1
|
Liu X, Li J, Yang Z, Shi Y, Ji H, Li X. Effect of Shenlingyigan decoction on inflammatory factors related to liver injury regulated by TLR3 signaling pathway. Heliyon 2024; 10:e24611. [PMID: 38322849 PMCID: PMC10844112 DOI: 10.1016/j.heliyon.2024.e24611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/08/2024] Open
Abstract
Background To investigate the therapeutic effect of Shenlingyigan decoction on acute liver injury. Further explored the mechanisms involved in the therapeutic properties of Shenlingyigan decoction by test several key proteins (TLR3, TRIF, TBK1, IRF3, IFNβ, IL-1 and IL-6) within the TLR3 signaling pathway. Methods The mouse acute liver injury model group was established by pretreatment with D-GalN and Poly (I:C) induction. The acute liver injury mouse treatment groups were gavage with different doses of Shenlingyigan decoction for 3 days. The therapeutic effects of Shenlingyigan decoction were preliminarily evaluated using organ indices, tissue images, and HE staining. Furthermore, potential associated signaling pathways and target effects were predicted through network pharmacology. Western blot experiments were conducted to examine the expression of relevant proteins (TLR3, TRIF, TBK1, IRF3, IL-1, and IL-6). In addition, immunofluorescence assays were performed to assess the localization of IRF3 and IFNβ expression in the cytoplasm and nucleus. Finally, the effects of Shenlingyigan decoction on the expression of TLR3, TRIF, TBK1 and IRF3 genes were further studied by QT-PCR. Results The liver organ index, the tissue photos and HE staining showed that Shenlingyigan decoction could reduce inflammation by decreasing the presence of inflammatory cells and downregulating the expression of IL-1 and IL-6. The result of network pharmacology showed 709 potential drug and disease overlapping targets. Toll-like receptor signaling pathway was related with these targets through KEGG analysis. Besides, TLR3, TBK1, IRF3, IL6, were important targets associated with viral hepatitis. Westernblot and Immunofluorescence analysis showed that Shenlingyigan decoction reduced the expression of TLR3 and TBK1 in mice with liver injury, while increasing the expression of IRF3. Shenlingyigan decoction does not significantly affect the expression of TRIF and IFNβ; however, it enhances the expression of IRF3 in the nucleus, consequently leading to increased expression of IFNβ in the nucleus. The results of QT-PCR showed that Shenlingyigan decoction could down-regulate the expression of TLR3, TRIF and TBK1 genes, and up-regulate the expression of IRF3 gene. Conclusions Shenlingyigan decoction participated in immune responses by effecting the expression of TLR3 signaling pathway-related factors to treat the acute liver injury.
Collapse
Affiliation(s)
- Xiaoli Liu
- Department of Integrated Traditional Chinese and Western Medicine, Xi'an Children's Hospital, The Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jun Li
- Department of Integrated Traditional Chinese and Western Medicine, Xi'an Children's Hospital, The Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhen Yang
- Xi'an Hospital of Traditional Chinese Medicine, Xi'an, China
| | - Yanping Shi
- Department of Integrated Traditional Chinese and Western Medicine, Xi'an Children's Hospital, The Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hui Ji
- Department of Integrated Traditional Chinese and Western Medicine, Xi'an Children's Hospital, The Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xia Li
- Department of Integrated Traditional Chinese and Western Medicine, Xi'an Children's Hospital, The Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
2
|
Liu W, Zhu Y, Yan H, Ren L, Chen J. Nicotine plays a protective role in rats with induced viral pneumonia with polyinosinic-polycytidylic acid through α7nAChR. Heliyon 2023; 9:e21667. [PMID: 38027680 PMCID: PMC10656239 DOI: 10.1016/j.heliyon.2023.e21667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Objective To study the effect of nicotine in rat model of pneumonia induced by polyinosinic-polycytidylic acid [Poly (I:C)] and explore the underlying mechanism. Methods Twenty-four healthy adult male Sprague-Dawley (SD) rats (200-250 g) were randomly divided into normal saline control group (NS group); Poly (I:C) group; nicotine group (NIC group); and α7 nicotinic acetylcholine receptor (α7nAChR) antagonist group (α-BGT group) (n = 6 each). Rats in the Poly (I: C), NIC, and α-BGT groups were administered 1.5 mg/mL 100 μL Poly (I:C) intranasally to establish pneumonia model. In α-BGT group, 1 μg/kg α-bungarotoxin (α-BGT) was intraperitoneally injected 45 min before intranasal Poly (I:C), and 400 μg/kg nicotine was intraperitoneally injected 15 min after α-BGT injection. The NIC group received an equal volume of NS in place of α-BGT while the other treatments were same. The Poly (I:C) group received equal volume of NS in place of nicotine while the other treatments were same as in NIC group. In the NS group, only NS was administered at all three time points. PaCO2, PaO2, and PaO2/FiO2 levels were determined 24 h after administration of Poly (I:C). After euthanization, rat lung tissues were extracted for pathological examination, and wet weight/dry weight (W/D ratio) was determined. Expression of tumor necrosis factor-α (TNF-α), interleukin (IL)-6, IL-1β, and interferon (IFN)-γ in lung tissue was determined by ELISA. q-PCR was used to detect nuclear factor kappa-B P65 (NF-κBP65). Results Compared with NS group, Poly (I:C) and α-BGT groups showed significantly increased W/D ratio, PaCO2, TNF-α, IL-6, IL-1β, and IFN-γ content, NF-κB P65 expression, and reduced PaO2 and PaO2/FiO2 (p < 0.05), along with obvious signs of pathological injury. Nicotine pre-treatment reduced W/D ratio, PaCO2, proinflammatory cytokines, NF-κBP65 expression, and increased PaO2 and PaO2/FiO2 levels. The above effects were negated in α-BGT group. Conclusion Pre-administration of nicotine improved Poly (I:C)-induced pneumonia by activating the cholinergic anti-inflammatory pathway.
Collapse
Affiliation(s)
- Wei Liu
- Department of Anesthesiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Yi Zhu
- Department of Anesthesiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Hong Yan
- Department of Anesthesiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Lingyun Ren
- Department of Anesthesiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Jingli Chen
- Department of Anesthesiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| |
Collapse
|
3
|
Richter K, Grau V. Signaling of nicotinic acetylcholine receptors in mononuclear phagocytes. Pharmacol Res 2023; 191:106727. [PMID: 36966897 DOI: 10.1016/j.phrs.2023.106727] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/28/2023]
Abstract
Nicotinic acetylcholine receptors are not only expressed by the nervous system and at the neuro-muscular junction but also by mononuclear phagocytes, which belong to the innate immune system. Mononuclear phagocyte is an umbrella term for monocytes, macrophages, and dendritic cells. These cells play pivotal roles in host defense against infection but also in numerous often debilitating diseases that are characterized by exuberant inflammation. Nicotinic acetylcholine receptors of the neuronal type dominate in these cells, and their stimulation is mainly associated with anti-inflammatory effects. Although the cholinergic modulation of mononuclear phagocytes is of eminent clinical relevance for the prevention and treatment of inflammatory diseases and neuropathic pain, we are only beginning to understand the underlying mechanisms on the molecular level. The purpose of this review is to report and critically discuss the current knowledge on signal transduction mechanisms elicited by nicotinic acetylcholine receptors in mononuclear phagocytes.
Collapse
Affiliation(s)
- Katrin Richter
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University Giessen, Germany
| | - Veronika Grau
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University Giessen, Germany; German Centre for Lung Research (DZL), Giessen, Germany; Cardiopulmonary Institute (CPI), Giessen, Germany.
| |
Collapse
|
4
|
Zhang X, Chen L, Hu C, Fast D, Zhang L, Yang B, Kan J, Du J. Curcumin attenuates poly(I:C)-induced immune and inflammatory responses in mouse macrophages by inhibiting TLR3/TBK1/IFNB cascade. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
5
|
Therapeutic anti-glioma effect of the combined action of PCSK inhibitor with the anti-tumoral factors secreted by Poly (I:C)-stimulated macrophages. Cancer Gene Ther 2022; 29:22-36. [PMID: 33402730 PMCID: PMC8761570 DOI: 10.1038/s41417-020-00286-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/27/2020] [Accepted: 12/08/2020] [Indexed: 01/29/2023]
Abstract
Macrophages plasticity is a key feature in cancer progression. Neoplastic cells can alter their immune functions and orient them into a pro-tumoral phenotype. In this context, we developed a new therapeutic strategy to switch macrophages phenotype and reactivate their anti-tumoral functions. We showed a dual activity of a proprotein convertases inhibitor as anti-glioma drug and anti-tumoral macrophages' reactivation drug. Proprotein convertases are proteases that cleave proteins into functional proteins. Several of their substrates are involved in tumorigenesis and immunosuppression. We combine here proprotein convertases inhibitor with Poly (I:C), a TLR3 ligand, to increase the anti-tumoral activity of macrophages. With mass spectrometry-based proteomics, system biology, combined with biological assays, we established that a stimulation of macrophages with Poly (I:C) increased their secretion of pro-inflammatory cytokines and anti-tumoral factors. 3D invasion assay showed the efficacy of these anti-tumoral factors against mixed glioma cells and macrophages spheroids. Besides, immunofluorescence and proliferation assays showed an additive effect of the proprotein convertases inhibitor and the anti-tumoral factors secreted by Poly (I:C)-treated macrophages on both anti-glioma activity and macrophages anti-tumoral orientation directly in tumor microenvironment, leading to an innovative glioma therapy.
Collapse
|
6
|
Anderson G, Reiter RJ. Melatonin: Roles in influenza, Covid-19, and other viral infections. Rev Med Virol 2020; 30:e2109. [PMID: 32314850 PMCID: PMC7235470 DOI: 10.1002/rmv.2109] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/11/2022]
Abstract
There is a growing appreciation that the regulation of the melatonergic pathways, both pineal and systemic, may be an important aspect in how viruses drive the cellular changes that underpin their control of cellular function. We review the melatonergic pathway role in viral infections, emphasizing influenza and covid-19 infections. Viral, or preexistent, suppression of pineal melatonin disinhibits neutrophil attraction, thereby contributing to an initial "cytokine storm", as well as the regulation of other immune cells. Melatonin induces the circadian gene, Bmal1, which disinhibits the pyruvate dehydrogenase complex (PDC), countering viral inhibition of Bmal1/PDC. PDC drives mitochondrial conversion of pyruvate to acetyl-coenzyme A (acetyl-CoA), thereby increasing the tricarboxylic acid cycle, oxidative phosphorylation, and ATP production. Pineal melatonin suppression attenuates this, preventing the circadian "resetting" of mitochondrial metabolism. This is especially relevant in immune cells, where shifting metabolism from glycolytic to oxidative phosphorylation, switches cells from reactive to quiescent phenotypes. Acetyl-CoA is a necessary cosubstrate for arylalkylamine N-acetyltransferase, providing an acetyl group to serotonin, and thereby initiating the melatonergic pathway. Consequently, pineal melatonin regulates mitochondrial melatonin and immune cell phenotype. Virus- and cytokine-storm-driven control of the pineal and mitochondrial melatonergic pathway therefore regulates immune responses. Virus-and cytokine storm-driven changes also increase gut permeability and dysbiosis, thereby suppressing levels of the short-chain fatty acid, butyrate, and increasing circulating lipopolysaccharide (LPS). The alterations in butyrate and LPS can promote viral replication and host symptom severity via impacts on the melatonergic pathway. Focussing on immune regulators has treatment implications for covid-19 and other viral infections.
Collapse
Affiliation(s)
| | - Russel J. Reiter
- Department of Cellular and Structural BiologyUniversity of Texas Health Science at San AntonioSan Antonio, Texas
| |
Collapse
|
7
|
Arshadi D, Shakiba Y, Rajabian A, Nikbin B, Mousavi SH, Boroushaki MT. Cholinergic agonists inhibit proliferation of human fibroblast-like synoviocytes and monocytic cell lines and reduce VEGF and MMPs expression by these cells. Immunopharmacol Immunotoxicol 2020; 42:246-254. [PMID: 32248717 DOI: 10.1080/08923973.2020.1745830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background and purpose: Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by inflammation and joint destruction. Excessive proliferation of fibroblast-like synoviocytes (FLS) and over-expression of angiogenic factors play a crucial role in pannus formation and joint destruction in RA. Clarification of the role of cholinergic agonists in modulation of inflammation and immune system reactions is progressively ongoing. In this study, the anti-angiogenic effect of two cholinergic agonists, nicotine and ARR17779, on human FLS, and monocytic cell lines (U937) was evaluated.Experimental approach: The cells were cultured in DMEM supplemented with 10% FBS and treated with different doses of nicotine and ARR17779 in the presence of TNF-α, LPS, and IFN-γ. After 48 h, cell number was counted in different groups. After RNA extraction, cDNA was synthesized and the expression of VEGF and MMPs has been evaluated by real-time PCR using specific primers and probes. VEGF was assayed in U937 cell line supernatant using ELISA method.Key results: Both nicotine and ARR17779 inhibited FLS and U937 cell proliferation. Cholinergic agonists reduced the expression of MMPs and VEGF. VEGF level in supernatant of U937 cells treated with cholinergic agonists was also reduced.Conclusion and implications: Our results suggest that cholinergic agonists can modulate pathological conditions related to pannus formation in in-vitro conditions. Based on these results, cholinergic agonists can be considered as novel therapeutic options in RA. Further animal studies are needed before introducing these agents into clinical uses.
Collapse
Affiliation(s)
- Delnia Arshadi
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Yadollah Shakiba
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Arezoo Rajabian
- Pharmacological Research Center of Medicinal Plants, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Behrouz Nikbin
- Department of Immunology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Hadi Mousavi
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Taher Boroushaki
- Pharmacological Research Center of Medicinal Plants, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Xu Y, Cao L, Zhao X, Yao Y, Liu Q, Zhang B, Wang Y, Mao Y, Ma Y, Ma JZ, Payne TJ, Li MD, Li L. Prediction of Smoking Behavior From Single Nucleotide Polymorphisms With Machine Learning Approaches. Front Psychiatry 2020; 11:416. [PMID: 32477189 PMCID: PMC7241440 DOI: 10.3389/fpsyt.2020.00416] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 04/23/2020] [Indexed: 12/22/2022] Open
Abstract
Smoking is a complex behavior with a heritability as high as 50%. Given such a large genetic contribution, it provides an opportunity to prevent those individuals who are susceptible to smoking dependence from ever starting to smoke by predicting their inherited predisposition with their genomic profiles. Although previous studies have identified many susceptibility variants for smoking, they have limited power to predict smoking behavior. We applied the support vector machine (SVM) and random forest (RF) methods to build prediction models for smoking behavior. We first used 1,431 smokers and 1,503 non-smokers of African origin for model building with a 10-fold cross-validation and then tested the prediction models on an independent dataset consisting of 213 smokers and 224 non-smokers. The SVM model with 500 top single nucleotide polymorphisms (SNPs) selected using logistic regression (p<0.01) as the feature selection method achieved an area under the curve (AUC) of 0.691, 0.721, and 0.720 for the training, test, and independent test samples, respectively. The RF model with 500 top SNPs selected using logistic regression (p<0.01) achieved AUCs of 0.671, 0.665, and 0.667 for the training, test, and independent test samples, respectively. Finally, we used the combined logistic (p<0.01) and LASSO (λ=10-3) regression to select features and the SVM algorithm for model building. The SVM model with 500 top SNPs achieved AUCs of 0.756, 0.776, and 0.897 for the training, test, and independent test samples, respectively. We conclude that machine learning methods are promising means to build predictive models for smoking.
Collapse
Affiliation(s)
- Yi Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liyu Cao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyi Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yinghao Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiang Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bin Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Mao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunlong Ma
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jennie Z Ma
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, United States
| | - Thomas J Payne
- Department of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, United States
| | - Ming D Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
9
|
Xue R, Wan Y, Sun X, Zhang X, Gao W, Wu W. Nicotinic Mitigation of Neuroinflammation and Oxidative Stress After Chronic Sleep Deprivation. Front Immunol 2019; 10:2546. [PMID: 31736967 PMCID: PMC6828928 DOI: 10.3389/fimmu.2019.02546] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 10/14/2019] [Indexed: 12/12/2022] Open
Abstract
Sleep deprivation negatively influences all aspects of health. Oxidative stress and inflammatory responses induced by sleep deprivation participate in its adverse effects but the regulatory mechanisms to counteract them remain poorly understood. In mice subjected to sleep deprivation for 7 days, we found activation of microglia and astrocyte accompanied by down-regulation of α7 nicotinic acetylcholine receptor (α7-nAChR) and reduced activation of downstream PI3K/AKT/GSK-3β. These changes occurred with an increase of pro-inflammatory factors, together with reduced levels of anti-inflammatory factors, transcriptor Nrf-2, and anti-oxidant enzyme HO-1. Administration of an α7-nAChR agonist PHA-543613 induced activation of PI3K/AKT/GSK-3β, and reversed changes in pro-inflammatory and anti-inflammatory factors, Nrf-2 and HO-1. These results suggest that stimulation of α7-nAChR reduce neuroinflammation and oxidative stress after chronic sleep deprivation.
Collapse
Affiliation(s)
- Rong Xue
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yahui Wan
- Department of Neurology, Tianjin Medical University General Hospital Airport Hospital, Tianjin, China
| | - Xiaoqian Sun
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xuan Zhang
- Department of Neurology, Tianjin Medical University General Hospital Airport Hospital, Tianjin, China
| | - Wei Gao
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Wei Wu
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
10
|
Novel Treatment Targets Based on Insights in the Etiology of Depression: Role of IL-6 Trans-Signaling and Stress-Induced Elevation of Glutamate and ATP. Pharmaceuticals (Basel) 2019; 12:ph12030113. [PMID: 31362361 PMCID: PMC6789839 DOI: 10.3390/ph12030113] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/10/2019] [Accepted: 07/26/2019] [Indexed: 12/11/2022] Open
Abstract
Inflammation and psychological stress are risk factors for major depression and suicide. Both increase central glutamate levels and activate the hypothalamic-pituitary-adrenal axis and the sympathetic nervous system. Both factors also affect the function of the chloride transporters, Na-K-Cl-cotransporter-1 (NKCC1) and K-Cl-cotransporter-2 (KCC2), and provoke interleukin-6 (IL-6) trans-signaling. This leads to measurable increases in circulating corticosteroids, catecholamines, anxiety, somatic and psychological symptoms, and a decline in cognitive functions. Recognition of the sequence of pathological events allows the prediction of novel targets for therapeutic intervention. Amongst others, these include blockade of the big-K potassium channel, blockade of the P2X4 channel, TYK2-kinase inhibition, noradrenaline α2B-receptor antagonism, nicotinic α7-receptor stimulation, and the Sgp130Fc antibody. A better understanding of downstream processes evoked by inflammation and stress also allows suggestions for tentatively better biomarkers (e.g., SERPINA3N, MARCKS, or 13C-tryptophan metabolism).
Collapse
|
11
|
Nazrun Shuid A, Das S, Mohamed IN. Therapeutic effect of Vitamin E in preventing bone loss: An evidence-based review. INT J VITAM NUTR RES 2019; 89:357-370. [PMID: 30856080 DOI: 10.1024/0300-9831/a000566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The present review explored the anti-inflammatory and immunomodulatory properties of vitamin E, which has protective action against osteoporosis. A systematic review of the literature was conducted to identify the published bone studies on vitamin E. The studies included inflammatory or immunology-related parameters. Medline and Scopus databases were searched for relevant studies published from 2005 till 2015. Research articles published in English and confined to the effect of vitamin E on bone were included. It is pertinent to mention that these studies took into consideration inflammatory or immunology parameters including interleukin (IL)-1, IL-6, receptor activator of nuclear factor kappa-B ligand (RANKL), inducible nitric oxide synthases (iNOS), serum amyloid A (SAA), e-selection and high-sensitivity C-reactive protein (hs-CRP). An extended literature search yielded 127 potentially relevant articles with seven articles meeting the inclusion and exclusion criteria. Another recent article was added with the total number accounting to eight. All these included literature comprised five animal studies, one in-vitro study and two human studies. These studies demonstrated that vitamin E, especially tocotrienol, was able to alleviate IL-1, IL-6, RANKL, iNOS and hs-CRP levels in relation to bone metabolism. In conclusion, vitamin E exerts its anti-osteoporotic actions via its anti-inflammatory and immunomodulatory effects.
Collapse
Affiliation(s)
- Ahmad Nazrun Shuid
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre
| | - Srijit Das
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre
| | - Isa Naina Mohamed
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre
| |
Collapse
|
12
|
Yoshinaga N, Uchida S, Naito M, Osada K, Cabral H, Kataoka K. Induced packaging of mRNA into polyplex micelles by regulated hybridization with a small number of cholesteryl RNA oligonucleotides directed enhanced in vivo transfection. Biomaterials 2019; 197:255-267. [PMID: 30669016 DOI: 10.1016/j.biomaterials.2019.01.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 12/23/2018] [Accepted: 01/12/2019] [Indexed: 12/22/2022]
Abstract
There has been a progressive interest in the molecular design of polymers and lipids as synthetic carriers for targeting therapeutic mRNA in vivo with the ability to circumvent nuclease attack for treating intractable diseases. Herein, we developed a simple approach to attain one order of magnitude higher nuclease tolerability of mRNA through the formation of polyplex micelles (PMs) by combining ω-cholesteryl (ω-Chol)-poly (ethylene-glycol) (PEG)-polycation block copolymers with mRNA pre-hybridized with cholesterol (Chol)-tethered RNA oligonucleotides (Chol (+)-OligoRNA). Even one or a few short Chol (+)-OligoRNA anchors harboring along the 46-fold longer mRNA strand was sufficient to induce tight mRNA packaging in the PM core, as evidenced by Förster resonance energy transfer (FRET) measurement as well as by a longitudinal relaxation time (T1) measurement using NMR. These results suggest that Chol (+)-OligoRNA on mRNA strand serves as a node to attract ω-Chol moiety of the block copolymers to tighten the mRNA packaging in the PM core. These mRNA loaded PMs showed high tolerability against nuclease attack, and exerted appreciable protein translational activity in cultured cells without any inflammatory responses, achieved by shortening of the length of hybridizing Chol (+)-OligoRNAs to 17 nucleotides. Finally, the Chol (+)-OligoRNA-stabilized PM revealed efficient mRNA introduction into the mouse lungs via intratracheal administration, demonstrating in vivo utility of this formulation.
Collapse
Affiliation(s)
- Naoto Yoshinaga
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Satoshi Uchida
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan.
| | - Mitsuru Naito
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kensuke Osada
- National Institute of Radiological Science, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan; Policy Alternatives Research Institute, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
13
|
Modulatory Effects of Nicotine on neuroHIV/neuroAIDS. J Neuroimmune Pharmacol 2018; 13:467-478. [PMID: 30215204 DOI: 10.1007/s11481-018-9806-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/23/2018] [Indexed: 12/28/2022]
Abstract
Nicotine, one of the key active ingredients in tobacco smoke, exerts its effects via binding to nicotinic acetylcholine receptors (nAChRs). Although both negative and positive pharmacological effects of nicotine have been shown in numerous animals and human studies, its interaction with human immunodeficiency virus-1 (HIV-1) have not been fully elucidated. Even though combined anti-retroviral therapy (cART) limits the progression of HIV-1 to acquired immune deficiency syndrome (AIDS), HIV-associated neurocognitive disorders (HAND) remain prevalent. There is thus a compelling need to enhance our understanding of HAND-related neurologic dysfunction. Some biochemical pathways and physiological dysfunctions have been found to be shared by HAND and Alzheimer's (AD) or Parkinson's (PD) diseases, and nicotine may exert the same neuroprotection in HAND that has been observed in both AD and PD. In the past dozen years, various potential therapeutic effects of nicotine such as neuroprotection have been revealed in both in vivo and in vitro studies, including using HIV-1 transgenic (HIV-1Tg) rat model, which mimics HIV-infected patients receiving cART. In the current review, we describe recent progress in the prevalence of HIV/AIDS with and without cigarette smoking, some animal models for studying neural dysfunction associated with HIV-1 infection, elucidating the modulatory effects of cigarette smoking/nicotine on HIV/AIDS, the anti-inflammatory effects of nicotine, and the neuroprotective effects observed in HIV-1Tg rat model. Taken together, these findings suggest the following: although tobacco smoking does cause deleterious effects in both health and disease conditions such as HIV infection, nicotine, the significant component of tobacco smoke, has been shown to possess some neuroprotective effects in HIV patients, possible via its anti-inflammatory activities. It is therefore necessary to study nicotine's dual effects on neuroHIV/neuroAIDS in hope of better defining the potential medical uses of nicotine or its analogues, and to make them available in a purer and less dangerous form.
Collapse
|
14
|
Torrealba D, Balasch JC, Criado M, Tort L, Mackenzie S, Roher N. Functional evidence for the inflammatory reflex in teleosts: A novel α7 nicotinic acetylcholine receptor modulates the macrophage response to dsRNA. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 84:279-291. [PMID: 29501534 DOI: 10.1016/j.dci.2018.02.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 02/28/2018] [Accepted: 02/28/2018] [Indexed: 06/08/2023]
Abstract
The inflammatory reflex modulates the innate immune system, keeping in check the detrimental consequences of overstimulation. A key player controlling the inflammatory reflex is the alpha 7 acetylcholine receptor (α7nAChR). This receptor is one of the signalling molecules regulating cytokine expression in macrophages. In this study, we characterize a novel teleost α7nAChR. Protein sequence analysis shows a high degree of conservation with mammalian orthologs and trout α7nAChR has all the features and essential amino acids to form a fully functional receptor. We demonstrate that trout macrophages can bind α-bungarotoxin (α-BTX), a competitive antagonist for α7nAChRs. Moreover, nicotine stimulation produces a decrease in pro-inflammatory cytokine expression after stimulation with poly(I:C). These results suggest the presence of a functional α7nAChR in the macrophage plasma membrane. Further, in vivo injection of poly(I:C) induced an increase in serum ACh levels in rainbow trout. Our results manifest for the first time the functional conservation of the inflammatory reflex in teleosts.
Collapse
Affiliation(s)
- Débora Torrealba
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; Departament de Biologia Cel·lular, Fisiologia Animal i Immunologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Joan Carles Balasch
- Departament de Biologia Cel·lular, Fisiologia Animal i Immunologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Manuel Criado
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, 03550 Sant Joan d'Alacant, Spain
| | - Lluís Tort
- Departament de Biologia Cel·lular, Fisiologia Animal i Immunologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Simon Mackenzie
- Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, United Kingdom.
| | - Nerea Roher
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; Departament de Biologia Cel·lular, Fisiologia Animal i Immunologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.
| |
Collapse
|
15
|
Association and cis-mQTL analysis of variants in CHRNA3-A5, CHRNA7, CHRNB2, and CHRNB4 in relation to nicotine dependence in a Chinese Han population. Transl Psychiatry 2018; 8:83. [PMID: 29666375 PMCID: PMC5904126 DOI: 10.1038/s41398-018-0130-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/30/2017] [Accepted: 02/18/2018] [Indexed: 12/22/2022] Open
Abstract
Nicotine dependence (ND) is a worldwide health problem. Numerous genetic studies have demonstrated a significant association of variants in nicotinic acetylcholine receptors (nAChRs) with smoking behaviors. However, most of these studies enrolled only subjects of European or African ancestry. In addition, although an increasing body of evidence implies a causal connection of single-nucleotide polymorphisms (SNPs) and epigenetic regulation of gene expression, few studies of this issue have been reported. In this study, we performed both association and interaction analysis for 67 SNPs in CHRNA3-A5, CHRNA7, CHRNB2, and CHRNB4 with ND in a Chinese Han population (N = 5055). We further analyzed cis-mQTL for the three most significant SNPs and 5580 potential methylation loci within these target gene regions. Our results indicated that the SNPs rs1948 and rs7178270 in CHRNB4 and rs3743075 in CHRNA3 were significantly associated with the Fagerström Test for Nicotine Dependence (FTND) score (p = 6.6 × 10-5; p = 2.0 × 10-4, and p = 7.0 × 10-4, respectively). Haplotype-based association analysis revealed that two major haplotypes, T-G and C-A, formed by rs3743075-rs3743074 in CHRNA3, and other two major haplotypes, A-G-C and G-C-C, formed by rs1948-rs7178270-rs17487223 in CHRNB4, were significantly associated with the FTND score (p ≤ 8.0 × 10-4). Further, we found evidence for the presence of significant interaction among variants within CHRNA3/B4/A5, CHRNA4/B2/A5, and CHRNA7 in affecting ND, with corresponding p values of 5.8 × 10-6, 8.0 × 10-5, and 0.012, respectively. Finally, we identified two CpG sites (CpG_2975 and CpG_3007) in CHRNA3 that are significantly associated with three cis-mQTL SNPs (rs1948, rs7178270, rs3743075) in the CHRNA5/A3/B4 cluster (p ≤ 1.9 × 10-6), which formed four significant CpG-SNP pairs in our sample. Together, we revealed at least three novel SNPs in CHRNA3 and CHRNB4 to be significantly associated with the FTND score. Further, we showed that these significant variants contribute to ND via two methylated sites, and we demonstrated significant interaction affecting ND among variants in CHRNA5/A3/B4, CHRNA7, and CHRNA4/B2/A5. In sum, these findings provide robust evidence that SNPs in nAChR genes convey a risk of ND in the Chinese Han population.
Collapse
|
16
|
Sarkar I, Garg R, van Drunen Littel-van den Hurk S. The respiratory syncytial virus fusion protein formulated with a polymer-based adjuvant induces multiple signaling pathways in macrophages. Vaccine 2018; 36:2326-2336. [PMID: 29559168 DOI: 10.1016/j.vaccine.2018.03.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/04/2018] [Accepted: 03/06/2018] [Indexed: 12/13/2022]
Abstract
Respiratory syncytial virus (RSV) causes acute respiratory tract infections in infants, the elderly and immunocompromised individuals. No licensed vaccine is available against RSV. We previously reported that intranasal immunization of rodents and lambs with a RSV vaccine candidate (ΔF/TriAdj) induces protective immunity with a good safety profile. ΔF/TriAdj promoted innate immune responses in respiratory mucosal tissues in vivo, by local chemokine and cytokine production, as well as infiltration and activation of immune cells including macrophages. The macrophage is an important cell type in context of both innate and adaptive immune responses against RSV. Therefore, we characterized the effects of ΔF/TriAdj on a murine macrophage cell line, RAW264.7, and bone marrow-derived macrophages (BMMs). A gene expression study of pattern recognition receptors (PRRs) revealed induction of endosomal and cytosolic receptors in RAW264.7 cells and BMMs by ΔF/TriAdj, but no up-regulation by ΔF in PBS. As a secondary response to the PRR gene expression, induction of several chemokines and pro-inflammatory cytokines, as well as up-regulation of MHC-II and co-stimulatory immune markers, was observed. To further investigate the mechanisms involved in ΔF/TriAdj-mediated secondary responses, we used relevant signal transduction pathway inhibitors. Based on inhibition studies at both transcript and protein levels, JNK, ERK1/2, CaMKII, PI3K and JAK pathways were clearly responsible for ΔF/TriAdj-mediated chemokine and pro-inflammatory cytokine responses, while the p38 and NF-κB pathways appeared to be not or minimally involved. ΔF/TriAdj induced IFN-β, which may participate in the JAK-STAT pathway to further amplify CXCL-10 production, which was strongly up-regulated. Blocking this pathway by a JAK inhibitor almost completely abrogated CXCL-10 production and caused a significant reduction in the cell surface expression of MHC-II and co-stimulatory immune markers. These data demonstrate that ΔF/TriAdj induces multiple signaling pathways in macrophages.
Collapse
Affiliation(s)
- Indranil Sarkar
- VIDO-InterVac, University of Saskatchewan, Saskatoon S7N 5E3, Canada; Microbiology and Immunology, University of Saskatchewan, Saskatoon S7N 5E5, Canada
| | - Ravendra Garg
- VIDO-InterVac, University of Saskatchewan, Saskatoon S7N 5E3, Canada
| | - Sylvia van Drunen Littel-van den Hurk
- VIDO-InterVac, University of Saskatchewan, Saskatoon S7N 5E3, Canada; Microbiology and Immunology, University of Saskatchewan, Saskatoon S7N 5E5, Canada.
| |
Collapse
|
17
|
Yang Z, Nesil T, Wingo T, Chang SL, Li MD. HIV-1 Proteins Influence Novelty-Seeking Behavior and Alter Region-Specific Transcriptional Responses to Chronic Nicotine Treatment in HIV-1Tg Rats. Nicotine Tob Res 2017; 19:1024-1032. [PMID: 28339662 PMCID: PMC5896433 DOI: 10.1093/ntr/ntx047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 02/15/2017] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Clinical studies suggest that HIV-1-infected patients are more likely to use or abuse addictive drugs than is the general population. We hypothesized that HIV-1 proteins impact novelty-seeking behavior and enhance the transcriptional response to nicotine in genes implicated in both novelty-seeking behavior and drug addiction. METHODS We assessed the effects of HIV-1 proteins on novelty-seeking behavior by comparing baseline activity differences of HIV-1Tg and F344 control rats in the open-field test. One day after behavioral testing, all rats began daily subcutaneous injections of either nicotine (0.4 mg/kg, base) or saline (the same for each rat) for 27 days. At the end of treatment, the prefrontal cortex, nucleus accumbens, and ventral tegmental area were collected for RNA expression analysis of genes in the receptor families for dopamine, GABA, glutamate, and serotonin. RESULTS Significant strain difference was detected in the distance moved in the center, such that HIV-1Tg rats traveled greater distance in the center of the arena than did F344 rats. Quantitative RT-PCR analysis showed that mRNA from Drd3 and Grm2 in the prefrontal cortex and Drd5 and Gabra6 in the ventral tegmental area was significantly upregulated, whereas that of Drd5 in the nucleus accumbens was downregulated in HIV-1Tg rats compared with F344 rats. Further, more addiction-related genes were significantly modulated by nicotine in each brain region in the HIV-1Tg rats than in the control animals. CONCLUSIONS HIV-1 proteins may affect novelty-seeking behavior and modulate the expression of genes related to drug addiction and novelty-seeking behavior. IMPLICATIONS HIV-1 viral proteins and chronic nicotine treatment impact the expression of genes involved in novelty-seeking behavior and addiction in three brain regions of the HIV-1 transgenic rat. These findings implicate that HIV-1 proteins may be involved in novelty-seeking behavior and in modulating the expression of genes related to drug addiction and novelty seeking.
Collapse
Affiliation(s)
- Zhongli Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
- Research Center for Air Pollution and Health, Zhejiang University,Hangzhou,China
- Institute of NeuroImmune Pharmacology, Seton Hall University,South Orange, NJ
| | - Tanseli Nesil
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA
| | - Taylor Wingo
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA
| | - Sulie L Chang
- Institute of NeuroImmune Pharmacology, Seton Hall University,South Orange, NJ
- Department of Biology, Seton Hall University,South Orange, NJ
| | - Ming D Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
- Research Center for Air Pollution and Health, Zhejiang University,Hangzhou,China
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA
| |
Collapse
|
18
|
Han B, Li X, Hao J. The cholinergic anti-inflammatory pathway: An innovative treatment strategy for neurological diseases. Neurosci Biobehav Rev 2017; 77:358-368. [PMID: 28392244 DOI: 10.1016/j.neubiorev.2017.04.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 02/28/2017] [Accepted: 04/03/2017] [Indexed: 12/22/2022]
Abstract
Acetylcholine (ACh), as a classical neurotransmitter, regulates the neuronal network in response to internal and external stimuli. In recent decades, the biology of ACh has been endowed with unparalleled new insights, especially with respect to cholinergic anti-inflammatory properties in non-neuronal cells. In fact, a mechanism frequently referred to as the "cholinergic anti-inflammatory pathway" has been termed to describe interactions between the central nervous system (CNS) and the immune system via vagus nerve. As well documented, immune cells express choline acetyltransferase, a direct synthetase for ACh, and other corresponding cholinergic components. Alternatively, the ACh released from immune cells or cholinergic neurons modulates immune function in an autocrine/paracrine manner by acting on its receptors. Moreover, muscarinic or nicotinic ACh receptors on various immune cells and CNS glial cells administer the work of their respective agonists, causing functional and biochemical changes. In this review, we focus on the anti-inflammatory benefits of non-neuronal and neuronal ACh as a means of providing new insights into treating inflammation-related neurological diseases, as exemplified by those described herein.
Collapse
Affiliation(s)
- Bin Han
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Xiuping Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Junwei Hao
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
19
|
Cullis J, Siolas D, Avanzi A, Barui S, Maitra A, Bar-Sagi D. Macropinocytosis of Nab-paclitaxel Drives Macrophage Activation in Pancreatic Cancer. Cancer Immunol Res 2017; 5:182-190. [PMID: 28108630 DOI: 10.1158/2326-6066.cir-16-0125] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 11/29/2016] [Accepted: 01/04/2017] [Indexed: 01/05/2023]
Abstract
Pancreatic cancer is a devastating disease that is largely refractory to currently available treatment strategies. Therapeutic resistance is partially attributed to the dense stromal reaction of pancreatic ductal adenocarcinoma tumors that includes a pervasive infiltration of immunosuppressive (M2) macrophages. Nab-paclitaxel (trade name Abraxane) is a nanoparticle albumin-bound formulation of paclitaxel that, in combination with gemcitabine, is currently the first-line treatment for pancreatic cancer. Here, we show that macrophages internalized nab-paclitaxel via macropinocytosis. The macropinocytic uptake of nab-paclitaxel induced macrophage immunostimulatory (M1) cytokine expression and synergized with IFNγ to promote inducible nitric oxide synthase expression in a TLR4-dependent manner. Nab-paclitaxel was internalized by tumor-associated macrophages in vivo, and therapeutic doses of nab-paclitaxel alone, and in combination with gemcitabine, increased the MHCII+CD80+CD86+ M1 macrophage population. These data revealed an unanticipated role for nab-paclitaxel in macrophage activation and rationalized its potential use to target immune evasion in pancreatic cancer. Cancer Immunol Res; 5(3); 182-90. ©2017 AACR.
Collapse
Affiliation(s)
- Jane Cullis
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York
| | - Despina Siolas
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York
| | - Antonina Avanzi
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York
| | - Sugata Barui
- Departments of Pathology and Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anirban Maitra
- Departments of Pathology and Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Dafna Bar-Sagi
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York.
| |
Collapse
|
20
|
Özbeyli D, Berberoglu AC, Özen A, Erkan O, Başar Y, Şen T, Akakın D, Yüksel M, Kasımay Çakır Ö. Protective effect of alpha-lipoic acid, aerobic or resistance exercise from colitis in second hand smoke exposed young rats. Clin Exp Pharmacol Physiol 2016; 44:62-70. [DOI: 10.1111/1440-1681.12682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/26/2016] [Accepted: 09/28/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Dilek Özbeyli
- Physiology Department; Marmara University School of Medicine; Istanbul Turkey
| | | | - Anıl Özen
- Marmara University School of Medicine Students; Istanbul Turkey
| | - Oktay Erkan
- Marmara University School of Medicine Students; Istanbul Turkey
| | - Yunus Başar
- Marmara University School of Medicine Students; Istanbul Turkey
| | - Tunahan Şen
- Marmara University School of Medicine Students; Istanbul Turkey
| | - Dilek Akakın
- Histology and Embriology Department; Marmara University School of Medicine; Istanbul Turkey
| | - Meral Yüksel
- Medical Laboratory Program; Vocational School of Health Related Professions; Marmara University; Istanbul Turkey
| | - Özgür Kasımay Çakır
- Physiology Department; Marmara University School of Medicine; Istanbul Turkey
| |
Collapse
|
21
|
Yamada-Nomoto K, Yoshino O, Akiyama I, Ushijima A, Ono Y, Shima T, Nakashima A, Hayashi S, Kadowaki M, Osuga Y, Saito S. Alpha-7 nicotinic acetylcholine receptor (nAChR) agonist inhibits the development of endometriosis by regulating inflammation. Am J Reprod Immunol 2016; 76:491-498. [DOI: 10.1111/aji.12592] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 09/18/2016] [Indexed: 11/29/2022] Open
Affiliation(s)
| | - Osamu Yoshino
- Department of Obstetrics and Gynecology; University of Toyama; Toyama Japan
| | - Ikumi Akiyama
- Department of Obstetrics and Gynecology; University of Tokyo; Tokyo Japan
| | - Akemi Ushijima
- Department of Obstetrics and Gynecology; University of Toyama; Toyama Japan
| | - Yosuke Ono
- Department of Obstetrics and Gynecology; University of Toyama; Toyama Japan
| | - Tomoko Shima
- Department of Obstetrics and Gynecology; University of Toyama; Toyama Japan
| | - Akitoshi Nakashima
- Department of Obstetrics and Gynecology; University of Toyama; Toyama Japan
| | - Shusaku Hayashi
- Division of Gastrointestinal Pathophysiology; Institute of Natural Medicine; University of Toyama; Toyama Japan
| | - Makoto Kadowaki
- Division of Gastrointestinal Pathophysiology; Institute of Natural Medicine; University of Toyama; Toyama Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology; University of Tokyo; Tokyo Japan
| | - Shigeru Saito
- Department of Obstetrics and Gynecology; University of Toyama; Toyama Japan
| |
Collapse
|
22
|
Wingo T, Nesil T, Chang SL, Li MD. Interactive Effects of Ethanol and HIV-1 Proteins on Novelty-Seeking Behaviors and Addiction-Related Gene Expression. Alcohol Clin Exp Res 2016; 40:2102-2113. [PMID: 27650554 PMCID: PMC5108578 DOI: 10.1111/acer.13206] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 07/30/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Novelty-seeking behavior is related to the reward system in the brain and can predict the potential for addiction. Alcohol use is prevalent in HIV-1-infected patients and adversely affects antiretroviral medication. The difference in vulnerability to alcohol addiction between HIV-1-infected and noninfected populations has not been fully investigated. This study was designed to determine whether HIV-1 proteins alter the effects of ethanol (EtOH) on novelty-seeking behavior using the HIV-1 transgenic (HIV-1Tg) rat as the study model and to examine the molecular mechanisms responsible for this behavior. METHODS Both HIV-1Tg and F344 control rats were tested for baseline novelty-seeking behavior, then received either EtOH (1 g/kg) at a concentration of 20% v/v or saline treatment for 13 days, and then were retested for novelty seeking. Quantitative real-time polymerase chain reaction was conducted to examine the differences in expression of 65 genes implicated in novelty seeking and alcohol addiction between strains and treatment groups. RESULTS The HIV-1 proteins significantly enhanced baseline novelty-seeking behaviors in both the hole-board and open-field tests. Chronic EtOH treatment significantly increased baseline novelty-seeking behavior in both strains, but the effects of EtOH appeared to be more robust and prominent in HIV-1Tg rats. Strain-specific patterns of altered gene expression were observed for dopaminergic, cholinergic, and glutamatergic signaling in the nucleus accumbens, suggesting the effects of HIV-1 proteins on the brain's reward system. Chronic EtOH treatment was shown to greatly modulate the effects of HIV-1 proteins in these neurotransmitter systems. CONCLUSIONS Taken together, our findings indicate that HIV-1 proteins could modify novelty-seeking behavior at the gene expression level, and EtOH treatment may enhance this behavior in both strains but to a greater extent in HIV-1Tg rats.
Collapse
Affiliation(s)
- Taylor Wingo
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, Virginia
| | - Tanseli Nesil
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, Virginia
| | - Sulie L Chang
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, New Jersey.
- Department of Biological Sciences, Seton Hall University, South Orange, New Jersey.
| | - Ming D Li
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
23
|
Revathikumar P, Bergqvist F, Gopalakrishnan S, Korotkova M, Jakobsson PJ, Lampa J, Le Maître E. Immunomodulatory effects of nicotine on interleukin 1β activated human astrocytes and the role of cyclooxygenase 2 in the underlying mechanism. J Neuroinflammation 2016; 13:256. [PMID: 27681882 PMCID: PMC5041575 DOI: 10.1186/s12974-016-0725-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 09/20/2016] [Indexed: 12/21/2022] Open
Abstract
Background The cholinergic anti-inflammatory pathway (CAP) primarily functions through acetylcholine (ACh)-alpha7 nicotinic acetylcholine receptor (α7nAChR) interaction on macrophages to control peripheral inflammation. Interestingly, ACh can also bind α7nAChRs on microglia resulting in neuroprotective effects. However, ACh effects on astrocytes remain elusive. Here, we investigated the effects of nicotine, an ACh receptor agonist, on the cytokine and cholinesterase production of immunocompetent human astrocytes stimulated with interleukin 1β (IL-1β) in vitro. In addition, the potential involvement of prostaglandins as mediators of nicotine was studied using cyclooxygenase 2 (COX-2) inhibition. Methods Cultured human fetal astrocytes were stimulated with human recombinant IL-1β and treated simultaneously with nicotine at different concentrations (1, 10, and 100 μM). Cell supernatants were collected for cytokine and cholinesterase profiling using ELISA and MesoScale multiplex assay. α7nAChR expression on activated human astrocytes was studied using immunofluorescence. For the COX-2 inhibition studies, enzyme activity was inhibited using NS-398. One-way ANOVA was used to perform statistical analyses. Results Nicotine treatment dose dependently limits the production of critical proinflammatory cytokines such as IL-6 (60.5 ± 3.3, %inhibition), IL-1β (42.4 ± 1.7, %inhibition), and TNF-α (68.9 ± 7.7, %inhibition) by activated human astrocytes. Interestingly, it also inhibits IL-8 chemokine (31.4 ± 8.5, %inhibition), IL-13 (34.243 ± 4.9, %inhibition), and butyrylcholinesterase (20.8 ± 2.8, %inhibition) production at 100 μM. Expression of α7nAChR was detected on the activated human astrocytes. Importantly, nicotine’s inhibitory effect on IL-6 production was reversed with the specific COX-2 inhibitor NS-398. Conclusions Activation of the cholinergic system through α7nAChR agonists has been known to suppress inflammation both in the CNS and periphery. In the CNS, earlier experimental data shows that cholinergic activation through nicotine inhibits microglial activation and proinflammatory cytokine release. Here, we report similar anti-inflammatory effects of cholinergic activation on human astrocytes, at least partly mediated through the COX-2 pathway. These results confirm the potential for cholinergic neuroprotection, which is looked upon as a promising therapy for neuroinflammation as well as neurodegenerative diseases and stroke. Our data implicates an important role for the prostaglandin system in cholinergic regulatory effects.
Collapse
Affiliation(s)
- Priya Revathikumar
- Department of Medicine, Unit of Rheumatology, Center for Molecular Medicine (CMM), Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden.
| | - Filip Bergqvist
- Department of Medicine, Unit of Rheumatology, Center for Molecular Medicine (CMM), Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Srividya Gopalakrishnan
- Department of Medicine, Unit of Rheumatology, Center for Molecular Medicine (CMM), Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Marina Korotkova
- Department of Medicine, Unit of Rheumatology, Center for Molecular Medicine (CMM), Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Per-Johan Jakobsson
- Department of Medicine, Unit of Rheumatology, Center for Molecular Medicine (CMM), Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Jon Lampa
- Department of Medicine, Unit of Rheumatology, Center for Molecular Medicine (CMM), Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Erwan Le Maître
- Department of Medicine, Unit of Rheumatology, Center for Molecular Medicine (CMM), Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
24
|
Kalkman HO, Feuerbach D. Modulatory effects of α7 nAChRs on the immune system and its relevance for CNS disorders. Cell Mol Life Sci 2016; 73:2511-30. [PMID: 26979166 PMCID: PMC4894934 DOI: 10.1007/s00018-016-2175-4] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/25/2016] [Accepted: 03/01/2016] [Indexed: 02/08/2023]
Abstract
The clinical development of selective alpha-7 nicotinic acetylcholine receptor (α7 nAChR) agonists has hitherto been focused on disorders characterized by cognitive deficits (e.g., Alzheimer's disease, schizophrenia). However, α7 nAChRs are also widely expressed by cells of the immune system and by cells with a secondary role in pathogen defense. Activation of α7 nAChRs leads to an anti-inflammatory effect. Since sterile inflammation is a frequently observed phenomenon in both psychiatric disorders (e.g., schizophrenia, melancholic and bipolar depression) and neurological disorders (e.g., Alzheimer's disease, Parkinson's disease, and multiple sclerosis), α7 nAChR agonists might show beneficial effects in these central nervous system disorders. In the current review, we summarize information on receptor expression, the intracellular signaling pathways they modulate and reasons for receptor dysfunction. Information from tobacco smoking, vagus nerve stimulation, and cholinesterase inhibition is used to evaluate the therapeutic potential of selective α7 nAChR agonists in these inflammation-related disorders.
Collapse
Affiliation(s)
- Hans O Kalkman
- Neuroscience Research, NIBR, Fabrikstrasse 22-3.001.02, 4002, Basel, Switzerland.
- , Gänsbühlgartenweg 7, 4132, Muttenz, Switzerland.
| | - Dominik Feuerbach
- Neuroscience Research, NIBR, Fabrikstrasse 22-3.001.02, 4002, Basel, Switzerland
| |
Collapse
|
25
|
Yang Z, Nesil T, Connaghan KP, Li MD, Chang SL. Modulation Effect of HIV-1 Viral Proteins and Nicotine on Expression of the Immune-Related Genes in Brain of the HIV-1 Transgenic Rats. J Neuroimmune Pharmacol 2016; 11:562-71. [PMID: 27147085 DOI: 10.1007/s11481-016-9679-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 04/26/2016] [Indexed: 02/07/2023]
Abstract
The human immunodeficiency virus-1 transgenic (HIV-1Tg) rat is a non-infectious rodent model for HIV-1 infection which develops altered immune-responses similar to those in persons infected with HIV-1. HIV-1Tg and F344 rats respond significantly different to morphine, ethanol, nicotine and other psychostimulants, although the molecular mechanisms underlying these differences remain largely undetermined. Here, we compared expression of 52 immune-related genes in the prefrontal cortex (PFC), nucleus accumbens (NAc), and ventral tegmental area (VTA) of HIV-1Tg and F344 rats treated with either nicotine (0.4 mg/kg nicotine, base, s.c.) or saline for 27 days, to identify differentially expressed genes in the presence of HIV-1 with and without nicotine treatment. Using quantitative RT-PCR array, we measured RNA expression levels. Results showed that RNA expression of CASP3, CCL5, CX3CL1, CX3CR1, IL1α, LRF4, LFR7, TGFβ1 and TLR4 in NAc, CCL2, CCL5, TGFβ1 and TLR4 in PFC, and CASP3, CX3CR1, IFNα1, IL1β and IL6 in VTA was significantly modulated in HIV-1Tg rats compared with F344 rats. IL1α showed a 58 % (P = 0.000072) decrease and IRF6 showed a 93.7 % increase (P = 0.000227) in the NAc of HIV-1Tg compared with F344 rats; results remained significant after correction for multiple testing. We also found that several genes were significantly modulated by nicotine in HIV-1Tg rats while only a small number of immune-related genes were altered by nicotine in F344 rats. These findings imply that HIV-1 viral proteins greatly impact immune function and alter responsiveness to nicotine in certain immune-related genes.
Collapse
Affiliation(s)
- Zhongli Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ, USA
| | - Tanseli Nesil
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA, USA
| | - Kaitlyn P Connaghan
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ, USA
| | - Ming D Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA, USA
| | - Sulie L Chang
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ, USA. .,Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA.
| |
Collapse
|
26
|
Roy DN, Goswami R. Drugs of abuse and addiction: A slippery slope toward liver injury. Chem Biol Interact 2015; 255:92-105. [PMID: 26409324 DOI: 10.1016/j.cbi.2015.09.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/14/2015] [Accepted: 09/18/2015] [Indexed: 02/08/2023]
Abstract
Substances of abuse induce alteration in neurobehavioral symptoms, which can lead to simultaneous exacerbation of liver injury. The biochemical changes of liver are significantly observed in the abused group of people using illicit drugs or drugs that are abused. A huge amount of work has been carried out by scientists for validation experiments using animal models to assess hepatotoxicity in cases of drugs of abuse. The risk of hepatotoxicity from these psychostimulants has been determined by different research groups. Hepatotoxicity of these drugs has been recently highlighted and isolated case reports always have been documented in relation to misuse of the drugs. These drugs induce liver toxicity on acute or chronic dose dependent process, which ultimately lead to liver damage, acute fatty infiltration, cholestatic jaundice, liver granulomas, hepatitis, liver cirrhosis etc. Considering the importance of drug-induced hepatotoxicity as a major cause of liver damage, this review emphasizes on various drugs of abuse and addiction which induce hepatotoxicity along with their mechanism of liver damage in clinical aspect as well as in vitro and in vivo approach. However, the mechanisms of drug-induced hepatotoxicity is dependent on reactive metabolite formation via metabolism, modification of covalent bonding between cellular components with drug and its metabolites, reactive oxygen species generation inside and outside of hepatocytes, activation of signal transduction pathways that alter cell death or survival mechanism, and cellular mitochondrial damage, which leads to alteration in ATP generation have been notified here. Moreover, how the cytokines are modulated by these drugs has been mentioned here.
Collapse
Affiliation(s)
- Dijendra Nath Roy
- Department of Bio Engineering, National Institute of Technology (NIT)-Agartala, West Tripura, Tripura 799046, India.
| | - Ritobrata Goswami
- Institute of Life Sciences, Ahmedabad University, Ahmedabad 380009, Gujarat, India
| |
Collapse
|
27
|
Braster R, Bögels M, Beelen RHJ, van Egmond M. The delicate balance of macrophages in colorectal cancer; their role in tumour development and therapeutic potential. Immunobiology 2015; 222:21-30. [PMID: 26358365 DOI: 10.1016/j.imbio.2015.08.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 07/28/2015] [Accepted: 08/29/2015] [Indexed: 02/07/2023]
Abstract
Most tumours are heavily infiltrated by immune cells. This has been correlated with either a good or a bad patient prognosis, depending on the (sub) type of immune cells. Macrophages represent one of the most prominent leukocyte populations in the majority of tumours. Functions of macrophages range from cytotoxicity, to stimulation of tumour growth by secretion of cytokines, growth and angiogenic factors, or suppressing immune responses. In most tumours macrophages are described as cells with immune suppressing, and wound healing properties, which aids tumour development. Yet, increasing evidence shows that macrophages are potent inhibitors of tumour growth in colorectal cancer. Macrophages in this respect show high plasticity. The presence of high macrophage numbers in the tumour may therefore become advantageous, if cells can be reprogrammed from tumour promoting macrophages into potent effector cells. Enhancing cytotoxic properties of macrophages by microbial products, pro-inflammatory cytokines or monoclonal antibody therapy are promising possibilities, and are currently tested in clinical trials.
Collapse
Affiliation(s)
- R Braster
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | - M Bögels
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | - R H J Beelen
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | - M van Egmond
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands; Department of Surgery, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| |
Collapse
|
28
|
Vigorito M, Connaghan KP, Chang SL. The HIV-1 transgenic rat model of neuroHIV. Brain Behav Immun 2015; 48:336-49. [PMID: 25733103 PMCID: PMC4753047 DOI: 10.1016/j.bbi.2015.02.020] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/16/2015] [Accepted: 02/20/2015] [Indexed: 01/28/2023] Open
Abstract
Despite the ability of current combination anti-retroviral therapy (cART) to limit the progression of HIV-1 to AIDS, HIV-positive individuals continue to experience neuroHIV in the form of HIV-associated neurological disorders (HAND), which can range from subtle to substantial neurocognitive impairment. NeuroHIV may also influence substance use, abuse, and dependence in HIV-positive individuals. Because of the nature of the virus, variables such as mental health co-morbidities make it difficult to study the interaction between HIV and substance abuse in human populations. Several rodent models have been developed in an attempt to study the transmission and pathogenesis of the HIV-1 virus. The HIV-1 transgenic (HIV-1Tg) rat is a reliable model of neuroHIV because it mimics the condition of HIV-infected patients on cART. Research using this model supports the hypothesis that the presence of HIV-1 viral proteins in the central nervous system increases the sensitivity and susceptibility of HIV-positive individuals to substance abuse.
Collapse
Affiliation(s)
- Michael Vigorito
- Institute of NeuroImmune Pharmacology and Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA
| | - Kaitlyn P Connaghan
- Institute of NeuroImmune Pharmacology and Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA
| | - Sulie L Chang
- Institute of NeuroImmune Pharmacology and Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA.
| |
Collapse
|
29
|
Nesil T, Cao J, Yang Z, Chang SL, Li MD. Nicotine attenuates the effect of HIV-1 proteins on the neural circuits of working and contextual memories. Mol Brain 2015; 8:43. [PMID: 26205781 PMCID: PMC4513611 DOI: 10.1186/s13041-015-0134-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 07/14/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Human immunodeficiency virus (HIV)-1-associated neurocognitive disorders (HAND) are characterized by synaptic damage and neuronal loss in the brain. Excessive glutamatergic transmission and loss of cholinergic neurons are the major indicators of HAND. Nicotine acts as a cholinergic channel modulator, and its cognitive-enhancing effect in neurodegenerative and cognitive disorders has been documented. However, it is unclear whether nicotine has any positive effect on memory and synaptic plasticity formation in HAND. METHODS We investigated the effects of nicotine on synaptic plasticity and hippocampus-prefrontal cortex (PFC)-amygdala-dependent memory formation in the HIV-1 transgenic (Tg) and F344 control rats. RESULTS Chronic nicotine treatment (0.4 mg/kg nicotine, base, subcutaneously) significantly attenuated the cognitive deficits in the HIV-1Tg rats in both the spatial and contextual fear memories but impaired the contextual learning memory in the F344 rats. To determine the role of nicotine in the synaptic dysfunction caused by HIV-1 proteins, we analyzed the expression of key representative genes related to synaptic plasticity in the hippocampus, PFC, and amygdala of the HIV-1Tg and F344 rats using a custom-designed qRT-PCR array. The HIV-1 proteins significantly altered the glutamate receptor-mediated intracellular calcium cascade and its downstream signaling cascade in a brain region-specific manner. Further, chronic nicotine treatment reversed the effect of HIV-1 proteins on the expression of genes involved in synaptic plasticity in the three brain regions. The effects of nicotine differed significantly in the HIV-1Tg and F344 rats. CONCLUSIONS Our findings indicate that nicotine can attenuate the effect of HIV viral proteins on cognitive function and produce a brain region- and strain-specific effect on the intracellular signaling cascades involved in synaptic plasticity and memory formation.
Collapse
Affiliation(s)
- Tanseli Nesil
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, 450 Ray C Hunt Drive, Suite G-170, Charlottesville, VA, 22903, USA
| | - Junran Cao
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, 450 Ray C Hunt Drive, Suite G-170, Charlottesville, VA, 22903, USA
| | - Zhongli Yang
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ, USA
| | - Sulie L Chang
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ, USA
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA
| | - Ming D Li
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, 450 Ray C Hunt Drive, Suite G-170, Charlottesville, VA, 22903, USA.
| |
Collapse
|
30
|
Zhang J, Miao J, Hou J, Lu C. The effects of H3N2 swine influenza virus infection on TLRs and RLRs signaling pathways in porcine alveolar macrophages. Virol J 2015; 12:61. [PMID: 26021751 PMCID: PMC4487856 DOI: 10.1186/s12985-015-0284-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 03/23/2015] [Indexed: 12/02/2022] Open
Abstract
Background Swine influenza is an economically important respiratory disease of swine resulting from infection with influenza A virus. Swine influenza virus (SIV) becomes the focus as pigs have been hypothesized to serve as an intermediate host for the adaptation of avian influenza viruses to humans or as mixing vessels for the generation of genetically reassortant viruses. The ability of the innate immune system to detect and respond to pathogens is important for survival. Therefore, there is a critical need to evaluate the immediate response to viral infection, especially the role of the toll-like receptors (TLRs) and RNA helicase RIG-I-like receptors (RLRs) innate immunity signaling pathways in H3N2 swine influenza virus infection. Method In this study, porcine alveolar macrophages (PAMs) were obtained from porcine lungs and were infected with SIV at a multiplicity of infection (MOI) of 5 in vitro. The changes of the related receptors, signaling proteins and effector molecules of TLRs and RLRs signaling pathways post H3N2 virus infection of PAMs were quantified by Real-time quantitative RT-PCR and western blotting. Results The results showed that H3N2 SIV infection significantly increased mRNA expression of TLR-3, TLR-7, RIG- I and MDA5 after 4 hpi (P < 0.05). Western blotting showed that the protein levels of TLR-3, TLR-7 and RIG-I also had a significantly increase after PAM exposed to virus. A significant change of MyD88, MAVS, IRF-3 and IRF-7 mRNA expression were present at 8 hpi. More than a 4-fold increase was induced for TNF-α and IL-1β mRNA expression. And the concentration of TNF-α and IL-1β peaked at 12 and 24 hpi, respectively. IFN-α, IFN-β mRNA and protein levels increased after SIV infection and significant differences was observed at 8, 12 and 24 hpi. Conclusion These results indicate that H3N2 swine influenza virus infection significantly influences the expression of the receptors, adapter proteins and downstream effector molecules of RLRs and TLRs signaling pathways. This study enhances our understanding of innate immunity signaling pathways in PAM anti-infection of H3N2 SIV.
Collapse
Affiliation(s)
- Jinqiu Zhang
- National Research Center for Veterinary Vaccine Engineering and Technology of China, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China. .,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jinfeng Miao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jibo Hou
- National Research Center for Veterinary Vaccine Engineering and Technology of China, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Chengping Lu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
31
|
Anderson G, Maes M, Markus RP, Rodriguez M. Ebola virus: Melatonin as a readily available treatment option. J Med Virol 2015; 87:537-43. [DOI: 10.1002/jmv.24130] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2014] [Indexed: 01/10/2023]
Affiliation(s)
- George Anderson
- CRC Scotland and London; Eccleston Square; London United Kingdom
| | - Michael Maes
- Impact Strategic Treatment Center; Deakin University; Geelong Australia
- Department of Psychiatry; Faculty of Medicine; Chulalongkorn University; Bangkok Thailand
- Health Sciences Graduate Program; Health Sciences Center; State University of Londrina; Brazil
| | - Regina P. Markus
- Lab Chronopharmacology; Department of Physiology; Institute of Bioscience; University de S; ã; o Paulo; Brazil
| | - Moses Rodriguez
- Department of Immunology; Department of Neurology; Mayo Clinic; Rochester New York
| |
Collapse
|
32
|
Cheng Z, Li-Sha G, Jing-Lin Z, Wen-Wu Z, Xue-Si C, Xing-Xing C, Yue-Chun L. Protective role of the cholinergic anti-inflammatory pathway in a mouse model of viral myocarditis. PLoS One 2014; 9:e112719. [PMID: 25396421 PMCID: PMC4232511 DOI: 10.1371/journal.pone.0112719] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 10/10/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Activation of the cholinergic anti-inflammatory pathway, which relies on the α7nAchR (alpha 7 nicotinic acetylcholine receptor), has been shown to decrease proinflammatory cytokines. This relieves inflammatory responses and improves the prognosis of patients with experimental sepsis, endotoxemia, ischemia/reperfusion injury, hemorrhagic shock, pancreatitis, arthritis and other inflammatory syndromes. However, whether the cholinergic anti-inflammatory pathway has an effect on acute viral myocarditis has not been investigated. Here, we studied the effects of the cholinergic anti-inflammatory pathway on acute viral myocarditis. METHODOLOGY/PRINCIPAL FINDINGS In a coxsackievirus B3 murine myocarditis model (Balb/c), nicotine and methyllycaconitine were used to stimulate and block the cholinergic anti-inflammatory pathway, respectively. Relevant signal pathways were studied to compare their effects on myocarditis, survival rate, histopathological changes, ultrastructural changes, and cytokine levels. Nicotine treatments significantly improved survival rate, attenuated myocardial lesions, and downregulated the expression of TNF-α and IL-6. Methyllycaconitine decreased survival rate, aggravated myocardial lesions, and upregulated the expression of TNF-α and IL-6. In addition, levels of the signaling protein phosphorylated STAT3 were higher in the nicotine group and lower in the methyllycaconitine group compared with the untreated myocarditis group. CONCLUSIONS/SIGNIFICANCE These results show that nicotine protects mice from CVB3-induced viral myocarditis and that methyllycaconitine aggravates viral myocarditis in mice. Because nicotine is a α7nAchR agonist and methyllycaconitine is a α7nAchR antagonist, we conclude that α7nAchR activation increases the phosphorylation of STAT3, reduces the expression of TNF-α and IL-6, and, ultimately, alleviates viral myocarditis. We also conclude that blocking α7nAchR reduces the phosphorylation of STAT3, increases the expression of TNF-α and IL-6, aggravating viral myocarditis.
Collapse
Affiliation(s)
- Zheng Cheng
- Department of Cardiology, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Ge Li-Sha
- Department of Pediatric, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Zhao Jing-Lin
- Department of Cardiology, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Zhang Wen-Wu
- Department of Cardiology, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Chen Xue-Si
- Department of Cardiology, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Chen Xing-Xing
- Department of Cardiology, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Li Yue-Chun
- Department of Cardiology, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- * E-mail:
| |
Collapse
|
33
|
Chang SL, Connaghan KP, Wei Y, Li MD. NeuroHIV and use of addictive substances. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 118:403-40. [PMID: 25175871 DOI: 10.1016/b978-0-12-801284-0.00013-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the past three decades, substance abuse has been identified as a key comorbidity of human immunodeficiency virus-1 (HIV-1) infection. Many studies have found that the use and abuse of addictive substances hastens the progression of HIV-1 infection and HIV-associated neurocognitive disorders. Advances in highly active antiretroviral therapy (HAART) in the mid-1990s have been successful in limiting the HIV-1 viral load and maintaining a relatively healthy immune response, allowing the life expectancy of patients infected with HIV to approach that of the general population. However, even with HAART, HIV-1 viral proteins are still expressed and eradication of the virus, particularly in the brain, the key reservoir organ, does not occur. In the post-HAART era, the clinical challenge in the treatment of HIV infection is inflammation of the central nervous system (CNS) and its subsequent neurological disorders. To date, various explicit and implicit connections have been identified between the neuronal circuitry involved in immune responses and brain regions affected by and implicated in substance abuse. This chapter discusses past and current medical uses of prototypical substances of abuse, including morphine, alcohol, cocaine, methamphetamine, marijuana, and nicotine, and the evidence that systemic infections, particularly HIV-1 infection, cause neurological dysfunction as a result of inflammation in the CNS, which can increase the risk of substance abuse.
Collapse
Affiliation(s)
- Sulie L Chang
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, New Jersey, USA; Department of Biological Sciences, Seton Hall University, South Orange, New Jersey, USA.
| | - Kaitlyn P Connaghan
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, New Jersey, USA
| | - Yufeng Wei
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, New Jersey, USA
| | - Ming D Li
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
34
|
Wang X, Ao H, Zhai L, Bai L, He W, Yu Y, Wang C. Genome-wide effects of DNA methyltransferase inhibitor on gene expression in double-stranded RNA transfected porcine PK15 cells. Genomics 2013; 103:371-9. [PMID: 24184360 DOI: 10.1016/j.ygeno.2013.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 09/29/2013] [Accepted: 10/22/2013] [Indexed: 12/20/2022]
Abstract
Double-stranded RNA (dsRNA) is produced in host cells during viral replication. The effects of DNA demethylation on gene expression in dsRNA transfected swine cells are unclear. The study aims to profile the transcriptome changes which are induced by DNA methyltransferase inhibitor (Aza-CdR) in porcine PK15 cells transfected with viral-like dsRNA (Poly(I:C)). A total of 44, 76 and 952 differentially expressed genes (DEGs) were detected in the cells treated by Poly(I:C) plus Aza-CdR (P+A), Poly(I:C) (P) or Aza-CdR (A) alone compared to the controls (C). Immune response-related pathways are observed in the comparison of A vs. C and P vs. C, and the genes in the pathways were recovered in the comparison of (P+A) vs. C. GO analysis indicated that Aza-CdR has negative regulatory effects on viral reproduction. The results suggest that the stimulant of Poly(I:C) could be regressed by Aza-CdR. These observations provide new insights into the epigenetic regulatory effects on viral replication.
Collapse
Affiliation(s)
- Xiaoshuo Wang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Agricultural Animal Genetics and Breeding, Department of Animal Breeding and Genetics, College of Animal Sciences and Technology, China Agricultural University, Beijing 100193, China
| | - Hong Ao
- State Key Laboratory for Animal Nutrition, Key Laboratory for Domestic Animal Genetic Resources and Breeding of the Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Liwei Zhai
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Agricultural Animal Genetics and Breeding, Department of Animal Breeding and Genetics, College of Animal Sciences and Technology, China Agricultural University, Beijing 100193, China
| | - Lijing Bai
- State Key Laboratory for Animal Nutrition, Key Laboratory for Domestic Animal Genetic Resources and Breeding of the Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Weiyong He
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Ying Yu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Agricultural Animal Genetics and Breeding, Department of Animal Breeding and Genetics, College of Animal Sciences and Technology, China Agricultural University, Beijing 100193, China.
| | - Chuduan Wang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Agricultural Animal Genetics and Breeding, Department of Animal Breeding and Genetics, College of Animal Sciences and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|