1
|
Zhang X, Subbanna S, Williams CRO, Canals-Baker S, Hashim A, Wilson DA, Weiss LM, Shukla S, Chokkalingam P, Das S, Das BC, Saito M. Methionine Aminopeptidase 2 (MetAP2) Inhibitor BL6 Attenuates Inflammation in Cultured Microglia and in a Mouse Model of Alzheimer's Disease. Molecules 2025; 30:620. [PMID: 39942725 PMCID: PMC11820257 DOI: 10.3390/molecules30030620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/06/2025] [Accepted: 01/14/2025] [Indexed: 02/16/2025] Open
Abstract
Methionine aminopeptidase 2 (MetAP2) plays an important role in the regulation of protein synthesis and post-translational processing. Preclinical/clinical applications of MetAP2 inhibitors for the treatment of various diseases have been explored because of their antiangiogenic, anticancer, antiobesity, antidiabetic, and immunosuppressive properties. However, the effects of MetAP2 inhibitors on CNS diseases are rarely examined despite the abundant presence of MetAP2 in the brain. Previously, we synthesized a novel boron-containing MetAP2 inhibitor, BL6, and found that it suppressed angiogenesis and adipogenesis yet improved glucose uptake. Here, we studied the anti-inflammatory effects of BL6 in SIM-A9 microglia and in a mouse model of Alzheimer's disease generated by the intracerebroventricular (icv) injection of streptozotocin (STZ). We found that BL6 reduced proinflammatory molecules, such as nitric oxide, iNOS, IL-1β, and IL-6, together with phospho-Akt and phospho-NF-κB p65, which were elevated in lipopolysaccharide (LPS)-activated microglial SIM-A9 cells. However, the LPS-induced reduction in Arg-1 and CD206 was attenuated by BL6, suggesting that BL6 promotes microglial M1 to M2 polarization. BL6 also decreased glial activation along with a reduction in phospho-tau and an elevation in synaptophysin in the icv-STZ mouse model. Thus, our experiments demonstrate an anti-neuroinflammatory action of BL6, suggesting possible clinical applications of MetAP2 inhibitors for brain disorders in which neuroinflammation is involved.
Collapse
Affiliation(s)
- Xiuli Zhang
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; (X.Z.); (S.S.); (S.C.-B.); (A.H.)
| | - Shivakumar Subbanna
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; (X.Z.); (S.S.); (S.C.-B.); (A.H.)
| | - Colin R. O. Williams
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; (C.R.O.W.); (D.A.W.)
| | - Stefanie Canals-Baker
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; (X.Z.); (S.S.); (S.C.-B.); (A.H.)
| | - Audrey Hashim
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; (X.Z.); (S.S.); (S.C.-B.); (A.H.)
| | - Donald A. Wilson
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; (C.R.O.W.); (D.A.W.)
- Department of Child and Adolescent Psychiatry, New York University Medical Center, New York, NY 10016, USA
| | - Louis M. Weiss
- Department of Pathology/Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Srushti Shukla
- School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14201, USA; (S.S.); (P.C.); (S.D.)
| | - Parthiban Chokkalingam
- School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14201, USA; (S.S.); (P.C.); (S.D.)
| | - Sasmita Das
- School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14201, USA; (S.S.); (P.C.); (S.D.)
| | - Bhaskar C. Das
- School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14201, USA; (S.S.); (P.C.); (S.D.)
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mariko Saito
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; (X.Z.); (S.S.); (S.C.-B.); (A.H.)
- Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
2
|
Moon DO. MetAP2 as a Therapeutic Target for Obesity and Type 2 Diabetes: Structural Insights, Mechanistic Roles, and Inhibitor Development. Biomolecules 2024; 14:1572. [PMID: 39766279 PMCID: PMC11673396 DOI: 10.3390/biom14121572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/07/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025] Open
Abstract
Type 2 Diabetes Mellitus (T2DM) and obesity are globally prevalent metabolic disorders characterized by insulin resistance, impaired glucose metabolism, and excessive adiposity. Methionine aminopeptidase 2 (MetAP2), an intracellular metalloprotease, has emerged as a promising therapeutic target due to its critical role in regulating lipid metabolism, energy balance, and protein synthesis. This review provides a comprehensive analysis of MetAP2, including its structural characteristics, catalytic mechanism, and functional roles in the pathophysiology of T2DM and obesity. The unique architecture of MetAP2's active site and its interactions with substrates are examined to elucidate its enzymatic function. The review also explores the development of MetAP2 inhibitors, focusing on their mechanisms of action, preclinical and clinical findings, and therapeutic potential. Special emphasis is placed on docking studies to analyze the binding interactions of six key inhibitors (fumagillin, TNP-470, beloranib, ZGN-1061, indazole, and pyrazolo[4,3-b]indole) with MetAP2, revealing their structural determinants for efficacy and specificity. These findings underscore the potential of MetAP2 as a therapeutic target and provide valuable insights for the rational design of next-generation inhibitors to address obesity and T2DM.
Collapse
Affiliation(s)
- Dong Oh Moon
- Department of Biology Education, Daegu University, 201, Daegudae-ro, Gyeongsan-si 38453, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
3
|
Das B, Chokkalingam P, Shareef MA, Shukla S, Das S, Saito M, Weiss LM. Methionine aminopeptidases: Potential therapeutic target for microsporidia and other microbes. J Eukaryot Microbiol 2024; 71:e13036. [PMID: 39036929 PMCID: PMC11576263 DOI: 10.1111/jeu.13036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/06/2024] [Accepted: 05/16/2024] [Indexed: 07/23/2024]
Abstract
Methionine aminopeptidases (MetAPs) have emerged as a target for medicinal chemists in the quest for novel therapeutic agents for treating cancer, obesity, and other disorders. Methionine aminopeptidase is a metalloenzyme with two structurally distinct forms in humans, MetAP-1 and MetAP-2. The MetAP2 inhibitor fumagillin, which was used as an amebicide in the 1950s, has been used for the successful treatment of microsporidiosis in humans; however, it is no longer commercially available. Despite significant efforts and investments by many pharmaceutical companies, no new MetAP inhibitors have been approved for the clinic. Several lead compounds have been designed and synthesized by researchers as potential inhibitors of MetAP and evaluated for their potential activity in a wide range of diseases. MetAP inhibitors such as fumagillin, TNP-470, beloranib, and reversible inhibitors and their analogs guide new prospects for MetAP inhibitor development in the ongoing quest for new pharmacological indications. This perspective provides insights into recent advances related to MetAP, as a potential therapeutic target in drug discovery, bioactive small molecule MetAP2 inhibitors, and data on the role of MetAP-2 as a therapeutic target for microsporidiosis.
Collapse
Affiliation(s)
- Bhaskar Das
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, USA
- Department of Medicine and Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Parthiban Chokkalingam
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, USA
| | - Mohammed Adil Shareef
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, USA
| | - Srushti Shukla
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, USA
| | - Sasmita Das
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, USA
| | - Mariko Saito
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Louis M. Weiss
- Department of Pathology and Medicine (Infectious Diseases) Albert Einstein College of Medicine, Bronx, NY-10461, USA
| |
Collapse
|
4
|
Watanabe N, Saito-Nakano Y, Kurisawa N, Otomo K, Suenaga K, Nakano K, Nozaki T. Fumagillin inhibits growth of the enteric protozoan parasite Entamoeba histolytica by covalently binding to and selectively inhibiting methionine aminopeptidase 2. Antimicrob Agents Chemother 2023; 67:e0056023. [PMID: 37874291 PMCID: PMC10648944 DOI: 10.1128/aac.00560-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/27/2023] [Indexed: 10/25/2023] Open
Abstract
Amebiasis is an important cause of morbidity and mortality worldwide, and caused by infection with the protozoan parasite Entamoeba histolytica. Metronidazole is currently the first-line drug despite adverse effects and concerns on the emergence of drug resistance. Fumagillin, a fungal metabolite from Aspergillus fumigatus, and its structurally related natural and synthetic compounds have been previously explored as potential anti-angiogenesis inhibitors for cancers, anti-microbial, and anti-obese compounds. Although fumagillin was used for human amebiasis in clinical trials in 1950s, the mode of action of fumagillin remains elusive until now. In this report, we showed that fumagillin covalently binds to methionine aminopeptidase 2 (MetAP2) and non-covalently but abundantly binds to patatin family phospholipase A (PLA). Susceptibility against fumagillin of the amebic strains in which expression of E. histolytica MetAP2 (EhMetAP2) gene was silenced increased compared to control strain. Conversely, overexpression of EhMetAP2 mutants that harbors amino acid substitutions responsible for resistance to ovalicin, a fumagillin analog, in human MetAP2, also resulted in decrease in fumagillin susceptibility. In contrast, neither gene silencing nor overexpression of E. histolytica PLA (EhPLA) affected fumagillin susceptibility. These data suggest that EhPLA is not essential and not the target of fumagillin for its amebicidal activity. Taken together, our data have demonstrated that EhMetAP2 is the primary target for amebicidal activity of fumagillin, and EhMetAP2 represents a rational explorable target for the development of alternative therapeutic agents against amebiasis.
Collapse
Affiliation(s)
- Natsuki Watanabe
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yumiko Saito-Nakano
- Department of Parasitology and Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Naoaki Kurisawa
- Department of Chemistry, Faculty of Science and Technology, Keio University, Kanagawa, Japan
| | - Keisuke Otomo
- Department of Chemistry, Faculty of Science and Technology, Keio University, Kanagawa, Japan
| | - Kiyotake Suenaga
- Department of Chemistry, Faculty of Science and Technology, Keio University, Kanagawa, Japan
| | - Kentaro Nakano
- Degree Programs in Biology, Graduate School of Science and Technology, University of Tsukuba, Ibaraki, Japan
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Zhou S, Lin Y, Zhao Z, Lai Y, Lu M, Shao Z, Mo X, Mu Y, Liang Z, Wang X, Qu J, Shen H, Li F, Zhao AZ. Targeted deprivation of methionine with engineered Salmonella leads to oncolysis and suppression of metastasis in broad types of animal tumor models. Cell Rep Med 2023:101070. [PMID: 37269826 DOI: 10.1016/j.xcrm.2023.101070] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/01/2022] [Accepted: 05/10/2023] [Indexed: 06/05/2023]
Abstract
The strong dependency of almost all malignant tumors on methionine potentially offers a pathway for cancer treatment. We engineer an attenuated strain of Salmonella typhimurium to overexpress an L-methioninase with the aim of specifically depriving tumor tissues of methionine. The engineered microbes target solid tumors and induce a sharp regression in several very divergent animal models of human carcinomas, cause a significant decrease in tumor cell invasion, and essentially eliminate the growth and metastasis of these tumors. RNA sequencing analyses reveal that the engineered Salmonella reduce the expression of a series of genes promoting cell growth, cell migration, and invasion. These findings point to a potential treatment modality for many metastatic solid tumors, which warrants further tests in clinical trials.
Collapse
Affiliation(s)
- Sujin Zhou
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong Province, China
| | - Yan Lin
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong Province, China; The Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zhenggang Zhao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong Province, China
| | - Yunhao Lai
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong Province, China
| | - Mengmeng Lu
- Guangzhou Sinogen Pharmaceutical Co., Ltd., Guangzhou, Guangdong Province, China
| | - Zishen Shao
- Guangzhou Sinogen Pharmaceutical Co., Ltd., Guangzhou, Guangdong Province, China
| | - Xinyu Mo
- Guangzhou Sinogen Pharmaceutical Co., Ltd., Guangzhou, Guangdong Province, China
| | - Yunping Mu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong Province, China
| | - Zhipeng Liang
- Department of Radiology, Sir Ruan-Ruan Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xinxing Wang
- Department of Oncology, Sir Ruan-Ruan Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jingming Qu
- Department of Thoracic and Heart Surgery, Xuzhou Cancer Hospital, Jiangsu University, Xuzhou, Jiangsu Province, China
| | - Hua Shen
- Department of Oncology, Sir Ruan-Ruan Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Fanghong Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong Province, China.
| | - Allan Z Zhao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong Province, China.
| |
Collapse
|
6
|
Oikonomou E, Xenou M, Zakynthinos GE, Tsaplaris P, Lampsas S, Bletsa E, Gialamas I, Kalogeras K, Goliopoulou A, Gounaridi MI, Pesiridis T, Tsatsaragkou A, Vavouranakis M, Siasos G, Tousoulis D. Novel Approaches to the Management of Diabetes Mellitus in Patients with Coronary Artery Disease. Curr Pharm Des 2023; 29:1844-1862. [PMID: 37403390 DOI: 10.2174/1381612829666230703161058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/20/2023] [Accepted: 05/29/2023] [Indexed: 07/06/2023]
Abstract
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality in individuals with diabetes mellitus (DM). Although benefit has been attributed to the strict control of hyperglycemia with traditional antidiabetic treatments, novel antidiabetic medications have demonstrated cardiovascular (CV) safety and benefits by reducing major adverse cardiac events, improving heart failure (HF), and decreasing CVD-related mortality. Emerging data underline the interrelation between diabetes, as a metabolic disorder, and inflammation, endothelial dysfunction, and oxidative stress in the pathogenesis of microvascular and macrovascular complications. Conventional glucose-lowering medications demonstrate controversial CV effects. Dipeptidyl peptidase- 4 inhibitors have not only failed to prove to be beneficial in patients with coronary artery disease, but also their safety is questionable for the treatment of patients with CVD. However, metformin, as the first-line option for type 2 DM (T2DM), shows CVD protective properties for DM-induced atherosclerotic and macrovascular complications. Thiazolidinedione and sulfonylureas have questionable effects, as evidence from large studies shows a reduction in the risk of CV events and deaths, but with an increased rate of hospitalization for HF. Moreover, several studies have revealed that insulin monotherapy for T2DM treatment increases the risk of major CV events and deaths from HF, when compared to metformin, although it may reduce the risk of myocardial infarction. Finally, this review aimed to summarize the mechanisms of action of novel antidiabetic drugs acting as glucagon-like peptide-1 receptor agonists and sodium-glucose co-transporter-2 inhibitors that show favorable effects on blood pressure, lipid levels, and inflammation, leading to reduced CVD risk in T2DM patients.
Collapse
Affiliation(s)
- Evangelos Oikonomou
- 3rd Department of Cardiology, Medical School, "Sotiria" Chest Diseases Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Xenou
- 3rd Department of Cardiology, Medical School, "Sotiria" Chest Diseases Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - George E Zakynthinos
- 3rd Department of Cardiology, Medical School, "Sotiria" Chest Diseases Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Paraskevas Tsaplaris
- 3rd Department of Cardiology, Medical School, "Sotiria" Chest Diseases Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Stamatios Lampsas
- 3rd Department of Cardiology, Medical School, "Sotiria" Chest Diseases Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Evanthia Bletsa
- 3rd Department of Cardiology, Medical School, "Sotiria" Chest Diseases Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Gialamas
- 3rd Department of Cardiology, Medical School, "Sotiria" Chest Diseases Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Kalogeras
- 3rd Department of Cardiology, Medical School, "Sotiria" Chest Diseases Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Athina Goliopoulou
- 3rd Department of Cardiology, Medical School, "Sotiria" Chest Diseases Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria I Gounaridi
- 3rd Department of Cardiology, Medical School, "Sotiria" Chest Diseases Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Theodoros Pesiridis
- 3rd Department of Cardiology, Medical School, "Sotiria" Chest Diseases Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Aikaterini Tsatsaragkou
- 3rd Department of Cardiology, Medical School, "Sotiria" Chest Diseases Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Manolis Vavouranakis
- 3rd Department of Cardiology, Medical School, "Sotiria" Chest Diseases Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Gerasimos Siasos
- 3rd Department of Cardiology, Medical School, "Sotiria" Chest Diseases Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Cardiovascular Division, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Dimitris Tousoulis
- 3rd Department of Cardiology, Medical School, "Sotiria" Chest Diseases Hospital, National and Kapodistrian University of Athens, Athens, Greece
- 1st Department of Cardiology, Medical School, Hippokration General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
7
|
Gloudemans MJ, Balliu B, Nachun D, Schnurr TM, Durrant MG, Ingelsson E, Wabitsch M, Quertermous T, Montgomery SB, Knowles JW, Carcamo-Orive I. Integration of genetic colocalizations with physiological and pharmacological perturbations identifies cardiometabolic disease genes. Genome Med 2022; 14:31. [PMID: 35292083 PMCID: PMC8925074 DOI: 10.1186/s13073-022-01036-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 03/04/2022] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Identification of causal genes for polygenic human diseases has been extremely challenging, and our understanding of how physiological and pharmacological stimuli modulate genetic risk at disease-associated loci is limited. Specifically, insulin resistance (IR), a common feature of cardiometabolic disease, including type 2 diabetes, obesity, and dyslipidemia, lacks well-powered genome-wide association studies (GWAS), and therefore, few associated loci and causal genes have been identified. METHODS Here, we perform and integrate linkage disequilibrium (LD)-adjusted colocalization analyses across nine cardiometabolic traits (fasting insulin, fasting glucose, insulin sensitivity, insulin sensitivity index, type 2 diabetes, triglycerides, high-density lipoprotein, body mass index, and waist-hip ratio) combined with expression and splicing quantitative trait loci (eQTLs and sQTLs) from five metabolically relevant human tissues (subcutaneous and visceral adipose, skeletal muscle, liver, and pancreas). To elucidate the upstream regulators and functional mechanisms for these genes, we integrate their transcriptional responses to 21 relevant physiological and pharmacological perturbations in human adipocytes, hepatocytes, and skeletal muscle cells and map their protein-protein interactions. RESULTS We identify 470 colocalized loci and prioritize 207 loci with a single colocalized gene. Patterns of shared colocalizations across traits and tissues highlight different potential roles for colocalized genes in cardiometabolic disease and distinguish several genes involved in pancreatic β-cell function from others with a more direct role in skeletal muscle, liver, and adipose tissues. At the loci with a single colocalized gene, 42 of these genes were regulated by insulin and 35 by glucose in perturbation experiments, including 17 regulated by both. Other metabolic perturbations regulated the expression of 30 more genes not regulated by glucose or insulin, pointing to other potential upstream regulators of candidate causal genes. CONCLUSIONS Our use of transcriptional responses under metabolic perturbations to contextualize genetic associations from our custom colocalization approach provides a list of likely causal genes and their upstream regulators in the context of IR-associated cardiometabolic risk.
Collapse
Affiliation(s)
- Michael J Gloudemans
- Biomedical Informatics Training Program, Stanford, CA, USA.
- Department of Pathology, Stanford, CA, USA.
| | - Brunilda Balliu
- Department of Computational Medicine, UCLA, Los Angeles, CA, USA
| | - Daniel Nachun
- Department of Genetics, Stanford, CA, USA
- Department of Immunology, Stanford, CA, USA
| | - Theresia M Schnurr
- Department of Medicine, Division of Cardiovascular Medicine and Cardiovascular Institute, Stanford, CA, USA
| | | | - Erik Ingelsson
- Department of Medicine, Division of Cardiovascular Medicine and Cardiovascular Institute, Stanford, CA, USA
| | - Martin Wabitsch
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Endocrinology, Ulm University, Ulm, Germany
| | - Thomas Quertermous
- Department of Medicine, Division of Cardiovascular Medicine and Cardiovascular Institute, Stanford, CA, USA
- Diabetes Research Center, Stanford, CA, USA
| | - Stephen B Montgomery
- Department of Pathology, Stanford, CA, USA.
- Department of Genetics, Stanford, CA, USA.
| | - Joshua W Knowles
- Department of Medicine, Division of Cardiovascular Medicine and Cardiovascular Institute, Stanford, CA, USA.
- Diabetes Research Center, Stanford, CA, USA.
- Prevention Research Center, Stanford, CA, USA.
| | - Ivan Carcamo-Orive
- Department of Medicine, Division of Cardiovascular Medicine and Cardiovascular Institute, Stanford, CA, USA.
- Diabetes Research Center, Stanford, CA, USA.
| |
Collapse
|
8
|
Dahlén AD, Dashi G, Maslov I, Attwood MM, Jonsson J, Trukhan V, Schiöth HB. Trends in Antidiabetic Drug Discovery: FDA Approved Drugs, New Drugs in Clinical Trials and Global Sales. Front Pharmacol 2022; 12:807548. [PMID: 35126141 PMCID: PMC8807560 DOI: 10.3389/fphar.2021.807548] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/28/2021] [Indexed: 01/08/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) continues to be a substantial medical problem due to its increasing global prevalence and because chronic hyperglycemic states are closely linked with obesity, liver disease and several cardiovascular diseases. Since the early discovery of insulin, numerous antihyperglycemic drug therapies to treat diabetes have been approved, and also discontinued, by the United States Food and Drug Administration (FDA). To provide an up-to-date account of the current trends of antidiabetic pharmaceuticals, this review offers a comprehensive analysis of the main classes of antihyperglycemic compounds and their mechanisms: insulin types, biguanides, sulfonylureas, meglitinides (glinides), alpha-glucosidase inhibitors (AGIs), thiazolidinediones (TZD), incretin-dependent therapies, sodium-glucose cotransporter type 2 (SGLT2) inhibitors and combinations thereof. The number of therapeutic alternatives to treat T2DM are increasing and now there are nearly 60 drugs approved by the FDA. Beyond this there are nearly 100 additional antidiabetic agents being evaluated in clinical trials. In addition to the standard treatments of insulin therapy and metformin, there are new drug combinations, e.g., containing metformin, SGLT2 inhibitors and dipeptidyl peptidase-4 (DPP4) inhibitors, that have gained substantial use during the last decade. Furthermore, there are several interesting alternatives, such as lobeglitazone, efpeglenatide and tirzepatide, in ongoing clinical trials. Modern drugs, such as glucagon-like peptide-1 (GLP-1) receptor agonists, DPP4 inhibitors and SGLT2 inhibitors have gained popularity on the pharmaceutical market, while less expensive over the counter alternatives are increasing in developing economies. The large heterogeneity of T2DM is also creating a push towards more personalized and accessible treatments. We describe several interesting alternatives in ongoing clinical trials, which may help to achieve this in the near future.
Collapse
Affiliation(s)
- Amelia D. Dahlén
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Giovanna Dashi
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Ivan Maslov
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Misty M. Attwood
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Jörgen Jonsson
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Vladimir Trukhan
- Russia Institute of Translational Medicine and Biotechnology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Helgi B. Schiöth
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
- Russia Institute of Translational Medicine and Biotechnology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
9
|
Ponatinib, Lestaurtinib and mTOR/PI3K inhibitors are promising repurposing candidates against Entamoeba histolytica. Antimicrob Agents Chemother 2021; 66:e0120721. [PMID: 34871094 DOI: 10.1128/aac.01207-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Dysentery caused by Entamoeba histolytica affects millions of people annually. Current treatment regimens are based on metronidazole to treat invasive parasites combined with paromomycin for luminal parasites. Issues with treatment include significant side effects, inability to easily treat breastfeeding and pregnant women, the use of two sequential agents, and concern that all therapy is based on nitroimidazole agents with no alternatives if clinical resistance emerges. Thus, the need for new drugs against amebiasis is urgent. To identify new therapeutic candidates, we screened the ReFRAME library (11,948 compounds assembled for Repurposing, Focused Rescue, and Accelerated Medchem) against E. histolytica trophozoites. We identified 159 hits in the primary screen at 10 μM and 46 compounds were confirmed in secondary assays. Overall, 26 were selected as priority molecules for further investigation including 6 FDA approved, 5 orphan designation, and 15 which are currently in clinical trials (3 phase III, 7 phase II and 5 phase I). We found that all 26 compounds are active against metronidazole resistant E. histolytica and 24 are able to block parasite recrudescence after drug removal. Additionally, 14 are able to inhibit encystation and 2 (lestaurtinib and LY-2874455) are active against mature cysts. Two classes of compounds are most interesting for further investigations: the Bcr-Abl TK inhibitors, with the ponatinib (EC50 0.39) as most potent and mTOR or PI3K inhibitors with 8 compounds in clinical development, of which 4 have nanomolar potency. Overall, these are promising candidates and represent a significant advance for drug development against E. histolytica.
Collapse
|
10
|
Goya Grocin A, Kallemeijn WW, Tate EW. Targeting methionine aminopeptidase 2 in cancer, obesity, and autoimmunity. Trends Pharmacol Sci 2021; 42:870-882. [PMID: 34446297 DOI: 10.1016/j.tips.2021.07.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/21/2021] [Accepted: 07/25/2021] [Indexed: 11/24/2022]
Abstract
For over three decades, methionine aminopeptidase 2 (MetAP2) has been a tentative drug target for the treatment of cancer, obesity, and autoimmune diseases. Currently, no MetAP2 inhibitors (MetAP2i) have reached the clinic yet, despite considerable investment by major pharmaceutical companies. Here, we summarize the key series of MetAP2i developed to date and discuss their clinical development, progress, and issues. We coalesce the currently disparate knowledge regarding MetAP2i mechanism of action and discuss discrepancies across varied studies. Finally, we highlight the current knowledge gaps that need to be addressed to enable successful development of MetAP2 inhibitors in clinical settings.
Collapse
Affiliation(s)
- Andrea Goya Grocin
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London W12 0BZ, UK; The Francis Crick Institute, London NW1 1AT, UK
| | - Wouter W Kallemeijn
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London W12 0BZ, UK; The Francis Crick Institute, London NW1 1AT, UK
| | - Edward W Tate
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London W12 0BZ, UK; The Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|
11
|
Parmar DR, Soni JY, Guduru R, Rayani RH, Kusurkar RV, Vala AG. Azetidines of pharmacological interest. Arch Pharm (Weinheim) 2021; 354:e2100062. [PMID: 34184778 DOI: 10.1002/ardp.202100062] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 05/22/2021] [Accepted: 05/26/2021] [Indexed: 11/07/2022]
Abstract
Azetidines are almost unexplored among nitrogen-containing saturated heterocycles due to difficulties associated with their synthesis. However, over the past few years, attempts have been made by scientists to advance their synthetic feasibility. Compounds with the azetidine moiety display an important and diverse range of pharmacological activities, such as anticancer, antibacterial, antimicrobial, antischizophrenic, antimalarial, antiobesity, anti-inflammatory, antidiabetic, antiviral, antioxidant, analgesic, and dopamine antagonist activities, and are also useful for the treatment of central nervous system disorders and so forth. Owing to its satisfactory stability, molecular rigidity, and chemical and biological properties, azetidine has emerged as a valuable scaffold and it has drawn the attention of medicinal researchers. The present review sheds light on the traditional method of synthesis of azetidine and advancements in synthetic methodology over the past few years, along with its application with various examples, and its biological significance.
Collapse
Affiliation(s)
- Deepa R Parmar
- Department of Chemistry, Faculty of Basic and Applied Science, Madhav University, Sirohi, Rajasthan, India.,Piramal Pharma Limited-Discovery Solutions, Ahmedabad, Gujarat, India
| | - Jigar Y Soni
- Department of Chemistry, Faculty of Basic and Applied Science, Madhav University, Sirohi, Rajasthan, India
| | | | - Rahul H Rayani
- Department of Chemistry, Faculty of Basic and Applied Science, Madhav University, Sirohi, Rajasthan, India.,Piramal Pharma Limited-Discovery Solutions, Ahmedabad, Gujarat, India
| | - Rakesh V Kusurkar
- Department of Chemistry, Faculty of Basic and Applied Science, Madhav University, Sirohi, Rajasthan, India.,Piramal Pharma Limited-Discovery Solutions, Ahmedabad, Gujarat, India
| | - Anand G Vala
- Department of Chemistry, Faculty of Basic and Applied Science, Madhav University, Sirohi, Rajasthan, India.,Piramal Pharma Limited-Discovery Solutions, Ahmedabad, Gujarat, India
| |
Collapse
|
12
|
MetAP2 inhibition modifies hemoglobin S to delay polymerization and improves blood flow in sickle cell disease. Blood Adv 2021; 5:1388-1402. [PMID: 33661300 DOI: 10.1182/bloodadvances.2020003670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/21/2021] [Indexed: 11/20/2022] Open
Abstract
Sickle cell disease (SCD) is associated with hemolysis, vascular inflammation, and organ damage. Affected patients experience chronic painful vaso-occlusive events requiring hospitalization. Hypoxia-induced polymerization of sickle hemoglobin S (HbS) contributes to sickling of red blood cells (RBCs) and disease pathophysiology. Dilution of HbS with nonsickling hemoglobin or hemoglobin with increased oxygen affinity, such as fetal hemoglobin or HbS bound to aromatic aldehydes, is clinically beneficial in decreasing polymerization. We investigated a novel alternate approach to modify HbS and decrease polymerization by inhibiting methionine aminopeptidase 2 (MetAP2), which cleaves the initiator methionine (iMet) from Val1 of α-globin and βS-globin. Kinetic studies with MetAP2 show that βS-globin is a fivefold better substrate than α-globin. Knockdown of MetAP2 in human umbilical cord blood-derived erythroid progenitor 2 cells shows more extensive modification of α-globin than β-globin, consistent with kinetic data. Treatment of human erythroid cells in vitro or Townes SCD mice in vivo with selective MetAP2 inhibitors extensively modifies both globins with N-terminal iMet and acetylated iMet. HbS modification by MetAP2 inhibition increases oxygen affinity, as measured by decreased oxygen tension at which hemoglobin is 50% saturated. Acetyl-iMet modification on βS-globin delays HbS polymerization under hypoxia. MetAP2 inhibitor-treated Townes mice reach 50% total HbS modification, significantly increasing the affinity of RBCs for oxygen, increasing whole blood single-cell RBC oxygen saturation, and decreasing fractional flow velocity losses in blood rheology under decreased oxygen pressures. Crystal structures of modified HbS variants show stabilization of the nonpolymerizing high O2-affinity R2 state, explaining modified HbS antisickling activity. Further study of MetAP2 inhibition as a potential therapeutic target for SCD is warranted.
Collapse
|
13
|
Discovery and Preclinical Development of Antigiardiasis Fumagillol Derivatives. Antimicrob Agents Chemother 2020; 64:AAC.00582-20. [PMID: 32778548 PMCID: PMC7508583 DOI: 10.1128/aac.00582-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 08/03/2020] [Indexed: 11/23/2022] Open
Abstract
Giardiasis, caused by the intestinal parasite Giardia lamblia, is a severe diarrheal disease, endemic in poverty-stricken regions of the world, and also a common infection in developed countries. The available therapeutic options are associated with adverse effects, and G. lamblia resistance to the standard-of-care drugs is spreading. Fumagillin, an antimicrosporidiosis drug, is a therapeutic agent with potential for the treatment of giardiasis. However, it exhibits considerable, albeit reversible, toxicity when used to treat immunocompromised microsporidiosis patients. Giardiasis, caused by the intestinal parasite Giardia lamblia, is a severe diarrheal disease, endemic in poverty-stricken regions of the world, and also a common infection in developed countries. The available therapeutic options are associated with adverse effects, and G. lamblia resistance to the standard-of-care drugs is spreading. Fumagillin, an antimicrosporidiosis drug, is a therapeutic agent with potential for the treatment of giardiasis. However, it exhibits considerable, albeit reversible, toxicity when used to treat immunocompromised microsporidiosis patients. Fumagillin is also a highly unstable compound. To address these liabilities, we designed and synthesized stable fumagillol derivatives with lower levels of permeation across polarized epithelial Caco-2 cells and better potency against G. lamblia trophozoites than fumagillin. Metronidazole-resistant G. lamblia strains were also susceptible to the new fumagillol derivatives. In addition, these compounds were more potent against the amebiasis-causing parasite Entamoeba histolytica than fumagillin. Two compounds exhibited better thermal and acid stability than fumagillin, which should prolong the drug shelf life and reduce compound degradation in the stomach. Studies with a mouse model of giardiasis with the most stable compound, 4-(((((3R,4S,5S,6R)-5-methoxy-4-((2R,3R)-2-methyl-3-(3-methylbut-2-en-1-yl)oxiran-2-yl)-1-oxaspiro[2.5]octan-6-yl)oxy)carbonyl)amino)benzoic acid (compound 9), revealed that it had better efficacy (effective dose [ED]) than fumagillin at both the fully curative dose (the 100% ED) of 6.6 mg/kg of body weight and a 50% ED of 0.064 mg/kg. Plasma pharmacokinetics revealed the slow absorption of compound 9 through the gut, consistent with the in vitro characterization in Caco-2 cells. An acute-dose study yielded a maximum tolerated dose (MTD) of 1,500 mg/kg, 227-fold higher than the fully curative dose. Thus, along with improved stability, compound 9 also exhibited an excellent therapeutic window.
Collapse
|
14
|
Son YW, Choi HN, Che JH, Kang BC, Yun JW. Advances in selecting appropriate non-rodent species for regulatory toxicology research: Policy, ethical, and experimental considerations. Regul Toxicol Pharmacol 2020; 116:104757. [PMID: 32758521 DOI: 10.1016/j.yrtph.2020.104757] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/27/2020] [Accepted: 07/31/2020] [Indexed: 12/20/2022]
Abstract
In vivo animal studies are required by regulatory agencies to investigate drug safety before clinical trials. In this review, we summarize the process of selecting a relevant non-rodent species for preclinical studies. The dog is the primary, default non-rodent used in toxicology studies with multiple scientific advantages, including adequate background data and availability. Rabbit has many regulatory advantages as the first non-rodent for the evaluation of reproductive and developmental as well as local toxicity. Recently, minipigs have increasingly replaced dogs and rabbits in toxicology studies due to ethical and scientific advantages including similarity to humans and breeding habits. When these species are not relevant, nonhuman primates (NHPs) can be used as the available animal models, especially in toxicology studies investigating biotherapeutics. Particularly, based on the phylogenetic relationships, the use of New-World marmosets can be considered before Old-World monkeys, especially cynomolgus with robust historical data. Importantly, the use of NHPs should be justified in terms of scientific benefits considering target affinity, expression pattern, and pharmacological cross-reactivity. Strict standards are required for the use of animals. Therefore, this review is helpful for the selection of appropriate non-rodent in regulatory toxicology studies by providing sufficient regulatory, ethical, and scientific data for each species.
Collapse
Affiliation(s)
- Yong-Wook Son
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, South Korea
| | - Ha-Ni Choi
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, South Korea
| | - Jeong-Hwan Che
- Biomedical Center for Animal Resource and Development, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Byeong-Cheol Kang
- Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Jun-Won Yun
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, South Korea.
| |
Collapse
|
15
|
Wentworth JM, Colman PG. The methionine aminopeptidase 2 inhibitor ZGN-1061 improves glucose control and weight in overweight and obese individuals with type 2 diabetes: A randomized, placebo-controlled trial. Diabetes Obes Metab 2020; 22:1215-1219. [PMID: 32077231 DOI: 10.1111/dom.14009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/08/2020] [Accepted: 02/17/2020] [Indexed: 11/27/2022]
Abstract
The methionine aminopeptidase 2 (MetAP2) inhibitor ZGN-1061 lowered weight and improved glucose in preclinical studies. We sought to determine its efficacy and safety by performing a multicentre, phase 2, randomized controlled trial involving overweight and obese adults with type 2 diabetes and HbA1c between 7% and 11% inclusive. Participants were randomized to receive subcutaneous treatment with placebo or 0.05, 0.3, 0.9 or 1.8 mg ZGN-1061 every third day for 12 weeks. The primary outcome was change in HbA1c at week 12. Relative to placebo, the 0.9 and 1.8 mg doses induced clinically meaningful reductions in HbA1c of 0.6% (95% CI 0.2% to 0.9%; P = 0.0006) and 1.0% (95% CI 0.6% to 1.4%; P < 0.0001), respectively. The 1.8 mg dose also induced weight loss of 2.2% (95% CI 1.1% to 3.3%; P = 0.0002). The incidence of adverse events was balanced across the treatment groups. We conclude that MetAP2 inhibition with ZGN-1061 for 12 weeks improved glucose control and aided weight loss in overweight and obese people with type 2 diabetes. However, given safety issues, Zafgen has discontinued MetAP2 inhibitor development.
Collapse
Affiliation(s)
- John M Wentworth
- Department of Diabetes and Endocrinology, Royal Melbourne Hospital, Parkville, Australia
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
- Division of Population Health and Immunity, Walter and Eliza Hall Institute, Parkville, Australia
| | - Peter G Colman
- Department of Diabetes and Endocrinology, Royal Melbourne Hospital, Parkville, Australia
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
| |
Collapse
|
16
|
Kang T, Boland BB, Jensen P, Alarcon C, Nawrocki A, Grimsby JS, Rhodes CJ, Larsen MR. Characterization of Signaling Pathways Associated with Pancreatic β-cell Adaptive Flexibility in Compensation of Obesity-linked Diabetes in db/db Mice. Mol Cell Proteomics 2020; 19:971-993. [PMID: 32265294 PMCID: PMC7261816 DOI: 10.1074/mcp.ra119.001882] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/03/2020] [Indexed: 12/20/2022] Open
Abstract
The onset of obesity-linked type 2 diabetes (T2D) is marked by an eventual failure in pancreatic β-cell function and mass that is no longer able to compensate for the inherent insulin resistance and increased metabolic load intrinsic to obesity. However, in a commonly used model of T2D, the db/db mouse, β-cells have an inbuilt adaptive flexibility enabling them to effectively adjust insulin production rates relative to the metabolic demand. Pancreatic β-cells from these animals have markedly reduced intracellular insulin stores, yet high rates of (pro)insulin secretion, together with a substantial increase in proinsulin biosynthesis highlighted by expanded rough endoplasmic reticulum and Golgi apparatus. However, when the metabolic overload and/or hyperglycemia is normalized, β-cells from db/db mice quickly restore their insulin stores and normalize secretory function. This demonstrates the β-cell's adaptive flexibility and indicates that therapeutic approaches applied to encourage β-cell rest are capable of restoring endogenous β-cell function. However, mechanisms that regulate β-cell adaptive flexibility are essentially unknown. To gain deeper mechanistic insight into the molecular events underlying β-cell adaptive flexibility in db/db β-cells, we conducted a combined proteomic and post-translational modification specific proteomic (PTMomics) approach on islets from db/db mice and wild-type controls (WT) with or without prior exposure to normal glucose levels. We identified differential modifications of proteins involved in redox homeostasis, protein refolding, K48-linked deubiquitination, mRNA/protein export, focal adhesion, ERK1/2 signaling, and renin-angiotensin-aldosterone signaling, as well as sialyltransferase activity, associated with β-cell adaptive flexibility. These proteins are all related to proinsulin biosynthesis and processing, maturation of insulin secretory granules, and vesicular trafficking-core pathways involved in the adaptation of insulin production to meet metabolic demand. Collectively, this study outlines a novel and comprehensive global PTMome signaling map that highlights important molecular mechanisms related to the adaptive flexibility of β-cell function, providing improved insight into disease pathogenesis of T2D.
Collapse
Affiliation(s)
- Taewook Kang
- Protein research group, Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark; The Danish Diabetes Academy, Odense, Denmark
| | - Brandon B Boland
- The Kovler Diabetes Center, Department of Medicine Section of Endocrinology, Diabetes & Metabolism, University of Chicago, Chicago, Illinois 60637; Cardiovascular, Renal and Metabolic Disease, BioPharmaceuticals Research and Development, AstraZeneca Gaithersburg, Maryland 20878
| | - Pia Jensen
- Protein research group, Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Cristina Alarcon
- The Kovler Diabetes Center, Department of Medicine Section of Endocrinology, Diabetes & Metabolism, University of Chicago, Chicago, Illinois 60637
| | - Arkadiusz Nawrocki
- Protein research group, Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Joseph S Grimsby
- Cardiovascular, Renal and Metabolic Disease, BioPharmaceuticals Research and Development, AstraZeneca Gaithersburg, Maryland 20878
| | - Christopher J Rhodes
- The Kovler Diabetes Center, Department of Medicine Section of Endocrinology, Diabetes & Metabolism, University of Chicago, Chicago, Illinois 60637; Cardiovascular, Renal and Metabolic Disease, BioPharmaceuticals Research and Development, AstraZeneca Gaithersburg, Maryland 20878
| | - Martin R Larsen
- Protein research group, Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark.
| |
Collapse
|
17
|
Epoxide containing molecules: A good or a bad drug design approach. Eur J Med Chem 2020; 201:112327. [PMID: 32526552 DOI: 10.1016/j.ejmech.2020.112327] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 12/13/2022]
Abstract
Functional group modification is one of the main strategies used in drug discovery and development. Despite the controversy of being identified for many years as a biologically hazardous functional group, the introduction of an epoxide function in a structural backbone is still one of the possible modifications being implemented in drug design. In this manner, it is our intention to prove with this work that epoxides can have significant interest in medicinal chemistry, not only as anticancer agents, but also as important drugs for other pathologies. Thus, this revision paper aims to highlight the biological activity and the proposed mechanisms of action of several epoxide-containing molecules either in preclinical studies or in clinical development or even in clinical use. An overview of the chemistry of epoxides is also reported. Some of the conclusions are that effectively most of the epoxide-containing molecules referred in this work were being studied or are in the market as anticancer drugs. However, some of them in preclinical studies, were also associated with other different activities such as anti-malarial, anti-arthritic, insecticidal, antithrombotic, and selective inhibitory activity of FXIII-A (a transglutaminase). As for the epoxide-containing molecules in clinical trials, some of them are being tested for obesity and schizophrenia. Finally, drugs containing epoxide groups already in the market are mostly used for the treatment of different types of cancer, such as breast cancer and multiple myeloma. Other diseases for which the referred drugs are being used include heart failure, infections and gastrointestinal disturbs. In summary, epoxides can be a suitable option in drug design, particularly in the design of anticancer agents, and deserve to be better explored. However, and despite the promising results, it is imperative to explore the mechanisms of action of these compounds in order to have a better picture of their efficiency and safety.
Collapse
|
18
|
Tan Q, Orsso CE, Deehan EC, Triador L, Field CJ, Tun HM, Han JC, Müller TD, Haqq AM. Current and emerging therapies for managing hyperphagia and obesity in Prader-Willi syndrome: A narrative review. Obes Rev 2020; 21:e12992. [PMID: 31889409 DOI: 10.1111/obr.12992] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/07/2019] [Accepted: 12/09/2019] [Indexed: 12/16/2022]
Abstract
In early childhood, individuals with Prader-Willi syndrome (PWS) experience excess weight gain and severe hyperphagia with food compulsivity, which often leads to early onset morbid obesity. Effective treatments for appetite suppression and weight control are currently unavailable for PWS. Our aim to further understand the pathogenesis of PWS led us to carry out a comprehensive search of the current and emerging therapies for managing hyperphagia and extreme weight gain in PWS. A literature search was performed using PubMed and the following keywords: "PWS" AND "therapy" OR "[drug name]"; reference lists, pharmaceutical websites, and the ClinicalTrials.gov registry were also reviewed. Articles presenting data from current standard treatments in PWS and also clinical trials of pharmacological agents in the pipeline were selected. Current standard treatments include dietary restriction/modifications, exercise, and growth hormone replacement, which appear to have limited efficacy for appetite and weight control in patients with PWS. The long-term safety and effectiveness of bariatric surgery in PWS remains unknown. However, many promising pharmacotherapies are in development and, if approved, will bring much needed choices into the PWS pharmacological armamentarium. With the progress that is currently being made in our understanding of PWS, an effective treatment may not be far off.
Collapse
Affiliation(s)
- Qiming Tan
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Camila E Orsso
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Edward C Deehan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Lucila Triador
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Catherine J Field
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Hein Min Tun
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Joan C Han
- Departments of Pediatrics and Physiology, College of Medicine, University of Tennessee Health Science Center and Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee, USA
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Neuherberg, Germany.,Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, Tübingen, Germany
| | - Andrea M Haqq
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada.,Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
19
|
Moore MC, Coate KC, Scott M, Kraft G, Vath JE, Hughes TE, Farmer B, Cherrington AD. MetAP2 inhibitor treatment of high-fat and -fructose-fed dogs: impact on the response to oral glucose ingestion and a hyperinsulinemic hyperglycemic clamp. Am J Physiol Endocrinol Metab 2020; 318:E514-E524. [PMID: 31990576 PMCID: PMC7191409 DOI: 10.1152/ajpendo.00451.2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined the methionine aminopeptidase 2 inhibitor fumagillin in dogs consuming a high-fat and -fructose diet (HFFD). In pilot studies (3 dogs that had consumed HFFD for 3 yr), 8 wk of daily treatment with fumagillin reduced food intake 29%, weight 6%, and the glycemic excursion during an oral glucose tolerance test (OGTT) 44%. A second group of dogs consumed the HFFD for 17 wk: pretreatment (weeks 0-4), treatment with fumagillin (FUM; n = 6), or no drug (Control, n = 8) (weeks 4-12), washout period (weeks 12-16), and fumagillin or no drug for 1 wk (week 17). OGTTs were performed at 0, 4, 11, and 16 wk. A hyperinsulinemic hyperglycemic clamp was performed in week 12; 4 chow-fed dogs underwent identical clamps. Kilocalories per day intake during the treatment period was 2,067 ± 50 (Control) versus 1,824 ± 202 (FUM). Body weights (kg) increased 1.9 ± 0.3 vs. 2.7 ± 0.8 (0-4 wk) and 1.2 ± 0.2 vs. -0.02 ± 0.9 (4-12 wk) in Control versus fumagillin. The OGTT glycemic response was 30% greater in Control versus fumagillin at 11 wk. Net hepatic glucose uptake (NHGU; mg·kg-1·min-1) in the Chow, Control, and fumagillin dogs was ~1.5 ± 0.6, -0.1 ± 0.1, and 0.3 ± 0.4 (with no portal glucose infusion) and 3.1 ± 0.6, 0.5 ± 0.3, and 1.5 ± 0.5 (portal glucose infusion at 4 mg·kg-1·min-1), respectively. Fumagillin improved glucose tolerance and NHGU in HFFD dogs, suggesting methionine aminopeptidase 2 (MetAP2) inhibitors have the potential for improving glycemic control in prediabetes and diabetes.
Collapse
Affiliation(s)
- Mary Courtney Moore
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Katie C Coate
- Diabetes Research and Training Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Melanie Scott
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Guillaume Kraft
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | | | - Thomas E Hughes
- Zafgen, Incorporated, Boston, Massachusetts
- Navitor Pharmaceuticals, Incorporated, Cambridge, Massachusetts
| | - Ben Farmer
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Alan D Cherrington
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
20
|
Pottorf TS, Fagan MP, Burkey BF, Cho DJ, Vath JE, Tran PV. MetAP2 inhibition reduces food intake and body weight in a ciliopathy mouse model of obesity. JCI Insight 2020; 5:134278. [PMID: 31877115 DOI: 10.1172/jci.insight.134278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/18/2019] [Indexed: 12/13/2022] Open
Abstract
The ciliopathies Bardet-Biedl syndrome and Alström syndrome are genetically inherited pleiotropic disorders with hyperphagia and obesity as primary clinical features. Methionine aminopeptidase 2 inhibitors (MetAP2i) have been shown in preclinical and clinical studies to reduce food intake, body weight, and adiposity. Here, we investigated the effects of MetAP2i administration in a mouse model of ciliopathy produced by conditional deletion of the Thm1 gene in adulthood. Thm1 conditional knockout (cko) mice showed decreased hypothalamic proopiomelanocortin expression as well as hyperphagia, obesity, metabolic disease, and hepatic steatosis. In obese Thm1-cko mice, 2-week administration of MetAP2i reduced daily food intake and reduced body weight 17.1% from baseline (vs. 5% reduction for vehicle). This was accompanied by decreased levels of blood glucose, insulin, and leptin. Further, MetAP2i reduced gonadal adipose depots and adipocyte size and improved liver morphology. This is the first report to our knowledge of MetAP2i reducing hyperphagia and body weight and ameliorating metabolic indices in a mouse model of ciliopathy. These results support further investigation of MetAP2 inhibition as a potential therapeutic strategy for ciliary-mediated forms of obesity.
Collapse
Affiliation(s)
- Tana S Pottorf
- Jared Grantham Kidney Institute and.,Department of Anatomy and Cell Biology, University of Kansas Medical Center (KUMC), Kansas City, Kansas, USA
| | | | | | - David J Cho
- Jared Grantham Kidney Institute and.,Department of Anatomy and Cell Biology, University of Kansas Medical Center (KUMC), Kansas City, Kansas, USA
| | | | - Pamela V Tran
- Jared Grantham Kidney Institute and.,Department of Anatomy and Cell Biology, University of Kansas Medical Center (KUMC), Kansas City, Kansas, USA
| |
Collapse
|
21
|
Rebello CJ, Greenway FL. Obesity medications in development. Expert Opin Investig Drugs 2020; 29:63-71. [PMID: 31847611 PMCID: PMC6990416 DOI: 10.1080/13543784.2020.1705277] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/12/2019] [Indexed: 12/21/2022]
Abstract
Introduction: Obesity is compounded by a neurobiology that is resistant to weight loss. Therefore, the development of pharmacotherapies to address the pathology underlying the dysregulation of energy homeostasis is critical.Areas covered: This review examines selected clinical trial evidence for the pharmacologic treatment of obesity and provides an expert opinion on anti-obesity drug development. The article includes the outcomes of anti-obesity medications that have been evaluated in clinical trials but have not yet received approval from the U.S. Food and Drug Administration. The mechanisms of action of glucagon-like peptide-1 agonists and co-agonists, diabetes medications being investigated for weight loss, and medications acting on the central nervous system as well as peripherally are reviewed. A search was conducted on PubMed using the terms 'Obesity AND Medications' restricted to clinical trials reported in English. Using similar terms, a search was also conducted on ClinicalTrials.gov.Expert opinion: The goal of anti-obesity therapy is finding compounds that are effective and have minimal side effects. Combining medications targeting more than one of the redundant mechanisms driving obesity increases efficacy. However, targeting peripheral mechanisms to overcome the trickle-down effects of centrally acting drugs may be the key to success in treating obesity.
Collapse
Affiliation(s)
- Candida J. Rebello
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Frank L. Greenway
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| |
Collapse
|
22
|
Siddik MAB, Das BC, Weiss L, Dhurandhar NV, Hegde V. A MetAP2 inhibitor blocks adipogenesis, yet improves glucose uptake in cells. Adipocyte 2019; 8:240-253. [PMID: 31264515 PMCID: PMC6768232 DOI: 10.1080/21623945.2019.1636627] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Adipose tissue expansion involves angiogenesis to remodel its capillary network. The enzymemethionine aminopeptidase 2(MetAP2) promotes angiogenesis.MetAP2 inhibitors suppress angiogenesis and have potential anti-obesity effect. However, impairment in adipose tissue expansion is also linked with impaired glycemic control.This study investigated the effect of BL6, a MetAP2 inhibitor, on adipogenesis and glucose disposal.To test effect on angiogenesis, Human Umbilical Vein Endothelial Cells(HUVECs) were treated with BL6 for 24h to determine tube formation. Further, to test effect on adipogenesis and glucose disposal,3T3-L1 pre-adipocytes were treated with BL6(0 µM, 20µM, 50 µM or 100µM) during differentiation. Differentiated cells were stained with Oil Red O for determining lipid accumulation, and glucose uptake assay. Protein levels and RNA expression for key genes involved in the adipogenic cascade were determined.BL6 treatment of HUVECs dose dependently blocked angiogenesis. During differentiation of pre-adipocytes, 50μM and 100µM BL6 significantly reduced lipid accumulation. Treatment with 100µM BL6 significantly decreased expression of adipogenic genes. Interestingly, BL6 treatment dose dependently increased glucose uptake by 3T3-L1 cells.MetAP2 inhibitor blocks angiogenesis, attenuates adipogenesis, yet increases cellular glucose uptake. Collectively this proof of concept study supports a possible role for MetAP2 inhibitor BL6, as a putative anti-obesity therapeutic agent.
Collapse
Affiliation(s)
| | - Bhaskar C. Das
- The Icahn School of Medicine, Department of Medicine, New York, NY, USA
| | - Louis Weiss
- Department of Pathology, The Albert Einstein College of Medicine, New York, NY, USA
| | | | - Vijay Hegde
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
23
|
Pacoricona Alfaro DL, Lemoine P, Ehlinger V, Molinas C, Diene G, Valette M, Pinto G, Coupaye M, Poitou-Bernert C, Thuilleaux D, Arnaud C, Tauber M. Causes of death in Prader-Willi syndrome: lessons from 11 years' experience of a national reference center. Orphanet J Rare Dis 2019; 14:238. [PMID: 31684997 PMCID: PMC6829836 DOI: 10.1186/s13023-019-1214-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 09/24/2019] [Indexed: 12/12/2022] Open
Abstract
Background In the last 20 years, substantial improvements have been made in the diagnosis, treatment and management of patients with Prader-Willi syndrome (PWS). Few data on causes of death are available since those improvements were made. Our study assessed the causes of death among French patients with PWS over the first 11 years of experience of the nationwide French Reference Center for PWS (FRC-PWS). Methods Our study relied on two sources of mortality information at national level between 2004 and 2014: The French Epidemiological Centre for the Medical Causes of Death (CépiDc) Registry and the FRC-PWS database. Causes of death were classified into seven categories: respiratory, cardiovascular, gastrointestinal, severe infection, sudden death, other causes, and unknown. Descriptive statistics were calculated separately for children (< 18 years-old) and adults (≥18 years-old). Results One hundred and four deaths were identified in France from 2004 to 2014. The median age at death was 30 years, ranging from less than 1 month to 58 years. Seventeen deaths occurred in patients under 18 years, with 70% of them in children under 2 years. Respiratory causes accounted for more than 50% of the deaths in patients with PWS in both children and adults. Both cause and age of death did not significantly differ according to gender or genetic subtype. Conclusions Patients with PWS die prematurely due to a respiratory cause in most cases at all ages. In those adult patients with data on obesity, 98% were reported to be obese.
Collapse
Affiliation(s)
| | - Perrine Lemoine
- Endocrinology, Obesity, Bone Diseases, Genetics and Gynecology Unit, Children's Hospital, University Hospital Center of Toulouse, Toulouse, France
| | | | - Catherine Molinas
- Endocrinology, Obesity, Bone Diseases, Genetics and Gynecology Unit, Children's Hospital, University Hospital Center of Toulouse, Toulouse, France.,French National Reference Center for Prader-Willi Syndrome, Children's Hospital, University Hospital Center of Toulouse, 330, avenue de Grande-Bretagne - TSA 40031, 31059, Toulouse cedex 9, France.,Centre de Physiopathologie de Toulouse-Purpan, UMR 5282 CNRS, UMR 1043 Inserm, Paul Sabatier University, Toulouse, France
| | - Gwénaëlle Diene
- UMR 1027 Inserm- Paul Sabatier University, Toulouse, France.,Endocrinology, Obesity, Bone Diseases, Genetics and Gynecology Unit, Children's Hospital, University Hospital Center of Toulouse, Toulouse, France.,French National Reference Center for Prader-Willi Syndrome, Children's Hospital, University Hospital Center of Toulouse, 330, avenue de Grande-Bretagne - TSA 40031, 31059, Toulouse cedex 9, France
| | - Marion Valette
- Endocrinology, Obesity, Bone Diseases, Genetics and Gynecology Unit, Children's Hospital, University Hospital Center of Toulouse, Toulouse, France.,French National Reference Center for Prader-Willi Syndrome, Children's Hospital, University Hospital Center of Toulouse, 330, avenue de Grande-Bretagne - TSA 40031, 31059, Toulouse cedex 9, France
| | - Graziella Pinto
- Pediatric Endocrinology, Diabetology and Gynecology Department, Assistance-Publique Hôpitaux de Paris (AP-HP), Necker Children's University Hospital, Paris, France
| | - Muriel Coupaye
- French National Reference Center for Prader-Willi Syndrome, Nutrition Department, Assistance-Publique Hôpitaux de Paris (AP-HP), Pitié-Salpêtrière Hospital, Paris, France
| | - Christine Poitou-Bernert
- French National Reference Center for Prader-Willi Syndrome, Nutrition Department, Assistance-Publique Hôpitaux de Paris (AP-HP), Pitié-Salpêtrière Hospital, Paris, France.,Nutriomics team, Sorbonne University, UPMC University Paris 06, Inserm, Paris, France
| | - Denise Thuilleaux
- French National Reference Center for Prader-Willi Syndrome, Prader-Willi Unit, Assistance Publique Hôpitaux de Paris (AP-HP), Marine Hendaye Hospital, Hendaye, France
| | - Catherine Arnaud
- UMR 1027 Inserm- Paul Sabatier University, Toulouse, France.,Unité de Soutien Méthodologique à la Recherche, University Hospital Center of Toulouse, Toulouse, France
| | - Maithé Tauber
- Endocrinology, Obesity, Bone Diseases, Genetics and Gynecology Unit, Children's Hospital, University Hospital Center of Toulouse, Toulouse, France. .,French National Reference Center for Prader-Willi Syndrome, Children's Hospital, University Hospital Center of Toulouse, 330, avenue de Grande-Bretagne - TSA 40031, 31059, Toulouse cedex 9, France. .,Centre de Physiopathologie de Toulouse-Purpan, UMR 5282 CNRS, UMR 1043 Inserm, Paul Sabatier University, Toulouse, France.
| |
Collapse
|
24
|
Sanderson SM, Gao X, Dai Z, Locasale JW. Methionine metabolism in health and cancer: a nexus of diet and precision medicine. Nat Rev Cancer 2019; 19:625-637. [PMID: 31515518 DOI: 10.1038/s41568-019-0187-8] [Citation(s) in RCA: 328] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/24/2019] [Indexed: 01/11/2023]
Abstract
Methionine uptake and metabolism is involved in a host of cellular functions including methylation reactions, redox maintenance, polyamine synthesis and coupling to folate metabolism, thus coordinating nucleotide and redox status. Each of these functions has been shown in many contexts to be relevant for cancer pathogenesis. Intriguingly, the levels of methionine obtained from the diet can have a large effect on cellular methionine metabolism. This establishes a link between nutrition and tumour cell metabolism that may allow for tumour-specific metabolic vulnerabilities that can be influenced by diet. Recently, a number of studies have begun to investigate the molecular and cellular mechanisms that underlie the interaction between nutrition, methionine metabolism and effects on health and cancer.
Collapse
Affiliation(s)
- Sydney M Sanderson
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Xia Gao
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Ziwei Dai
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
25
|
Carias KV, Wevrick R. Preclinical Testing in Translational Animal Models of Prader-Willi Syndrome: Overview and Gap Analysis. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 13:344-358. [PMID: 30989085 PMCID: PMC6447752 DOI: 10.1016/j.omtm.2019.03.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Prader-Willi syndrome (PWS) is a rare neurodevelopmental disorder causing endocrine, musculoskeletal, and neurological dysfunction. PWS is caused by the inactivation of contiguous genes, complicating the development of targeted therapeutics. Clinical trials are now underway in PWS, with more trials to be implemented in the next few years. PWS-like endophenotypes are recapitulated in gene-targeted mice in which the function of one or more PWS genes is disrupted. These animal models can guide priorities for clinical trials or provide information about efficacy of a compound within the context of the specific disease. We now review the current status of preclinical studies that measure the effect of therapeutics on PWS-like endophenotypes. Seven categories of therapeutics (oxytocin and related compounds, K+-ATP channel agonists, melanocortin 4 receptor agonists, incretin mimetics and/or GLP-1 receptor agonists, cannabinoids, ghrelin agents, and Caralluma fimbriata [cactus] extract) have been tested for their effect on endophenotypes in both PWS animal models and clinical trials. Many other therapeutics have been tested in clinical trials, but not preclinical models of PWS or vice versa. Fostering dialogs among investigators performing preclinical validation of animal models and those implementing clinical studies will accelerate the discovery and translation of therapies into clinical practice in PWS.
Collapse
Affiliation(s)
- K Vanessa Carias
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Rachel Wevrick
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
26
|
McElroy SL, Guerdjikova AI, Mori N, Romo-Nava F. Progress in Developing Pharmacologic Agents to Treat Bulimia Nervosa. CNS Drugs 2019; 33:31-46. [PMID: 30523523 DOI: 10.1007/s40263-018-0594-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This paper reviews past and current progress in developing pharmacologic agents for the treatment of individuals with bulimia nervosa (BN). We searched the literature and clinical trial registries for compounds studied in BN, the related condition, binge eating disorder (BED), and preclinical models of binge-eating behavior. Drug classes evaluated included antidepressants, antiepileptic drugs, stimulants and other medications for attention-deficit/hyperactivity disorder, opioid antagonists, and weight loss agents, among others. The only available drugs with established efficacy in BN at this time include antidepressants (especially selective serotonin reuptake inhibitors [SSRIs]) and the antiepileptic topiramate, though the efficacy of these compounds is modest at best. The only medications we found currently receiving empirical study in people with BN were fluoxetine, other serotonergic antidepressants, intranasal naloxone, lisdexamfetamine dimesylate, phentermine-topiramate combination, the antiandrogenic oral contraceptive ethinyl estradiol plus drospirenone, and prazosin. Preclinical models suggest that nociceptin receptor antagonists, the selective serotonin 5-HT2C receptor agonist lorcaserin, monoamine stabilizers, and selective orexin-1 receptor antagonists might be helpful. We found no evidence of a drug developed specifically for the treatment of individuals with BN. Future areas for research in the pharmacotherapy of BN are suggested. Importantly, until drugs are developed specifically for eating disorders, drugs developed for other conditions that are centrally acting and associated with beneficial psychotropic effects and/or reduced appetite or weight loss might be considered for repurposing in BN.
Collapse
Affiliation(s)
- Susan L McElroy
- Lindner Center of HOPE, Mason, OH, USA. .,University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Anna I Guerdjikova
- Lindner Center of HOPE, Mason, OH, USA.,University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | - Francisco Romo-Nava
- Lindner Center of HOPE, Mason, OH, USA.,University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
27
|
Proietto J, Malloy J, Zhuang D, Arya M, Cohen ND, de Looze FJ, Gilfillan C, Griffin P, Hall S, Nathow T, Oldfield GS, O'Neal DN, Roberts A, Stuckey BGA, Yue D, Taylor K, Kim D. Efficacy and safety of methionine aminopeptidase 2 inhibition in type 2 diabetes: a randomised, placebo-controlled clinical trial. Diabetologia 2018; 61:1918-1922. [PMID: 29992370 DOI: 10.1007/s00125-018-4677-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/24/2018] [Indexed: 10/28/2022]
Abstract
AIMS/HYPOTHESIS This multicentre randomised double-blind placebo-controlled clinical trial assessed the efficacy and safety of a methionine aminopeptidase 2 (MetAP2) inhibitor, beloranib, in individuals with obesity (BMI ≥30 kg/m2) and type 2 diabetes (HbA1c 53-97 mmol/mol [7-11%] and fasting glucose <15.6 mmol/l). METHODS Participants were randomised (via a centralised interactive web response system) to placebo, 1.2 or 1.8 mg beloranib s.c. twice weekly for 26 weeks. Participants, investigators and the sponsor were blinded to group assignment. The primary endpoint was the change in weight from baseline to week 26. The trial was terminated early when beloranib development was stopped because of an imbalance of venous thromboembolism events in beloranib-treated individuals vs placebo that became evident during late-stage development of the drug. RESULTS In total, 153 participants were randomised, 51 to placebo, 52 to 1.2 mg beloranib and 50 to 1.8 mg beloranib. In participants who completed week 26, the least squares mean ± SE weight change (baseline 111 kg) was -3.1 ± 1.2% with placebo (n = 22) vs -13.5 ± 1.1% and -12.7 ± 1.3% with 1.2 and 1.8 mg beloranib, respectively (n = 25; n = 19; p < 0.0001). The change in HbA1c (baseline 67 mmol/mol [8.3%]) was -6.6 ± 2.2 mmol/mol (-0.6 ± 0.2%) with placebo vs -21.9 ± 2.2 mmol/mol (-2.0 ± 0.2%) or -21.9 ± 3.3 mmol/mol (-2.0 ± 0.3%) with 1.2 or 1.8 mg beloranib (p < 0.0001), respectively. The most common beloranib adverse events were sleep related. One beloranib-treated participant experienced a non-fatal pulmonary embolism. CONCLUSIONS/INTERPRETATION MetAP2 inhibitors represent a novel mechanism for producing meaningful weight loss and improvement in HbA1c. TRIAL REGISTRATION ClinicalTrials.gov NCT02324491 FUNDING: The study was funded by Zafgen, Inc.
Collapse
Affiliation(s)
- Joseph Proietto
- Department of Medicine (Austin Health), University of Melbourne, Heidelberg, VIC, Australia
| | - Jaret Malloy
- Zafgen, Inc., 175 Portland St, 4th Floor, Boston, MA, 02114, USA
| | - Dongliang Zhuang
- Zafgen, Inc., 175 Portland St, 4th Floor, Boston, MA, 02114, USA
| | - Mark Arya
- Australian Clinical Research Network, Maroubra, NSW, Australia
| | - Neale D Cohen
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Ferdinandus J de Looze
- AusTrials Pty Ltd, Sherwood, QLD, Australia
- Discipline of General Practice, Faculty of Medicine, University of Queensland, Herston, QLD, Australia
| | | | - Paul Griffin
- Q-Pharm Pty Ltd, Herston, QLD, Australia
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- Mater Health Services, South Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Herston, QLD, Australia
| | - Stephen Hall
- Emeritus Research, Malvern East, VIC, Australia
- Institution for Rehabilitation Research, Monash University, Clayton, VIC, Australia
| | | | | | - David N O'Neal
- Department of Medicine, University of Melbourne, St Vincent's Hospital, Fitzroy, VIC, Australia
| | - Adam Roberts
- University Hospital Geelong, Geelong, VIC, Australia
| | - Bronwyn G A Stuckey
- Keogh Institute for Medical Research, University of Western Australia, Nedlands, WA, Australia
| | - Dennis Yue
- Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Kristin Taylor
- Zafgen, Inc., 175 Portland St, 4th Floor, Boston, MA, 02114, USA
| | - Dennis Kim
- Zafgen, Inc., 175 Portland St, 4th Floor, Boston, MA, 02114, USA.
| |
Collapse
|
28
|
Malloy J, Zhuang D, Kim T, Inskeep P, Kim D, Taylor K. Single and multiple dose evaluation of a novel MetAP2 inhibitor: Results of a randomized, double-blind, placebo-controlled clinical trial. Diabetes Obes Metab 2018; 20:1878-1884. [PMID: 29577550 PMCID: PMC6055687 DOI: 10.1111/dom.13305] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/11/2018] [Accepted: 03/20/2018] [Indexed: 11/29/2022]
Abstract
AIMS Methionine aminopeptidase 2 (MetAP2) inhibition has been shown to result in significant weight loss and improved glucose control. This Phase 1 clinical trial assessed the safety and tolerability, pharmacokinetics and preliminary efficacy of a novel MetAP2 inhibitor, ZGN-1061. METHODS This clinical trial included a single ascending dose (SAD) phase in healthy subjects (BMI, 23 to <30 kg/m2 ) and a multiple ascending dose (MAD) phase in otherwise healthy subjects (BMI, 27 to 40 kg/m2 ). SAD phase doses, administered subcutaneously (SC), were 0.2, 0.6, 1.2, 2.4, 3.6 and 4.8 mg and the MAD phase evaluated doses of 0.2, 0.6 and 1.8 mg twice weekly SC for 4 weeks. RESULTS The SAD phase included 39 subjects (ZGN-1061, N = 28; placebo, N = 11); 90% were male and BMI was 26.4 kg/m2 . ZGN-1061 was well tolerated across all doses, with the most frequent adverse events being mild headache and procedural-related irritation. There were no severe or serious adverse events. All doses of ZGN-1061 were rapidly absorbed and cleared, resulting in short duration of exposure that is anticipated to minimize potential off-drug target risks. The MAD phase included 29 subjects (ZGN-1061, N = 22; placebo, N = 7); 76% were male and BMI was 33.5 kg/m2 . Safety observations were consistent with SAD findings. Efficacy measures in the MAD phase indicated trends for weight change (-1.5 kg total ZGN-1061 vs -0.2 kg placebo) and other biomarker changes. CONCLUSIONS ZGN-1061 was well tolerated with no safety signals in all doses tested. In addition, the desired pharmacokinetic profile and preliminary efficacy observations with ZGN-1061 support evaluation in larger and longer clinical trials.
Collapse
|
29
|
Crinò A, Fintini D, Bocchini S, Grugni G. Obesity management in Prader-Willi syndrome: current perspectives. Diabetes Metab Syndr Obes 2018; 11:579-593. [PMID: 30323638 PMCID: PMC6175547 DOI: 10.2147/dmso.s141352] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Prader-Willi syndrome (PWS) is a complex multisystem disorder due to the absent expression of the paternally active genes in the PWS critical region on chromosome 15 (15q11.2-q13). The syndrome is considered the most common genetic cause of obesity, occurring in 1:10,000-1:30,000 live births. Its main characteristics include neonatal hypotonia, poor feeding, and lack of appetite in infancy, followed by weight gain, lack of satiety, and uncontrolled appetite, frequently after the age of 2-3 years. The clinical picture includes short stature, multiple endocrine abnormalities (hypogonadism, growth hormone/insulin-like growth factor-I axis dysfunction, hypothyroidism, central adrenal insufficiency), dysmorphic features, scoliosis, osteoporosis, mental retardation, and behavioral and psychiatric problems. Subjects with PWS will become severely obese unless their food intake is strictly controlled. Constant and obsessive food seeking behavior can make life very difficult for both the family and caretakers. Prevention of obesity is mandatory in these patients from the first years of life, because once obesity develops it is difficult to maintain the control of food intake. In fact, PWS subjects die prematurely from complications conventionally related to obesity, including diabetes mellitus, metabolic syndrome, sleep apnea, respiratory insufficiency, and cardiovascular disease. The mechanisms underlying hyperphagia in PWS are not completely known, and to date no drugs have proven their efficacy in controlling appetite. Consequently, dietary restriction, physical activity, and behavior management are fundamental in the prevention and management of obesity in PWS. In spite of all available therapeutic tools, however, successful weight loss and maintenance are hardly accomplished. In this context, clinical trials with new drugs have been initiated in order to find new possibilities of a therapy for obesity in these patients. The preliminary results of these studies seem to be encouraging. On the other hand, until well-proven medical treatments are available, bariatric surgery can be taken into consideration, especially in PWS patients with life-threatening comorbidities.
Collapse
Affiliation(s)
| | - Danilo Fintini
- Endocrinology Unit, Bambino Gesù Children's Hospital, Research Institute, Palidoro, Rome
| | | | - Graziano Grugni
- Division of Auxology, Italian Auxological Institute, Research Institute, Piancavallo, Verbania, Italy
| |
Collapse
|