1
|
Xu F, Hu J, Li X, Yang L, Jiang S, Jiang T, Cheng B, Du H, Wang R, Deng Y, Gao W, Li Y, Zhu Y. Inhibition of platelet activation alleviates diabetes-associated cognitive dysfunction via attenuating blood-brain barrier injury. Brain Res Bull 2025; 221:111211. [PMID: 39828041 DOI: 10.1016/j.brainresbull.2025.111211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 01/01/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
Cognitive dysfunction has become the second leading cause of death among the diabetic patients. In pre-diabetic stage, blood-brain barrier (BBB) injury occurs and induced the microvascular complications of diabetes, especially, diabetes-associated cognitive dysfunction (DACD). Endothelial cells are the major component of BBB, on which the increased expression of CD40 could mediate BBB dysfunction in diabetics. Since platelets play an important role in regulating endothelial cell barrier function and over 95 % of the circulating soluble CD40 ligand (sCD40L) is derived from activated platelets, we speculated that the release of CD40L from activated platelets induced by diabetes was the key mechanism that aggravated BBB injury and leaded to DACD. We performed inhibition of platelet activation on diabetic and non-diabetic mice, with or without cilostazol treatment, and then compared cognitive function, platelet activation, BBB structure and permeability. In vitro, mouse brain microvascular endothelial cell line (b.End3) were exposed to CD40L for 24 h at 5.5 mM or 30 mM glucose media after silencing CD40 and HIF1α or not to investigate the effects of CD40 on BBB disruption and the underlying molecular pathways. Inhibition of platelet activation improved cognitive behaviors in diabetic mice, accompanied with reduced BBB permeability, increased tight junction proteins, balanced Aβ transporters, as well as attenuated Aβ deposition and hippocampal neurons damage. In vitro, CD40L increased HIF1α, diminished tight junction proteins and dysregulated Aβ transporters in b.End3 cells, which could be restored by CD40 siRNA and HIF1α siRNA. Hence, inhibition of platelet activation ameliorates DACD via alleviating BBB injury, which involving the regulation of CD40L-CD40-HIF1α signaling pathway. Our study may demonstrate a potential therapeutic target for the treatment of DACD.
Collapse
Affiliation(s)
- Fuxing Xu
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Department of Anesthesiology, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi 030013, China.
| | - Juan Hu
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712021, China.
| | - Xuying Li
- Department of Anesthesiology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, China.
| | - Lan Yang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Shiqiu Jiang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Tao Jiang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.
| | - Bo Cheng
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Hailiang Du
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Ruiduo Wang
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China.
| | - Yingying Deng
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Wei Gao
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Yansong Li
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Yaomin Zhu
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
2
|
Yu S, Chen X, Yang T, Cheng J, Liu E, Jiang L, Song M, Shu H, Ma Y. Revealing the mechanisms of blood-brain barrier in chronic neurodegenerative disease: an opportunity for therapeutic intervention. Rev Neurosci 2024; 35:895-916. [PMID: 38967133 DOI: 10.1515/revneuro-2024-0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/30/2024] [Indexed: 07/06/2024]
Abstract
The brain microenvironment is tightly regulated, and the blood-brain barrier (BBB) plays a pivotal role in maintaining the homeostasis of the central nervous system. It effectively safeguards brain tissue from harmful substances in peripheral blood. However, both acute pathological factors and age-related biodegradation have the potential to compromise the integrity of the BBB and are associated with chronic neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD), as well as Epilepsy (EP). This association arises due to infiltration of peripheral foreign bodies including microorganisms, immune-inflammatory mediators, and plasma proteins into the central nervous system when the BBB is compromised. Nevertheless, these partial and generalized understandings do not prompt a shift from passive to active treatment approaches. Therefore, it is imperative to acquire a comprehensive and in-depth understanding of the intricate molecular mechanisms underlying vascular disease alterations associated with the onset and progression of chronic neurodegenerative disorders, as well as the subsequent homeostatic changes triggered by BBB impairment. The present article aims to systematically summarize and review recent scientific work with a specific focus on elucidating the fundamental mechanisms underlying BBB damage in AD, PD, and EP as well as their consequential impact on disease progression. These findings not only offer guidance for optimizing the physiological function of the BBB, but also provide valuable insights for developing intervention strategies aimed at early restoration of BBB structural integrity, thereby laying a solid foundation for designing drug delivery strategies centered around the BBB.
Collapse
Affiliation(s)
- Sixun Yu
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan Province, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan Province, China
| | - Xin Chen
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan Province, China
| | - Tao Yang
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan Province, China
| | - Jingmin Cheng
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan Province, China
| | - Enyu Liu
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan Province, China
| | - Lingli Jiang
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan Province, China
| | - Min Song
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan Province, China
| | - Haifeng Shu
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan Province, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan Province, China
| | - Yuan Ma
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan Province, China
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| |
Collapse
|
3
|
Hayden MR. Cerebral Microbleeds Associate with Brain Endothelial Cell Activation-Dysfunction and Blood-Brain Barrier Dysfunction/Disruption with Increased Risk of Hemorrhagic and Ischemic Stroke. Biomedicines 2024; 12:1463. [PMID: 39062035 PMCID: PMC11274519 DOI: 10.3390/biomedicines12071463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Globally, cerebral microbleeds (CMBs) are increasingly being viewed not only as a marker for cerebral small vessel disease (SVD) but also as having an increased risk for the development of stroke (hemorrhagic/ischemic) and aging-related dementia. Recently, brain endothelial cell activation and dysfunction and blood-brain barrier dysfunction and/or disruption have been shown to be associated with SVD, enlarged perivascular spaces, and the development and evolution of CMBs. CMBs are a known disorder of cerebral microvessels that are visualized as 3-5 mm, smooth, round, or oval, and hypointense (black) lesions seen only on T2*-weighted gradient recall echo or susceptibility-weighted sequences MRI images. CMBs are known to occur with high prevalence in community-dwelling older individuals. Since our current global population is the oldest recorded in history and is only expected to continue to grow, we can expect the healthcare burdens associated with CMBs to also grow. Increased numbers (≥10) of CMBs should raise a red flag regarding the increased risk of large symptomatic neurologic intracerebral hemorrhages. Importantly, CMBs are also currently regarded as markers of diffuse vascular and neurodegenerative brain damage. Herein author highlights that it is essential to learn as much as we can about CMB development, evolution, and their relation to impaired cognition, dementia, and the exacerbation of neurodegeneration.
Collapse
Affiliation(s)
- Melvin R Hayden
- Department of Internal Medicine, Endocrinology Diabetes and Metabolism, Diabetes and Cardiovascular Disease Center, University of Missouri School of Medicine, One Hospital Drive, Columbia, MO 65211, USA
| |
Collapse
|
4
|
García-Llorca A, Carta F, Supuran CT, Eysteinsson T. Carbonic anhydrase, its inhibitors and vascular function. Front Mol Biosci 2024; 11:1338528. [PMID: 38348465 PMCID: PMC10859760 DOI: 10.3389/fmolb.2024.1338528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/03/2024] [Indexed: 02/15/2024] Open
Abstract
It has been known for some time that Carbonic Anhydrase (CA, EC 4.2.1.1) plays a complex role in vascular function, and in the regulation of vascular tone. Clinically employed CA inhibitors (CAIs) are used primarily to lower intraocular pressure in glaucoma, and also to affect retinal blood flow and oxygen saturation. CAIs have been shown to dilate vessels and increase blood flow in both the cerebral and ocular vasculature. Similar effects of CAIs on vascular function have been observed in the liver, brain and kidney, while vessels in abdominal muscle and the stomach are unaffected. Most of the studies on the vascular effects of CAIs have been focused on the cerebral and ocular vasculatures, and in particular the retinal vasculature, where vasodilation of its vessels, after intravenous infusion of sulfonamide-based CAIs can be easily observed and measured from the fundus of the eye. The mechanism by which CAIs exert their effects on the vasculature is still unclear, but the classic sulfonamide-based inhibitors have been found to directly dilate isolated vessel segments when applied to the extracellular fluid. Modification of the structure of CAI compounds affects their efficacy and potency as vasodilators. CAIs of the coumarin type, which generally are less effective in inhibiting the catalytically dominant isoform hCA II and unable to accept NO, have comparable vasodilatory effects as the primary sulfonamides on pre-contracted retinal arteriolar vessel segments, providing insights into which CA isoforms are involved. Alterations of the lipophilicity of CAI compounds affect their potency as vasodilators, and CAIs that are membrane impermeant do not act as vasodilators of isolated vessel segments. Experiments with CAIs, that shed light on the role of CA in the regulation of vascular tone of vessels, will be discussed in this review. The role of CA in vascular function will be discussed, with specific emphasis on findings with the effects of CA inhibitors (CAI).
Collapse
Affiliation(s)
- Andrea García-Llorca
- Department of Physiology, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Fabrizio Carta
- NEUROFARBA Department, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| | - Claudiu T. Supuran
- NEUROFARBA Department, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| | - Thor Eysteinsson
- Department of Physiology, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Department of Ophthalmology, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
5
|
Tian C, Ye Z, McCoy RG, Pan Y, Bi C, Gao S, Ma Y, Chen M, Yu J, Lu T, Hong LE, Kochunov P, Ma T, Chen S, Liu S. The causal effect of HbA1c on white matter brain aging by two-sample Mendelian randomization analysis. Front Neurosci 2024; 17:1335500. [PMID: 38274506 PMCID: PMC10808780 DOI: 10.3389/fnins.2023.1335500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/28/2023] [Indexed: 01/27/2024] Open
Abstract
Background Poor glycemic control with elevated levels of hemoglobin A1c (HbA1c) is associated with increased risk of cognitive impairment, with potentially varying effects between sexes. However, the causal impact of poor glycemic control on white matter brain aging in men and women is uncertain. Methods We used two nonoverlapping data sets from UK Biobank cohort: gene-outcome group (with neuroimaging data, (N = 15,193; males/females: 7,101/8,092)) and gene-exposure group (without neuroimaging data, (N = 279,011; males/females: 122,638/156,373)). HbA1c was considered the exposure and adjusted "brain age gap" (BAG) was calculated on fractional anisotropy (FA) obtained from brain imaging as the outcome, thereby representing the difference between predicted and chronological age. The causal effects of HbA1c on adjusted BAG were studied using the generalized inverse variance weighted (gen-IVW) and other sensitivity analysis methods, including Mendelian randomization (MR)-weighted median, MR-pleiotropy residual sum and outlier, MR-using mixture models, and leave-one-out analysis. Results We found that for every 6.75 mmol/mol increase in HbA1c, there was an increase of 0.49 (95% CI = 0.24, 0.74; p-value = 1.30 × 10-4) years in adjusted BAG. Subgroup analyses by sex and age revealed significant causal effects of HbA1c on adjusted BAG, specifically among men aged 60-73 (p-value = 2.37 × 10-8). Conclusion Poor glycemic control has a significant causal effect on brain aging, and is most pronounced among older men aged 60-73 years, which provides insights between glycemic control and the susceptibility to age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Cheng Tian
- Key Laboratory of Computing Power Network and Information Security, Ministry of Education, Shandong Computer Science Center (National Supercomputer Center in Jinan), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Shandong Engineering Research Center of Big Data Applied Technology, Faculty of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Shandong Provincial Key Laboratory of Computer Networks, Shandong Fundamental Research Center for Computer Science, Jinan, China
| | - Zhenyao Ye
- Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, United States
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Rozalina G. McCoy
- Division of Endocrinology, Diabetes, & Nutrition, Department of Medicine, School of Medicine, University of Maryland, Baltimore, MD, United States
- University of Maryland Institute for Health Computing, Bethesda, MD, United States
| | - Yezhi Pan
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Chuan Bi
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Si Gao
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Yizhou Ma
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Mo Chen
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Jiaao Yu
- Department of Mathematics, University of Maryland, College Park, MD, United States
| | - Tong Lu
- Department of Mathematics, University of Maryland, College Park, MD, United States
| | - L. Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Tianzhou Ma
- Department of Epidemiology and Biostatistics, School of Public Health, University of Maryland, College Park, MD, United States
| | - Shuo Chen
- Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, United States
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Song Liu
- Key Laboratory of Computing Power Network and Information Security, Ministry of Education, Shandong Computer Science Center (National Supercomputer Center in Jinan), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Shandong Engineering Research Center of Big Data Applied Technology, Faculty of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Shandong Provincial Key Laboratory of Computer Networks, Shandong Fundamental Research Center for Computer Science, Jinan, China
| |
Collapse
|
6
|
Iwatani Y, Hayashi H, Yamamoto H, Minamikawa H, Ichikawa M, Orikawa H, Masuda A, Tada N, Moriyama Y, Takagi N. Pathogenic role of NAMPT in the perivascular regions after ischemic stroke in mice with type 2 diabetes mellitus. Exp Neurol 2024; 371:114584. [PMID: 37884188 DOI: 10.1016/j.expneurol.2023.114584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Ischemic stroke in patients with abnormal glucose tolerance results in poor outcomes. Nicotinamide phosphoribosyltransferase (NAMPT), an adipocytokine, exerts neuroprotective effects. However, the pathophysiological role of NAMPT after ischemic stroke with diabetes and the relationship of NAMPT with cerebrovascular lesions are unclear. The purpose of this study was to clarify the pathophysiological role of NAMPT in cerebral ischemia with diabetes, using db/db mice as a type 2 diabetes animal model. The number of degenerating neurons increased after middle cerebral artery occlusion and reperfusion (MCAO/R) in db/db mice compared with the degenerating neurons in db/+ mice. Extracellular NAMPT (eNAMPT) levels, especially monomeric eNAMPT, increased significantly in db/db MCAO/R mice but not db/+ mice in isolated brain microvessels. The increased eNAMPT levels were associated with increased expression of inflammatory cytokine mRNA. Immunohistochemical analysis demonstrated that NAMPT colocalized with GFAP-positive cells after MCAO/R. In addition, both dimeric and monomeric eNAMPT levels increased in the conditioned medium of primary cortical astrocytes under high glucose conditions subsequent oxygen/glucose deprivation. Our findings are the first to demonstrate the ability of increased monomeric eNAMPT to induce inflammatory responses in brain microvessels, which may be located near astrocyte foot processes.
Collapse
Affiliation(s)
- Yui Iwatani
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Hideki Hayashi
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Haruna Yamamoto
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Hayato Minamikawa
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Mitsuki Ichikawa
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Hayato Orikawa
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Aya Masuda
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Natsumi Tada
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yoshiyuki Moriyama
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Norio Takagi
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.
| |
Collapse
|
7
|
Berends E, van Oostenbrugge RJ, Foulquier S, Schalkwijk CG. Methylglyoxal, a highly reactive dicarbonyl compound, as a threat for blood brain barrier integrity. Fluids Barriers CNS 2023; 20:75. [PMID: 37875994 PMCID: PMC10594715 DOI: 10.1186/s12987-023-00477-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/10/2023] [Indexed: 10/26/2023] Open
Abstract
The brain is a highly metabolically active organ requiring a large amount of glucose. Methylglyoxal (MGO), a by-product of glucose metabolism, is known to be involved in microvascular dysfunction and is associated with reduced cognitive function. Maintenance of the blood-brain barrier (BBB) is essential to maintain optimal brain function and a large amount of evidence indicates negative effects of MGO on BBB integrity. In this review, we summarized the current literature on the effect of MGO on the different cell types forming the BBB. BBB damage by MGO most likely occurs in brain endothelial cells and mural cells, while astrocytes are most resistant to MGO. Microglia on the other hand appear to be not directly influenced by MGO but rather produce MGO upon activation. Although there is clear evidence that MGO affects components of the BBB, the impact of MGO on the BBB as a multicellular system warrants further investigation. Diminishing MGO stress can potentially form the basis for new treatment strategies for maintaining optimal brain function.
Collapse
Affiliation(s)
- Eline Berends
- Department of Internal Medicine, Maastricht University, Universiteitssingel, Maastricht, 50 6229ER, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Universiteitssingel 50, Maastricht, 6229ER, The Netherlands
| | - Robert J van Oostenbrugge
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Universiteitssingel 50, Maastricht, 6229ER, The Netherlands
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Universiteitssingel 40, Maastricht, 6229ER, The Netherlands
- Department of Neurology, Maastricht University Medical Centre (MUMC+), P. Debyelaan 25 6202AZ, Maastricht, The Netherlands
| | - Sébastien Foulquier
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Universiteitssingel 50, Maastricht, 6229ER, The Netherlands.
- Department of Neurology, Maastricht University Medical Centre (MUMC+), P. Debyelaan 25 6202AZ, Maastricht, The Netherlands.
- Department of Pharmacology and Toxicology, Maastricht University, Universiteitssingel 50 6229ER, Maastricht, The Netherlands.
| | - Casper G Schalkwijk
- Department of Internal Medicine, Maastricht University, Universiteitssingel, Maastricht, 50 6229ER, The Netherlands.
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Universiteitssingel 50, Maastricht, 6229ER, The Netherlands.
| |
Collapse
|
8
|
Majimbi M, McLenachan S, Nesbit M, Chen FK, Lam V, Mamo J, Takechi R. In vivo retinal imaging is associated with cognitive decline, blood-brain barrier disruption and neuroinflammation in type 2 diabetic mice. Front Endocrinol (Lausanne) 2023; 14:1224418. [PMID: 37850093 PMCID: PMC10577437 DOI: 10.3389/fendo.2023.1224418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/15/2023] [Indexed: 10/19/2023] Open
Abstract
Introduction Type 2 diabetes (T2D) is associated with chronic inflammation and neurovascular changes that lead to functional impairment and atrophy in neural-derived tissue. A reduction in retinal thickness is an early indicator of diabetic retinopathy (DR), with progressive loss of neuroglia corresponding to DR severity. The brain undergoes similar pathophysiological events as the retina, which contribute to T2D-related cognitive decline. Methods This study explored the relationship between retinal thinning and cognitive decline in the LepR db/db model of T2D. Diabetic db/db and non-diabetic db/+ mice aged 14 and 28 weeks underwent cognitive testing in short and long-term memory domains and in vivo retinal imaging using optical coherence tomography (OCT), followed by plasma metabolic measures and ex vivo quantification of neuroinflammation, oxidative stress and microvascular leakage. Results At 28 weeks, mice exhibited retinal thinning in the ganglion cell complex and inner nuclear layer, concomitant with diabetic insulin resistance, memory deficits, increased expression of inflammation markers and cerebrovascular leakage. Interestingly, alterations in retinal thickness at both experimental timepoints were correlated with cognitive decline and elevated immune response in the brain and retina. Discussion These results suggest that changes in retinal thickness quantified with in vivo OCT imaging may be an indicator of diabetic cognitive dysfunction and neuroinflammation.
Collapse
Affiliation(s)
- May Majimbi
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA, Australia
| | - Samuel McLenachan
- Lions Eye Institute Australia, Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
| | - Michael Nesbit
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA, Australia
| | - Fred K. Chen
- Lions Eye Institute Australia, Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
| | - Virginie Lam
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA, Australia
| | - John Mamo
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA, Australia
- Perron Institute for Neurological and Translational Research, Nedlands, WA, Australia
| | - Ryu Takechi
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA, Australia
| |
Collapse
|
9
|
Cui N, Zhu X, Zhao C, Meng C, Sha J, Zhu D. A Decade of Pathogenesis Advances in Non-Type 2 Inflammatory Endotypes in Chronic Rhinosinusitis: 2012-2022. Int Arch Allergy Immunol 2023; 184:1237-1253. [PMID: 37722364 DOI: 10.1159/000532067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/12/2023] [Indexed: 09/20/2023] Open
Abstract
Chronic rhinosinusitis (CRS) is a heterogeneous disease characterized by localized inflammation of the upper airways. CRS includes two main phenotypes, namely, CRS with nasal polyps and CRS without nasal polyps. The phenotype-based classification method cannot reflect the pathological mechanism. The endotype-based classification method has been paid more and more attention by researchers. It is mainly divided into type 2 and non-type 2 endotypes. The mechanism driving the pathogenesis of non-type 2 inflammation is currently unknown. In this review, the PubMed and Web of Science databases were searched to conduct a critical analysis of representative literature works on the pathogenesis of non-type 2 inflammation in CRS published in the past decade. This review summarizes the latest evidence that may lead to the pathogenesis of non-type 2 inflammation. It is the main method that analyzing the pathogenesis from the perspective of immunology. Genomics and proteomics technique provide new approaches to the study of the pathogenesis. Due to differences in race, environment, geography, and living habits, there are differences in the occurrence of non-type 2 inflammation, which increase the difficulty of understanding the pathogenesis of non-type 2 inflammation in CRS. Studies have confirmed that non-type 2 endotype is more common in Asian patients. The emergence of overlap and unclassified endotypes has promoted the study of heterogeneity in CRS. In addition, as the source of inflammatory cells and the initiation site of the inflammatory response, microvessels and microlymphatic vessels in the nasal mucosal subepithelial tissue participate in the inflammatory response and tissue remodeling. It is uncertain whether CRS patients affect the risk of infection with SARS-CoV-2. In addition, the pathophysiological mechanism of non-type 2 CRS combined with COVID-19 remains to be further studied, and it is worth considering how to select the befitting biologics for CRS patients with non-type 2 inflammation.
Collapse
Affiliation(s)
- Na Cui
- Department of Otorhinolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China,
| | - Xuewei Zhu
- Department of Otorhinolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Chen Zhao
- Department of Otorhinolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Cuida Meng
- Department of Otorhinolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jichao Sha
- Department of Otorhinolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Dongdong Zhu
- Department of Otorhinolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
10
|
Gao L, Huang C, Li H, Wu S, Zhou X, Ying C. Exploring the molecular targets for Type 2 diabetes-induced Alzheimer's disease through bioinformatics analysis. Epigenomics 2023; 15:619-633. [PMID: 37554106 DOI: 10.2217/epi-2023-0149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023] Open
Abstract
Aim: The purpose of this study was to elucidate the potential mechanisms of Alzheimer's disease (AD) induced by Type 2 diabetes mellitus (T2DM) through bioinformatics analysis, to provide new treatment targets for this disease. Methods: We used weighted gene coexpression network analysis and differentially expressed genes analysis to identify significantly differentially expressed genes shared by T2DM and AD. Molecular docking was used to predict possible protein targets for T2DM-induced AD. Results: The direct interaction of CD44 and STAT3 may play a significant role in the development of T2DM-induced AD. Conclusion: A new approach to treating T2DM-associated AD may be provided by these hub genes and their predicted molecular targets.
Collapse
Affiliation(s)
- Lin Gao
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Chengyu Huang
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Hui Li
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Shidi Wu
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Xiaoyan Zhou
- Xuzhou Engineering Research Center of Medical Genetics & Transformation, Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Changjiang Ying
- Xuzhou Engineering Research Center of Medical Genetics & Transformation, Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
- Department of Endocrinology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| |
Collapse
|
11
|
Knopp RC, Erickson MA, Rhea EM, Reed MJ, Banks WA. Cellular senescence and the blood-brain barrier: Implications for aging and age-related diseases. Exp Biol Med (Maywood) 2023; 248:399-411. [PMID: 37012666 PMCID: PMC10281623 DOI: 10.1177/15353702231157917] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
The blood-brain barrier (BBB) is a critical physiochemical interface that regulates communication between the brain and blood. It is comprised of brain endothelial cells which regulate the BBB's barrier and interface properties and is surrounded by supportive brain cell types including pericytes and astrocytes. Recent reports have suggested that the BBB undergoes dysfunction during normative aging and in disease. In this review, we consider the effect of cellular senescence, one of the nine hallmarks of aging, on the BBB. We first characterize known normative age-related changes at the BBB, and then evaluate changes in neurodegenerative diseases, with an emphasis on if/how cellular senescence is influencing these changes. We then discuss what insight has been gained from in vitro and in vivo studies of cellular senescence at the BBB. Finally, we evaluate mechanisms by which cellular senescence in peripheral pathologies can indirectly or directly affect BBB function.
Collapse
Affiliation(s)
- Rachel C Knopp
- Veterans Affairs Puget Sound Health Care
System, Geriatrics Research Education and Clinical Center (GRECC), Seattle, WA 98108,
USA
- Department of Medicine, Division of
Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA
98195, USA
| | - Michelle A Erickson
- Veterans Affairs Puget Sound Health Care
System, Geriatrics Research Education and Clinical Center (GRECC), Seattle, WA 98108,
USA
- Department of Medicine, Division of
Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA
98195, USA
| | - Elizabeth M Rhea
- Veterans Affairs Puget Sound Health Care
System, Geriatrics Research Education and Clinical Center (GRECC), Seattle, WA 98108,
USA
- Department of Medicine, Division of
Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA
98195, USA
| | - May J Reed
- Veterans Affairs Puget Sound Health Care
System, Geriatrics Research Education and Clinical Center (GRECC), Seattle, WA 98108,
USA
- Department of Medicine, Division of
Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA
98195, USA
| | - William A Banks
- Veterans Affairs Puget Sound Health Care
System, Geriatrics Research Education and Clinical Center (GRECC), Seattle, WA 98108,
USA
- Department of Medicine, Division of
Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA
98195, USA
| |
Collapse
|
12
|
Hayden MR. Overview and New Insights into the Metabolic Syndrome: Risk Factors and Emerging Variables in the Development of Type 2 Diabetes and Cerebrocardiovascular Disease. Medicina (B Aires) 2023; 59:medicina59030561. [PMID: 36984562 PMCID: PMC10059871 DOI: 10.3390/medicina59030561] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/04/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
Metabolic syndrome (MetS) is considered a metabolic disorder that has been steadily increasing globally and seems to parallel the increasing prevalence of obesity. It consists of a cluster of risk factors which traditionally includes obesity and hyperlipidemia, hyperinsulinemia, hypertension, and hyperglycemia. These four core risk factors are associated with insulin resistance (IR) and, importantly, the MetS is known to increase the risk for developing cerebrocardiovascular disease and type 2 diabetes mellitus. The MetS had its early origins in IR and syndrome X. It has undergone numerous name changes, with additional risk factors and variables being added over the years; however, it has remained as the MetS worldwide for the past three decades. This overview continues to add novel insights to the MetS and suggests that leptin resistance with hyperleptinemia, aberrant mitochondrial stress and reactive oxygen species (ROS), impaired folate-mediated one-carbon metabolism with hyperhomocysteinemia, vascular stiffening, microalbuminuria, and visceral adipose tissues extracellular vesicle exosomes be added to the list of associated variables. Notably, the role of a dysfunctional and activated endothelium and deficient nitric oxide bioavailability along with a dysfunctional and attenuated endothelial glycocalyx, vascular inflammation, systemic metainflammation, and the important role of ROS and reactive species interactome are discussed. With new insights and knowledge regarding the MetS comes the possibility of new findings through further research.
Collapse
Affiliation(s)
- Melvin R Hayden
- Department of Internal Medicine, Endocrinology Diabetes and Metabolism, Diabetes and Cardiovascular Disease Center, University of Missouri School of Medicine, One Hospital Drive, Columbia, MO 65211, USA
| |
Collapse
|
13
|
Elabi OF, Karampatsi D, Vercalsteren E, Lietzau G, Nyström T, Klein T, Darsalia V, Patrone C, Paul G. DPP-4 Inhibitor and Sulfonylurea Differentially Reverse Type 2 Diabetes-Induced Blood-Brain Barrier Leakage and Normalize Capillary Pericyte Coverage. Diabetes 2023; 72:405-414. [PMID: 36448982 PMCID: PMC9935496 DOI: 10.2337/db22-0674] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022]
Abstract
Microvascular pathology in the brain is one of the suggested mechanisms underlying the increased incidence and progression of neurodegenerative diseases in people with type 2 diabetes (T2D). Although accumulating data suggest a neuroprotective effect of antidiabetics, the underlying mechanisms are unclear. Here, we investigated whether two clinically used antidiabetics, the dipeptidyl peptidase-4 inhibitor linagliptin and the sulfonylurea glimepiride, which restore T2D-induced brain vascular pathology. Microvascular pathology was examined in the striatum of mice fed for 12 months with either normal chow diet or a high-fat diet (HFD) to induce T2D. A subgroup of HFD-fed mice was treated with either linagliptin or glimepiride for 3 months before sacrifice. We demonstrate that T2D caused leakage of the blood-brain barrier (BBB), induced angiogenesis, and reduced pericyte coverage of microvessels. However, linagliptin and glimepiride recovered the BBB integrity and restored the pericyte coverage differentially. Linagliptin normalized T2D-induced angiogenesis and restored pericyte coverage. In contrast, glimepiride enhanced T2D-induced angiogenesis and increased pericyte density, resulting in proper vascular coverage. Interestingly, glimepiride reduced microglial activation, increased microglial-vascular interaction, and increased collagen IV density. This study provides evidence that both DPP-4 inhibition and sulfonylurea reverse T2D-induced BBB leakage, which may contribute to antidiabetic neurorestorative effects.
Collapse
Affiliation(s)
- Osama F. Elabi
- Translational Neurology Group, Department of Clinical Science, Wallenberg Neuroscience Center and Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Dimitra Karampatsi
- NeuroCardioMetabol Group, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ellen Vercalsteren
- NeuroCardioMetabol Group, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Grazyna Lietzau
- NeuroCardioMetabol Group, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Nyström
- NeuroCardioMetabol Group, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Klein
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Vladimer Darsalia
- NeuroCardioMetabol Group, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Cesare Patrone
- NeuroCardioMetabol Group, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gesine Paul
- Translational Neurology Group, Department of Clinical Science, Wallenberg Neuroscience Center and Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Department of Neurology, Scania University Hospital, Lund, Sweden
- Corresponding author: Gesine Paul,
| |
Collapse
|
14
|
Lin L, Chen Z, Huang C, Wu Y, Huang L, Wang L, Ke S, Liu L. Mito-TEMPO, a Mitochondria-Targeted Antioxidant, Improves Cognitive Dysfunction due to Hypoglycemia: an Association with Reduced Pericyte Loss and Blood-Brain Barrier Leakage. Mol Neurobiol 2023; 60:672-686. [PMID: 36357613 DOI: 10.1007/s12035-022-03101-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/23/2022] [Indexed: 11/12/2022]
Abstract
Hypoglycemia is associated with cognitive dysfunction, but the exact mechanisms have not been elucidated. Our previous study found that severe hypoglycemia could lead to cognitive dysfunction in a type 1 diabetes (T1D) mouse model. Thus, the aim of this study was to further investigate whether the mechanism of severe hypoglycemia leading to cognitive dysfunction is related to oxidative stress-mediated pericyte loss and blood-brain barrier (BBB) leakage. A streptozotocin T1D model (150 mg/kg, one-time intraperitoneal injection), using male C57BL/6J mice, was used to induce hypoglycemia. Brain tissue was extracted to examine for neuronal damage, permeability of BBB was investigated through Evans blue staining and electron microscopy, reactive oxygen species and adenosine triphosphate in brain tissue were assayed, and the functional changes of pericytes were determined. Cognitive function was tested using Morris water maze. Also, an in vitro glucose deprivation model was constructed. The results showed that BBB leakage after hypoglycemia is associated with excessive activation of oxidative stress and mitochondrial dysfunction due to glucose deprivation/reperfusion. Interventions using the mitochondria-targeted antioxidant Mito-TEMPO in both in vivo and in vitro models reduced mitochondrial oxidative stress, decreased pericyte loss and apoptosis, and attenuated BBB leakage and neuronal damage, ultimately leading to improved cognitive function.
Collapse
Affiliation(s)
- Lu Lin
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhou Chen
- School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Cuihua Huang
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yubin Wu
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Lishan Huang
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Lijing Wang
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Sujie Ke
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Libin Liu
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, China.
| |
Collapse
|
15
|
Özkan E, Çetin-Taş Y, Şekerdağ E, Yiğit B, Shomalizadeh N, Sapancı S, Ozler C, Kesibi J, Kızılırmak AB, Pekmez M, Yapıcı-Eser H, Zeybel M, Karahüseyinoğlu S, Gürsoy-Özdemir Y. Hyperglycemia with or without insulin resistance triggers different structural changes in brain microcirculation and perivascular matrix. Metab Brain Dis 2023; 38:307-321. [PMID: 36305999 DOI: 10.1007/s11011-022-01100-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/08/2022] [Indexed: 02/03/2023]
Abstract
Both type-1 and type-2 DM are related to an increased risk of cognitive impairment, neurovascular complications, and dementia. The primary triggers for complications are hyperglycemia and concomitant insulin resistance in type-2 DM. However, the diverse mechanisms in the pathogenesis of diabetes-related neurovascular complications and extracellular matrix (ECM) remodeling in type-1 and 2 have not been elucidated yet. Here, we investigated the high fat-high sucrose (HFHS) feeding model and streptozotocin-induced type-1 DM model to study the early effects of hyperglycemia with or without insulin resistance to demonstrate the brain microcirculatory changes, perivascular ECM alterations in histological sections and 3D-reconstructed cleared brain tissues. One of the main findings of this study was robust rarefaction in brain microvessels in both models. Interestingly, the HFHS model leads to widespread non-functional angiogenesis, but the type-1 DM model predominantly in the rostral brain. Rarefaction was accompanied by basement membrane thickening and perivascular collagen accumulation in type-1 DM; more severe blood-brain barrier leakage, and disruption of perivascular ECM organization, mainly of elastin and collagen fibers' structural integrity in the HFHS model. Our results point out that the downstream mechanisms of the long-term vascular complications of hyperglycemia models are structurally distinctive and may have implications for appropriate treatment options.
Collapse
Affiliation(s)
- Esra Özkan
- Koç University Research Center for Translational Medicine, Istanbul, Turkey.
- Koç University Hospital, 34010, Zeytinburnu, İstanbul, Turkey.
| | - Yağmur Çetin-Taş
- Koç University Research Center for Translational Medicine, Istanbul, Turkey
| | - Emine Şekerdağ
- Koç University Research Center for Translational Medicine, Istanbul, Turkey
| | - Buket Yiğit
- Koç University Research Center for Translational Medicine, Istanbul, Turkey
| | | | - Selin Sapancı
- Koç University Research Center for Translational Medicine, Istanbul, Turkey
| | - Ceyda Ozler
- Koç University Research Center for Translational Medicine, Istanbul, Turkey
| | - Judy Kesibi
- Koç University Research Center for Translational Medicine, Istanbul, Turkey
| | - Ali B Kızılırmak
- Koç University Research Center for Translational Medicine, Istanbul, Turkey
| | - Murat Pekmez
- Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Hale Yapıcı-Eser
- Koç University Research Center for Translational Medicine, Istanbul, Turkey
- Department of Psychiatry, School of Medicine, Koç University, Istanbul, Turkey
| | - Müjdat Zeybel
- Koç University Research Center for Translational Medicine, Istanbul, Turkey
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust & University of Nottingham, Nottingham, UK
- Department of Gastroenterology and Hepatology, School of Medicine, Koç University, Istanbul, Turkey
| | - Serçin Karahüseyinoğlu
- Koç University Research Center for Translational Medicine, Istanbul, Turkey
- Department of Histology and Embryology, School of Medicine, Koç University, Istanbul, Turkey
| | - Yasemin Gürsoy-Özdemir
- Koç University Research Center for Translational Medicine, Istanbul, Turkey
- Department of Neurology, School of Medicine, Koç University, Istanbul, Turkey
| |
Collapse
|
16
|
Rhea EM, Banks WA, Raber J. Insulin Resistance in Peripheral Tissues and the Brain: A Tale of Two Sites. Biomedicines 2022; 10:1582. [PMID: 35884888 PMCID: PMC9312939 DOI: 10.3390/biomedicines10071582] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 12/12/2022] Open
Abstract
The concept of insulin resistance has been around since a few decades after the discovery of insulin itself. To allude to the classic Charles Dicken's novel published 62 years before the discovery of insulin, in some ways, this is the best of times, as the concept of insulin resistance has expanded to include the brain, with the realization that insulin has a life beyond the regulation of glucose. In other ways, it is the worst of times as insulin resistance is implicated in devastating diseases, including diabetes mellitus, obesity, and Alzheimer's disease (AD) that affect the brain. Peripheral insulin resistance affects nearly a quarter of the United States population in adults over age 20. More recently, it has been implicated in AD, with the degree of brain insulin resistance correlating with cognitive decline. This has led to the investigation of brain or central nervous system (CNS) insulin resistance and the question of the relation between CNS and peripheral insulin resistance. While both may involve dysregulated insulin signaling, the two conditions are not identical and not always interlinked. In this review, we compare and contrast the similarities and differences between peripheral and CNS insulin resistance. We also discuss how an apolipoprotein involved in insulin signaling and related to AD, apolipoprotein E (apoE), has distinct pools in the periphery and CNS and can indirectly affect each system. As these systems are both separated but also linked via the blood-brain barrier (BBB), we discuss the role of the BBB in mediating some of the connections between insulin resistance in the brain and in the peripheral tissues.
Collapse
Affiliation(s)
- Elizabeth M. Rhea
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA 98195, USA; (E.M.R.); (W.A.B.)
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - William A. Banks
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA 98195, USA; (E.M.R.); (W.A.B.)
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA
- Departments of Neurology and Radiation Medicine, Division of Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
17
|
Nehra G, Bauer B, Hartz AMS. Blood-brain barrier leakage in Alzheimer's disease: From discovery to clinical relevance. Pharmacol Ther 2022; 234:108119. [PMID: 35108575 PMCID: PMC9107516 DOI: 10.1016/j.pharmthera.2022.108119] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia. AD brain pathology starts decades before the onset of clinical symptoms. One early pathological hallmark is blood-brain barrier dysfunction characterized by barrier leakage and associated with cognitive decline. In this review, we summarize the existing literature on the extent and clinical relevance of barrier leakage in AD. First, we focus on AD animal models and their susceptibility to barrier leakage based on age and genetic background. Second, we re-examine barrier dysfunction in clinical and postmortem studies, summarize changes that lead to barrier leakage in patients and highlight the clinical relevance of barrier leakage in AD. Third, we summarize signaling mechanisms that link barrier leakage to neurodegeneration and cognitive decline in AD. Finally, we discuss clinical relevance and potential therapeutic strategies and provide future perspectives on investigating barrier leakage in AD. Identifying mechanistic steps underlying barrier leakage has the potential to unravel new targets that can be used to develop novel therapeutic strategies to repair barrier leakage and slow cognitive decline in AD and AD-related dementias.
Collapse
Affiliation(s)
- Geetika Nehra
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Bjoern Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Anika M S Hartz
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY, USA; Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
18
|
Rentería I, García-Suárez PC, Moncada-Jiménez J, Machado-Parra JP, Antunes BM, Lira FS, Jiménez-Maldonado A. Unhealthy Dieting During the COVID-19 Pandemic: An Opinion Regarding the Harmful Effects on Brain Health. Front Nutr 2022; 9:876112. [PMID: 35571935 PMCID: PMC9097874 DOI: 10.3389/fnut.2022.876112] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Since 2020, the world has been suffering from a pandemic that has affected thousands of people regardless of socio-economic conditions, forcing the population to adopt different strategies to prevent and control the advance of the disease, one of which is social distancing. Even though social distancing is a safe strategy to reduce the spread of COVID-19, it is also the cause of a rising sedentary behavior. This behavior develops an excess of fat tissue that leads to metabolic and inflammatory disruption related to chronic diseases and mental health disorders, such as anxiety, depression, and sleep issues. Furthermore, the adoption of dietary patterns involving the consumption of ultra-processed foods, higher in fats and sugars, and the reduction of fresh and healthy foods may play a role in the progress of the disease. In this perspective, we will discuss how an unhealthy diet can affect brain function and, consequently, be a risk factor for mental health diseases.
Collapse
Affiliation(s)
- Iván Rentería
- Facultad de Deportes, Universidad Autónoma de Baja California, Ensenada, Mexico
| | - Patricia Concepción García-Suárez
- Facultad de Deportes, Universidad Autónoma de Baja California, Ensenada, Mexico
- Department of Health, Sports and Exercise Sciences, University of Kansas, Lawrence, KS, United States
| | - José Moncada-Jiménez
- Human Movement Sciences Research Center (CIMOHU), University of Costa Rica, San José, Costa Rica
| | | | | | - Fabio Santos Lira
- Exercise and Immunometabolism Research Group, Department of Physical Education, Paulista State University, UNESP, Presidente Prudente, São Paulo, Brazil
| | | |
Collapse
|
19
|
The Mighty Mitochondria Are Unifying Organelles and Metabolic Hubs in Multiple Organs of Obesity, Insulin Resistance, Metabolic Syndrome, and Type 2 Diabetes: An Observational Ultrastructure Study. Int J Mol Sci 2022; 23:ijms23094820. [PMID: 35563211 PMCID: PMC9101653 DOI: 10.3390/ijms23094820] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 12/25/2022] Open
Abstract
Mitochondria (Mt) are essential cellular organelles for the production of energy and thermogenesis. Mt also serve a host of functions in addition to energy production, which include cell signaling, metabolism, cell death, and aging. Due to the central role of Mt in metabolism as metabolic hubs, there has been renewed interest in how Mt impact metabolic pathways and multiple pathologies. This review shares multiple observational ultrastructural findings in multiple cells and organs to depict aberrant mitochondrial (aMt) remodeling in pre-clinical rodent models. Further, it is intended to show how remodeling of Mt are associated with obesity, insulin resistance, metabolic syndrome (MetS), and type 2 diabetes mellitus (T2DM). Specifically, Mt remodeling in hypertensive and insulin-resistant lean models (Ren2 rat models), lean mice with streptozotocin-induced diabetes, obesity models including diet-induced obesity, genetic leptin-deficient ob/ob, and leptin receptor-deficient db/db diabetic mice are examined. Indeed, aMt dysfunction and damage have been implicated in multiple pathogenic diseases. Manipulation of Mt such as the induction of Mt biogenesis coupled with improvement of mitophagy machinery may be helpful to remove leaky damaged aMt in order to prevent the complications associated with the generation of superoxide-derived reactive oxygen species and the subsequent reactive species interactome. A better understanding of Mt remodeling may help to unlock many of the mysteries in obesity, insulin resistance, MetS, T2DM, and the associated complications of diabetic end-organ disease.
Collapse
|
20
|
Dong C, Yue X, Zhu L, Ge P, Zheng G, Ye Z, Pan B. Curcumin Attenuates Hydrocephalus via Activation of E2F Transcription Factor 4. Cerebrovasc Dis 2022; 51:678-685. [PMID: 35421860 DOI: 10.1159/000523994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/25/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Recent studies have shown that curcumin can reduce the symptoms of hydrocephalus. However, the underlying mechanisms remain unclear. Our previous studies demonstrated that E2F transcription factor 4 (E2F4) protein plays an important role in hydrocephalus; hence, we hypothesized that E2F4 may involve in curcumin mediated anti-hydrocephalus benefits. METHODS E2F4 expression and functions in different human tissues and cell lines were determined and analyzed using the all RNA-seq and ChIP-seq sample and signature search database and ChIP-atlas database. Hydrocephalus mouse model was established through stereotactic injection of shE2F4 into frontal cortex. Mice were treated with curcumin, and then hydrocephalus severity, the expression of E2F4, and downstream targets were analyzed. RESULTS E2F4 was highly expressed in the nervous system, which was downregulated in the bran of hydrocephalus patients. Knockdown E2F4 in mice could mimic the phenotype of human hydrocephalus. Upon curcumin administration, E2F4 expression level was increased, and the hydrocephalus severity score was significantly decreased in mouse model. Mechanistically, curcumin attenuated hydrocephalus through activating E2F4 signaling pathway. CONCLUSION Curcumin suppresses hydrocephalus progression via activation of E2F4, which could be a target for hydrocephalus treatment.
Collapse
Affiliation(s)
| | | | - Lin Zhu
- Hebei General Hospital, Shijiazhuang, China
| | | | | | | | - Baogen Pan
- Hebei General Hospital, Shijiazhuang, China
| |
Collapse
|
21
|
Paul G, Elabi OF. Microvascular Changes in Parkinson’s Disease- Focus on the Neurovascular Unit. Front Aging Neurosci 2022; 14:853372. [PMID: 35360216 PMCID: PMC8960855 DOI: 10.3389/fnagi.2022.853372] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/11/2022] [Indexed: 12/27/2022] Open
Abstract
Vascular alterations emerge as a common denominator for several neurodegenerative diseases. In Parkinson’s disease (PD), a number of observations have been made suggesting that the occurrence of vascular pathology is an important pathophysiological aspect of the disease. Specifically, pathological activation of pericytes, blood-brain barrier (BBB) disruption, pathological angiogenesis and vascular regression have been reported. This review summarizes the current evidence for the different vascular alterations in patients with PD and in animal models of PD. We suggest a possible sequence of vascular pathology in PD ranging from early pericyte activation and BBB leakage to an attempt for compensatory angiogenesis and finally vascular rarefication. We highlight different pathogenetic mechanisms that play a role in these vascular alterations including perivascular inflammation and concomitant metabolic disease. Awareness of the contribution of vascular events to the pathogenesis of PD may allow the identification of targets to modulate those mechanisms. In particular the BBB has for decades only been viewed as an obstacle for drug delivery, however, preservation of its integrity and/or modulation of the signaling at this interface between the blood and the brain may prove to be a new avenue to take in order to develop disease-modifying strategies for neurodegenerative disorders.
Collapse
Affiliation(s)
- Gesine Paul
- Translational Neurology Group, Department of Clinical Sciences, Lund University, Lund, Sweden
- Department of Neurology, Scania University Hospital, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
- *Correspondence: Gesine Paul,
| | - Osama F. Elabi
- Translational Neurology Group, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
22
|
Erickson MA, Banks WA. Transcellular routes of blood-brain barrier disruption. Exp Biol Med (Maywood) 2022; 247:788-796. [PMID: 35243912 DOI: 10.1177/15353702221080745] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Disruption of the blood-brain barrier (BBB) can occur through different mechanisms and pathways. As these pathways result in increased permeability to different classes of substances, it is likely that the neurological insults that occur will also differ for these pathways. The major categories of BBB disruption are paracellular (between cells) and transcellular (across cells) with a subcategory of transcellular leakage involving vesicles (transcytotic). Older literature, as well as more recent studies, highlights the importance of the transcellular pathways in BBB disruption. Of the various transcytotic mechanisms that are thought to be active at the BBB, some are linked to receptor-mediated transcytosis, whereas others are likely involved in BBB disruption. For most capillary beds, transcytotic mechanisms are less clearly linked to permeability than are membrane spanning canaliculi and fenestrations. Disruption pathways share cellular mechanisms to some degree as exemplified by transcytotic caveolar and transcellular canaliculi formations. The discovery of some of the cellular components involved in transcellular mechanisms of BBB disruption and the ability to measure them are adding greatly to our classic knowledge, which is largely based on ultrastructural studies. Future work will likely address the conditions and diseases under which the various pathways of disruption are active, the different impacts that they have, and the cellular biology that underlies the different pathways to disruption.
Collapse
Affiliation(s)
- Michelle A Erickson
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA.,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98104, USA
| | - William A Banks
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA.,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98104, USA
| |
Collapse
|
23
|
Li X, Cai Y, Zhang Z, Zhou J. Glial and Vascular Cell Regulation of the Blood-Brain Barrier in Diabetes. Diabetes Metab J 2022; 46:222-238. [PMID: 35299293 PMCID: PMC8987684 DOI: 10.4093/dmj.2021.0146] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 01/20/2022] [Indexed: 12/18/2022] Open
Abstract
As a structural barrier, the blood-brain barrier (BBB) is located at the interface between the brain parenchyma and blood, and modulates communication between the brain and blood microenvironment to maintain homeostasis. The BBB is composed of endothelial cells, basement membrane, pericytes, and astrocytic end feet. BBB impairment is a distinguishing and pathogenic factor in diabetic encephalopathy. Diabetes causes leakage of the BBB through downregulation of tight junction proteins, resulting in impaired functioning of endothelial cells, pericytes, astrocytes, microglia, nerve/glial antigen 2-glia, and oligodendrocytes. However, the temporal regulation, mechanisms of molecular and signaling pathways, and consequences of BBB impairment in diabetes are not well understood. Consequently, the efficacy of therapies diabetes targeting BBB leakage still lags behind the requirements. This review summarizes the recent research on the effects of diabetes on BBB composition and the potential roles of glial and vascular cells as therapeutic targets for BBB disruption in diabetic encephalopathy.
Collapse
Affiliation(s)
- Xiaolong Li
- National Drug Clinical Trial Institution, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Yan Cai
- National Drug Clinical Trial Institution, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Zuo Zhang
- National Drug Clinical Trial Institution, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Jiyin Zhou
- National Drug Clinical Trial Institution, Second Affiliated Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
24
|
Metabolic Features of Brain Function with Relevance to Clinical Features of Alzheimer and Parkinson Diseases. Molecules 2022; 27:molecules27030951. [PMID: 35164216 PMCID: PMC8839962 DOI: 10.3390/molecules27030951] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/04/2022] Open
Abstract
Brain metabolism is comprised in Alzheimer’s disease (AD) and Parkinson’s disease (PD). Since the brain primarily relies on metabolism of glucose, ketone bodies, and amino acids, aspects of these metabolic processes in these disorders—and particularly how these altered metabolic processes are related to oxidative and/or nitrosative stress and the resulting damaged targets—are reviewed in this paper. Greater understanding of the decreased functions in brain metabolism in AD and PD is posited to lead to potentially important therapeutic strategies to address both of these disorders, which cause relatively long-lasting decreased quality of life in patients.
Collapse
|
25
|
Lemon N, Canepa E, Ilies MA, Fossati S. Carbonic Anhydrases as Potential Targets Against Neurovascular Unit Dysfunction in Alzheimer’s Disease and Stroke. Front Aging Neurosci 2021; 13:772278. [PMID: 34867298 PMCID: PMC8635164 DOI: 10.3389/fnagi.2021.772278] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/20/2021] [Indexed: 12/23/2022] Open
Abstract
The Neurovascular Unit (NVU) is an important multicellular structure of the central nervous system (CNS), which participates in the regulation of cerebral blood flow (CBF), delivery of oxygen and nutrients, immunological surveillance, clearance, barrier functions, and CNS homeostasis. Stroke and Alzheimer Disease (AD) are two pathologies with extensive NVU dysfunction. The cell types of the NVU change in both structure and function following an ischemic insult and during the development of AD pathology. Stroke and AD share common risk factors such as cardiovascular disease, and also share similarities at a molecular level. In both diseases, disruption of metabolic support, mitochondrial dysfunction, increase in oxidative stress, release of inflammatory signaling molecules, and blood brain barrier disruption result in NVU dysfunction, leading to cell death and neurodegeneration. Improved therapeutic strategies for both AD and stroke are needed. Carbonic anhydrases (CAs) are well-known targets for other diseases and are being recently investigated for their function in the development of cerebrovascular pathology. CAs catalyze the hydration of CO2 to produce bicarbonate and a proton. This reaction is important for pH homeostasis, overturn of cerebrospinal fluid, regulation of CBF, and other physiological functions. Humans express 15 CA isoforms with different distribution patterns. Recent studies provide evidence that CA inhibition is protective to NVU cells in vitro and in vivo, in models of stroke and AD pathology. CA inhibitors are FDA-approved for treatment of glaucoma, high-altitude sickness, and other indications. Most FDA-approved CA inhibitors are pan-CA inhibitors; however, specific CA isoforms are likely to modulate the NVU function. This review will summarize the literature regarding the use of pan-CA and specific CA inhibitors along with genetic manipulation of specific CA isoforms in stroke and AD models, to bring light into the functions of CAs in the NVU. Although pan-CA inhibitors are protective and safe, we hypothesize that targeting specific CA isoforms will increase the efficacy of CA inhibition and reduce side effects. More studies to further determine specific CA isoforms functions and changes in disease states are essential to the development of novel therapies for cerebrovascular pathology, occurring in both stroke and AD.
Collapse
Affiliation(s)
- Nicole Lemon
- Alzheimer’s Center at Temple (ACT), Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Elisa Canepa
- Alzheimer’s Center at Temple (ACT), Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Marc A. Ilies
- Alzheimer’s Center at Temple (ACT), Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Department of Pharmaceutical Sciences and Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Temple University, Philadelphia, PA, United States
| | - Silvia Fossati
- Alzheimer’s Center at Temple (ACT), Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- *Correspondence: Silvia Fossati,
| |
Collapse
|
26
|
Ullah R, Park TJ, Huang X, Kim MO. Abnormal amyloid beta metabolism in systemic abnormalities and Alzheimer's pathology: Insights and therapeutic approaches from periphery. Ageing Res Rev 2021; 71:101451. [PMID: 34450351 DOI: 10.1016/j.arr.2021.101451] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 08/12/2021] [Accepted: 08/19/2021] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is an age-associated, multifactorial neurodegenerative disorder that is incurable. Despite recent success in treatments that partially improve symptomatic relief, they have failed in most clinical trials. Re-holding AD for accurate diagnosis and treatment is widely known as a challenging task. Lack of knowledge of basic molecular pathogenesis might be a possible reason for ineffective AD treatment. Historically, a majority of therapy-based studies have investigated the role of amyloid-β (Aβ peptide) in the central nervous system (CNS), whereas less is known about Aβ peptide in the periphery in AD. In this review, we provide a comprehensive summary of the current understanding of Aβ peptide metabolism (anabolism and catabolism) in the brain and periphery. We show that the abnormal metabolism of Aβ peptide is significantly linked with central-brain and peripheral abnormalities; the interaction between peripheral Aβ peptide metabolism and peripheral abnormalities affects central-brain Aβ peptide metabolism, suggesting the existence of significant communication between these two pathways of Aβ peptide metabolism. This close interaction between the central brain and periphery in abnormal Aβ peptide metabolism plays a key role in the development and progression of AD. In conclusion, we need to obtain a full understanding of the dynamic roles of Aβ peptide at the molecular level in both the brain and periphery in relation to the pathology of AD. This will not only provide new information regarding the complex disease pathology, but also offer potential new clues to improve therapeutic strategies and diagnostic biomarkers for the successful treatment of AD.
Collapse
|
27
|
The Blood-Brain Barrier, Oxidative Stress, and Insulin Resistance. Antioxidants (Basel) 2021; 10:antiox10111695. [PMID: 34829566 PMCID: PMC8615183 DOI: 10.3390/antiox10111695] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
The blood–brain barrier (BBB) is a network of specialized endothelial cells that regulates substrate entry into the central nervous system (CNS). Acting as the interface between the periphery and the CNS, the BBB must be equipped to defend against oxidative stress and other free radicals generated in the periphery to protect the CNS. There are unique features of brain endothelial cells that increase the susceptibility of these cells to oxidative stress. Insulin signaling can be impacted by varying levels of oxidative stress, with low levels of oxidative stress being necessary for signaling and higher levels being detrimental. Insulin must cross the BBB in order to access the CNS, levels of which are important in peripheral metabolism as well as cognition. Any alterations in BBB transport due to oxidative stress at the BBB could have downstream disease implications. In this review, we cover the interactions of oxidative stress at the BBB, how insulin signaling is related to oxidative stress, and the impact of the BBB in two diseases greatly affected by oxidative stress and insulin resistance: diabetes mellitus and Alzheimer’s disease.
Collapse
|
28
|
Elabi OF, Cunha JPMCM, Gaceb A, Fex M, Paul G. High-fat diet-induced diabetes leads to vascular alterations, pericyte reduction, and perivascular depletion of microglia in a 6-OHDA toxin model of Parkinson disease. J Neuroinflammation 2021; 18:175. [PMID: 34376193 PMCID: PMC8353816 DOI: 10.1186/s12974-021-02218-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Abstract
Background Diabetes has been recognized as a risk factor contributing to the incidence and progression of Parkinson’s disease (PD). Although several hypotheses suggest a number of different mechanisms underlying the aggravation of PD caused by diabetes, less attention has been paid to the fact that diabetes and PD share pathological microvascular alterations in the brain. The characteristics of the interaction of diabetes in combination with PD at the vascular interface are currently not known. Methods We combined a high-fat diet (HFD) model of diabetes mellitus type 2 (DMT2) with the 6-OHDA lesion model of PD in male mice. We analyzed the association between insulin resistance and the achieved degree of dopaminergic nigrostriatal pathology. We further assessed the impact of the interaction of the two pathologies on motor deficits using a battery of behavioral tests and on microglial activation using immunohistochemistry. Vascular pathology was investigated histologically by analyzing vessel density and branching points, pericyte density, blood–brain barrier leakage, and the interaction between microvessels and microglia in the striatum. Results Different degrees of PD lesion were obtained resulting in moderate and severe dopaminergic cell loss. Even though the HFD paradigm did not affect the degree of nigrostriatal lesion in the acute toxin-induced PD model used, we observed a partial aggravation of the motor performance of parkinsonian mice by the diet. Importantly, the combination of a moderate PD pathology and HFD resulted in a significant pericyte depletion, an absence of an angiogenic response, and a significant reduction in microglia/vascular interaction pointing to an aggravation of vascular pathology. Conclusion This study provides the first evidence for an interaction of DMT2 and PD at the brain microvasculature involving changes in the interaction of microglia with microvessels. These pathological changes may contribute to the pathological mechanisms underlying the accelerated progression of PD when associated with diabetes. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02218-8.
Collapse
Affiliation(s)
- Osama F Elabi
- Translational Neurology Group, Department of Clinical Science, Wallenberg Neuroscience Center and Wallenberg Center for Molecular Medicine, Lund University, 22184, Lund, Sweden
| | - João Paulo M C M Cunha
- Unit of Molecular Metabolism, Lund University Diabetes Centre, Jan Waldenströms gata 35, Box 50332, 202 13, Malmö, Sweden
| | - Abderahim Gaceb
- Translational Neurology Group, Department of Clinical Science, Wallenberg Neuroscience Center and Wallenberg Center for Molecular Medicine, Lund University, 22184, Lund, Sweden
| | - Malin Fex
- Unit of Molecular Metabolism, Lund University Diabetes Centre, Jan Waldenströms gata 35, Box 50332, 202 13, Malmö, Sweden
| | - Gesine Paul
- Translational Neurology Group, Department of Clinical Science, Wallenberg Neuroscience Center and Wallenberg Center for Molecular Medicine, Lund University, 22184, Lund, Sweden. .,Department of Neurology, Scania University Hospital, 22185, Lund, Sweden.
| |
Collapse
|
29
|
Sharma S. High fat diet and its effects on cognitive health: alterations of neuronal and vascular components of brain. Physiol Behav 2021; 240:113528. [PMID: 34260890 DOI: 10.1016/j.physbeh.2021.113528] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/03/2021] [Accepted: 07/06/2021] [Indexed: 01/01/2023]
Abstract
It has been well recognized that intake of diets rich in saturated fats could result in development of metabolic disorders such as type 2 diabetes mellitus, obesity and cardiovascular diseases. Recent studies have suggested that intake of high fat diet (HFD) is also associated with cognitive dysfunction. Various preclinical studies have demonstrated the impact of short and long term HFD feeding on the biochemical and behavioural alterations. This review summarizes studies and the protocols used to assess the impacts of HFD feeding on cognitive performance in rodents. Further, it discuss the key mechanisms that are altered by HFD feeding, such as, insulin resistance, oxidative stress, neuro-inflammation, transcriptional dysregulation and loss of synaptic plasticity. Along with these, HFD feeding also alters the vascular components of brain such as loss of BBB integrity and reduced cerebral blood flow. It is highly possible that these factors are responsible for the development of cognitive deficits as a result of HFD feeding.
Collapse
Affiliation(s)
- Sorabh Sharma
- Division of Medical Sciences, University of Victoria, PO Box 1700 STN CSC, Victoria, BC, V8W2Y2, Canada.
| |
Collapse
|
30
|
Liu Y, Chen D, Smith A, Ye Q, Gao Y, Zhang W. Three-dimensional remodeling of functional cerebrovascular architecture and gliovascular unit in leptin receptor-deficient mice. J Cereb Blood Flow Metab 2021; 41:1547-1562. [PMID: 33818188 PMCID: PMC8221780 DOI: 10.1177/0271678x211006596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/17/2022]
Abstract
The cerebrovascular sequelae of diabetes render victims more susceptible to ischemic stroke, vascular cognitive impairment, and Alzheimer's disease. However, limited knowledge exists on the progressive changes in cerebrovascular structure and functional remodeling in type 2 diabetes. To ascertain the impact of diabetes on whole-brain cerebrovascular perfusion, leptin-receptor-deficient mice were transcardially injected with tomato-lectin before sacrifice. The whole brain was clarified by the Fast free-of-acrylamide clearing tissue technique. Functional vascular anatomy of the cerebrum was visualized by light-sheet microscopy, followed by analysis in Imaris software. We observed enhanced neovascularization in adult db/db mice, characterized by increased branch level and loop structures. Microvascular hypoperfusion was initially detected in juvenile db/db mice, suggesting early onset of insufficient microcirculation. Furthermore, gliovascular unit remodeling was verified by loss of pericytes and overactivation of microglia and astrocytes in adult diabetic mice. However, the integrity of the blood-brain barrier (BBB) was fundamentally preserved, as shown by a lack of extravasation of IgG into the brain parenchyma. In summary, we, for the first time, reveal that functional cerebrovascular remodeling occurs as early as four weeks in db/db mice and the deficit in gliovascular coupling may play a role in cerebral hypoperfusion before BBB breakdown in 16-week-old db/db mice.
Collapse
Affiliation(s)
- Yaan Liu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Di Chen
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Amanda Smith
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Qing Ye
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Yanqin Gao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Wenting Zhang
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| |
Collapse
|
31
|
Islam Y, Leach AG, Smith J, Pluchino S, Coxon CR, Sivakumaran M, Downing J, Fatokun AA, Teixidò M, Ehtezazi T. Physiological and Pathological Factors Affecting Drug Delivery to the Brain by Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2002085. [PMID: 34105297 PMCID: PMC8188209 DOI: 10.1002/advs.202002085] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 01/06/2021] [Indexed: 05/04/2023]
Abstract
The prevalence of neurological/neurodegenerative diseases, such as Alzheimer's disease is known to be increasing due to an aging population and is anticipated to further grow in the decades ahead. The treatment of brain diseases is challenging partly due to the inaccessibility of therapeutic agents to the brain. An increasingly important observation is that the physiology of the brain alters during many brain diseases, and aging adds even more to the complexity of the disease. There is a notion that the permeability of the blood-brain barrier (BBB) increases with aging or disease, however, the body has a defense mechanism that still retains the separation of the brain from harmful chemicals in the blood. This makes drug delivery to the diseased brain, even more challenging and complex task. Here, the physiological changes to the diseased brain and aged brain are covered in the context of drug delivery to the brain using nanoparticles. Also, recent and novel approaches are discussed for the delivery of therapeutic agents to the diseased brain using nanoparticle based or magnetic resonance imaging guided systems. Furthermore, the complement activation, toxicity, and immunogenicity of brain targeting nanoparticles as well as novel in vitro BBB models are discussed.
Collapse
Affiliation(s)
- Yamir Islam
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityByrom StreetLiverpoolL3 3AFUK
| | - Andrew G. Leach
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityByrom StreetLiverpoolL3 3AFUK
- Division of Pharmacy and OptometryThe University of ManchesterStopford Building, Oxford RoadManchesterM13 9PTUK
| | - Jayden Smith
- Cambridge Innovation Technologies Consulting (CITC) LimitedSt. John's Innovation CentreCowley RoadCambridgeCB4 0WSUK
| | - Stefano Pluchino
- Department of Clinical NeurosciencesClifford Allbutt Building – Cambridge Biosciences Campus and NIHR Biomedical Research CentreUniversity of CambridgeHills RoadCambridgeCB2 0HAUK
| | - Christopher R. Coxon
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityByrom StreetLiverpoolL3 3AFUK
- School of Engineering and Physical SciencesHeriot‐Watt UniversityWilliam Perkin BuildingEdinburghEH14 4ASUK
| | - Muttuswamy Sivakumaran
- Department of HaematologyPeterborough City HospitalEdith Cavell CampusBretton Gate PeterboroughPeterboroughPE3 9GZUK
| | - James Downing
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityByrom StreetLiverpoolL3 3AFUK
| | - Amos A. Fatokun
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityByrom StreetLiverpoolL3 3AFUK
| | - Meritxell Teixidò
- Institute for Research in Biomedicine (IRB Barcelona)Barcelona Institute of Science and Technology (BIST)Baldiri Reixac 10Barcelona08028Spain
| | - Touraj Ehtezazi
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityByrom StreetLiverpoolL3 3AFUK
| |
Collapse
|
32
|
Hayden MR, Banks WA. Deficient Leptin Cellular Signaling Plays a Key Role in Brain Ultrastructural Remodeling in Obesity and Type 2 Diabetes Mellitus. Int J Mol Sci 2021; 22:5427. [PMID: 34063911 PMCID: PMC8196569 DOI: 10.3390/ijms22115427] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 12/11/2022] Open
Abstract
The triad of obesity, metabolic syndrome (MetS), Type 2 diabetes mellitus (T2DM) and advancing age are currently global societal problems that are expected to grow over the coming decades. This triad is associated with multiple end-organ complications of diabetic vasculopathy (maco-microvessel disease), neuropathy, retinopathy, nephropathy, cardiomyopathy, cognopathy encephalopathy and/or late-onset Alzheimer's disease. Further, obesity, MetS, T2DM and their complications are associated with economical and individual family burdens. This review with original data focuses on the white adipose tissue-derived adipokine/hormone leptin and how its deficient signaling is associated with brain remodeling in hyperphagic, obese, or hyperglycemic female mice. Specifically, the ultrastructural remodeling of the capillary neurovascular unit, brain endothelial cells (BECs) and their endothelial glycocalyx (ecGCx), the blood-brain barrier (BBB), the ventricular ependymal cells, choroid plexus, blood-cerebrospinal fluid barrier (BCSFB), and tanycytes are examined in female mice with impaired leptin signaling from either dysfunction of the leptin receptor (DIO and db/db models) or the novel leptin deficiency (BTBR ob/ob model).
Collapse
Affiliation(s)
- Melvin R. Hayden
- Departments of Internal Medicine, Endocrinology Diabetes and Metabolism, Diabetes and Cardiovascular Disease Center, University of Missouri-Columbia School of Medicine, One Hospital Drive, Columbia, MO 65212, USA;
| | - William A. Banks
- Geriatrics Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, 1660 S. Columbian Way, 810C/Bldg 1, Seattle, WA 98108, USA
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA 98108, USA
| |
Collapse
|
33
|
Bulli I, Dettori I, Coppi E, Cherchi F, Venturini M, Di Cesare Mannelli L, Ghelardini C, Nocentini A, Supuran CT, Pugliese AM, Pedata F. Role of Carbonic Anhydrase in Cerebral Ischemia and Carbonic Anhydrase Inhibitors as Putative Protective Agents. Int J Mol Sci 2021; 22:5029. [PMID: 34068564 PMCID: PMC8126098 DOI: 10.3390/ijms22095029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023] Open
Abstract
Ischemic stroke is a leading cause of death and disability worldwide. The only pharmacological treatment available to date for cerebral ischemia is tissue plasminogen activator (t-PA) and the search for successful therapeutic strategies still remains a major challenge. The loss of cerebral blood flow leads to reduced oxygen and glucose supply and a subsequent switch to the glycolytic pathway, which leads to tissue acidification. Carbonic anhydrase (CA, EC 4.2.1.1) is the enzyme responsible for converting carbon dioxide into a protons and bicarbonate, thus contributing to pH regulation and metabolism, with many CA isoforms present in the brain. Recently, numerous studies have shed light on several classes of carbonic anhydrase inhibitor (CAI) as possible new pharmacological agents for the management of brain ischemia. In the present review we summarized pharmacological, preclinical and clinical findings regarding the role of CAIs in strokes and we discuss their potential protective mechanisms.
Collapse
Affiliation(s)
- Irene Bulli
- Department of Neuroscience, Psycology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.B.); (I.D.); (E.C.); (F.C.); (M.V.); (L.D.C.M.); (C.G.); (A.M.P.)
| | - Ilaria Dettori
- Department of Neuroscience, Psycology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.B.); (I.D.); (E.C.); (F.C.); (M.V.); (L.D.C.M.); (C.G.); (A.M.P.)
| | - Elisabetta Coppi
- Department of Neuroscience, Psycology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.B.); (I.D.); (E.C.); (F.C.); (M.V.); (L.D.C.M.); (C.G.); (A.M.P.)
| | - Federica Cherchi
- Department of Neuroscience, Psycology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.B.); (I.D.); (E.C.); (F.C.); (M.V.); (L.D.C.M.); (C.G.); (A.M.P.)
| | - Martina Venturini
- Department of Neuroscience, Psycology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.B.); (I.D.); (E.C.); (F.C.); (M.V.); (L.D.C.M.); (C.G.); (A.M.P.)
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psycology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.B.); (I.D.); (E.C.); (F.C.); (M.V.); (L.D.C.M.); (C.G.); (A.M.P.)
| | - Carla Ghelardini
- Department of Neuroscience, Psycology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.B.); (I.D.); (E.C.); (F.C.); (M.V.); (L.D.C.M.); (C.G.); (A.M.P.)
| | - Alessio Nocentini
- Department of Neuroscience, Psycology, Drug Research and Child Health (NEUROFARBA), Section of Pharmaceutical Sciences, University of Florence, 50019 Florence, Italy;
| | - Claudiu T. Supuran
- Department of Neuroscience, Psycology, Drug Research and Child Health (NEUROFARBA), Section of Pharmaceutical Sciences, University of Florence, 50019 Florence, Italy;
| | - Anna Maria Pugliese
- Department of Neuroscience, Psycology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.B.); (I.D.); (E.C.); (F.C.); (M.V.); (L.D.C.M.); (C.G.); (A.M.P.)
| | - Felicita Pedata
- Department of Neuroscience, Psycology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.B.); (I.D.); (E.C.); (F.C.); (M.V.); (L.D.C.M.); (C.G.); (A.M.P.)
| |
Collapse
|
34
|
Logsdon AF, Rhea EM, Reed M, Banks WA, Erickson MA. The neurovascular extracellular matrix in health and disease. Exp Biol Med (Maywood) 2021; 246:835-844. [PMID: 33302738 PMCID: PMC8719034 DOI: 10.1177/1535370220977195] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The blood-brain barrier (BBB) is a vital interface that supports normal brain functions. Endothelial cells (ECs) are the main component of the BBB and are highly specialized to govern the transfer of substances into brain. The EC lumen is enmeshed with an extracellular matrix (ECM), known as the endothelial glycocalyx layer (EGL). The lumen-facing EGL is primarily comprised of proteoglycans (PGs) and glycosaminoglycans (GAGs), which function as the first line of defense for blood-to-brain transfer of substances. Circulating factors must first penetrate the EGL before interacting with the EC. The abundance and composition of the PG and GAGs can dictate EGL function, and determine which circulating substances communicate with the ECs. The EGL can interact with circulating factors through physio-chemical interactions with the EC. Some disease states reveal a "thinning" of the EGL that may increase EC interactions with components of the systemic circulation and alter BBB function. EGL changes may also contribute to the cognitive complications of systemic diseases, such as sepsis and diabetes. For decades, researchers have measured how genetic and environmental factors influence the peripheral EGL constituents; however, much less is known about the neurovascular EGL. In this mini-review, we introduce components of the EGL and innovative ways to measure their abundance and composition that may contribute to BBB dysfunction.
Collapse
Affiliation(s)
- Aric F Logsdon
- Geriatrics Research Education and Clinical Center,
Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108,
USA
- Division of Gerontology and Geriatric Medicine,
Department of Medicine, University of Washington School of Medicine,
Seattle, WA 98159, USA
| | - Elizabeth M Rhea
- Geriatrics Research Education and Clinical Center,
Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108,
USA
- Division of Gerontology and Geriatric Medicine,
Department of Medicine, University of Washington School of Medicine,
Seattle, WA 98159, USA
| | - May Reed
- Geriatrics Research Education and Clinical Center,
Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108,
USA
- Division of Gerontology and Geriatric Medicine,
Department of Medicine, University of Washington School of Medicine,
Seattle, WA 98159, USA
| | - William A Banks
- Geriatrics Research Education and Clinical Center,
Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108,
USA
- Division of Gerontology and Geriatric Medicine,
Department of Medicine, University of Washington School of Medicine,
Seattle, WA 98159, USA
| | - Michelle A Erickson
- Geriatrics Research Education and Clinical Center,
Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108,
USA
- Division of Gerontology and Geriatric Medicine,
Department of Medicine, University of Washington School of Medicine,
Seattle, WA 98159, USA
| |
Collapse
|
35
|
Beddows CA, Dodd GT. Insulin on the brain: The role of central insulin signalling in energy and glucose homeostasis. J Neuroendocrinol 2021; 33:e12947. [PMID: 33687120 DOI: 10.1111/jne.12947] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 12/26/2022]
Abstract
Insulin signals to the brain where it coordinates multiple physiological processes underlying energy and glucose homeostasis. This review explores where and how insulin interacts within the brain parenchyma, how brain insulin signalling functions to coordinate energy and glucose homeostasis and how this contributes to the pathogenesis of metabolic disease.
Collapse
Affiliation(s)
- Cait A Beddows
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Garron T Dodd
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
36
|
Abstract
The blood-brain barrier (BBB) protects the central nervous system (CNS) from unregulated exposure to the blood and its contents. The BBB also controls the blood-to-brain and brain-to-blood permeation of many substances, resulting in nourishment of the CNS, its homeostatic regulation and communication between the CNS and peripheral tissues. The cells forming the BBB communicate with cells of the brain and in the periphery. This highly regulated interface changes with healthy aging. Here, we review those changes, starting with morphology and disruption. Transporter changes include those for amyloid beta peptide, glucose and drugs. Brain fluid dynamics, pericyte health and basement membrane and glycocalyx compositions are all altered with healthy aging. Carrying the ApoE4 allele leads to an acceleration of most of the BBB's age-related changes. We discuss how alterations in the BBB that occur with healthy aging reflect adaptation to the postreproductive phase of life and may affect vulnerability to age-associated diseases.
Collapse
|
37
|
Liu Y, Zhang H, Wang S, Guo Y, Fang X, Zheng B, Gao W, Yu H, Chen Z, Roman RJ, Fan F. Reduced pericyte and tight junction coverage in old diabetic rats are associated with hyperglycemia-induced cerebrovascular pericyte dysfunction. Am J Physiol Heart Circ Physiol 2021; 320:H549-H562. [PMID: 33306445 PMCID: PMC8082790 DOI: 10.1152/ajpheart.00726.2020] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/22/2020] [Accepted: 11/13/2020] [Indexed: 12/16/2022]
Abstract
Diabetes mellitus (DM) is one of the primary pathological factors that contributes to aging-related cognitive impairments, but the underlying mechanisms remain unclear. We recently reported that old DM rats exhibited impaired myogenic responses of the cerebral arteries and arterioles, poor cerebral blood flow autoregulation, enhanced blood-brain barrier (BBB) leakage, and cognitive impairments. These changes were associated with diminished vascular smooth muscle cell contractile capability linked to elevated reactive oxygen species (ROS) and reduced ATP production. In the present study, using a nonobese T2DN DM rat, we isolated parenchymal arterioles (PAs), cultured cerebral microvascular pericytes, and examined whether cerebrovascular pericyte in DM is damaged and whether pericyte dysfunction may play a role in the regulation of cerebral hemodynamics and BBB integrity. We found that ROS and mitochondrial superoxide production were elevated in PAs isolated from old DM rats and in high glucose (HG)-treated α-smooth muscle actin-positive pericytes. HG-treated pericytes displayed decreased contractile capability in association with diminished mitochondrial respiration and ATP production. Additionally, the expression of advanced glycation end products, transforming growth factor-β, vascular endothelial growth factor, and fibronectin were enhanced, but claudin 5 and integrin β1 was reduced in the brain of old DM rats and HG-treated pericytes. Further, endothelial tight junction and pericyte coverage on microvessels were reduced in the cortex of old DM rats. These results demonstrate our previous findings that the impaired cerebral hemodynamics and BBB leakage and cognitive impairments in the same old DM model are associated with hyperglycemia-induced cerebrovascular pericyte dysfunction.NEW & NOTEWORTHY This study demonstrates that the loss of contractile capability in pericytes in diabetes is associated with enhanced ROS and reduced ATP production. Enhanced advanced glycation end products (AGEs) in diabetes accompany with reduced pericyte and endothelial tight junction coverage in the cortical capillaries of old diabetic rats. These results suggest our previous findings that the impaired cerebral hemodynamics, BBB leakage, and cognitive impairments in old DM model are associated with hyperglycemia-induced cerebrovascular pericyte dysfunction.
Collapse
Affiliation(s)
- Yedan Liu
- Department of Pediatrics, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Huawei Zhang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Shaoxun Wang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Ya Guo
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Xing Fang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Baoying Zheng
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Wenjun Gao
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Hongwei Yu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Zongbo Chen
- Department of Pediatrics, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Richard J Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
38
|
Khaibullina A, Almeida LEF, Kamimura S, Zerfas PM, Smith ML, Vogel S, Wakim P, Vasconcelos OM, Quezado MM, Horkayne-Szakaly I, Quezado ZMN. Sickle cell disease mice have cerebral oxidative stress and vascular and white matter abnormalities. Blood Cells Mol Dis 2021; 86:102493. [PMID: 32927249 PMCID: PMC7686096 DOI: 10.1016/j.bcmd.2020.102493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023]
Abstract
Strokes are feared complications of sickle cell disease (SCD) and yield significant neurologic and neurocognitive deficits. However, even without detectable strokes, SCD patients have significant neurocognitive deficits in domains of learning and memory, processing speed and executive function. In these cases, mechanisms unrelated to major cerebrovascular abnormalities likely underlie these deficits. While oxidative stress and stress-related signaling pathways play a role in SCD pathophysiology, their role in cerebral injury remains unknown. We have shown that Townes and BERK SCD mice, while not having strokes, recapitulate neurocognitive deficits reported in humans. We hypothesized that cognitive deficits in SCD mice are associated with cerebral oxidative stress. We showed that SCD mice have increased levels of reactive oxygen species, protein carbonylation, and lipid peroxidation in hippocampus and cortex, thus suggesting increased cerebral oxidative stress. Further, cerebral oxidative stress was associated with caspase-3 activity alterations and vascular endothelial abnormalities, white matter changes, and disruption of the blood brain barrier, similar to those reported after ischemic/oxidative injury. Additionally, after repeated hypoxia/reoxygenation exposure, homozygous Townes had enhanced microglia activation. Our findings indicate that oxidative stress and stress-induced tissue damage is increased in susceptible brain regions, which may, in turn, contribute to neurocognitive deficits in SCD mice.
Collapse
Affiliation(s)
- Alfia Khaibullina
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, United States of America
| | - Luis E F Almeida
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, United States of America
| | - Sayuri Kamimura
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, United States of America
| | - Patricia M Zerfas
- Office of Research Services, Office of the Director, National Institutes of Health, Bethesda, MD 20892, United States of America
| | - Meghann L Smith
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, United States of America
| | - Sebastian Vogel
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, United States of America
| | - Paul Wakim
- Biostatistics and Clinical Epidemiology Service, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, United States of America
| | - Olavo M Vasconcelos
- Neuromuscular Clinic, Electromyography Laboratory, Intraoperative Neurophysiology Monitoring Sections, Veterans Health Administration Medical Center, Virginia Commonwealth University, Richmond, VA 23249, United States of America
| | - Martha M Quezado
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States of America
| | - Iren Horkayne-Szakaly
- Neuropathology and Ophthalmic Pathology, Joint Pathology Center, Defense Health Agency, Silver Spring, MD 20910, United States of America
| | - Zenaide M N Quezado
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, United States of America.
| |
Collapse
|
39
|
Carbonic anhydrase inhibition, antioxidant activity against alveolar epithelial cells and antibacterial effect against Klebsiella pneumoniae enabled by synthesized silica nanoparticles through laser ablation technique. Life Sci 2021; 278:119032. [PMID: 33450260 DOI: 10.1016/j.lfs.2021.119032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/30/2020] [Accepted: 01/01/2021] [Indexed: 12/14/2022]
Abstract
Silica (SiO2) nanoparticles (NPs) were synthesized by laser ablation method and were characterized by TEM and DLS techniques. Afterwards, their inhibition activity against carbonic anhydrase (CA) isoforms (CA I and CA II) was explored by experimental and theoretical analysis. Also, the protective effect of SiO2 NPs against H2O2-induced oxidative stress in alveolar epithelial cells (A549) were assessed by measurement of MTT, ROS level, CAT and SOD activity and GSH content. Finally, the NPs were screened for their antimicrobial activity using the MICs method against the Klebsiella pneumoniae. The result showed that the synthesized NPs have a size of around 40 nm. The inhibition activity by comparing IC50 values with acetazolamide as a positive control revealed that SiO2 NPs in comparison with acetazolamide served as potent inhibitors against CA isoforms which was also confirmed by docking studies. The cellular assays indicated that the SiO2 NPs with a concentration of 20 μg/mL stimulated a significant antioxidant activity against H2O2-induced oxidative cell damage through activation of CAT and SOD, an increase in the GSH content and reducing the level of ROS. The synthesize NPs also showed a good inhibition effect against Klebsiella pneumoniae as compared to Sulfamethoxazole as a positive control. In conclusion, this data may provide some useful information on the development of some platforms for pneumonia treatment and management.
Collapse
|
40
|
Watt C, Sanchez-Rangel E, Hwang JJ. Glycemic Variability and CNS Inflammation: Reviewing the Connection. Nutrients 2020; 12:nu12123906. [PMID: 33371247 PMCID: PMC7766608 DOI: 10.3390/nu12123906] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/16/2022] Open
Abstract
Glucose is the primary energy source for the brain, and exposure to both high and low levels of glucose has been associated with numerous adverse central nervous system (CNS) outcomes. While a large body of work has highlighted the impact of hyperglycemia on peripheral and central measures of oxidative stress, cognitive deficits, and vascular complications in Type 1 and Type 2 diabetes, there is growing evidence that glycemic variability significantly drives increased oxidative stress, leading to neuroinflammation and cognitive dysfunction. In this review, the latest data on the impact of glycemic variability on brain function and neuroinflammation will be presented. Because high levels of oxidative stress have been linked to dysfunction of the blood-brain barrier (BBB), special emphasis will be placed on studies investigating the impact of glycemic variability on endothelial and vascular inflammation. The latest clinical and preclinical/in vitro data will be reviewed, and clinical/therapeutic implications will be discussed.
Collapse
|
41
|
Yan X, Hu Y, Wang B, Wang S, Zhang X. Metabolic Dysregulation Contributes to the Progression of Alzheimer's Disease. Front Neurosci 2020; 14:530219. [PMID: 33250703 PMCID: PMC7674854 DOI: 10.3389/fnins.2020.530219] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 09/25/2020] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD) is an incurable neurodegenerative disease. Numerous studies have demonstrated a critical role for dysregulated glucose metabolism in its pathogenesis. In this review, we summarize metabolic alterations in aging brain and AD-related metabolic deficits associated with glucose metabolism dysregulation, glycolysis dysfunction, tricarboxylic acid (TCA) cycle, oxidative phosphorylation (OXPHOS) deficits, and pentose phosphate pathway impairment. Additionally, we discuss recent treatment strategies targeting metabolic defects in AD, including their limitations, in an effort to encourage the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Xu Yan
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Yue Hu
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Biyao Wang
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Sijian Wang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Xinwen Zhang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| |
Collapse
|
42
|
Manaserh IH, Maly E, Jahromi M, Chikkamenahalli L, Park J, Hill J. Insulin sensing by astrocytes is critical for normal thermogenesis and body temperature regulation. J Endocrinol 2020; 247:39-52. [PMID: 32698146 PMCID: PMC7456332 DOI: 10.1530/joe-20-0052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 07/13/2020] [Indexed: 12/23/2022]
Abstract
The important role of astrocytes in the central control of energy balance and glucose homeostasis has recently been recognized. Changes in thermoregulation can lead to metabolic dysregulation, but the role of astrocytes in this process is not yet clear. Therefore, we generated mice congenitally lacking insulin receptors (Ir) in astrocytes (IrKOGFAP mice) to investigate the involvement of astrocyte insulin signaling. IrKOGFAP mice displayed significantly lower energy expenditure and a strikingly lower basal and fasting body temperature. When exposed to cold, however, they were able to mount a thermogenic response. IrKOGFAP mice displayed sex differences in metabolic function and thermogenesis that may contribute to the development of obesity and type II diabetes as early as 2 months of age. While brown adipose tissue exhibited higher adipocyte size in both sexes, more apoptosis was seen in IrKOGFAP males. Less innervation and lower BAR3 expression levels were also observed in IrKOGFAP brown adipose tissue. These effects have not been reported in models of astrocyte Ir deletion in adulthood. In contrast, body weight and glucose regulatory defects phenocopied such models. These findings identify a novel role for astrocyte insulin signaling in the development of normal body temperature control and sympathetic activation of BAT. Targeting insulin signaling in astrocytes has the potential to serve as a novel target for increasing energy expenditure.
Collapse
Affiliation(s)
- Iyad H Manaserh
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, The University of Toledo, Toledo, Ohio, USA
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, The University of Toledo, Toledo, Ohio, USA
| | - Emily Maly
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, The University of Toledo, Toledo, Ohio, USA
| | - Marziyeh Jahromi
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, The University of Toledo, Toledo, Ohio, USA
| | - Lakshmikanth Chikkamenahalli
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, The University of Toledo, Toledo, Ohio, USA
| | - Joshua Park
- Department of Neuroscience, College of Medicine and Life Sciences, The University of Toledo, Toledo, Ohio, USA
| | - Jennifer Hill
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, The University of Toledo, Toledo, Ohio, USA
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, The University of Toledo, Toledo, Ohio, USA
| |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW This review focuses on the relationships between diabetes, cognitive impairment, and the contribution of kidney disease. RECENT FINDINGS We review the independent contributions of parameters of kidney disease, including albuminuria, glomerular filtration, bone/mineral metabolism, and vitamin D synthesis, on cognitive performance in patients with diabetes. Potential pathophysiologic mechanisms underlying these associations are discussed highlighting gaps in existing knowledge. Finally, effects of the dialysis procedure on the brain and cognitive performance are considered. Emphasis is placed on novel non-invasive screening tools with the potential to preserve cerebral perfusion during hemodialysis and limit cognitive decline in patients with diabetic ESKD. Patients with type 2 diabetes and advanced chronic kidney disease suffer a higher prevalence of cognitive impairment. This is particularly true in patients with diabetes and end-stage kidney disease (ESKD).
Collapse
Affiliation(s)
- Shivani Ghoshal
- Department of Neurology, Wake Forest School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC, 27157, USA.
| | - Nicholette D Allred
- Department of Biochemistry and Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Barry I Freedman
- Department of Internal Medicine, Section on Nephrology, Wake Forest School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC, 27157-1053, USA.
| |
Collapse
|
44
|
Dysfunction of the neurovascular unit in diabetes-related neurodegeneration. Biomed Pharmacother 2020; 131:110656. [PMID: 32841897 DOI: 10.1016/j.biopha.2020.110656] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/10/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022] Open
Abstract
In current aging societies, diabetes mellitus and neurodegenerative diseases represented by Alzheimer's disease are highly prevalent among adults, especially the elderly all over the world. It is worth noting that a substantial body of evidence suggests diabetes contributes to accelerated neurodegenerative processes and the decline of cognition. Over the last few years, some studies have indicated neurovascular uncoupling and disrupted functional connectivity in the early stages of many neurodegenerative diseases, and the concept of the neurovascular unit (NVU) has been highlighted to understand the initiation and progression of neurodegenerative diseases recently. Considering that some components of the NVU are also demonstrated to have abnormal morphology and function under the condition of diabetes, we propose the hypothesis that diabetes may promote the onset and development of neurodegenerative diseases by impairing the integrity of the NVU, named Diabetes-NVU-Neurodegeneration Hypothesis. The existing body of literature supporting the hypothesis and elucidating the underlying mechanisms will be summarized in this review.
Collapse
|
45
|
Lee JY, Park CS, Choi HY, Yune TY. Ginseng Extracts, GS-KG9 and GS-E3D, Prevent Blood-Brain Barrier Disruption and Thereby Inhibit Apoptotic Cell Death of Hippocampal Neurons in Streptozotocin-Induced Diabetic Rats. Nutrients 2020; 12:nu12082383. [PMID: 32784852 PMCID: PMC7469028 DOI: 10.3390/nu12082383] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/28/2022] Open
Abstract
Type 1 diabetes mellitus is known to be linked to the impairment of blood–brain barrier (BBB) integrity following neuronal cell death. Here, we investigated whether GS-KG9 and GS-E3D, bioactive ginseng extracts from Korean ginseng (Panax ginseng Meyer), inhibit BBB disruption following neuronal death in the hippocampus in streptozotocin-induced diabetic rats showing type 1-like diabetes mellitus. GS-KG9 and GS-E3D (50, 150, or 300 mg/kg, twice a day for 4 weeks) administered orally showed antihyperglycemic activity in a dose-dependent manner and significantly attenuated the increase in BBB permeability and loss of tight junction proteins. GS-KG9 and GS-E3D also inhibited the expression and activation of matrix metalloproteinase-9 and the infiltration of macrophages into the brain parenchyma, especially into the hippocampal region. In addition, microglia and astrocyte activation in the hippocampus and the expression of proinflammatory mediators such as tnf-α, Il-1β, IL-6, cox-2, and inos were markedly alleviated in GS-KG9 and GS-E3D-treated group. Furthermore, apoptotic cell death of hippocampal neurons, especially in CA1 region, was significantly reduced in GS-KG9 and GS-E3D-treated groups as compared to vehicle control. These results suggest that GS-KG9 and GS-E3D effectively prevent apoptotic cell death of hippocampal neurons by inhibiting BBB disruption and may be a potential therapy for the treatment of diabetic patients.
Collapse
Affiliation(s)
- Jee Youn Lee
- Age-Related and Brain Diseases Research Center, Kyung Hee University, Seoul 02447, Korea; (J.Y.L.); (C.S.P.); (H.Y.C.)
| | - Chan Sol Park
- Age-Related and Brain Diseases Research Center, Kyung Hee University, Seoul 02447, Korea; (J.Y.L.); (C.S.P.); (H.Y.C.)
- Department of Biomedical Science, Kyung Hee University, Seoul 02447, Korea
| | - Hae Young Choi
- Age-Related and Brain Diseases Research Center, Kyung Hee University, Seoul 02447, Korea; (J.Y.L.); (C.S.P.); (H.Y.C.)
| | - Tae Young Yune
- Age-Related and Brain Diseases Research Center, Kyung Hee University, Seoul 02447, Korea; (J.Y.L.); (C.S.P.); (H.Y.C.)
- Department of Biomedical Science, Kyung Hee University, Seoul 02447, Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea
- Correspondence: ; Tel.: +82-2-969-6943; Fax: +82-2-969-6343
| |
Collapse
|
46
|
Sarvari S, Moakedi F, Hone E, Simpkins JW, Ren X. Mechanisms in blood-brain barrier opening and metabolism-challenged cerebrovascular ischemia with emphasis on ischemic stroke. Metab Brain Dis 2020; 35:851-868. [PMID: 32297170 PMCID: PMC7988906 DOI: 10.1007/s11011-020-00573-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/02/2020] [Indexed: 12/14/2022]
Abstract
Stroke is the leading cause of disability among adults as well as the 2nd leading cause of death globally. Ischemic stroke accounts for about 85% of strokes, and currently, tissue plasminogen activator (tPA), whose therapeutic window is limited to up to 4.5 h for the appropriate population, is the only FDA approved drug in practice and medicine. After a stroke, a cascade of pathophysiological events results in the opening of the blood-brain barrier (BBB) through which further complications, disabilities, and mortality are likely to threaten the patient's health. Strikingly, tPA administration in eligible patients might cause hemorrhagic transformation and sustained damage to BBB integrity. One must, therefore, delineate upon stroke onset which cellular and molecular factors mediate BBB permeability as well as what key roles BBB rupture plays in the pathophysiology of stroke. In this review article, given our past findings of mechanisms underlying BBB opening in stroke animal models, we elucidate cellular, subcellular, and molecular factors involved in BBB permeability after ischemic stroke. The contribution of each factor to stroke severity and outcome is further discussed. Determinant factors in BBB permeability and stroke include mitochondria, miRNAs, matrix metalloproteinases (MMPs), immune cells, cytokines, chemokines, and adhesion proteins. Once these factors are interrogated and their roles in the pathophysiology of stroke are determined, novel targets for drug discovery and development can be uncovered in addition to novel therapeutic avenues for human stroke management.
Collapse
Affiliation(s)
- Sajad Sarvari
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| | - Faezeh Moakedi
- Department of Biochemistry, West Virginia University, Morgantown, WV, USA
| | - Emily Hone
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV, USA
| | - James W Simpkins
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
- Experimental Stroke Core Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, 64 Medical Center Drive, Morgantown, WV, 26506, USA
| | - Xuefang Ren
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA.
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV, USA.
- Experimental Stroke Core Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, 64 Medical Center Drive, Morgantown, WV, 26506, USA.
| |
Collapse
|
47
|
Cataldi M, Cignarelli A, Giallauria F, Muscogiuri G, Barrea L, Savastano S, Colao A. Cardiovascular effects of antiobesity drugs: are the new medicines all the same? INTERNATIONAL JOURNAL OF OBESITY SUPPLEMENTS 2020; 10:14-26. [PMID: 32714509 DOI: 10.1038/s41367-020-0015-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Waiting for a definite answer from well-designed randomized prospective clinical trials, the impact of the new antiobesity drugs -liraglutide, bupropion/naltrexone, phentermine/topiramate and lorcaserin- on cardiovascular outcomes remains uncertain. What has been learned from previous experience with older medicines is that antiobesity drugs may influence cardiovascular health not only causing weight reduction but also through direct actions on the cardiovascular system. Therefore, in the present review, we examine what is known, mainly from preclinical investigations, about the cardiovascular pharmacology of the new antiobesity medicines with the aim of highlighting potential mechanistic differences. We will show that the two active substances of the bupropion/naltrexone combination both exert beneficial and unwanted cardiovascular effects. Indeed, bupropion exerts anti-inflammatory effects but at the same time it does increase heart rate and blood pressure by potentiating catecholaminergic neurotransmission, whereas naltrexone reduces TLR4-dependent inflammation and has potential protective effects in stroke but also impairs cardiac adaption to ischemia and the beneficial opioid protective effects mediated in the endothelium. On the contrary, with the only exception of a small increase in heat rate, liraglutide only exerts favorable cardiovascular effects by protecting myocardium and brain from ischemic damage, improving heart contractility, lowering blood pressure and reducing atherogenesis. As far as the phentermine/topiramate combination is concerned, no direct cardiovascular beneficial effect is expected for phentermine (as this drug is an amphetamine derivative), whereas topiramate may exert cardioprotective and neuroprotective effects in ischemia and anti-inflammatory and antiatherogenic actions. Finally, lorcaserin, a selective 5HT2C receptor agonist, does not seem to exert significant direct effects on the cardiovascular system though at very high concentrations this drug may also interact with other serotonin receptor subtypes and exert unwanted cardiovascular effects. In conclusion, the final effect of the new antiobesity drugs on cardiovascular outcomes will be a balance between possible (but still unproved) beneficial effects of weight loss and "mixed" weight-independent drug-specific effects. Therefore comparative studies will be required to establish which one of the new medicines is more appropriate in patients with specific cardiovascular diseases.
Collapse
Affiliation(s)
- Mauro Cataldi
- Department of Neuroscience, Reproductive Sciences and Dentistry, Division of Pharmacology, Federico II University of Naples, Naples, Italy
| | - Angelo Cignarelli
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Giallauria
- Department of Translational Medical Sciences, Internal Medicine (Metabolic and Cardiac Rehabilitation Unit), Federico II University of Naples, Naples, Italy
| | - Giovanna Muscogiuri
- Department of Clinical Medicine and Surgery, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Luigi Barrea
- Department of Clinical Medicine and Surgery, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Silvia Savastano
- Department of Clinical Medicine and Surgery, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Annamaria Colao
- Department of Clinical Medicine and Surgery, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
| | | |
Collapse
|
48
|
Almeida LEF, Wang L, Kamimura S, Zerfas PM, Smith ML, Neto OLA, Vale T, Quezado MM, Horkayne-Szakaly I, Wakim P, Quezado ZMN. Locomotor mal-performance and gait adaptability deficits in sickle cell mice are associated with vascular and white matter abnormalities and oxidative stress in cerebellum. Brain Res 2020; 1746:146968. [PMID: 32533970 DOI: 10.1016/j.brainres.2020.146968] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/18/2020] [Accepted: 06/08/2020] [Indexed: 12/17/2022]
Abstract
Patients with sickle cell disease (SCD) can develop strokes and as a result, present neurologic and neurocognitive deficits. However, recent studies show that even without detectable cerebral parenchymal abnormalities on imaging studies, SCD patients can have significant cognitive and motor dysfunction, which can present as early as during infancy. As the cerebellum plays a pivotal role in motor and non-motor functions including sensorimotor processing and learning, we examined cerebellar behavior in humanized SCD mice using the Erasmus ladder. Homozygous (sickling) mice had significant locomotor malperformance characterized by miscoordination and impaired locomotor gait/stepping pattern adaptability. Conversely, Townes homozygous mice had no overall deficits in motor learning, as they were able to associate a conditioning stimulus (high-pitch warning tone) with the presentation of an obstacle and learned to decrease steptimes thereby increasing speed to avoid it. While these animals had no cerebellar strokes, these locomotor and adaptive gait/stepping patterns deficits were associated with oxidative stress, as well as cerebellar vascular endothelial and white matter abnormalities and blood brain barrier disruption, suggestive of ischemic injury. Taken together, these observations suggest that motor and adaptive locomotor deficits in SCD mice mirror some of those described in SCD patients and that ischemic changes in white matter and vascular endothelium and oxidative stress are biologic correlates of those deficits. These findings point to the cerebellum as an area of the central nervous system that is vulnerable to vascular and white matter injury and support the use of SCD mice for studies of the underlying mechanisms of cerebellar dysfunction in SCD.
Collapse
Affiliation(s)
- Luis E F Almeida
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Li Wang
- Center for Neuroscience Research and The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's Research Institute, School of Medicine and Health Sciences, George Washington University, Washington, DC 20010, USA
| | - Sayuri Kamimura
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Patricia M Zerfas
- Office of Research Services, Office of the Director, National Institutes of Health, Bethesda, MD 20892, USA
| | - Meghann L Smith
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Osorio L Abath Neto
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ticiana Vale
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Martha M Quezado
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Iren Horkayne-Szakaly
- Neuropathology and Ophthalmic Pathology, Joint Pathology Center, Defense Health Agency, Silver Spring, MD 20910, USA
| | - Paul Wakim
- Biostatistics and Clinical Epidemiology Service, National Institutes of Health Clinical Center, Bethesda, MD 20892, USA
| | - Zenaide M N Quezado
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
49
|
Banks WA. The Blood-Brain Barrier Interface in Diabetes Mellitus: Dysfunctions, Mechanisms and Approaches to Treatment. Curr Pharm Des 2020; 26:1438-1447. [DOI: 10.2174/1381612826666200325110014] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/27/2020] [Indexed: 12/24/2022]
Abstract
Diabetes mellitus (DM) is one of the most common diseases in the world. Among its effects are an increase in the risk of cognitive impairment, including Alzheimer’s disease, and blood-brain barrier (BBB) dysfunction. DM is characterized by high blood glucose levels that are caused by either lack of insulin (Type I) or resistance to the actions of insulin (Type II). The phenotypes of these two types are dramatically different, with Type I animals being thin, with low levels of leptin as well as insulin, whereas Type II animals are often obese with high levels of both leptin and insulin. The best characterized change in BBB dysfunction is that of disruption. The brain regions that are disrupted, however, vary between Type I vs Type II DM, suggesting that factors other than hyperglycemia, perhaps hormonal factors such as leptin and insulin, play a regionally diverse role in BBB vulnerability or protection. Some BBB transporters are also altered in DM, including P-glycoprotein, lowdensity lipoprotein receptor-related protein 1, and the insulin transporter as other functions of the BBB, such as brain endothelial cell (BEC) expression of matrix metalloproteinases (MMPs) and immune cell trafficking. Pericyte loss secondary to the increased oxidative stress of processing excess glucose through the Krebs cycle is one mechanism that has shown to result in BBB disruption. Vascular endothelial growth factor (VEGF) induced by advanced glycation endproducts can increase the production of matrix metalloproteinases, which in turn affects tight junction proteins, providing another mechanism for BBB disruption as well as effects on P-glycoprotein. Through the enhanced expression of the redox-related mitochondrial transporter ABCB10, redox-sensitive transcription factor NF-E2 related factor-2 (Nrf2) inhibits BEC-monocyte adhesion. Several potential therapies, in addition to those of restoring euglycemia, can prevent some aspects of BBB dysfunction. Carbonic anhydrase inhibition decreases glucose metabolism and so reduces oxidative stress, preserving pericytes and blocking or reversing BBB disruption. Statins or N-acetylcysteine can reverse the BBB opening in some models of DM, fibroblast growth factor-21 improves BBB permeability through an Nrf2-dependent pathway, and nifedipine or VEGF improves memory in DM models. In summary, DM alters various aspects of BBB function through a number of mechanisms. A variety of treatments based on those mechanisms, as well as restoration of euglycemia, may be able to restore BBB functions., including reversal of BBB disruption.
Collapse
Affiliation(s)
- William A. Banks
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, United States
| |
Collapse
|
50
|
Jiménez-Maldonado A, García-Suárez PC, Rentería I, Moncada-Jiménez J, Plaisance EP. Impact of high-intensity interval training and sprint interval training on peripheral markers of glycemic control in metabolic syndrome and type 2 diabetes. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165820. [PMID: 32360396 DOI: 10.1016/j.bbadis.2020.165820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/14/2020] [Accepted: 04/25/2020] [Indexed: 12/17/2022]
Abstract
Glycemic control is essential to reduce the risk of complications associated with metabolic syndrome (MetS) and type 2 diabetes (T2D). Aerobic and resistance exercise performed alone or in combination improve glycemic control in both conditions. However, perceived lack of time and commitment are considered principal barriers to performing exercise regularly. High intensity interval training (HIIT) and sprint interval training (SIT) can be performed in a fraction of the time required for continuous aerobic exercise. A substantial scientific evidence indicates that HIIT/SIT improve glycemic control to a similar or greater extent than aerobic exercise in populations without MetS or T2D. Likewise, growing evidence suggest that HIIT/SIT improve the glycemic control during MetS and T2D. The aim of this review is to discuss the effects of interval training protocols on peripheral markers of glucose metabolism in patients with MetS and T2D.
Collapse
Affiliation(s)
| | | | - Iván Rentería
- Facultad de Deportes Campus Ensenada, Universidad Autónoma de Baja California, Mexico
| | - José Moncada-Jiménez
- Human Movement Sciences Research Center, University of Costa Rica, San José, Costa Rica
| | - Eric P Plaisance
- Department of Human Studies, University of Alabama at Birmingham, Birmingham, AL, United States of America
| |
Collapse
|