1
|
Liu R, Choi HS, Ko YC, Yun BS, Lee DS. 5-Desmethylsinensetin isolated from Artemisia princeps suppresses the stemness of breast cancer cells via Stat3/IL-6 and Stat3/YAP1 signaling. Life Sci 2021; 280:119729. [PMID: 34146553 DOI: 10.1016/j.lfs.2021.119729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/28/2021] [Accepted: 06/06/2021] [Indexed: 01/21/2023]
Abstract
AIMS To study 5-desmethylsinensetin exhibiting potential anticancer activity against breast cancer stem cells and the related molecular mechanism. MAIN METHODS In this study, isolation of a cancer stem cell (CSC) inhibitor of Artemisia princeps was performed using a silica gel column, a Sephadex gel column, and high-performance liquid chromatography. A single compound was purified via activity-based isolation using mammosphere formation assays. An MTS was used to examine the proliferation of breast cancer cells, and flow cytometry was used to analyze apoptosis and cancer stem cell markers. Western blotting was used to detect the signaling pathway. RESULTS The isolated compound was identified as 5-desmethylsinensetin using nuclear magnetic resonance and mass spectrometry. 5-Desmethylsinensetin suppresses the proliferation and mammosphere formation of breast cancer cells, reduces the subpopulations of CD44+/CD24- and ALDH1+ cancer cells, and reduces the transcription of the stemness markers Oct4, c-Myc, Nanog and CD44 in Breast CSCs. 5-Desmethylsinensetin inhibits the total and nuclear expression of Stat3 and p-Stat3, as well as the translocation of YAP1. Additionally, 5-desmethylsinensetin reduces the mRNA and protein levels of IL-6. CONCLUSION Our results show that 5-desmethylsinensetin exhibits potential anticancer activity against breast cancer stem cells via Stat3-IL-6 and Stat3-YAP1 signaling.
Collapse
Affiliation(s)
- Ren Liu
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Republic of Korea
| | - Hack Sun Choi
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Republic of Korea
| | - Yu-Chan Ko
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Republic of Korea
| | - Bong-Sik Yun
- Division of Biotechnology, College of Environmental and Bioresource Sciences, Jeonbuk National University, Gobong-ro 79, Iksan 54596, Republic of Korea
| | - Dong-Sun Lee
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Republic of Korea; Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Republic of Korea; Practical Translational Research Center, Jeju National University, Jeju 63243, Republic of Korea; Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, SARI, Jeju 63243, Republic of Korea.
| |
Collapse
|
2
|
Choi HS, Kim SL, Kim JH, Ko YC, Lee DS. Plant Volatile, Phenylacetaldehyde Targets Breast Cancer Stem Cell by Induction of ROS and Regulation of Stat3 Signal. Antioxidants (Basel) 2020; 9:antiox9111119. [PMID: 33202749 PMCID: PMC7697623 DOI: 10.3390/antiox9111119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/07/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells (CSCs) are undifferentiated cells that give rise to tumor and resistance to chemotherapy. This study reports that phenylacetaldehyde (PAA), a flower flavor, inhibits formation on breast CSCs. PAA showed anti-proliferation and increased apoptosis of breast cancer. PAA also reduced tumor growth in an in vivo mice model. PAA reduced the CD44+/CD24− and ALDH1-expressing cells, mammosphere formation, and CSC marker genes. PAA preferentially induced reactive oxygen species (ROS) production and combined treatment with PAA and N-acetyl cysteine (NAC) decreased inhibition of mammosphere formation. PAA reduced phosphorylation of nuclear Stat3. PAA inhibited Stat3 signaling through de-phosphorylation of Stat3 and reduced secretory IL-6. Our results suggest that the PAA-induced ROS deregulated Stat3/IL-6 pathway and PAA may be a potential agent targeting breast cancer and CSCs.
Collapse
Affiliation(s)
- Hack Sun Choi
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Korea;
| | - Su-Lim Kim
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, Korea; (S.-L.K.); (J.-H.K.); (Y.-C.K.)
- School of Biomaterials Science and Technology, College of Applied Life Science, Jeju National University, Jeju 63243, Korea
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, SARI, Jeju 63243, Korea
- Practical Translational Research Center, Jeju National University, Jeju 63243, Korea
| | - Ji-Hyang Kim
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, Korea; (S.-L.K.); (J.-H.K.); (Y.-C.K.)
- School of Biomaterials Science and Technology, College of Applied Life Science, Jeju National University, Jeju 63243, Korea
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, SARI, Jeju 63243, Korea
- Practical Translational Research Center, Jeju National University, Jeju 63243, Korea
| | - Yu-Chan Ko
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, Korea; (S.-L.K.); (J.-H.K.); (Y.-C.K.)
| | - Dong-Sun Lee
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Korea;
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, Korea; (S.-L.K.); (J.-H.K.); (Y.-C.K.)
- School of Biomaterials Science and Technology, College of Applied Life Science, Jeju National University, Jeju 63243, Korea
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, SARI, Jeju 63243, Korea
- Practical Translational Research Center, Jeju National University, Jeju 63243, Korea
- Correspondence: ; Tel.: +82-64-754-3340; Fax: +82-64-751-3780
| |
Collapse
|
3
|
6-Methoxymellein Isolated from Carrot ( Daucus carota L.) Targets Breast Cancer Stem Cells by Regulating NF-κB Signaling. Molecules 2020; 25:molecules25194374. [PMID: 32977636 PMCID: PMC7583823 DOI: 10.3390/molecules25194374] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 12/21/2022] Open
Abstract
The presence of breast cancer stem cells (BCSCs) induces the aggressive progression and recurrence of breast cancer. These cells are drug resistant, have the capacity to self-renew and differentiate and are involved in recurrence and metastasis, suggesting that targeting BCSCs may improve treatment efficacy. In this report, methanol extracts of carrot root were purified by means of silica gel, Sephadex LH-20, and preparative high-performance liquid chromatography to isolate a compound targeting mammosphere formation. We isolated the compound 6-methoxymellein, which inhibits the proliferation and migration of breast cancer cells, reduces mammosphere growth, decreases the proportion of CD44+/CD24− cells in breast cancer cells and decreases the expression of stemness-associated proteins c-Myc, Sox-2 and Oct4. 6-Methoxymellein reduces the nuclear localization of nuclear factor-κB (NF-κB) subunit p65 and p50. Subsequently, 6-methoxymellein decreases the mRNA transcription and secretion of IL-6 and IL-8. Our data suggest that 6-methoxymellein may be an anticancer agent that inhibits BCSCs via NF-κB/IL-6 and IL-8 regulation.
Collapse
|
4
|
Betavulgarin Isolated from Sugar Beet ( Beta vulgaris) Suppresses Breast Cancer Stem Cells through Stat3 Signaling. Molecules 2020; 25:molecules25132999. [PMID: 32630026 PMCID: PMC7412145 DOI: 10.3390/molecules25132999] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is a major health problem that affects lives worldwide. Breast cancer stem cells (BCSCs) are small subpopulations of cells with capacities for drug resistance, self-renewal, recurrence, metastasis, and differentiation. Herein, powder extracts of beetroot were subjected to silica gel, gel filtration, thin layer chromatography (TLC), and preparatory high-pressure liquid chromatography (HPLC) for isolation of one compound, based on activity-guided purification using tumorsphere formation assays. The purified compound was identified as betavulgarin, using nuclear magnetic resonance spectroscopy and electrospray ionization (ESI) mass spectrometry. Betavulgarin suppressed the proliferation, migration, colony formation, and mammosphere formation of breast cancer cells and reduced the size of the CD44+/CD24− subpopulation and the expression of the self-renewal-related genes, C-Myc, Nanog, and Oct4. This compound decreased the total level and phosphorylated nuclear level of signal transducer and activator of transcription 3 (Stat3) and reduced the mRNA and protein levels of sex determining region Y (SRY)-box 2 (SOX2), in mammospheres. These data suggest that betavulgarin inhibit the Stat3/Sox2 signaling pathway and induces BCSC death, indicating betavulgarin might be an anticancer agent against breast cancer cells and BCSCs.
Collapse
|
5
|
Inhibitory Effects of Tangeretin, A Citrus Peel-Derived Flavonoid, on Breast Cancer Stem Cell Formation through Suppression of Stat3 Signaling. Molecules 2020; 25:molecules25112599. [PMID: 32503228 PMCID: PMC7321155 DOI: 10.3390/molecules25112599] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 02/07/2023] Open
Abstract
Breast cancer stem cells (BCSCs) are responsible for tumor chemoresistance and recurrence. Targeting CSCs using natural compounds is a novel approach for cancer therapy. A CSC-inhibiting compound was purified from citrus extracts using silica gel, gel filtration and high-pressure liquid chromatography. The purified compound was identified as tangeretin by using nuclear magnetic resonance (NMR). Tangeretin inhibited cell proliferation, CSC formation and tumor growth, and modestly induced apoptosis in CSCs. The frequency of a subpopulation with a CSC phenotype (CD44+/CD24-) was reduced by tangeretin. Tangeretin reduced the total level and phosphorylated nuclear level of signal transducer and activator of transcription 3 (Stat3). Our results in this study show that tangeretin inhibits the Stat3 signaling pathway and induces CSC death, indicating that tangeretin may be a potential natural compound that targets breast cancer cells and CSCs.
Collapse
|
6
|
Kim JH, Choi HS, Kim SL, Lee DS. The PAK1-Stat3 Signaling Pathway Activates IL-6 Gene Transcription and Human Breast Cancer Stem Cell Formation. Cancers (Basel) 2019; 11:cancers11101527. [PMID: 31658701 PMCID: PMC6826853 DOI: 10.3390/cancers11101527] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 11/16/2022] Open
Abstract
Cancer stem cells (CSCs) have unique properties, including self-renewal, differentiation, and chemoresistance. In this study, we found that p21-activated kinase (PAK1) inhibitor (Group I, PAK inhibitor, IPA-3) and inactivator (ivermectin) treatments inhibit cell proliferation and that tumor growth of PAK1-knockout cells in a mouse model is significantly reduced. IPA-3 and ivermectin inhibit CSC formation. PAK1 physically interacts with Janus Kinase 2 (JAK2), and JAK2 inhibitor (TG101209) treatment inhibits mammosphere formation and reduces the nuclear PAK1 protein level. PAK1 interacts with signal transducer and activator of transcription 3 (Stat3), and PAK1 and Stat3 colocalize in the nucleus. We show through electrophoretic mobility shift assay (EMSA), chromatin immunoprecipitation (ChIP), and reporter assays that the PAK1/Stat3 complex binds to the IL-6 promoter and regulates the transcription of the IL-6 gene. Inhibition of PAK1 and JAK2 in mammospheres reduces the nuclear pStat3 and extracellular IL-6 levels. PAK1 inactivation inhibits CSC formation by decreasing pStat3 and extracellular IL-6 levels. Our results reveal that JAK2/PAK1 dysregulation inhibits the Stat3 signaling pathway and CSC formation, the PAK1/Stat3 complex regulates IL-6 gene expression, PAK1/Stat3 signaling regulates CSC formation, and PAK1 may be an important target for treating breast cancer.
Collapse
Affiliation(s)
- Ji-Hyang Kim
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, Korea.
| | - Hack Sun Choi
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, SARI, Jeju 63243, Korea.
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Korea.
| | - Su-Lim Kim
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, Korea.
- School of Biomaterials Science and Technology, College of Applied Life Science, Jeju National University, Jeju 63243, Korea.
| | - Dong-Sun Lee
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, Korea.
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, SARI, Jeju 63243, Korea.
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Korea.
- School of Biomaterials Science and Technology, College of Applied Life Science, Jeju National University, Jeju 63243, Korea.
- Practical Translational Research Center, Jeju National University, Jeju 63243, Korea.
| |
Collapse
|
7
|
Choi HS, Kim JH, Kim SL, Lee DS. Disruption of the NF-κB/IL-8 Signaling Axis by Sulconazole Inhibits Human Breast Cancer Stem Cell Formation. Cells 2019; 8:cells8091007. [PMID: 31480284 PMCID: PMC6770215 DOI: 10.3390/cells8091007] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/24/2019] [Accepted: 08/29/2019] [Indexed: 12/13/2022] Open
Abstract
Breast cancer stem cells (BCSCs) are tumor-initiating cells that possess the capacity for self-renewal. Cancer stem cells (CSCs) are responsible for poor outcomes caused by therapeutic resistance. In our study, we found that sulconazole—an antifungal medicine in the imidazole class—inhibited cell proliferation, tumor growth, and CSC formation. This compound also reduced the frequency of cells expressing CSC markers (CD44high/CD24low) as well as the expression of another CSC marker, aldehyde dehydrogenase (ALDH), and other self-renewal-related genes. Sulconazole inhibited mammosphere formation, reduced the protein level of nuclear NF-κB, and reduced extracellular IL-8 levels in mammospheres. Knocking down NF-κB expression using a p65-specific siRNA reduced CSC formation and secreted IL-8 levels in mammospheres. Sulconazole reduced nuclear NF-κB protein levels and secreted IL-8 levels in mammospheres. These new findings show that sulconazole blocks the NF-κB/IL-8 signaling pathway and CSC formation. NF-κB/IL-8 signaling is important for CSC formation and may be an important therapeutic target for BCSC treatment.
Collapse
Affiliation(s)
- Hack Sun Choi
- School of Biomaterials Sciences and Technology, College of Applied Life Science, Jeju National University, Jeju 63243, Korea
- Subtropical/tropical Organism Gene Bank, Jeju National University, Jeju 63243, Korea
| | - Ji-Hyang Kim
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, Korea
| | - Su-Lim Kim
- School of Biomaterials Sciences and Technology, College of Applied Life Science, Jeju National University, Jeju 63243, Korea
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, Korea
| | - Dong-Sun Lee
- School of Biomaterials Sciences and Technology, College of Applied Life Science, Jeju National University, Jeju 63243, Korea.
- Subtropical/tropical Organism Gene Bank, Jeju National University, Jeju 63243, Korea.
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, Korea.
| |
Collapse
|
8
|
Dihydrotanshinone-Induced NOX5 Activation Inhibits Breast Cancer Stem Cell through the ROS/Stat3 Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9296439. [PMID: 31019654 PMCID: PMC6451810 DOI: 10.1155/2019/9296439] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/14/2018] [Indexed: 12/14/2022]
Abstract
Cancer stem cells (CSCs) are known to mediate metastasis and recurrence and are therefore a promising therapeutic target. In this study, we found that dihydrotanshinone (DHTS) inhibits CSC formation. DHTS inhibited mammosphere formation in a dose-dependent manner and showed significant tumor growth inhibition in a xenograft model. This compound reduced the CD44high/CD24low- and aldehyde dehydrogenase- (ALDH-) expressing cell population and the self-renewal-related genes Nanog, SOX2, OCT4, C-Myc, and CD44. DHTS induced NOX5 activation by increasing calcium, and NOX5 activation induced reactive oxygen species (ROS) production. ROS production reduced the nuclear phosphorylation levels of Stat3 and secreted IL-6 levels in the mammospheres. DHTS deregulated the dynamic equilibrium from non-stem cancer cells to CSCs by dephosphorylating Stat3 and decreasing IL-6 secretion and inhibiting CSC formation. These novel findings showed that DHTS-induced ROS deregulated the Stat3/IL-6 pathway and induced CSC death. NOX5 activation by DHTS inhibits CSC formation through ROS/Stat3/IL-6 signaling, and DHTS may be a promising potential therapeutic agent against breast CSCs.
Collapse
|
9
|
Choi HS, Kim JH, Kim SL, Deng HY, Lee D, Kim CS, Yun BS, Lee DS. Catechol derived from aronia juice through lactic acid bacteria fermentation inhibits breast cancer stem cell formation via modulation Stat3/IL-6 signaling pathway. Mol Carcinog 2018; 57:1467-1479. [PMID: 29964299 DOI: 10.1002/mc.22870] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/25/2018] [Accepted: 06/29/2018] [Indexed: 12/20/2022]
Abstract
Cancer stem cells (CSCs) as a subpopulation of cancer cells are drug-resistant and radiation-resistant cancer cells to be responsible for tumor progress, maintenance and recurrence of cancer, and metastasis. This study isolated and investigated a new cancer stem cell (CSC) inhibitor derived from lactic acid fermentation products using culture broth with 2% aronia juice. The anti-CSC activity of aronia-cultured broth was significantly higher than that of the control. Activity-guided fractionation and repeated chromatographic preparation led to the isolation of one compound. Using nuclear magnetic resonance and ESI mass spectrometry, we identified the isolated compound as catechol. In this study, we report that aronia-fermented catechol has a novel inhibitory effect on human breast CSCs. Catechol inhibited breast cancer cell proliferation and mammosphere formation in a dose-dependent manner. This compound reduced the CD44high /CD24low subpopulation, ALDH-expressing cell population and the self-renewal-related genes nanog, sox2, and oct4. Catechol preferentially reduced mRNA transcripts and protein levels of Stat3 and did not induce c-Myc degradation. These findings support the novel utilization of catechol for breast cancer therapy via the Stat3/IL-6 signaling pathway. Our results suggest that catechol can be used for breast cancer therapy and that Stat3 expression is a marker of CSCs. Catechol inhibited Stat3 signaling by reducing Stat3 expression and secreted IL-6, a CSC survival factor. These findings support the novel utilization of catechol for breast cancer therapy via Stat3/IL-6 signaling.
Collapse
Affiliation(s)
- Hack S Choi
- Department of Biotechnology, College of Applied Life Science, Jeju National University, Jeju, Korea.,Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju, Korea
| | - Ji-Hyang Kim
- Department of Biotechnology, College of Applied Life Science, Jeju National University, Jeju, Korea
| | - Su-Lim Kim
- Department of Biotechnology, College of Applied Life Science, Jeju National University, Jeju, Korea
| | - Hong-Yuan Deng
- Department of Biotechnology, College of Applied Life Science, Jeju National University, Jeju, Korea
| | - Doseung Lee
- JEJU TECHNOPARK, Biodiversity Research Institute, Namwon, Seogwipo, Jeju, Korea
| | - Chang Sook Kim
- JEJU TECHNOPARK, Biodiversity Research Institute, Namwon, Seogwipo, Jeju, Korea
| | - Bong-Sik Yun
- Division of Biotechnology, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan, Korea
| | - Dong-Sun Lee
- Department of Biotechnology, College of Applied Life Science, Jeju National University, Jeju, Korea.,Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju, Korea
| |
Collapse
|
10
|
Lee DS, Law PY, Ln W, Loh HH, Song KY, Choi HS. Differential regulation of mouse and human Mu opioid receptor gene depends on the single stranded DNA structure of its promoter and α-complex protein 1. Biomed Rep 2017; 6:532-538. [PMID: 28529734 DOI: 10.3892/br.2017.877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 03/07/2017] [Indexed: 11/05/2022] Open
Abstract
The Mu opioid receptor (MOR) mediates various functions of opioid-induced analgesia, euphoria and respiratory depression, and is a major target of opioid analgesics. Understanding of MOR gene expression among species is important for understanding its analgesic function in humans. In the current study, the polypyrimidine/polypurine (PPy/u) region, a key element of MOR gene expression, was compared in humans and mice. The mouse PPy/u element is highly homologous to its human element (84%), and the mouse MOR (mMOR) reporter drives luciferase activity 35-fold more effectively than the human MOR (hMOR) reporter. The structural study of reporter plasmids using S1 nuclease indicates that the mouse PPy/u element has a particular conformational structure, namely a single-stranded DNA (ssDNA) region that promotes strong promoter activity. DNA electrophoretic mobility shift assays demonstrated that the recombinant α-complex protein 1 (α-CP1) is capable of binding to a single-stranded mouse PPy/u sequence. Furthermore, plasmid-expressing α-CP1 activated the expression of a luciferase reporter when cotransfected with a single-stranded (p336/306) construct. In addition, the α-CP1 gene induced the mMOR gene in mouse neuronal cells and did not induce the human neuronal MOR gene. The current study demonstrates that α-CP1 functions as a transcriptional activator in the mMOR gene, but does not function in the hMOR gene due to species-specific structural differences. The differences in human and mouse MOR gene expression are based on α-CP1 and the ssDNA structure of the MOR promoter. The MOR gene is species-specifically regulated, as the PPy/u element adopts a unique species-specific conformation and α-CP1 recruitment.
Collapse
Affiliation(s)
- Dong-Sun Lee
- Department of Biotechnology, College of Applied Life Science, Jeju National University, Jeju 63243, Republic of Korea.,Subtropical/Tropical Organism Gene Bank Institute, Jeju National University, Jeju 63243, Republic of Korea
| | - Ping-Yee Law
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Wei Ln
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Horace H Loh
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Kyu Young Song
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Hack Sun Choi
- Department of Biotechnology, College of Applied Life Science, Jeju National University, Jeju 63243, Republic of Korea.,Subtropical/Tropical Organism Gene Bank Institute, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
11
|
Hou W, Li H, Jiang W, Zhang C, McNutt MA, Li G. Simian Immunodeficiency Virus Impacts MicroRNA‐16 Mediated Post‐Transcriptional Regulation of mu Opioid Receptor in CEM ×174 Cells. J Cell Biochem 2016; 117:84-93. [DOI: 10.1002/jcb.25251] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 06/04/2015] [Indexed: 01/09/2023]
Abstract
ABSTRACTAlthough the mechanism which regulates transcription in the 5′‐UTR of the mu opioid receptor gene (OPRM1) in lymphocytes has been well‐studied, a question remains as to whether there is post‐transcriptional regulation of OPRM1 gene in lymphocytes. In this study, the authors describe both the role played by miRNAs and the impact of SIVmac239 infection on post‐transcriptional regulation of OPRM1 gene in CEM ×174 cells. Our results show that miR‐16 is able to bind the target site in the range of 8699–8719 nt from the stop codon in MOR‐1 mRNA 3′‐UTR and suppress the expression of OPRM1 gene. Mutation of this target site reduces the effect of miR‐16. Morphine (1 µM) inhibits the expression of miR‐16, and this effect is reversed by the antagonist naloxone. Thus, morphine may up‐regulate receptor level by both stimulating OPRM1 gene transcription and stabilizing its mRNA. SIVmac239 infection results in an apparent elevation of miR‐16 and gradual reduction of OPRM1 gene expression. The inverse correlation of elevated miR‐16 and reduced OPRM1 gene expression under viral loading confirmed the effect of SIVmac239 on post‐transcriptional regulation of OPRM1 gene in lymphocytes. The authors conclude that miR‐16 is a primary factor in post‐transcriptional regulation of OPRM1 gene. SIVmac239 upregulates miR‐16 levels and consequently suppresses OPRM1 gene expression. This finding will be helpful for full understanding of the regulatory mechanism of OPRM1 gene in lymphocytes, as well as the synergistic mechanism of HIV infection and morphine addiction in the pathogenesis of AIDS. J. Cell. Biochem. 117: 84–93, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Wenting Hou
- Department of Biochemistry and Molecular Biology Peking University Health Science Center Peking University Beijing 100191 China
| | - Hui Li
- Department of Biochemistry and Molecular Biology Peking University Health Science Center Peking University Beijing 100191 China
| | - Wei Jiang
- Department of Biochemistry and Molecular Biology Peking University Health Science Center Peking University Beijing 100191 China
| | - Chao Zhang
- Department of Biochemistry and Molecular Biology Peking University Health Science Center Peking University Beijing 100191 China
| | - Michael A McNutt
- Department of Pathology Peking University Health Science Center Peking University Beijing 100191 China
| | - Gang Li
- Department of Biochemistry and Molecular Biology Peking University Health Science Center Peking University Beijing 100191 China
| |
Collapse
|
12
|
Lu C, Shi L, Zhang J, Kong M, Liu Y, Zhou Y, Xu L, He J, Ma Z, Gu X. Neuron-restrictive silencer factor in periaqueductal gray contributes to remifentanil-induced postoperative hyperalgesia via repression of the mu-opioid receptor. J Neurol Sci 2015; 352:48-52. [PMID: 25819118 DOI: 10.1016/j.jns.2015.03.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 03/10/2015] [Accepted: 03/11/2015] [Indexed: 01/16/2023]
Abstract
BACKGROUND The ultra-short-acting mu-opioid receptor (MOR) agonist remifentanil induces postoperative hyperalgesia both in preclinical and clinical research studies. However, the precise mechanisms remain unclear, although changes in opioid receptor expression might be a correlative feature. Neuron-restrictive silencer factor (NRSF) functions as a crucial regulator of MOR expression in specific neuronal cells. Using a mouse model of incisional postoperative pain, we assessed the expression of MOR and NRSF and investigated whether disruption of NRSF expression could prevent the postoperative nociceptive sensitization induced by surgical incision and subcutaneous infusion of remifentanil. METHODS Paw withdrawal mechanical threshold (PWMT) and paw withdrawal thermal latency (PWTL) were independently used to assess mechanical allodynia and thermal hyperalgesia after surgery and cerebral ventricle injection of NRSF antisense oligonucleotide. Western blotting analyses were preformed to assess the expression levels of MOR and NRSF. RESULTS NRSF expression levels were enhanced after intraoperative infusion of remifentanil, resulting in repression of MOR expression in the periaqueductal gray (PAG). NRSF blockade with an NRSF antisense oligonucleotide significantly enhanced the expression levels of MOR and alleviated mechanical allodynia and thermal hyperalgesia induced by intraoperative infusion of remifentanil. CONCLUSION NRSF functions as a negative regulator of MOR in PAG and contributes to remifentanil-induced postoperative hyperalgesia. NRSF in PAG may be a potential target for this pain therapy.
Collapse
Affiliation(s)
- Cui'e Lu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical College of Nanjing University, 321 Zhong Shan North Road, Nanjing 210008, Jiangsu Province, China.
| | - Linyu Shi
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical College of Nanjing University, 321 Zhong Shan North Road, Nanjing 210008, Jiangsu Province, China.
| | - Juan Zhang
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical College of Nanjing University, 321 Zhong Shan North Road, Nanjing 210008, Jiangsu Province, China.
| | - Mingjian Kong
- Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing 210008, Jiangsu Province China.
| | - Yue Liu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical College of Nanjing University, 321 Zhong Shan North Road, Nanjing 210008, Jiangsu Province, China.
| | - Yu Zhou
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical College of Nanjing University, 321 Zhong Shan North Road, Nanjing 210008, Jiangsu Province, China.
| | - Li Xu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical College of Nanjing University, 321 Zhong Shan North Road, Nanjing 210008, Jiangsu Province, China.
| | - Jianhua He
- Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing 210008, Jiangsu Province China.
| | - Zhengliang Ma
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical College of Nanjing University, 321 Zhong Shan North Road, Nanjing 210008, Jiangsu Province, China.
| | - Xiaoping Gu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical College of Nanjing University, 321 Zhong Shan North Road, Nanjing 210008, Jiangsu Province, China.
| |
Collapse
|
13
|
Abstract
Opiates are among the oldest medications available to manage a number of medical problems. Although pain is the current focus, early use initially focused upon the treatment of dysentery. Opium contains high concentrations of both morphine and codeine, along with thebaine, which is used in the synthesis of a number of semisynthetic opioid analgesics. Thus, it is not surprising that new agents were initially based upon the morphine scaffold. The concept of multiple opioid receptors was first suggested almost 50 years ago (Martin, 1967), opening the possibility of new classes of drugs, but the morphine-like agents have remained the mainstay in the medical management of pain. Termed mu, our understanding of these morphine-like agents and their receptors has undergone an evolution in thinking over the past 35 years. Early pharmacological studies identified three major classes of receptors, helped by the discovery of endogenous opioid peptides and receptor subtypes-primarily through the synthesis of novel agents. These chemical biologic approaches were then eclipsed by the molecular biology revolution, which now reveals a complexity of the morphine-like agents and their receptors that had not been previously appreciated.
Collapse
Affiliation(s)
- Gavril W Pasternak
- Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065.
| | | |
Collapse
|
14
|
Kang DH, Song KY, Wei LN, Law PY, Loh HH, Choi HS. Novel function of the poly(c)-binding protein α-CP2 as a transcriptional activator that binds to single-stranded DNA sequences. Int J Mol Med 2013; 32:1187-94. [PMID: 24026233 PMCID: PMC4432725 DOI: 10.3892/ijmm.2013.1488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 08/29/2013] [Indexed: 11/10/2022] Open
Abstract
α-complex protein 2 (α-CP2) is known as an RNA-binding protein that interacts in a sequence-specific manner with single-stranded polycytosine [poly(C)]. This protein is involved in various post-transcriptional regulations, such as mRNA stabilization and translational regulation. In this study, the full-length mouse α-CP2 gene was expressed in an insoluble form with an N-terminal histidine tag in Escherichia coli and purified for homogeneity using affinity column chromatography. Its identity was confirmed using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Recombinant α-CP2 was expressed and refolded. The protein folding conditions for denatured α-CP2 were optimized. DNA and RNA electrophoretic mobility shift assays demonstrated that the recombinant α-CP2 is capable of binding to both single-stranded DNA and RNA poly(C) sequences. Furthermore, plasmids expressing α-CP2 activated the expression of a luciferase reporter when co-transfected with a single-stranded (pGL-SS) construct containing a poly(C) sequence. To our knowledge, this study demonstrates for the first time that α-CP2 functions as a transcriptional activator by binding to a single-stranded poly(C) sequence.
Collapse
Affiliation(s)
- Duk-Hee Kang
- Division of Nephrology, Department of Internal Medicine, Ewha Medical Research Institute, Ewha Womans University School of Medicine, Yangcheon‑gu, Seoul 158-710, Republic of Korea
| | | | | | | | | | | |
Collapse
|
15
|
Nahar-Gohad P, Sultan H, Esteban Y, Stabile A, Ko JL. RACK1 identified as the PCBP1-interacting protein with a novel functional role on the regulation of human MOR gene expression. J Neurochem 2012; 124:466-77. [PMID: 23173782 DOI: 10.1111/jnc.12100] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Revised: 11/10/2012] [Accepted: 11/14/2012] [Indexed: 12/23/2022]
Abstract
Poly C binding protein 1 (PCBP1) is an expressional regulator of the mu-opioid receptor (MOR) gene. We hypothesized the existence of a PCBP1 co-regulator modifying human MOR gene expression by protein-protein interaction with PCBP1. A human brain cDNA library was screened using the two-hybrid system with PCBP1 as the bait. Receptor for activated protein kinase C (RACK1) protein, containing seven WD domains, was identified. PCBP1-RACK1 interaction was confirmed via in vivo validation using the two-hybrid system, and by co-immunoprecipitation with anti-PCBP1 antibody and human neuronal NMB cell lysate, endogenously expressing PCBP1 and RACK1. Further co-immunoprecipitation suggested that RACK1-PCBP1 interaction occurred in cytosol alone. Single and serial WD domain deletion analyses demonstrated that WD7 of RACK1 is the key domain interacting with PCBP1. RACK1 over-expression resulted in a dose-dependent decrease of MOR promoter activity using p357 plasmid containing human MOR promoter and luciferase reporter gene. Knock-down analysis showed that RACK1 siRNA decreased the endogenous RACK1 mRNA level in NMB, and elevated MOR mRNA level as indicated by RT-PCR. Likewise, a decrease of RACK1 resulted in an increase of MOR proteins, verified by (3) H-diprenorphine binding assay. Collectively, this study reports a novel role of RACK1, physically interacting with PCBP1 and participating in the regulation of human MOR gene expression in neuronal NMB cells.
Collapse
Affiliation(s)
- Pranjal Nahar-Gohad
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07079, USA
| | | | | | | | | |
Collapse
|
16
|
Kang DH, Song KY, Choi HS, Law PY, Wei LN, Loh HH. Novel dual-binding function of a poly (C)-binding protein 3, transcriptional factor which binds the double-strand and single-stranded DNA sequence. Gene 2012; 501:33-8. [PMID: 22521865 DOI: 10.1016/j.gene.2012.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 03/30/2012] [Accepted: 04/02/2012] [Indexed: 10/28/2022]
Abstract
Poly(C)-binding proteins (PCBPs) are generally known as RNA-binding proteins that interact in a sequence-specific manner with single-stranded poly(C) sequences. These proteins are mainly involved in various posttranscriptional regulations (e.g., mRNA stabilization or translational activation/silencing). This study reports a novel dual-binding function for PCBP3, a member of the PCBP family. Recombinant PCBP3 was purified using affinity column chromatography and its identity confirmed by MALDI-TOF mass spectrometry. The protein folding conditions of the purified and renatured PCBP3 were optimized. Electrophoretic mobility shift assays demonstrated that the recombinant PCBP3 is capable of binding to both double- and single-strand poly(C) sequences. Furthermore, plasmids expressing PCBP3 repressed the expression of luciferase reporters when cotransfected with single-strand (pGL-SS) and double-strand (pGL-DS) constructs containing poly(C) sequences in their promoters. This study demonstrates for the first time that PCBP3 can function as a repressor dependent on binding to single-strand and double-stranded poly(C) sequences.
Collapse
Affiliation(s)
- Duk-Hee Kang
- Division of Nephrology Department of Internal Medicine, Ewha Womans University School of Medicine, Seoul 158-710, South Korea
| | | | | | | | | | | |
Collapse
|
17
|
Wei LN, Loh HH. Transcriptional and epigenetic regulation of opioid receptor genes: present and future. Annu Rev Pharmacol Toxicol 2011; 51:75-97. [PMID: 20868272 DOI: 10.1146/annurev-pharmtox-010510-100605] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Three opioid receptors (ORs) are known: μ opioid receptors (MORs), δ opioid receptors (DORs), and κ opioid receptors (KORs). Each is encoded by a distinct gene, and the three OR genes share a highly conserved genomic structure and promoter features, including an absence of TATA boxes and sensitivity to extracellular stimuli and epigenetic regulation. However, each of the genes is differentially expressed. Transcriptional regulation engages both basal and regulated transcriptional machineries and employs activating and silencing mechanisms. In retinoic acid-induced neuronal differentiation, the opioid receptor genes undergo drastically different chromatin remodeling processes and display varied patterns of epigenetic marks. Regulation of KOR expression is distinctly complex, and KOR exerts a unique function in neurite extension, indicating that KOR is not simply a pharmacological cousin of MOR and DOR. As the expression of OR proteins is ultimately controlled by extensive posttranscriptional processing, the pharmacological implication of OR gene regulation at the transcriptional level remains to be determined.
Collapse
Affiliation(s)
- Li-Na Wei
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, 55455, USA.
| | | |
Collapse
|
18
|
Hwang CK, Kim CS, Kim DK, Law PY, Wei LN, Loh HH. Up-regulation of the mu-opioid receptor gene is mediated through chromatin remodeling and transcriptional factors in differentiated neuronal cells. Mol Pharmacol 2010; 78:58-68. [PMID: 20385708 PMCID: PMC2912061 DOI: 10.1124/mol.110.064311] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 04/12/2010] [Indexed: 12/21/2022] Open
Abstract
The effects of morphine are mediated mainly through the mu opioid receptor (MOR). Expression of the MOR is up-regulated during neuronal differentiation in P19 embryonal carcinoma cells and epigenetic changes play an important role in MOR up-regulation. This study investigates the basis for differentiation-dependent alterations of MOR chromatin by studying the recruitment or dissociation of several factors to the remodeled chromatin locus. Chromatin immunoprecipitation assays were used to demonstrate the recruitment of the transcriptional activator Sp1 and the chromatin remodeling factors Brg1 and BAF155 to this promoter, as well as the dissociation of repressors [histone deacetylases, mSin3A, Brm, and methyl-CpG-binding protein 2 (MeCP2)]. Histone modifications (acetylation, induction of histone H3-lys4 methylation, and reduction of H3-lys9 methylation) were consistently detected on this promoter. Overexpression of Sp1 strongly enhanced MOR promoter activity, and the histone deacetylase inhibitor trichostatin A also increased promoter activity. In vitro DNA CpG-methylation of the promoter partially blocked binding of the Sp1 factor but induced MeCP2 binding. Coimmunoprecipitation studies also found novel evidence of an endogenous MeCP2 interaction with Sp3 but a weaker interaction with Sp1. Overall, the results suggest that during neuronal differentiation, MeCP2 and DNA methylation mediate remodeling of the MOR promoter by chromatin remodeling factors (Brg1 and BAF155) from a compacted state to a conformation allowing access for transcriptional factors. Subsequent recruitment of the activating transcription factor Sp1 to the remodeled promoter results in MOR up-regulation.
Collapse
Affiliation(s)
- Cheol Kyu Hwang
- Department of Pharmacology, University of Minnesota, 6-120 Jackson Hall, 321 Church St. S.E., Minneapolis, MN 55455, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Liu H, Li H, Guo L, Li M, Li C, Wang S, Jiang W, Liu X, McNutt MA, Li G. Mechanisms involved in phosphatidylinositol 3-kinase pathway mediated up-regulation of the mu opioid receptor in lymphocytes. Biochem Pharmacol 2010; 79:516-523. [PMID: 19765550 DOI: 10.1016/j.bcp.2009.09.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 09/08/2009] [Accepted: 09/10/2009] [Indexed: 01/12/2023]
Abstract
Despite the substantial progress made in understanding initiation expression of the MOR gene in lymphocytes, the signal pathway associated with MOR gene transcription remains to be better defined. As the phosphatidylinositol 3-kinase (PI3K)/AKT pathway can mediate diverse biological responses and is crucial for optimal immune responses and lymphocyte development, this study was undertaken to delineate the role of PI3K/AKT signaling in expression of the MOR gene in CEM x174 cells. The data show that morphine treatment enhanced the level of phosphorylated, rather than un-phosphorylated, PI3K and AKT, which were synchronously recruited to membrane. The levels of PTEN and p53 which are negative regulators of these signal molecules were reduced, and as a result, the interaction between PTEN and p53 was completely interrupted. With morphine treatment, the levels of both cytoplasmic and nuclear E2F1 which is the downstream effecter of AKT were elevated and the interaction of E2F1 with YY1, rather than Sp1, was also increased. Subsequently, E2F1 triggered the transcription of the MOR gene through its enhanced ability to bind the element in promoter region of the MOR gene. All responses to morphine were abolished by naloxone, which is an antagonist of MOR, or by LY294002, an inhibitor of PI3K, implying specific involvement of PI3K/AKT. These results strongly suggest that the PI3K/AKT pathway plays a critical role in the transfer of signal from morphine stimuli to the machinery by which MOR gene transcription is initiated.
Collapse
Affiliation(s)
- Han Liu
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Peking University, Beijing 100083, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Song KY, Choi HS, Hwang CK, Kim CS, Law PY, Wei LN, Loh HH. Differential use of an in-frame translation initiation codon regulates human mu opioid receptor (OPRM1). Cell Mol Life Sci 2009; 66:2933-42. [PMID: 19609488 PMCID: PMC11115551 DOI: 10.1007/s00018-009-0082-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 06/05/2009] [Accepted: 06/19/2009] [Indexed: 11/26/2022]
Abstract
The pharmacological effects of morphine and morphine-like drugs are mediated primarily through the micro opioid receptor. Here we show that differential use of an in-frame translational start codon in the 5'-untranslated region of the OPRM1 generates different translational products in vivo and in vitro. The 5'-end of the OPRM1 gene is necessary for initiating the alternate form and for subsequent degradation of the protein. Initiation of OPRM1 at the upstream site decreases the initiation at the main AUG site. However, alternative initiation of the long form of OPRM1 produces a protein with a short half-life, resulting from degradation mediated by the ubiquitin-proteasome pathway. Reporter and degradation assays showed that mutations of this long form at the second and third lysines reduce ubiquitin-dependent proteasome degradation, stabilizing the protein. The data suggest that MOP expression is controlled in part by initiation of the long form of MOP at the alternate site.
Collapse
Affiliation(s)
- Kyu Young Song
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Song KY, Kim CS, Hwang CK, Choi HS, Law PY, Wei LN, Loh HH. uAUG-mediated translational initiations are responsible for human mu opioid receptor gene expression. J Cell Mol Med 2009; 14:1113-24. [PMID: 19438807 PMCID: PMC3822748 DOI: 10.1111/j.1582-4934.2009.00734.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Mu opioid receptor (MOR) is the main site of interaction for major clinical analgesics, particularly morphine. MOR expression is regulated at the transcriptional and post-transcriptional levels. However, the protein expression of the MOR gene is relatively low and the translational control of MOR gene has not been well studied. The 5′-untranslated region (UTR) of the human MOR (OPRM1) mRNA contains four upstream AUG codons (uAUG) preceding the main translation initiation site. We mutated the four uAUGs individually and in combination. Mutations of the third uAUG, containing the same open reading frame, had the strongest inhibitory effect. The inhibitory effect caused by the third in-frame uAUG was confirmed by in vitro translation and receptor-binding assays. Toeprinting results showed that OPRM1 ribosomes initiated efficiently at the first uAUG, and subsequently re-initiated at the in-frame #3 uAUG and the physiological AUG site. This re-initiation resulted in negative expression of OPRM1 under normal conditions. These results indicate that re-initiation in MOR gene expression could play an important role in OPRM1 regulation.
Collapse
Affiliation(s)
- Kyu Young Song
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Transcription of the chicken Grin1 gene is regulated by the activity of SP3 and NRSF in undifferentiated cells and neurons. Biosci Rep 2008; 28:177-88. [PMID: 18557703 DOI: 10.1042/bsr20080058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The NMDA (N-methyl-D-aspartate) receptors are important in the regulation of neuronal development, synaptic plasticity, learning and memory, and are involved in several brain pathologies. The NR1 subunit is essential for the assembly of functional receptors, as it forms the calcium-permeable ion channel and contains the obligatory co-agonist binding site. Previous studies have shown that NR1 gene (Grin1) expression is up-regulated during neuronal differentiation and its expression is widespread in the central nervous system. We have previously cloned the chicken Grin1 gene and 1.9 kb of the 5'-regulatory region. In the present study, we analysed the molecular mechanisms that regulate chicken Grin1 gene transcription in undifferentiated cells and neurons. By functional analysis of chicken Grin1-luciferase gene 5'-regulatory region constructs, we demonstrate that the basal promoter is delimited within 210 bp upstream from the main transcription initiation site. DNA-protein binding and functional assays revealed that the 5'-UTR (untranslated region) has one consensus NRSE (neuron-restrictive silencing element) that binds NRSF (neuron-restrictive silencing factor), and one SP (stimulating protein transcription factor) element that binds SP3, both repressing Grin1 gene transcription in undifferentiated P19 cells (embryonic terato-carcinoma cells) and PC12 cells (phaeochromocytoma cells). The promoter region lacks a consensus TATA box, but contains one GSG/SP (GSG-like box near a SP-consensus site) that binds SP3 and up-regulates gene transcription in embryonic chicken cortical neurons. Taken together, these results demonstrate a dual role of SP3 in regulating the expression of the Grin1 gene, by repressing transcription in the 5'-UTR in undifferentiated cells as well as acting as a transcription factor, increasing Grin1 gene transcription in neurons.
Collapse
|
23
|
Wu Q, Law PY, Wei LN, Loh HH. Post-transcriptional regulation of mouse mu opioid receptor (MOR1) via its 3' untranslated region: a role for microRNA23b. FASEB J 2008; 22:4085-95. [PMID: 18716031 PMCID: PMC2614608 DOI: 10.1096/fj.08-108175] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Accepted: 07/24/2008] [Indexed: 11/11/2022]
Abstract
Expression of the mu opioid receptor (MOR1) protein is regulated temporally and spatially. Although transcription of its gene has been studied extensively, regulation of MOR1 protein production at the level of translation is poorly understood. Using reporter assays, we found that the MOR1 3'-untranslated region (UTR) represses reporter expression at the post-transcriptional level. Suppression by the 3'-UTR of MOR1 is mediated through decreased mRNA association with polysomes, which requires microRNA23b (miRNA23b), a specific miRNA that is expressed in mouse brain and NS20Y mouse neuroblastoma cells. miRNA23b interacts with the MOR1 3'-UTR via a K box motif. By knocking down endogenous miRNA23b in NS20Y cells, we confirmed that miRNA23b inhibits MOR1 protein expression in vivo. This is the first study reporting a translationally repressive role for the MOR1 3'-UTR. We propose a mechanism in which miRNA23b blocks the association of MOR1 mRNA with polysomes, thereby arresting its translation and suppressing the production of MOR1 protein.
Collapse
Affiliation(s)
- Qifang Wu
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| | | | | | | |
Collapse
|
24
|
Hwang CK, Song KY, Kim CS, Choi HS, Guo XH, Law PY, Wei LN, Loh HH. Epigenetic programming of mu-opioid receptor gene in mouse brain is regulated by MeCP2 and Brg1 chromatin remodelling factor. J Cell Mol Med 2008; 13:3591-615. [PMID: 19602036 PMCID: PMC4516510 DOI: 10.1111/j.1582-4934.2008.00535.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The pharmacological action of morphine as a pain medication is mediated primarily through the μ-opioid receptor (MOR). With few exceptions, MOR is expressed in brain regions where opioid actions take place. The basis for this unique spatial expression of MOR remains undetermined. Recently, we reported that DNA methylation of the MOR promoter plays an important role in regulating MOR in P19 cells. In this study, we show that the differential expression of MOR in microdissected mouse brain regions coincides with DNA methylation and histone modifications. MOR expression could be induced by a demethylating agent or a histone deacetylase inhibitor in MOR-negative cells, suggesting that the MOR gene can be silenced under epigenetic control. Increases in the in vivo interaction of methyl-CpG-binding protein 2 (MeCP2) were observed in the cerebellum, in which the MOR promoter was hypermethylated and MOR expression was the lowest among all brain regions tested. MeCP2 is associated closely with Rett syndrome, a neurodevelopmental disorder. We also established novel evidence for a functional role for MeCP2’s association with the chromatin-remodelling factor Brg1 and DNA methyltransferase Dnmt1, suggesting a possible role for MeCP2 in chromatin remodelling during MOR gene regulation. We conclude that MOR gene expression is epigenetically programmed in various brain regions and that MeCP2 assists the epigenetic program during DNA methylation and chromatin remodelling of the MOR promoter.
Collapse
Affiliation(s)
- Cheol Kyu Hwang
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Kim CS, Hwang CK, Song KY, Choi HS, Kim DK, Law PY, Wei LN, Loh HH. Novel function of neuron-restrictive silencer factor (NRSF) for posttranscriptional regulation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1835-46. [DOI: 10.1016/j.bbamcr.2008.06.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Revised: 06/19/2008] [Accepted: 06/20/2008] [Indexed: 10/21/2022]
|
26
|
Choi HS, Song KY, Hwang CK, Kim CS, Law PY, Wei LN, Loh HH. A proteomics approach for identification of single strand DNA-binding proteins involved in transcriptional regulation of mouse mu opioid receptor gene. Mol Cell Proteomics 2008; 7:1517-29. [PMID: 18453338 PMCID: PMC2494908 DOI: 10.1074/mcp.m800052-mcp200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The pharmacological actions of morphine and morphine-like drugs such as heroin are mediated primarily through the μ opioid receptor. Previously a single strand DNA element of the mouse μ opioid receptor gene (Oprm1) proximal promoter was found to be important for regulating Oprm1 in neuronal cells. To identify proteins binding to the single strand DNA element as potential regulators for Oprm1, affinity column chromatography with the single strand DNA element was performed using neuroblastoma NS20Y cells followed by two-dimensional gel electrophoresis and MALDI-TOF mass spectrometry. We identified five poly(C)-binding proteins: heterogeneous nuclear ribonucleoprotein (hnRNP) K, α-complex proteins (αCP) αCP1, αCP2, αCP2-KL, and αCP3. Binding of these proteins to the single strand DNA element of Oprm1 was sequence-specific as confirmed by supershift assays. In cotransfection studies, hnRNP K, αCP1, αCP2, and αCP2-KL activated the Oprm1 promoter activity, whereas αCP3 acted as a repressor. Ectopic expression of hnRNP K, αCP1, αCP2, and αCP2-KL also led to activation of the endogenous Oprm1 transcripts, and αCP3 repressed endogenous Oprm1 transcripts. We demonstrate novel roles as transcriptional regulators in Oprm1 regulation for hnRNP K and αCP binding to the single strand DNA element.
Collapse
Affiliation(s)
- Hack Sun Choi
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Whitten C, Swygert S, Butler SE, Finco TS. Transcription of the LAT gene is regulated by multiple binding sites for Sp1 and Sp3. Gene 2008; 413:58-66. [PMID: 18343609 DOI: 10.1016/j.gene.2008.01.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 01/29/2008] [Accepted: 01/31/2008] [Indexed: 11/18/2022]
Abstract
The LAT gene encodes an adaptor molecule that links receptor engagement to critical downstream signaling events. Previously, we identified the proximal promoter for the human LAT gene and found that it contains binding sites for members of the Ets and Runx transcription factor families. In the present study, we show that the promoter also contains 5 GC-rich elements that contribute to promoter activity and that are capable of binding the transcription factors Sp1 and Sp3. Overexpression of either Sp1 or full-length Sp3 was shown to augment LAT promoter activity, while siRNA-mediated knockdown of each transcription factor was demonstrated to have an inhibitory effect. We also discovered a cell-type specific DNase hypersensitive site that maps to the Sp1/Sp3 and adjacent Ets and Runx binding sites. Collectively, these results provide compelling data that implicates Sp1 and Sp3 in the transcriptional regulation of the human LAT gene.
Collapse
Affiliation(s)
- Caitlyn Whitten
- Agnes Scott College, Department of Biology, 141 E. College Ave., Decatur, GA 30030, USA
| | | | | | | |
Collapse
|
28
|
Choi HS, Hwang CK, Kim CS, Song KY, Law PY, Loh HH, Wei LN. Transcriptional regulation of mouse mu opioid receptor gene in neuronal cells by poly(ADP-ribose) polymerase-1. J Cell Mol Med 2008; 12:2319-33. [PMID: 18266974 PMCID: PMC4514111 DOI: 10.1111/j.1582-4934.2008.00259.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The pharmacological actions of morphine and morphine-like drugs such as heroin mediate primarily through the mu opioid receptor (MOR). It represents the target of the most valuable painkiller in contemporary medicine. Here we report that poly(ADP-ribose) polymerase 1 (PARP-1) binds to the double-stranded poly(C) element essential for the MOR promoter and represses promoter activity at the transcriptional level. We identified PARP-1 by affinity column chromatography using the double-stranded poly(C) element, followed by two-dimensional gel electrophoresis and MALDI-TOF mass spectrometry. PARP-1 binding to the poly(C) sequence of the MOR gene was sequence-specific as confirmed by the supershift assay. In cotransfection studies, PARP-1 repressed the MOR promoter only when the poly(C) sequence was intact. When PARP-1 was disrupted in NS20Y cells using siRNA, transcription of the endogenous target MOR gene increased significantly. Chromatin immunoprecipitation assays showed specific binding of PARP-1 to the double-stranded poly(C) element essential for the MOR promoter. Inhibition of PARP-1's catalytic domain with 3-aminobenzamide increased endogenous MOR mRNA levels in cultured NS20Y cells, suggesting that automodification of PARP-1 regulates MOR transcription. Our data suggest that PARP-1 can function as a repressor of MOR transcription dependent on the MOR poly(C) sequence. We demonstrate for the first time a role of PARP-1 as a transcriptional repressor in MOR gene regulation.
Collapse
Affiliation(s)
- Hack Sun Choi
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Li H, Liu H, Wang Z, Liu X, Guo L, Huang L, Gao L, McNutt MA, Li G. The role of transcription factors Sp1 and YY1 in proximal promoter region in initiation of transcription of the mu opioid receptor gene in human lymphocytes. J Cell Biochem 2008; 104:237-50. [DOI: 10.1002/jcb.21616] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
30
|
Choi HS, Kim CS, Hwang CK, Song KY, Law PY, Wei LN, Loh HH. Novel function of the poly(C)-binding protein alpha CP3 as a transcriptional repressor of the mu opioid receptor gene. FASEB J 2007; 21:3963-73. [PMID: 17625070 DOI: 10.1096/fj.07-8561com] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The alpha-complex proteins (alphaCP) are generally known as RNA-binding proteins that interact in a sequence-specific fashion with single-stranded poly(C). These proteins are mainly involved in various post-transcriptional regulations (e.g., mRNA stabilization or translational activation/silencing). Here we report a novel function of alphaCP3, a member of the alphaCP family. alphaCP3 bound to the double-stranded poly(C) element essential for the mu opioid receptor (MOR) promoter and repressed the promoter activity at the transcriptional level. We identified alphaCP3 using affinity column chromatography containing the double-stranded poly(C) element and matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry. AlphaCP3 binding to the poly(C) sequence of the MOR gene was sequence specific, as confirmed by the supershift assay. In cotransfection studies, alphaCP3 repressed the MOR promoter only when the poly(C) sequence was intact. Ectopic expression of alphaCP3 led to repression of the endogenous MOR transcripts in NS20Y cells. When alphaCP3 was disrupted using small interfering RNA (siRNA) in NS20Y cells, the transcription of the endogenous target MOR gene was increased significantly. Our data suggest that alphaCP3 can function as a repressor of MOR transcription dependent on the MOR poly(C) sequence. We demonstrate for the first time a role of alphaCP3 as a transcriptional repressor in MOR gene regulation.
Collapse
Affiliation(s)
- Hack Sun Choi
- Department of Pharmacology, University of Minnesota Medical School, 6-120 Jackson Hall, 321 Church St. SE, Minneapolis, MN 55455, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Hwang CK, Song KY, Kim CS, Choi HS, Guo XH, Law PY, Wei LN, Loh HH. Evidence of endogenous mu opioid receptor regulation by epigenetic control of the promoters. Mol Cell Biol 2007; 27:4720-36. [PMID: 17452465 PMCID: PMC1951474 DOI: 10.1128/mcb.00073-07] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The pharmacological effect of morphine as a painkiller is mediated mainly via the mu opioid receptor (MOR) and is dependent on the number of MORs in the cell surface membrane. While several studies have reported that the MOR gene is regulated by various cis- and trans-acting factors, many questions remain unanswered regarding in vivo regulation. The present study shows that epigenetic silencing and activation of the MOR gene are achieved through coordinated regulation at both the histone and DNA levels. In P19 mouse embryonal carcinoma cells, expression of the MOR was greatly increased after neuronal differentiation. MOR expression could also be induced by a demethylating agent (5'-aza-2'-deoxycytidine) or histone deacetylase inhibitors in the P19 cells, suggesting involvement of DNA methylation and histone deacetylation for MOR gene silencing. Analysis of CpG DNA methylation revealed that the proximal promoter region was unmethylated in differentiated cells compared to its hypermethylation in undifferentiated cells. In contrast, the methylation of other regions was not changed in either cell type. Similar methylation patterns were observed in the mouse brain. In vitro methylation of the MOR promoters suppressed promoter activity in the reporter assay. Upon differentiation, the in vivo interaction of MeCP2 was reduced in the MOR promoter region, coincident with histone modifications that are relevant to active transcription. When MeCP2 was disrupted using MeCP2 small interfering RNA, the endogenous MOR gene was increased. These data suggest that DNA methylation is closely linked to the MeCP2-mediated chromatin structure of the MOR gene. Here, we propose that an epigenetic mechanism consisting of DNA methylation and chromatin modification underlies the cell stage-specific mechanism of MOR gene expression.
Collapse
Affiliation(s)
- Cheol Kyu Hwang
- Department of Pharmacology, University of Minnesota, 6-120 Jackson Hall, 321 Church St. S.E., Minneapolis, MN 55455, USA.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Shibasaki M, Katsura M, Torigoe F, Honda T, Sumimoto A, Tsujimura A, Ohkuma S. Increase in diazepam binding inhibitor expression by sustained morphine exposure is mediated via μ-opioid receptors in primary cultures of mouse cerebral cortical neurons. J Neurosci Res 2007; 85:2971-80. [PMID: 17638297 DOI: 10.1002/jnr.21415] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Our previous in vivo experiment demonstrates that chronic morphine treatment up-regulates diazepam binding inhibitor (DBI) transcripts in mouse cerebral cortex, although detailed mechanisms were unclear (Katsura et al. [1998] J. Neurochem. 71:2638-2641). This study sought to elucidate the precise mechanisms of DBI mRNA up-regulation by long-term treatment with morphine using primary cultures of mouse cerebral cortical neurons. A significant increase in DBI mRNA was observed after sustained exposure to 0.3 microM morphine for 2 days, and the maximal expression occurred after 2 days of exposure, whereas transient exposure to 0.3 microM morphine for 15 min, 1 hr, and 3 hr produced no changes in the expression. Continuous exposure to DAMGO also significantly increased DBI mRNA expression, which was completely abolished by a selective antagonist of mu-opioid receptors, beta-funaltrexamine (beta-FNA). The morphine-induced increase in DBI mRNA expression and its content were completely inhibited by naloxone and beta-FNA, and the inhibitory potential of naloxonazine was about half that of beta-FNA. On the other hand, kappa- and delta-opioid receptor antagonists showed no effects on the morphine-induced increase in DBI mRNA. In addition, both a calmodulin antagonist and a CaM II kinase inhibitor significantly suppressed the morphine-induced increase in DBI mRNA. These results indicate that the increase in DBI expression is induced by continuous activation of mu-opioid receptors but not of kappa- and delta-opioid receptors and is regulated by the calcium/calmodulin-related phosphorylation system.
Collapse
|
33
|
Abstract
This paper is the 28th consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning over a quarter-century of research. It summarizes papers published during 2005 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity, neurophysiology and transmitter release (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| | | |
Collapse
|
34
|
Kim CS, Choi HS, Hwang CK, Song KY, Lee BK, Law PY, Wei LN, Loh HH. Evidence of the neuron-restrictive silencer factor (NRSF) interaction with Sp3 and its synergic repression to the mu opioid receptor (MOR) gene. Nucleic Acids Res 2006; 34:6392-403. [PMID: 17130167 PMCID: PMC1702488 DOI: 10.1093/nar/gkl724] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Previously, we reported that the neuron-restrictive silencer element (NRSE) of mu opioid receptor (MOR) functions as a critical regulator to repress the MOR transcription in specific neuronal cells, depending on neuron-restriction silence factor (NRSF) expression levels [C.S.Kim, C.K.Hwang, H.S.Choi, K.Y.Song, P.Y.Law, L.N.Wei and H.H.Loh (2004) J. Biol. Chem., 279, 46464–46473]. Herein, we identify a conserved GC sequence next to NRSE region in the mouse MOR gene. The inhibition of Sp family factors binding to this GC box by mithramycin A led to a significant increase in the endogenous MOR transcription. In the co-immunoprecipitation experiment, NRSF interacted with the full-length Sp3 factor, but not with Sp1 or two short Sp3 isoforms. The sequence specific and functional binding by Sp3 at this GC box was confirmed by in vitro gel-shift assays using either in vitro translated proteins or nuclear extract, and by in vivo chromatin immunoprecipitation assays. Transient transfection assays showed that Sp3-binding site of the MOR gene is a functionally synergic repressor element with NRSE in NS20Y cells, but not in the NRSF negative PC12 cells. The results suggest that the synergic interaction between NRSF and Sp3 is required to negatively regulate MOR gene transcription and that transcription of MOR gene would be governed by the context of available transcription factors rather than by a master regulator.
Collapse
Affiliation(s)
- Chun Sung Kim
- Department of Pharmacology, University of Minnesota Medical School, 6-120 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455, USA.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Mao X, Moerman-Herzog AM, Wang W, Barger SW. Differential transcriptional control of the superoxide dismutase-2 kappaB element in neurons and astrocytes. J Biol Chem 2006; 281:35863-72. [PMID: 17023425 PMCID: PMC2063448 DOI: 10.1074/jbc.m604166200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In addition to their conventional G-C/T target sequences, Sp1 family transcription factors (Sp-factors) can interact with a subset of the target sequences for NFkappaB. Due to the low level of bona fide NFkappaB activity in most resting cells, this interaction between Sp-factors and kappaB-sites could play important roles in cell function. Here we used mutagenesis of a canonical kappaB element from the immunoglobulin and HIV promoters to identify the GC-rich sequences at each end required for Sp-factor targeting. Through screening of multiple kappaB elements, a sequence element located in the second intron of superoxide dismutase-2 (SOD2) was identified as a good candidate for both NFkappaB and Sp-factor binding. In neurons, the prominent proteins interacting with this site were Sp3 and Sp4, whereas Sp1, Sp3, and NFkappaB were associated with this site in astroglia. The neuronal Sp-factors repressed transcriptional activity through this kappaB-site. In contrast, astroglial Sp-factors activated promoter activity through the same element. NFkappaB contributed to control of the SOD2 kappaB element only in astrocytes. These findings imply that cell-type specificity of transcription in the central nervous system, particularly with regard to kappaB elements, may include two unique aspects of neurons: 1) a recalcitrant NFkappaB and 2) the substitution of Sp4 for Sp1.
Collapse
Affiliation(s)
- Xianrong Mao
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | | | | | |
Collapse
|
36
|
Characterizing exons 11 and 1 promoters of the mu opioid receptor (Oprm) gene in transgenic mice. BMC Mol Biol 2006; 7:41. [PMID: 17101047 PMCID: PMC1657025 DOI: 10.1186/1471-2199-7-41] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Accepted: 11/13/2006] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The complexity of the mouse mu opioid receptor (Oprm) gene was demonstrated by the identification of multiple alternatively spliced variants and promoters. Our previous studies have identified a novel promoter, exon 11 (E11) promoter, in the mouse Oprm gene. The E11 promoter is located approximately 10 kb upstream of the exon 1 (E1) promoter. The E11 promoter controls the expression of nine splice variants in the mouse Oprm gene. Distinguished from the TATA-less E1 promoter, the E11 promoter resembles a typical TATA-containing eukaryote class II promoter. The aim of this study is to further characterize the E11 and E1 promoters in vivo using a transgenic mouse model. RESULTS We constructed a approximately 20 kb transgenic construct in which a 3.7 kb E11 promoter region and an 8.9 kb E1 promoter region controlled expression of tau/LacZ and tau/GFP reporters, respectively. The construct was used to establish a transgenic mouse line. The expression of the reporter mRNAs, determined by a RT-PCR approach, in the transgenic mice during embryonic development displayed a temporal pattern similar to that of the endogenous promoters. X-gal staining for tau/LacZ reporter and GFP imaging for tau/GFP reporter showed that the transgenic E11 and E1 promoters were widely expressed in various regions of the central nervous system (CNS). The distribution of tau/GFP reporter in the CNS was similar to that of MOR-1-like immunoreactivity using an exon 4-specific antibody. However, differential expression of both promoters was observed in some CNS regions such as the hippocampus and substantia nigra, suggesting that the E11 and E1 promoters were regulated differently in these regions. CONCLUSION We have generated a transgenic mouse line to study the E11 and E1 promoters in vivo using tau/LacZ and tau/GFP reporters. The reasonable relevance of the transgenic model was demonstrated by the temporal and spatial expression of the transgenes as compared to those of the endogenous transcripts. We believe that these transgenic mice will provide a useful model for further characterizing the E11 and E1 promoter in vivo under different physiological and pathological circumstances such as chronic opioid treatment and chronic pain models.
Collapse
|
37
|
Choi HS, Kim CS, Hwang CK, Song KY, Wang W, Qiu Y, Law PY, Wei LN, Loh HH. The opioid ligand binding of human μ-opioid receptor is modulated by novel splice variants of the receptor. Biochem Biophys Res Commun 2006; 343:1132-40. [PMID: 16580639 DOI: 10.1016/j.bbrc.2006.03.084] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Accepted: 03/07/2006] [Indexed: 10/24/2022]
Abstract
The pharmacological actions of morphine and morphine-like drugs, such as heroin, mediate primarily through the mu-opioid receptor (MOR). It has been proposed that the functional diversity of MOR may be related to alternative splicing of the MOR gene. Although a number of MOR mRNA splice variants have been reported, their biological function has been controversial. In this study, two novel splice variants of the human MOR gene were discovered. Splice variants 1 and 2 (here called the SV1 and SV2) retain different portions of intron I. In vitro translation of SV1 and SV2 produced proteins with the predicted molecular weights. The splice variant proteins were identical to the wild-type MOR-1 up to the first transmembrane domains, but were different after the first intracellular loop domains. SV1 and SV2 of hMOR were present in human neuroblastoma NMB cells and human whole brain confirmed by RT-PCR. In a receptor binding assay, cells expressing the SV1 and SV2 do not exhibit binding to [(3)H]diprenorphine. The formations of MOR.SV1 and MOR.SV2 heterodimers were demonstrated by co-immunoprecipitation and bioluminescence resonance energy transfer between MOR and splice variants. Co-transfection of MOR-GFP and SV-DsRed gene showed that MOR and SV protein co-localized at the cytoplasmic membrane. In NMB cells expressing human MOR gene, transfection of SV1 or SV2 reduced binding activity of the endogenous MOR. These data support a potential role of SV1 and SV2 proteins as possible biological modulator of human mu-opioid receptor.
Collapse
Affiliation(s)
- Hack Sun Choi
- Department of Pharmacology, Medical School, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Pan YX. Diversity and Complexity of the Mu Opioid Receptor Gene: Alternative Pre-mRNA Splicing and Promoters. DNA Cell Biol 2005; 24:736-50. [PMID: 16274294 DOI: 10.1089/dna.2005.24.736] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mu opioid receptors play an important role in mediating the actions of a class of opioids including morphine and heroin. Binding and pharmacological studies have proposed several mu opioid receptor subtypes: mu(1), mu(2), and morphine-6beta-glucuronide (M6G). The cloning of a mu opioid receptor, MOR-1, has provided an invaluable tool to explore pharmacological and physiological functions of mu opioid receptors at the molecular level. However, only one mu opioid receptor (Oprm) gene has been isolated. Alternative pre-mRNA splicing has been proposed as a molecular explanation for the existence of pharmacologically identified subtypes. In recent years, we have extensively investigated alternative splicing of the Oprm gene, particularly of the mouse Oprm gene. So far we have identified 25 splice variants from the mouse Oprm gene, which are controlled by two diverse promoters, eight splice variants from the rat Oprm gene, and 11 splice variants from the human Oprm gene. Diversity and complexity of the Oprm gene was further demonstrated by functional differences in agonist-induced G protein activation, adenylyl cyclase activity, and receptor internalization among carboxyl terminal variants. This review summarizes these recent results and provides a new perspective on understanding and exploring complex opioid actions in animals and humans.
Collapse
Affiliation(s)
- Ying-Xian Pan
- Department of Neurology, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.
| |
Collapse
|
39
|
Wu Q, Hwang CK, Yao S, Law PY, Loh HH, Wei LN. A major species of mouse mu-opioid receptor mRNA and its promoter-dependent functional polyadenylation signal. Mol Pharmacol 2005; 68:279-85. [PMID: 15879516 DOI: 10.1124/mol.105.012567] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The pharmacological effects of opioid drugs are mediated mainly by the mu-opioid receptor (MOR), which is encoded by an mRNA transcript named MOR1. Although several MOR mRNA splice variants have been reported, their biological relevance has been debated. In this study, we found that probes of regions essential for the production of functional MOR, as well as that of the 3'-downstream region of the MOR gene coding region, detected by Northern blot analyses, a major species of mature transcript MOR1 from mouse brain of approximately 11.5 kilobases (kb). Although exon 3 probe detected an additional 3.7-kb transcript, this transcript was not detected by other probes, ruling out its ability to produce functional MOR. The 3'-untranslated region (UTR) of MOR1 is contiguously extended from the end of the coding region, and uses a single polyadenylation [poly (A)] signal (located 10,179 bp downstream of the MOR1 stop codon). The poly (A) signal (AAUAAA) is located 26 bp upstream of the poly (A) site. Transient transfection using luciferase reporters verified the functionality of this poly (A) signal, in particular on a reporter driven by the MOR promoter. This poly (A) is much less effective for a heterologous promoter, such as simian virus 40, indicating a functional coupling of MOR promoter and its own poly (A). This report verifies MOR1 as the major mature MOR gene transcript that has the full capacity to produce functional MOR protein, identifies the 3'-UTR of MOR1 transcript, and uncovers functional coupling of the MOR gene promoter and its polyadenylation signal.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cell Line, Tumor
- Mice
- Mice, Inbred C57BL
- Molecular Sequence Data
- Promoter Regions, Genetic/genetics
- RNA 3' Polyadenylation Signals/genetics
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Receptors, Opioid, mu/biosynthesis
- Receptors, Opioid, mu/chemistry
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/physiology
Collapse
Affiliation(s)
- Qifang Wu
- Department of Pharmacology, University of Minnesota Medical School, 6-120 Jackson Hall, 321 Church St. S.E., Minneapolis, MN 55455, USA.
| | | | | | | | | | | |
Collapse
|