1
|
Mahieu G, Haufroid V, Van Bambeke F, Elens L. In vitro assessment of ATP-binding cassette transporters and their functional genetic polymorphisms on fluoroquinolone accumulation in human embryonic kidney 293 recombinant cell lines. Drug Metab Dispos 2025; 53:100063. [PMID: 40253817 DOI: 10.1016/j.dmd.2025.100063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/13/2025] [Accepted: 03/04/2025] [Indexed: 04/22/2025] Open
Abstract
Fluoroquinolone tissue distribution and cellular accumulation are hindered by efflux transporters, including ATP-binding cassette subfamily B member 1 (ABCB1), ATP-binding cassette subfamily G member 2 (ABCG2), and ATP-binding cassette subfamily C member 4 (ABCC4). Genetic polymorphisms (single-nucleotide polymorphisms) can impact transporter activity, leading to interindividual variability in the systemic and cellular pharmacokinetics of their substrates. This study assesses the impact of these transporters on moxifloxacin and ciprofloxacin (CIP) cellular accumulation in vitro, and the effect of common single-nucleotide polymorphisms in ABCB1 [c.1199G>A (rs2229109); common haplotype c.1236C>T (rs1128503), c.2677G>T/A (rs2032582), and c.3435C>T (rs1045642)] and ABCG2 [c.421C>A (rs2231142)]. Recombinant human embryonic kidney (HEK) cell lines overexpressing wild-type or variant transporters were generated via stable plasmid transfection. The impact of transporter overexpression on fluoroquinolone cell disposition was assessed through accumulation experiments in the presence of specific inhibitors to establish the link between transporter expression and differential accumulation. Results indicated that ABCB1 overexpression reduced moxifloxacin cellular concentration by 30% but inconsistently with that of CIP and that zosuquidar or elacridar reversed these effects. ABCG2 had no impact. ABCC4 markedly reduced CIP accumulation by 25%, even at the basal level, an effect reversed by MK517. Contrarily to the wild-type and the c.1199A carriers, ABCB1 CGT and TTT variants did not reduce antibiotic accumulation. In conclusion, moxifloxacin and CIP are substrates of the wild-type and 1199G>A ABCB1, while CGT and TTT haplotypes had a marginal impact on fluoroquinolone transport by ABCB1. CIP is a preferential ABCC4 substrate. Because of the large body distribution of these transporters, our findings may help rationalize their role and the impact of their polymorphisms in fluoroquinolone disposition in tissues and cells. SIGNIFICANCE STATEMENT: This study demonstrates that moxifloxacin and ciprofloxacin are substrates of ABCB1, with ciprofloxacin also transported by ABCC4. Specific ABCB1 polymorphisms (CGT and TTT haplotypes) reduce the ABCB1 transport capacity toward fluoroquinolones. These findings highlight the importance of considering ABCB1 and ABCC4 inducers or inhibitors, which may affect fluoroquinolone disposition in tissues and cells, as well as ABCB1 polymorphisms that could explain interindividual variability in pharmacokinetic profiles.
Collapse
Affiliation(s)
- Gwenaëlle Mahieu
- Pharmacologie Cellulaire et Moléculaire, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Brussels, Belgium; Integrated PharmacoMetrics, PharmacoGenomics and Pharmacokinetics (PMGK) Research Group, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Vincent Haufroid
- Louvain Centre for Toxicology and Applied Pharmacology, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium; Department of Clinical Chemistry, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Françoise Van Bambeke
- Pharmacologie Cellulaire et Moléculaire, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Brussels, Belgium.
| | - Laure Elens
- Integrated PharmacoMetrics, PharmacoGenomics and Pharmacokinetics (PMGK) Research Group, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Brussels, Belgium; Louvain Centre for Toxicology and Applied Pharmacology, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|
2
|
Whitlock BD, Ma Y, Conseil G, O'Brien AR, Banerjee M, Swanlund DP, Lin ZP, Wang Y, Le XC, Schuetz JD, Cole SPC, Leslie EM. Differential Selectivity of Human and Mouse ABCC4/Abcc4 for Arsenic Metabolites. Drug Metab Dispos 2024; 52:1417-1428. [PMID: 39313329 PMCID: PMC11585317 DOI: 10.1124/dmd.124.001852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024] Open
Abstract
Millions of people globally are exposed to the proven human carcinogen arsenic at unacceptable levels in drinking water. In contrast, arsenic is a poor rodent carcinogen, requiring >100-fold higher doses for tumor induction, which may be explained by toxicokinetic differences between humans and mice. The human ATP-binding cassette subfamily C (ABCC) transporter hABCC4 mediates the cellular efflux of a diverse array of metabolites, including the glutathione (GSH) conjugate of the highly toxic monomethylarsonous acid (MMAIII), monomethylarsenic diglutathione [MMA(GS)2], and the major human urinary arsenic metabolite dimethylarsinic acid (DMAV). Our objective was to determine if mouse Abcc4 (mAbcc4) protected against and/or transported the same arsenic species as hABCC4. The anti-ABCC4 antibody M4I-10 epitope was first mapped to an octapeptide (411HVQDFTA418F) present in both hABCC4 and mAbcc4, enabling quantification of relative amounts of hABCC4/mAbcc4. mAbcc4 expressed in human embryonic kidney (HEK)293 cells did not protect against any of the six arsenic species tested [arsenite, arsenate, MMAIII, monomethylarsonic acid, dimethylarsinous acid, or DMAV], despite displaying remarkable resistance against the antimetabolite 6-mercaptopurine (>9-fold higher than hABCC4). Furthermore, mAbcc4-enriched membrane vesicles prepared from transfected HEK293 cells did not transport MMA(GS)2 or DMAV despite a >3-fold higher transport activity than hABCC4-enriched vesicles for the prototypic substrate 17β-estradiol-17-(β-D-glucuronide). Abcc4(+/+) mouse embryonic fibroblasts (MEFs) were ∼3-fold more resistant to arsenate than Abcc4(-/-) MEFs; however, further characterization indicated that this was not mAbcc4 mediated. Thus, under the conditions tested, arsenicals are not transported by mAbcc4, and differences between the substrate selectivity of hABCC4 and mAbcc4 seem likely to contribute to arsenic toxicokinetic differences between human and mouse. SIGNIFICANCE STATEMENT: Toxicokinetics of the carcinogen arsenic differ among animal species. Arsenic methylation is known to contribute to this, whereas arsenic transporters have not been considered. Human ATP-binding cassette subfamily C member 4 (hABCC4) is a high-affinity transporter of toxicologically important arsenic metabolites. Here we used multiple approaches to demonstrate that mouse Abcc4 does not protect cells against or transport any arsenic species tested. Thus, differences between hABCC4 and mAbcc4 substrate selectivity likely contribute to differences in human and mouse arsenic toxicokinetics.
Collapse
Affiliation(s)
- Brayden D Whitlock
- Department of Physiology (B.D.W., Y.M., A.R.O., M.B., D.P.S., E.M.L.), Membrane Protein Disease Research Group (B.D.W., Y.M., M.B., D.P.S., E.M.L.), and Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology (X.C.L., E.M.L.), University of Alberta, Edmonton, Alberta, Canada; Department of Pathology and Molecular Medicine, Division of Cancer Biology and Genetics, Sinclair Cancer Research Institute, Queen's University, Kingston, Ontario, Canada (G.C., S.P.C.C.); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Z.P.L.); and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (Y.W., J.D.S.)
| | - Yingze Ma
- Department of Physiology (B.D.W., Y.M., A.R.O., M.B., D.P.S., E.M.L.), Membrane Protein Disease Research Group (B.D.W., Y.M., M.B., D.P.S., E.M.L.), and Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology (X.C.L., E.M.L.), University of Alberta, Edmonton, Alberta, Canada; Department of Pathology and Molecular Medicine, Division of Cancer Biology and Genetics, Sinclair Cancer Research Institute, Queen's University, Kingston, Ontario, Canada (G.C., S.P.C.C.); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Z.P.L.); and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (Y.W., J.D.S.)
| | - Gwenaëlle Conseil
- Department of Physiology (B.D.W., Y.M., A.R.O., M.B., D.P.S., E.M.L.), Membrane Protein Disease Research Group (B.D.W., Y.M., M.B., D.P.S., E.M.L.), and Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology (X.C.L., E.M.L.), University of Alberta, Edmonton, Alberta, Canada; Department of Pathology and Molecular Medicine, Division of Cancer Biology and Genetics, Sinclair Cancer Research Institute, Queen's University, Kingston, Ontario, Canada (G.C., S.P.C.C.); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Z.P.L.); and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (Y.W., J.D.S.)
| | - Alicia R O'Brien
- Department of Physiology (B.D.W., Y.M., A.R.O., M.B., D.P.S., E.M.L.), Membrane Protein Disease Research Group (B.D.W., Y.M., M.B., D.P.S., E.M.L.), and Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology (X.C.L., E.M.L.), University of Alberta, Edmonton, Alberta, Canada; Department of Pathology and Molecular Medicine, Division of Cancer Biology and Genetics, Sinclair Cancer Research Institute, Queen's University, Kingston, Ontario, Canada (G.C., S.P.C.C.); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Z.P.L.); and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (Y.W., J.D.S.)
| | - Mayukh Banerjee
- Department of Physiology (B.D.W., Y.M., A.R.O., M.B., D.P.S., E.M.L.), Membrane Protein Disease Research Group (B.D.W., Y.M., M.B., D.P.S., E.M.L.), and Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology (X.C.L., E.M.L.), University of Alberta, Edmonton, Alberta, Canada; Department of Pathology and Molecular Medicine, Division of Cancer Biology and Genetics, Sinclair Cancer Research Institute, Queen's University, Kingston, Ontario, Canada (G.C., S.P.C.C.); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Z.P.L.); and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (Y.W., J.D.S.)
| | - Diane P Swanlund
- Department of Physiology (B.D.W., Y.M., A.R.O., M.B., D.P.S., E.M.L.), Membrane Protein Disease Research Group (B.D.W., Y.M., M.B., D.P.S., E.M.L.), and Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology (X.C.L., E.M.L.), University of Alberta, Edmonton, Alberta, Canada; Department of Pathology and Molecular Medicine, Division of Cancer Biology and Genetics, Sinclair Cancer Research Institute, Queen's University, Kingston, Ontario, Canada (G.C., S.P.C.C.); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Z.P.L.); and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (Y.W., J.D.S.)
| | - Z Ping Lin
- Department of Physiology (B.D.W., Y.M., A.R.O., M.B., D.P.S., E.M.L.), Membrane Protein Disease Research Group (B.D.W., Y.M., M.B., D.P.S., E.M.L.), and Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology (X.C.L., E.M.L.), University of Alberta, Edmonton, Alberta, Canada; Department of Pathology and Molecular Medicine, Division of Cancer Biology and Genetics, Sinclair Cancer Research Institute, Queen's University, Kingston, Ontario, Canada (G.C., S.P.C.C.); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Z.P.L.); and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (Y.W., J.D.S.)
| | - Yao Wang
- Department of Physiology (B.D.W., Y.M., A.R.O., M.B., D.P.S., E.M.L.), Membrane Protein Disease Research Group (B.D.W., Y.M., M.B., D.P.S., E.M.L.), and Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology (X.C.L., E.M.L.), University of Alberta, Edmonton, Alberta, Canada; Department of Pathology and Molecular Medicine, Division of Cancer Biology and Genetics, Sinclair Cancer Research Institute, Queen's University, Kingston, Ontario, Canada (G.C., S.P.C.C.); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Z.P.L.); and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (Y.W., J.D.S.)
| | - X Chris Le
- Department of Physiology (B.D.W., Y.M., A.R.O., M.B., D.P.S., E.M.L.), Membrane Protein Disease Research Group (B.D.W., Y.M., M.B., D.P.S., E.M.L.), and Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology (X.C.L., E.M.L.), University of Alberta, Edmonton, Alberta, Canada; Department of Pathology and Molecular Medicine, Division of Cancer Biology and Genetics, Sinclair Cancer Research Institute, Queen's University, Kingston, Ontario, Canada (G.C., S.P.C.C.); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Z.P.L.); and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (Y.W., J.D.S.)
| | - John D Schuetz
- Department of Physiology (B.D.W., Y.M., A.R.O., M.B., D.P.S., E.M.L.), Membrane Protein Disease Research Group (B.D.W., Y.M., M.B., D.P.S., E.M.L.), and Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology (X.C.L., E.M.L.), University of Alberta, Edmonton, Alberta, Canada; Department of Pathology and Molecular Medicine, Division of Cancer Biology and Genetics, Sinclair Cancer Research Institute, Queen's University, Kingston, Ontario, Canada (G.C., S.P.C.C.); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Z.P.L.); and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (Y.W., J.D.S.)
| | - Susan P C Cole
- Department of Physiology (B.D.W., Y.M., A.R.O., M.B., D.P.S., E.M.L.), Membrane Protein Disease Research Group (B.D.W., Y.M., M.B., D.P.S., E.M.L.), and Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology (X.C.L., E.M.L.), University of Alberta, Edmonton, Alberta, Canada; Department of Pathology and Molecular Medicine, Division of Cancer Biology and Genetics, Sinclair Cancer Research Institute, Queen's University, Kingston, Ontario, Canada (G.C., S.P.C.C.); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Z.P.L.); and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (Y.W., J.D.S.)
| | - Elaine M Leslie
- Department of Physiology (B.D.W., Y.M., A.R.O., M.B., D.P.S., E.M.L.), Membrane Protein Disease Research Group (B.D.W., Y.M., M.B., D.P.S., E.M.L.), and Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology (X.C.L., E.M.L.), University of Alberta, Edmonton, Alberta, Canada; Department of Pathology and Molecular Medicine, Division of Cancer Biology and Genetics, Sinclair Cancer Research Institute, Queen's University, Kingston, Ontario, Canada (G.C., S.P.C.C.); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Z.P.L.); and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (Y.W., J.D.S.)
| |
Collapse
|
3
|
O’Connor C, Keele GR, Martin W, Stodola T, Gatti D, Hoffman BR, Korstanje R, Churchill GA, Reinholdt LG. Unraveling the genetics of arsenic toxicity with cellular morphology QTL. PLoS Genet 2024; 20:e1011248. [PMID: 38662777 PMCID: PMC11075906 DOI: 10.1371/journal.pgen.1011248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/07/2024] [Accepted: 04/03/2024] [Indexed: 05/08/2024] Open
Abstract
The health risks that arise from environmental exposures vary widely within and across human populations, and these differences are largely determined by genetic variation and gene-by-environment (gene-environment) interactions. However, risk assessment in laboratory mice typically involves isogenic strains and therefore, does not account for these known genetic effects. In this context, genetically heterogenous cell lines from laboratory mice are promising tools for population-based screening because they provide a way to introduce genetic variation in risk assessment without increasing animal use. Cell lines from genetic reference populations of laboratory mice offer genetic diversity, power for genetic mapping, and potentially, predictive value for in vivo experimentation in genetically matched individuals. To explore this further, we derived a panel of fibroblast lines from a genetic reference population of laboratory mice (the Diversity Outbred, DO). We then used high-content imaging to capture hundreds of cell morphology traits in cells exposed to the oxidative stress-inducing arsenic metabolite monomethylarsonous acid (MMAIII). We employed dose-response modeling to capture latent parameters of response and we then used these parameters to identify several hundred cell morphology quantitative trait loci (cmQTL). Response cmQTL encompass genes with established associations with cellular responses to arsenic exposure, including Abcc4 and Txnrd1, as well as novel gene candidates like Xrcc2. Moreover, baseline trait cmQTL highlight the influence of natural variation on fundamental aspects of nuclear morphology. We show that the natural variants influencing response include both coding and non-coding variation, and that cmQTL haplotypes can be used to predict response in orthogonal cell lines. Our study sheds light on the major molecular initiating events of oxidative stress that are under genetic regulation, including the NRF2-mediated antioxidant response, cellular detoxification pathways, DNA damage repair response, and cell death trajectories.
Collapse
Affiliation(s)
- Callan O’Connor
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| | - Gregory R. Keele
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- RTI International, Research Triangle Park, Durham, North Carolina, United States of America
| | - Whitney Martin
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Timothy Stodola
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Daniel Gatti
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Brian R. Hoffman
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Ron Korstanje
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| | - Gary A. Churchill
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| | - Laura G. Reinholdt
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| |
Collapse
|
4
|
O'Connor C, Keele GR, Martin W, Stodola T, Gatti D, Hoffman BR, Korstanje R, Churchill GA, Reinholdt LG. Cell morphology QTL reveal gene by environment interactions in a genetically diverse cell population. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.18.567597. [PMID: 38014303 PMCID: PMC10680806 DOI: 10.1101/2023.11.18.567597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Genetically heterogenous cell lines from laboratory mice are promising tools for population-based screening as they offer power for genetic mapping, and potentially, predictive value for in vivo experimentation in genetically matched individuals. To explore this further, we derived a panel of fibroblast lines from a genetic reference population of laboratory mice (the Diversity Outbred, DO). We then used high-content imaging to capture hundreds of cell morphology traits in cells exposed to the oxidative stress-inducing arsenic metabolite monomethylarsonous acid (MMAIII). We employed dose-response modeling to capture latent parameters of response and we then used these parameters to identify several hundred cell morphology quantitative trait loci (cmQTL). Response cmQTL encompass genes with established associations with cellular responses to arsenic exposure, including Abcc4 and Txnrd1, as well as novel gene candidates like Xrcc2. Moreover, baseline trait cmQTL highlight the influence of natural variation on fundamental aspects of nuclear morphology. We show that the natural variants influencing response include both coding and non-coding variation, and that cmQTL haplotypes can be used to predict response in orthogonal cell lines. Our study sheds light on the major molecular initiating events of oxidative stress that are under genetic regulation, including the NRF2-mediated antioxidant response, cellular detoxification pathways, DNA damage repair response, and cell death trajectories.
Collapse
Affiliation(s)
- Callan O'Connor
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Gregory R Keele
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- RTI International, RTP, NC 27709, USA
| | | | | | - Daniel Gatti
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | | | | | | - Laura G Reinholdt
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| |
Collapse
|
5
|
Lv J, Wu M, Pang C, Duan R, Zhang H, Tian S, Yang H, Hai X. Torsemide increases arsenic concentrations by inhibition of multidrug resistance protein 4 in arsenic trioxide treated acute promyelocytic leukemia patients. Biomed Pharmacother 2023; 163:114858. [PMID: 37172335 DOI: 10.1016/j.biopha.2023.114858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/25/2023] [Accepted: 05/06/2023] [Indexed: 05/14/2023] Open
Abstract
Torsemide is commonly used to relieve edema during the treatment of acute promyelocytic leukemia (APL) with arsenic trioxide (ATO). We explored the effect of torsemide on the plasma concentrations of inorganic arsenic (iAs), monomethylarsonic acid (MMAV) and dimethyarsinic acid (DMAV) in APL patients treated with ATO and clarified its molecular mechanism in rats and cells. The study included 146 APL patients treated with ATO. 60(41.1 %) of these 146 patients were co-administered with torsemide. The treatment of torsemide increased plasma concentrations of iAs (P < 0.05) and DMAV (P < 0.05) in APL patients. The single co-administration of ATO and torsemide in rats significantly increased the plasma concentrations and AUC(0-t) of iAs (P < 0.05) and MMAV (P < 0.05), decreased the urinary excretion rates and the urine concentrations of iAs (P < 0.05) and DMAV (P < 0.05), and enhanced iAs (P < 0.05) and MMAV (P < 0.05) concentrations in the kidneys of rats. In addition, torsemide decreased the expression of multidrug resistance protein 4 (MRP4) in rat kidneys after 7 days of continuous co-administration (P < 0.05). We also treated MRP4-overexpressing HEK293T cells with ATO and different concentrations of torsemide. Torsemide markedly increased the concentrations of iAs, MMAV and DMAV by inhibiting MRP4 compared with ATO alone (P < 0.05). In conclusion, torsemide increased the plasma concentrations of arsenic metabolites in APL patients treated with ATO by inhibiting the transporter MRP4 in a dose-dependent manner.
Collapse
Affiliation(s)
- Jian Lv
- Department of Pharmacy, First Affiliated Hospital of Harbin Medical University, 23 YouZheng Str, Nangang District, Harbin, China
| | - Mengliang Wu
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chunrong Pang
- Department of Pharmacy, First Affiliated Hospital of Harbin Medical University, 23 YouZheng Str, Nangang District, Harbin, China
| | - Rui Duan
- Department of Pharmacy, First Affiliated Hospital of Harbin Medical University, 23 YouZheng Str, Nangang District, Harbin, China
| | - Hong Zhang
- Department of Pharmacy, First Affiliated Hospital of Harbin Medical University, 23 YouZheng Str, Nangang District, Harbin, China
| | - Shuo Tian
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Haixia Yang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xin Hai
- Department of Pharmacy, First Affiliated Hospital of Harbin Medical University, 23 YouZheng Str, Nangang District, Harbin, China.
| |
Collapse
|
6
|
Wu M, Pang C, Lu S, Hostetter TH, Hai X. Type 2 diabetes affects arsenic metabolism via transporters in arsenic trioxide treated acute promyelocytic leukemia patients. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 100:104142. [PMID: 37146668 DOI: 10.1016/j.etap.2023.104142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/26/2023] [Accepted: 05/01/2023] [Indexed: 05/07/2023]
Abstract
Our study aimed to explore whether type 2 diabetes (T2DM) can affect arsenic metabolism in acute promyelocytic leukemia (APL) patients treated with arsenic trioxide. We found that compared with non-diabetic APL patients, the concentrations of arsenic metabolites in APL patients with T2DM increased significantly and positively correlated with blood glucose (P < 0.05). Meanwhile, APL patients with T2DM were more prone to liver injury and QTc interval prolongation due to altered arsenic methylation capacity. Then we cultured HEK293T cells at different glucose concentrations, and the results showed that the cells with high glucose had higher concentrations of arsenic metabolites compared to other cells. Meanwhile, the high glucose significantly increased the mRNA and protein expression levels of the arsenic uptake transporter AQP7 in HEK293T cells. Overall, our study demonstrated that T2DM can lead to elevated concentrations of arsenic metabolites in APL patients by increasing AQP7 expression.
Collapse
Affiliation(s)
- Mengliang Wu
- Department of Pharmacy, First Affiliated Hospital of Harbin Medical University, 23 YouZheng Str, Nangang District, Harbin, China; Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 150040, China
| | - Chunrong Pang
- Department of Pharmacy, First Affiliated Hospital of Harbin Medical University, 23 YouZheng Str, Nangang District, Harbin, China
| | - Shengwen Lu
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 150040, China
| | - Thomas H Hostetter
- School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Xin Hai
- Department of Pharmacy, First Affiliated Hospital of Harbin Medical University, 23 YouZheng Str, Nangang District, Harbin, China.
| |
Collapse
|
7
|
Nail AN, Ferragut Cardoso AP, Montero LK, States JC. miRNAs and arsenic-induced carcinogenesis. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 96:203-240. [PMID: 36858773 PMCID: PMC10184182 DOI: 10.1016/bs.apha.2022.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Arsenic-induced carcinogenesis is a worldwide health problem. Identifying the molecular mechanisms responsible for the induction of arsenic-induced cancers is important for developing treatment strategies. MicroRNA (miRNA) dysregulation is known to affect development and progression of human cancer. Several studies have identified an association between altered miRNA expression in cancers from individuals chronically exposed to arsenic and in cell models for arsenic-induced carcinogenesis. This chapter provides a comprehensive review for miRNA dysregulation in arsenic-induced cancer.
Collapse
Affiliation(s)
- Alexandra N Nail
- Department of Pharmacology and Toxicology, Center for Integrative Environmental Health Science, University of Louisville, Louisville, KY, United States
| | - Ana P Ferragut Cardoso
- Department of Pharmacology and Toxicology, Center for Integrative Environmental Health Science, University of Louisville, Louisville, KY, United States
| | - Lakyn K Montero
- Department of Pharmacology and Toxicology, Center for Integrative Environmental Health Science, University of Louisville, Louisville, KY, United States
| | - J Christopher States
- Department of Pharmacology and Toxicology, Center for Integrative Environmental Health Science, University of Louisville, Louisville, KY, United States.
| |
Collapse
|
8
|
Mailloux J, Medwid S, Facey A, Sung I, Russell LE, Tirona RG, Kim RB, Schwarz UI. In-vitro characterization of coding variants with predicted functional implications in the efflux transporter multidrug resistance protein 4 (MRP4, ABCC4). Pharmacogenet Genomics 2022; 32:111-116. [PMID: 34693929 DOI: 10.1097/fpc.0000000000000459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
MRP4 (gene ABCC4) is a polymorphic efflux transporter that has been implicated in drug-induced toxicity. We selected ten commonly observed MRP4 coding variants among Europeans for experimental characterization including nine variants predicted to be deleterious or functional (combined annotation-dependent depletion score >15). We assessed protein localization and activity by quantifying intracellular accumulation of two prototypic substrates, taurocholic acid (TCA) and estradiol 17-β-glucuronide (E217βG), in HEK293T over-expressing MRP4 wildtype or variant where cellular substrate loading was optimized through co-transfection with an uptake transporter. V458M, a novel variant not previously studied, and T1142M, showed reduced activity compared to MRP4 wildtype for E217βG and TCA (P < 0.01), while L18I, G187W, K293E, and R531Q moderately increased activity in a substrate-dependent manner. Protein expression analysis indicated reduced cell surface expression for V458M (P < 0.01) but not T1142M compared to wildtype. Reduced activity may result from altered surface expression (V458M) or intrinsic activity as both variants map within the nucleotide-binding domains of MRP4. G187W showed a trend for reduced surface expression (P = 0.054) despite transport comparable or increased to wildtype suggesting enhanced intrinsic activity. Our findings suggest moderately altered MRP4 activity in six out of nine predicted functional variants with likely different mechanisms and substrate-specific effects. Cell-based studies using multiple known substrates are warranted to more accurately predict functional variants in this clinically important transporter.
Collapse
Affiliation(s)
- Jaymie Mailloux
- Department of Physiology and Pharmacology
- Division of Clinical Pharmacology, Department of Medicine, Western University, London, Ontario, Canada
| | - Samantha Medwid
- Division of Clinical Pharmacology, Department of Medicine, Western University, London, Ontario, Canada
| | | | - Inmo Sung
- Department of Physiology and Pharmacology
| | | | - Rommel G Tirona
- Department of Physiology and Pharmacology
- Division of Clinical Pharmacology, Department of Medicine, Western University, London, Ontario, Canada
| | - Richard B Kim
- Department of Physiology and Pharmacology
- Division of Clinical Pharmacology, Department of Medicine, Western University, London, Ontario, Canada
| | - Ute I Schwarz
- Department of Physiology and Pharmacology
- Division of Clinical Pharmacology, Department of Medicine, Western University, London, Ontario, Canada
| |
Collapse
|
9
|
Zhou JR, Kaur G, Ma Y, Arutyunov D, Lu X, Le XC, Leslie EM. Biliary excretion of arsenic by human HepaRG cells is stimulated by selenide and mediated by the multidrug resistance protein 2 (MRP2/ABCC2). Biochem Pharmacol 2021; 193:114799. [PMID: 34678219 DOI: 10.1016/j.bcp.2021.114799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022]
Abstract
Millions of people worldwide are exposed to unacceptable levels of arsenic, a proven human carcinogen, in drinking water. In animal models, arsenic and selenium are mutually protective through formation and biliary excretion of seleno-bis (S-glutathionyl) arsinium ion [(GS)2AsSe]-. Selenium-deficient humans living in arsenic-endemic regions are at increased risk of arsenic-induced diseases, and may benefit from selenium supplementation. The influence of selenium on human arsenic hepatobiliary transport has not been studied using optimal human models. HepaRG cells, a surrogate for primary human hepatocytes, were used to investigate selenium (selenite, selenide, selenomethionine, and methylselenocysteine) effects on arsenic hepatobiliary transport. Arsenite + selenite and arsenite + selenide at different molar ratios revealed mutual toxicity antagonism, with the latter being higher. Significant levels of arsenic biliary excretion were detected with a biliary excretion index (BEI) of 14 ± 8%, which was stimulated to 32 ± 7% by selenide. Consistent with the formation and biliary efflux of [(GS)2AsSe]-, arsenite increased the BEI of selenide from 0% to 24 ± 5%. Arsenic biliary excretion was lost in the presence of selenite, selenomethionine, and methylselenocysteine. Sinusoidal export of arsenic was stimulated ∼1.6-fold by methylselenocysteine, but unchanged by other selenium forms. Arsenic canalicular and sinusoidal transport (±selenide) was temperature- and GSH-dependent and inhibited by MK571. Knockdown experiments revealed that multidrug resistance protein 2 (MRP2/ABCC2) accounted for all detectable biliary efflux of arsenic (±selenide). Overall, the chemical form of selenium and human MRP2 strongly influenced arsenic hepatobiliary transport, information critical for human selenium supplementation in arsenic-endemic regions.
Collapse
Affiliation(s)
- Janet R Zhou
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Canada; Membrane Protein Disease Research Group, University of Alberta, Canada
| | - Gurnit Kaur
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Canada; Membrane Protein Disease Research Group, University of Alberta, Canada
| | - Yingze Ma
- Membrane Protein Disease Research Group, University of Alberta, Canada; Department of Physiology, University of Alberta, Canada
| | - Denis Arutyunov
- Membrane Protein Disease Research Group, University of Alberta, Canada; Department of Physiology, University of Alberta, Canada
| | - Xiufen Lu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Canada
| | - X Chris Le
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Canada
| | - Elaine M Leslie
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Canada; Membrane Protein Disease Research Group, University of Alberta, Canada; Department of Physiology, University of Alberta, Canada.
| |
Collapse
|
10
|
Farkhondeh T, Naseri K, Esform A, Aramjoo H, Naghizadeh A. Drinking water heavy metal toxicity and chronic kidney diseases: a systematic review. REVIEWS ON ENVIRONMENTAL HEALTH 2021; 36:359-366. [PMID: 33128529 DOI: 10.1515/reveh-2020-0110] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/03/2020] [Indexed: 06/11/2023]
Abstract
Heavy metals in drinking water can threat human health and may induce several diseases. The association between heavy metals exposure and chronic kidney disease (CKD) has been indicated by few epidemiological studies. We conducted a systematic review of the epidemiologic publications of the association between exposure to heavy metals through drinking water and CKD. Keywords related to heavy metals and kidney diseases on MeSH were identified and searched in PubMed, Google Scholar, Scopus, Ovid-Medline and Web of Science until July 2020. 14 publications met our inclusion criteria and included in the current review. The included articles were conducted on the association between arsenic, cadmium, lead and chromium in drinking water and CKD. Our study could not find strong evidence between heavy exposure to through drinking water and CKD, except for arsenic. The negative association was found between arsenic and lead and glomerular filtration rate (eGFR). The positive correlation was observed between cadmium exposure and urinary N-acetyl-β-d-glucosaminidase (NAG) concentrations, and also arsenic and chromium exposure and kidney injury molecule (KIM-1). Assessment of studies showed an association between arsenic, cadmium, lead and chromium and albuminuria and proteinuria, without CKD outcomes. Current systematic study showed few evidence for exposure to arsenic, cadmium, lead and chromium through drinking water and incidence of kidney problems. However, more epidemiological studies are required to confirm this association.
Collapse
Affiliation(s)
- Tahereh Farkhondeh
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
- Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Kobra Naseri
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
- Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Adeleh Esform
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
- Student Research Committee, Birjand University of Medical Sciences (BUMS), Birjand, Iran
| | - Hamed Aramjoo
- Student Research Committee, Birjand University of Medical Sciences (BUMS), Birjand, Iran
| | - Ali Naghizadeh
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
- Department of Environmental Health Engineering, Faculty of Health, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
11
|
Whitlock B. Telomere Length and Arsenic: Improving Animal Models of Toxicity by Choosing Mice With Shorter Telomeres. Int J Toxicol 2021; 40:211-217. [PMID: 34008434 DOI: 10.1177/10915818211009844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Arsenic is both a chemotherapeutic drug and an environmental toxicant that affects hundreds of millions of people each year. Arsenic exposure in drinking water has been called the worst poisoning in human history. How arsenic is handled in the body is frequently studied using rodent models to investigate how arsenic both causes and treats disease. These models, used in a variety of arsenic-related testing, from tumor formation to drug toxicity monitoring, have virtually always been developed from animals with telomeres that are unnaturally long, likely because of accidental artificial selective pressures. Mice that have been bred in captivity in laboratory conditions, often for over 100 years, are the standard in creating animal models for this research. Using these mice introduces challenges to any work that can be affected by the length of telomeres and the related capacities for tissue repair and cancer resistance. However, arsenic research is particularly susceptible to the misuse of such animal models due to the multiple and various interactions between arsenic and telomeres. Researchers in the field commonly find mouse models and humans behaving very differently upon exposure to acute and chronic arsenic, including drug therapies which seem safe in mice but are toxic in humans. Here, some complexities and apparent contradictions of the arsenic carcinogenicity and toxicity research are reconciled by an explanatory model that involves telomere length explained by the evolutionary pressures in laboratory mice. A low-risk hypothesis is proposed which has the power to determine whether researchers can easily develop more powerful and accurate mouse models by simply avoiding mouse lineages that are very old and have strangely long telomeres. Swapping in newer mouse lineages for the older, long-telomere mice may vastly improve our ability to research arsenic toxicity with virtually no increase in cost or difficulty of research.
Collapse
Affiliation(s)
- Brayden Whitlock
- University of Alberta Health Accelerator, Edmonton, Alberta, Canada.,Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
12
|
Tian M, Wang YX, Wang X, Wang H, Liu L, Zhang J, Nan B, Shen H, Huang Q. Environmental doses of arsenic exposure are associated with increased reproductive-age male urinary hormone excretion and in vitro Leydig cell steroidogenesis. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124904. [PMID: 33385727 DOI: 10.1016/j.jhazmat.2020.124904] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/04/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Humans are ubiquitously exposed to arsenic from multiple sources, and chronic arsenic exposure may be associated with male reproductive health. Although association regarding arsenic exposure and sex hormone secretion in blood has been reported, sex hormone excretion in urine studies is lacking. Urinary sex hormone excretion has emerged as a complementary strategy to evaluate gonadal function. Herein, we determined the associations between environmental exposure to arsenic and urinary sex hormone elimination and in vitro Leydig cell steroidogenesis. Concentrations of arsenic and testosterone (T), estradiol (E2) and progesterone (P) in repeated urine samples were determined among 451 reproductive-age males. Moreover, an in vitro Leydig cell MLTC-1 steroidogenesis experiment was designed to simulate real-world scenarios of low human exposure. Multivariable linear regression models were used to assess the associations of urinary arsenic levels with urinary hormones. Urinary arsenic concentrations were positively associated with urinary sex hormone (T, E2, and P) levels. An in vitro test further demonstrated that a population-based environmental exposure range (0.01-5 μM) of arsenic induced Leydig cell steroidogenesis potency. Our results indicate that low-dose arsenic exposure exhibits an endocrine disrupting effect by stimulating Leydig cell steroidogenesis and accelerating urinary steroid excretion, which extends previous knowledge of the inverse association of high-dose arsenic exposure with sexual steroid production that is assumed to be anti-androgen.
Collapse
Affiliation(s)
- Meiping Tian
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Yi-Xin Wang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Xiaofei Wang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Heng Wang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan, Zhejiang 316021, China
| | - Liangpo Liu
- School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Jie Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Bingru Nan
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Heqing Shen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Qingyu Huang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
13
|
Recio‐Vega R, Hernandez‐Gonzalez S, Michel‐Ramirez G, Olivas‐Calderón E, Lantz RC, Gandolfi AJ, Amistadi MK. Association between the polymorphism of three genes involved in the methylation and efflux of arsenic (As3MT, MRP1, and P‐gp) with lung cancer in a Mexican cohort. J Appl Toxicol 2020; 41:1357-1366. [DOI: 10.1002/jat.4127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Rogelio Recio‐Vega
- Department of Environmental Health, Biomedical Research Center, School of Medicine University of Coahuila Torreon Coahuila Mexico
| | | | - Gladis Michel‐Ramirez
- Department of Environmental Health, Biomedical Research Center, School of Medicine University of Coahuila Torreon Coahuila Mexico
| | - Edgar Olivas‐Calderón
- Department of Environmental Health, Biomedical Research Center, School of Medicine University of Coahuila Torreon Coahuila Mexico
- School of Chemical Sciences University Juarez of Durango Gomez Palacio Durango Mexico
| | - R. Clark Lantz
- Southwest Environmental Health Science Center University of Arizona Tucson Arizona USA
- Department of Cellular and Molecular Medicine University of Arizona Tucson Arizona USA
| | - A. Jay Gandolfi
- Southwest Environmental Health Science Center University of Arizona Tucson Arizona USA
- Department of Pharmacology and Toxicology University of Arizona Tucson Arizona USA
| | - Mary Kay Amistadi
- Department of Soil, Water and Environmental Science University of Arizona Tucson Arizona USA
| |
Collapse
|
14
|
Lou B, Hu Y, Lu X, Zhang X, Li Y, Pi J, Xu Y. Long-isoform NRF1 protects against arsenic cytotoxicity in mouse bone marrow-derived mesenchymal stem cells by suppressing mitochondrial ROS and facilitating arsenic efflux. Toxicol Appl Pharmacol 2020; 407:115251. [PMID: 32980394 DOI: 10.1016/j.taap.2020.115251] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/02/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022]
Abstract
Acute exposure to arsenic is known to cause bone marrow depression and result in anemia, in which the dusfunction of cells in the bone marrow niche such as mesenchymal stem cells (MSCs) is vital. However, the mechanism underlying response of MSCs to arsenic challange is not fully understood. In the present study, we investigated the role of nuclear factor erythroid 2-related factor (NRF) 1 (NRF1), a sister member of the well-known master regulator in antioxidative response NRF2, in arsenite-induced cytotoxicity in mouse bone marrow-derived MSCs (mBM-MSCs). We found that arsenite exposure induced significant increase in the protein level of long-isoform NRF1 (L-NRF1). Though short-isoform NRF1 (S-NRF1) was induced by arsenite at mRNA level, its protein level was not obviously altered. Silencing L-Nrf1 sensitized the cells to arsenite-induced cytotoxicity. L-Nrf1-silenced mBM-MSCs showed decreased arsenic efflux with reduced expression of arsenic transporter ATP-binding cassette subfamily C member 4 (ABCC4), as well as compromised NRF2-mediated antioxidative defense with elevated level of mitochondrial reactive oxygen species (mtROS) under arsenite-exposed conditions. A specific mtROS scavenger (Mito-quinone) alleviated cell apoptosis induced by arsenite in L-Nrf1-silenced mBM-MSCs. Taken together, these findings suggest that L-NRF1 protects mBM-MSCs from arsenite-induced cytotoxicity via suppressing mtROS in addition to facilitating cellular arsenic efflux.
Collapse
Affiliation(s)
- Bin Lou
- Laboratory of Chronic Diseases and Environmental Genetics, School of Public Health, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Yuxin Hu
- Experimental Teaching Center, School of Public Health, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Xiaoyu Lu
- Laboratory of Chronic Diseases and Environmental Genetics, School of Public Health, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Xinyu Zhang
- Laboratory of Chronic Diseases and Environmental Genetics, School of Public Health, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Yongfang Li
- The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, Shenyang, Liaoning 110122, PR China; Research Center of Environment and Non-Communicable Diseases, School of Public Health, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Jingbo Pi
- Experimental Teaching Center, School of Public Health, China Medical University, Shenyang, Liaoning 110122, PR China; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, Shenyang, Liaoning 110122, PR China; Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Yuanyuan Xu
- Laboratory of Chronic Diseases and Environmental Genetics, School of Public Health, China Medical University, Shenyang, Liaoning 110122, PR China; Experimental Teaching Center, School of Public Health, China Medical University, Shenyang, Liaoning 110122, PR China; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, Shenyang, Liaoning 110122, PR China.
| |
Collapse
|
15
|
Kim S, Kim S, Park YS, Park JO, Lim HY, Ahn JS, Lee J, Sun JM, Kang WK, Han R, Kim J, Ahn MJ. Phase I clinical trial of KML001 monotherapy in patients with advanced solid tumors. Expert Opin Investig Drugs 2020; 29:1059-1067. [PMID: 32735765 DOI: 10.1080/13543784.2020.1804855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND We evaluated the tolerability, pharmacokinetics (PK) and preliminary efficacy of KML001, an oral trivalent arsenical, as a monotherapy in patients with advanced solid tumors. RESEARCH DESIGN AND METHODS With a standard 3 + 3 design for dose-escalation stage, the planned dose levels of KML001 were 5, 7.5, 10, 12.5, and 15 mg/day for 28 days. Once the maximum tolerated dose was determined, 22 subjects were additionally enrolled for dose-expansion stage. PK analysis was performed in the 5, 10, and 15 mg/day cohort at the dose-escalation stage and also at the dose-expansion stage. Moreover, response was assessed using the standard RECIST 1.1. RESULTS A total of 45 Korean subjects were enrolled. No DLT was reported at the dose-escalation stage. Three DLTs, two cases of prolonged QTc interval and one of neutropenia, were reported in the 12.5 mg/day cohort at the dose-expansion stage. Higher total daily doses up to 12.5 mg/day of KML001 resulted in higher trough plasma concentrations. Among the 18 subjects who completed 2 cycles of therapy, 15 had progressive disease and 3 had stable disease. CONCLUSIONS Doses equal to or greater than 10 mg/day KML001 alone were tolerable and produced plasma concentrations higher than biologically relevant targets.
Collapse
Affiliation(s)
- Seokuee Kim
- Department of Clinical Pharmacology and Therapeutics, Samsung Medical Center , Seoul, Republic of Korea
| | - Sujong Kim
- Pharmaceutical Division, Komipharm International Co., Ltd ., Siheung, Republic of Korea
| | - Young Suk Park
- Division of Hematology and Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine , Seoul, Republic of Korea
| | - Joon Oh Park
- Division of Hematology and Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine , Seoul, Republic of Korea
| | - Ho Yeong Lim
- Division of Hematology and Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine , Seoul, Republic of Korea
| | - Jin Seok Ahn
- Division of Hematology and Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine , Seoul, Republic of Korea
| | - Jeeyun Lee
- Division of Hematology and Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine , Seoul, Republic of Korea
| | - Jong Mu Sun
- Division of Hematology and Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine , Seoul, Republic of Korea
| | - Won Ki Kang
- Division of Hematology and Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine , Seoul, Republic of Korea
| | - RaeO Han
- Pharmaceutical Division, Komipharm International Co., Ltd ., Siheung, Republic of Korea
| | - Jungryul Kim
- Department of Clinical Pharmacology and Therapeutics, Samsung Medical Center , Seoul, Republic of Korea.,Department of Clinical Research Design & Evaluation, SAIHST, Sungkyunkwan University , Seoul, Republic of Korea
| | - Myung-Ju Ahn
- Division of Hematology and Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine , Seoul, Republic of Korea
| |
Collapse
|
16
|
Sosa C, Guillén N, Lucea S, Sorribas V. Effects of oral exposure to arsenite on arsenic metabolism and transport in rat kidney. Toxicol Lett 2020; 333:4-12. [PMID: 32736004 DOI: 10.1016/j.toxlet.2020.07.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/26/2020] [Accepted: 07/26/2020] [Indexed: 12/14/2022]
Abstract
Nephrotoxicity is within the recognized toxic effects of arsenic. In this study we assessed the effect of arsenite on the renal capacity to metabolize and handle arsenicals in rats exposed to drinking water with 0, 1, 5, or 10 ppm sodium arsenite for ten days. Arsenite treatment did not affect the gene expression of the main enzyme catalyzing methylation of arsenite, As3mt, while it reduced the expression of GSTO1 mRNA and protein. Arsenite decreased the expression of Aqp3, Mrp1, Mrp4, and Mdr1b (i.e., transporters and channels used by arsenic), but not that of Aqp7, Glut1, Mrp2, and Mdr1a. The protein abundance of AQP3 was also reduced by arsenite. Arsenite increased urinary NGAL and FABP3 and decreased Klotho plasma levels, without alteration of creatinine, which evidenced early tubular damage. Renal Klotho mRNA and protein expressions were also downregulated, which may exacerbate renal damage. No effect was observed in selected miRNAs putatively associated with renal injury. Plasma PTH and FGF23 were similar between groups, but arsenite decreased the renal expression of Fgfr1 mRNA. In conclusion, exposure to arsenite alters the gene expression of proteins involved in the cellular handling of arsenical species and elicits tubular damage.
Collapse
Affiliation(s)
- Cecilia Sosa
- Toxicology, Veterinary Faculty, University of Zaragoza. Miguel Servet 177, 50.013 Zaragoza, Spain.
| | - Natalia Guillén
- Toxicology, Veterinary Faculty, University of Zaragoza. Miguel Servet 177, 50.013 Zaragoza, Spain
| | - Susana Lucea
- Toxicology, Veterinary Faculty, University of Zaragoza. Miguel Servet 177, 50.013 Zaragoza, Spain
| | - Víctor Sorribas
- Toxicology, Veterinary Faculty, University of Zaragoza. Miguel Servet 177, 50.013 Zaragoza, Spain
| |
Collapse
|
17
|
Okamura T, Okada M, Kikuchi T, Wakizaka H, Zhang MR. Mechanisms of glutathione-conjugate efflux from the brain into blood: Involvement of multiple transporters in the course. J Cereb Blood Flow Metab 2020; 40:116-125. [PMID: 30346895 PMCID: PMC6928562 DOI: 10.1177/0271678x18808399] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Accumulation of detrimental glutathione-conjugated metabolites in the brain potentially causes neurological disorders, and must therefore be exported from the brain. However, in vivo mechanisms of glutathione-conjugates efflux from the brain remain unknown. We investigated the involvement of transporters in glutathione-conjugates efflux using 6-bromo-7-[11C]methylpurine ([11C]1), which enters the brain and is converted into its glutathione conjugate, S-(7-[11C]methylpurin-6-yl)glutathione ([11C]2). In mice of control and knockout of P-glycoprotein/breast cancer resistance protein and multidrug resistance-associated protein 2 ([Mrp2]-/-), [11C]2 formed in the brain was rapidly cleared, with no significant difference in efflux rate. In contrast, [11C]2 formed in the brain of Mrp1-/- mice was slowly cleared, whereas [11C]2 microinjected into the brain of control and Mrp1-/- mice was 75% cleared within 60 min, with no significant difference in efflux rate. These suggest that Mrp1 contributes to [11C]2 efflux across cell membranes, but not BBB. Efflux rate of [11C]2 formed in the brain was significantly lower in Mrp4-/- and organic anion transporter 3 (Oat3)-/- mice compared with control mice. In conclusion, Mrp1, Oat3, and Mrp4 mediate [11C]2 efflux from the brain. Mrp1 may contribute to [11C]2 efflux from brain parenchymal cells, while extracellular [11C]2 is likely cleared across the BBB, partly by Oat3 and Mrp4.
Collapse
Affiliation(s)
- Toshimitsu Okamura
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Maki Okada
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Tatsuya Kikuchi
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Hidekatsu Wakizaka
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Ming-Rong Zhang
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| |
Collapse
|
18
|
Arsenic exposure: A public health problem leading to several cancers. Regul Toxicol Pharmacol 2019; 110:104539. [PMID: 31765675 DOI: 10.1016/j.yrtph.2019.104539] [Citation(s) in RCA: 219] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 12/23/2022]
Abstract
Arsenic, a metalloid and naturally occurring element, is one of the most abundant elements in the earth's crust. Water is contaminated by arsenic through natural sources (underground water, minerals and geothermal processes) and anthropogenic sources such as mining, industrial processes, and the production and use of pesticides. Humans are exposed to arsenic mainly by drinking contaminated water, and secondarily through inhalation and skin contact. Arsenic exposure is associated with the development of vascular disease, including stroke, ischemic heart disease and peripheral vascular disease. Also, arsenic increases the risk of tumors of bladder, lungs, kidneys and liver, according to the International Agency for Research on Cancer and the Food and Drug Administration. Once ingested, an estimated 70-90% of inorganic arsenic is absorbed by the gastrointestinal tract and widely distributed through the blood to different organs, primarily to the liver, kidneys, lungs and bladder and secondarily to muscle and nerve tissue. Arsenic accumulates in the organs, especially in the liver. Its excretion mostly takes place through urination. The toxicokinetics of arsenic depends on the duration of exposure, pathway of ingestion, physicochemical characteristics of the compound, and affected biological species. The present review outlines of arsenic toxic effects focusing on different cancer types whit highest prevalence's by exposure to this metalloid and signaling pathways of carcinogenesis.
Collapse
|
19
|
Berthier J, Arnion H, Saint-Marcoux F, Picard N. Multidrug resistance-associated protein 4 in pharmacology: Overview of its contribution to pharmacokinetics, pharmacodynamics and pharmacogenetics. Life Sci 2019; 231:116540. [PMID: 31176778 DOI: 10.1016/j.lfs.2019.06.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 02/08/2023]
Abstract
MRP4 is an ABC membrane transporter involved in clinical outcomes as it is located in many tissues that manages the transport and the elimination of many drugs. This review explores the implication of MRP4 in clinical pharmacology and the importance of its genetic variability. Although there is no specific recommendation regarding the study of MRP4 in drug development, it should be considered when drugs are eliminated by the kidney or liver or when drug-drug interactions are expected.
Collapse
Affiliation(s)
- Joseph Berthier
- INSERM, UMR 1248, F-87000 Limoges, France; CHU Limoges, Service de pharmacologie, toxicologie et pharmacovigilance, F-87000 Limoges, France
| | | | - Franck Saint-Marcoux
- INSERM, UMR 1248, F-87000 Limoges, France; CHU Limoges, Service de pharmacologie, toxicologie et pharmacovigilance, F-87000 Limoges, France
| | - Nicolas Picard
- INSERM, UMR 1248, F-87000 Limoges, France; CHU Limoges, Service de pharmacologie, toxicologie et pharmacovigilance, F-87000 Limoges, France.
| |
Collapse
|
20
|
Garbinski LD, Rosen BP, Chen J. Pathways of arsenic uptake and efflux. ENVIRONMENT INTERNATIONAL 2019; 126:585-597. [PMID: 30852446 PMCID: PMC6472914 DOI: 10.1016/j.envint.2019.02.058] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/19/2019] [Accepted: 02/21/2019] [Indexed: 05/19/2023]
Abstract
Arsenic is a non-essential, environmentally ubiquitous toxic metalloid. In response to this pervasive environmental challenge, organisms evolved mechanisms to confer resistance to arsenicals. Inorganic pentavalent arsenate is taken into most cells adventitiously by phosphate uptake systems. Similarly, inorganic trivalent arsenite is taken into most cells adventitiously, primarily via aquaglyceroporins or sugar permeases. The most common strategy for tolerance to both inorganic and organic arsenicals is by efflux that extrude them from the cytosol. These efflux transporters span across kingdoms and belong to various families such as aquaglyceroporins, major facilitator superfamily (MFS) transporters, ATP-binding cassette (ABC) transporters and potentially novel, yet to be discovered families. This review will outline the properties and substrates of known arsenic transport systems, the current knowledge gaps in the field, and aims to provide insight into the importance of arsenic transport in the context of the global arsenic biogeocycle and human health.
Collapse
Affiliation(s)
- Luis D Garbinski
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Barry P Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Jian Chen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA.
| |
Collapse
|
21
|
Redox metabolism of ingested arsenic: Integrated activities of microbiome and host on toxicological outcomes. CURRENT OPINION IN TOXICOLOGY 2019. [DOI: 10.1016/j.cotox.2018.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
22
|
Inorganic arsenic exposure increased expression of Fas and Bax gene in vivo and vitro. Gene 2018; 671:135-141. [DOI: 10.1016/j.gene.2018.05.121] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 05/09/2018] [Accepted: 05/31/2018] [Indexed: 11/19/2022]
|
23
|
Banerjee M, Kaur G, Whitlock BD, Carew MW, Le XC, Leslie EM. Multidrug Resistance Protein 1 (MRP1/ ABCC1)-Mediated Cellular Protection and Transport of Methylated Arsenic Metabolites Differs between Human Cell Lines. Drug Metab Dispos 2018; 46:1096-1105. [PMID: 29752257 DOI: 10.1124/dmd.117.079640] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 05/09/2018] [Indexed: 02/13/2025] Open
Abstract
The ATP-binding cassette (ABC) transporter multidrug resistance protein 1 (MRP1/ABCC1) protects cells from arsenic (a proven human carcinogen) through the cellular efflux of arsenic triglutathione [As(GS)3] and the diglutathione conjugate of monomethylarsonous acid [MMA(GS)2]. Previously, differences in MRP1 phosphorylation (at Y920/S921) and N-glycosylation (at N19/N23) were associated with marked differences in As(GS)3 transport kinetics between HEK293 and HeLa cell lines. In the current study, cell line differences in MRP1-mediated cellular protection and transport of other arsenic metabolites were explored. MRP1 expressed in HEK293 cells reduced the toxicity of the major urinary arsenic metabolite dimethylarsinic acid (DMAV), and HEK-WT-MRP1-enriched vesicles transported DMAV with high apparent affinity and capacity (Km 0.19 µM, Vmax 342 pmol⋅mg-1protein⋅min-1). This is the first report that MRP1 is capable of exporting DMAV, critical for preventing highly toxic dimethylarsinous acid formation. In contrast, DMAV transport was not detected using HeLa-WT-MRP1 membrane vesicles. MMA(GS)2 transport by HeLa-WT-MRP1 vesicles had a greater than threefold higher Vmax compared with HEK-WT-MRP1 vesicles. Cell line differences in DMAV and MMA(GS)2 transport were not explained by differences in phosphorylation at Y920/S921. DMAV did not inhibit, whereas MMA(GS)2 was an uncompetitive inhibitor of As(GS)3 transport, suggesting that DMAV and MMA(GS)2 have nonidentical binding sites to As(GS)3 on MRP1. Efflux of different arsenic metabolites by MRP1 is likely influenced by multiple factors, including cell and tissue type. This could have implications for the impact of MRP1 on both tissue-specific susceptibility to arsenic-induced disease and tumor sensitivity to arsenic-based therapeutics.
Collapse
Affiliation(s)
- Mayukh Banerjee
- Departments of Physiology (M.B., B.D.W., M.W.C., E.M.L.) and Laboratory Medicine and Pathology (G.K., X.C.L., E.M.L.) and Membrane Protein Disease Research Group (M.B., G.K., B.D.W., M.W.C., E.M.L.), University of Alberta, Edmonton, Alberta, Canada
| | - Gurnit Kaur
- Departments of Physiology (M.B., B.D.W., M.W.C., E.M.L.) and Laboratory Medicine and Pathology (G.K., X.C.L., E.M.L.) and Membrane Protein Disease Research Group (M.B., G.K., B.D.W., M.W.C., E.M.L.), University of Alberta, Edmonton, Alberta, Canada
| | - Brayden D Whitlock
- Departments of Physiology (M.B., B.D.W., M.W.C., E.M.L.) and Laboratory Medicine and Pathology (G.K., X.C.L., E.M.L.) and Membrane Protein Disease Research Group (M.B., G.K., B.D.W., M.W.C., E.M.L.), University of Alberta, Edmonton, Alberta, Canada
| | - Michael W Carew
- Departments of Physiology (M.B., B.D.W., M.W.C., E.M.L.) and Laboratory Medicine and Pathology (G.K., X.C.L., E.M.L.) and Membrane Protein Disease Research Group (M.B., G.K., B.D.W., M.W.C., E.M.L.), University of Alberta, Edmonton, Alberta, Canada
| | - X Chris Le
- Departments of Physiology (M.B., B.D.W., M.W.C., E.M.L.) and Laboratory Medicine and Pathology (G.K., X.C.L., E.M.L.) and Membrane Protein Disease Research Group (M.B., G.K., B.D.W., M.W.C., E.M.L.), University of Alberta, Edmonton, Alberta, Canada
| | - Elaine M Leslie
- Departments of Physiology (M.B., B.D.W., M.W.C., E.M.L.) and Laboratory Medicine and Pathology (G.K., X.C.L., E.M.L.) and Membrane Protein Disease Research Group (M.B., G.K., B.D.W., M.W.C., E.M.L.), University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
24
|
Chi L, Gao B, Tu P, Liu CW, Xue J, Lai Y, Ru H, Lu K. Individual susceptibility to arsenic-induced diseases: the role of host genetics, nutritional status, and the gut microbiome. Mamm Genome 2018; 29:63-79. [PMID: 29429126 DOI: 10.1007/s00335-018-9736-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/17/2018] [Indexed: 01/16/2023]
Abstract
Arsenic (As) contamination in water or food is a global issue affecting hundreds of millions of people. Although As is classified as a group 1 carcinogen and is associated with multiple diseases, the individual susceptibility to As-related diseases is highly variable, such that a proportion of people exposed to As have higher risks of developing related disorders. Many factors have been found to be associated with As susceptibility. One of the main sources of the variability found in As susceptibility is the variation in the host genome, namely, polymorphisms of many genes involved in As transportation, biotransformation, oxidative stress response, and DNA repair affect the susceptibility of an individual to As toxicity and then influence the disease outcomes. In addition, lifestyles and many nutritional factors, such as folate, vitamin C, and fruit, have been found to be associated with individual susceptibility to As-related diseases. Recently, the interactions between As exposure and the gut microbiome have been of particular concern. As exposure has been shown to perturb gut microbiome composition, and the gut microbiota has been shown to also influence As metabolism, which raises the question of whether the highly diverse gut microbiota contributes to As susceptibility. Here, we review the literature and summarize the factors, such as host genetics and nutritional status, that influence As susceptibility, and we also present potential mechanisms of how the gut microbiome may influence As metabolism and its toxic effects on the host to induce variations in As susceptibility. Challenges and future directions are also discussed to emphasize the importance of characterizing the specific role of these factors in interindividual susceptibility to As-related diseases.
Collapse
Affiliation(s)
- Liang Chi
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Bei Gao
- NIH West Coast Metabolomics Center, University of California, Davis, CA, 95616, USA
| | - Pengcheng Tu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Chih-Wei Liu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jingchuan Xue
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yunjia Lai
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Hongyu Ru
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC, 27607, USA
| | - Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
25
|
Li J, Bauer M, Moe B, Leslie EM, Li XF. Multidrug Resistance Protein 4 (MRP4/ABCC4) Protects Cells from the Toxic Effects of Halobenzoquinones. Chem Res Toxicol 2017; 30:1815-1822. [DOI: 10.1021/acs.chemrestox.7b00156] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Jinhua Li
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G3
- School of Public Health, Jilin University, Changchun, Jilin, China 130021
| | - Madlen Bauer
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G3
| | - Birget Moe
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G3
- Alberta Centre for Toxicology, Department of Physiology and Pharmacology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Elaine M. Leslie
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G3
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Xing-Fang Li
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G3
| |
Collapse
|
26
|
Zhang YK, Dai C, Yuan CG, Wu HC, Xiao Z, Lei ZN, Yang DH, Le XC, Fu L, Chen ZS. Establishment and characterization of arsenic trioxide resistant KB/ATO cells. Acta Pharm Sin B 2017; 7:564-570. [PMID: 28924550 PMCID: PMC5595296 DOI: 10.1016/j.apsb.2017.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/26/2017] [Accepted: 04/01/2017] [Indexed: 12/14/2022] Open
Abstract
Arsenic trioxide (ATO) is used as a chemotherapeutic agent for the treatment of acute promyelocytic leukemia. However, increasing drug resistance is reducing its efficacy. Therefore, a better understanding of ATO resistance mechanism is required. In this study, we established an ATO-resistant human epidermoid carcinoma cell line, KB/ATO, from its parental KB-3-1 cells. In addition to ATO, KB/ATO cells also exhibited cross-resistance to other anticancer drugs such as cisplatin, antimony potassium tartrate, and 6-mercaptopurine. The arsenic accumulation in KB/ATO cells was significantly lower than that in KB-3-1 cells. Further analysis indicated that neither application of P-glycoprotein inhibitor, breast cancer resistant protein (BCRP) inhibitor, or multidrug resistance protein 1 (MRP1) inhibitor could eliminate ATO resistance. We found that the expression level of ABCB6 was increased in KB/ATO cells. In conclusion, ABCB6 could be an important factor for ATO resistance in KB/ATO cells. The ABCB6 level may serve as a predictive biomarker for the effectiveness of ATO therapy.
Collapse
Affiliation(s)
- Yun-Kai Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John׳s University, Queens, NY 11439, USA
| | - Chunling Dai
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John׳s University, Queens, NY 11439, USA
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Chun-gang Yuan
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton T6G 2G3, Alberta, Canada
| | - Hsiang-Chun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John׳s University, Queens, NY 11439, USA
| | - Zhijie Xiao
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John׳s University, Queens, NY 11439, USA
| | - Zi-Ning Lei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John׳s University, Queens, NY 11439, USA
| | - Dong-Hua Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John׳s University, Queens, NY 11439, USA
| | - X. Chris Le
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton T6G 2G3, Alberta, Canada
| | - Liwu Fu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John׳s University, Queens, NY 11439, USA
- Corresponding author. Tel.: +1 718 990 1432; fax: +1 718 990 1877.
| |
Collapse
|
27
|
Orr SE, Bridges CC. Chronic Kidney Disease and Exposure to Nephrotoxic Metals. Int J Mol Sci 2017; 18:ijms18051039. [PMID: 28498320 PMCID: PMC5454951 DOI: 10.3390/ijms18051039] [Citation(s) in RCA: 245] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 04/26/2017] [Indexed: 12/26/2022] Open
Abstract
Chronic kidney disease (CKD) is a common progressive disease that is typically characterized by the permanent loss of functional nephrons. As injured nephrons become sclerotic and die, the remaining healthy nephrons undergo numerous structural, molecular, and functional changes in an attempt to compensate for the loss of diseased nephrons. These compensatory changes enable the kidney to maintain fluid and solute homeostasis until approximately 75% of nephrons are lost. As CKD continues to progress, glomerular filtration rate decreases, and remaining nephrons are unable to effectively eliminate metabolic wastes and environmental toxicants from the body. This inability may enhance mortality and/or morbidity of an individual. Environmental toxicants of particular concern are arsenic, cadmium, lead, and mercury. Since these metals are present throughout the environment and exposure to one or more of these metals is unavoidable, it is important that the way in which these metals are handled by target organs in normal and disease states is understood completely.
Collapse
Affiliation(s)
- Sarah E Orr
- Mercer University School of Medicine, Division of Basic Medical Sciences, 1550 College St., Macon, GA 31207, USA.
| | - Christy C Bridges
- Mercer University School of Medicine, Division of Basic Medical Sciences, 1550 College St., Macon, GA 31207, USA.
| |
Collapse
|
28
|
Strain differences in arsenic-induced oxidative lesion via arsenic biomethylation between C57BL/6J and 129X1/SvJ mice. Sci Rep 2017; 7:44424. [PMID: 28303940 PMCID: PMC5355880 DOI: 10.1038/srep44424] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/07/2017] [Indexed: 12/11/2022] Open
Abstract
Arsenic is a common environmental and occupational toxicant with dramatic species differences in its susceptibility and metabolism. Mouse strain variability may provide a better understanding of the arsenic pathological profile but is largely unknown. Here we investigated oxidative lesion induced by acute arsenic exposure in the two frequently used mouse strains C57BL/6J and 129X1/SvJ in classical gene targeting technique. A dose of 5 mg/kg body weight arsenic led to a significant alteration of blood glutathione towards oxidized redox potential and increased hepatic malondialdehyde content in C57BL/6J mice, but not in 129X1/SvJ mice. Hepatic antioxidant enzymes were induced by arsenic in transcription in both strains and many were higher in C57BL/6J than 129X1/SvJ mice. Arsenic profiles in the liver, blood and urine and transcription of genes encoding enzymes involved in arsenic biomethylation all indicate a higher arsenic methylation capacity, which contributes to a faster hepatic arsenic excretion, in 129X1/SvJ mice than C57BL/6J mice. Taken together, C57BL/6J mice are more susceptible to oxidative hepatic injury compared with 129X1/SvJ mice after acute arsenic exposure, which is closely associated with arsenic methylation pattern of the two strains.
Collapse
|
29
|
Ali I, Welch MA, Lu Y, Swaan PW, Brouwer KLR. Identification of novel MRP3 inhibitors based on computational models and validation using an in vitro membrane vesicle assay. Eur J Pharm Sci 2017; 103:52-59. [PMID: 28238947 DOI: 10.1016/j.ejps.2017.02.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/03/2017] [Accepted: 02/06/2017] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Multidrug resistance-associated protein 3 (MRP3), an efflux transporter on the hepatic basolateral membrane, may function as a compensatory mechanism to prevent the accumulation of anionic substrates (e.g., bile acids) in hepatocytes. Inhibition of MRP3 may disrupt bile acid homeostasis and is one hypothesized risk factor for the development of drug-induced liver injury (DILI). Therefore, identifying potential MRP3 inhibitors could help mitigate the occurrence of DILI. METHODS Bayesian models were developed using MRP3 transporter inhibition data for 86 structurally diverse drugs. The compounds were split into training and test sets of 57 and 29 compounds, respectively, and six models were generated based on distinct inhibition thresholds and molecular fingerprint methods. The six Bayesian models were validated against the test set and the model with the highest accuracy was utilized for a virtual screen of 1470 FDA-approved drugs from DrugBank. Compounds that were predicted to be inhibitors were selected for in vitro validation. The ability of these compounds to inhibit MRP3 transport at a concentration of 100μM was measured in membrane vesicles derived from stably transfected MRP3-over-expressing HEK-293 cells with [3H]-estradiol-17β-d-glucuronide (E217G; 10μM; 5min uptake) as the probe substrate. RESULTS A predictive Bayesian model was developed with a sensitivity of 73% and specificity of 71% against the test set used to evaluate the six models. The area under the Receiver Operating Characteristic (ROC) curve was 0.710 against the test set. The final selected model was based on compounds that inhibited substrate transport by at least 50% compared to the negative control, and functional-class fingerprints (FCFP) with a circular diameter of six atoms, in addition to one-dimensional physicochemical properties. The in vitro screening of predicted inhibitors and non-inhibitors resulted in similar model performance with a sensitivity of 64% and specificity of 70%. The strongest inhibitors of MRP3-mediated E217G transport were fidaxomicin, suramin, and dronedarone. Kinetic assessment revealed that fidaxomicin was the most potent of these inhibitors (IC50=1.83±0.46μM). Suramin and dronedarone exhibited IC50 values of 3.33±0.41 and 47.44±4.41μM, respectively. CONCLUSION Bayesian models are a useful screening approach to identify potential inhibitors of transport proteins. Novel MRP3 inhibitors were identified by virtual screening using the selected Bayesian model, and MRP3 inhibition was confirmed by an in vitro transporter inhibition assay. Information generated using this modeling approach may be valuable in predicting the potential for DILI and/or MRP3-mediated drug-drug interactions.
Collapse
Affiliation(s)
- Izna Ali
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matthew A Welch
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD 21201, USA
| | - Yang Lu
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Peter W Swaan
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD 21201, USA
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
30
|
Roggenbeck BA, Banerjee M, Leslie EM. Cellular arsenic transport pathways in mammals. J Environ Sci (China) 2016; 49:38-58. [PMID: 28007179 DOI: 10.1016/j.jes.2016.10.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 10/07/2016] [Accepted: 10/08/2016] [Indexed: 06/06/2023]
Abstract
Natural contamination of drinking water with arsenic results in the exposure of millions of people world-wide to unacceptable levels of this metalloid. This is a serious global health problem because arsenic is a Group 1 (proven) human carcinogen and chronic exposure is known to cause skin, lung, and bladder tumors. Furthermore, arsenic exposure can result in a myriad of other adverse health effects including diseases of the cardiovascular, respiratory, neurological, reproductive, and endocrine systems. In addition to chronic environmental exposure to arsenic, arsenic trioxide is approved for the clinical treatment of acute promyelocytic leukemia, and is in clinical trials for other hematological malignancies as well as solid tumors. Considerable inter-individual variability in susceptibility to arsenic-induced disease and toxicity exists, and the reasons for such differences are incompletely understood. Transport pathways that influence the cellular uptake and export of arsenic contribute to regulating its cellular, tissue, and ultimately body levels. In the current review, membrane proteins (including phosphate transporters, aquaglyceroporin channels, solute carrier proteins, and ATP-binding cassette transporters) shown experimentally to contribute to the passage of inorganic, methylated, and/or glutathionylated arsenic species across cellular membranes are discussed. Furthermore, what is known about arsenic transporters in organs involved in absorption, distribution, and metabolism and how transport pathways contribute to arsenic elimination are described.
Collapse
Affiliation(s)
- Barbara A Roggenbeck
- Department of Physiology and Membrane Protein Disease Research Group, University of Alberta, Edmonton, AB, T6G 2H7, Canada.
| | - Mayukh Banerjee
- Department of Physiology and Membrane Protein Disease Research Group, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Elaine M Leslie
- Department of Physiology and Membrane Protein Disease Research Group, University of Alberta, Edmonton, AB, T6G 2H7, Canada; Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada.
| |
Collapse
|
31
|
Chávez-Capilla T, Maher W, Kelly T, Foster S. Evaluation of the ability of arsenic species to traverse cell membranes by simple diffusion using octanol-water and liposome-water partition coefficients. J Environ Sci (China) 2016; 49:222-232. [PMID: 29216971 DOI: 10.1016/j.jes.2016.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 08/05/2016] [Accepted: 08/11/2016] [Indexed: 06/07/2023]
Abstract
Arsenic metabolism in living organisms is dependent on the ability of different arsenic species to traverse biological membranes. Simple diffusion provides an alternative influx and efflux route to mediated transport mechanisms that can increase the amount of arsenic available for metabolism in cells. Using octanol-water and liposome-water partition coefficients, the ability of arsenous acid, arsenate, methylarsonate, dimethylarsinate, thio-methylarsonate, thio-dimethylarsinic acid, arsenotriglutathione and monomethylarsonic diglutathione to diffuse through the lipid bilayer of cell membranes was investigated. Molecular modelling of arsenic species was used to explain the results. All arsenic species with the exception of arsenate, methylarsonate and thio-methylarsonate were able to diffuse through the lipid bilayer of liposomes, with liposome-water partition coefficients between 0.04 and 0.13. Trivalent arsenic species and thio-pentavalent arsenic species showed higher partition coefficients, suggesting that they can easily traverse cell membranes by passive simple diffusion. Given the higher toxicity of these species compared to oxo-pentavalent arsenic species, this study provides evidence supporting the risk associated with human exposure to trivalent and thio-arsenic species.
Collapse
Affiliation(s)
- Teresa Chávez-Capilla
- Ecochemistry Laboratory, Institute for Applied Ecology, University of Canberra, Canberra, ACT 2601, Australia.
| | - William Maher
- Ecochemistry Laboratory, Institute for Applied Ecology, University of Canberra, Canberra, ACT 2601, Australia
| | - Tamsin Kelly
- National Centre for Forensic Studies, Faculty of Education, Science, Technology and Mathematics, University of Canberra, Canberra, ACT 2601, Australia
| | - Simon Foster
- Ecochemistry Laboratory, Institute for Applied Ecology, University of Canberra, Canberra, ACT 2601, Australia.
| |
Collapse
|
32
|
Polymorphic variants of MRP4/ABCC4 differentially modulate the transport of methylated arsenic metabolites and physiological organic anions. Biochem Pharmacol 2016; 120:72-82. [PMID: 27659809 DOI: 10.1016/j.bcp.2016.09.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/16/2016] [Indexed: 01/17/2023]
Abstract
Broad inter-individual variation exists in susceptibility to arsenic-induced tumours, likely involving differences in the ability of individuals to eliminate this metalloid. We recently identified human multidrug resistance protein 4 (MRP4/ABCC4) as a novel pathway for the cellular export of dimethylarsinic acid (DMAV), the major urinary arsenic metabolite in humans, and the diglutathione conjugate of the highly toxic monomethylarsonous acid [MMA(GS)2]. These findings, together with the basolateral and apical membrane localization of MRP4 in hepatocytes and renal proximal tubule cells, respectively, suggest a role for MRP4 in the urinary elimination of hepatic arsenic metabolites. Accordingly, we have now investigated the influence of non-synonymous single nucleotide polymorphisms (SNPs) on MRP4 levels, cellular localization, and arsenical transport. Of eight MRP4 variants (C171G-, G187W-, K304N-, G487E-, Y556C-, E757K-, V776I- and C956S-MRP4) characterized, two (V776I- and C956S-MRP4) did not localize appropriately to the plasma membrane of HEK293T and LLC-PK1 cells. Characterization of the six correctly localized mutants revealed that MMA(GS)2 transport by C171G-, G187W-, and K304N-MRP4 was 180%, 73%, and 30% of WT-MRP4 activity, respectively, whereas DMAV transport by K304N- and Y556C-MRP4 was 30% and 184% of WT-MRP4, respectively. Transport of the prototypical physiological MRP4 substrates prostaglandin E2 and 17β-estradiol 17-(β-d-glucuronide) by the six variants was also differentially affected. Thus, MRP4 variants have differing abilities to transport arsenic and endogenous metabolites through both altered function and membrane localization. Further investigation is warranted to determine if genetic variations in ABCC4 contribute to inter-individual differences in susceptibility to arsenic-induced (and potentially other) diseases.
Collapse
|
33
|
Shukalek CB, Swanlund DP, Rousseau RK, Weigl KE, Marensi V, Cole SPC, Leslie EM. Arsenic Triglutathione [As(GS)3] Transport by Multidrug Resistance Protein 1 (MRP1/ABCC1) Is Selectively Modified by Phosphorylation of Tyr920/Ser921 and Glycosylation of Asn19/Asn23. Mol Pharmacol 2016; 90:127-39. [PMID: 27297967 DOI: 10.1124/mol.116.103648] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/10/2016] [Indexed: 11/22/2022] Open
Abstract
The ATP-binding cassette (ABC) transporter multidrug resistance protein 1 (MRP1/ABCC1) is responsible for the cellular export of a chemically diverse array of xenobiotics and endogenous compounds. Arsenic, a human carcinogen, is a high-affinity MRP1 substrate as arsenic triglutathione [As(GS)3]. In this study, marked differences in As(GS)3 transport kinetics were observed between MRP1-enriched membrane vesicles prepared from human embryonic kidney 293 (HEK) (Km 3.8 µM and Vmax 307 pmol/mg per minute) and HeLa (Km 0.32 µM and Vmax 42 pmol/mg per minute) cells. Mutant MRP1 lacking N-linked glycosylation [Asn19/23/1006Gln; sugar-free (SF)-MRP1] expressed in either HEK293 or HeLa cells had low Km and Vmax values for As(GS)3, similar to HeLa wild-type (WT) MRP1. When prepared in the presence of phosphatase inhibitors, both WT- and SF-MRP1-enriched membrane vesicles had a high Km value for As(GS)3 (3-6 µM), regardless of the cell line. Kinetic parameters of As(GS)3 for HEK-Asn19/23Gln-MRP1 were similar to those of HeLa/HEK-SF-MRP1 and HeLa-WT-MRP1, whereas those of single glycosylation mutants were like those of HEK-WT-MRP1. Mutation of 19 potential MRP1 phosphorylation sites revealed that HEK-Tyr920Phe/Ser921Ala-MRP1 transported As(GS)3 like HeLa-WT-MRP1, whereas individual HEK-Tyr920Phe- and -Ser921Ala-MRP1 mutants were similar to HEK-WT-MRP1. Together, these results suggest that Asn19/Asn23 glycosylation and Tyr920/Ser921 phosphorylation are responsible for altering the kinetics of MRP1-mediated As(GS)3 transport. The kinetics of As(GS)3 transport by HEK-Asn19/23Gln/Tyr920Glu/Ser921Glu were similar to HEK-WT-MRP1, indicating that the phosphorylation-mimicking substitutions abrogated the influence of Asn19/23Gln glycosylation. Overall, these data suggest that cross-talk between MRP1 glycosylation and phosphorylation occurs and that phosphorylation of Tyr920 and Ser921 can switch MRP1 to a lower-affinity, higher-capacity As(GS)3 transporter, allowing arsenic detoxification over a broad concentration range.
Collapse
Affiliation(s)
- Caley B Shukalek
- Department of Physiology (C.B.S., D.P.S., R.K.R., V.M., E.M.L.) and Membrane Protein Disease Research Group (C.B.S., D.P.S., R.K.R., V.M., E.M.L.), University of Alberta, Edmonton, Alberta, Canada. Department of Pathology and Molecular Medicine and Division of Cancer Biology and Genetics (K.E.W., S.P.C.C.), Queen's University, Kingston, Ontario, Canada
| | - Diane P Swanlund
- Department of Physiology (C.B.S., D.P.S., R.K.R., V.M., E.M.L.) and Membrane Protein Disease Research Group (C.B.S., D.P.S., R.K.R., V.M., E.M.L.), University of Alberta, Edmonton, Alberta, Canada. Department of Pathology and Molecular Medicine and Division of Cancer Biology and Genetics (K.E.W., S.P.C.C.), Queen's University, Kingston, Ontario, Canada
| | - Rodney K Rousseau
- Department of Physiology (C.B.S., D.P.S., R.K.R., V.M., E.M.L.) and Membrane Protein Disease Research Group (C.B.S., D.P.S., R.K.R., V.M., E.M.L.), University of Alberta, Edmonton, Alberta, Canada. Department of Pathology and Molecular Medicine and Division of Cancer Biology and Genetics (K.E.W., S.P.C.C.), Queen's University, Kingston, Ontario, Canada
| | - Kevin E Weigl
- Department of Physiology (C.B.S., D.P.S., R.K.R., V.M., E.M.L.) and Membrane Protein Disease Research Group (C.B.S., D.P.S., R.K.R., V.M., E.M.L.), University of Alberta, Edmonton, Alberta, Canada. Department of Pathology and Molecular Medicine and Division of Cancer Biology and Genetics (K.E.W., S.P.C.C.), Queen's University, Kingston, Ontario, Canada
| | - Vanessa Marensi
- Department of Physiology (C.B.S., D.P.S., R.K.R., V.M., E.M.L.) and Membrane Protein Disease Research Group (C.B.S., D.P.S., R.K.R., V.M., E.M.L.), University of Alberta, Edmonton, Alberta, Canada. Department of Pathology and Molecular Medicine and Division of Cancer Biology and Genetics (K.E.W., S.P.C.C.), Queen's University, Kingston, Ontario, Canada
| | - Susan P C Cole
- Department of Physiology (C.B.S., D.P.S., R.K.R., V.M., E.M.L.) and Membrane Protein Disease Research Group (C.B.S., D.P.S., R.K.R., V.M., E.M.L.), University of Alberta, Edmonton, Alberta, Canada. Department of Pathology and Molecular Medicine and Division of Cancer Biology and Genetics (K.E.W., S.P.C.C.), Queen's University, Kingston, Ontario, Canada
| | - Elaine M Leslie
- Department of Physiology (C.B.S., D.P.S., R.K.R., V.M., E.M.L.) and Membrane Protein Disease Research Group (C.B.S., D.P.S., R.K.R., V.M., E.M.L.), University of Alberta, Edmonton, Alberta, Canada. Department of Pathology and Molecular Medicine and Division of Cancer Biology and Genetics (K.E.W., S.P.C.C.), Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
34
|
Nishimoto S, Suzuki T, Koike S, Yuan B, Takagi N, Ogasawara Y. Nrf2 activation ameliorates cytotoxic effects of arsenic trioxide in acute promyelocytic leukemia cells through increased glutathione levels and arsenic efflux from cells. Toxicol Appl Pharmacol 2016; 305:161-168. [PMID: 27317373 DOI: 10.1016/j.taap.2016.06.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/07/2016] [Accepted: 06/13/2016] [Indexed: 12/30/2022]
Abstract
Carnosic acid (CA), a phenolic diterpene isolated from Rosmarinus officinalis, has been shown to activate nuclear transcription factor E2-related factor 2 (Nrf2), which plays a central role in cytoprotective responses to oxidative and electrophilic stress. Recently, the Nrf2-Kelch ECH associating protein 1 (Keap1) pathway has been associated with cancer drug resistance attributable to modulation of the expression and activation of antioxidant and detoxification enzymes. However, the exact mechanisms by which Nrf2 activation results in chemoresistance are insufficiently understood to date. This study investigated the mechanisms by which the cytotoxic effects of arsenic trioxide (ATO), an anticancer drug, were decreased in acute promyelocytic leukemia cells treated with CA, a typical activator of Nrf2 used to stimulate the Nrf2/Keap1 system. Our findings suggest that arsenic is non-enzymatically incorporated into NB4 cells and forms complexes that are dependent on intracellular glutathione (GSH) concentrations. In addition, the arsenic complexes are recognized as substrates by multidrug resistance proteins and subsequently excreted from the cells. Therefore, Nrf2-associated activation of the GSH biosynthetic pathway, followed by increased levels of intracellular GSH, are key mechanisms underlying accelerated arsenic efflux and attenuation of the cytotoxic effects of ATO.
Collapse
Affiliation(s)
- Shoichi Nishimoto
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Toshihiro Suzuki
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Shin Koike
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Bo Yuan
- Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Norio Takagi
- Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Yuki Ogasawara
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan.
| |
Collapse
|
35
|
Yuan B, Yoshino Y, Fukushima H, Markova S, Takagi N, Toyoda H, Kroetz DL. Multidrug resistance-associated protein 4 is a determinant of arsenite resistance. Oncol Rep 2015; 35:147-54. [PMID: 26497925 PMCID: PMC6918809 DOI: 10.3892/or.2015.4343] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 08/19/2015] [Indexed: 12/25/2022] Open
Abstract
Although arsenic trioxide (arsenite, AsIII) has shown a remarkable efficacy in the treatment of acute promyelocytic leukemia patients, multidrug resistance is still a major concern for its clinical use. Multidrug resistance-associated protein 4 (MRP4), which belongs to the ATP-binding cassette (ABC) superfamily of transporters, is localized to the basolateral membrane of hepatocytes and the apical membrane of renal proximal tubule cells. Due to its characteristic localization, MRP4 is proposed as a candidate in the elimination of arsenic and may contribute to resistance to AsIII. To test this hypothesis, stable HEK293 cells overexpressing MRP4 or MRP2 were used to establish the role of these two transporters in AsIII resistance. The IC50 values of AsIII in MRP4 cells were approximately 6-fold higher than those in MRP2 cells, supporting an important role for MRP4 in resistance to AsIII. The capacity of MRP4 to confer resistance to AsIII was further confirmed by a dramatic decrease in the IC50 values with the addition of MK571, an MRP4 inhibitor, and cyclosporine A, a well-known broad-spectrum inhibitor of ABC transporters. Surprisingly, the sensitivity of the MRP2 cells to AsIII was similar to that of the parent cells, although insufficient formation of glutathione and/or Se conjugated arsenic compounds in the MRP2 cells might limit transport. Given that MRP4 is a major contributor to arsenic resistance in vitro, further investigation into the correlation between MRP4 expression and treatment outcome of leukemia patients treated with arsenic-based regimens is warranted.
Collapse
Affiliation(s)
- Bo Yuan
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - Yuta Yoshino
- Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Hisayo Fukushima
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - Svetlana Markova
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - Norio Takagi
- Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Hiroo Toyoda
- Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Deanna L Kroetz
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
36
|
Wen J, Luo J, Huang W, Tang J, Zhou H, Zhang W. The Pharmacological and Physiological Role of Multidrug-Resistant Protein 4. J Pharmacol Exp Ther 2015; 354:358-375. [PMID: 26148856 DOI: 10.1124/jpet.115.225656] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 06/30/2015] [Indexed: 12/11/2022] Open
Abstract
Multidrug-resistant protein 4 (MRP4), a member of the C subfamily of ATP-binding cassette transporters, is distributed in a variety of tissues and a number of cancers. As a drug transporter, MRP4 is responsible for the pharmacokinetics and pharmacodynamics of numerous drugs, especially antiviral drugs, antitumor drugs, and diuretics. In this regard, the functional role of MRP4 is affected by a number of factors, such as genetic mutations; tissue-specific transcriptional regulations; post-transcriptional regulations, including miRNAs and membrane internalization; and substrate competition. Unlike other C family members, MRP4 is in a pivotal position to transport cellular signaling molecules, through which it is tightly connected to the living activity and physiologic processes of cells and bodies. In the context of several cancers in which MRP4 is overexpressed, MRP4 inhibition shows striking effects against cancer progression and drug resistance. In this review, we describe the role of MRP4 more specifically in both healthy conditions and disease states, with an emphasis on its potential as a drug target.
Collapse
Affiliation(s)
- Jiagen Wen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, ChangSha, P.R. China; Institute of Clinical Pharmacology, Central South University, ChangSha, P.R. China; and Hunan Key Laboratory of Pharmacogenetics, ChangSha, P.R. China
| | - Jianquan Luo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, ChangSha, P.R. China; Institute of Clinical Pharmacology, Central South University, ChangSha, P.R. China; and Hunan Key Laboratory of Pharmacogenetics, ChangSha, P.R. China
| | - Weihua Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, ChangSha, P.R. China; Institute of Clinical Pharmacology, Central South University, ChangSha, P.R. China; and Hunan Key Laboratory of Pharmacogenetics, ChangSha, P.R. China
| | - Jie Tang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, ChangSha, P.R. China; Institute of Clinical Pharmacology, Central South University, ChangSha, P.R. China; and Hunan Key Laboratory of Pharmacogenetics, ChangSha, P.R. China
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, ChangSha, P.R. China; Institute of Clinical Pharmacology, Central South University, ChangSha, P.R. China; and Hunan Key Laboratory of Pharmacogenetics, ChangSha, P.R. China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, ChangSha, P.R. China; Institute of Clinical Pharmacology, Central South University, ChangSha, P.R. China; and Hunan Key Laboratory of Pharmacogenetics, ChangSha, P.R. China
| |
Collapse
|
37
|
Jördens MS, Keitel V, Karababa A, Zemtsova I, Bronger H, Häussinger D, Görg B. Multidrug resistance-associated protein 4 expression in ammonia-treated cultured rat astrocytes and cerebral cortex of cirrhotic patients with hepatic encephalopathy. Glia 2015; 63:2092-2105. [PMID: 26102310 DOI: 10.1002/glia.22879] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 06/08/2015] [Indexed: 12/30/2022]
Abstract
Hepatic encephalopathy (HE) is a neuropsychiatric syndrome frequently accompanying liver cirrhosis and reflects the clinical manifestation of a low grade cerebral edema associated with cerebral oxidative/nitrosative stress. The multidrug resistance-associated protein (Mrp) 4 is an export pump which transports metabolites that were recently suggested to play a major role in the pathogenesis of HE such as neurosteroids and cyclic nucleotides. We therefore studied Mrp4 expression changes in ammonia-exposed cultured astrocytes and postmortem human brain samples of cirrhotic patients with HE. NH4 Cl increased Mrp4 mRNA and protein levels in astrocytes in a dose- and time-dependent manner up to threefold after 72 h of exposure and concurrently inhibited N-glycosylation of Mrp4 protein. Upregulation of Mrp4 mRNA and protein as well as impaired N-glycosylation of Mrp4 protein by ammonia were sensitive towards the glutamine-synthetase inhibitor l-methionine-S-sulfoximine and were not induced by CH3 NH3 Cl (5 mmol/L). Upregulation of Mrp4 mRNA required ammonia-induced activation of nitric oxide synthases or NADPH oxidase and p38MAPK -dependent activation of PPARα. Inhibition of Mrp4 by ceefourin 1 synergistically enhanced both, inhibition of astrocyte proliferation as well as transcription of the oxidative stress surrogate marker heme oxygenase 1 by forskolin (10 µmol/L, 72 h) or NH4 Cl (5 mmol/L, 72 h) in cultured rat astrocytes. Increased Mrp4 mRNA and protein levels were also found in postmortem brain samples from patients with liver cirrhosis with HE but not in those without HE. The data show that Mrp4 is upregulated in HE, which may be relevant for the handling of neurosteroids and cyclic nucleotides in response to ammonia. GLIA 2015;63:2092-2105.
Collapse
Affiliation(s)
- Markus S Jördens
- Clinic for Gastroenterology, Hepatology, and Infectious Diseases, Heinrich-Heine University, Düsseldorf, Germany
| | - Verena Keitel
- Clinic for Gastroenterology, Hepatology, and Infectious Diseases, Heinrich-Heine University, Düsseldorf, Germany
| | - Ayse Karababa
- Clinic for Gastroenterology, Hepatology, and Infectious Diseases, Heinrich-Heine University, Düsseldorf, Germany
| | - Irina Zemtsova
- Clinic for Gastroenterology, Hepatology, and Infectious Diseases, Heinrich-Heine University, Düsseldorf, Germany
| | - Holger Bronger
- Clinic for Gastroenterology, Hepatology, and Infectious Diseases, Heinrich-Heine University, Düsseldorf, Germany
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology, and Infectious Diseases, Heinrich-Heine University, Düsseldorf, Germany
| | - Boris Görg
- Clinic for Gastroenterology, Hepatology, and Infectious Diseases, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
38
|
Roggenbeck BA, Carew MW, Charrois GJ, Douglas DN, Kneteman NM, Lu X, Le XC, Leslie EM. Characterization of arsenic hepatobiliary transport using sandwich-cultured human hepatocytes. Toxicol Sci 2015; 145:307-20. [PMID: 25752797 DOI: 10.1093/toxsci/kfv051] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Arsenic is a proven human carcinogen and is associated with a myriad of other adverse health effects. This metalloid is methylated in human liver to monomethylarsonic acid (MMA(V)), monomethylarsonous acid (MMA(III)), dimethylarsinic acid (DMA(V)), and dimethylarsinous acid (DMA(III)) and eliminated predominantly in urine. Hepatic basolateral transport of arsenic species is ultimately critical for urinary elimination; however, these pathways are not fully elucidated in humans. A potentially important human hepatic basolateral transporter is the ATP-binding cassette (ABC) transporter multidrug resistance protein 4 (MRP4/ABCC4) that in vitro is a high-affinity transporter of DMA(V) and the diglutathione conjugate of MMA(III) [MMA(GS)(2)]. In rats, the related canalicular transporter Mrp2/Abcc2 is required for biliary excretion of arsenic as As(GS)(3) and MMA(GS)(2). The current study used sandwich cultured human hepatocytes (SCHH) as a physiological model of human arsenic hepatobiliary transport. Arsenic efflux was detected only across the basolateral membrane for 9 out of 14 SCHH preparations, 5 had both basolateral and canalicular efflux. Basolateral transport of arsenic was temperature- and GSH-dependent and inhibited by the MRP inhibitor MK-571. Canalicular efflux was completely lost after GSH depletion suggesting MRP2-dependence. Treatment of SCHH with As(III) (0.1-1 µM) dose-dependently increased MRP2 and MRP4 levels, but not MRP1, MRP6, or aquaglyceroporin 9. Treatment of SCHH with oltipraz (Nrf2 activator) increased MRP4 levels and basolateral efflux of arsenic. In contrast, oltipraz increased MRP2 levels without increasing biliary excretion. These results suggest arsenic basolateral transport prevails over biliary excretion and is mediated at least in part by MRPs, most likely including MRP4.
Collapse
Affiliation(s)
- Barbara A Roggenbeck
- *Department of Physiology, Membrane Protein Disease Research Group, Department of Laboratory Medicine and Pathology, and Department of Surgery, University of Alberta, Edmonton, Alberta, Canada, T6G 2H7 *Department of Physiology, Membrane Protein Disease Research Group, Department of Laboratory Medicine and Pathology, and Department of Surgery, University of Alberta, Edmonton, Alberta, Canada, T6G 2H7
| | - Michael W Carew
- *Department of Physiology, Membrane Protein Disease Research Group, Department of Laboratory Medicine and Pathology, and Department of Surgery, University of Alberta, Edmonton, Alberta, Canada, T6G 2H7 *Department of Physiology, Membrane Protein Disease Research Group, Department of Laboratory Medicine and Pathology, and Department of Surgery, University of Alberta, Edmonton, Alberta, Canada, T6G 2H7
| | - Gregory J Charrois
- *Department of Physiology, Membrane Protein Disease Research Group, Department of Laboratory Medicine and Pathology, and Department of Surgery, University of Alberta, Edmonton, Alberta, Canada, T6G 2H7
| | - Donna N Douglas
- *Department of Physiology, Membrane Protein Disease Research Group, Department of Laboratory Medicine and Pathology, and Department of Surgery, University of Alberta, Edmonton, Alberta, Canada, T6G 2H7
| | - Norman M Kneteman
- *Department of Physiology, Membrane Protein Disease Research Group, Department of Laboratory Medicine and Pathology, and Department of Surgery, University of Alberta, Edmonton, Alberta, Canada, T6G 2H7
| | - Xiufen Lu
- *Department of Physiology, Membrane Protein Disease Research Group, Department of Laboratory Medicine and Pathology, and Department of Surgery, University of Alberta, Edmonton, Alberta, Canada, T6G 2H7
| | - X Chris Le
- *Department of Physiology, Membrane Protein Disease Research Group, Department of Laboratory Medicine and Pathology, and Department of Surgery, University of Alberta, Edmonton, Alberta, Canada, T6G 2H7
| | - Elaine M Leslie
- *Department of Physiology, Membrane Protein Disease Research Group, Department of Laboratory Medicine and Pathology, and Department of Surgery, University of Alberta, Edmonton, Alberta, Canada, T6G 2H7 *Department of Physiology, Membrane Protein Disease Research Group, Department of Laboratory Medicine and Pathology, and Department of Surgery, University of Alberta, Edmonton, Alberta, Canada, T6G 2H7 *Department of Physiology, Membrane Protein Disease Research Group, Department of Laboratory Medicine and Pathology, and Department of Surgery, University of Alberta, Edmonton, Alberta, Canada, T6G 2H7
| |
Collapse
|
39
|
Wang QQ, Thomas DJ, Naranmandura H. Importance of being thiomethylated: formation, fate, and effects of methylated thioarsenicals. Chem Res Toxicol 2015; 28:281-9. [PMID: 25531277 DOI: 10.1021/tx500464t] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although inorganic arsenic has long been recognized as a potent toxicant and carcinogen in humans, recent evidence shows that at least some of its effects are mediated by methylated metabolites. Elucidating the conversion of inorganic arsenic to mono-, di-, and trimethylated species has provided insights into the enzymology of this pathway and identified genetic and environmental factors that influence the susceptibility of individuals to this metalloid's adverse health effects. Notably, almost all work on the formation, fate, and effects of methylated arsenicals has focused on oxoarsenicals in which arsenic is bound to one or more oxygen atoms. However, thioarsenicals are a class of arsenicals in which a sulfur atom has replaced one or more oxygens that are bound to arsenic. Thioarsenicals have been identified as urinary metabolites in humans and other animals following exposure to inorganic arsenic. Studies find that methylated thioarsenicals exhibit kinetic behavior and toxicological properties that distinguish them from methylated oxoarsenicals. This perspective considers that formation, fate, and effects of methylated thioarsenicals with an emphasis on examining the linkages between the molecular processes that underlie both methylation and thiolation reactions. Integrating this information will provide a more comprehensive view of the relationship between the metabolism of arsenic and the risk posed by chronic exposure to this environmental contaminant.
Collapse
Affiliation(s)
- Qian Qian Wang
- Department of Toxicology, School of Medicine and Public Health, ‡College of Pharmaceutical Sciences, Zhejiang University , Hangzhou 310058, China
| | | | | |
Collapse
|