1
|
Marin-Rodero M, Cintado E, Walker AJ, Jayewickreme T, Pinho-Ribeiro FA, Richardson Q, Jackson R, Chiu IM, Benoist C, Stevens B, Trejo JL, Mathis D. The meninges host a distinct compartment of regulatory T cells that preserves brain homeostasis. Sci Immunol 2025; 10:eadu2910. [PMID: 39873623 PMCID: PMC11924117 DOI: 10.1126/sciimmunol.adu2910] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/22/2025] [Indexed: 01/30/2025]
Abstract
Our understanding of the meningeal immune system has recently burgeoned, particularly regarding how innate and adaptive effector cells are mobilized to meet brain challenges. However, information on how meningeal immunocytes guard brain homeostasis in healthy individuals remains limited. This study highlights the heterogeneous, polyfunctional regulatory T cell (Treg) compartment in the meninges. A Treg subtype specialized in controlling interferon-γ (IFN-γ) responses and another dedicated to regulating follicular B cell responses were substantial components of this compartment. Accordingly, punctual Treg ablation rapidly unleashed IFN-γ production by meningeal lymphocytes, unlocked access to the brain parenchyma, and altered meningeal B cell profiles. Distally, the hippocampus assumed a reactive state, with morphological and transcriptional changes in multiple glial cell types. Within the dentate gyrus, neural stem cells underwent more death and were blocked from further differentiation, which coincided with impairments in short-term spatial-reference memory. Thus, meningeal Tregs are a multifaceted safeguard of brain homeostasis at steady state.
Collapse
Affiliation(s)
| | - Elisa Cintado
- Cajal Institute, Translational Neuroscience Department, Consejo Superior de Investigaciones Científicas; Madrid, Spain
| | - Alec J. Walker
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School; Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, USA
| | | | | | | | - Ruaidhrí Jackson
- Department of Immunology, Harvard Medical School; Boston, MA, USA
| | - Isaac M. Chiu
- Department of Immunology, Harvard Medical School; Boston, MA, USA
| | | | - Beth Stevens
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School; Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, USA
- Howard Hughes Medical Institute, Boston Children's Hospital; Boston, MA, USA
| | - José Luís Trejo
- Cajal Institute, Translational Neuroscience Department, Consejo Superior de Investigaciones Científicas; Madrid, Spain
| | - Diane Mathis
- Department of Immunology, Harvard Medical School; Boston, MA, USA
| |
Collapse
|
2
|
Marin-Rodero M, Reyes EC, Walker AJ, Jayewickreme T, Pinho-Ribeiro FA, Richardson Q, Jackson R, Chiu IM, Benoist C, Stevens B, Trejo JL, Mathis D. The meninges host a unique compartment of regulatory T cells that bulwarks adult hippocampal neurogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599387. [PMID: 38948783 PMCID: PMC11212874 DOI: 10.1101/2024.06.17.599387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Our knowledge about the meningeal immune system has recently burgeoned, particularly our understanding of how innate and adaptive effector cells are mobilized to meet brain challenges. However, information on how meningeal immunocytes guard brain homeostasis in healthy individuals remains sparse. This study highlights the heterogeneous and polyfunctional regulatory-T (Treg) cell compartment in the meninges. A Treg subtype specialized in controlling Th1-cell responses and another known to control responses in B-cell follicles were substantial components of this compartment, foretelling that punctual Treg-cell ablation rapidly unleashed interferon-gamma production by meningeal lymphocytes, unlocked their access to the brain parenchyma, and altered meningeal B-cell profiles. Distally, the hippocampus assumed a reactive state, with morphological and transcriptional changes in multiple glial-cell types; within the dentate gyrus, neural stem cells showed exacerbated death and desisted from further differentiation, associated with inhibition of spatial-reference memory. Thus, meningeal Treg cells are a multifaceted bulwark to brain homeostasis at steady-state. One sentence summary A distinct population of regulatory T cells in the murine meninges safeguards homeostasis by keeping local interferon-γ-producing lymphocytes in check, thereby preventing their invasion of the parenchyma, activation of hippocampal glial cells, death of neural stem cells, and memory decay.
Collapse
|
3
|
Mot YY, Moses EJ, Mohd Yusoff N, Ling KH, Yong YK, Tan JJ. Mesenchymal Stromal Cells-Derived Exosome and the Roles in the Treatment of Traumatic Brain Injury. Cell Mol Neurobiol 2023; 43:469-489. [PMID: 35103872 PMCID: PMC11415182 DOI: 10.1007/s10571-022-01201-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 01/23/2022] [Indexed: 12/19/2022]
Abstract
Traumatic brain injury (TBI) could result in life-long disabilities and death. Though the mechanical insult causes primary injury, the secondary injury due to dysregulated responses following neuronal apoptosis and inflammation is often the cause for more detrimental consequences. Mesenchymal stromal cell (MSC) has been extensively investigated as the emerging therapeutic for TBI, and the functional properties are chiefly attributed to their secretome, especially the exosomes. Delivering these nanosize exosomes have shown to ameliorate post-traumatic injury and restore brain functions. Recent technology advances also allow engineering MSC-derived exosomes to carry specific biomolecules of interest to augment their therapeutic outcome. In this review, we discuss the pathophysiology of TBI and summarize the recent progress in the applications of MSCs-derived exosomes, the roles and the signalling mechanisms underlying the protective effects in the treatment of the TBI.
Collapse
Affiliation(s)
- Yee Yik Mot
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, BertamKepala Batas, 13200, Pulau Pinang, Malaysia
| | - Emmanuel Jairaj Moses
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, BertamKepala Batas, 13200, Pulau Pinang, Malaysia.
| | - Narazah Mohd Yusoff
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, BertamKepala Batas, 13200, Pulau Pinang, Malaysia
| | - King-Hwa Ling
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Yoke Keong Yong
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Jun Jie Tan
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, BertamKepala Batas, 13200, Pulau Pinang, Malaysia.
| |
Collapse
|
4
|
Calabrese EJ. Hormesis and embryonic stem cells. Chem Biol Interact 2021; 352:109783. [PMID: 34932953 DOI: 10.1016/j.cbi.2021.109783] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 02/07/2023]
Abstract
This paper provides an identification and detailed assessment of hormetic dose responses of embryonic stem cells (ESCs) with particular emphasis on cell renewal (proliferation) and differentiation, underlying mechanistic foundations and potential therapeutic implications. Hormetic dose responses were commonly reported, being induced by a broad range of chemicals, including pharmaceuticals (e.g., atorvastatin, isoproterenol, lithium, nicotine, ouabain), dietary supplements (e.g., curcumin, multiple ginsenosides, resveratrol), endogenous agents (e.g., estrogen, hydrogen peroxide, melatonin), and physical stressor agents (e.g., hypoxia, ionizing radiation). ESC-hormetic dose responses are similar for other stem cell types (e.g., adipose-derived stem cells, apical papilla, bone marrow stem cells, dental pulp stem cells, endothelial stem cells, muscle stem cells, periodontal ligament stem cells, neural stem cells), indicating a high degree of generality for the hormetic-stem cells response. The widespread occurrence of hormetic dose responses shown by ESCs and other stem cells suggests that the hormetic dose response may represent a fundamental and highly conserved evolutionary strategy.
Collapse
Affiliation(s)
- Edward J Calabrese
- School of Public Health and Health Sciences, Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
5
|
Mogi A, Yomoda R, Kimura S, Tsushima C, Takouda J, Sawauchi M, Maekawa T, Ohta H, Nishino S, Kurita M, Mano N, Osumi N, Moriya T. Entrainment of the Circadian Clock in Neural Stem Cells by Epidermal Growth Factor is Closely Associated with ERK1/2-mediated Induction of Multiple Clock-related Genes. Neuroscience 2018. [DOI: 10.1016/j.neuroscience.2018.02.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
6
|
Prostaglandin J2 promotes O-GlcNAcylation raising APP processing by α- and β-secretases: relevance to Alzheimer's disease. Neurobiol Aging 2017; 62:130-145. [PMID: 29149631 DOI: 10.1016/j.neurobiolaging.2017.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/26/2017] [Accepted: 10/11/2017] [Indexed: 12/19/2022]
Abstract
Regulation of the amyloid precursor protein (APP) processing by α- and β-secretases is of special interest to Alzheimer's disease (AD), as these proteases prevent or mediate amyloid beta formation, respectively. Neuroinflammation is also implicated in AD. Our data demonstrate that the endogenous mediator of inflammation prostaglandin J2 (PGJ2) promotes full-length APP (FL-APP) processing by α- and β-secretases. The decrease in FL-APP was independent of proteasomal, lysosomal, calpain, caspase, and γ-secretase activities. Moreover, PGJ2-treatment promoted cleavage of secreted APP, specifically sAPPα and sAPPβ, generated by α and β-secretase, respectively. Notably, PGJ2-treatment induced caspase-dependent cleavage of sAPPβ. Mechanistically, PGJ2-treatment selectively diminished mature (O- and N-glycosylated) but not immature (N-glycosylated only) FL-APP. PGJ2-treatment also increased the overall levels of protein O-GlcNAcylation, which occurs within the nucleocytoplasmic compartment. It is known that APP undergoes O-GlcNAcylation and that the latter protects proteins from proteasomal degradation. Our results suggest that by increasing protein O-GlcNAcylation levels, PGJ2 renders mature APP less prone to proteasomal degradation, thus shunting APP toward processing by α- and β-secretases.
Collapse
|
7
|
Yuan J, Ge H, Liu W, Zhu H, Chen Y, Zhang X, Yang Y, Yin Y, Chen W, Wu W, Yang Y, Lin J. M2 microglia promotes neurogenesis and oligodendrogenesis from neural stem/progenitor cells via the PPARγ signaling pathway. Oncotarget 2017; 8:19855-19865. [PMID: 28423639 PMCID: PMC5386728 DOI: 10.18632/oncotarget.15774] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 01/23/2017] [Indexed: 12/20/2022] Open
Abstract
Neural stem/progenitor cells (NSPCs) are an important source of cells for cell replacement therapy after nerve injury. How to induce NSPCs differentiation towards neurons and oligodendrocytes is a challenging issue in neuroscience research. In the present study, we polarized microglia into M1 and M2 phenotype, used their supernatants to induce NSPCs differentiation, and investigated the effects of different microglia phenotypes on NSPCs differentiation and their mechanisms. We discovered that, after exposure to M1 phenotype supernatant, NSPCs differentiated into fewer Tuj-1+ and Olig2+ cells, but more GFAP+ cells. Meanwhile, a significantly increased number of Tuj-1+ and Olig2+ cells and smaller number of GFAP+ cells were generated by M2 microglia supernatant-induced NSPCs differentiation. We also observed that 15d-PGJ2, an endogenous ligand of PPARγ, was elevated in M2 phenotype supernatant and could activate PPARγ expression in NSPCs, whereas use of the PPARγ inhibitor GW9662, could reduce the percentage of differentiated neurons and oligodendrocytes. Our study results confirm that M2 microglia supernatant can activate the PPARγ signaling pathway and promote neurogenesis and oligodendrogenesis from NSPCs differentiation. The present study provides a further theoretical basis for induction of NSPCs oriented differentiation.
Collapse
Affiliation(s)
- Jichao Yuan
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University, Chongqing 400038, China.,Department of Neurology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Hongfei Ge
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Wei Liu
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Haitao Zhu
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Yaxing Chen
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Xuan Zhang
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Yang Yang
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Yi Yin
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Weixiang Chen
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Wanjiang Wu
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Yunfeng Yang
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Jiangkai Lin
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
8
|
Physiological and Pathological Roles of 15-Deoxy-Δ12,14-Prostaglandin J2 in the Central Nervous System and Neurological Diseases. Mol Neurobiol 2017; 55:2227-2248. [PMID: 28299574 DOI: 10.1007/s12035-017-0435-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 02/03/2017] [Indexed: 12/29/2022]
|
9
|
Rolland M, Li X, Sellier Y, Martin H, Perez-Berezo T, Rauwel B, Benchoua A, Bessières B, Aziza J, Cenac N, Luo M, Casper C, Peschanski M, Gonzalez-Dunia D, Leruez-Ville M, Davrinche C, Chavanas S. PPARγ Is Activated during Congenital Cytomegalovirus Infection and Inhibits Neuronogenesis from Human Neural Stem Cells. PLoS Pathog 2016; 12:e1005547. [PMID: 27078877 PMCID: PMC4831785 DOI: 10.1371/journal.ppat.1005547] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 03/12/2016] [Indexed: 11/25/2022] Open
Abstract
Congenital infection by human cytomegalovirus (HCMV) is a leading cause of permanent sequelae of the central nervous system, including sensorineural deafness, cerebral palsies or devastating neurodevelopmental abnormalities (0.1% of all births). To gain insight on the impact of HCMV on neuronal development, we used both neural stem cells from human embryonic stem cells (NSC) and brain sections from infected fetuses and investigated the outcomes of infection on Peroxisome Proliferator-Activated Receptor gamma (PPARγ), a transcription factor critical in the developing brain. We observed that HCMV infection dramatically impaired the rate of neuronogenesis and strongly increased PPARγ levels and activity. Consistent with these findings, levels of 9-hydroxyoctadecadienoic acid (9-HODE), a known PPARγ agonist, were significantly increased in infected NSCs. Likewise, exposure of uninfected NSCs to 9-HODE recapitulated the effect of infection on PPARγ activity. It also increased the rate of cells expressing the IE antigen in HCMV-infected NSCs. Further, we demonstrated that (1) pharmacological activation of ectopically expressed PPARγ was sufficient to induce impaired neuronogenesis of uninfected NSCs, (2) treatment of uninfected NSCs with 9-HODE impaired NSC differentiation and (3) treatment of HCMV-infected NSCs with the PPARγ inhibitor T0070907 restored a normal rate of differentiation. The role of PPARγ in the disease phenotype was strongly supported by the immunodetection of nuclear PPARγ in brain germinative zones of congenitally infected fetuses (N = 20), but not in control samples. Altogether, our findings reveal a key role for PPARγ in neurogenesis and in the pathophysiology of HCMV congenital infection. They also pave the way to the identification of PPARγ gene targets in the infected brain. Congenital infection by human cytomegalovirus (HCMV) might result in permanent neurological sequelae, including sensorineural deafness, cerebral palsies or devastating neurodevelopmental abnormalities. Infants with such sequelae represent about 0.1% of all live births (>5500 per year in the USA). Given the considerable health and societal burden, a better insight on disease pathogenesis is urgently needed to design new therapeutic or prognostic tools. Here, we studied the impact of HCMV on neuronal development, using human neural progenitors (NSC) as a disease model. In particular, we investigated the outcome of infection on Peroxisome Proliferator-Activated Receptor gamma (PPARγ, a key protein in the regulation of metabolism, inflammation and cell differentiation. We disclosed that HCMV infection strongly increases levels and activity of PPARγ in NSCs. In vitro experiments showed that PPARγ activity inhibits the differentiation of NSCs into neurons. We also found increased PPARγ expression in brains of in utero infected fetuses, but not in controls, suggesting that PPARγ is a key effector of HCMV infection also in vivo. Our study provides new insights on the pathogenesis of HCMV infection and paves the way to the discovery of PPARγ-related molecules secreted in the infected brain.
Collapse
Affiliation(s)
- Maude Rolland
- Centre de Physiopathologie Toulouse Purpan, INSERM UMR 1043, CNRS UMR 5282, Université Paul Sabatier, Toulouse, France
| | - Xiaojun Li
- Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yann Sellier
- Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Hélène Martin
- Centre de Physiopathologie Toulouse Purpan, INSERM UMR 1043, CNRS UMR 5282, Université Paul Sabatier, Toulouse, France
| | - Teresa Perez-Berezo
- Centre de Physiopathologie Toulouse Purpan, INSERM UMR 1043, CNRS UMR 5282, Université Paul Sabatier, Toulouse, France
| | - Benjamin Rauwel
- Centre de Physiopathologie Toulouse Purpan, INSERM UMR 1043, CNRS UMR 5282, Université Paul Sabatier, Toulouse, France
| | | | - Bettina Bessières
- Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Jacqueline Aziza
- Département d'Anatomie Pathologique, IUCT-Oncopole, Toulouse, France
| | - Nicolas Cenac
- Centre de Physiopathologie Toulouse Purpan, INSERM UMR 1043, CNRS UMR 5282, Université Paul Sabatier, Toulouse, France
| | - Minhua Luo
- Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Charlotte Casper
- Centre de Physiopathologie Toulouse Purpan, INSERM UMR 1043, CNRS UMR 5282, Université Paul Sabatier, Toulouse, France
- Neonatal Unit, Children’s Hospital, Toulouse, France
| | - Marc Peschanski
- I-STEM, INSERM U861, AFM, Evry, France
- CECS, UEVE U861, Evry, France
| | - Daniel Gonzalez-Dunia
- Centre de Physiopathologie Toulouse Purpan, INSERM UMR 1043, CNRS UMR 5282, Université Paul Sabatier, Toulouse, France
| | - Marianne Leruez-Ville
- Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Christian Davrinche
- Centre de Physiopathologie Toulouse Purpan, INSERM UMR 1043, CNRS UMR 5282, Université Paul Sabatier, Toulouse, France
| | - Stéphane Chavanas
- Centre de Physiopathologie Toulouse Purpan, INSERM UMR 1043, CNRS UMR 5282, Université Paul Sabatier, Toulouse, France
- * E-mail:
| |
Collapse
|
10
|
Figueiredo-Pereira ME, Corwin C, Babich J. Prostaglandin J2: a potential target for halting inflammation-induced neurodegeneration. Ann N Y Acad Sci 2016; 1363:125-37. [PMID: 26748744 DOI: 10.1111/nyas.12987] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Prostaglandins (PGs) are produced via cyclooxygenases, which are enzymes that play a major role in neuroinflammation. Epidemiological studies show that chronic treatment with low levels of cyclooxygenase inhibitors (nonsteroidal anti-inflammatory drugs (NSAIDs)) lowers the risk for Alzheimer's disease (AD) and Parkinson's disease (PD) by as much as 50%. Unfortunately, inhibiting cyclooxygenases with NSAIDs blocks the synthesis of downstream neuroprotective and neurotoxic PGs, thus producing adverse side effects. We focus on prostaglandin J2 (PGJ2) because it is highly neurotoxic compared to PGA1, D2, and E2. Unlike other PGs, PGJ2 and its metabolites have a cyclopentenone ring with reactive α,β-unsaturated carbonyl groups that form covalent Michael adducts with key cysteines in proteins and GSH. Cysteine-binding electrophiles such as PGJ2 are considered to play an important role in determining whether neurons will live or die. We discuss in vitro and in vivo studies showing that PGJ2 induces pathological processes relevant to neurodegenerative disorders such as AD and PD. Further, we discuss our work showing that increasing intracellular cAMP with the lipophilic peptide PACAP27 counteracts some of the PGJ2-induced detrimental effects. New therapeutic strategies that neutralize the effects of specific neurotoxic PGs downstream from cyclooxygenases could have a significant impact on the treatment of chronic neurodegenerative disorders with fewer adverse side effects.
Collapse
Affiliation(s)
| | - Chuhyon Corwin
- Department of Biological Sciences, Hunter College and the Graduate Center, CUNY, New York, New York
| | - John Babich
- Department of Radiology, Weill Cornell Medical College, New York, New York
| |
Collapse
|
11
|
Sakayori N, Kikkawa T, Tokuda H, Kiryu E, Yoshizaki K, Kawashima H, Yamada T, Arai H, Kang JX, Katagiri H, Shibata H, Innis SM, Arita M, Osumi N. Maternal dietary imbalance between omega-6 and omega-3 polyunsaturated fatty acids impairs neocortical development via epoxy metabolites. Stem Cells 2015; 34:470-82. [DOI: 10.1002/stem.2246] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 09/30/2015] [Accepted: 10/09/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Nobuyuki Sakayori
- Department of Developmental Neuroscience; Center for Neuroscience, United Centers for Advanced Research and Translational Medicine, Tohoku University School of Medicine; Miyagi Japan
- Research Fellow of the Japan Society for the Promotion of Science; Tokyo Japan
| | - Takako Kikkawa
- Department of Developmental Neuroscience; Center for Neuroscience, United Centers for Advanced Research and Translational Medicine, Tohoku University School of Medicine; Miyagi Japan
| | - Hisanori Tokuda
- Institute for Health Care Science, Suntory Wellness Ltd; Osaka Japan
| | - Emiko Kiryu
- Department of Developmental Neuroscience; Center for Neuroscience, United Centers for Advanced Research and Translational Medicine, Tohoku University School of Medicine; Miyagi Japan
| | - Kaichi Yoshizaki
- Department of Developmental Neuroscience; Center for Neuroscience, United Centers for Advanced Research and Translational Medicine, Tohoku University School of Medicine; Miyagi Japan
| | - Hiroshi Kawashima
- Institute for Health Care Science, Suntory Wellness Ltd; Osaka Japan
| | - Tetsuya Yamada
- Department of Metabolism and Diabetes; Tohoku University School of Medicine; Miyagi Japan
| | - Hiroyuki Arai
- Department of Health Chemistry; Graduate School of Pharmaceutical Sciences, University of Tokyo; Tokyo Japan
| | - Jing X. Kang
- Department of Medicine; Massachusetts General Hospital and Harvard Medical School; Massachusetts USA
| | - Hideki Katagiri
- Department of Metabolism and Diabetes; Tohoku University School of Medicine; Miyagi Japan
| | - Hiroshi Shibata
- Institute for Health Care Science, Suntory Wellness Ltd; Osaka Japan
| | - Sheila M. Innis
- Department of Paediatrics; Child and Family Research Institute, University of British Columbia; Vancouver Canada
| | - Makoto Arita
- Department of Health Chemistry; Graduate School of Pharmaceutical Sciences, University of Tokyo; Tokyo Japan
- Laboratory for Metabolomics, Center for Integrative Medical Sciences, RIKEN; Kanagawa Japan
| | - Noriko Osumi
- Department of Developmental Neuroscience; Center for Neuroscience, United Centers for Advanced Research and Translational Medicine, Tohoku University School of Medicine; Miyagi Japan
| |
Collapse
|
12
|
Figueiredo-Pereira ME, Rockwell P, Schmidt-Glenewinkel T, Serrano P. Neuroinflammation and J2 prostaglandins: linking impairment of the ubiquitin-proteasome pathway and mitochondria to neurodegeneration. Front Mol Neurosci 2015; 7:104. [PMID: 25628533 PMCID: PMC4292445 DOI: 10.3389/fnmol.2014.00104] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 12/17/2014] [Indexed: 12/13/2022] Open
Abstract
The immune response of the CNS is a defense mechanism activated upon injury to initiate repair mechanisms while chronic over-activation of the CNS immune system (termed neuroinflammation) may exacerbate injury. The latter is implicated in a variety of neurological and neurodegenerative disorders such as Alzheimer and Parkinson diseases, amyotrophic lateral sclerosis, multiple sclerosis, traumatic brain injury, HIV dementia, and prion diseases. Cyclooxygenases (COX-1 and COX-2), which are key enzymes in the conversion of arachidonic acid into bioactive prostanoids, play a central role in the inflammatory cascade. J2 prostaglandins are endogenous toxic products of cyclooxygenases, and because their levels are significantly increased upon brain injury, they are actively involved in neuronal dysfunction induced by pro-inflammatory stimuli. In this review, we highlight the mechanisms by which J2 prostaglandins (1) exert their actions, (2) potentially contribute to the transition from acute to chronic inflammation and to the spreading of neuropathology, (3) disturb the ubiquitin-proteasome pathway and mitochondrial function, and (4) contribute to neurodegenerative disorders such as Alzheimer and Parkinson diseases, and amyotrophic lateral sclerosis, as well as stroke, traumatic brain injury (TBI), and demyelination in Krabbe disease. We conclude by discussing the therapeutic potential of targeting the J2 prostaglandin pathway to prevent/delay neurodegeneration associated with neuroinflammation. In this context, we suggest a shift from the traditional view that cyclooxygenases are the most appropriate targets to treat neuroinflammation, to the notion that J2 prostaglandin pathways and other neurotoxic prostaglandins downstream from cyclooxygenases, would offer significant benefits as more effective therapeutic targets to treat chronic neurodegenerative diseases, while minimizing adverse side effects.
Collapse
Affiliation(s)
- Maria E Figueiredo-Pereira
- Department of Biological Sciences, Hunter College, The Graduate School and University Center, City University of New York New York, NY, USA
| | - Patricia Rockwell
- Department of Biological Sciences, Hunter College, The Graduate School and University Center, City University of New York New York, NY, USA
| | - Thomas Schmidt-Glenewinkel
- Department of Biological Sciences, Hunter College, The Graduate School and University Center, City University of New York New York, NY, USA
| | - Peter Serrano
- Department of Psychology, Hunter College, The Graduate School and University Center, City University of New York New York, NY, USA
| |
Collapse
|
13
|
Kim HR, Lee HN, Lim K, Surh YJ, Na HK. 15-Deoxy-Δ12,14-prostaglandin J2 induces expression of 15-hydroxyprostaglandin dehydrogenase through Elk-1 activation in human breast cancer MDA-MB-231 cells. Mutat Res 2014; 768:6-15. [PMID: 25773924 DOI: 10.1016/j.mrfmmm.2014.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/17/2014] [Accepted: 06/18/2014] [Indexed: 06/04/2023]
Abstract
Overproduction of prostaglandin E2 (PGE2) has been reported to be implicated in carcinogenesis. The intracellular level of PGE2 is maintained not only by its biosynthesis, but also by inactivation/degradation. 15-Hydroxyprostaglandin dehydrogenase (15-PGDH) is the key enzyme that catalyzes the conversion of oncogenic PGE2 to a biologically inactive keto metabolite. In the present study, we demonstrate that 15-deoxy-Δ(12,14)-prostaglandin J2 (15 d-PGJ2), one of the terminal products of cyclooxygenase-2, updregulates the expression and the activity of 15-PGDH in human breast cancer MDA-MB-231 cells. By using deletion constructs of the 15-PGDH promoter, we have found that E-twenty six (Ets) is the most essential determinant for 15-PGDH induction. 15 d-PGJ2 induced phosphorylation of Elk-1, one of Ets transcription factor family members, in the nucleus. Knockdown of Elk-1 abolished the ability of 15 d-PGJ2 to upregulate 15-PGDH expression. Furthermore, 15 d-PGJ2-mediated activation of Elk-1 was found to be dependent on activation of extracellular-signal related kinase (ERK) 1/2. Treatment of U0126, a pharmacological inhibitor of MEK1/2-ERK, abolished phosphorylation and DNA binding of Elk-1 as well as 15-PGDH induction in 15 d-PGJ2-treated MDA-MB-231 cells. Moreover, 15 d-PGJ2 generated reactive oxygen species (ROS), which contribute to the expression of 15-PGDH as well as phosphorylation of ERK1/2 and Elk-1. 15 d-PGJ2 inhibited the migration of MDA-MB-231 cells, which was attenuated by transient transfection with 15-PGDH siRNA. Taken together, these findings suggest that 15 d-PGJ2 induces the expression of 15-PGDH through ROS-mediated activation of ERK1/2 and subsequently Elk-1 in the MDA-MB-231 cells, which may contribute to tumor suppressive activity of this cyclopentenone prostaglandin.
Collapse
Affiliation(s)
- Hye-Rim Kim
- Research Institute for Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, South Korea
| | - Ha-Na Lee
- Research Institute for Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, South Korea
| | - Kyu Lim
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Young-Joon Surh
- Research Institute for Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, South Korea
| | - Hye-Kyung Na
- Department of Food and Nutrition, College of Human Ecology, Sungshin Women's University, Seoul 142-732, South Korea.
| |
Collapse
|
14
|
Tokuda H, Kontani M, Kawashima H, Kiso Y, Shibata H, Osumi N. Differential effect of arachidonic acid and docosahexaenoic acid on age-related decreases in hippocampal neurogenesis. Neurosci Res 2014; 88:58-66. [PMID: 25149915 DOI: 10.1016/j.neures.2014.08.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 07/23/2014] [Accepted: 08/06/2014] [Indexed: 01/07/2023]
Abstract
Hippocampal neurogenesis affects learning and memory. We evaluated in rats effects of ingestion of arachidonic acid (ARA) and/or docosahexaenoic acid (DHA) on age-related decreases in proliferating neural stem/progenitor cells (NSPCs) or newborn neurons (NNs). Rats were fed with ARA- and/or DHA-containing diet from 2 to 18 months old and then sacrificed 1 day or 4 weeks after 5-bromo-2-deoxyuridine (BrdU) injections at 2, 6 and 18 months. The numbers of NSPCs (SOX2+/BrdU+) and NNs (NeuN+/BrdU+) were determined immunohistochemically. The number of BrdU+ cells 1 day after BrdU injections decreased with age, but increased 65% after ARA ingestion compared to the control at 18 months. The SOX2+/BrdU+ cell ratio was unchanged by aging or ingestion of ARA or DHA. The number of NeuN+/BrdU+ cells 4 weeks after BrdU injections decreased with age, but increased 34% (yet not statistically significant) after DHA ingestion compared to the control at 18 months. These results indicate that ARA ingestion can ameliorate the age-related decrease in the number of NSPCs in rats. The functions of ARA and DHA in hippocampal neurogenesis appear to be different in aged rats; ARA may maintain an NSPC pool, whereas DHA may support NN production and/or survival.
Collapse
Affiliation(s)
- Hisanori Tokuda
- Institute for Health Care Science, Suntory Wellness Ltd., Osaka, Japan
| | - Masanori Kontani
- Institute for Health Care Science, Suntory Wellness Ltd., Osaka, Japan
| | - Hiroshi Kawashima
- Institute for Health Care Science, Suntory Wellness Ltd., Osaka, Japan
| | - Yoshinobu Kiso
- Institute for Health Care Science, Suntory Wellness Ltd., Osaka, Japan
| | - Hiroshi Shibata
- Institute for Health Care Science, Suntory Wellness Ltd., Osaka, Japan
| | - Noriko Osumi
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
15
|
Impact of lipid nutrition on neural stem/progenitor cells. Stem Cells Int 2013; 2013:973508. [PMID: 24260036 PMCID: PMC3821937 DOI: 10.1155/2013/973508] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 09/09/2013] [Indexed: 11/17/2022] Open
Abstract
The neural system originates from neural stem/progenitor cells (NSPCs). Embryonic NSPCs first proliferate to increase their numbers and then produce neurons and glial cells that compose the complex neural circuits in the brain. New neurons are continually produced even after birth from adult NSPCs in the inner wall of the lateral ventricle and in the hippocampal dentate gyrus. These adult-born neurons are involved in various brain functions, including olfaction-related functions, learning and memory, pattern separation, and mood control. NSPCs are regulated by various intrinsic and extrinsic factors. Diet is one of such important extrinsic factors. Of dietary nutrients, lipids are important because they constitute the cell membrane, are a source of energy, and function as signaling molecules. Metabolites of some lipids can be strong lipid mediators that also regulate various biological activities. Recent findings have revealed that lipids are important regulators of both embryonic and adult NSPCs. We and other groups have shown that lipid signals including fat, fatty acids, their metabolites and intracellular carriers, cholesterol, and vitamins affect proliferation and differentiation of embryonic and adult NSPCs. A better understanding of the NSPCs regulation by lipids may provide important insight into the neural development and brain function.
Collapse
|
16
|
Wappler EA, Institoris A, Dutta S, Katakam PVG, Busija DW. Mitochondrial dynamics associated with oxygen-glucose deprivation in rat primary neuronal cultures. PLoS One 2013; 8:e63206. [PMID: 23658809 PMCID: PMC3642144 DOI: 10.1371/journal.pone.0063206] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 04/02/2013] [Indexed: 12/29/2022] Open
Abstract
Our objective was to investigate the mitochondrial dynamics following oxygen-glucose deprivation (OGD) in cultured rat cortical neurons. We documented changes in morphology, protein expression, and DNA levels in mitochondria following OGD and examined the roles of mitochondrial fission [dynamin-related protein 1 (Drp1), fission protein-1 (Fis1)] and fusion [mitofusin-1 (Mfn1), mitofusin-2 (Mfn2), and optic atrophy-1 protein (OPA1)] proteins on mitochondrial biogenesis and morphogenesis. We tested the effects of two Drp1 blockers [15-deoxy-Δ12,14-Prostaglandin J2 (PGJ2) and Mitochondrial Division Inhibitor (Mdivi-1)] on mitochondrial dynamics and cell survival. One hour of OGD had minimal effects on neuronal viability but mitochondria appeared condensed. Three hours of OGD caused a 60% decrease in neuronal viability accompanied by a transition from primarily normal/tubular and lesser number of rounded mitochondria during normoxia to either poorly labeled or small and large rounded mitochondria. The percentage of rounded mitochondria remained the same. The mitochondrial voltage-dependent anion channel, Complex V, and mitoDNA levels increased after OGD associated with a dramatic reduction in Drp1 expression, less reduction in Mfn2 expression, an increase in Mfn1 expression, with no changes in either OPA1 or Fis1. Although PGJ2 increased polymerization of Drp1, it did not reduce cell death or alter mitochondrial morphology following OGD and Mdivi-1 did not protect neurons against OGD. In summary, mitochondrial biogenesis and maintained fusion occurred in neurons along with mitochondrial fission following OGD; thus Mfn1 but not Drp1 may be a major regulator of these processes.
Collapse
Affiliation(s)
- Edina A Wappler
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America.
| | | | | | | | | |
Collapse
|
17
|
Kanakasabai S, Pestereva E, Chearwae W, Gupta SK, Ansari S, Bright JJ. PPARγ agonists promote oligodendrocyte differentiation of neural stem cells by modulating stemness and differentiation genes. PLoS One 2012. [PMID: 23185633 PMCID: PMC3503969 DOI: 10.1371/journal.pone.0050500] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Neural stem cells (NSCs) are a small population of resident cells that can grow, migrate and differentiate into neuro-glial cells in the central nervous system (CNS). Peroxisome proliferator-activated receptor gamma (PPARγ) is a nuclear receptor transcription factor that regulates cell growth and differentiation. In this study we analyzed the influence of PPARγ agonists on neural stem cell growth and differentiation in culture. We found that in vitro culture of mouse NSCs in neurobasal medium with B27 in the presence of epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) induced their growth and expansion as neurospheres. Addition of all-trans retinoic acid (ATRA) and PPARγ agonist ciglitazone or 15-Deoxy-Δ12,14-Prostaglandin J2 (15d-PGJ2) resulted in a dose-dependent inhibition of cell viability and proliferation of NSCs in culture. Interestingly, NSCs cultured with PPARγ agonists, but not ATRA, showed significant increase in oligodendrocyte precursor-specific O4 and NG2 reactivity with a reduction in NSC marker nestin, in 3–7 days. In vitro treatment with PPARγ agonists and ATRA also induced modest increase in the expression of neuronal β-III tubulin and astrocyte-specific GFAP in NSCs in 3–7 days. Further analyses showed that PPARγ agonists and ATRA induced significant alterations in the expression of many stemness and differentiation genes associated with neuro-glial differentiation in NSCs. These findings highlight the influence of PPARγ agonists in promoting neuro-glial differentiation of NSCs and its significance in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Saravanan Kanakasabai
- Neuroscience Research Laboratory, Methodist Research Institute, Indiana University Health, Indianapolis, Indiana, United States of America
| | - Ecaterina Pestereva
- Neuroscience Research Laboratory, Methodist Research Institute, Indiana University Health, Indianapolis, Indiana, United States of America
| | - Wanida Chearwae
- Neuroscience Research Laboratory, Methodist Research Institute, Indiana University Health, Indianapolis, Indiana, United States of America
| | - Sushil K. Gupta
- Neuroscience Research Laboratory, Methodist Research Institute, Indiana University Health, Indianapolis, Indiana, United States of America
| | - Saif Ansari
- Neuroscience Research Laboratory, Methodist Research Institute, Indiana University Health, Indianapolis, Indiana, United States of America
| | - John J. Bright
- Neuroscience Research Laboratory, Methodist Research Institute, Indiana University Health, Indianapolis, Indiana, United States of America
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
18
|
Sakayori N, Maekawa M, Numayama-Tsuruta K, Katura T, Moriya T, Osumi N. Distinctive effects of arachidonic acid and docosahexaenoic acid on neural stem /progenitor cells. Genes Cells 2011; 16:778-90. [PMID: 21668588 DOI: 10.1111/j.1365-2443.2011.01527.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Arachidonic acid (ARA) and docosahexaenoic acid (DHA), which are the dominant polyunsaturated fatty acids in the brain, have crucial roles in brain development and function. Recent studies have shown that ARA and DHA promote postnatal neurogenesis. However, the direct effects of ARA on neural stem/progenitor cells (NSPCs) and the effects of ARA and DHA on NSPCs at the neurogenic and subsequent gliogenic stages are still unknown. Here, we analyzed the effects of ARA and DHA on neurogenesis, specifically maintenance and differentiation, using neurosphere assays. We confirmed that primary neurospheres are neurogenic NSPCs and that tertiary neurospheres are gliogenic NSPCs. Regarding the effects of ARA and DHA on neurogenic NSPCs, ARA and DHA increased the number of neurospheres, whereas neither ARA nor DHA had a detectable effect on NSPCs in the differentiation condition. In gliogenic NSPCs, DHA increased the number of neurospheres, whereas ARA had no such effect. In contrast, ARA increased the number of astrocytes, whereas DHA increased the number of neurons in the differentiation condition. These results suggest that ARA promotes the maintenance of neurogenic NSPCs and might induce the glial differentiation of gliogenic NSPCs and that DHA promotes the maintenance of both neurogenic and gliogenic NSPCs and might lead to the neuronal differentiation of gliogenic NSPCs.
Collapse
Affiliation(s)
- Nobuyuki Sakayori
- Division of Developmental Neuroscience, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University School of Medicine, Seiryo-machi, Aoba-ku, Sendai, Japan
| | | | | | | | | | | |
Collapse
|
19
|
Electrophilic eicosanoids: Signaling and targets. Chem Biol Interact 2011; 192:96-100. [DOI: 10.1016/j.cbi.2010.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 09/29/2010] [Accepted: 10/14/2010] [Indexed: 01/10/2023]
|