1
|
Kamaraj R, Drastik M, Maixnerova J, Pavek P. Allosteric Antagonism of the Pregnane X Receptor (PXR): Current-State-of-the-Art and Prediction of Novel Allosteric Sites. Cells 2022; 11:2974. [PMID: 36230936 PMCID: PMC9563780 DOI: 10.3390/cells11192974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 11/26/2022] Open
Abstract
The pregnane X receptor (PXR, NR1I2) is a xenobiotic-activated transcription factor with high levels of expression in the liver. It not only plays a key role in drug metabolism and elimination, but also promotes tumor growth, drug resistance, and metabolic diseases. It has been proposed as a therapeutic target for type II diabetes, metabolic syndrome, and inflammatory bowel disease, and PXR antagonists have recently been considered as a therapy for colon cancer. There are currently no PXR antagonists that can be used in a clinical setting. Nevertheless, due to the large and complex ligand-binding pocket (LBP) of the PXR, it is challenging to discover PXR antagonists at the orthosteric site. Alternative ligand binding sites of the PXR have also been proposed and are currently being studied. Recently, the AF-2 allosteric binding site of the PXR has been identified, with several compounds modulating the site discovered. Herein, we aimed to summarize our current knowledge of allosteric modulation of the PXR as well as our attempt to unlock novel allosteric sites. We describe the novel binding function 3 (BF-3) site of PXR, which is also common for other nuclear receptors. In addition, we also mention a novel allosteric site III based on in silico prediction. The identified allosteric sites of the PXR provide new insights into the development of safe and efficient allosteric modulators of the PXR receptor. We therefore propose that novel PXR allosteric sites might be promising targets for treating chronic metabolic diseases and some cancers.
Collapse
Affiliation(s)
- Rajamanikkam Kamaraj
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University in Prague, Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic
| | - Martin Drastik
- Department of Physical Chemistry and Biophysics, Faculty of Pharmacy, Charles University in Prague, Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic
| | - Jana Maixnerova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University in Prague, Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic
| | - Petr Pavek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University in Prague, Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic
| |
Collapse
|
2
|
Niu X, Wu T, Li G, Gu X, Tian Y, Cui H. Insights into the critical role of the PXR in preventing carcinogenesis and chemotherapeutic drug resistance. Int J Biol Sci 2022; 18:742-759. [PMID: 35002522 PMCID: PMC8741843 DOI: 10.7150/ijbs.68724] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/21/2021] [Indexed: 12/12/2022] Open
Abstract
Pregnane x receptor (PXR) as a nuclear receptor is well-established in drug metabolism, however, it has pleiotropic functions in regulating inflammatory responses, glucose metabolism, and protects normal cells against carcinogenesis. Most studies focus on its transcriptional regulation, however, PXR can regulate gene expression at the translational level. Emerging evidences have shown that PXR has a broad protein-protein interaction network, by which is implicated in the cross signaling pathways. Furthermore, the interactions between PXR and some critical proteins (e.g., p53, Tip60, p300/CBP-associated factor) in DNA damage pathway highlight its potential roles in this field. A thorough understanding of how PXR maintains genome stability and prevents carcinogenesis will help clinical diagnosis and finally benefit patients. Meanwhile, due to the regulation of CYP450 enzymes CYP3A4 and multidrug resistance protein 1 (MDR1), PXR contributes to chemotherapeutic drug resistance. It is worthy of note that the co-factor of PXR such as RXRα, also has contributions to this process, which makes the PXR-mediated drug resistance more complicated. Although single nucleotide polymorphisms (SNPs) vary between individuals, the amino acid substitution on exon of PXR finally affects PXR transcriptional activity. In this review, we have summarized the updated mechanisms that PXR protects the human body against carcinogenesis, and major contributions of PXR with its co-factors have made on multidrug resistance. Furthermore, we have also reviewed the current promising antagonist and their clinic applications in reversing chemoresistance. We believe our review will bring insight into PXR-targeted cancer therapy, enlighten the future study direction, and provide substantial evidence for the clinic in future.
Collapse
Affiliation(s)
- Xiaxia Niu
- Institute of Toxicology, School of Public Health, Lanzhou University, 730000, Lanzhou, China
| | - Ting Wu
- Institute of Toxicology, School of Public Health, Lanzhou University, 730000, Lanzhou, China
| | - Gege Li
- Institute of Toxicology, School of Public Health, Lanzhou University, 730000, Lanzhou, China
| | - Xinsheng Gu
- Department of Pharmacology, College of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Yanan Tian
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, USA
| | - Hongmei Cui
- Institute of Toxicology, School of Public Health, Lanzhou University, 730000, Lanzhou, China
| |
Collapse
|
3
|
Discrepancy in interactions and conformational dynamics of pregnane X receptor (PXR) bound to an agonist and a novel competitive antagonist. Comput Struct Biotechnol J 2022; 20:3004-3018. [PMID: 35782743 PMCID: PMC9218138 DOI: 10.1016/j.csbj.2022.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 11/22/2022] Open
|
4
|
Hall A, Chanteux H, Ménochet K, Ledecq M, Schulze MSED. Designing Out PXR Activity on Drug Discovery Projects: A Review of Structure-Based Methods, Empirical and Computational Approaches. J Med Chem 2021; 64:6413-6522. [PMID: 34003642 DOI: 10.1021/acs.jmedchem.0c02245] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This perspective discusses the role of pregnane xenobiotic receptor (PXR) in drug discovery and the impact of its activation on CYP3A4 induction. The use of structural biology to reduce PXR activity on drug discovery projects has become more common in recent years. Analysis of this work highlights several important molecular interactions, and the resultant structural modifications to reduce PXR activity are summarized. The computational approaches undertaken to support the design of new drugs devoid of PXR activation potential are also discussed. Finally, the SAR of empirical design strategies to reduce PXR activity is reviewed, and the key SAR transformations are discussed and summarized. In conclusion, this perspective demonstrates that PXR activity can be greatly diminished or negated on active drug discovery projects with the knowledge now available. This perspective should be useful to anyone who seeks to reduce PXR activity on a drug discovery project.
Collapse
Affiliation(s)
- Adrian Hall
- UCB, Avenue de l'Industrie, Braine-L'Alleud 1420, Belgium
| | | | | | - Marie Ledecq
- UCB, Avenue de l'Industrie, Braine-L'Alleud 1420, Belgium
| | | |
Collapse
|
5
|
Reddy RT, Nyunoya T. Identification of novel pregnane X receptor (PXR) agonists by In silico and biological activity analyses and reversal of cigarette smoke-induced PXR downregulation. Biochem Biophys Res Commun 2021; 555:1-6. [PMID: 33812052 DOI: 10.1016/j.bbrc.2021.02.145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 02/28/2021] [Indexed: 10/21/2022]
Abstract
Cigarette smoke (CS) contains many toxins that collectively harm nearly every organ in the body, and smoking is a key risk factor for many chronic diseases. Aside from its toxic actions, CS may alter expression of the drug- and steroid-binding pregnane X receptor (PXR), which when activated upregulates expression of cytochrome P450 (CYP) enzymes, glutathione transferases (GSTs), and multidrug resistance protein 1 (MDR1), an adaptive metabolic array that mediates clearance of CS component toxins. We sought to identify new PXR agonists that may be useful for restoring PXR activity in conditions wherein it is suppressed, and their mechanisms of PXR binding and activation. PXR has a uniquely larger, hydrophobic, and highly flexible ligand-binding domain (LBD) vs. other nuclear receptors, enabling it to interact with structurally diverse molecules. We tested certain calcium channel blockers (CCBs) as a pharmacological subset of potential PXR ligands, analyzing by molecular docking methods, and identified a putative active site in the PXR LBD, along with the relevant bonds and bonding energies. We analyzed felodipine binding and agonist activity in detail, as it showed the lowest binding energy among CCBs tested. We found felodipine was a potent PXR agonist as measured by luciferase reporter assay, whereas CCBs with higher binding energies were less potent (amlodipine) or nearly inactive (manidipine), and it induced CYP3A4 expression in HepG2 cells, a known target of PXR agonism. Felodipine also both induced PXR mRNA in HepG2 hepatocytes and reduced CS extract-induced diminution of PXR levels, indicating it modulates PXR expression. The results illuminate mechanisms of ligand-induced PXR activation and identify felodipine as a novel PXR agonist.
Collapse
Affiliation(s)
- Rajan T Reddy
- Winchester Thurston School, Pittsburgh, PA, 15213, USA
| | - Toru Nyunoya
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA; VA Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA.
| |
Collapse
|
6
|
Wang J, Bwayi M, Florke Gee RR, Chen T. PXR-mediated idiosyncratic drug-induced liver injury: mechanistic insights and targeting approaches. Expert Opin Drug Metab Toxicol 2020; 16:711-722. [PMID: 32500752 PMCID: PMC7429329 DOI: 10.1080/17425255.2020.1779701] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 06/04/2020] [Indexed: 01/03/2023]
Abstract
INTRODUCTION The human liver is the center for drug metabolism and detoxification and is, therefore, constantly exposed to toxic chemicals. The loss of liver function as a result of this exposure is referred to as drug-induced liver injury (DILI). The pregnane X receptor (PXR) is the primary regulator of the hepatic drug-clearance system, which plays a critical role in mediating idiosyncratic DILI. AREAS COVERED This review is focused on common mechanisms of PXR-mediated DILI and on in vitro and in vivo models developed to predict and assess DILI. It also provides an update on the development of PXR antagonists that may manage PXR-mediated DILI. EXPERT OPINION DILI can be caused by many factors, and PXR is clearly linked to DILI. Although emerging data illustrate how PXR mediates DILI and how PXR activity can be modulated, many questions concerning the development of effective PXR modulators remain. Future research should be focused on determining the mechanisms regulating PXR functions in different cellular contexts.
Collapse
Affiliation(s)
- Jingheng Wang
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Monicah Bwayi
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Rebecca R. Florke Gee
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| |
Collapse
|
7
|
Chai SC, Wright WC, Chen T. Strategies for developing pregnane X receptor antagonists: Implications from metabolism to cancer. Med Res Rev 2019; 40:1061-1083. [PMID: 31782213 DOI: 10.1002/med.21648] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/24/2019] [Accepted: 11/19/2019] [Indexed: 12/11/2022]
Abstract
Pregnane X receptor (PXR) is a ligand-activated nuclear receptor (NR) that was originally identified as a master regulator of xenobiotic detoxification. It regulates the expression of drug-metabolizing enzymes and transporters to control the degradation and excretion of endobiotics and xenobiotics, including therapeutic agents. The metabolism and disposition of drugs might compromise their efficacy and possibly cause drug toxicity and/or drug resistance. Because many drugs can promiscuously bind and activate PXR, PXR antagonists might have therapeutic value in preventing and overcoming drug-induced PXR-mediated drug toxicity and drug resistance. Furthermore, PXR is now known to have broader cellular functions, including the regulation of cell proliferation, and glucose and lipid metabolism. Thus, PXR might be involved in human diseases such as cancer and metabolic diseases. The importance of PXR antagonists is discussed in the context of the role of PXR in xenobiotic sensing and other disease-related pathways. This review focuses on the development of PXR antagonists, which has been hampered by the promiscuity of PXR ligand binding. However, substantial progress has been made in recent years, suggesting that it is feasible to develop selective PXR antagonists. We discuss the current status, challenges, and strategies in developing selective PXR antagonists. The strategies are based on the molecular mechanisms of antagonism in related NRs that can be applied to the design of PXR antagonists, primarily driven by structural information.
Collapse
Affiliation(s)
- Sergio C Chai
- Department of Chemical Biology and Therapeutics, St Jude Children's Research Hospital, Memphis, Tennessee
| | - William C Wright
- Department of Chemical Biology and Therapeutics, St Jude Children's Research Hospital, Memphis, Tennessee.,Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St Jude Children's Research Hospital, Memphis, Tennessee.,Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
8
|
Skowron KJ, Booker K, Cheng C, Creed S, David BP, Lazzara PR, Lian A, Siddiqui Z, Speltz TE, Moore TW. Steroid receptor/coactivator binding inhibitors: An update. Mol Cell Endocrinol 2019; 493:110471. [PMID: 31163202 PMCID: PMC6645384 DOI: 10.1016/j.mce.2019.110471] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/30/2019] [Accepted: 05/30/2019] [Indexed: 12/14/2022]
Abstract
The purpose of this review is to highlight recent developments in small molecules and peptides that block the binding of coactivators to steroid receptors. These coactivator binding inhibitors bind at the coregulator binding groove, also known as Activation Function-2, rather than at the ligand-binding site of steroid receptors. Steroid receptors that have been targeted with coactivator binding inhibitors include the androgen receptor, estrogen receptor and progesterone receptor. Coactivator binding inhibitors may be useful in some cases of resistance to currently prescribed therapeutics. The scope of the review includes small-molecule and peptide coactivator binding inhibitors for steroid receptors, with a particular focus on recent compounds that have been assayed in cell-based models.
Collapse
Affiliation(s)
- Kornelia J Skowron
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Kenneth Booker
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Changfeng Cheng
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Simone Creed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Brian P David
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Phillip R Lazzara
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Amy Lian
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Zamia Siddiqui
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Thomas E Speltz
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA; Department of Chemistry, University of Chicago, 929 E. 57th Street, E547, Chicago, IL, 60637, USA
| | - Terry W Moore
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA; University of Illinois Cancer Center, University of Illinois at Chicago, 1801 W. Taylor Street, Chicago, IL, 60612, USA.
| |
Collapse
|
9
|
Staudinger JL. Clinical applications of small molecule inhibitors of Pregnane X receptor. Mol Cell Endocrinol 2019; 485:61-71. [PMID: 30726709 DOI: 10.1016/j.mce.2019.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/29/2019] [Accepted: 02/02/2019] [Indexed: 01/19/2023]
Abstract
The canonical effect of Pregnane X Receptor (PXR, NR1I2) agonism includes enhanced hepatic uptake and a concomitant increase in the first-pass metabolism and efflux of drugs in mammalian liver and intestine. In patients undergoing combination therapy, PXR-mediated gene regulation represents the molecular basis of numerous food-drug, herb-drug, and drug-drug interactions. Moreover, PXR activation promotes chemotherapeutic resistance in certain malignancies. Additional research efforts suggest that sustained PXR activation exacerbates the development of fatty liver disease. Additional metabolic effects of PXR activation in liver are the inhibition of fatty acid oxidation and gluconeogenesis. The identification of non-toxic and selective PXR antagonists is therefore of current research interest. Inhibition of PXR should decrease adverse effects, improve therapeutic effectiveness, and advance clinical outcomes in patients with cancer, fatty liver, and diabetes. This review identifies small molecule PXR antagonists described to date, discusses possible molecular mechanisms of inhibition, and seeks to describe the likely biomedical consequences of the inhibition of this nuclear receptor superfamily member.
Collapse
Affiliation(s)
- Jeff L Staudinger
- Basic Sciences, Kansas City University of Medicine and Biosciences, Joplin, MO, USA.
| |
Collapse
|
10
|
Chai SC, Lin W, Li Y, Chen T. Drug discovery technologies to identify and characterize modulators of the pregnane X receptor and the constitutive androstane receptor. Drug Discov Today 2019; 24:906-915. [PMID: 30731240 PMCID: PMC6421094 DOI: 10.1016/j.drudis.2019.01.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/27/2018] [Accepted: 01/30/2019] [Indexed: 11/24/2022]
Abstract
The pregnane X receptor (PXR) and the constitutive androstane receptor (CAR) are ligand-activated nuclear receptors (NRs) that are notorious for their role in drug metabolism, causing unintended drug-drug interactions and decreasing drug efficacy. They control the xenobiotic detoxification system by regulating the expression of an array of drug-metabolizing enzymes and transporters that excrete exogenous chemicals and maintain homeostasis of endogenous metabolites. Much effort has been invested in recognizing potential drugs for clinical use that can activate PXR and CAR to enhance the expression of their target genes, and in identifying PXR and CAR inhibitors that can be used as co-therapeutics to prevent adverse effects. Here, we present current technologies and assays used in the quest to characterize PXR and CAR modulators, which range from biochemical to cell-based and animal models.
Collapse
Affiliation(s)
- Sergio C Chai
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Wenwei Lin
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Yongtao Li
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Taosheng Chen
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| |
Collapse
|
11
|
Identification of approved drugs as potent inhibitors of pregnane X receptor activation with differential receptor interaction profiles. Arch Toxicol 2018; 92:1435-1451. [DOI: 10.1007/s00204-018-2165-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 01/17/2018] [Indexed: 01/18/2023]
|
12
|
Farhadi T. In silico designing of peptide inhibitors against pregnane X receptor: the novel candidates to control drug metabolism. Int J Pept Res Ther 2017. [DOI: 10.1007/s10989-017-9627-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
13
|
Seow CL, Lau AJ. Differential activation of pregnane X receptor by carnosic acid, carnosol, ursolic acid, and rosmarinic acid. Pharmacol Res 2017; 120:23-33. [PMID: 28288941 DOI: 10.1016/j.phrs.2017.03.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 02/24/2017] [Accepted: 03/08/2017] [Indexed: 10/20/2022]
Abstract
Pregnane X receptor (PXR) regulates the expression of many genes, including those involved in drug metabolism and transport, and has been linked to various diseases, including inflammatory bowel disease. In the present study, we determined whether carnosic acid and other chemicals in rosemary extract (carnosol, ursolic acid, and rosmarinic acid) are PXR activators. As assessed in dual-luciferase reporter gene assays, carnosic acid, carnosol, and ursolic acid, but not rosmarinic acid, activated human PXR (hPXR) and mouse PXR (mPXR), whereas carnosol and ursolic acid, but not carnosic acid or rosmarinic acid, activated rat PXR (rPXR). Dose-response experiments indicated that carnosic acid, carnosol, and ursolic acid activated hPXR with EC50 values of 0.79, 2.22, and 10.77μM, respectively. Carnosic acid, carnosol, and ursolic acid, but not rosmarinic acid, transactivated the ligand-binding domain of hPXR and recruited steroid receptor coactivator-1 (SRC-1), SRC-2, and SRC-3 to the ligand-binding domain of hPXR. Carnosic acid, carnosol, and ursolic acid, but not rosmarinic acid, increased hPXR target gene expression, as shown by an increase in CYP3A4, UGT1A3, and ABCB1 mRNA expression in LS180 human colon adenocarcinoma cells. Rosmarinic acid did not attenuate the extent of hPXR activation by rifampicin, suggesting it is not an antagonist of hPXR. Overall, carnosic acid, carnosol, and ursolic acid, but not rosmarinic acid, are hPXR agonists, and carnosic acid shows species-dependent activation of hPXR and mPXR, but not rPXR. The findings provide new mechanistic insight on the effects of carnosic acid, carnosol, and ursolic acid on PXR-mediated biological effects.
Collapse
Affiliation(s)
- Chun Ling Seow
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Aik Jiang Lau
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
14
|
Chai SC, Cherian MT, Wang YM, Chen T. Small-molecule modulators of PXR and CAR. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1859:1141-1154. [PMID: 26921498 PMCID: PMC4975625 DOI: 10.1016/j.bbagrm.2016.02.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/06/2016] [Accepted: 02/06/2016] [Indexed: 12/27/2022]
Abstract
Two nuclear receptors, the pregnane X receptor (PXR) and the constitutive androstane receptor (CAR), participate in the xenobiotic detoxification system by regulating the expression of drug-metabolizing enzymes and transporters in order to degrade and excrete foreign chemicals or endogenous metabolites. This review aims to expand the perceived relevance of PXR and CAR beyond their established role as master xenosensors to disease-oriented areas, emphasizing their modulation by small molecules. Structural studies of these receptors have provided much-needed insight into the nature of their binding promiscuity and the important elements that lead to ligand binding. Reports of species- and isoform-selective activation highlight the need for further scrutiny when extrapolating from animal data to humans, as animal models are at the forefront of early drug discovery. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie.
Collapse
Affiliation(s)
- Sergio C Chai
- Department of Chemical Biology and Therapeutics, 262 Danny Thomas Place, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Milu T Cherian
- Department of Chemical Biology and Therapeutics, 262 Danny Thomas Place, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yue-Ming Wang
- Department of Chemical Biology and Therapeutics, 262 Danny Thomas Place, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, 262 Danny Thomas Place, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
15
|
Chandran A, Vishveshwara S. Exploration of the conformational landscape in pregnane X receptor reveals a new binding pocket. Protein Sci 2016; 25:1989-2005. [PMID: 27515410 DOI: 10.1002/pro.3012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 08/07/2016] [Indexed: 11/06/2022]
Abstract
Ligand-regulated pregnane X receptor (PXR), a member of the nuclear receptor superfamily, plays a central role in xenobiotic metabolism. Despite its critical role in drug metabolism, PXR activation can lead to adverse drug-drug interactions and early stage metabolism of drugs. Activated PXR can induce cancer drug resistance and enhance the onset of malignancy. Since promiscuity in ligand binding makes it difficult to develop competitive inhibitors targeting PXR ligand binding pocket (LBP), it is essential to identify allosteric sites for effective PXR antagonism. Here, molecular dynamics (MD) simulation studies unravelled the existence of two different conformational states, namely "expanded" and "contracted", in apo PXR ligand binding domain (LBD). Ligand binding events shifted this conformational equilibrium and locked the LBD in a single "ligand-adaptable" conformational state. Ensemble-based computational solvent mapping identified a transiently open potential small molecule binding pocket between α5 and α8 helices, named "α8 pocket", whose opening-closing mechanism directly correlated with the conformational shift in LBD. A virtual hit identified through structure-based virtual screening against α8 pocket locks the pocket in its open conformation. MD simulations further revealed that the presence of small molecule at allosteric site disrupts the LBD dynamics and locks the LBD in a "tightly-contracted" conformation. The molecular details provided here could guide new structural studies to understand PXR activation and antagonism.
Collapse
Affiliation(s)
- Aneesh Chandran
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India.,Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
16
|
Ai N, Fan X, Ekins S. In silico methods for predicting drug-drug interactions with cytochrome P-450s, transporters and beyond. Adv Drug Deliv Rev 2015; 86:46-60. [PMID: 25796619 DOI: 10.1016/j.addr.2015.03.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 01/05/2015] [Accepted: 03/11/2015] [Indexed: 12/13/2022]
Abstract
Drug-drug interactions (DDIs) are associated with severe adverse effects that may lead to the patient requiring alternative therapeutics and could ultimately lead to drug withdrawal from the market if they are severe. To prevent the occurrence of DDI in the clinic, experimental systems to evaluate drug interaction have been integrated into the various stages of the drug discovery and development process. A large body of knowledge about DDI has also accumulated through these studies and pharmacovigillence systems. Much of this work to date has focused on the drug metabolizing enzymes such as cytochrome P-450s as well as drug transporters, ion channels and occasionally other proteins. This combined knowledge provides a foundation for a hypothesis-driven in silico approach, using either cheminformatics or physiologically based pharmacokinetics (PK) modeling methods to assess DDI potential. Here we review recent advances in these approaches with emphasis on hypothesis-driven mechanistic models for important protein targets involved in PK-based DDI. Recent efforts with other informatics approaches to detect DDI are highlighted. Besides DDI, we also briefly introduce drug interactions with other substances, such as Traditional Chinese Medicines to illustrate how in silico modeling can be useful in this domain. We also summarize valuable data sources and web-based tools that are available for DDI prediction. We finally explore the challenges we see faced by in silico approaches for predicting DDI and propose future directions to make these computational models more reliable, accurate, and publically accessible.
Collapse
Affiliation(s)
- Ni Ai
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China.
| | - Sean Ekins
- Collaborations in Chemistry, 5616 Hilltop Needmore Road, Fuquay-Varina, NC 27526, USA.
| |
Collapse
|
17
|
Clark AM, Dole K, Coulon-Spektor A, McNutt A, Grass G, Freundlich JS, Reynolds RC, Ekins S. Open Source Bayesian Models. 1. Application to ADME/Tox and Drug Discovery Datasets. J Chem Inf Model 2015; 55:1231-45. [PMID: 25994950 PMCID: PMC4478615 DOI: 10.1021/acs.jcim.5b00143] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
On the order of hundreds of absorption,
distribution, metabolism,
excretion, and toxicity (ADME/Tox) models have been described in the
literature in the past decade which are more often than not inaccessible
to anyone but their authors. Public accessibility is also an issue
with computational models for bioactivity, and the ability to share
such models still remains a major challenge limiting drug discovery.
We describe the creation of a reference implementation of a Bayesian
model-building software module, which we have released as an open
source component that is now included in the Chemistry Development
Kit (CDK) project, as well as implemented in the CDD Vault and
in several mobile apps. We use this implementation to build an array
of Bayesian models for ADME/Tox, in vitro and in vivo bioactivity, and other physicochemical properties.
We show that these models possess cross-validation receiver operator
curve values comparable to those generated previously in prior publications
using alternative tools. We have now described how the implementation
of Bayesian models with FCFP6 descriptors generated in the CDD Vault
enables the rapid production of robust machine learning models from
public data or the user’s own datasets. The current study sets
the stage for generating models in proprietary software (such as CDD)
and exporting these models in a format that could be run in open source
software using CDK components. This work also demonstrates that we
can enable biocomputation across distributed private or public datasets
to enhance drug discovery.
Collapse
Affiliation(s)
- Alex M Clark
- †Molecular Materials Informatics, Inc., 1900 St. Jacques No. 302, Montreal H3J 2S1, Quebec, Canada
| | - Krishna Dole
- ‡Collaborative Drug Discovery, 1633 Bayshore Highway, Suite 342, Burlingame, California 94010, United States
| | - Anna Coulon-Spektor
- ‡Collaborative Drug Discovery, 1633 Bayshore Highway, Suite 342, Burlingame, California 94010, United States
| | - Andrew McNutt
- ‡Collaborative Drug Discovery, 1633 Bayshore Highway, Suite 342, Burlingame, California 94010, United States
| | - George Grass
- §G2 Research, Inc., P.O. Box 1242, Tahoe City, California 96145, United States
| | | | - Robert C Reynolds
- #Department of Chemistry, College of Arts and Sciences, University of Alabama at Birmingham, , 1530 Third Avenue South, Birmingham, Alabama 35294-1240, United States
| | - Sean Ekins
- ‡Collaborative Drug Discovery, 1633 Bayshore Highway, Suite 342, Burlingame, California 94010, United States.,∇Collaborations in Chemistry, 5616 Hilltop Needmore Road, Fuquay-Varina, North Carolina 27526, United States
| |
Collapse
|
18
|
Pund S, Pawar S, Gangurde S, Divate D. Transcutaneous delivery of leflunomide nanoemulgel: Mechanistic investigation into physicomechanical characteristics, in vitro anti-psoriatic and anti-melanoma activity. Int J Pharm 2015; 487:148-56. [PMID: 25869452 DOI: 10.1016/j.ijpharm.2015.04.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 04/08/2015] [Accepted: 04/09/2015] [Indexed: 11/18/2022]
Abstract
The present study is a mechanistic validation of 'proof of concept' of effective topical delivery of leflunomide (LFD) nanoemulgel for localized efficient treatment of psoriatic lesions as well as melanoma affected skin regions. Hyperproliferation of keratinocytes in psoriasis and symbiotic relationship between keratinocytes and melanocytes, justifies the need of dual acting treatment. LFD is recently introduced significantly effective disease modifying anti-rheumatic drug and has been considered valuable for the treatment of psoriatic arthritis as well as melanoma. Current available treatments for psoriasis and melanoma are inefficient due to systemic side effects, poor transcutaneous permeation and thus present a challenge for development of novel colloidal carriers. We newly reformulated LFD as a nanoemulgel based on self nanoemulsifying technique using Capryol 90, Cremophor EL, Transcutol HP as nanoemulsifying components and Pluronic F127 as a gelling agent. This thermodynamically stable nanoemuslsifying preconcentrate after gelation showed mean globule size, 123.7 nm and viscosity 9620 ± 93 cp. Complete mechanical characterization was carried out using Texture Analyzer and hardness, adhesiveness and springiness index were found to be 523 gms, 431 gms and 1.02, respectively. Ex vivo permeation through rat abdominal skin revealed significant improvement in flux, apparent permeability coefficient, steady state diffusion coefficient and drug deposition in skin due to nanoemulsification of LFD. The in vitro cytoxicity of LFD nanoemulgel in human HaCaT, melanoma A375 and SK-MEL-2 cell lines showed significantly enhanced therapeutic response. In gist, LFD nanoemulgel for trancutaneous delivery will reduce the overall dose and drug consumption, by effectively localizing at the applied target site and will ultimately minimize systemic side effects.
Collapse
Affiliation(s)
- Swati Pund
- Department of Pharmaceutics, STES's Sinhgad Institute of Pharmacy, Narhe, Pune 411041, India.
| | - Satish Pawar
- Department of Pharmaceutics, STES's Sinhgad Institute of Pharmacy, Narhe, Pune 411041, India
| | - Shashikant Gangurde
- Department of Pharmaceutics, STES's Sinhgad Institute of Pharmacy, Narhe, Pune 411041, India
| | - Deepali Divate
- Department of Pharmaceutics, STES's Sinhgad Institute of Pharmacy, Narhe, Pune 411041, India
| |
Collapse
|
19
|
Shi H, Tian S, Li Y, Li D, Yu H, Zhen X, Hou T. Absorption, Distribution, Metabolism, Excretion, and Toxicity Evaluation in Drug Discovery. 14. Prediction of Human Pregnane X Receptor Activators by Using Naive Bayesian Classification Technique. Chem Res Toxicol 2014; 28:116-25. [DOI: 10.1021/tx500389q] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Huali Shi
- Institute
of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, People’s Republic of China
| | - Sheng Tian
- College
of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, People’s Republic of China
| | - Youyong Li
- Institute
of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, People’s Republic of China
| | - Dan Li
- College
of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People’s Republic of China
| | - Huidong Yu
- Crystal Pharmatech Inc., 707
Alexander Road, Building 2, Suite 208, Princeton, New Jersey 08540, United States
| | - Xuechu Zhen
- College
of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, People’s Republic of China
| | - Tingjun Hou
- Institute
of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, People’s Republic of China
- College
of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People’s Republic of China
| |
Collapse
|
20
|
Banerjee M, Robbins D, Chen T. Targeting xenobiotic receptors PXR and CAR in human diseases. Drug Discov Today 2014; 20:618-28. [PMID: 25463033 DOI: 10.1016/j.drudis.2014.11.011] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/28/2014] [Accepted: 11/17/2014] [Indexed: 12/20/2022]
Abstract
Nuclear receptors such as the pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are xenobiotic receptors regulating not only drug metabolism and disposition but also various human diseases such as cancer, diabetes, inflammatory disease, metabolic disease and liver diseases, suggesting that PXR and CAR are promising targets for drug discovery. Consequently, there is an urgent need to discover and develop small molecules that target these PXR- and/or CAR-mediated human-disease-related pathways for relevant therapeutic applications. This review proposes approaches to target PXR and CAR, either individually or simultaneously, in the context of various human diseases, taking into consideration the structural differences between PXR and CAR.
Collapse
Affiliation(s)
- Monimoy Banerjee
- Department of Chemical Biology and Therapeutics, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Delira Robbins
- Department of Chemical Biology and Therapeutics, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| |
Collapse
|
21
|
Nonalcoholic Fatty liver disease: pathogenesis and therapeutics from a mitochondria-centric perspective. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:637027. [PMID: 25371775 PMCID: PMC4211163 DOI: 10.1155/2014/637027] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 07/31/2014] [Accepted: 07/31/2014] [Indexed: 12/12/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) describes a spectrum of disorders characterized by the accumulation of triglycerides within the liver. The global prevalence of NAFLD has been increasing as the obesity epidemic shows no sign of relenting. Mitochondria play a central role in hepatic lipid metabolism and also are affected by upstream signaling pathways involved in hepatic metabolism. This review will focus on the role of mitochondria in the pathophysiology of NAFLD and touch on some of the therapeutic approaches targeting mitochondria as well as metabolically important signaling pathways. Mitochondria are able to adapt to lipid accumulation in hepatocytes by increasing rates of beta-oxidation; however increased substrate delivery to the mitochondrial electron transport chain (ETC) leads to increased reactive oxygen species (ROS) production and eventually ETC dysfunction. Decreased ETC function combined with increased rates of fatty acid beta-oxidation leads to the accumulation of incomplete products of beta-oxidation, which combined with increased levels of ROS contribute to insulin resistance. Several related signaling pathways, nuclear receptors, and transcription factors also regulate hepatic lipid metabolism, many of which are redox sensitive and regulated by ROS.
Collapse
|
22
|
Wang YM, Chai SC, Brewer CT, Chen T. Pregnane X receptor and drug-induced liver injury. Expert Opin Drug Metab Toxicol 2014; 10:1521-32. [PMID: 25252616 DOI: 10.1517/17425255.2014.963555] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
INTRODUCTION The liver plays a central role in transforming and clearing foreign substances. The continuous exposure of the liver to xenobiotics sometimes leads to impaired liver function, referred to as drug-induced liver injury (DILI). The pregnane X receptor (PXR) tightly regulates the expression of genes in the hepatic drug-clearance system and its undesired activation plays a role in DILI. AREAS COVERED This review focuses on the recent progress in understanding PXR-mediated DILI and highlights the efforts made to assess and manage PXR-mediated DILI during drug development. EXPERT OPINION Future efforts are needed to further elucidate the mechanisms of PXR-mediated liver injury, including the epigenetic regulation and polymorphisms of PXR. Novel in vitro models containing functional PXR could improve our ability to predict and assess DILI during drug development. PXR inhibitors may provide chemical tools to validate the potential of PXR as a therapeutic target and to develop drugs to be used in the clinic to manage PXR-mediated DILI.
Collapse
Affiliation(s)
- Yue-Ming Wang
- St. Jude Children's Research Hospital, Department of Chemical Biology and Therapeutics , 262 Danny Thomas Place, Memphis, TN 38105 , USA
| | | | | | | |
Collapse
|
23
|
Robbins D, Chen T. Tissue-specific regulation of pregnane X receptor in cancer development and therapy. Cell Biosci 2014; 4:17. [PMID: 24690092 PMCID: PMC4237984 DOI: 10.1186/2045-3701-4-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 02/19/2014] [Indexed: 11/10/2022] Open
Abstract
As a ligand-dependent transcription factor of the nuclear hormone receptor superfamily, the pregnane X receptor (PXR) has a multitude of functions including regulating xenobiotic and cholesterol metabolism, energy homeostasis, gut mucosal defense, and cancer development. Whereas the detoxification functions of PXR have been widely studied and well established, the role of PXR in cancer has become controversial. With more than 60% of non-prescription and prescription drugs being metabolized by cytochrome P450 enzyme 3A4 (CYP3A4), a transcriptional target of PXR, insights into the regulation of PXR during systemic administration of novel treatment modalities will lead to a better understanding of PXR function in the context of human disease. Previous studies have suggested that PXR activation decreases drug sensitivity and augments chemoresistance in certain colon cancers mainly through the upregulation of CYP3A4 and multidrug resistance protein-1 (MDR1). Later studies suggest that downregulation of PXR expression may be oncogenic in hormone-dependent breast and endometrial cancers by reducing estrogen metabolism via CYP3A4; thus, higher estradiol concentrations contribute to carcinogenesis. These results suggest a differential role of PXR in tumor growth regulation dependent on tissue type and tumor microenvironment. Here, we will summarize the various mechanisms utilized by PXR to induce its diverse effects on cancerous tissues. Moreover, current approaches will be explored to evaluate the exploitation of PXR-mediated pathways as a novel mechanistic approach to cancer therapy.
Collapse
Affiliation(s)
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St, Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| |
Collapse
|
24
|
Kandel BA, Ekins S, Leuner K, Thasler WE, Harteneck C, Zanger UM. No activation of human pregnane X receptor by hyperforin-related phloroglucinols. J Pharmacol Exp Ther 2014; 348:393-400. [PMID: 24259679 DOI: 10.1124/jpet.113.209916] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025] Open
Abstract
The acylated phloroglucinol, hyperforin, the main active ingredient of St. John's Wort, exerts antidepressant properties via indirect inhibition of serotonin reuptake by selectively activating the canonical transient receptor potential channel 6 (TRPC6). Hyperforin treatment can lead to drug-drug interactions due to potent activation of the nuclear receptor PXR (NR1I2), a key transcriptional regulator of genes involved in drug metabolism and transport. It was previously shown that synthetic acylated phloroglucinol derivatives activate TRPC6 with similar potency as hyperforin. However, their interaction potential with PXR remained unknown. Here we investigated five synthetic TRPC6-activating phloroglucinol derivatives and four TRPC6-nonactivating compounds compared with hyperforin and rifampicin for their potential to activate PXR in silico and in vitro. Computational PXR pharmacophore modeling did not indicate potent agonist or antagonist interactions for the TRPC6-activating derivatives, whereas one of them was suggested by docking studies to show both agonist and antagonist interactions. Hyperforin and rifampicin treatment of HepG2 cells cotransfected with human PXR expression vector and a CYP3A4 promoter-reporter construct resulted in potent PXR-dependent induction, whereas all TRPC6-activating compounds failed to show any PXR activation or to antagonize rifampicin-mediated CYP3A4 promoter induction. Hyperforin and rifampicin treatment of primary human hepatocytes resulted in highly correlated induction of PXR target genes, whereas treatment with the phloroglucinol derivatives elicited moderate gene expression changes that were only weakly correlated with those of rifampicin and hyperforin treatment. These results show that TRPC6-activating phloroglucinols do not activate PXR and should therefore be promising new candidates for further drug development.
Collapse
Affiliation(s)
- Benjamin A Kandel
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (B.A.K., U.M.Z.); University of Tübingen, Tübingen, Germany (B.A.K., U.M.Z.); Collaborations in Chemistry, Fuquay-Varina, North Carolina (S.E.); Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland (S.E.); Department of Pharmacology, Rutgers University-Robert Wood Johnson Medical School, Piscataway, New Jersey (S.E.); Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina (S.E.); Molecular and Clinical Pharmacy, Friedrich-Alexander University, Erlangen-Nuremberg, Germany (K.L.); Department of Surgery, Grosshadern Hospital, Ludwig-Maximilians University, Munich, Germany (W.E.T.); and Institute of Pharmacology and Toxicology, Interfaculty Centre for Pharmacogenomics and Drug Research, University of Tübingen, Tübingen, Germany (C.H.)
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
The broad goals of Collaborative Drug Discovery (CDD) are to enable a collaborative "cloud-based" tool to be used to bring together neglected disease researchers and other researchers from usually separate areas, to collaborate and to share compounds and drug discovery data in the research community, which will ultimately result in long-term improvements in the research enterprise and health care delivery. This chapter briefly introduces CDD software and describes applications in antimalarial and tuberculosis research.
Collapse
Affiliation(s)
- Sean Ekins
- Collaborations in Chemistry, Fuquay Varina, NC, USA
| | | |
Collapse
|
26
|
Banerjee M, Chen T. Differential regulation of CYP3A4 promoter activity by a new class of natural product derivatives binding to pregnane X receptor. Biochem Pharmacol 2013; 86:824-35. [PMID: 23928187 DOI: 10.1016/j.bcp.2013.07.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 07/25/2013] [Accepted: 07/26/2013] [Indexed: 01/25/2023]
Abstract
The pregnane X receptor (PXR) regulates drug metabolism by regulating the expression of drug-metabolizing enzymes such as cytochrome P450 3A4 (CYP3A4), which is involved in the metabolism of >50% of clinically prescribed drugs. The activity of PXR can be controlled by the binding of small molecule agonists or antagonists. Because of its unique ligand binding pocket, PXR binds promiscuously to structurally diverse chemicals. To study the structure-activity relationship, novel modulators for PXR are needed. Here we report the virtual screening of ∼25,000 natural product derivatives from the ZINC database using the Molecular Operating Environment docking software tool against the PXR-rifampicin complex X-ray crystal structure. Our screening resulted in identification of compounds based on the lowest S score, which measures Gibbs free energy. Interestingly, we found that the compounds that bind directly to PXR, as revealed in an intrinsic tryptophan fluorescence assay, modulate CYP3A4 promoter activity differentially in HepG2 cells. Mutational analysis and docking studies showed that these compounds bind broadly in the ligand binding pocket but interact with different amino acid residues. We further investigated the mechanism of binding by analyzing the functional groups that are important for distinguishing agonists from antagonists. The approach we used to identify novel modulators that bind to PXR can be useful for finding novel modulators of PXR.
Collapse
Affiliation(s)
- Monimoy Banerjee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | | |
Collapse
|
27
|
Abstract
Adopted orphan nuclear receptor (NR), pregnane X receptor (PXR), plays a central role in the regulation of xeno- and endobiotic metabolism. Since the discovery of the functional role of PXR in 1998, there is evolving evidence for the role of PXR agonists in abrogating metabolic pathophysiology (e.g., cholestasis, hypercholesterolemia, and inflammation). However, more recently, it is clear that PXR is also an important mediator of adverse xeno- (e.g., enhances acetaminophen toxicity) and endobiotic (e.g., hepatic steatosis) metabolic phenotypes. Moreover, in cancer therapeutics, PXR activation can induce drug resistance, and there is growing evidence for tissue-specific enhancement of the malignant phenotype. Thus, in these instances, there may be a role for PXR antagonists. However, as opposed to the discovery efforts for PXR agonists, there are only a few antagonists described. The mode of action of these antagonists (e.g., sulforaphane) remains less clear. Our laboratory efforts have focused on this question. Since the original discovery of azoles analogs as PXR antagonists, we have preliminarily defined an important PXR antagonist pharmacophore and developed less-toxic PXR antagonists. In this review, we describe our published and unpublished findings on recent structure-function studies involving the azole chemical scaffold. Further work in the future is needed to fully define potent, more-selective PXR antagonists that may be useful in clinical application.
Collapse
Affiliation(s)
- Sridhar Mani
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | | | |
Collapse
|
28
|
He J, Gao J, Xu M, Ren S, Stefanovic-Racic M, O'Doherty RM, Xie W. PXR ablation alleviates diet-induced and genetic obesity and insulin resistance in mice. Diabetes 2013; 62:1876-87. [PMID: 23349477 PMCID: PMC3661619 DOI: 10.2337/db12-1039] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The pregnane X receptor (PXR), along with its sister receptor constitutive androstane receptor (CAR), was initially characterized as a xenobiotic receptor that regulates drug metabolism. In this study, we have uncovered an unexpected endobiotic role of PXR in obesity and type 2 diabetes. PXR ablation inhibited high-fat diet (HFD)-induced obesity, hepatic steatosis, and insulin resistance, which were accounted for by increased oxygen consumption, increased mitochondrial β-oxidation, inhibition of hepatic lipogenesis and inflammation, and sensitization of insulin signaling. In an independent model, introducing the PXR(-/-) allele into the ob/ob background also improved body composition and relieved the diabetic phenotype. The ob/ob mice deficient of PXR showed increased oxygen consumption and energy expenditure, as well as inhibition of gluconeogenesis and increased rate of glucose disposal during euglycemic clamp. Mechanistically, the metabolic benefits of PXR ablation were associated with the inhibition of c-Jun NH2-terminal kinase activation and downregulation of lipin-1, a novel PXR target gene. The metabolic benefit of PXR ablation was opposite to the reported prodiabetic effect of CAR ablation. Our results may help to establish PXR as a novel therapeutic target, and PXR antagonists may be used for the prevention and treatment of obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Jinhan He
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jie Gao
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Meishu Xu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Songrong Ren
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Maja Stefanovic-Racic
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Robert Martin O'Doherty
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Corresponding author: Wen Xie,
| |
Collapse
|
29
|
Li H, Redinbo MR, Venkatesh M, Ekins S, Chaudhry A, Bloch N, Negassa A, Mukherjee P, Kalpana G, Mani S. Novel yeast-based strategy unveils antagonist binding regions on the nuclear xenobiotic receptor PXR. J Biol Chem 2013; 288:13655-68. [PMID: 23525103 DOI: 10.1074/jbc.m113.455485] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Ketoconazole binds to and antagonizes pregnane X receptor (PXR) activation. RESULTS Yeast high throughput screens of PXR mutants define a unique region for ketoconazole binding. CONCLUSION Ketoconazole genetically interacts with specific PXR surface residues. SIGNIFICANCE A yeast-based genetic method to discover novel nuclear receptor interactions with ligands that associate with surface binding sites is suggested. The pregnane X receptor (PXR) is a master regulator of xenobiotic metabolism, and its activity is critical toward understanding the pathophysiology of several diseases, including inflammation, cancer, and steatosis. Previous studies have demonstrated that ketoconazole binds to ligand-activated PXR and antagonizes receptor control of gene expression. Structure-function as well as computational docking analysis suggested a putative binding region containing critical charge clamp residues Gln-272, and Phe-264 on the AF-2 surface of PXR. To define the antagonist binding surface(s) of PXR, we developed a novel assay to identify key amino acid residues on PXR based on a yeast two-hybrid screen that examined mutant forms of PXR. This screen identified multiple "gain-of-function" mutants that were "resistant" to the PXR antagonist effects of ketoconazole. We then compared our screen results identifying key PXR residues to those predicted by computational methods. Of 15 potential or putative binding residues based on docking, we identified three residues in the yeast screen that were then systematically verified to functionally interact with ketoconazole using mammalian assays. Among the residues confirmed by our study was Ser-208, which is on the opposite side of the protein from the AF-2 region critical for receptor regulation. The identification of new locations for antagonist binding on the surface or buried in PXR indicates novel aspects to the mechanism of receptor antagonism. These results significantly expand our understanding of antagonist binding sites on the surface of PXR and suggest new avenues to regulate this receptor for clinical applications.
Collapse
Affiliation(s)
- Hao Li
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Chai X, Zeng S, Xie W. Nuclear receptors PXR and CAR: implications for drug metabolism regulation, pharmacogenomics and beyond. Expert Opin Drug Metab Toxicol 2013; 9:253-66. [PMID: 23327618 DOI: 10.1517/17425255.2013.754010] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION 'Orphan' nuclear receptors belong to the nuclear receptor (NR) superfamily of transcriptional factors. Binding of ligands to these receptors results in the recruitment of the co-activators, thereby regulating the expression of cognate target genes. AREAS COVERED This review discusses the transcriptional regulation of P450 genes by two major xenobiotic nuclear receptors, pregnane X receptor (PXR) and constitutive androstane receptor (CAR). Additional PXR and CAR target genes include those encoded for UDP-glucuronosyltransferases, glutathione S-transferases, sulfotransferases and drug transporters. The authors discuss the involvement of PXR and CAR in endobiotic metabolism. They also review the polymorphisms of PXR and CAR. EXPERT OPINION PXR and CAR are both xenobiotic and endobiotic receptors. A remarkably diverse set of chemicals can activate PXR and CAR. There is significant cross-talk among xenobiotic receptors. Future studies are needed to focus on the polymorphisms of the nuclear receptors and the complex regulatory networks among nuclear receptors. Considerations should be given while designing PXR- or CAR-targeting pharmaceutics to avoid adverse drug effects. In the meantime, due to the diverse functions of PXR and CAR, agonists or antagonists for these receptors may have therapeutic potentials in managing certain diseases and enhancing therapeutic indexes.
Collapse
Affiliation(s)
- Xiaojuan Chai
- Zhejiang University, College of Pharmaceutical Sciences, Department of Pharmaceutical Analysis and Drug Metabolism, Hangzhou 310058, China
| | | | | |
Collapse
|
31
|
Caboni L, Lloyd DG. Beyond the ligand-binding pocket: targeting alternate sites in nuclear receptors. Med Res Rev 2012; 33:1081-118. [PMID: 23344935 DOI: 10.1002/med.21275] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Nuclear receptors (NRs) are a family of ligand-modulated transcription factors with significant therapeutic relevance from metabolic disorders and inflammation to cancer, neurodegenerative, and psychiatric disorders. Drug discovery efforts are typically concentrated on modulating the natural ligand action within the ligand-binding pocket (LBP) in the C-terminal ligand-binding domain (LBD). Drawbacks of LBP-based strategies include physiological alterations due to disruption of ligand binding and difficulties in achieving tissue specificity. Furthermore, the lack of a "pure" and predictable mechanism of action predisposes such intervention toward drug resistance. Recent outstanding progress in our understanding of NR biology has shifted the focus of drug discovery efforts from inside to outside the LBP, affording consideration to the interaction between NRs and coactivator proteins, the interaction between NRs and DNA and the NRs' ligand-independent functions. This review encompasses such currently available NR non-LBP-based interventions and their potential application in therapy or as specific tools to probe NR biology.
Collapse
Affiliation(s)
- Laura Caboni
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | | |
Collapse
|
32
|
Abstract
Nuclear receptor (NR)-targeted therapies comprise a large class of clinically employed drugs. A number of drugs currently being used against this protein class were designed as structural analogs of the endogenous ligand of these receptors. In recent years, there has been significant interest in developing newer strategies to target NRs, especially those that rely on mechanistic pathways of NR function. Prominent among these are noncanonical means of targeting NRs, which include selective NR modulation, NR coactivator interaction inhibition, inhibition of NR DNA binding, modulation of NR cellular localization, modulation of NR ligand biosynthesis and downregulation of NR levels in target tissues. This article reviews each of these promising emerging strategies for NR drug development and highlights some of most significant successes achieved in using them.
Collapse
|
33
|
Effect of the CYP3A inhibitor ketoconazole on the PXR-mediated induction of CYP3A activity. Eur J Clin Pharmacol 2012; 69:507-13. [PMID: 22968811 DOI: 10.1007/s00228-012-1388-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 08/23/2012] [Indexed: 01/27/2023]
Abstract
PURPOSE The aim of this clinical study was to investigate a previously proposed mechanism of ketoconazole-mediated inhibition of cytochrome P450 3A (CYP3A) induction. METHODS A two-phase, randomized, cross-over, open, mono-centre trial was carried out. Participants received ketoconazole and St John's wort for 8 days to study the proposed suppression of St John's wort-mediated induction of CYP3A at the transcriptional level. In the second phase, we studied the inhibitory effect of a single dose of ketoconazole directly at the enzyme level during CYP3A induction by St John's wort. Midazolam served as a marker substance of CYP3A activity using an established limited sampling strategy. RESULTS After 8 days of simultaneous ketoconazole and St John's wort administration, CYP3A-mediated midazolam metabolism was strongly inhibited (81 % decrease in clearance). Following the induction of CYP3A with St John's wort (6.6-fold increase in clearance on day 8), a single dose of ketoconazole strongly inhibited midazolam metabolism to the same degree (82 % decrease in clearance in relation to baseline). An induction of midazolam metabolism was observed after discontinuation of both drugs in both study phases. These results apparently contradict the in vitro results where ketoconazole showed an inhibitory effect on the transcription of CYP3A genes. CONCLUSIONS Ketoconazole is a strong inhibitor of CYP3A, also when used concomitantly with St John's wort. In therapeutic doses it does not inhibit pregnane X receptor-mediated induction of CYP3A in vivo.
Collapse
|
34
|
Mencarelli A, Francisci D, Renga B, D'Amore C, Cipriani S, Basile F, Schiaroli E, Baldelli F, Fiorucci S. Ritonavir-induced lipoatrophy and dyslipidaemia is reversed by the anti-inflammatory drug leflunomide in a PPAR-γ-dependent manner. Antivir Ther 2012; 17:669-78. [PMID: 22297608 DOI: 10.3851/imp2039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2011] [Indexed: 10/14/2022]
Abstract
BACKGROUND The complex interplay between viral infection and virus-activated inflammatory pathways with protease inhibitors (PIs) contributes to the increased risk of developing atherosclerosis and coronary artery disease in HIV-infected patients. Leflunomide is an antirheumatic drug whose administration to HIV-1-infected persons effectively decreases T-cell turnover and activation. In this study we have investigated the effects of leflunomide on dyslipidaemia and lipodistrophy induced by ritonavir in rodents. METHODS Mice were administered ritonavir (5 mg/kg/day) alone or in combination with leflunomide (40 mg/kg/day) for 12 days. Expression of nuclear receptor and lipidogenetic genes was measured in liver and adipose tissues. RESULTS Administration of the HIV PI ritonavir to mice increased plasma triacylglycerols, free fatty acids and cholesterol levels, and this effect was reverted by cotreatment with leflunomide. Ritonavir administration was associated with reduced epididymal fat/body weight ratio and increased liver content of triacylglycerols content. These effects were reverted by leuflunomide. Histopathology analysis shows that exposure to ritonavir causes inflammation of epididymal fat as demonstrated by dense leukocytes infiltration as well as by increased levels of proinflammatory mediators and reduced expression and activity of peroxisome proliferator-activated receptor-γ (PPAR-γ). Leflunomide reduced epididymal fat inflammatory-metabolic alteration induced by ritonavir and restored PPAR-γ expression in the epididymal fat. CONCLUSIONS We have shown that the anti-inflammatory drug leflunomide protects against ritonavir-induced inflammation and dysmetabolism in adipose tissue and might be a promising strategy in the setting of HIV-infected patients at risk for HIV-induced dyslipidaemia.
Collapse
Affiliation(s)
- Andrea Mencarelli
- Dipartimento di Medicina Clinica e Sperimentale, Facoltà di Medicina e Chirurgia, University of Perugia, S. Andrea delle Fratte, Perugia, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
The human pregnane X receptor (PXR) is a ligand dependent transcription factor that can be activated by structurally diverse agonists including steroid hormones, bile acids, herbal drugs, and prescription medications. PXR regulates the transcription of several genes involved in xenobiotic detoxification and apoptosis. Activation of PXR has the potential to initiate adverse effects by altering drug pharmacokinetics or perturbing physiological processes. Hence, more reliable prediction of PXR activators would be valuable for pharmaceutical drug discovery to avoid potential toxic effects. Ligand- and protein structure-based computational models for PXR activation have been developed in several studies. There has been limited success with structure-based modeling approaches to predict human PXR activators, which can be attributed to the large and promiscuous site of this protein. Slightly better success has been achieved with ligand-based modeling methods including quantitative structure-activity relationship (QSAR) analysis, pharmacophore modeling and machine learning that use appropriate descriptors to account for the diversity of the ligand classes that bind to PXR. These combined computational approaches using molecular shape information may assist scientists to more confidently identify PXR activators. This chapter reviews the various ligand and structure based methods undertaken to date and their results.
Collapse
Affiliation(s)
- Sandhya Kortagere
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA.
| | | | | |
Collapse
|
36
|
Cheng J, Ma X, Gonzalez FJ. Pregnane X receptor- and CYP3A4-humanized mouse models and their applications. Br J Pharmacol 2011; 163:461-8. [PMID: 21091656 DOI: 10.1111/j.1476-5381.2010.01129.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Pregnane X receptor (PXR) is a pivotal nuclear receptor modulating xenobiotic metabolism primarily through its regulation of CYP3A4, the most important enzyme involved in drug metabolism in humans. Due to the marked species differences in ligand recognition by PXR, PXR-humanized (hPXR) mice, and mice expressing human PXR and CYP3A4 (Tg3A4/hPXR) were established. hPXR and Tg3A4/hPXR mice are valuable models for investigating the role of PXR in xenobiotic metabolism and toxicity, in lipid, bile acid and steroid hormone homeostasis, and in the control of inflammation.
Collapse
Affiliation(s)
- Jie Cheng
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|
37
|
Dawson MI, Xia Z. The retinoid X receptors and their ligands. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:21-56. [PMID: 22020178 DOI: 10.1016/j.bbalip.2011.09.014] [Citation(s) in RCA: 278] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 08/23/2011] [Accepted: 09/23/2011] [Indexed: 12/12/2022]
Abstract
This chapter presents an overview of the current status of studies on the structural and molecular biology of the retinoid X receptor subtypes α, β, and γ (RXRs, NR2B1-3), their nuclear and cytoplasmic functions, post-transcriptional processing, and recently reported ligands. Points of interest are the different changes in the ligand-binding pocket induced by variously shaped agonists, the communication of the ligand-bound pocket with the coactivator binding surface and the heterodimerization interface, and recently identified ligands that are natural products, those that function as environmental toxins or drugs that had been originally designed to interact with other targets, as well as those that were deliberately designed as RXR-selective transcriptional agonists, synergists, or antagonists. Of these synthetic ligands, the general trend in design appears to be away from fully aromatic rigid structures to those containing partial elements of the flexible tetraene side chain of 9-cis-retinoic acid. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).
Collapse
Affiliation(s)
- Marcia I Dawson
- Cancer Center, Sanford-Burn Medical Research Institute, 10901 North Torrey Pines Rd., La Jolla, CA 93207, USA.
| | | |
Collapse
|
38
|
Venkatesh M, Wang H, Cayer J, Leroux M, Salvail D, Das B, Wrobel JE, Mani S. In vivo and in vitro characterization of a first-in-class novel azole analog that targets pregnane X receptor activation. Mol Pharmacol 2011; 80:124-35. [PMID: 21464197 PMCID: PMC3127530 DOI: 10.1124/mol.111.071787] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 03/23/2011] [Indexed: 11/22/2022] Open
Abstract
The pregnane X receptor (PXR) is a master regulator of xenobiotic clearance and is implicated in deleterious drug interactions (e.g., acetaminophen hepatotoxicity) and cancer drug resistance. However, small-molecule targeting of this receptor has been difficult; to date, directed synthesis of a relatively specific PXR inhibitor has remained elusive. Here we report the development and characterization of a first-in-class novel azole analog [1-(4-(4-(((2R,4S)-2-(2,4-difluorophenyl)-2-methyl-1,3-dioxolan-4-yl)methoxy)phenyl)piperazin-1-yl)ethanone (FLB-12)] that antagonizes the activated state of PXR with limited effects on other related nuclear receptors (i.e., liver X receptor, farnesoid X receptor, estrogen receptor α, peroxisome proliferator-activated receptor γ, and mouse constitutive androstane receptor). We investigated the toxicity and PXR antagonist effect of FLB-12 in vivo. Compared with ketoconazole, a prototypical PXR antagonist, FLB-12 is significantly less toxic to hepatocytes. FLB-12 significantly inhibits the PXR-activated loss of righting reflex to 2,2,2-tribromoethanol (Avertin) in vivo, abrogates PXR-mediated resistance to 7-ethyl-10-hydroxycamptothecin (SN-38) in colon cancer cells in vitro, and attenuates PXR-mediated acetaminophen hepatotoxicity in vivo. Thus, relatively selective targeting of PXR by antagonists is feasible and warrants further investigation. This class of agents is suitable for development as chemical probes of PXR function as well as potential PXR-directed therapeutics.
Collapse
Affiliation(s)
- Madhukumar Venkatesh
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, New York, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Xiao L, Nickbarg E, Wang W, Thomas A, Ziebell M, Prosise WW, Lesburg CA, Taremi SS, Gerlach VL, Le HV, Cheng KC. Evaluation of in vitro PXR-based assays and in silico modeling approaches for understanding the binding of a structurally diverse set of drugs to PXR. Biochem Pharmacol 2011; 81:669-79. [DOI: 10.1016/j.bcp.2010.12.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 11/30/2010] [Accepted: 12/02/2010] [Indexed: 02/04/2023]
|
40
|
Pan Y, Li L, Kim G, Ekins S, Wang H, Swaan PW. Identification and validation of novel human pregnane X receptor activators among prescribed drugs via ligand-based virtual screening. Drug Metab Dispos 2011; 39:337-44. [PMID: 21068194 PMCID: PMC3401010 DOI: 10.1124/dmd.110.035808] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2010] [Accepted: 11/08/2010] [Indexed: 02/04/2023] Open
Abstract
Human pregnane X receptor (hPXR) plays a key role in regulating metabolism and clearance of endogenous and exogenous substances. Identification of novel hPXR activators among commercial drugs may aid in avoiding drug-drug interactions during coadministration. We applied ligand-based computational approaches for virtual screening of a commonly prescribed drug database (SCUT). Bayesian classification models were generated with a training set comprising 177 compounds using Fingerprints and 117 structural descriptors. A cell-based luciferase reporter assay was used for evaluation of chemical-mediated hPXR activation in HepG2 cells. All compounds were tested at 10 μM concentration with rifampicin and dimethyl sulfoxide as positive and negative controls, respectively. The Bayesian models showed specificity and overall prediction accuracy up to 0.92 and 0.69 for test set compounds. Screening the SCUT database with this model retrieved 105 hits and 17 compounds from the top 25 hits were chosen for in vitro testing. The reporter assay confirmed that nine drugs, i.e., fluticasone, nimodipine, nisoldipine, beclomethasone, finasteride, flunisolide, megestrol, secobarbital, and aminoglutethimide, were previously unidentified hPXR activators. Thus, the present study demonstrates that novel hPXR activators can be efficiently identified among U.S. Food and Drug Administration-approved and commonly prescribed drugs, which should lead to detection and prevention of potential drug-drug interactions.
Collapse
Affiliation(s)
- Yongmei Pan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn St., HSF2-621, Baltimore, MD 21201, USA
| | | | | | | | | | | |
Collapse
|
41
|
Overcoming drug resistance by regulating nuclear receptors. Adv Drug Deliv Rev 2010; 62:1257-64. [PMID: 20691230 DOI: 10.1016/j.addr.2010.07.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 07/21/2010] [Accepted: 07/23/2010] [Indexed: 12/12/2022]
Abstract
Drug resistance involves multiple mechanisms. Multidrug resistance (MDR) is the leading cause of treatment failure in cancer therapy. Elevated levels of MDR proteins [members of the ATP-binding cassette (ABC) transporter family] increase cellular efflux and decrease the effectiveness of chemotherapeutic agents. As a salvage approach to overcome drug resistance, inhibitors of MDR proteins have been developed, but have had limited success mainly due to undesired toxicities. Nuclear receptors (NRs), including pregnane X receptor (PXR), regulate the expression of proteins (including MDR proteins) involved in drug metabolism and drug clearance, suggesting that it is possible to overcome drug resistance by regulating NR. This review discusses the progress in the development of MDR inhibitors, with a focus on MDR1 inhibitors. Recent development of PXR antagonists to pharmacologically modulate PXR is also reviewed. The review proposes that selectively preventing the elevation of MDR levels by regulating NRs rather than non-selectively inhibiting the MDR activity by using MDR inhibitors can be a less toxic approach to overcome drug resistance during cancer therapy.
Collapse
|
42
|
Kortagere S, Krasowski MD, Reschly EJ, Venkatesh M, Mani S, Ekins S. Evaluation of computational docking to identify pregnane X receptor agonists in the ToxCast database. ENVIRONMENTAL HEALTH PERSPECTIVES 2010; 118:1412-1417. [PMID: 20558333 PMCID: PMC2957921 DOI: 10.1289/ehp.1001930] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 06/17/2010] [Indexed: 05/29/2023]
Abstract
BACKGROUND The pregnane X receptor (PXR) is a key transcriptional regulator of many genes [e.g., cytochrome P450s (CYP2C9, CYP3A4, CYP2B6), MDR1] involved in xenobiotic metabolism and excretion. OBJECTIVES As part of an evaluation of different approaches to predict compound affinity for nuclear hormone receptors, we used the molecular docking program GOLD and a hybrid scoring scheme based on similarity weighted GoldScores to predict potential PXR agonists in the ToxCast database of pesticides and other industrial chemicals. We present some of the limitations of different in vitro systems, as well as docking and ligand-based computational models. METHODS Each ToxCast compound was docked into the five published crystallographic structures of human PXR (hPXR), and 15 compounds were selected based on their consensus docking scores for testing. In addition, we used a Bayesian model to classify the ToxCast compounds into PXR agonists and nonagonists. hPXR activation was determined by luciferase-based reporter assays in the HepG2 and DPX-2 human liver cell lines. RESULTS We tested 11 compounds, of which 6 were strong agonists and 2 had weak agonist activity. Docking results of additional compounds were compared with data reported in the literature. The prediction sensitivity of PXR agonists in our sample ToxCast data set (n = 28) using docking and the GoldScore was higher than with the hybrid score at 66.7%. The prediction sensitivity for PXR agonists using GoldScore for the entire ToxCast data set (n = 308) compared with data from the NIH (National Institutes of Health) Chemical Genomics Center data was 73.8%. CONCLUSIONS Docking and the GoldScore may be useful for prioritizing large data sets prior to in vitro testing with good sensitivity across the sample and entire ToxCast data set for hPXR agonists.
Collapse
Affiliation(s)
- Sandhya Kortagere
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Matthew D. Krasowski
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Erica J. Reschly
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Madhukumar Venkatesh
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Sridhar Mani
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Sean Ekins
- Collaborations in Chemistry, Jenkintown, Pennsylvania, USA
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland, USA
- Department of Pharmacology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey, USA
| |
Collapse
|
43
|
Chaturvedi NK, Kumar S, Negi S, Tyagi RK. Endocrine disruptors provoke differential modulatory responses on androgen receptor and pregnane and xenobiotic receptor: potential implications in metabolic disorders. Mol Cell Biochem 2010; 345:291-308. [PMID: 20830510 DOI: 10.1007/s11010-010-0583-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 08/28/2010] [Indexed: 12/21/2022]
Abstract
A systematic comparison of the impact of some potential endocrine disruptors (EDs) on modulation of androgen receptor (AR) and pregnane and xenobiotic receptor (PXR) function was conducted in a multi-step analysis. Promoter-reporter-based transcription assays were performed in conjunction with receptor dynamic studies in living cells that helped implicating the suspected EDs for their deleterious effects. We demonstrate that most of the selected EDs not only inhibit AR transcriptional activity, but also alter its subcellular dynamics. Conversely, some of these anti-androgenic compounds were potent activator of xeno-sensing nuclear receptor, PXR. Interestingly, agonist-activated AR that associates with the mitotic chromatin fails to achieve this association when bound to anti-androgenic EDs. Conclusively, most EDs (except BCH) behaved like pure antagonist for AR while as agonist for PXR. Subsequent experiments with DDT treatment in mice model indicated that in testis AR and its regulated genes PEM and ODC levels are down-regulated, whereas in liver of same mice PEM is up-regulated while AR and ODC remain unchanged. On the contrary, PXR and its regulated genes CYP3A11 and MDR1 levels in mice liver were up-regulated while in testis PXR remained unchanged, CYP3A11 up-regulated and MDR1 were down-regulated. Based on a novel "Biopit" concept it is speculated that long-term exposure to endocrine disrupting chemicals may influence the epigenetic profile of target cells via transcription factors thereby making them vulnerable to onset of chemically induced endocrine-related malignancies or metabolic disorders.
Collapse
|
44
|
Yue X, Akahira JI, Utsunomiya H, Miki Y, Takahashi N, Niikura H, Ito K, Sasano H, Okamura K, Yaegashi N. Steroid and Xenobiotic Receptor (SXR) as a possible prognostic marker in epithelial ovarian cancer. Pathol Int 2010; 60:400-6. [PMID: 20518891 DOI: 10.1111/j.1440-1827.2010.02546.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We examined the expression of the steroid and xenobiotic receptor (SXR) and evaluated its clinical significance in human epithelial ovarian carcinoma. One hundred forty-one cases were examined using immunohistochemistry for SXR with archival specimens. All cases were scored using a semi-quantitative histological scoring (HSCORE) method. Specimens with an HSCORE > 60 were regarded as SXR-positive. Various clinicopathologic variables were examined. SXR showed significant differences in age, histology, grade, ER alpha and PR. SXR was detected in 35 of 141 (24.8%) ovarian cancer tissues. There was a statistically significant negative correlation between SXR-positive status and both disease-free survival and overall survival (P= 0.0415 and 0.0316, respectively), independent of stage (P= 0.0167 and 0.021, respectively). In multivariate analysis, SXR was a statistically independent risk factor for both disease-free survival and overall survival (P= 0.049 and 0.0354). Our results support an association of SXR between ER alpha and PR in epithelial ovarian cancers. Our data suggest that SXR is a prognostic factor in epithelial ovarian cancer and may represent a useful marker to identify patients at risk of recurrence or death.
Collapse
Affiliation(s)
- Xiaoni Yue
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Oelschlaeger P, Ai N, Duprez KT, Welsh WJ, Toney JH. Evolving carbapenemases: can medicinal chemists advance one step ahead of the coming storm? J Med Chem 2010; 53:3013-27. [PMID: 20121112 DOI: 10.1021/jm9012938] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Peter Oelschlaeger
- Chemistry Department and Center for Macromolecular Modeling and Materials Design, California State Polytechnic University, Pomona, California, USA.
| | | | | | | | | |
Collapse
|
46
|
Kortagere S, Ekins S. Troubleshooting computational methods in drug discovery. J Pharmacol Toxicol Methods 2010; 61:67-75. [PMID: 20176118 DOI: 10.1016/j.vascn.2010.02.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 02/11/2010] [Indexed: 10/19/2022]
Abstract
Computational approaches for drug discovery such as ligand-based and structure-based methods, are increasingly seen as an efficient approach for lead discovery as well as providing insights on absorption, distribution, metabolism, excretion and toxicity (ADME/Tox). What is perhaps less well known and widely described are the limitations of the different technologies. We have therefore presented a troubleshooting approach to QSAR, homology modeling, docking as well as hybrid methods. If such computational or cheminformatics methods are to become more widely used by non-experts it is critical that such limitations are brought to the user's attention and addressed during their workflows. This could improve the quality of the models and results that are obtained.
Collapse
Affiliation(s)
- Sandhya Kortagere
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| | | |
Collapse
|
47
|
Ekins S, Bradford J, Dole K, Spektor A, Gregory K, Blondeau D, Hohman M, Bunin BA. A collaborative database and computational models for tuberculosis drug discovery. MOLECULAR BIOSYSTEMS 2010; 6:840-51. [PMID: 20567770 DOI: 10.1039/b917766c] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The search for molecules with activity against Mycobacterium tuberculosis (Mtb) is employing many approaches in parallel including high throughput screening and computational methods. We have developed a database (CDD TB) to capture public and private Mtb data while enabling data mining and collaborations with other researchers. We have used the public data along with several cheminformatics approaches to produce models that describe active and inactive compounds. We have compared these datasets to those for known FDA approved drugs and between Mtb active and inactive compounds. The distribution of polar surface area and pK(a) of active compounds was found to be a statistically significant determinant of activity against Mtb. Hydrophobicity was not always statistically significant. Bayesian classification models for 220, 463 molecules were generated and tested with external molecules, and enabled the discrimination of active or inactive substructures from other datasets in the CDD TB. Computational pharmacophores based on known Mtb drugs were able to map to and retrieve a small subset of some of the Mtb datasets, including a high percentage of Mtb actives. The combination of the database, dataset analysis, Bayesian and pharmacophore models provides new insights into molecular properties and features that are determinants of activity in whole cells. This study provides novel insights into the key 1D molecular descriptors, 2D chemical substructures and 3D pharmacophores which can be used to mine the chemistry space, prioritizing those molecules with a higher probability of activity against Mtb.
Collapse
Affiliation(s)
- Sean Ekins
- Collaborative Drug Discovery, 1633 Bayshore Highway, Suite 342, Burlingame, CA 94403, USA.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Ekins S, Williams AJ. Precompetitive preclinical ADME/Tox data: set it free on the web to facilitate computational model building and assist drug development. LAB ON A CHIP 2010; 10:13-22. [PMID: 20024044 DOI: 10.1039/b917760b] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Web-based technologies coupled with a drive for improved communication between scientists have resulted in the proliferation of scientific opinion, data and knowledge at an ever-increasing rate. The increasing array of chemistry-related computer-based resources now available provides chemists with a direct path to the discovery of information, once previously accessed via library services and limited to commercial and costly resources. We propose that preclinical absorption, distribution, metabolism, excretion and toxicity data as well as pharmacokinetic properties from studies published in the literature (which use animal or human tissues in vitro or from in vivo studies) are precompetitive in nature and should be freely available on the web. This could be made possible by curating the literature and patents, data donations from pharmaceutical companies and by expanding the currently freely available ChemSpider database of over 21 million molecules with physicochemical properties. This will require linkage to PubMed, PubChem and Wikipedia as well as other frequently used public databases that are currently used, mining the full text publications to extract the pertinent experimental data. These data will need to be extracted using automated and manual methods, cleaned and then published to the ChemSpider or other database such that it will be freely available to the biomedical research and clinical communities. The value of the data being accessible will improve development of drug molecules with good ADME/Tox properties, facilitate computational model building for these properties and enable researchers to not repeat the failures of past drug discovery studies.
Collapse
Affiliation(s)
- Sean Ekins
- Collaborations in Chemistry, Jenkintown, PA 19046, USA.
| | | |
Collapse
|
49
|
Moore TW, Mayne CG, Katzenellenbogen JA. Minireview: Not picking pockets: nuclear receptor alternate-site modulators (NRAMs). Mol Endocrinol 2009; 24:683-95. [PMID: 19933380 DOI: 10.1210/me.2009-0362] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Because of their central importance in gene regulation and mediating the actions of many hormones, the nuclear receptors (NRs) have long been recognized as very important biological and pharmaceutical targets. Of all the surfaces available on a given NR, the singular site for regulation of receptor activity has almost invariably been the ligand-binding pocket of the receptor, the site where agonists, antagonists, and selective NR modulators interact. With our increasing understanding of the multiple molecular components involved in NR action, researchers have recently begun to look to additional interaction sites on NRs for regulating their activities by novel mechanisms. The alternate NR-associated interaction sites that have been targeted include the coactivator-binding groove and allosteric sites in the ligand-binding domain, the zinc fingers of the DNA-binding domain, and the NR response element in DNA. The studies thus far have been performed with the estrogen receptors, the androgen receptor (AR), the thyroid hormone receptors, and the pregnane X receptor. Phenotypic and conformation-based screens have also identified small molecule modulators that are believed to function through the NRs but have, as yet, unknown sites and mechanisms of action. The rewards from investigation of these NR alternate-site modulators should be the discovery of new therapeutic approaches and novel agents for regulating the activities of these important NR proteins.
Collapse
Affiliation(s)
- Terry W Moore
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|
50
|
Ai N, Krasowski MD, Welsh WJ, Ekins S. Understanding nuclear receptors using computational methods. Drug Discov Today 2009; 14:486-94. [PMID: 19429508 PMCID: PMC2846174 DOI: 10.1016/j.drudis.2009.03.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 03/03/2009] [Accepted: 03/04/2009] [Indexed: 02/06/2023]
Abstract
Nuclear receptors (NRs) are important targets for therapeutic drugs. NRs regulate transcriptional activities through binding to ligands and interacting with several regulating proteins. Computational methods can provide insights into essential ligand-receptor and protein-protein interactions. These in turn have facilitated the discovery of novel agonists and antagonists with high affinity and specificity as well as have aided in the prediction of toxic side effects of drugs by identifying possible off-target interactions. Here, we review the application of computational methods toward several clinically important NRs (with special emphasis on PXR) and discuss their use for screening and predicting the toxic side effects of xenobiotics.
Collapse
Affiliation(s)
- Ni Ai
- Department of Pharmacology, Robert Wood Johnson Medical School, University of Medicine & Dentistry of New Jersey, Piscataway, New Jersey 08854, USA
| | - Matthew D. Krasowski
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, 15213 USA
- Department of Pathology, Division of Clinical Chemistry, Toxicology and Therapeutic Drug Monitoring Laboratory, University of Pittsburgh Medical Center Presbyterian/Shadyside, Pittsburgh, PA, 15261, USA
| | - William J Welsh
- Department of Pharmacology, Robert Wood Johnson Medical School, University of Medicine & Dentistry of New Jersey, Piscataway, New Jersey 08854, USA
| | - Sean Ekins
- Department of Pharmacology, Robert Wood Johnson Medical School, University of Medicine & Dentistry of New Jersey, Piscataway, New Jersey 08854, USA
- Collaborations in Chemistry, Jenkintown, PA 19046, USA
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD, USA
| |
Collapse
|