificant reduction. It is clear from this animal study that dissolution of preexisting fibrosis can be strongly catalyzed by lowering copper levels with tetrathiomolybdate. It now becomes important to evaluate whether this approach will work in the human epidemic of cirrhotic disease resulting from diseases such as alcoholism, nonalcoholic steatohepatitis, and hepatitis C.
Collapse
Affiliation(s)
- Guoqing Hou
- Department of Human Genetics, University of Michigan Medical School, G061X MBNI, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
27
|
Tanaka A, Kaneto H, Miyatsuka T, Yamamoto K, Yoshiuchi K, Yamasaki Y, Shimomura I, Matsuoka TA, Matsuhisa M. Role of copper ion in the pathogenesis of type 2 diabetes. Endocr J 2009; 56:699-706. [PMID: 19461160 DOI: 10.1507/endocrj.k09e-051] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Reactive oxygen species (ROS) are induced under diabetic conditions and are likely associated with the development of type 2 diabetes. It is also known that ROS production is facilitated in the presence of copper ion through the Fenton reaction. The aim of this study was to examine the involvement of copper ion in the pathogenesis of type 2 diabetes and to evaluate the potential usefulness of a copper chelating agent for the treatment of type 2 diabetes. First, both serum copper ion and ROS levels in diabetic C57BL/KsJ-db/db mice were significantly higher compared to those in nondiabetic mice. Second, we treated diabetic db/db mice with a copper chelating agent tetrathiomolybdate and examined the effects on the development of type 2 diabetes. As the results, both serum copper ion and ROS levels were significantly decreased by the treatment, which were equivalent to those in non-diabetic mice. Consequently, the treatment with a copper chelating agent reduced insulin resistance and ameliorated glucose intolerance in diabetic db/db mice. In addition, serum triglyceride levels were also decreased by the treatment. In conclusion, our present results suggest that copper ion is involved in the development of type 2 diabetes and thereby a potential therapeutic target for diabetes.
Collapse
Affiliation(s)
- Ayako Tanaka
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Goyal MK, Sinha S, Patil SA, Jayalekshmy V, Taly AB. Do cytokines have any role in Wilson's disease? Clin Exp Immunol 2008; 154:74-9. [PMID: 18821941 DOI: 10.1111/j.1365-2249.2008.03755.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The aim of this study was to determine the serum cytokine levels in patients with Wilson's disease (WD) and correlate with phenotype, therapeutic status and laboratory data. In this cross-sectional study, the serum levels of cytokines were estimated in 34 patients (M : F, 23 : 11; drug-naive, 11) with WD (mean age: 13.8 +/- 8.6 and 19.6 +/- 9.03 years) and compared with 30 controls. The following serum cytokines were analysed using enzyme-linked immunosorbent assay: (i) tumour necrosis factor (TNF)-alpha, (ii) interferon (IFN)-gamma, (iii) interleukin (IL)-2, (iv) IL-6 and (v) IL-4. Serum TNF-alpha (P < 0.001), IFN-gamma (P = 0.005) and IL-6 (P < 0.001) were detectable in WD compared with controls. However, serum level elevation of IL-4 (P = 0.49) and IL-2 (P = 0.11), although detectable compared with controls, was statistically insignificant. The disease severity and therapeutic status did not affect the cytokines. Presence of anaemia, leucopenia, thrombocytopenia, pancytopenia and hepatic dysfunction did not influence cytokine levels. There was a significant negative correlation between IL-6 and ceruloplasmin (P = 0.04) and anti-inflammatory cytokines (IL-4) and copper level (P = 0.01). Serum cytokines, both proinflammatory and anti-inflammatory subtypes, were elevated significantly in patients with WD. Further studies would establish their role in its pathogenesis.
Collapse
Affiliation(s)
- M K Goyal
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | | | | | | | | |
Collapse
|
29
|
Brewer GJ. The use of copper-lowering therapy with tetrathiomolybdate in medicine. Expert Opin Investig Drugs 2008; 18:89-97. [DOI: 10.1517/13543780802621859] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
30
|
Abstract
PURPOSE OF REVIEW To review the toxicity and risks of free copper in Wilson's disease, Alzheimer's disease, other disease of neurodegeneration, and cognitive loss in the general population. We will also review the anticopper drugs and how lowering free copper levels with an anticopper drug inhibits fibrosis, inflammation, and autoimmunity. RECENT FINDINGS Some exciting recent work indicates that free copper levels are increased in Alzheimer's disease, and copper may be involved in disease pathogenesis, opening the way to possible therapy of Alzheimer's disease with anticopper drugs. Copper may also be involved in other diseases of neurodegeneration. A very exciting recent study indicts high intake of copper, mostly from copper supplements, in conjunction with a high-fat diet in more rapid cognitive decline in the general population. Other data indicate that even low levels of copper in drinking water, perhaps similar to copper supplements, bypasses the liver, enters the circulation, increases the blood-brain penetration of copper, and may cause damage. SUMMARY Some of the implications are that Alzheimer's disease and other diseases of neurodegeneration and fibrotic, inflammatory, and autoimmune diseases may be treatable by lowering the availability of free copper. People in the general population may wish to take steps to lower their free copper levels and, in particular, to abstain from taking copper supplements and ingesting significant amounts of copper in drinking water.
Collapse
Affiliation(s)
- George J Brewer
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan 48109-5720, USA.
| |
Collapse
|
31
|
Hou G, Abrams GD, Dick R, Brewer GJ. Efficacy of tetrathiomolybdate in a mouse model of multiple sclerosis. Transl Res 2008; 152:239-44. [PMID: 19010295 DOI: 10.1016/j.trsl.2008.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 09/09/2008] [Accepted: 09/10/2008] [Indexed: 10/21/2022]
Abstract
Tetrathiomolybdate (TM) is a potent anticopper drug developed for Wilson's disease. We have found multiple efficacious results from decreasing copper levels with TM in mouse models of disease, using serum Cp as a surrogate marker of copper status and targeting Cp values of 20% to 50% of baseline. We have found efficacious results of TM therapy in mouse models of fibrosis; inflammation; damage from exogenous agents, such as acetaminophen and doxorubicin; and immune-modulated diseases, such as concanavalin A hepatitis, collagen II-induced arthritis, and the non-obese diabetic (NOD) mouse model of type I diabetes. In the current study, we examine TM efficacy in the EAE mouse model of multiple sclerosis (MS). We find that clinical scores of neurologic damage are significantly inhibited by TM therapy, whether therapy is started before MS-inducing antigen administration or after symptoms from antigen administration develop. Furthermore, we find that experimental autoimmune encephalomyelitis (EAE) treatment produces a marked increase of oxidant damage, as measured by urine isoprostane levels, and TM suppresses these isoprostane increases strongly and significantly. Finally, we find marked increases of inflammatory and immune-related cytokines in this model, and we find that TM strongly and significantly suppresses these increases.
Collapse
Affiliation(s)
- Guoqing Hou
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Mich. 48109-0534, USA
| | | | | | | |
Collapse
|
32
|
Gong D, Lu J, Chen X, Reddy S, Crossman DJ, Glyn-Jones S, Choong YS, Kennedy J, Barry B, Zhang S, Chan YK, Ruggiero K, Phillips ARJ, Cooper GJS. A copper(II)-selective chelator ameliorates diabetes-evoked renal fibrosis and albuminuria, and suppresses pathogenic TGF-beta activation in the kidneys of rats used as a model of diabetes. Diabetologia 2008; 51:1741-51. [PMID: 18636238 DOI: 10.1007/s00125-008-1088-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Accepted: 05/21/2008] [Indexed: 01/13/2023]
Abstract
AIMS/HYPOTHESIS The selective Cu(II) chelator triethylenetetramine (TETA) extracts systemic Cu(II) into the urine of diabetic humans and rats as a model of diabetes, and in the process also normalises hallmarks of diabetic heart disease. However, the role of Cu and its response to TETA in animals with diabetic nephropathy were previously unknown. Here, we report the effects of TETA treatment on Cu and other essential elements, as well as on indices of renal injury and known pathogenic molecular processes, in kidneys from a rat model of diabetes. METHODS Rats at 8 weeks after streptozotocin-induction of diabetes were treated with oral TETA (34 mg/day in drinking water) for a further 8 weeks and then compared with untreated diabetic control animals. RESULTS Renal tissue Cu was substantively elevated by diabetes and normalised by TETA, which also suppressed whole-kidney and glomerular hypertrophy without lowering blood glucose. The urinary albumin: creatinine ratio was significantly elevated in the rat model of diabetes but lowered by TETA. Total collagen was also elevated in diabetic kidneys and significantly improved by TETA. Furthermore, renal cortex levels of TGF-beta1, MAD homologue (SMAD) 4, phosphorylated SMAD2, fibronectin-1, collagen-III, collagen-IV, plasminogen activator inhibitor-1 and semicarbazide-sensitive amine oxidase all tended to be elevated in diabetes and normalised by TETA. CONCLUSIONS/INTERPRETATION Dysregulation of renal Cu homeostasis may be a key event eliciting development of diabetic nephropathy. Selective Cu(II) chelation can protect against pathogenic mechanisms that lead to or cause diabetic nephropathy and might be clinically useful in the treatment of early-stage diabetic kidney disease.
Collapse
Affiliation(s)
- D Gong
- School of Biological Sciences, Faculty of Science, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|