1
|
Lara B, Snyder M, Fimbres J, Yang E, Song G, Duggineni VK, Wang Z, Sherr DH. The AhR regulates IFN-induced immune checkpoints in lung cancer cells through HNRNPH1, an RNA-binding protein, and INCR1, a novel long non-coding RNA. J Biol Chem 2025:110316. [PMID: 40449595 DOI: 10.1016/j.jbc.2025.110316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 04/28/2025] [Accepted: 05/17/2025] [Indexed: 06/03/2025] Open
Abstract
Although immune checkpoint inhibitors show great promise, not all patients respond and many do not achieve durable responses. Consequently, further investigations into potentially targetable molecules that regulate immune checkpoints are warranted. Previous studies in several cancers demonstrated that interferons produced by tumor-infiltrating leukocytes regulate immunosuppressive PD-L1, PD-L2 and IDO1 through JAK/STAT signaling. Here, we investigated a novel role for an immunosuppressive environmental chemical receptor, previously implicated in smoking-related cancers, in IFN signaling in human lung adenocarcinoma (LUAD) cells. Deletion of the aryl hydrocarbon receptor (AhR) from A549 LUAD cells significantly decreased baseline JAK2, STAT1, STAT3, IRF1 (a JAK/STAT target), PD-L1, PD-L2, and IDO1 expression. IFNγ and IFNα increased expression of JAK/STAT and immune checkpoint genes and proteins, but these increases were significantly diminished or absent in AhR-knockout cells. The AhR similarly controls IFN-induced, JAK/STAT-driven increases in multiple MHC class I- and class II-related genes. AhR control of type I and type II interferon signaling is mediated through up-regulation of a lncRNA, the IFN-stimulated non-coding RNA 1 (INCR1), and through repression of an RNA-binding protein, heterogeneous nuclear ribonucleoprotein H1 (HNRNPH1), which sequesters JAK/STAT-related and immune checkpoint gene transcripts. The data suggest that the AhR is a key mediator of tumor immunosuppression through regulation of IFN-induced INCR1 and JAK/STAT signaling and, thereby, expression of immune checkpoints. However, that immunosuppression may be tempered by AhR control of MHC expression. Given the multiple roles of JAK/STAT signaling in the immune system, the results also suggest multiple levels on which the AhR may affect tumor immunity.
Collapse
Affiliation(s)
- Brian Lara
- Department of Environmental Health, Boston University School of Public Health
| | | | - Jocelyn Fimbres
- Department of Environmental Health, Boston University School of Public Health
| | - Eric Yang
- Department of Environmental Health, Boston University School of Public Health
| | - Gang Song
- Department of Environmental Health, Boston University School of Public Health
| | | | - Zhongyan Wang
- Department of Environmental Health, Boston University School of Public Health
| | - David H Sherr
- Department of Environmental Health, Boston University School of Public Health.
| |
Collapse
|
2
|
Polonio CM, McHale KA, Sherr DH, Rubenstein D, Quintana FJ. The aryl hydrocarbon receptor: a rehabilitated target for therapeutic immune modulation. Nat Rev Drug Discov 2025:10.1038/s41573-025-01172-x. [PMID: 40247142 DOI: 10.1038/s41573-025-01172-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2025] [Indexed: 04/19/2025]
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor originally identified as the target mediating the toxic effects of environmental pollutants including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and dioxins. For years, AHR activation was actively avoided during drug development. However, the AHR was later identified as an important physiological regulator of the immune response. These findings triggered a paradigm shift that resulted in identification of the AHR as a regulator of both innate and adaptive immunity and outlined a pathway for its modulation by the diet, commensal flora and metabolism in the context of autoimmunity, cancer and infection. Moreover, the AHR was revealed as a candidate target for the therapeutic modulation of the immune response. Indeed, the first AHR-activating drug (tapinarof) was recently approved for the treatment of psoriasis. Clinical trials are underway to evaluate the effects of tapinarof and other AHR-targeting therapeutics in inflammatory diseases, cancer and infections. This Review outlines the molecular mechanism of AHR action, and describes how it regulates the immune response. We also discuss links to disease and AHR-targeting therapeutics that have been tested in past and ongoing clinical trials.
Collapse
Affiliation(s)
- Carolina M Polonio
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - David H Sherr
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | | | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Wu C, Diao M, Yu S, Xi S, Zheng Z, Cao Y, Wang S, Zhu Y, Zhang M, Hu W. Gut Microbial Tryptophan Metabolism Is Involved in Post-Cardiac Arrest Brain Injury via Pyroptosis Modulation. CNS Neurosci Ther 2025; 31:e70381. [PMID: 40260682 PMCID: PMC12012640 DOI: 10.1111/cns.70381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 03/20/2025] [Accepted: 03/29/2025] [Indexed: 04/24/2025] Open
Abstract
AIMS Post-cardiac arrest brain injury (PCABI) is a leading cause of death in cardiac arrest/cardiopulmonary resuscitation (CA/CPR) victims and long-term disability in CA/CPR survivors. Despite previous evidence indicating that the microbiota-gut-brain axis is critically involved in many neurological disorders, no research has hitherto established a connection between the gut microbiota and PCABI through this axis. This study aims to explore the biological roles of microbial tryptophan metabolites in the progression of PCABI. METHODS To achieve this, we pretreated rats with a cocktail of broad-spectrum antibiotics (Abx) to eradicate the gut microbiota before establishing a 7-min asphyxia-CA/CPR model. RESULTS Remarkably, the 24-h survival rate and neurological outcomes improved in Abx/CPR rats. Fecal 16s rDNA sequencing and PICRUSt2 analysis revealed that Abx reshaped the microbial community and elevated the proportion of microbial tryptophan metabolism in rats. Metabolomic profiling suggested that Abx shifted the phenotype of microbial tryptophan metabolism from the indole pathway to the kynurenine pathway, thereby increasing the levels of the neuroprotective metabolite kynurenine in the feces, circulation, and ultimately the brain. Furthermore, the hippocampal expression of aryl hydrocarbon receptor (AhR), an endogenous receptor of kynurenine, was upregulated in Abx/CPR rats. In vitro experiments further demonstrated that the neuroprotective effects of kynurenine are AhR-dependent and that AhR activation could negatively regulate the NLRP3 protein expression. Supporting this, results from qRT-PCR, immunohistochemistry, and immunofluorescence in the rat cerebral cortex exhibited that L-kynurenine inhibited NLRP3-induced pyroptosis. CONCLUSIONS Our study provides a direct clue to the essential participation of the microbiota-gut-brain axis in the progression of PCABI. It demonstrates that kynurenine might attenuate PCABI by inhibiting NLRP3-induced pyroptosis.
Collapse
Affiliation(s)
- Chenghao Wu
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, School of MedicineWestlake UniversityHangzhouChina
- Department of Emergency Medicine, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Anesthesia Center of Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General HospitalHarvard Medical SchoolBostonMAUSA
| | - Mengyuan Diao
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, School of MedicineWestlake UniversityHangzhouChina
| | - Shuhang Yu
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, School of MedicineWestlake UniversityHangzhouChina
- Department of Intensive Care Unit, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Shaosong Xi
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, School of MedicineWestlake UniversityHangzhouChina
| | - Zhipeng Zheng
- Department of Pulmonary and Critical Care Medicine, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Yang Cao
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, School of MedicineWestlake UniversityHangzhouChina
| | - Shuai Wang
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, School of MedicineWestlake UniversityHangzhouChina
| | - Ying Zhu
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, School of MedicineWestlake UniversityHangzhouChina
| | - Mao Zhang
- Department of Emergency Medicine, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Wei Hu
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, School of MedicineWestlake UniversityHangzhouChina
| |
Collapse
|
4
|
Wang Y, Zhang Y, Wang W, Zhang Y, Dong X, Liu Y. Diverse Physiological Roles of Kynurenine Pathway Metabolites: Updated Implications for Health and Disease. Metabolites 2025; 15:210. [PMID: 40137174 PMCID: PMC11943880 DOI: 10.3390/metabo15030210] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/27/2025] Open
Abstract
Tryptophan is an essential amino acid critical for human health. It plays a pivotal role in numerous physiological and biochemical processes through its metabolism. The kynurenine (KYN) pathway serves as the principal metabolic route for tryptophan, producing bioactive metabolites, including KYN, quinolinic acid, and 3-hydroxykynurenine. Numerous studies are actively investigating the relationship between tryptophan metabolism and physiological functions. These studies are highlighting the interactions among metabolites that may exert synergistic or antagonistic effects, such as neuroprotective or neurotoxic, and pro-oxidative or antioxidant activities. Minor disruptions in the homeostasis of these metabolites can result in immune dysregulation, contributing to a spectrum of diseases. These diseases include neurological disorders, mental illnesses, cardiovascular conditions, autoimmune diseases, and chronic kidney disease. Therefore, understanding the physiological roles of the KYN pathway metabolites is essential for elucidating the contribution of tryptophan metabolism to health regulation. The present review emphasizes the physiological roles of KYN pathway metabolites and their mechanisms in disease development, aiming to establish a theoretical basis for leveraging dietary nutrients to enhance human health.
Collapse
Affiliation(s)
| | | | | | | | | | - Yang Liu
- Shandong Food Ferment Industry & Design Institute, QiLu University of Technology (Shandong Academy of Sciences), No. 41, Jiefang Road, Jinan 250013, China
| |
Collapse
|
5
|
Snyder M, Wang Z, Lara B, Fimbres J, Pichardo T, Mazzilli S, Khan MM, Duggineni VK, Monti S, Sherr DH. The aryl hydrocarbon receptor controls IFN-γ-induced immune checkpoints PD-L1 and IDO via the JAK/STAT pathway in lung adenocarcinoma. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkae023. [PMID: 40073102 DOI: 10.1093/jimmun/vkae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/12/2024] [Indexed: 03/14/2025]
Abstract
While immunotherapy has shown some efficacy in lung adenocarcinoma (LUAD) patients, many respond only partially or not at all. One limitation in improving outcomes is the lack of a complete understanding of immune checkpoint regulation. Here, we investigated a possible link between an environmental chemical receptor implicated in lung cancer and immune regulation, the AhR, a known but counterintuitive mediator of immunosuppression (interferon (IFN)-γ), and regulation of two immune checkpoints (PD-L1 and IDO). AhR gene-edited LUAD cell lines, a syngeneic LUAD mouse model, bulk and scRNA sequencing of LUADs and tumor-infiltrating T cells were used to map out a signaling pathway leading from IFN-γ through the AhR to JAK/STAT, PD-L1, IDO, and tumor-mediated immunosuppression. The data demonstrate that: (1) IFN-γ activation of the JAK/STAT pathway leading to PD-L1 and IDO1 up-regulation is mediated by the AhR in murine and human LUAD cells, (2) AhR-driven IDO1 induction results in the production of Kynurenine (Kyn), an AhR ligand, which likely mediates an AhR→IDO1→Kyn→AhR amplification loop, (3) transplantation of AhR-knockout LUAD cells results in long-term tumor immunity in most recipients. (4) The 23% of AhR-knockout tumors that do grow do so at a much slower pace than controls and exhibit higher densities of CD8+ T cells expressing markers of immunocompetence, increased activity, and increased cell-cell communication. The data definitively link the AhR to IFN-γ-induced JAK/STAT pathway and immune checkpoint-mediated immunosuppression and support the targeting of the AhR in the context of LUAD.
Collapse
Affiliation(s)
- Megan Snyder
- Graduate Program in Genetics and Genomics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| | - Zhongyan Wang
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, United States
| | - Brian Lara
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, United States
| | - Jocelyn Fimbres
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, United States
| | - Táchira Pichardo
- Department of Medicine, Section of Computational Biomedicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| | - Sarah Mazzilli
- Department of Medicine, Section of Computational Biomedicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| | - Mohammed Muzamil Khan
- Department of Medicine, Section of Computational Biomedicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| | - Vinay K Duggineni
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, United States
| | - Stefano Monti
- Department of Medicine, Section of Computational Biomedicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| | - David H Sherr
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, United States
| |
Collapse
|
6
|
Paranthaman P, Veerappapillai S. Identification of putative Indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO) dual inhibitors for triple-negative breast cancer therapy. J Biomol Struct Dyn 2025:1-19. [PMID: 39861977 DOI: 10.1080/07391102.2024.2332509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/13/2024] [Indexed: 01/27/2025]
Abstract
Tryptophan catabolism is a central pathway in many cancers, serving to sustain an immunosuppressive microenvironment. The key enzymes involved in this tryptophan metabolism such as indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO) are reported as promising novel targets in cancer immunotherapy. IDO1 and TDO overexpression in TNBC cells promote resistance to cell death, proliferation, invasion, and metastasis. To date, there are no clinically available small-molecule inhibitors that target these enzymes. Navoximod, a reliable dual-specific inhibitor, resulted in poor bioavailability and modest efficacy in clinical trials restricts its utility. This situation urges the development of a potent drug-like candidate against these key enzymes. A total of 1574 natural compounds were proclaimed and subjected to ADME screening. Subsequently, the resultant compounds were attributed to hierarchical molecular docking and MM-GBSA validation. Ultimately, re-scoring with the aid of combined machine learning algorithms resulted six lead compounds. Captivatingly, NPACT00380 exhibited maximum interaction among the lead compounds. In addition, the scaffold analysis also highlighted that the chromanone moiety of the hit compound boasts anti-cancer activity against breast cancer cell lines. The reliability of the results was corroborated through a rigorous 100 ns molecular dynamics simulation using the parameters including RMSD, PCA and FEL analysis. In light of these findings, it is presumed that the proposed compound exhibits significant inhibitory activity. As a result, we speculate that further optimisation of NPACT00380 could be beneficial for the treatment and management of TNBC.
Collapse
Affiliation(s)
- Priyanga Paranthaman
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Shanthi Veerappapillai
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
7
|
Maitre M, Taleb O, Jeltsch-David H, Klein C, Mensah-Nyagan AG. Xanthurenic acid: A role in brain intercellular signaling. J Neurochem 2024; 168:2303-2315. [PMID: 38481090 DOI: 10.1111/jnc.16099] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 10/04/2024]
Abstract
Xanthurenic acid (XA) raises a growing multidisciplinary interest based upon its oxidizing properties, its ability to complex certain metal ions, and its detoxifier capacity of 3-hydroxykynurenine (3-HK), its brain precursor. However, little is still known about the role and mechanisms of action of XA in the central nervous system (CNS). Therefore, many research groups have recently investigated XA and its central functions extensively. The present paper critically reviews and discusses all major data related to XA properties and neuronal activities to contribute to the improvement of the current knowledge on XA's central roles and mechanisms of action. In particular, our data showed the existence of a specific G-protein-coupled receptor (GPCR) for XA localized exclusively in brain neurons exhibiting Ca2+-dependent dendritic release and specific electrophysiological responses. XA properties and central activities suggest a role for this compound in brain intercellular signaling. Indeed, XA stimulates cerebral dopamine (DA) release contrary to its structural analog, kynurenic acid (KYNA). Thus, KYNA/XA ratio could be fundamental in the regulation of brain glutamate and DA release. Cerebral XA may also represent an homeostatic signal between the periphery and several brain regions where XA accumulates easily after peripheral administration. Therefore, XA status in certain psychoses or neurodegenerative diseases seems to be reinforced by its brain-specific properties in balance with its formation and peripheral inputs.
Collapse
Affiliation(s)
- Michel Maitre
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment CRBS de la Faculté de Médecine, Strasbourg, France
| | - Omar Taleb
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment CRBS de la Faculté de Médecine, Strasbourg, France
| | - Hélène Jeltsch-David
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment CRBS de la Faculté de Médecine, Strasbourg, France
- Biotechnologie et signalisation cellulaire, UMR 7242 CNRS/Université de Strasbourg, Illkirch Cedex, France
| | - Christian Klein
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment CRBS de la Faculté de Médecine, Strasbourg, France
| | - Ayikoe-Guy Mensah-Nyagan
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment CRBS de la Faculté de Médecine, Strasbourg, France
| |
Collapse
|
8
|
Stone TW, Darlington LG, Badawy AAB, Williams RO. The Complex World of Kynurenic Acid: Reflections on Biological Issues and Therapeutic Strategy. Int J Mol Sci 2024; 25:9040. [PMID: 39201726 PMCID: PMC11354734 DOI: 10.3390/ijms25169040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
It has been unequivocally established that kynurenic acid has a number of actions in a variety of cells and tissues, raising, in principle, the possibility of targeting its generation, metabolism or sites of action to manipulate those effects to a beneficial therapeutic end. However, many basic aspects of the biology of kynurenic acid remain unclear, potentially leading to some confusion and misinterpretations of data. They include questions of the source, generation, targets, enzyme expression, endogenous concentrations and sites of action. This essay is intended to raise and discuss many of these aspects as a source of reference for more balanced discussion. Those issues are followed by examples of situations in which modulating and correcting kynurenic acid production or activity could bring significant therapeutic benefit, including neurological and psychiatric conditions, inflammatory diseases and cell protection. More information is required to obtain a clear overall view of the pharmacological environment relevant to kynurenic acid, especially with respect to the active concentrations of kynurenine metabolites in vivo and changed levels in disease. The data and ideas presented here should permit a greater confidence in appreciating the sites of action and interaction of kynurenic acid under different local conditions and pathologies, enhancing our understanding of kynurenic acid itself and the many clinical conditions in which manipulating its pharmacology could be of clinical value.
Collapse
Affiliation(s)
- Trevor W. Stone
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK;
| | - L. Gail Darlington
- Worthing Hospital, University Hospitals Sussex NHS Foundation Trust, Worthing BN11 2DH, UK
| | - Abdulla A.-B. Badawy
- Formerly School of Health Sciences, Cardiff Metropolitan University, Cardiff CF5 2YB, UK
| | - Richard O. Williams
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK;
| |
Collapse
|
9
|
Bahman F, Choudhry K, Al-Rashed F, Al-Mulla F, Sindhu S, Ahmad R. Aryl hydrocarbon receptor: current perspectives on key signaling partners and immunoregulatory role in inflammatory diseases. Front Immunol 2024; 15:1421346. [PMID: 39211042 PMCID: PMC11358079 DOI: 10.3389/fimmu.2024.1421346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a versatile environmental sensor and transcription factor found throughout the body, responding to a wide range of small molecules originating from the environment, our diets, host microbiomes, and internal metabolic processes. Increasing evidence highlights AhR's role as a critical regulator of numerous biological functions, such as cellular differentiation, immune response, metabolism, and even tumor formation. Typically located in the cytoplasm, AhR moves to the nucleus upon activation by an agonist where it partners with either the aryl hydrocarbon receptor nuclear translocator (ARNT) or hypoxia-inducible factor 1β (HIF-1β). This complex then interacts with xenobiotic response elements (XREs) to control the expression of key genes. AhR is notably present in various crucial immune cells, and recent research underscores its significant impact on both innate and adaptive immunity. This review delves into the latest insights on AhR's structure, activating ligands, and its multifaceted roles. We explore the sophisticated molecular pathways through which AhR influences immune and lymphoid cells, emphasizing its emerging importance in managing inflammatory diseases. Furthermore, we discuss the exciting potential of developing targeted therapies that modulate AhR activity, opening new avenues for medical intervention in immune-related conditions.
Collapse
Affiliation(s)
- Fatemah Bahman
- Department of Immunology & Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Khubaib Choudhry
- Department of Human Biology, University of Toronto, Toronto, ON, Canada
| | - Fatema Al-Rashed
- Department of Immunology & Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Fahd Al-Mulla
- Department of Translational Research, Dasman Diabetes Institute, Dasman, Kuwait
| | - Sardar Sindhu
- Department of Immunology & Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
- Animal & Imaging Core Facilities, Dasman Diabetes Institute, Dasman, Kuwait
| | - Rasheed Ahmad
- Department of Immunology & Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
| |
Collapse
|
10
|
Grobben Y. Targeting amino acid-metabolizing enzymes for cancer immunotherapy. Front Immunol 2024; 15:1440269. [PMID: 39211039 PMCID: PMC11359565 DOI: 10.3389/fimmu.2024.1440269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Despite the immune system's role in the detection and eradication of abnormal cells, cancer cells often evade elimination by exploitation of various immune escape mechanisms. Among these mechanisms is the ability of cancer cells to upregulate amino acid-metabolizing enzymes, or to induce these enzymes in tumor-infiltrating immunosuppressive cells. Amino acids are fundamental cellular nutrients required for a variety of physiological processes, and their inadequacy can severely impact immune cell function. Amino acid-derived metabolites can additionally dampen the anti-tumor immune response by means of their immunosuppressive activities, whilst some can also promote tumor growth directly. Based on their evident role in tumor immune escape, the amino acid-metabolizing enzymes glutaminase 1 (GLS1), arginase 1 (ARG1), inducible nitric oxide synthase (iNOS), indoleamine 2,3-dioxygenase 1 (IDO1), tryptophan 2,3-dioxygenase (TDO) and interleukin 4 induced 1 (IL4I1) each serve as a promising target for immunotherapeutic intervention. This review summarizes and discusses the involvement of these enzymes in cancer, their effect on the anti-tumor immune response and the recent progress made in the preclinical and clinical evaluation of inhibitors targeting these enzymes.
Collapse
|
11
|
Snyder M, Wang Z, Lara B, Fimbres J, Pichardo T, Mazzilli S, Khan MM, Duggineni VK, Monti S, Sherr DH. The Aryl Hydrocarbon Receptor Controls IFNγ-Induced Immune Checkpoints PD-L1 and IDO via the JAK/STAT Pathway in Lung Adenocarcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.12.607602. [PMID: 39185148 PMCID: PMC11343147 DOI: 10.1101/2024.08.12.607602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
While immunotherapy has shown efficacy in lung adenocarcinoma (LUAD) patients, many respond only partially or not at all. One limitation in improving outcomes is the lack of a complete understanding of immune checkpoint regulation. Here, we investigated a possible link between an environmental chemical receptor implicated in lung cancer and immune regulation, (the aryl hydrocarbon receptor/AhR), a known but counterintuitive mediator of immunosuppression (IFNγ), and regulation of two immune checkpoints (PD-L1 and IDO). AhR gene-edited LUAD cell lines, a syngeneic LUAD mouse model, bulk- and scRNA sequencing of LUADs and tumor-infiltrating leukocytes were used to map out a signaling pathway leading from IFNγ through the AhR to JAK/STAT, PD-L1, IDO, and tumor-mediated immunosuppression. The data demonstrate that: 1) IFNγ activation of the JAK/STAT pathway leading to PD-L1 and IDO1 upregulation is mediated by the AhR in murine and human LUAD cells, 2) AhR-driven IDO1 induction results in the production of Kynurenine (Kyn), an AhR ligand, which likely mediates an AhR→IDO1→Kyn→AhR amplification loop, 3) transplantation of AhR-knockout LUAD cells results in long-term tumor immunity in most recipients. 4) The 23% of AhR-knockout tumors that do grow do so at a much slower pace than controls and exhibit higher densities of CD8+ T cells expressing markers of immunocompetence, increased activity, and increased cell-cell communication. The data definitively link the AhR to IFNγ-induced JAK/STAT pathway and immune checkpoint-mediated immunosuppression and support the targeting of the AhR in the context of LUAD.
Collapse
Affiliation(s)
- Megan Snyder
- Graduate Program in Genetics and Genomics, Boston University School of Medicine
| | - Zhongyan Wang
- Department of Environmental Health, Boston University School of Public Health
| | - Brian Lara
- Department of Environmental Health, Boston University School of Public Health
| | - Jocelyn Fimbres
- Department of Environmental Health, Boston University School of Public Health
| | | | | | - Mohammed Muzamil Khan
- Section of Computational Biomedicine, Boston University Chobanian & Avedisian School of Medicine
| | - Vinay K. Duggineni
- Department of Environmental Health, Boston University School of Public Health
| | - Stefano Monti
- Section of Computational Biomedicine, Boston University Chobanian & Avedisian School of Medicine
| | - David H. Sherr
- Department of Environmental Health, Boston University School of Public Health
| |
Collapse
|
12
|
Zhang J, Liu Y, Zhi X, Xu L, Tao J, Cui D, Liu TF. Tryptophan catabolism via the kynurenine pathway regulates infection and inflammation: from mechanisms to biomarkers and therapies. Inflamm Res 2024; 73:979-996. [PMID: 38592457 DOI: 10.1007/s00011-024-01878-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND L-Tryptophan (L-Trp), an essential amino acid, is the only amino acid whose level is regulated specifically by immune signals. Most proportions of Trp are catabolized via the kynurenine (Kyn) pathway (KP) which has evolved to align the food availability and environmental stimulation with the host pathophysiology and behavior. Especially, the KP plays an indispensable role in balancing the immune activation and tolerance in response to pathogens. SCOPE OF REVIEW In this review, we elucidate the underlying immunological regulatory network of Trp and its KP-dependent catabolites in the pathophysiological conditions by participating in multiple signaling pathways. Furthermore, the KP-based regulatory roles, biomarkers, and therapeutic strategies in pathologically immune disorders are summarized covering from acute to chronic infection and inflammation. MAJOR CONCLUSIONS The immunosuppressive effects dominate the functions of KP induced-Trp depletion and KP-produced metabolites during infection and inflammation. However, the extending minor branches from the KP are not confined to the immune tolerance, instead they go forward to various functions according to the specific condition. Nevertheless, persistent efforts should be made before the clinical use of KP-based strategies to monitor and cure infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Jingpu Zhang
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Highway, Shanghai, 201508, People's Republic of China.
| | - Yanlei Liu
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Xiao Zhi
- Shanghai Institute of Virology, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai, 200025, People's Republic of China
| | - Li Xu
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Highway, Shanghai, 201508, People's Republic of China
| | - Jie Tao
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Highway, Shanghai, 201508, People's Republic of China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Tie Fu Liu
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Highway, Shanghai, 201508, People's Republic of China.
| |
Collapse
|
13
|
Chaudhry KA, Bianchi-Smiraglia A. The aryl hydrocarbon receptor as a tumor modulator: mechanisms to therapy. Front Oncol 2024; 14:1375905. [PMID: 38807762 PMCID: PMC11130384 DOI: 10.3389/fonc.2024.1375905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/03/2024] [Indexed: 05/30/2024] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that is widely recognized to play important, but complex, modulatory roles in a variety of tumor types. In this review, we comprehensively summarize the increasingly controversial role of AhR as a tumor regulator and the mechanisms by which it alters tumor progression based on the cancer cell type. Finally, we discuss new and emerging strategies to therapeutically modulate AhR, focusing on novel agents that hold promise in current human clinical trials as well as existing FDA-approved drugs that could potentially be repurposed for cancer therapy.
Collapse
Affiliation(s)
| | - Anna Bianchi-Smiraglia
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, NY, United States
| |
Collapse
|
14
|
Ding X, Jin Y, Shi X, Wang Y, Jin Z, Yin L, Gao S, Lei Y, Yang J. TDO2 promotes bladder cancer progression via AhR-mediated SPARC/FILIP1L signaling. Biochem Pharmacol 2024; 223:116172. [PMID: 38552852 DOI: 10.1016/j.bcp.2024.116172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/08/2024]
Abstract
The enzyme tryptophan 2,3-dioxygenase (TDO2) has been implicated in the dysregulation across a variety of human cancers. Despite this association, the implications of TDO2 in the progression of bladder cancer have eluded thorough understanding. In this study, we demonstrate that TDO2 expression is notably elevated in bladder cancer tissues and serves as an unfavorable prognostic factor for overall survival. Through a series of biological functional assays, we have determined that TDO2 essentially enhances cell proliferation, metastatic potential, and imparts a decreased sensitivity to the chemotherapeutic agent cisplatin. Our mechanistic investigations reveal that TDO2 augments aryl hydrocarbon receptor (AhR) signaling pathways and subsequently upregulates the expression of SPARC and FILIP1L. Importantly, we have identified a positive correlation between TDO2 levels and the basal/squamous subtype of bladder cancer, and we provide evidence to suggest that TDO2 expression is modulated by the tumor suppressors RB1 and TP53. From a therapeutic perspective, we demonstrate that the targeted inhibition of TDO2 with the molecular inhibitor 680C91 markedly attenuates tumor growth and metastasis while concurrently enhancing the efficacy of cisplatin. These findings open a new therapeutic avenue for the management of bladder cancer.
Collapse
Affiliation(s)
- Xiaoju Ding
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yunjie Jin
- Department of Oncology, Shanghai Putuo People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaokai Shi
- Department of Urology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
| | - Yidi Wang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Department of Oncology, Shanghai Putuo People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhibo Jin
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lei Yin
- Department of Oncology, Shanghai Putuo People's Hospital, School of Medicine, Tongji University, Shanghai, China; Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shenglin Gao
- Department of Urology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China; Department of Urology, Gonghe County Hospital of Traditional Chinese Medicine, Qinghai, China; Changzhou Medical Center, Nanjing Medical University, Changzhou, China.
| | - Yibo Lei
- Department of Otology, Otolaryngology Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Jinjian Yang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
15
|
Fujiwara Y, Kato S, Nishizaki D, Miyashita H, Lee S, Nesline MK, Conroy JM, DePietro P, Pabla S, Lippman SM, Kurzrock R. High indoleamine 2,3-dioxygenase transcript levels predict better outcome after front-line cancer immunotherapy. iScience 2024; 27:109632. [PMID: 38632994 PMCID: PMC11022045 DOI: 10.1016/j.isci.2024.109632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/07/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024] Open
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1), which catabolizes tryptophan, is a potential target to unlock the immunosuppressive tumor microenvironment. Correlations between IDO1 and immune checkpoint inhibitor (ICI) efficacy remain unclear. Herein, we investigated IDO1 transcript expression across cancers and clinical outcome correlations. High IDO1 transcripts were more frequent in uterine (54.2%) and ovarian cancer (37.2%) but varied between and within malignancies. High IDO1 RNA expression was associated with high expression of PD-L1 (immune checkpoint ligand), CXCL10 (an effector T cell recruitment chemokine), and STAT1 (a component of the JAK-STAT pathway) (all multivariable p < 0.05). PIK3CA and CTCF alterations were more frequent in the high IDO1 group. High IDO1 expression was an independent predictor of progression-free survival (adjusted HR = 0.44, 95% CI 0.20-0.99, p = 0.049) and overall survival (adjusted HR = 0.31, 95% CI 0.11-0.87, p = 0.026) after front-line ICIs. IDO1 expression warrants further exploration as a predictive biomarker for immunotherapy. Moreover, co-expressed immunoregulatory molecules merit exploration for co-targeting.
Collapse
Affiliation(s)
- Yu Fujiwara
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Mount Sinai Beth Israel, New York, NY 10003, USA
| | - Shumei Kato
- Center for Personalized Cancer Therapy, University of California, San Diego, Moores Cancer Center, La Jolla, CA 92093, USA
| | - Daisuke Nishizaki
- Center for Personalized Cancer Therapy, University of California, San Diego, Moores Cancer Center, La Jolla, CA 92093, USA
| | - Hirotaka Miyashita
- Division of Hematology and Oncology, Dartmouth Cancer Center. One Medical Center Drive, Lebanon, NH 03766, USA
| | - Suzanna Lee
- Center for Personalized Cancer Therapy, University of California, San Diego, Moores Cancer Center, La Jolla, CA 92093, USA
| | | | | | | | | | - Scott M. Lippman
- Center for Personalized Cancer Therapy, University of California, San Diego, Moores Cancer Center, La Jolla, CA 92093, USA
| | - Razelle Kurzrock
- MCW Cancer Center and Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
16
|
Martin JC, da Silva Fernandes T, Chaudhry KA, Oshi M, Abrams SI, Takabe K, Rosario SR, Bianchi-Smiraglia A. Aryl hydrocarbon receptor suppresses STING-mediated type I IFN expression in triple-negative breast cancer. Sci Rep 2024; 14:5731. [PMID: 38459088 PMCID: PMC10923803 DOI: 10.1038/s41598-024-54732-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/15/2024] [Indexed: 03/10/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is one of the most aggressive types of cancer. Despite decades of intense investigation, treatment options remain limited, and rapid recurrence with distant metastases remains a significant challenge. Cancer cell-intrinsic production of cytokines such as type I interferons (IFN-I) is a known potent modulator of response to therapy in many cancers, including TNBC, and can influence therapeutic outcome. Here, we report that, in TNBC systems, the aryl hydrocarbon receptor (AhR) suppresses IFN-I expression via inhibition of STImulator of Interferon Genes (STING), a key mediator of interferon production. Intratumoral STING activity is essential in mediating the efficacy of PARP inhibitors (PARPi) which are used in the treatment of cancers harboring BRCA1 deficiency. We find that, in TNBC cells, PARPi treatment activates AhR in a BRCA1 deficiency-dependent manner, thus suggesting the presence of a negative feedback loop aimed at modulating PARPi efficacy. Importantly, our results indicate that the combined inhibition of PARP and AhR is superior in elevating IFN-I expression as compared to PARPi-alone. Thus, AhR inhibition may allow for enhanced IFN-I production upon PARPi in BRCA1-deficient breast cancers, most of which are of TNBC origin, and may represent a therapeutically viable strategy to enhance PARPi efficacy.
Collapse
Affiliation(s)
- Jeffrey C Martin
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | | | - Kanita A Chaudhry
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Department of Breast Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Masanori Oshi
- Department of Breast Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Scott I Abrams
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Kazuaki Takabe
- Department of Breast Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Spencer R Rosario
- Department of Breast Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Anna Bianchi-Smiraglia
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
- Department of Breast Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| |
Collapse
|
17
|
Li Z, Li S, Xing Z, Gu Q, Du R, Jiang J, Yuan X, Zhang X, Chen X, Xue N, Zhang P, Jin J, Yang Y. Discovery of Natural Ah Receptor Antagonists from Salvia miltiorrhiza Bunge and Synthesis of Analogs for Tumor Immunotherapy. J Med Chem 2024; 67:1243-1261. [PMID: 38176026 DOI: 10.1021/acs.jmedchem.3c01740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
IDO/TDO/Kyn/AhR signaling plays a crucial role in regulating innate and adaptive immunity, and targeting Ah receptor (AhR) inhibition can potentially redirect immune cells toward an antitumoral phenotype. Therefore, AhR is an attractive drug target for novel small molecule cancer immunotherapies. In this study, natural products tanshinolic A-D (1-4), the first adducts composed of ortho-naphthoquinone-type tanshinone and phenolic acid featuring a unique 1,4-benzodioxan hemiacetal structure, were isolated and characterized from the roots of Salvia miltiorrhiza Bunge. Luciferase reporter gene assay revealed that these adducts exhibited significant AhR inhibitory activity. A linear strategy was developed to construct a cis-3,4-disubstituted 1,4-benzodioxan hemiacetal structure. Encouragingly, in both in vitro and in vivo experiments, (±)-13e demonstrated the ability to inhibit tumor cell proliferation, promote INF-γ secretion in CD8+ T cells, and inhibit PD-1/PD-L1 signal transduction, which could exert tumor inhibition properties by inhibiting AhR activity, positioning it as a promising candidate for tumor immunotherapy.
Collapse
Affiliation(s)
- Zhenyuan Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shuying Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zeyu Xing
- Department of Breast Cancer, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Quanchang Gu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Rongrong Du
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jianshuang Jiang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiang Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xu Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaoguang Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Nina Xue
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Peicheng Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jing Jin
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yanan Yang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
18
|
Chatterjee P, Banerjee S. Unveiling the mechanistic role of the Aryl hydrocarbon receptor in environmentally induced Breast cancer. Biochem Pharmacol 2023; 218:115866. [PMID: 37863327 DOI: 10.1016/j.bcp.2023.115866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/25/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is a crucial cytosolic evolutionary conserved ligand-activated transcription factor and a pleiotropic signal transducer. The biosensor activity of the AhR is attributed to the promiscuity of its ligand-binding domain. Evidence suggests exposure to environmental toxins such as polycyclic aromatic hydrocarbons, polychlorinated biphenyls and halogenated aromatic hydrocarbons activates the AhR signaling pathway. The constitutive activation of the receptor signaling system leads to multiple health adversities and enhances the risk of several cancers, including breast cancer (BC). This review evaluates several mechanisms that integrate the tumor-inducing property of such environmental contaminants with the AhR pathway assisting in BC tumorigenesis, progress and metastasis. Intriguingly, immune evasion is identified as a prominent hallmark in BC. Several emerging pieces of evidence have identified AhR as a potent immunosuppressive effector in several cancers. Through AhR signaling pathways, some tumors can avoid immune detection. Thus the relevance of AhR in the immunomodulation of breast tumors and its putative mode of action in the breast tumor microenvironment are discussed in this review. Additionally, the work also explores BC stemness and its associated inflammation in response to several environmental cues. The review elucidates the context-dependent ambiguous behavior of AhR either as an oncogene or a tumor suppressor with respect to its ligand. Conclusively, this holistic piece of literature attempts to potentiate AhR as a promising pharmacological target in BC and updates on the therapeutic manipulation of its various exogenous and endogenous ligands.
Collapse
Affiliation(s)
- Prarthana Chatterjee
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore- 632014, Tamil Nadu, India
| | - Satarupa Banerjee
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore- 632014, Tamil Nadu, India.
| |
Collapse
|
19
|
Hou Y, Li J, Ying S. Tryptophan Metabolism and Gut Microbiota: A Novel Regulatory Axis Integrating the Microbiome, Immunity, and Cancer. Metabolites 2023; 13:1166. [PMID: 37999261 PMCID: PMC10673612 DOI: 10.3390/metabo13111166] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/16/2023] [Accepted: 11/18/2023] [Indexed: 11/25/2023] Open
Abstract
Tryptophan metabolism and gut microbiota form an integrated regulatory axis that impacts immunity, metabolism, and cancer. This review consolidated current knowledge on the bidirectional interactions between microbial tryptophan processing and the host. We focused on how the gut microbiome controls tryptophan breakdown via the indole, kynurenine, and serotonin pathways. Dysbiosis of the gut microbiota induces disruptions in tryptophan catabolism which contribute to disorders like inflammatory conditions, neuropsychiatric diseases, metabolic syndromes, and cancer. These disruptions affect immune homeostasis, neurotransmission, and gut-brain communication. Elucidating the mechanisms of microbial tryptophan modulation could enable novel therapeutic approaches like psychobiotics and microbiome-targeted dietary interventions. Overall, further research on the microbiota-tryptophan axis has the potential to revolutionize personalized diagnostics and treatments for improving human health.
Collapse
Affiliation(s)
- Yingjian Hou
- Target Discovery Center, China Pharmaceutical University, Nanjing 211198, China;
| | - Jing Li
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha 410000, China
| | - Shuhuan Ying
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
- Shanghai Bocimed Pharmaceutical Research Co., Ltd., Shanghai 201203, China
| |
Collapse
|
20
|
Shen K, Chen B, Yang L, Gao W. KYNU as a Biomarker of Tumor-Associated Macrophages and Correlates with Immunosuppressive Microenvironment and Poor Prognosis in Gastric Cancer. Int J Genomics 2023; 2023:4662480. [PMID: 37954130 PMCID: PMC10635752 DOI: 10.1155/2023/4662480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/14/2023] [Accepted: 10/12/2023] [Indexed: 11/14/2023] Open
Abstract
Background Kynureninase (KYNU) is a potential prognostic marker for various tumor types. However, no reports on the biological effects and prognostic value of KYNU in gastric cancer (GC) exist. Methods GC-associated single-cell RNA sequencing and bulk RNA sequencing (bulk-seq) data were obtained from the Gene Expression Omnibus and The Cancer Genome Atlas databases, respectively. The differential expression of KYNU between GC and normal gastric tissues was first analyzed based on the bulk-seq data, followed by an exploration of the relationship between KYNU and various clinicopathological features. The Kaplan-Meier survival and Cox regression analyses were performed to determine the prognostic value of KYNU. The relationship between KYNU expression and immune cell infiltration and immune checkpoints was also explored. The biological function of KYNU was further examined at the single-cell level, and in vitro experiments were performed to examine the effect of KYNU on GC cell proliferation and invasion. Results KYNU expression was significantly elevated in GC samples. Clinical features and survival analysis indicated that high KYNU expression was associated with poor clinical phenotypes and prognosis, whereas Cox analysis showed that KYNU was an independent risk factor for patients with GC. Notably, high expression of KYNU induced a poor immune microenvironment and contributed to the upregulation of immune checkpoints. KYNU-overexpressing macrophages drove GC progression through unique ligand-receptor pairs and transcription factors and were associated with adverse clinical phenotypes in GC. KYNU was overexpressed in GC cells in vitro, and KYNU knockout significantly inhibited GC cell proliferation and invasion. Conclusion High KYNU expression promotes an adverse immune microenvironment and low survival rates in GC. KYNU and KYNU-related macrophages may serve as novel molecular targets in the treatment of GC.
Collapse
Affiliation(s)
- Kaiyu Shen
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Binyu Chen
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Liu Yang
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Wencang Gao
- Department of Oncology, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou 310005, China
| |
Collapse
|
21
|
Pacheco JHL, Elizondo G. Interplay between Estrogen, Kynurenine, and AHR Pathways: An immunosuppressive axis with therapeutic potential for breast cancer treatment. Biochem Pharmacol 2023; 217:115804. [PMID: 37716620 DOI: 10.1016/j.bcp.2023.115804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
Breast cancer is one of the most common malignancies among women worldwide. Estrogen exposure via endogenous and exogenous sources during a lifetime, together with environmental exposure to estrogenic compounds, represent the most significant risk factor for breast cancer development. As breast tumors establish, multiple pathways are deregulated. Among them is the aryl hydrocarbon receptor (AHR) signaling pathway. AHR, a ligand-activated transcription factor associated with the metabolism of polycyclic aromatic hydrocarbons and estrogens, is overexpressed in breast cancer. Furthermore, AHR and estrogen receptor (ER) cross-talk pathways have been observed. Additionally, the Tryptophan (Trp) catabolizing enzymes indolamine-2,3-dioxygenase (IDO) and tryptophan-2,3-dioxygenase (TDO) are overexpressed in breast cancer. IDO/TDO catalyzes the formation of Kynurenine (KYN) and other tryptophan-derived metabolites, which are ligands of AHR. Once KYN activates AHR, it stimulates the expression of the IDO enzyme, increases the level of KYN, and activates non-canonical pathways to control inflammation and immunosuppression in breast tumors. The interplay between E2, AHR, and IDO/TDO/KYN pathways and their impact on the immune system represents an immunosuppressive axis on breast cancer. The potential modulation of the immunosuppressive E2-AHR-IDO/TDO/KYN axis has aroused great expectations in oncotherapy. The present article will review the mechanisms implicated in generating the immunosuppressive axis E2-AHR-IDO/TDO/KYN in breast cancer and the current state of knowledge as a potential therapeutic target.
Collapse
Affiliation(s)
| | - Guillermo Elizondo
- Departamento de Biología Celular, CINVESTAV-IPN, Av. IPN 2508, C.P. 07360 Ciudad de México, México.
| |
Collapse
|
22
|
Piwarski SA, Salisbury TB. The effects of environmental aryl hydrocarbon receptor ligands on signaling and cell metabolism in cancer. Biochem Pharmacol 2023; 216:115771. [PMID: 37652105 DOI: 10.1016/j.bcp.2023.115771] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Dioxin and dioxin-like compounds are chlorinated organic pollutants formed during the manufacturing of other chemicals. Dioxins are ligands of the aryl hydrocarbon receptor (AHR), that induce AHR-mediated biochemical and toxic responses and are persistent in the environment. 2,3,7,8- tetrachlorodibenzo para dioxin (TCDD) is the prototypical AHR ligand and its effects represent dioxins. TCDD induces toxicity, immunosuppression and is a suspected tumor promoter. The role of TCDD in cancer however is debated and context-dependent. Environmental particulate matter, polycyclic aromatic hydrocarbons, perfluorooctane sulfonamide, endogenous AHR ligands, and cAMP signaling activate AHR through TCDD-independent pathways. The effect of activated AHR in cancer is context-dependent. The ability of FDA-approved drugs to modulate AHR activity has sparked interest in their repurposing for cancer therapy. TCDD by interfering with endogenous pathways, and overstimulating other endogenous pathways influences all stages of cancer. Herein we review signaling mechanisms that activate AHR and mechanisms by which activated AHR modulates signaling in cancer including affected metabolic pathways.
Collapse
Affiliation(s)
- Sean A Piwarski
- Duke Cancer Institute, Department of GU Oncology, Duke University Medical Center, 905 South Lasalle Street, Durham, NC 27710, USA.
| | - Travis B Salisbury
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV 25755, USA.
| |
Collapse
|
23
|
Azimnasab-Sorkhabi P, Soltani-Asl M, Yoshinaga TT, Massoco CDO, Kfoury Junior JR. IDO blockade negatively regulates the CTLA-4 signaling in breast cancer cells. Immunol Res 2023; 71:679-686. [PMID: 37014514 DOI: 10.1007/s12026-023-09378-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/30/2023] [Indexed: 04/05/2023]
Abstract
Cancer is classified into metabolic and/or genetic disorders; notably, the tryptophan catabolism pathway is vital in different cancer types. Here, we focused on the interaction and molecular connection between the cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) receptor and indoleamine-2,3-dioxygenase (IDO) enzyme. To test the impact of the selected immunotherapies on breast cancer cell migration and cell survival, we used in vitro assays. Also, we test the impact of anti-CTLA-4 antibody on the IDO-positive cells. The results of cell migration and clonogenic assays showed that anti-CTLA-4 antibody reduces cancer cell migration and clonogenic abilities of murine breast cancer cells. In addition, the result of flow cytometry showed that the anti-CTLA-4 antibody did not change the percentage of IDO-positive cancer cells. Notably, administrating an IDO blocker, 1-Methyl-DL-tryptophan (1MT), reduces the efficiency of the antiCTLA-4 antibody. The enzymatic blocking of the IDO reduces the efficiency of the anti-CTLA-4 antibody on cell migration and clonogenic abilities suggesting that there is an inhibitory interaction at the molecular level between functions of CTLA-4 and IDO. It is unclear via which mechanism(s) IDO interacts with CTLA-4 signaling and also why blocking IDO makes disruption in CTLA-4 signaling in cancer cells. Indeed, evaluating the role of IDO in CTLA-4 signaling in cancer cells may assist in clarifying a poor response to CTLA-4 immunotherapies by some patients. Hence, further investigation of the molecular interaction between CTLA-4 and IDO might help to improve the efficiency of CTLA-4 immunotherapy.
Collapse
Affiliation(s)
- Parviz Azimnasab-Sorkhabi
- Department of Surgery, School of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| | - Maryam Soltani-Asl
- Department of Surgery, School of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Túlio Teruo Yoshinaga
- Department of Surgery, School of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Cristina de Oliveira Massoco
- Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Jose Roberto Kfoury Junior
- Department of Surgery, School of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
24
|
Miret NV, Pontillo CA, Buján S, Chiappini FA, Randi AS. Mechanisms of breast cancer progression induced by environment-polluting aryl hydrocarbon receptor agonists. Biochem Pharmacol 2023; 216:115773. [PMID: 37659737 DOI: 10.1016/j.bcp.2023.115773] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Breast cancer is the most common invasive malignancy among women worldwide and constitutes a complex and heterogeneous disease. Interest has recently grown in the role of the aryl hydrocarbon receptor (AhR) in breast cancer and the contribution of environment-polluting AhR agonists. Here, we present a literature review addressing AhR ligands, including pesticides hexachlorobenzene and chlorpyrifos, polycyclic aromatic hydrocarbons, polychlorinated dibenzo-p-dioxins and dibenzofurans, polychlorinated biphenyls, parabens, and phthalates. The objectives of this review are a) to summarize recent original experimental, preclinical, and clinical studies on the biological mechanisms of AhR agonists which interfere with the regulation of breast endocrine functions, and b) to examine the biological effects of AhR ligands and their impact on breast cancer development and progression. We discuss biological mechanisms of action in cell viability, cell cycle, proliferation, epigenetic changes, epithelial to mesenchymal transition, and cell migration and invasion. In addition, we examine the effects of AhR ligands on angiogenic processes, metastasis, chemoresistance, and stem cell renewal. We conclude that exposure to AhR agonists stimulates pathways that promote breast cancer development and may contribute to tumor progression. Given the massive use of industrial and agricultural chemicals, ongoing evaluation of their effects in laboratory assays and preclinical studies in breast cancer at environmentally relevant doses is deemed essential. Likewise, awareness should be raised in the population regarding the most harmful toxicants to eradicate or minimize their use.
Collapse
Affiliation(s)
- Noelia V Miret
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, Piso 5, (CP 1121), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Físico-Matemática, Laboratorio de Radioisótopos, Junín 954, 1er subsuelo (CP1113), Buenos Aires, Argentina.
| | - Carolina A Pontillo
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, Piso 5, (CP 1121), Buenos Aires, Argentina
| | - Sol Buján
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, Piso 5, (CP 1121), Buenos Aires, Argentina
| | - Florencia A Chiappini
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, Piso 5, (CP 1121), Buenos Aires, Argentina
| | - Andrea S Randi
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, Piso 5, (CP 1121), Buenos Aires, Argentina.
| |
Collapse
|
25
|
Diedrich JD, Gonzalez-Pons R, Medeiros HCD, Ensink E, Liby KT, Wellberg EA, Lunt SY, Bernard JJ. Adipocyte-derived kynurenine stimulates malignant transformation of mammary epithelial cells through the aryl hydrocarbon receptor. Biochem Pharmacol 2023; 216:115763. [PMID: 37625554 PMCID: PMC10587895 DOI: 10.1016/j.bcp.2023.115763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023]
Abstract
Anti-hormone therapies are not efficacious for reducing the incidence of triple negative breast cancer (TNBC), which lacks both estrogen and progesterone receptors. While the etiology of this aggressive breast cancer subtype is unclear, visceral obesity is a strong risk factor for both pre- and post-menopausal cases. The mechanism by which excessive deposition of visceral adipose tissue (VAT) promotes the malignant transformation of hormone receptor-negative mammary epithelial cells is currently unknown. We developed a novel in vitro system of malignant transformation in which non-tumorigenic human breast epithelial cells (MCF-10A) grow in soft agar when cultured with factors released from VAT. These cells, which acquire the capacity for 3D growth, show elevated aryl hydrocarbon receptor (AhR) protein and AhR target genes, suggesting that AhR activity may drive malignant transformation by VAT. AhR is a ligand-dependent transcription factor that generates biological responses to exogenous carcinogens and to the endogenous tryptophan pathway metabolite, kynurenine. The serum kynurenine to tryptophan ratio has been shown to be elevated in patients with obesity. Herein, we demonstrate that AhR inhibitors or knockdown of AhR in MCF-10A cells prevents VAT-induced malignant transformation. Specifically, VAT-induced transformation is inhibited by Kyn-101, an inhibitor for the endogenous ligand binding site of AhR. Mass spectrometry analysis demonstrates that adipocytes metabolize tryptophan and release kynurenine, which is taken up by MCF-10A cells and activates the AhR to induce CYP1B1 and promote malignant transformation. This novel hormone receptor-independent mechanism of malignant transformation suggests targeting AhR for TNBC prevention in the context of visceral adiposity.
Collapse
Affiliation(s)
- Jonathan D Diedrich
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824 USA
| | - Romina Gonzalez-Pons
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824 USA
| | - Hyllana C D Medeiros
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 USA
| | - Elliot Ensink
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 USA
| | - Karen T Liby
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824 USA
| | - Elizabeth A Wellberg
- Department of Pathology, University of Oklahoma Health Sciences Center, Stephenson Cancer Center, Harold Hamm Diabetes Center, Oklahoma City, OK, USA
| | - Sophia Y Lunt
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 USA; Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824 USA
| | - Jamie J Bernard
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824 USA; Department of Medicine, Michigan State University, East Lansing, MI 48824 USA.
| |
Collapse
|
26
|
Xue C, Li G, Zheng Q, Gu X, Shi Q, Su Y, Chu Q, Yuan X, Bao Z, Lu J, Li L. Tryptophan metabolism in health and disease. Cell Metab 2023; 35:1304-1326. [PMID: 37352864 DOI: 10.1016/j.cmet.2023.06.004] [Citation(s) in RCA: 296] [Impact Index Per Article: 148.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/10/2023] [Accepted: 06/05/2023] [Indexed: 06/25/2023]
Abstract
Tryptophan (Trp) metabolism primarily involves the kynurenine, 5-hydroxytryptamine, and indole pathways. A variety of bioactive compounds produced via Trp metabolism can regulate various physiological functions, including inflammation, metabolism, immune responses, and neurological function. Emerging evidence supports an intimate relationship between Trp metabolism disorder and diseases. The levels or ratios of Trp metabolites are significantly associated with many clinical features. Additionally, studies have shown that disease progression can be controlled by modulating Trp metabolism. Indoleamine-2,3-dioxygenase, Trp-2,3-dioxygenase, kynurenine-3-monooxygenase, and Trp hydroxylase are the rate-limiting enzymes that are critical for Trp metabolism. These key regulatory enzymes can be targeted for treating several diseases, including tumors. These findings provide novel insights into the treatment of diseases. In this review, we have summarized the recent research progress on the role of Trp metabolites in health and disease along with their clinical applications.
Collapse
Affiliation(s)
- Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Ganglei Li
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Qiuxian Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xinyu Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Qingmiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yuanshuai Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Zhengyi Bao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
27
|
Girithar HN, Staats Pires A, Ahn SB, Guillemin GJ, Gluch L, Heng B. Involvement of the kynurenine pathway in breast cancer: updates on clinical research and trials. Br J Cancer 2023; 129:185-203. [PMID: 37041200 PMCID: PMC10338682 DOI: 10.1038/s41416-023-02245-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 03/04/2023] [Accepted: 03/17/2023] [Indexed: 04/13/2023] Open
Abstract
Breast cancer (BrCa) is the leading cause of cancer incidence and mortality in women worldwide. While BrCa treatment has been shown to be highly successful if detected at an early stage, there are few effective strategies to treat metastatic tumours. Hence, metastasis remains the main cause in most of BrCa deaths, highlighting the need for new approaches in this group of patients. Immunotherapy has been gaining attention as a new treatment for BrCa metastasis and the kynurenine pathway (KP) has been suggested as one of the potential targets. The KP is the major biochemical pathway in tryptophan (TRP) metabolism, catabolising TRP to nicotinamide adenine dinucleotide (NAD+). The KP has been reported to be elevated under inflammatory conditions such as cancers and that its activity suppresses immune surveillance. Dysregulation of the KP has previously been reported implicated in BrCa. This review aims to discuss and provide an update on the current mechanisms involved in KP-mediated immune suppression and cancer growth. Furthermore, we also provide a summary on 58 studies about the involvement of the KP and BrCa and five clinical trials targeting KP enzymes and their outcome.
Collapse
Affiliation(s)
- Hemaasri-Neya Girithar
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Ananda Staats Pires
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Seong Beom Ahn
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Gilles J Guillemin
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Laurence Gluch
- The Strathfield Breast Centre, Strathfield, NSW, Australia
| | - Benjamin Heng
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
28
|
Plaza-Diaz J, Álvarez-Mercado AI. The Interplay between Microbiota and Chemotherapy-Derived Metabolites in Breast Cancer. Metabolites 2023; 13:703. [PMID: 37367861 PMCID: PMC10301694 DOI: 10.3390/metabo13060703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
The most common cancer in women is breast cancer, which is also the second leading cause of death in this group. It is, however, important to note that some women will develop or will not develop breast cancer regardless of whether certain known risk factors are present. On the other hand, certain compounds are produced by bacteria in the gut, such as short-chain fatty acids, secondary bile acids, and other metabolites that may be linked to breast cancer development and mediate the chemotherapy response. Modeling the microbiota through dietary intervention and identifying metabolites directly associated with breast cancer and its complications may be useful to identify actionable targets and improve the effect of antiangiogenic therapies. Metabolomics is therefore a complementary approach to metagenomics for this purpose. As a result of the combination of both techniques, a better understanding of molecular biology and oncogenesis can be obtained. This article reviews recent literature about the influence of bacterial metabolites and chemotherapy metabolites in breast cancer patients, as well as the influence of diet.
Collapse
Affiliation(s)
- Julio Plaza-Diaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Ana Isabel Álvarez-Mercado
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Institute of Nutrition and Food Technology, Biomedical Research Center, University of Granada, 18016 Armilla, Spain
| |
Collapse
|
29
|
Stone TW, Williams RO. Interactions of IDO and the Kynurenine Pathway with Cell Transduction Systems and Metabolism at the Inflammation-Cancer Interface. Cancers (Basel) 2023; 15:cancers15112895. [PMID: 37296860 DOI: 10.3390/cancers15112895] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 06/12/2023] Open
Abstract
The mechanisms underlying a relationship between inflammation and cancer are unclear, but much emphasis has been placed on the role of tryptophan metabolism to kynurenine and downstream metabolites, as these make a substantial contribution to the regulation of immune tolerance and susceptibility to cancer. The proposed link is supported by the induction of tryptophan metabolism by indoleamine-2,3-dioxygenase (IDO) or tryptophan-2,3-dioxygenase (TDO), in response to injury, infection or stress. This review will summarize the kynurenine pathway and will then focus on the bi-directional interactions with other transduction pathways and cancer-related factors. The kynurenine pathway can interact with and modify activity in many other transduction systems, potentially generating an extended web of effects other than the direct effects of kynurenine and its metabolites. Conversely, the pharmacological targeting of those other systems could greatly enhance the efficacy of changes in the kynurenine pathway. Indeed, manipulating those interacting pathways could affect inflammatory status and tumor development indirectly via the kynurenine pathway, while pharmacological modulation of the kynurenine pathway could indirectly influence anti-cancer protection. While current efforts are progressing to account for the failure of selective IDO1 inhibitors to inhibit tumor growth and to devise means of circumventing the issue, it is clear that there are wider factors involving the relationship between kynurenines and cancer that merit detailed consideration as alternative drug targets.
Collapse
Affiliation(s)
- Trevor W Stone
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK
| | - Richard O Williams
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK
| |
Collapse
|
30
|
Chen Y, Wang Y, Fu Y, Yin Y, Xu K. Modulating AHR function offers exciting therapeutic potential in gut immunity and inflammation. Cell Biosci 2023; 13:85. [PMID: 37179416 PMCID: PMC10182712 DOI: 10.1186/s13578-023-01046-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a classical exogenous synthetic ligand of AHR that has significant immunotoxic effects. Activation of AHR has beneficial effects on intestinal immune responses, but inactivation or overactivation of AHR can lead to intestinal immune dysregulation and even intestinal diseases. Sustained potent activation of AHR by TCDD results in impairment of the intestinal epithelial barrier. However, currently, AHR research has been more focused on elucidating physiologic AHR function than on dioxin toxicity. The appropriate level of AHR activation plays a role in maintaining gut health and protecting against intestinal inflammation. Therefore, AHR offers a crucial target to modulate intestinal immunity and inflammation. Herein, we summarize our current understanding of the relationship between AHR and intestinal immunity, the ways in which AHR affects intestinal immunity and inflammation, the effects of AHR activity on intestinal immunity and inflammation, and the effect of dietary habits on intestinal health through AHR. Finally, we discuss the therapeutic role of AHR in maintaining gut homeostasis and relieving inflammation.
Collapse
Affiliation(s)
- Yue Chen
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450000, China
| | - Yadong Wang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Yawei Fu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450000, China
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450000, China
| | - Kang Xu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| |
Collapse
|
31
|
Ciapała K, Pawlik K, Ciechanowska A, Mika J, Rojewska E. Effect of pharmacological modulation of the kynurenine pathway on pain-related behavior and opioid analgesia in a mouse model of neuropathic pain. Toxicol Appl Pharmacol 2023; 461:116382. [PMID: 36681127 DOI: 10.1016/j.taap.2023.116382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 10/26/2022] [Accepted: 01/14/2023] [Indexed: 01/19/2023]
Abstract
Dysfunction of the central nervous system are accompanied by changes in tryptophan metabolism, with the kynurenine pathway (KP) being the main route of its catabolism. Recently, KP metabolites, which are collectively called kynurenines, have become an area of intense research due to their ability to directly and indirectly affect a variety of classic neurotransmitter systems. However, the significance of KP in neuropathic pain is still poorly understood. Therefore, we designed several experiments to verify changes in the mRNA levels of KP enzymes in parallel with other factors related to this metabolic route after chronic constriction injury of the sciatic nerve (CCI model) in mice. The analysis revealed an increase in, Kmo, Kynu and Haoo mRNA levels in the spinal cord on the 7th day after CCI, while Kat1, Kat2, Tdo2, Ido2 and Qprt mRNA levels remain unchanged. Subsequent pharmacological studies provided evidence that modulation of KP by single intrathecal administration of 1-D-MT, UPF468 or L-kynurenine attenuates mechanical and thermal hypersensitivity and increases the effectiveness of selected opioids in mice as measured on day 7 after CCI. Moreover, our results provide the first evidence that the injection of L-kynurenine preceded by UPF468 (KMO inhibitor) is more effective at reducing hypersensitivity in animals with neuropathic pain. Importantly, L-kynurenine also exerts an analgesic effect after intravenous injections, which is enhanced by the administration of minocycline, an inhibitor of microglial activation. Additionally, L-kynurenine administered intrathecally and intravenously enhances analgesia evoked by all tested opioids (morphine, buprenorphine and oxycodone). Overall, our results indicate that the modulation of KP at different levels might be a new pharmacological tool in neuropathy management.
Collapse
Affiliation(s)
- Katarzyna Ciapała
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Krakow, Poland
| | - Katarzyna Pawlik
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Krakow, Poland
| | - Agata Ciechanowska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Krakow, Poland
| | - Joanna Mika
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Krakow, Poland
| | - Ewelina Rojewska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Krakow, Poland.
| |
Collapse
|
32
|
Human Chorionic Gonadotropin-Stimulated Interleukin-4-Induced-1 (IL4I1) Promotes Human Decidualization via Aryl Hydrocarbon Receptor. Int J Mol Sci 2023; 24:ijms24043163. [PMID: 36834576 PMCID: PMC9959871 DOI: 10.3390/ijms24043163] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 02/08/2023] Open
Abstract
Decidualization is necessary for the successful establishment of early pregnancy in rodents and humans. Disturbed decidualization results in recurrent implantation failure, recurrent spontaneous abortion, and preeclampsia. Tryptophan (Trp), one of the essential amino acids in humans, has a positive effect on mammalian pregnancy. Interleukin 4-induced gene 1 (IL4I1) is a recently identified enzyme that can metabolize L-Trp to activate aryl hydrocarbon receptor (AHR). Although IDO1-catalyzed kynurenine (Kyn) from Trp has been shown to enhance human in vitro decidualization via activating AHR, whether IL4I1-catalyzed metabolites of Trp are involved in human decidualization is still unknown. In our study, human chorionic gonadotropin stimulates IL4I1 expression and secretion from human endometrial epithelial cells through ornithine decarboxylase-induced putrescine production. Either IL4I1-catalyzed indole-3-pyruvic acid (I3P) or its metabolite indole-3-aldehyde (I3A) from Trp is able to induce human in vitro decidualization by activating AHR. As a target gene of AHR, Epiregulin induced by I3P and I3A promotes human in vitro decidualization. Our study indicates that IL4I1-catalyzed metabolites from Trp can enhance human in vitro decidualization through AHR-Epiregulin pathway.
Collapse
|
33
|
Sondermann NC, Faßbender S, Hartung F, Hätälä AM, Rolfes KM, Vogel CFA, Haarmann-Stemmann T. Functions of the aryl hydrocarbon receptor (AHR) beyond the canonical AHR/ARNT signaling pathway. Biochem Pharmacol 2023; 208:115371. [PMID: 36528068 PMCID: PMC9884176 DOI: 10.1016/j.bcp.2022.115371] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022]
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor regulating adaptive and maladaptive responses toward exogenous and endogenous signals. Research from various biomedical disciplines has provided compelling evidence that the AHR is critically involved in the pathogenesis of a variety of diseases and disorders, including autoimmunity, inflammatory diseases, endocrine disruption, premature aging and cancer. Accordingly, AHR is considered an attractive target for the development of novel preventive and therapeutic measures. However, the ligand-based targeting of AHR is considerably complicated by the fact that the receptor does not always follow the beaten track, i.e. the canonical AHR/ARNT signaling pathway. Instead, AHR might team up with other transcription factors and signaling molecules to shape gene expression patterns and associated physiological or pathophysiological functions in a ligand-, cell- and micromilieu-dependent manner. Herein, we provide an overview about some of the most important non-canonical functions of AHR, including crosstalk with major signaling pathways involved in controlling cell fate and function, immune responses, adaptation to low oxygen levels and oxidative stress, ubiquitination and proteasomal degradation. Further research on these diverse and exciting yet often ambivalent facets of AHR biology is urgently needed in order to exploit the full potential of AHR modulation for disease prevention and treatment.
Collapse
Affiliation(s)
- Natalie C Sondermann
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Sonja Faßbender
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Frederick Hartung
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Anna M Hätälä
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Katharina M Rolfes
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Christoph F A Vogel
- Department of Environmental Toxicology and Center for Health and the Environment, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
34
|
Yamashita N, Kawai K, Yoshikawa M, Watabe M, Kanno Y, Sanada N, Kizu R. FDI-6, a FOXM1 inhibitor, activates the aryl hydrocarbon receptor and suppresses tumorsphere formation. Biochem Biophys Res Commun 2023; 639:29-35. [PMID: 36463758 DOI: 10.1016/j.bbrc.2022.11.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 11/23/2022] [Indexed: 11/26/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that is activated by environmental contaminants such as dioxins and polycyclic aromatic hydrocarbons. Following ligand binding, AhR binds to xenobiotic responsive elements and modulates the transcription of AhR target genes. Multiple studies have shown that AhR plays important roles in a range of cancer cells and is attracting attention as a therapeutic target for cancer treatment. We have previously reported that AhR agonists inhibit tumorsphere formation in an AhR-dependent manner in the MCF-7 breast cancer cell line. In the present study, we found that FDI-6, an inhibitor of the transcription factor Forkhead Box M1 (FOXM1) induced the mRNA expression of AhR target genes, nuclear translocation of AhR, and transcriptional activity of AhR. In addition, FDI-6 dose-dependently reduced the mRNA expression of FOXM1-regulated genes in AhR-expressing MCF-7 cells, although not in AhR-deficient MCF-7 cells. Furthermore, FDI-6 was found to suppress tumorsphere formation via the AhR in MCF-7 cells and HepG2 human liver cancer cell line. On the basis of the findings of this study, we show that FDI-6, a FOXM1 inhibitor, functions as an AhR agonist, and suppresses tumorsphere formation via the AhR.
Collapse
Affiliation(s)
- Naoya Yamashita
- Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kodo, Kyotanabe, Kyoto, 610-0395, Japan.
| | - Kaho Kawai
- Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kodo, Kyotanabe, Kyoto, 610-0395, Japan
| | - Minami Yoshikawa
- Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kodo, Kyotanabe, Kyoto, 610-0395, Japan
| | - Mina Watabe
- Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kodo, Kyotanabe, Kyoto, 610-0395, Japan
| | - Yuichiro Kanno
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Noriko Sanada
- Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kodo, Kyotanabe, Kyoto, 610-0395, Japan
| | - Ryoichi Kizu
- Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kodo, Kyotanabe, Kyoto, 610-0395, Japan
| |
Collapse
|
35
|
Perez-Castro L, Garcia R, Venkateswaran N, Barnes S, Conacci-Sorrell M. Tryptophan and its metabolites in normal physiology and cancer etiology. FEBS J 2023; 290:7-27. [PMID: 34687129 PMCID: PMC9883803 DOI: 10.1111/febs.16245] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/10/2021] [Accepted: 10/21/2021] [Indexed: 02/06/2023]
Abstract
Within the growing field of amino acid metabolism, tryptophan (Trp) catabolism is an area of increasing interest. Trp is essential for protein synthesis, and its metabolism gives rise to biologically active catabolites including serotonin and numerous metabolites in the kynurenine (Kyn) pathway. In normal tissues, the production of Trp metabolites is directly regulated by the tissue-specific expression of Trp-metabolizing enzymes. Alterations of these enzymes in cancers can shift the balance and lead to an increased production of specific byproducts that can function as oncometabolites. For example, increased expression of the enzyme indoleamine 2,3-dioxygenase, which converts Trp into Kyn, leads to an increase in Kyn levels in numerous cancers. Kyn functions as an oncometabolite in cancer cells by promoting the activity of the transcription factor aryl hydrocarbon receptor, which regulates progrowth genes. Moreover, Kyn also inhibits T-cell activity and thus allows cancer cells to evade clearance by the immune system. Therefore, targeting the Kyn pathway has become a therapeutic focus as a novel means to abrogate tumor growth and immune resistance. This review summarizes the biological role and regulation of Trp metabolism and its catabolites with an emphasis on tumor cell growth and immune evasion and outlines areas for future research focus.
Collapse
Affiliation(s)
- Lizbeth Perez-Castro
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Roy Garcia
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Niranjan Venkateswaran
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Spencer Barnes
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Maralice Conacci-Sorrell
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
36
|
Wißfeld J, Werner A, Yan X, ten Bosch N, Cui G. Metabolic regulation of immune responses to cancer. Cancer Biol Med 2022; 19:j.issn.2095-3941.2022.0381. [PMID: 36269001 PMCID: PMC9724228 DOI: 10.20892/j.issn.2095-3941.2022.0381] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The tumor microenvironment is an ecosystem composed of multiple types of cells, such as tumor cells, immune cells, and cancer-associated fibroblasts. Cancer cells grow faster than non-cancerous cells and consume larger amounts of nutrients. The rapid growth characteristic of cancer cells fundamentally alters nutrient availability in the tumor microenvironment and results in reprogramming of immune cell metabolic pathways. Accumulating evidence suggests that cellular metabolism of nutrients, such as lipids and amino acids, beyond being essential to meet the bioenergetic and biosynthetic demands of immune cells, also regulates a broad spectrum of cellular signal transduction, and influences immune cell survival, differentiation, and anti-tumor effector function. The cancer immunometabolism research field is rapidly evolving, and exciting new discoveries are reported in high-profile journals nearly weekly. Therefore, all new findings in this field cannot be summarized within this short review. Instead, this review is intended to provide a brief introduction to this rapidly developing research field, with a focus on the metabolism of two classes of important nutrients-lipids and amino acids-in immune cells. We highlight recent research on the roles of lipids and amino acids in regulating the metabolic fitness and immunological functions of T cells, macrophages, and natural killer cells in the tumor microenvironment. Furthermore, we discuss the possibility of "editing" metabolic pathways in immune cells to act synergistically with currently available immunotherapies in enhancing anti-tumor immune responses.
Collapse
Affiliation(s)
- Jannis Wißfeld
- Helmholtz Institute for Translational Oncology (HI-TRON), Mainz 55131, Germany,T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Anke Werner
- Helmholtz Institute for Translational Oncology (HI-TRON), Mainz 55131, Germany,T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Xin Yan
- Helmholtz Institute for Translational Oncology (HI-TRON), Mainz 55131, Germany,T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany,Faculty of Biosciences, Heidelberg University, Heidelberg 69120, Germany
| | - Nora ten Bosch
- Helmholtz Institute for Translational Oncology (HI-TRON), Mainz 55131, Germany,T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Guoliang Cui
- Helmholtz Institute for Translational Oncology (HI-TRON), Mainz 55131, Germany,T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany,Faculty of Biosciences, Heidelberg University, Heidelberg 69120, Germany,Correspondence to: Guoliang Cui, E-mail:
| |
Collapse
|
37
|
Safe S, Zhang L. The Role of the Aryl Hydrocarbon Receptor (AhR) and Its Ligands in Breast Cancer. Cancers (Basel) 2022; 14:5574. [PMID: 36428667 PMCID: PMC9688153 DOI: 10.3390/cancers14225574] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/27/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Breast cancer is a complex disease which is defined by numerous cellular and molecular markers that can be used to develop more targeted and successful therapies. The aryl hydrocarbon receptor (AhR) is overexpressed in many breast tumor sub-types, including estrogen receptor -positive (ER+) tumors; however, the prognostic value of the AhR for breast cancer patient survival is not consistent between studies. Moreover, the functional role of the AhR in various breast cancer cell lines is also variable and exhibits both tumor promoter- and tumor suppressor- like activity and the AhR is expressed in both ER-positive and ER-negative cells/tumors. There is strong evidence demonstrating inhibitory AhR-Rα crosstalk where various AhR ligands induce ER degradation. It has also been reported that different structural classes of AhR ligands, including halogenated aromatics, polynuclear aromatics, synthetic drugs and other pharmaceuticals, health promoting phytochemical-derived natural products and endogenous AhR-active compounds inhibit one or more of breast cancer cell proliferation, survival, migration/invasion, and metastasis. AhR-dependent mechanisms for the inhibition of breast cancer by AhR agonists are variable and include the downregulation of multiple genes/gene products such as CXCR4, MMPs, CXCL12, SOX4 and the modulation of microRNA levels. Some AhR ligands, such as aminoflavone, have been investigated in clinical trials for their anticancer activity against breast cancer. In contrast, several publications have reported that AhR agonists and antagonists enhance and inhibit mammary carcinogenesis, respectively, and differences between the anticancer activities of AhR agonists in breast cancer may be due in part to cell context and ligand structure. However, there are reports showing that the same AhR ligand in the same breast cancer cell line gives opposite results. These differences need to be resolved in order to further develop and take advantage of promising agents that inhibit mammary carcinogenesis by targeting the AhR.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | | |
Collapse
|
38
|
Zhan Y, Zhang Z, Liu Y, Fang Y, Xie Y, Zheng Y, Li G, Liang L, Ding Y. NUPR1 contributes to radiation resistance by maintaining ROS homeostasis via AhR/CYP signal axis in hepatocellular carcinoma. BMC Med 2022; 20:365. [PMID: 36258210 PMCID: PMC9580158 DOI: 10.1186/s12916-022-02554-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Radiotherapy (RT) is one of the major therapeutic approaches to hepatocellular carcinoma (HCC). Ionizing radiation (IR) inducing the generation of reactive oxygen species (ROS) leads to a promising antitumor effect. However, the dysregulation of the redox system often causes radioresistance and impairs the efficacy of RT. Increasing evidence indicates that nuclear protein 1 (NUPR1) plays a critical role in redox reactions. In this study, we aim to explore the role of NUPR1 in maintaining ROS homeostasis and radioresistance in HCC. METHODS The radioresistant role of NUPR1 was determined by colony formation assay, comet assay in vitro, and xenograft tumor models in vivo. Probes for ROS, apoptosis assay, and lipid peroxidation assay were used to investigate the functional effect of NUPR1 on ROS homeostasis and oxidative stress. RNA sequencing and co-immunoprecipitation assay were performed to clarify the mechanism of NUPR1 inhibiting the AhR/CYP signal axis. Finally, we analyzed clinical specimens to assess the predictive value of NUPR1 and AhR in the radiotherapeutic efficacy of HCC. RESULTS We demonstrated that NUPR1 was upregulated in HCC tissues and verified that NUPR1 increased the radioresistance of HCC in vitro and in vivo. NUPR1 alleviated the generation of ROS and suppressed oxidative stress, including apoptosis and lipid peroxidation by downregulating cytochrome P450 (CYP) upon IR. ROS scavenger N-acetyl-L-cysteine (NAC) and CYP inhibitor alizarin restored the viability of NUPR1-knockdown cells during IR. Mechanistically, the interaction between NUPR1 and aryl hydrocarbon receptor (AhR) promoted the degradation and decreased nuclear translation of AhR via the autophagy-lysosome pathway, followed by being incapable of CYP's transcription. Furthermore, genetically and pharmacologically activating AhR abrogated the radioresistant role of NUPR1. Clinical data suggested that NUPR1 and AhR could serve as novel biomarkers for predicting the radiation response of HCC. CONCLUSIONS Our findings revealed the role of NUPR1 in regulating ROS homeostasis and oxidative stress via the AhR/CYP signal axis upon IR. Strategies targeting the NUPR1/AhR/CYP pathway may have important clinical applications for improving the radiotherapeutic efficacy of HCC.
Collapse
Affiliation(s)
- Yizhi Zhan
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong, China
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Zhanqiao Zhang
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yuechen Liu
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yuan Fang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yuwen Xie
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yilin Zheng
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Guoxin Li
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Li Liang
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangzhou, 510515, Guangdong, China.
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong, China.
| | - Yi Ding
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
39
|
Hollis PR, Mobley RJ, Bhuju J, Abell AN, Sutter CH, Sutter TR. CYP1B1 Augments the Mesenchymal, Claudin-Low, and Chemoresistant Phenotypes of Triple-Negative Breast Cancer Cells. Int J Mol Sci 2022; 23:9670. [PMID: 36077068 PMCID: PMC9456208 DOI: 10.3390/ijms23179670] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Cytochrome P4501B1 (CYP1B1) is elevated in breast cancer. Studies indicate a relationship between CYP1B1 and aggressive cancer phenotypes. Here, we report on in vitro studies in triple-negative breast cancer cell lines, where knockdown (KD) of CYP1B1 was used to determine the influence of its expression on invasive cell phenotypes. CYP1B1 KD in MDA-MB-231 cells resulted in the loss of mesenchymal morphology, altered expression of epithelial-mesenchymal genes, and increased claudin (CLDN) RNA and protein. CYP1B1 KD cells had increased cell-to-cell contact and paracellular barrier function, a reduced rate of cell proliferation, abrogation of migratory and invasive activity, and diminished spheroid formation. Analysis of clinical breast cancer tumor samples revealed an association between tumors exhibiting higher CYP1B1 RNA levels and diminished overall and disease-free survival. Tumor expression of CYP1B1 was inversely associated with CLDN7 expression, and CYP1B1HI/CLDN7LOW identified patients with lower median survival. Cells with CYP1B1 KD had an enhanced chemosensitivity to paclitaxel, 5-fluorouracil, and cisplatin. Our findings that CYP1B1 KD can increase chemosensitivity points to therapeutic targeting of this enzyme. CYP1B1 inhibitors in combination with chemotherapeutic drugs may provide a novel targeted and effective approach to adjuvant or neoadjuvant therapy against certain forms of highly metastatic breast cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Thomas R. Sutter
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152, USA
| |
Collapse
|
40
|
Morin SM, Majhi PD, Crisi GM, Gregory KJ, Franca R, Schalet B, Mason H, Casaubon JT, Cao QJ, Haddad S, Makari-Judson G, Jerry DJ, Schneider SS. Interindividual variation contributes to differential PCB 126 induced gene expression in primary breast epithelial cells and tissues. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113722. [PMID: 35724515 DOI: 10.1016/j.ecoenv.2022.113722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/27/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
PCB 126 is a pervasive, dioxin-like chemical pollutant which can activate the aryl hydrocarbon receptor (AhR). Despite being banned from the market, PCB 126 can be detected in breast milk to this day. The extent to which interindividual variation impacts the adverse responses to this chemical in the breast tissue remains unclear. This study aimed to investigate the impact of 3 nM PCB 126 on gene expression in a panel of genetically diverse benign human breast epithelial cell (HBEC) cultures and patient derived breast tissues. Six patient derived HBEC cultures were treated with 3 nM PCB 126. RNAseq was used to interrogate the impact of exposure on differential gene expression. Gene expression changes from the top critical pathways were confirmed via qRT-PCR in a larger panel of benign patient derived HBEC cultures, as well as in patient-derived breast tissue explant cultures. RNAseq analysis of HBEC cultures revealed a signature of 144 genes significantly altered by 3 nM PCB 126 treatment. Confirmation of 8 targets using a panel of 12 HBEC cultures and commercially available breast cell lines demonstrated that while the induction of canonical downstream target gene, CYP1A1, was consistent across our primary HBECs, other genes including AREG, S100A8, IL1A, IL1B, MMP7, and CCL28 exhibited significant variability across individuals. The dependence on the activity of the aryl hydrocarbon receptor was confirmed using inhibitors. PCB 126 can induce significant and consistent changes in gene expression associated with xenobiotic metabolism in benign breast epithelial cells. Although the induction of most genes was reliant on the AhR, significant variability was noted between genes and individuals. These data suggest that there is a bifurcation of the pathway following AhR activation that contributes to the variation in interindividual responses.
Collapse
Affiliation(s)
- Stephanie M Morin
- Pioneer Valley Life Sciences Institute, Springfield, MA 01199, United States; Dept of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, United States
| | - Prabin Dhangada Majhi
- Dept of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, United States
| | - Giovanna M Crisi
- University of Massachusetts Chan Medical School-Baystate, Department of Pathology, Springfield, MA 01199, United States
| | - Kelly J Gregory
- Pioneer Valley Life Sciences Institute, Springfield, MA 01199, United States
| | - Renata Franca
- Pioneer Valley Life Sciences Institute, Springfield, MA 01199, United States
| | - Benjamin Schalet
- University of Massachusetts Chan Medical School-Baystate, Department of Surgery, Springfield, MA 01199, United States
| | - Holly Mason
- University of Massachusetts Chan Medical School-Baystate, Department of Surgery, Springfield, MA 01199, United States
| | - Jesse Thomas Casaubon
- University of Massachusetts Chan Medical School-Baystate, Department of Surgery, Springfield, MA 01199, United States
| | - Qing Jackie Cao
- University of Massachusetts Chan Medical School-Baystate, Department of Pathology, Springfield, MA 01199, United States
| | - Sandra Haddad
- Dept of Science, Bay Path University, Longmeadow, MA 01106, United States
| | - Grace Makari-Judson
- University of Massachusetts Chan Medical School-Baystate, Division of Hematology-Oncology, Springfield, MA, United States
| | - D Joseph Jerry
- Pioneer Valley Life Sciences Institute, Springfield, MA 01199, United States; Dept of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, United States
| | - Sallie S Schneider
- Pioneer Valley Life Sciences Institute, Springfield, MA 01199, United States; Dept of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, United States; University of Massachusetts Chan Medical School-Baystate, Department of Surgery, Springfield, MA 01199, United States.
| |
Collapse
|
41
|
Chen G, Huang J, Lei H, Wu F, Chen C, Song Y, Cao Z, Zhang C, Zhang C, Ma Y, Huang M, Zhou J, Lu Y, Zhao Y, Zhang L. Icariside I - A novel inhibitor of the kynurenine-AhR pathway with potential for cancer therapy by blocking tumor immune escape. Biomed Pharmacother 2022; 153:113387. [PMID: 35834991 DOI: 10.1016/j.biopha.2022.113387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/29/2022] [Accepted: 07/06/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Although therapeutic antibodies against immune checkpoints such as PD-1/PD-L1 have achieved unprecedented success in clinical tumor patients, there are still many patients who are ineffective or have limited responses to immune checkpoint blockade (ICB). Discovery of novel strategies for cancer immunotherapy including natural small molecules is needed. METHODS Owing to its extremely low content in Epimedium genus, we firstly constructed a microbial cell factory to enzymatically biosynthesize icariside I, a natural flavonoid monosaccharide from Herbal Epimedium. Using a combination of targeted MS-based metabolomics, flow cytometric analysis, and biological assays, the therapeutic potentials of icariside I were subsequently investigated in vivo and in vitro. RESULTS We find that icariside I markedly downregulates a series of intermediate metabolites such as kynurenine, kynurenic acid and xanthurenic acid and corresponding key enzymes involved in kynurenine-AhR pathway in both tumor cells and tumor-bearing mice. In vivo, oral administration of icariside I downregulates SLC7A8 and PAT4 transporters and AhR, thus inhibiting nuclear PD-1 in CTLs. Moreover, icariside I significantly upregulates CD8 + T cells in both peripheral blood and tumor tissues of tumor-bearing mice. Consequently, interferon-γ (IFN-γ) secreted by CD8 + T cells suppresses tumor growth through activation of JAK1-STAT1 signaling, thus inducing tumor cell apoptosis. CONCLUSIONS These results suggest that icariside I could be an effective small molecule drug for tumor immunotherapy by blocking kynurenine-AhR pathway and tumor immune escape.
Collapse
Affiliation(s)
- Gui Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiajun Huang
- Golden Health (Guangdong) Biotechnology Co., Ltd, Foshan 528225, China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Hehua Lei
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China
| | - Fang Wu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuan Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuchen Song
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng Cao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ce Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cui Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuxi Ma
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mingtao Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Jinlin Zhou
- Golden Health (Guangdong) Biotechnology Co., Ltd, Foshan 528225, China
| | - Yujing Lu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yanxia Zhao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Limin Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
42
|
Benoit L, Jornod F, Zgheib E, Tomkiewicz C, Koual M, Coustillet T, Barouki R, Audouze K, Vinken M, Coumoul X. Adverse outcome pathway from activation of the AhR to breast cancer-related death. ENVIRONMENT INTERNATIONAL 2022; 165:107323. [PMID: 35660951 DOI: 10.1016/j.envint.2022.107323] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/03/2022] [Accepted: 05/24/2022] [Indexed: 05/15/2023]
Abstract
Adverse outcome pathways (AOPs) are formalized and structured linear concepts that connect one molecular initiating event (MIE) to an adverse outcome (AO) via different key events (KE) through key event relationships (KER). They are mainly used in eco-toxicology toxicology, and regulatory health issues. AOPs must respond to specific guidelines from the Organization for Economic Co-operation and Development (OECD) to weight the evidence between each KE. Breast cancer is the deadliest cancer in women with a poor prognosis in case of metastatic breast cancer. The role of the environments in the formation of metastasis has been suggested. We hypothesized that activation of the AhR (MIE), a xenobiotic receptor, could lead to breast cancer related death (AO), through different KEs, constituting a new AOP. An artificial intelligence tool (AOP-helpfinder), which screens the available literature, was used to collect all existing scientific abstracts to build a novel AOP, using a list of key words. Four hundred and seven abstracts were found containing at least a word from our MIE list and either one word from our AO or KE list. A manual curation retained 113 pertinent articles, which were also screened using PubTator. From these analyses, an AOP was created linking the activation of the AhR to breast cancer related death through decreased apoptosis, inflammation, endothelial cell migration, angiogenesis, and invasion. These KEs promote an increased tumor growth, angiogenesis and migration which leads to breast cancer metastasis and breast cancer related death. The evidence of the proposed AOP was weighted using the tailored Bradford Hill criteria and the OECD guidelines. The confidence in our AOP was considered strong. An in vitro validation must be carried out, but our review proposes a strong relationship between AhR activation and breast cancer-related death with an innovative use of an artificial intelligence literature search.
Collapse
Affiliation(s)
- Louise Benoit
- Université Paris Cité, T3S, INSERM UMR-S 1124, 45 rue des Saints Pères, Paris, France; Assistance Publique-Hôpitaux de Paris, European Hospital Georges-Pompidou, Gynecologic and Breast Oncologic Surgery Department, Paris, France.
| | - Florence Jornod
- Université Paris Cité, T3S, INSERM UMR-S 1124, 45 rue des Saints Pères, Paris, France
| | - Elias Zgheib
- Université Paris Cité, T3S, INSERM UMR-S 1124, 45 rue des Saints Pères, Paris, France
| | - Celine Tomkiewicz
- Université Paris Cité, T3S, INSERM UMR-S 1124, 45 rue des Saints Pères, Paris, France
| | - Meriem Koual
- Université Paris Cité, T3S, INSERM UMR-S 1124, 45 rue des Saints Pères, Paris, France; Assistance Publique-Hôpitaux de Paris, European Hospital Georges-Pompidou, Gynecologic and Breast Oncologic Surgery Department, Paris, France
| | - Thibaut Coustillet
- Université Paris Cité, T3S, INSERM UMR-S 1124, 45 rue des Saints Pères, Paris, France
| | - Robert Barouki
- Université Paris Cité, T3S, INSERM UMR-S 1124, 45 rue des Saints Pères, Paris, France; Assistance Publique-Hôpitaux de Paris, European Hospital Georges-Pompidou, Gynecologic and Breast Oncologic Surgery Department, Paris, France
| | - Karine Audouze
- Université Paris Cité, T3S, INSERM UMR-S 1124, 45 rue des Saints Pères, Paris, France
| | - Mathieu Vinken
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Xavier Coumoul
- Université Paris Cité, T3S, INSERM UMR-S 1124, 45 rue des Saints Pères, Paris, France
| |
Collapse
|
43
|
Ouyang L, Yu C, Xie Z, Su X, Xu Z, Song P, Li J, Huang H, Ding Y, Zou MH. Indoleamine 2,3-Dioxygenase 1 Deletion-Mediated Kynurenine Insufficiency in Vascular Smooth Muscle Cells Exacerbates Arterial Calcification. Circulation 2022; 145:1784-1798. [PMID: 35582948 PMCID: PMC9197997 DOI: 10.1161/circulationaha.121.057868] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 04/20/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND IDO1 (indoleamine 2,3-dioxygenase 1) is the rate-limiting enzyme for tryptophan metabolism. IDO1 malfunction is involved in the pathogenesis of atherosclerosis. Vascular smooth muscle cells (VSMCs) with an osteogenic phenotype promote calcification and features of plaque instability. However, it remains unclear whether aberrant IDO1-regulated tryptophan metabolism causes VSMCs osteogenic reprogramming and calcification. METHODS We generated global Apoe (apolipoprotein E) and Ido1 double knockout mice, and Apoe knockout mice with specific deletion of IDO1 in VSMCs or macrophages. Arterial intimal calcification was evaluated by a Western diet-induced atherosclerotic calcification model. RESULTS Global deficiency of IDO1 boosted calcific lesion formation without sex bias in vivo. Conditional IDO1 loss of function in VSMCs rather than macrophages promoted calcific lesion development and the abundance of RUNX2 (runt-related transcription factor 2). In contrast, administration of kynurenine via intraperitoneal injection markedly delayed the progression of intimal calcification in parallel with decreased RUNX2 expression in both Apoe-/- and Apoe-/-Ido1-/- mice. We found that IDO1 deletion restrained RUNX2 from proteasomal degradation, which resulted in enhanced osteogenic reprogramming of VSMCs. Kynurenine administration downregulated RUNX2 in an aryl hydrocarbon receptor-dependent manner. Kynurenine acted as the endogenous ligand of aryl hydrocarbon receptor, controlled resultant interactions between cullin 4B and aryl hydrocarbon receptor to form an E3 ubiquitin ligase that bound with RUNX2, and subsequently promoted ubiquitin-mediated instability of RUNX2 in VSMCs. Serum samples from patients with coronary artery calcification had impaired IDO1 activity and decreased kynurenine catabolites compared with those without calcification. CONCLUSIONS Kynurenine, an IDO1-mediated tryptophan metabolism main product, promotes RUNX2 ubiquitination and subsequently leads to its proteasomal degradation via an aryl hydrocarbon receptor-dependent nongenomic pathway. Insufficient kynurenine exerts the deleterious role of IDO1 ablation in promoting RUNX2-mediated VSMCs osteogenic reprogramming and calcification in vivo.
Collapse
Affiliation(s)
- Liu Ouyang
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, USA
| | - Changjiang Yu
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, USA
| | - Zhiyong Xie
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Xiaoyan Su
- Department of Nephropathy, Tungwah Hospital of Sun Yat-sen University, Sun Yat-sen University, Dongguan, China
| | - Zengmei Xu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Ping Song
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, USA
| | - Jian Li
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, USA
| | - Hui Huang
- Department of Cardiology, the Eighth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Ye Ding
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, USA
| | - Ming-Hui Zou
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, USA
| |
Collapse
|
44
|
Jamshed L, Debnath A, Jamshed S, Wish JV, Raine JC, Tomy GT, Thomas PJ, Holloway AC. An Emerging Cross-Species Marker for Organismal Health: Tryptophan-Kynurenine Pathway. Int J Mol Sci 2022; 23:6300. [PMID: 35682980 PMCID: PMC9181223 DOI: 10.3390/ijms23116300] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
Tryptophan (TRP) is an essential dietary amino acid that, unless otherwise committed to protein synthesis, undergoes metabolism via the Tryptophan-Kynurenine (TRP-KYN) pathway in vertebrate organisms. TRP and its metabolites have key roles in diverse physiological processes including cell growth and maintenance, immunity, disease states and the coordination of adaptive responses to environmental and dietary cues. Changes in TRP metabolism can alter the availability of TRP for protein and serotonin biosynthesis as well as alter levels of the immune-active KYN pathway metabolites. There is now considerable evidence which has shown that the TRP-KYN pathway can be influenced by various stressors including glucocorticoids (marker of chronic stress), infection, inflammation and oxidative stress, and environmental toxicants. While there is little known regarding the role of TRP metabolism following exposure to environmental contaminants, there is evidence of linkages between chemically induced metabolic perturbations and altered TRP enzymes and KYN metabolites. Moreover, the TRP-KYN pathway is conserved across vertebrate species and can be influenced by exposure to xenobiotics, therefore, understanding how this pathway is regulated may have broader implications for environmental and wildlife toxicology. The goal of this narrative review is to (1) identify key pathways affecting Trp-Kyn metabolism in vertebrates and (2) highlight consequences of altered tryptophan metabolism in mammals, birds, amphibians, and fish. We discuss current literature available across species, highlight gaps in the current state of knowledge, and further postulate that the kynurenine to tryptophan ratio can be used as a novel biomarker for assessing organismal and, more broadly, ecosystem health.
Collapse
Affiliation(s)
- Laiba Jamshed
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON L8S 4K1, Canada; (L.J.); (A.D.); (S.J.)
| | - Amrita Debnath
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON L8S 4K1, Canada; (L.J.); (A.D.); (S.J.)
| | - Shanza Jamshed
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON L8S 4K1, Canada; (L.J.); (A.D.); (S.J.)
| | - Jade V. Wish
- Department of Chemistry, Centre for Oil and Gas Research and Development (COGRAD), University of Manitoba, 586 Parker Building, 144 Dysart Rd., Winnipeg, MB R3T 2N2, Canada; (J.V.W.); (G.T.T.)
| | - Jason C. Raine
- Quesnel River Research Centre, University of Northern British Columbia, Prince George, BC V2N 4Z9, Canada;
| | - Gregg T. Tomy
- Department of Chemistry, Centre for Oil and Gas Research and Development (COGRAD), University of Manitoba, 586 Parker Building, 144 Dysart Rd., Winnipeg, MB R3T 2N2, Canada; (J.V.W.); (G.T.T.)
| | - Philippe J. Thomas
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, ON K1A 0H3, Canada;
| | - Alison C. Holloway
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON L8S 4K1, Canada; (L.J.); (A.D.); (S.J.)
| |
Collapse
|
45
|
The Kynurenine Pathway and Cancer: Why Keep It Simple When You Can Make It Complicated. Cancers (Basel) 2022; 14:cancers14112793. [PMID: 35681770 PMCID: PMC9179486 DOI: 10.3390/cancers14112793] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary The kynurenine pathway has two main physiological roles: (i) it protects specific organs such as the eyes and placenta from strong immune reactions and (ii) it additionally generate in the liver and kidney a metabolite essential to all cells of human body. Abnormal activation of this pathway is recurrently observed in numerous cancer types. Its two functions are hijacked to promote tumor growth and cancer cell dissemination through multiple mechanisms. Clinical assays including administration of inhibitors of this pathway have not yet been successful. The complex regulation of this pathway is likely the reason behind this failure. In this review, we try to give an overview of the current knowledge about this pathway, to point out the next challenges, and to propose alternative therapeutic routes. Abstract The kynurenine pathway has been highlighted as a gatekeeper of immune-privileged sites through its ability to generate from tryptophan a set of immunosuppressive metabolic intermediates. It additionally constitutes an important source of cellular NAD+ for the organism. Hijacking of its immunosuppressive functions, as recurrently observed in multiple cancers, facilitates immune evasion and promotes tumor development. Based on these observations, researchers have focused on characterizing indoleamine 2,3-dioxygenase (IDO1), the main enzyme catalyzing the first and limiting step of the pathway, and on developing therapies targeting it. Unfortunately, clinical trials studying IDO1 inhibitors have thus far not met expectations, highlighting the need to unravel this complex signaling pathway further. Recent advances demonstrate that these metabolites additionally promote tumor growth, metastatic dissemination and chemoresistance by a combination of paracrine and autocrine effects. Production of NAD+ also contributes to cancer progression by providing cancer cells with enhanced plasticity, invasive properties and chemoresistance. A comprehensive survey of this complexity is challenging but necessary to achieve medical success.
Collapse
|
46
|
Sadok I, Jędruchniewicz K, Staniszewska M. Quantification of nicotinic acid, kynurenine, and kynurenine acid in poultry meat by validated liquid chromatography-single quadrupole mass spectrometry method. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
47
|
Yu HX, Feng Z, Lin W, Yang K, Liu RQ, Li JQ, Liu XY, Pei M, Yang HT. Ongoing Clinical Trials in Aging-Related Tissue Fibrosis and New Findings Related to AhR Pathways. Aging Dis 2022; 13:732-752. [PMID: 35656117 PMCID: PMC9116921 DOI: 10.14336/ad.2021.1105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/05/2021] [Indexed: 11/06/2022] Open
Abstract
Fibrosis is a pathological manifestation of wound healing that replaces dead/damaged tissue with collagen-rich scar tissue to maintain homeostasis, and complications from fibrosis contribute to nearly half of all deaths in the industrialized world. Ageing is closely associated with a progressive decline in organ function, and the prevalence of tissue fibrosis dramatically increases with age. Despite the heavy clinical and economic burden of organ fibrosis as the population ages, to date, there is a paucity of therapeutic strategies that are specifically designed to slow fibrosis. Aryl hydrocarbon receptor (AhR) is an environment-sensing transcription factor that exacerbates aging phenotypes in different tissues that has been brought back into the spotlight again with economic development since AhR could interact with persistent organic pollutants derived from incomplete waste combustion. In addition, gut microbiota dysbiosis plays a pivotal role in the pathogenesis of numerous diseases, and microbiota-associated tryptophan metabolites are dedicated contributors to fibrogenesis by acting as AhR ligands. Therefore, a better understanding of the effects of tryptophan metabolites on fibrosis modulation through AhR may facilitate the exploitation of new therapeutic avenues for patients with organ fibrosis. In this review, we primarily focus on how tryptophan-derived metabolites are involved in renal fibrosis, idiopathic pulmonary fibrosis, hepatic fibrosis and cardiac fibrosis. Moreover, a series of ongoing clinical trials are highlighted.
Collapse
Affiliation(s)
- Hang-Xing Yu
- 1Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,2National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Zhe Feng
- 3Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Wei Lin
- 1Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,2National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Kang Yang
- 4Kidney Disease Treatment Center, The first affiliated hospital of Henan university of CM, Zhengzhou, Henan, China
| | - Rui-Qi Liu
- 1Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,2National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Jia-Qi Li
- 1Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,2National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xin-Yue Liu
- 1Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,2National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Ming Pei
- 1Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,2National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Hong-Tao Yang
- 1Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,2National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
48
|
Tan YQ, Wang YN, Feng HY, Guo ZY, Li X, Nie XL, Zhao YY. Host/microbiota interactions-derived tryptophan metabolites modulate oxidative stress and inflammation via aryl hydrocarbon receptor signaling. Free Radic Biol Med 2022; 184:30-41. [PMID: 35367341 DOI: 10.1016/j.freeradbiomed.2022.03.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 03/21/2022] [Accepted: 03/28/2022] [Indexed: 02/07/2023]
Abstract
Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that induces the expression of a broad range of downstream genes such as cytochromes P450 enzymes and cyclooxygenase-2. Recent research focuses are shifting from AhR activation induced by xenobiotics to its response patterns to physiological ligands that expand our understanding of how endogenous metabolites as ligands to modulate AhR signaling pathway under homeostasis and pathological conditions. With increasing interest in AhR and its endogenous ligands, it would seem advisable to summarize a variety of endogenous ligands especially host/gut microbiota-derived tryptophan metabolites. Mounting evidence has indicated that AhR play a critical role in the regulation of redox homeostasis and immune responses. In this review, we outline the canonical and non-canonical AhR signalling pathway that is mediated by host/gut microbiota-derived tryptophan metabolites. Through several typical endogenous AhR ligands, we investigated the molecular mechanisms of AhR-induced oxidative stress and inflammation in the pathological milieu, including diabetes, diabetic kidney disease and end-stage renal disease. Finally, we summarize and emphasize the limitations and breakthrough of endogenous AhR ligands from host/microbial tryptophan catabolites. This review might provide novel diagnostic and prognostic approach for refractory human diseases and establish new therapeutic strategies for AhR activation.
Collapse
Affiliation(s)
- Yue-Qi Tan
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Yan-Ni Wang
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Hao-Yu Feng
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Zhi-Yuan Guo
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Xia Li
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China; Department of General Practice, Xi'an International Medical Center Hospital, Northwest University, No. 777 Xitai Road, Xi'an, Shaanxi, 710100, China.
| | - Xiao-Li Nie
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, No.13, Shi Liu Gang Road, Haizhu District, Guangzhou, Guangdong, 510315, China.
| | - Ying-Yong Zhao
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China.
| |
Collapse
|
49
|
Lu Y, Yuan X, Wang M, He Z, Li H, Wang J, Li Q. Gut microbiota influence immunotherapy responses: mechanisms and therapeutic strategies. J Hematol Oncol 2022; 15:47. [PMID: 35488243 PMCID: PMC9052532 DOI: 10.1186/s13045-022-01273-9] [Citation(s) in RCA: 248] [Impact Index Per Article: 82.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/20/2022] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota have long been recognized to play a key role in human health and disease. Currently, several lines of evidence from preclinical to clinical research have gradually established that the gut microbiota can modulate antitumor immunity and affect the efficacy of cancer immunotherapies, especially immune checkpoint inhibitors (ICIs). Deciphering the underlying mechanisms reveals that the gut microbiota reprogram the immunity of the tumor microenvironment (TME) by engaging innate and/or adaptive immune cells. Notably, one of the primary modes by which the gut microbiota modulate antitumor immunity is by means of metabolites, which are small molecules that could spread from their initial location of the gut and impact local and systemic antitumor immune response to promote ICI efficiency. Mechanistic exploration provides novel insights for developing rational microbiota-based therapeutic strategies by manipulating gut microbiota, such as fecal microbiota transplantation (FMT), probiotics, engineered microbiomes, and specific microbial metabolites, to augment the efficacy of ICI and advance the age utilization of microbiota precision medicine.
Collapse
Affiliation(s)
- Yuting Lu
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Xiangliang Yuan
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Miao Wang
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Zhihao He
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Hongzhong Li
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Ji Wang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Qin Li
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
50
|
Shah K, Maradana MR, Joaquina Delàs M, Metidji A, Graelmann F, Llorian M, Chakravarty P, Li Y, Tolaini M, Shapiro M, Kelly G, Cheshire C, Bhurta D, Bharate SB, Stockinger B. Cell-intrinsic Aryl Hydrocarbon Receptor signalling is required for the resolution of injury-induced colonic stem cells. Nat Commun 2022; 13:1827. [PMID: 35383166 PMCID: PMC8983642 DOI: 10.1038/s41467-022-29098-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 02/23/2022] [Indexed: 12/17/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is an environmental sensor that integrates microbial and dietary cues to influence physiological processes within the intestinal microenvironment, protecting against colitis and colitis-associated colorectal cancer development. Rapid tissue regeneration upon injury is important for the reinstatement of barrier integrity and its dysregulation promotes malignant transformation. Here we show that AHR is important for the termination of the regenerative response and the reacquisition of mature epithelial cell identity post injury in vivo and in organoid cultures in vitro. Using an integrative multi-omics approach in colon organoids, we show that AHR is required for timely termination of the regenerative response through direct regulation of transcription factors involved in epithelial cell differentiation as well as restriction of chromatin accessibility to regeneration-associated Yap/Tead transcriptional targets. Safeguarding a regulated regenerative response places AHR at a pivotal position in the delicate balance between controlled regeneration and malignant transformation. Rapid intestinal regeneration after injury is critical to maintain barrier integrity and homeostasis, but must be tightly controlled to prevent tumorigenesis. Here they show that the aryl hydrocarbon receptor is required to terminate the regenerative response after wound healing.
Collapse
Affiliation(s)
| | | | | | - Amina Metidji
- Department of Oncology, St Jude Children's Hospital, Memphis, TN, USA
| | - Frederike Graelmann
- Immunology and Environment, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | | | | | - Ying Li
- The Francis Crick Institute, London, UK
| | | | | | | | | | - Deendyal Bhurta
- Natural Products & Medicinal Chemistry Division, CSIR - Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Sandip B Bharate
- Natural Products & Medicinal Chemistry Division, CSIR - Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | | |
Collapse
|