1
|
Casadonte R, Kriegsmann M, Kriegsmann K, Streit H, Meliß RR, Müller CSL, Kriegsmann J. Imaging Mass Spectrometry for the Classification of Melanoma Based on BRAF/ NRAS Mutational Status. Int J Mol Sci 2023; 24:ijms24065110. [PMID: 36982192 PMCID: PMC10049262 DOI: 10.3390/ijms24065110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/30/2023] Open
Abstract
Mutations of the oncogenes v-raf murine sarcoma viral oncogene homolog B1 (BRAF) and neuroblastoma RAS viral oncogene homolog (NRAS) are the most frequent genetic alterations in melanoma and are mutually exclusive. BRAF V600 mutations are predictive for response to the two BRAF inhibitors vemurafenib and dabrafenib and the mitogen-activated protein kinase kinase (MEK) inhibitor trametinib. However, inter- and intra-tumoral heterogeneity and the development of acquired resistance to BRAF inhibitors have important clinical implications. Here, we investigated and compared the molecular profile of BRAF and NRAS mutated and wildtype melanoma patients' tissue samples using imaging mass spectrometry-based proteomic technology, to identify specific molecular signatures associated with the respective tumors. SCiLSLab and R-statistical software were used to classify peptide profiles using linear discriminant analysis and support vector machine models optimized with two internal cross-validation methods (leave-one-out, k-fold). Classification models showed molecular differences between BRAF and NRAS mutated melanoma, and identification of both was possible with an accuracy of 87-89% and 76-79%, depending on the respective classification method applied. In addition, differential expression of some predictive proteins, such as histones or glyceraldehyde-3-phosphate-dehydrogenase, correlated with BRAF or NRAS mutation status. Overall, these findings provide a new molecular method to classify melanoma patients carrying BRAF and NRAS mutations and help provide a broader view of the molecular characteristics of these patients that may help understand the signaling pathways and interactions involving the altered genes.
Collapse
Affiliation(s)
| | - Mark Kriegsmann
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Institute of Pathology Wiesbaden, 69120 Heidelberg, Germany
| | - Katharina Kriegsmann
- Department of Hematology Oncology and Rheumatology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Helene Streit
- Department of Medicine, Faculty of Medicine and Dentistry, Danube Private University, 3500 Krems, Austria
| | | | - Cornelia S L Müller
- MVZ für Histologie, Zytologie und Molekulare Diagnostik Trier, 54296 Trier, Germany
| | - Joerg Kriegsmann
- Proteopath GmbH, 54296 Trier, Germany
- Department of Medicine, Faculty of Medicine and Dentistry, Danube Private University, 3500 Krems, Austria
- MVZ für Histologie, Zytologie und Molekulare Diagnostik Trier, 54296 Trier, Germany
| |
Collapse
|
2
|
You XJ, Li L, Ji TT, Xie NB, Yuan BF, Feng YQ. 6-Thioguanine incorporates into RNA and induces adenosine-to-inosine editing in acute lymphoblastic leukemia cells. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
3
|
Calafat M, Mañosa M, Cañete F, Domènech E. Clinical Considerations Regarding the Use of Thiopurines in Older Patients with Inflammatory Bowel Disease. Drugs Aging 2021; 38:193-203. [PMID: 33438138 DOI: 10.1007/s40266-020-00832-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2020] [Indexed: 12/19/2022]
Abstract
The number of older patients with inflammatory bowel disease (IBD) is increasing due to both improvements in the life expectancy of patients with long-lasting IBD and later onset of the disease. In spite of a less aggressive IBD phenotype, disease management in older patients is hampered by comorbidities and polypharmacy (which increase the risk of drug-related adverse events and errors in medication intake) and also by an increased risk of the infections and malignancies associated with the immunosuppressive drugs that are frequently used to treat IBD. Thiopurines are the most frequently used immunosuppressive drugs in IBD, though they are often discontinued due to adverse events. However, when tolerated, thiopurines are efficient in the maintenance of remission in ulcerative colitis and Crohn's disease. In fact, thiopurines still have a role to play in the treatment algorithm of older patients with IBD because anti-tumor necrosis factor agents do not provide clear advantages for this population in terms of their safety profile, while data on the new biological drugs are still scarce. In this article, we review the optimal use of thiopurines in older patients with IBD.
Collapse
Affiliation(s)
- Margalida Calafat
- Gastroenterology Department, Hospital Universitari Germans Trias i Pujol, Carretera del Canyet s/n, 08916, Badalona, Catalonia, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Hepaticas y Digestivas, Madrid, Spain
| | - Míriam Mañosa
- Gastroenterology Department, Hospital Universitari Germans Trias i Pujol, Carretera del Canyet s/n, 08916, Badalona, Catalonia, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Hepaticas y Digestivas, Madrid, Spain
| | - Fiorella Cañete
- Gastroenterology Department, Hospital Universitari Germans Trias i Pujol, Carretera del Canyet s/n, 08916, Badalona, Catalonia, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Hepaticas y Digestivas, Madrid, Spain
| | - Eugeni Domènech
- Gastroenterology Department, Hospital Universitari Germans Trias i Pujol, Carretera del Canyet s/n, 08916, Badalona, Catalonia, Spain.
- Centro de Investigaciones Biomédicas en Red de Enfermedades Hepaticas y Digestivas, Madrid, Spain.
- Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain.
| |
Collapse
|
4
|
Sirover MA. Moonlighting glyceraldehyde-3-phosphate dehydrogenase: posttranslational modification, protein and nucleic acid interactions in normal cells and in human pathology. Crit Rev Biochem Mol Biol 2020; 55:354-371. [PMID: 32646244 DOI: 10.1080/10409238.2020.1787325] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Moonlighting glyceraldehyde-3-phosphate dehydrogenase (GAPDH) exhibits multiple functions separate and distinct from its historic role in energy production. Further, it exhibits dynamic changes in its subcellular localization which is an a priori requirement for its multiple activities. Separately, moonlighting GAPDH may function in the pathology of human disease, involved in tumorigenesis, diabetes, and age-related neurodegenerative disorders. It is suggested that moonlighting GAPDH function may be related to specific modifications of its protein structure as well as the formation of GAPDH protein: protein or GAPDH protein: nucleic acid complexes.
Collapse
Affiliation(s)
- Michael A Sirover
- Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
5
|
Khodyreva S, Lavrik O. Non-canonical interaction of DNA repair proteins with intact and cleaved AP sites. DNA Repair (Amst) 2020; 90:102847. [DOI: 10.1016/j.dnarep.2020.102847] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/06/2020] [Accepted: 03/24/2020] [Indexed: 02/01/2023]
|
6
|
Sun Z, Wang X, Zhang JZH, He Q. Sulfur-substitution-induced base flipping in the DNA duplex. Phys Chem Chem Phys 2019; 21:14923-14940. [PMID: 31233058 DOI: 10.1039/c9cp01989h] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Base flipping is widely observed in a number of important biological processes. The genetic codes deposited inside the DNA duplex become accessible to external agents upon base flipping. The sulfur substitution of guanine leads to thioguanine, which alters the thermodynamic stability of the GC base pairs and the GT mismatches. Experimental studies conclude that the sulfur substitution decreases the lifetime of the GC base pair. In this work, under three AMBER force fields for nucleotide systems, we firstly performed equilibrium and nonequilibrium free energy simulations to investigate the variation of the thermodynamic profiles in base flipping upon sulfur substitution. It is found that the bsc0 modification, the bsc1 modification and the OL15 modification of AMBER force fields are able to qualitatively describe the sulfur-substitution dependent behavior of the thermodynamics. However, only the two last-generation AMBER force fields are able to provide quantitatively correct predictions. The second computational study on the sulfur substitutions focused on the relative stability of the S6G-C base pair and the S6G-T mismatch. Two conflicting experimental observations were reported by the same authors. One suggested that the S6G-C base pair was more stable, while the other concludes that the S6G-T mismatch was more stable. We answered this question by constructing the free energy profiles along the base flipping pathway computationally.
Collapse
Affiliation(s)
- Zhaoxi Sun
- State Key Laboratory of Precision Spectroscopy, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China and Computational Biomedicine (IAS-5/INM-9), Forschungszentrum Jülich, Jülich 52425, Germany.
| | - Xiaohui Wang
- State Key Laboratory of Precision Spectroscopy, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China and Institute of Computational Science, Università della Svizzera italiana (USI), Via Giuseppe Buffi 13, CH-6900, Lugano, Ticino, Switzerland
| | - John Z H Zhang
- State Key Laboratory of Precision Spectroscopy, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China and NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China and Department of Chemistry, New York University, NY, NY 10003, USA
| | - Qiaole He
- Forschungszentrum Jülich GmbH, IBG-1: Biotechnology, Wilhelm-Johnen-Str. 1, 52425 Jülich, Germany. and State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
7
|
Liao H, Xie X, Xu Y, Huang G. Identification of driver genes associated with chemotherapy resistance of Ewing's sarcoma. Onco Targets Ther 2018; 11:6947-6956. [PMID: 30410352 PMCID: PMC6199211 DOI: 10.2147/ott.s172190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background The aim of this study was to identify the driver genes associated with chemotherapy resistance of Ewing’s sarcoma and potential targets for Ewing’s sarcoma treatment. Methods Two mRNA microarray datasets, GSE12102 and GSE17679, were downloaded from the Gene Expression Omnibus database, which contain 94 human Ewing’s sarcoma samples, including 65 from those who experienced a relapse and 29 from those with no evidence of disease. The differen tially expressed genes (DEGs) were identified using LIMMA package R. Subsequently, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed for DEGs using Database for Annotation, Visualization and Integrated Analysis. The protein–protein interaction network was constructed using Cytoscape software, and module analysis was performed using Molecular Complex Detection. Results A total of 206 upregulated DEGs and 141 downregulated DEGs were identified. Upregulated DEGs were primarily enriched in DNA replication, nucleoplasm and protein kinase binding for biological processes, cellular component and molecular functions, respectively. Downregulated DEGs were predominantly involved in receptor clustering, membrane raft, and ligand-dependent nuclear receptor binding. The protein–protein interaction network of DEGs consisted of 150 nodes and 304 interactions. Thirteen hub genes were identified, and biological analysis revealed that these genes were primarily enriched in cell division, cell cycle, and mitosis. Furthermore, based on closeness centrality, betweenness centrality, and degree centrality, the three most significant genes were identified as GAPDH, AURKA, and EHMT2. Furthermore, the significant network module was composed of nine genes. These genes were primarily enriched in mitotic nuclear division, mitotic chromosome condensation, and nucleoplasm. Conclusion These hub genes, especially GAPDH, AURKA, and EHMT2, may be closely associated with the progression of Ewing’s sarcoma chemotherapy resistance, and further experiments are needed for confirmation.
Collapse
Affiliation(s)
- Hongyi Liao
- Department of Orthopedic Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Xianbiao Xie
- Department of Orthopedic Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China,
| | - Yuanyuan Xu
- Department of Pediatrics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Gang Huang
- Department of Orthopedic Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China,
| |
Collapse
|
8
|
Kosova AA, Khodyreva SN, Lavrik OI. Role of Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH) in DNA Repair. BIOCHEMISTRY (MOSCOW) 2017; 82:643-654. [PMID: 28601074 DOI: 10.1134/s0006297917060013] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is widely known as a glycolytic enzyme. Nevertheless, various functions of GAPDH have been found that are unrelated to glycolysis. Some of these functions presume interaction of GAPDH with DNA, but the mechanism of its translocation to the nucleus is not fully understood. When in the nucleus, GAPDH participates in the initiation of apoptosis and transcription of genes involved in antiapoptotic pathways and cell proliferation and plays a role in the regulation of telomere length. Several authors have shown that GAPDH displays the uracil-DNA glycosylase activity and interacts with some types of DNA damages, such as apurinic/apyrimidinic sites, nucleotide analogs, and covalent DNA adducts with alkylating agents. Moreover, GAPDH can interact with proteins participating in DNA repair, such as APE1, PARP1, HMGB1, and HMGB2. In this review, the functions of GAPDH associated with DNA repair are discussed in detail.
Collapse
Affiliation(s)
- A A Kosova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | | | | |
Collapse
|
9
|
Coskun M, Steenholdt C, de Boer NK, Nielsen OH. Pharmacology and Optimization of Thiopurines and Methotrexate in Inflammatory Bowel Disease. Clin Pharmacokinet 2016; 55:257-74. [PMID: 26255287 DOI: 10.1007/s40262-015-0316-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Improving the efficacy and reducing the toxicity of thiopurines and methotrexate (MTX) have been areas of intense basic and clinical research. An increased knowledge on pharmacodynamics and pharmacokinetics of these immunomodulators has optimized treatment strategies in inflammatory bowel disease (IBD). This review focuses on the metabolism and mode of action of thiopurines and MTX, and provides an updated overview of individualized treatment strategies in which efficacy in IBD can be increased without compromising safety. The patient-based monitoring instruments adapted into clinical practice include pretreatment thiopurine S-methyltransferase testing, thiopurine metabolite monitoring, and blood count measurements that may help guiding the dosage to improve clinical outcome. Other approaches for optimizing thiopurine therapy in IBD include combination therapy with allopurinol, 5-aminosalicylates, and/or biologics. Similar strategies are yet to be proven effective in improving the outcome of MTX therapy. Important challenges for the management of IBD in the future relate to individualized dosing of immunomodulators for maximal efficacy with minimal risk of side effects. As low-cost conventional immunomodulators still remain a mainstay in pharmacotherapy of IBD, more research remains warranted, especially to substantiate these tailored management strategies in controlled clinical trials.
Collapse
Affiliation(s)
- Mehmet Coskun
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, Herlev, Denmark. .,Department of Biology and Biotech Research and Innovation Centre (BRIC), The Bioinformatics Centre, University of Copenhagen, Copenhagen, Denmark.
| | - Casper Steenholdt
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Nanne K de Boer
- Department of Gastroenterology and Hepatology, VU University Medical Center, Amsterdam, The Netherlands
| | - Ole Haagen Nielsen
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| |
Collapse
|
10
|
Morgan JA, Lynch J, Panetta JC, Wang Y, Frase S, Bao J, Zheng J, Opferman JT, Janke L, Green DM, Chemaitilly W, Schuetz JD. Apoptosome activation, an important molecular instigator in 6-mercaptopurine induced Leydig cell death. Sci Rep 2015; 5:16488. [PMID: 26576726 PMCID: PMC4649703 DOI: 10.1038/srep16488] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/14/2015] [Indexed: 11/09/2022] Open
Abstract
Leydig cells are crucial to the production of testosterone in males. It is unknown if the cancer chemotherapeutic drug, 6-mercaptopurine (6 MP), produces Leydig cell failure among adult survivors of childhood acute lymphoblastic leukemia. Moreover, it is not known whether Leydig cell failure is due to either a loss of cells or an impairment in their function. Herein, we show, in a subset of childhood cancer survivors, that Leydig cell failure is related to the dose of 6 MP. This was extended, in a murine model, to demonstrate that 6 MP exposure induced caspase 3 activation, and the loss of Leydig cells was independent of Bak and Bax activation. The death of these non-proliferating cells was triggered by 6 MP metabolism, requiring formation of both cytosolic reactive oxygen species and thiopurine nucleotide triphosphates. The thiopurine nucleotide triphosphates (with physiological amounts of dATP) uniquely activated the apoptosome. An ABC transporter (Abcc4/Mrp4) reduced the amount of thiopurines, thereby providing protection for Leydig cells. The studies reported here demonstrate that the apoptosome is uniquely activated by thiopurine nucleotides and suggest that 6 MP induced Leydig cell death is likely a cause of Leydig cell failure in some survivors of childhood cancer.
Collapse
Affiliation(s)
- Jessica A Morgan
- Departments of Pharmaceutical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105
| | - John Lynch
- Departments of Pharmaceutical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105
| | - John C Panetta
- Departments of Pharmaceutical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105
| | - Yao Wang
- Departments of Pharmaceutical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105
| | - Sharon Frase
- Cellular Imaging Shared Resource, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105
| | - Ju Bao
- Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105
| | - Jie Zheng
- Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105
| | - Joseph T Opferman
- Cell and Molecular Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105
| | - Laura Janke
- Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105
| | - Daniel M Green
- Epidemiology &Cancer Control, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105
| | - Wassim Chemaitilly
- Epidemiology &Cancer Control, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105.,Endocrinology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105
| | - John D Schuetz
- Departments of Pharmaceutical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105
| |
Collapse
|
11
|
Savreux-Lenglet G, Depauw S, David-Cordonnier MH. Protein Recognition in Drug-Induced DNA Alkylation: When the Moonlight Protein GAPDH Meets S23906-1/DNA Minor Groove Adducts. Int J Mol Sci 2015; 16:26555-81. [PMID: 26556350 PMCID: PMC4661830 DOI: 10.3390/ijms161125971] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/25/2015] [Accepted: 10/27/2015] [Indexed: 12/11/2022] Open
Abstract
DNA alkylating drugs have been used in clinics for more than seventy years. The diversity of their mechanism of action (major/minor groove; mono-/bis-alkylation; intra-/inter-strand crosslinks; DNA stabilization/destabilization, etc.) has undoubtedly major consequences on the cellular response to treatment. The aim of this review is to highlight the variety of established protein recognition of DNA adducts to then particularly focus on glyceraldehyde-3-phosphate dehydrogenase (GAPDH) function in DNA adduct interaction with illustration using original experiments performed with S23906-1/DNA adduct. The introduction of this review is a state of the art of protein/DNA adducts recognition, depending on the major or minor groove orientation of the DNA bonding as well as on the molecular consequences in terms of double-stranded DNA maintenance. It reviews the implication of proteins from both DNA repair, transcription, replication and chromatin maintenance in selective DNA adduct recognition. The main section of the manuscript is focusing on the implication of the moonlighting protein GAPDH in DNA adduct recognition with the model of the peculiar DNA minor groove alkylating and destabilizing drug S23906-1. The mechanism of action of S23906-1 alkylating drug and the large variety of GAPDH cellular functions are presented prior to focus on GAPDH direct binding to S23906-1 adducts.
Collapse
Affiliation(s)
- Gaëlle Savreux-Lenglet
- UMR-S1172-Jean-Pierre Aubert Research Centre (JPARC), INSERM, University of Lille, Lille Hospital, Institut pour la Recherche sur le Cancer de Lille, Place de Verdun F-59045 Lille cedex, France.
| | - Sabine Depauw
- UMR-S1172-Jean-Pierre Aubert Research Centre (JPARC), INSERM, University of Lille, Lille Hospital, Institut pour la Recherche sur le Cancer de Lille, Place de Verdun F-59045 Lille cedex, France.
| | - Marie-Hélène David-Cordonnier
- UMR-S1172-Jean-Pierre Aubert Research Centre (JPARC), INSERM, University of Lille, Lille Hospital, Institut pour la Recherche sur le Cancer de Lille, Place de Verdun F-59045 Lille cedex, France.
| |
Collapse
|
12
|
Abstract
Apurinic/apyrimidinic (AP) sites are some of the most frequent DNA damages and the key intermediates of base excision repair. Certain proteins can interact with the deoxyribose of the AP site to form a Schiff base, which can be stabilized by NaBH4 treatment. Several types of DNA containing the AP site were used to trap proteins in human cell extracts by this method. In the case of single-stranded AP DNA and AP DNA duplex with both 5' and 3' dangling ends, the major crosslinking product had an apparent molecular mass of 45 kDa. Using peptide mass mapping based on mass spectrometry data, we identified the protein forming this adduct as an isoform of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) called "uracil-DNA glycosylase". GAPDH is a glycolytic enzyme with many additional putative functions, which include interaction with nucleic acids, different DNA damages and DNA repair enzymes. We investigated interaction of GAPDH purified from HeLa cells and rabbit muscles with different AP DNAs. In spite of the ability to form a Schiff-base intermediate with the deoxyribose of the AP site, GAPDH does not display the AP lyase activity. In addition, along with the borohydride-dependent adducts with AP DNAs containing single-stranded regions, GAPDH was also shown to form the stable borohydride-independent crosslinks with these AP DNAs. GAPDH was proven to crosslink preferentially to AP DNAs cleaved via the β-elimination mechanism (spontaneously or by AP lyases) as compared to DNAs containing the intact AP site. The level of GAPDH-AP DNA adduct formation depends on oxidation of the protein SH-groups; disulfide bond reduction in GAPDH leads to the loss of its ability to form the adducts with AP DNA. A possible role of formation of the stable adducts with AP sites by GAPDH is discussed.
Collapse
|
13
|
LIU SHUANG, ZHU PENGFEI, ZHANG LING, LI ZHUO, LV QUANJUN, ZHENG SUJUN, WANG YANG, LU FENGMIN. Increased glyceraldehyde-3-phosphate dehydrogenase expression indicates higher survival rates in male patients with hepatitis B virus-accociated hepatocellular carcinoma and cirrhosis. Exp Ther Med 2015; 9:1597-1604. [PMID: 26136865 PMCID: PMC4471696 DOI: 10.3892/etm.2015.2309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 01/15/2015] [Indexed: 12/22/2022] Open
Abstract
Elevated expression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has been reported in different human malignancies. To understand its role in hepatitis B virus (HBV) infection-associated hepatocellular carcinoma (HCC), the expression of GAPDH was quantitatively measured in a cohort of 72 male HCC patients without preoperative treatment, all with evidence of chronic HBV infection. Using C-terminal banding protein 1 (CTBP1) or hypoxanthine phosphori-bosyltransferase 1 (HPRT1) as reference genes, the level of GAPDH mRNA in tumor tissue was found to be significantly higher compared with that in paired non tumor tissues (P=0.0087 for CTBP1; P=0.0116 for HPRT1). Accordingly, compared with the non-tumor tissue, 37.5% (27/72) of patients' tumor tissues had a more than 2-fold increase of GAPDH expression. Furthermore, following knockdown GAPDH expression via siRNA transient transfection, HepG2 cells exhibited enhanced resistance to cytosine arabinoside (IC50, 308.28 µM vs. 67.68 µM in the control; P=0.01). Notably, higher GAPDH expression was significantly associated with lower liver fibrosis score (P=0.0394) and a tendency towards higher survival rates for patients with HCC. To the best of our knowledge, the present study is the first study to report that the elevated expression levels of GAPDH in HCC tumor tissue may be relevant to an improved fibrosis score and survival probability in male patients with HBV infection; however, the underlying mechanism requires further investigation.
Collapse
Affiliation(s)
- SHUANG LIU
- Beijing Artificial Liver Treatment and Training Center, Beijing Youan Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - PENGFEI ZHU
- Beijing Artificial Liver Treatment and Training Center, Beijing Youan Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - LING ZHANG
- Department of Hepatobiliary Surgery, Henan Cancer Hospital, Zhengzhou, Henan 450008, P.R. China
| | - ZHUO LI
- Beijing Artificial Liver Treatment and Training Center, Beijing Youan Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - QUANJUN LV
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - SUJUN ZHENG
- Beijing Artificial Liver Treatment and Training Center, Beijing Youan Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - YANG WANG
- Beijing Artificial Liver Treatment and Training Center, Beijing Youan Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - FENGMIN LU
- Department of Microbiology and Infectious Disease Center, Peking University Health Science Center, Beijing 100086, P.R. China
| |
Collapse
|
14
|
Xiao Y, Ji D, Guo L, Wang Y. Comprehensive characterization of (S)GTP-binding proteins by orthogonal quantitative (S)GTP-affinity profiling and (S)GTP/GTP competition assays. Anal Chem 2014; 86:4550-8. [PMID: 24689502 PMCID: PMC4014148 DOI: 10.1021/ac500588q] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 04/01/2014] [Indexed: 11/30/2022]
Abstract
Thiopurine drugs are widely used as antileukemic drugs and immunosuppressive agents, and 6-thioguanosine triphosphate ((S)GTP) is a major metabolite for these drugs. Recent studies have suggested that thiopurine drugs may exert their cytotoxic effects partly through binding of (S)GTP to a GTP-binding protein, Rac1. However, it remains unclear whether (S)GTP can also bind to other cellular proteins. Here, we introduced an orthogonal approach, encompassing nucleotide-affinity profiling and nucleotide-binding competition assays, to characterize comprehensively (S)GTP-binding proteins along with the specific binding sites from the entire human proteome. With the simultaneous use of (S)GTP and GTP affinity probes, we identified 165 (S)GTP-binding proteins that are involved in several different biological processes. We also examined the binding selectivities of these proteins toward (S)GTP and GTP, which allowed for the revelation of the relative binding affinities of the two nucleotides toward the nucleotide-binding motif sequence of proteins. Our results suggest that (S)GTP mainly targets GTPases, with strong binding affinities observed for multiple heterotrimeric G proteins. We also demonstrated that (S)GTP binds to several cyclin-dependent kinases (CDKs), which may perturb the CDK-mediated phosphorylation and cell cycle progression. Together, this represents the first comprehensive characterization of (S)GTP-binding property for the entire human proteome. We reason that a similar strategy can be generally employed for the future characterization of the interaction of other modified nucleotides with the global proteome.
Collapse
Affiliation(s)
- Yongsheng Xiao
- Department of Chemistry and Environmental Toxicology Graduate
Program, University of California, Riverside, California 92521-0403, United States
| | - Debin Ji
- Department of Chemistry and Environmental Toxicology Graduate
Program, University of California, Riverside, California 92521-0403, United States
| | - Lei Guo
- Department of Chemistry and Environmental Toxicology Graduate
Program, University of California, Riverside, California 92521-0403, United States
| | - Yinsheng Wang
- Department of Chemistry and Environmental Toxicology Graduate
Program, University of California, Riverside, California 92521-0403, United States
| |
Collapse
|
15
|
Sulfur mustard induced nuclear translocation of glyceraldehyde-3-phosphate-dehydrogenase (GAPDH). Chem Biol Interact 2013; 206:529-35. [DOI: 10.1016/j.cbi.2013.06.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 06/12/2013] [Accepted: 06/14/2013] [Indexed: 11/23/2022]
|
16
|
Zhang F, Fu L, Wang Y. 6-thioguanine induces mitochondrial dysfunction and oxidative DNA damage in acute lymphoblastic leukemia cells. Mol Cell Proteomics 2013; 12:3803-11. [PMID: 24043426 DOI: 10.1074/mcp.m113.029595] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thiopurines are among the most successful chemotherapeutic agents used for treating various human diseases, including acute lymphoblastic leukemia and chronic inflammation. Although metabolic conversion and the subsequent incorporation of 6-thioguanine ((S)G) nucleotides into nucleic acids are considered important for allowing the thiopurine drugs to induce their cytotoxic effects, alternative mechanisms may also exist. We hypothesized that an unbiased analysis of (S)G-induced perturbation of the entire proteome might uncover novel mechanism(s) of action of the drug. We performed a quantitative assessment of global protein expression in control and (S)G-treated Jurkat T cells by employing stable isotope labeling by amino acids in cell culture and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. LC-MS/MS quantification results uncovered substantially decreased expression of a large number of proteins in the mitochondrial respiratory chain complex, and Ingenuity Pathway Analysis of the significantly altered proteins showed that (S)G treatment induced mitochondrial dysfunction. This was accompanied by diminished uptake of MitoTracker Deep Red and the elevated formation of oxidatively induced DNA lesions, including 8,5'-cyclo-2'-deoxyadenosine and 8,5'-cyclo-2'-deoxyguanosine. Together, our results suggested that (S)G may exert its cytotoxic effect by inducing mitochondrial dysfunction and reactive oxygen species formation in acute lymphoblastic leukemia cells.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Chemistry, University of California, Riverside, California 92521-0403
| | | | | |
Collapse
|
17
|
Protein recognition of the S23906-1-DNA adduct by nuclear proteins: direct involvement of glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Biochem J 2013; 452:147-59. [PMID: 23409959 DOI: 10.1042/bj20120860] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In a view to develop new DNA alkylating antitumour drugs, evaluating the precise mechanism of action and the molecular/cellular consequences of the alkylation is a point of major interest. The benzo-b-acronycine derivative S23906-1 alkylates guanine nucleobases in the minor groove of the DNA helix and presents an original ability to locally open the double helix of DNA, which appears to be associated with its cytotoxic activity. However, the molecular mechanism linking adduct formation to cellular consequences is not precisely known. The objective of the present study was to identify proteins involved in the recognition and mechanism of action of S23906-DNA adducts. We found that GAPDH (glyceraldehyde-3-phosphate dehydrogenase) is a protein that binds to S23906-alkylated single-stranded, double-stranded and telomeric sequences in a drug-dependent and DNA sequence/structure-dependent manner. We used the CASTing (cyclic amplification of sequence targeting) method to identify GAPDH DNA-binding selectivity and then evaluated its binding to such selected S23906-alkylated sequences. At the cellular level, alkylation of S23906-1 results in an increase in the binding of GAPDH and its protein partner HMG (high-mobility group) B1 to the chromatin. Regarding the multiple roles of GAPDH in apoptosis and DNA repair, the cytotoxic and apoptotic activities of GAPDH were evaluated and present opposite effects in two different cellular models.
Collapse
|
18
|
You C, Dai X, Yuan B, Wang Y. Effects of 6-thioguanine and S6-methylthioguanine on transcription in vitro and in human cells. J Biol Chem 2012; 287:40915-23. [PMID: 23076150 DOI: 10.1074/jbc.m112.418681] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Thiopurine drugs are extensively used as chemotherapeutic agents in clinical practice, even though there is concern about the risk of therapy-related cancers. It has been previously suggested that the cytotoxicity of thiopurine drugs involves their metabolic activation, the resultant generation of 6-thioguanine ((S)G) and S(6)-methylthioguanine (S(6)mG) in DNA, and the futile mismatch repair triggered by replication-induced (S)G:T and S(6)mG:T mispairs. Disruption of transcription is known to be one of the major consequences of DNA damage induced by many antiviral and antitumor agents; however, it remains undefined how (S)G and S(6)mG compromise the efficiency and fidelity of transcription. Using our recently developed competitive transcription and adduct bypass assay, herein we examined the impact of (S)G and S(6)mG on transcription in vitro and in human cells. Our results revealed that, when situated on the transcribed strand, S(6)mG exhibited both inhibitory and mutagenic effects during transcription mediated by single-subunit T7 RNA polymerase or multisubunit human RNA polymerase II in vitro and in human cells. Moreover, we found that the impact of S(6)mG on transcriptional efficiency and fidelity is modulated by the transcription-coupled nucleotide excision repair capacity. In contrast, (S)G did not considerably compromise the efficiency or fidelity of transcription, and it was a poor substrate for NER. We propose that S(6)mG might contribute, at least in part, to thiopurine-mediated cytotoxicity through inhibition of transcription and to potential therapy-related carcinogenesis via transcriptional mutagenesis.
Collapse
Affiliation(s)
- Changjun You
- Department of Chemistry, University of California, Riverside, California 92521-0403, USA
| | | | | | | |
Collapse
|
19
|
Blaker PA, Arenas-Hernandez M, Marinaki AM, Sanderson JD. The pharmacogenetic basis of individual variation in thiopurine metabolism. Per Med 2012; 9:707-725. [DOI: 10.2217/pme.12.85] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Thiopurines are an important class of immunosuppressive therapy, which have been used in clinical practice for over 50 years. Despite this extensive experience many of the pharmacodynamic and pharmacokinetic properties of these drugs remain unknown. As a consequence there is often no clear explanation for the individual variation in response to treatment, both in terms of efficacy or adverse drug reactions. This review, which emphasizes practice in gastroenterology, summarizes the current understanding of thiopurine drug metabolism and highlights the role of nongenetic and genetic factors other than TPMT, which should be a focus for future research. Correlation of polymorphic variations in these genes with clinical outcomes is expected to clarify the basis for interindividual differences in thiopurine metabolism and enable a more personalized approach to therapy.
Collapse
Affiliation(s)
- Paul Andrew Blaker
- Department of Gastroenterology, 1st Floor College House, St Thomas’ Hospital, Westminster Bridge Road, London, SE1 7EH, London, UK
| | - Monica Arenas-Hernandez
- The Purine Research Laboratory, Guy’s & St Thomas’ Hospitals NHS Foundation Trust , London, UK
| | - Anthony Marin Marinaki
- The Purine Research Laboratory, Guy’s & St Thomas’ Hospitals NHS Foundation Trust , London, UK
| | - Jeremy David Sanderson
- Department of Gastroenterology, 1st Floor College House, St Thomas’ Hospital, Westminster Bridge Road, London, SE1 7EH, London, UK
| |
Collapse
|
20
|
Asexual reproductive organ-specific expression of the glyceraldehyde-3-phosphate dehydrogenase 2 gene of Pilobolus crystallinus. MYCOSCIENCE 2012. [DOI: 10.1007/s10267-011-0143-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
21
|
Adamo GM, Brocca S, Passolunghi S, Salvato B, Lotti M. Laboratory evolution of copper tolerant yeast strains. Microb Cell Fact 2012; 11:1. [PMID: 22214286 PMCID: PMC3276424 DOI: 10.1186/1475-2859-11-1] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Accepted: 01/03/2012] [Indexed: 02/06/2023] Open
Abstract
Background Yeast strains endowed with robustness towards copper and/or enriched in intracellular Cu might find application in biotechnology processes, among others in the production of functional foods. Moreover, they can contribute to the study of human diseases related to impairments of copper metabolism. In this study, we investigated the molecular and physiological factors that confer copper tolerance to strains of baker's yeasts. Results We characterized the effects elicited in natural strains of Candida humilis and Saccharomyces cerevisiae by the exposure to copper in the culture broth. We observed that, whereas the growth of Saccharomyces cells was inhibited already at low Cu concentration, C. humilis was naturally robust and tolerated up to 1 g · L-1 CuSO4 in the medium. This resistant strain accumulated over 7 mg of Cu per gram of biomass and escaped severe oxidative stress thanks to high constitutive levels of superoxide dismutase and catalase. Both yeasts were then "evolved" to obtain hyper-resistant cells able to proliferate in high copper medium. While in S. cerevisiae the evolution of robustness towards Cu was paralleled by the increase of antioxidative enzymes, these same activities decreased in evolved hyper-resistant Candida cells. We also characterized in some detail changes in the profile of copper binding proteins, that appeared to be modified by evolution but, again, in a different way in the two yeasts. Conclusions Following evolution, both Candida and Saccharomyces cells were able to proliferate up to 2.5 g · L-1 CuSO4 and to accumulate high amounts of intracellular copper. The comparison of yeasts differing in their robustness, allowed highlighting physiological and molecular determinants of natural and acquired copper tolerance. We observed that different mechanisms contribute to confer metal tolerance: the control of copper uptake, changes in the levels of enzymes involved in oxidative stress response and changes in the copper-binding proteome. However, copper elicits different physiological and molecular reactions in yeasts with different backgrounds.
Collapse
Affiliation(s)
- Giusy Manuela Adamo
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | | | | | | | | |
Collapse
|
22
|
Kubo H. Cloning and expression analysis of putative glyceraldehyde-3- phosphate dehydrogenase genes in Pilobolus crystallinus. MYCOSCIENCE 2011. [DOI: 10.1007/s10267-010-0073-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
Yuan B, Zhang J, Wang H, Xiong L, Cai Q, Wang T, Jacobsen S, Pradhan S, Wang Y. 6-Thioguanine reactivates epigenetically silenced genes in acute lymphoblastic leukemia cells by facilitating proteasome-mediated degradation of DNMT1. Cancer Res 2011; 71:1904-11. [PMID: 21239472 DOI: 10.1158/0008-5472.can-10-3430] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Thiopurines including 6-thioguanine ((S)G), 6-mercaptopurine, and azathioprine are effective anticancer agents with remarkable success in clinical practice, especially in effective treatment of acute lymphoblastic leukemia (ALL). (S)G is understood to act as a DNA hypomethylating agent in ALL cells, however, the underlying mechanism leading to global cytosine demethylation remains unclear. Here we report that (S)G treatment results in reactivation of epigenetically silenced genes in T leukemia cells. Bisulfite genomic sequencing revealed that (S)G treatment universally elicited demethylation in the promoters and/or first exons of the genes that were reactivated. (S)G treatment also attenuated the expression of histone lysine-specific demethylase 1 (LSD1), thereby stimulating lysine methylation of the DNA methylase DNMT1 and triggering its degradation via the ubiquitin-proteasomal pathway. Taken together, our findings reveal a previously uncharacterized but vital mechanistic link between (S)G treatment and DNA hypomethylation.
Collapse
Affiliation(s)
- Bifeng Yuan
- Department of Chemistry, University of California, Riverside, California 92521-0403, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Demarse NA, Ponnusamy S, Spicer EK, Apohan E, Baatz JE, Ogretmen B, Davies C. Direct binding of glyceraldehyde 3-phosphate dehydrogenase to telomeric DNA protects telomeres against chemotherapy-induced rapid degradation. J Mol Biol 2009; 394:789-803. [PMID: 19800890 DOI: 10.1016/j.jmb.2009.09.062] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 09/24/2009] [Accepted: 09/25/2009] [Indexed: 01/01/2023]
Abstract
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a glycolytic enzyme that displays several non-glycolytic activities, including the maintenance and/or protection of telomeres. In this study, we determined the molecular mechanism and biological role of the interaction between GAPDH and human telomeric DNA. Using gel-shift assays, we show that recombinant GAPDH binds directly with high affinity (K(d)=45 nM) to a single-stranded oligonucleotide comprising three telomeric DNA repeats, and that nucleotides T1, G5, and G6 of the TTAGGG repeat are essential for binding. The stoichiometry of the interaction is 2:1 (DNA:GAPDH), and GAPDH appears to form a high-molecular-weight complex when bound to the oligonucleotide. Mutation of Asp32 and Cys149, which are localized to the NAD-binding site and the active-site center of GAPDH, respectively, produced mutants that almost completely lost their telomere-binding functions both in vitro and in situ (in A549 human lung cancer cells). Treatment of A549 cells with the chemotherapeutic agents gemcitabine and doxorubicin resulted in increased nuclear localization of expressed wild-type GAPDH, where it protected telomeres against rapid degradation, concomitant with increased resistance to the growth-inhibitory effects of these drugs. The non-DNA-binding mutants of GAPDH also localized to the nucleus when expressed in A549 cells, but did not confer any significant protection of telomeres against chemotherapy-induced degradation or growth inhibition; this occurred without the involvement of caspase activation or apoptosis regulation. Overall, these data demonstrate that GAPDH binds telomeric DNA directly in vitro and may have a biological role in the protection of telomeres against rapid degradation in response to chemotherapeutic agents in A549 human lung cancer cells.
Collapse
Affiliation(s)
- Neil A Demarse
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Phadke MS, Krynetskaia NF, Mishra AK, Krynetskiy E. Glyceraldehyde 3-phosphate dehydrogenase depletion induces cell cycle arrest and resistance to antimetabolites in human carcinoma cell lines. J Pharmacol Exp Ther 2009; 331:77-86. [PMID: 19628630 PMCID: PMC2766228 DOI: 10.1124/jpet.109.155671] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Accepted: 07/21/2009] [Indexed: 01/06/2023] Open
Abstract
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a multifunctional protein that acts at the intersection of energy metabolism and stress response in tumor cells. To elucidate the role of GAPDH in chemotherapy-induced stress, we analyzed its activity, protein level, intracellular distribution, and intranuclear mobility in human carcinoma cells A549 and UO31 after treatment with cytarabine, doxorubicin, and mercaptopurine. After treatment with cytosine arabinoside (araC), enzymatically inactive GAPDH accumulated in the nucleus. Experiments on fluorescence recovery after photobleaching with green fluorescent protein-GAPDH fusion protein in the live cells treated with araC demonstrated reduced mobility of green fluorescent protein-GAPDH inside the nucleus, indicative of interactions with nuclear macromolecular components after genotoxic stress. Depletion of GAPDH with RNA interference stopped cell proliferation, and induced cell cycle arrest in G(1) phase via p53 stabilization, and accumulation of p53-inducible CDK inhibitor p21. Neither p21 accumulation nor cell cycle arrest was detected in GAPDH-depleted p53-null NCI-H358 cells. GAPDH-depleted A549 cells were 50-fold more resistant to treatment with cytarabine (1.68 +/- 0.182 microM versus 0.03 +/- 0.015 microM in control). Depletion of GAPDH did not significantly alter cellular sensitivity to doxorubicin (0.05 +/- 0.023 microM versus 0.035 +/- 0.0154 microM in control). Induction of cell cycle arrest in p53-proficient carcinoma cells via GAPDH abrogation suggests that GAPDH-depleting agents may have a cytostatic effect in cancer cells. Our results define GAPDH as an important determinant of cellular sensitivity to antimetabolite chemotherapy because of its regulatory functions.
Collapse
Affiliation(s)
- Manali S Phadke
- Temple University School of Pharmacy, Philadelphia, PA 19140, USA
| | | | | | | |
Collapse
|
26
|
Colell A, Green DR, Ricci JE. Novel roles for GAPDH in cell death and carcinogenesis. Cell Death Differ 2009; 16:1573-81. [PMID: 19779498 DOI: 10.1038/cdd.2009.137] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Growing evidence points to the fact that glucose metabolism has a central role in carcinogenesis. Among the enzymes controlling this energy production pathway, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is of particular interest. Initially identified as a glycolytic enzyme and considered as a housekeeping gene, this enzyme is actually tightly regulated and is involved in numerous cellular functions. Particularly intriguing are recent reports describing GAPDH as a regulator of cell death. However, its role in cell death is unclear; whereas some studies point toward a proapoptotic function, others describe a protective role and suggest its participation in tumor progression. In this study, we highlight recent findings and discuss potential mechanisms through which cells regulate GAPDH to fulfill its diverse functions to influence cell fate.
Collapse
Affiliation(s)
- A Colell
- Department of Cell Death and Proliferation, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas and Liver Unit, Hospital Clinic i Provincial, Centro de Investigaciones Biomédicas Esther Koplowitz, and CIBEREHD, IDIBAPS, 08036-Barcelona, Spain.
| | | | | |
Collapse
|
27
|
Azam S, Jouvet N, Jilani A, Vongsamphanh R, Yang X, Yang S, Ramotar D. Human glyceraldehyde-3-phosphate dehydrogenase plays a direct role in reactivating oxidized forms of the DNA repair enzyme APE1. J Biol Chem 2008; 283:30632-41. [PMID: 18776186 DOI: 10.1074/jbc.m801401200] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has diverse biological functions including its nuclear translocation in response to oxidative stress. We show that GAPDH physically associates with APE1, an essential enzyme involved in the repair of abasic sites in damaged DNA, as well as in the redox regulation of several transcription factors. This interaction allows GAPDH to convert the oxidized species of APE1 to the reduced form, thereby reactivating its endonuclease activity to cleave abasic sites. The GAPDH variants C152G and C156G retain the ability to interact with but are unable to reactivate APE1, implicating these cysteines in catalyzing the reduction of APE1. Interestingly, GAPDH-small interfering RNA knockdown sensitized the cells to methyl methane sulfonate and bleomycin, which generate lesions that are repaired by APE1, but showed normal sensitivity to 254-nm UV. Moreover, the GAPDH knockdown cells exhibited an increased level of spontaneous abasic sites in the genomic DNA as a result of diminished APE1 endonuclease activity. Thus, the nuclear translocation of GAPDH during oxidative stress constitutes a protective mechanism to safeguard the genome by preventing structural inactivation of APE1.
Collapse
Affiliation(s)
- Sonish Azam
- University of Montreal, Maisonneuve-Rosemont Hospital, Research Center, Montreal, Quebec H1T 2M4, Canada
| | | | | | | | | | | | | |
Collapse
|
28
|
Yuan B, Wang Y. Mutagenic and cytotoxic properties of 6-thioguanine, S6-methylthioguanine, and guanine-S6-sulfonic acid. J Biol Chem 2008; 283:23665-70. [PMID: 18591241 DOI: 10.1074/jbc.m804047200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Thiopurine drugs, including 6-thioguanine ((S)G), 6-mercaptopurine, and azathioprine, are widely employed anticancer agents and immunosuppressants. The formation of (S)G nucleotides from the thiopurine prodrugs and their subsequent incorporation into nucleic acids are important for the drugs to exert their cytotoxic effects. (S)G in DNA can be methylated by S-adenosyl-l-methionine to give S(6)-methylthioguanine (S(6)mG) and oxidized by UVA light to render guanine-S(6)-sulfonic acid ((SO3H)G). Here, we constructed single-stranded M13 shuttle vectors carrying a (S)G, S(6)mG, or (SO3H)G at a unique site and allowed the vectors to propagate in wild-type and bypass polymerase-deficient Escherichia coli cells. Analysis of the replication products by using the competitive replication and adduct bypass and a slightly modified restriction enzyme digestion and post-labeling assays revealed that, although none of the three thionucleosides considerably blocked DNA replication in all transfected E. coli cells, both S(6)mG and (SO3H)G were highly mutagenic, which resulted in G-->A mutation at frequencies of 94 and 77%, respectively, in wild-type E. coli cells. Deficiency in bypass polymerases does not result in alteration of mutation frequencies of these two lesions. In contrast to what was found from previous steady-state kinetic analysis, our data demonstrated that 6-thioguanine is mutagenic, with G-->A transition occurring at a frequency of approximately 10%. The mutagenic properties of 6-thioguanine and its derivatives revealed in the present study offered important knowledge about the biological implications of these thionucleosides.
Collapse
Affiliation(s)
- Bifeng Yuan
- Department of Chemistry, University of California, Riverside, CA 92521-0403, USA
| | | |
Collapse
|
29
|
Karran P, Attard N. Thiopurines in current medical practice: molecular mechanisms and contributions to therapy-related cancer. Nat Rev Cancer 2008; 8:24-36. [PMID: 18097462 DOI: 10.1038/nrc2292] [Citation(s) in RCA: 354] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Thiopurines have diverse clinical applications and their long-term use as anti-rejection drugs in transplant patients has been associated with a significantly increased risk of various types of cancer. Although they are slowly being replaced by a new generation of non-thiopurine immunosuppressants, it is anticipated that their use in the management of inflammatory and autoimmune diseases will continue to increase. Therapy-related cancer will remain a potential consequence of prolonged treatment for these generally non-life-threatening conditions. Understanding how thiopurines contribute to the development of cancer will facilitate clinical decisions about the potential risks to patients of long-term treatment for chronic inflammatory disorders.
Collapse
Affiliation(s)
- Peter Karran
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, Hertfordshire, EN6 3LD, UK.
| | | |
Collapse
|
30
|
Krynetskaia N, Xie H, Vucetic S, Obradovic Z, Krynetskiy E. High mobility group protein B1 is an activator of apoptotic response to antimetabolite drugs. Mol Pharmacol 2008; 73:260-9. [PMID: 17951356 PMCID: PMC2210013 DOI: 10.1124/mol.107.041764] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We explored the role of a chromatin-associated nuclear protein high mobility group protein B1 (HMGB1) in apoptotic response to widely used anticancer drugs. A murine fibroblast model system generated from Hmgb1(+)(/)(+) and Hmgb1(-/-) mice was used to assess the role of HMGB1 protein in cellular response to anticancer nucleoside analogs and precursors, which act without destroying the integrity of DNA. Chemosensitivity experiments with 5-fluorouracil, cytosine arabinoside (araC), and mercaptopurine (MP) demonstrated that Hmgb1(-/-) mouse embryonic fibroblasts (MEFs) were 3 to 10 times more resistant to these drugs compared with Hmgb1(+)(/)(+) MEFs. Hmgb1-deficient cells showed compromised cell cycle arrest and reduced caspase activation after treatment with MP and araC. Phosphorylation of p53 at Ser12 (corresponding to Ser9 in human p53) and Ser18 (corresponding to Ser15 in human p53), as well as phosphorylation of H2AX after drug treatment, was reduced in Hmgb1-deficient cells. trans-Activation experiments demonstrated diminished activation of proapoptotic promoters Bax, Puma, and Noxa in Hmgb1-deficient cells after treatment with MP or araC, consistent with reduced transcriptional activity of p53. We have demonstrated for the first time that Hmgb1 is an essential activator of cellular response to genotoxic stress caused by chemotherapeutic agents (thiopurines, cytarabine, and 5-fluorouracil), which acts at early steps of antimetabolite-induced stress by stimulating phosphorylation of two DNA damage markers, p53 and H2AX. This finding makes HMGB1 a potential target for modulating activity of chemotherapeutic antimetabolites. Identification of proteins sensitive to DNA lesions that occur without the loss of DNA integrity provides new insights into the determinants of drug sensitivity in cancer cells.
Collapse
Affiliation(s)
- Natalia Krynetskaia
- Temple University School of Pharmacy, 3307 North Broad Street Philadelphia, PA 19140, USA
| | | | | | | | | |
Collapse
|
31
|
Schunke D, Span P, Ronneburg H, Dittmer A, Vetter M, Holzhausen HJ, Kantelhardt E, Krenkel S, Müller V, Sweep FC, Thomssen C, Dittmer J. Cyclooxygenase-2Is a Target Gene of Rho GDP Dissociation Inhibitor β in Breast Cancer Cells. Cancer Res 2007; 67:10694-702. [DOI: 10.1158/0008-5472.can-07-1621] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Kuravsky ML, Muronetz VI. Somatic and sperm-specific isoenzymes of glyceraldehyde-3-phosphate dehydrogenase: comparative analysis of primary structures and functional features. BIOCHEMISTRY (MOSCOW) 2007; 72:744-9. [PMID: 17680766 DOI: 10.1134/s0006297907070085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The elucidation of the interdependence between structural features and functions of somatic and sperm-specific isoenzymes of glyceraldehyde-3-phosphate dehydrogenase (GAPD and GAPDS, respectively) was the goal of comparative analysis of their primary structures. GAPDS was shown to lack the sequence similar to the atypical nuclear export signal motif (NES) of the somatic isoenzyme GAPD. This finding is confirmed by experimental data on the absence of interaction between GAPDS and antibodies 6C5 recognizing the NES motif in the sequence of GAPD. The lack of NES correlates with functional peculiarities of the sperm-specific enzyme that is tightly bound to the fibrous sheath of the sperm flagellum. The sequences of the two isoenzymes were examined for the short motifs that might participate in apoptosis, endocytosis, and DNA repair. Sites of phosphorylation by different protein kinases have been revealed in both isoenzymes, and their characteristic features are discussed. These observations can serve as the basis for subsequent search for new ways of regulating the two isoenzymes.
Collapse
Affiliation(s)
- M L Kuravsky
- Faculty of Bioengineering and Bioinformatics and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | | |
Collapse
|
33
|
Du ZX, Wang HQ, Zhang HY, Gao DX. Involvement of glyceraldehyde-3-phosphate dehydrogenase in tumor necrosis factor-related apoptosis-inducing ligand-mediated death of thyroid cancer cells. Endocrinology 2007; 148:4352-61. [PMID: 17540725 DOI: 10.1210/en.2006-1511] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TNF-related apoptosis-inducing ligand (TRAIL) is cytotoxic to most thyroid cancer cell lines, including those originating from anaplastic carcinomas, implying TRAIL as a promising therapeutic agent against thyroid cancers. However, signal transduction in TRAIL-mediated apoptosis is not clearly understood. In addition to its well-known glycolytic functions, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a multifunctional protein, including its surprising role as a mediator for cell death. In this study we explored the involvement of GAPDH in TRAIL-mediated thyroid cancer cell death. In follicular undifferentiated thyroid cells, S-nitrosylation and nuclear translocation of GAPDH appear to mediate TRAIL-induced cell death at least partially, as evidenced by pretreatment with N-nitro-L-arginine methyl ester, a competitive nitric oxide synthase inhibitor that partially but significantly attenuated TRAIL-induced apoptosis through the reduction of S-nitrosylation and nuclear translocation of GAPDH. In addition, GAPDH small interfering RNA partially prevented the apoptotic effect of TRAIL, although TRAIL-induced nitric oxide synthase stimulation and production of nitric oxide were not attenuated. Furthermore, nuclear localization of GAPDH was observed in another thyroid cancer cell line, KTC2, which is also sensitive to TRAIL, but not in those TRAIL insensitive cell lines: ARO, KTC1, and KTC3. These data indicate that nitric oxide-mediated S-nitrosylation of GAPDH and subsequent nuclear translocation of GAPDH might function as a mediator of TRAIL-induced cell death in thyroid cancer cells.
Collapse
Affiliation(s)
- Zhen-Xian Du
- Department of Endocrinology and Metabolism, the 1st Affiliated Hospital, China Medical University, Shenyang 110001, China.
| | | | | | | |
Collapse
|
34
|
Kim S, Lee J, Kim J. Regulation of oncogenic transcription factor hTAF(II)68-TEC activity by human glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Biochem J 2007; 404:197-206. [PMID: 17302560 PMCID: PMC1868794 DOI: 10.1042/bj20061297] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Tumour-specific chromosomal rearrangements are known to create chimaeric products with the ability to generate many human cancers. hTAF(II)68-TEC (where hTAF(II)68 is human TATA-binding protein-associated factor II 68 and TEC is translocated in extraskeletal chondrosarcoma) is such a fusion product, resulting from a t(9;17) chromosomal translocation found in extraskeletal myxoid chondrosarcomas, where the hTAF(II)68 NTD (N-terminal domain) is fused to TEC protein. To identify proteins that control hTAF(II)68-TEC function, we used affinity chromatography on immobilized hTAF(II)68 (NTD) and MALDI-TOF (matrix-assisted laser-desorption ionization-time-of-flight) MS and isolated a novel hTAF(II)68-TEC-interacting protein, GAPDH (glyceraldehyde-3-phosphate dehydrogenase). GAPDH is a glycolytic enzyme that is also involved in the early steps of apoptosis, nuclear tRNA export, DNA replication, DNA repair and transcription. hTAF(II)68-TEC and GAPDH were co-immunoprecipitated from cell extracts, and glutathione S-transferase pull-down assays revealed that the C-terminus of hTAF(II)68 (NTD) was required for interaction with GAPDH. In addition, three independent regions of GAPDH (amino acids 1-66, 67-160 and 160-248) were involved in binding to hTAF(II)68 (NTD). hTAF(II)68-TEC-dependent transcription was enhanced by GAPDH, but not by a GAPDH mutant defective in hTAF(II)68-TEC binding. Moreover, a fusion of GAPDH with the GAL4 DNA-binding domain increased the promoter activity of a reporter containing GAL4 DNA-binding sites, demonstrating the presence of a transactivation domain(s) in GAPDH. The results of the present study suggest that the transactivation potential of the hTAF(II)68-TEC oncogene product is positively modulated by GAPDH.
Collapse
Affiliation(s)
- Sol Kim
- Department of Life Science, Sogang University, Seoul 121-742, Korea
| | - Jungwoon Lee
- Department of Life Science, Sogang University, Seoul 121-742, Korea
| | - Jungho Kim
- Department of Life Science, Sogang University, Seoul 121-742, Korea
- To whom correspondence should be addressed (email )
| |
Collapse
|
35
|
Barbini L, Rodríguez J, Dominguez F, Vega F. Glyceraldehyde-3-phosphate dehydrogenase exerts different biologic activities in apoptotic and proliferating hepatocytes according to its subcellular localization. Mol Cell Biochem 2007; 300:19-28. [PMID: 17426931 DOI: 10.1007/s11010-006-9341-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Accepted: 09/28/2006] [Indexed: 01/27/2023]
Abstract
Recent evidences indicate new roles for the glycolytic protein glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in essential mammalian cell processes, such as apoptosis and proliferation. To clarify the involvement of this protein in growth and programmed cell death in the liver, cell models of hepatocytes in culture were used to study GAPDH expression, localization and enzymatic activity in hepatocyte proliferation and apoptosis. GAPDH expression in cell compartments was studied by Western blot. Nuclear expression of GAPDH increased in apoptosis, and cytoplasmic expression was elevated in apoptosis and proliferation. Subcellular localization was determined by GAPDH immunostaining and confocal microscopic analysis. Quiescent and proliferating hepatocytes showed cytoplasmic GAPDH, while apoptotic cells showed cytoplasmic but also some nuclear staining. The glycolytic activity of GAPDH was studied in nuclear and cytoplasmic cell compartments. GAPDH enzymatic activity increased in the nucleus of apoptotic cells and in cytoplasms of apoptotic and proliferating hepatocytes. Our observations indicate that during hepatocyte apoptosis GAPDH translocates to the nucleus, maintaining in part its dehydrogenase activity, and suggest that this translocation may play a role in programmed hepatocyte death. GAPDH over-expression and the increased enzymatic activity in proliferating cells, with preservation of its cytoplasmic localization, would occur in response to the elevated energy requirements of dividing hepatocytes. In conclusion, GAPDH plays different roles or biological activities in proliferating and apoptotic hepatocytes, according to its subcellular localization.
Collapse
Affiliation(s)
- Luciana Barbini
- Departamento de Fisiologia, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus Universitario, 27002 Lugo, Spain.
| | | | | | | |
Collapse
|
36
|
Stocco G, Martelossi S, Barabino A, Decorti G, Bartoli F, Montico M, Gotti A, Ventura A. Glutathione-S-transferase genotypes and the adverse effects of azathioprine in young patients with inflammatory bowel disease. Inflamm Bowel Dis 2007; 13:57-64. [PMID: 17206640 DOI: 10.1002/ibd.20004] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Adverse drug reactions to azathioprine, the prodrug of 6-mercaptopurine, occur in 15%-38% of patients and the majority are not explained by thiopurine-S-methyltransferase (TPMT) deficiency. Azathioprine is known to induce glutathione depletion and consumption of glutathione is greater in cells with high glutathione-S-transferase (GST) activity compared with those with low activity; moreover, some reports indicate that GST might play a direct role in the reaction of glutathione with azathioprine. The association between polymorphisms of GST-M1, GST-P1, GST-T1, and TPMT genes and the adverse effects of azathioprine was therefore investigated. METHODS Seventy patients with inflammatory bowel disease (IBD), treated with azathioprine, were enrolled and clinical data were retrospectively determined. TPMT and GST genotyping were performed by polymerase chain reaction (PCR) assays on DNA extracted from blood samples. RESULTS Fifteen patients developed adverse effects (21.4%); there was a significant underrepresentation of the GST-M1 null genotype among patients developing adverse drug reactions to azathioprine (odds ratio [OR] = 0.18, 95% confidence interval [CI] = 0.037-0.72, P = 0.0072) compared with patients who did not develop adverse effects. Patients heterozygous for TPMT mutations presented a marginally significant increased probability of developing adverse effects (OR = 6.38, 95% CI = 0.66-84.1, P = 0.062). Moreover, among the 55 patients who did not develop adverse effects, there was a significant underrepresentation of the GST-M1 null genotype among patients who displayed lymphopenia as compared with those that did not display this effect of azathioprine (OR = 0.15, 95% CI = 0.013-1.08, P = 0.032). CONCLUSION Patients with IBD with a wildtype GST-M1 genotype present increased probability of developing adverse effects and increased incidence of lymphopenia during azathioprine treatment.
Collapse
Affiliation(s)
- Gabriele Stocco
- Department of Biomedical Sciences, University of Trieste, Trieste, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Spencer JR, Sendzik M, Oeh J, Sabbatini P, Dalrymple SA, Magill C, Kim HM, Zhang P, Squires N, Moss KG, Sukbuntherng J, Graupe D, Eksterowicz J, Young PR, Myers AG, Green MJ. Evaluation of antitumor properties of novel saframycin analogs in vitro and in vivo. Bioorg Med Chem Lett 2006; 16:4884-8. [PMID: 16870445 DOI: 10.1016/j.bmcl.2006.06.085] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Revised: 06/16/2006] [Accepted: 06/16/2006] [Indexed: 11/30/2022]
Abstract
Novel analogs of (-)-saframycin A are described. The analogs are shown to be potent inhibitors of the in vitro growth of several tumor cells in a broad panel and promising as leads for further optimization. The first in vivo studies in a solid tumor model (HCT-116) reveal potent antitumor activity with associated toxicity of daily administration.
Collapse
Affiliation(s)
- Jeffrey R Spencer
- Celera Genomics, 180 Kimball Way, South San Francisco, CA 94080, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Valenti MT, Bertoldo F, Dalle Carbonare L, Azzarello G, Zenari S, Zanatta M, Balducci E, Vinante O, Cascio VL. The effect of bisphosphonates on gene expression: GAPDH as a housekeeping or a new target gene? BMC Cancer 2006; 6:49. [PMID: 16515701 PMCID: PMC1473200 DOI: 10.1186/1471-2407-6-49] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Accepted: 03/03/2006] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND RT-PCR has been widely used for the analysis of gene expression in many systems, including tumor samples. GAPDH (Glyceraldehyde-3-phosphate dehydrogenase) has been frequently considered as a constitutive housekeeping gene and used to normalize changes in specific gene expression. However, GAPDH has been shown to be up-regulated in many cancers and down-regulated by chemotherapic drugs. Bisphosphonates, potent inhibitors of bone resorption, have recently shown a direct and indirect antitumor effect in vitro and in animal models. They exert their effects mainly by inhibiting the mevalonate pathway but also by modulating the expression of many genes not only in osteoclasts but also in cancer cells. METHODS We evaluated GAPDH gene expression by real time RT PCR in breast (MCF-7 and T47D) and prostate (PC3 and DU-145) cancer cell lines treated with amino and non-amino bisphosphonates. RESULTS Our results showed that amino-bisphosphonates significantly decrease in a dose-dependent manner the expression of GAPDH gene. CONCLUSION Therefore, GAPDH is inaccurate to normalize mRNA levels in studies investigating the effect of bisphosphonates on gene expression and it should be avoided. On the other hand, this gene could be considered a potential target to observe the effects of bisphosphonates on cancer cells.
Collapse
Affiliation(s)
- Maria Teresa Valenti
- Medicina Interna D, Department of Biomedical and Surgical Sciences, University of Verona, Italy
| | - Francesco Bertoldo
- Medicina Interna D, Department of Biomedical and Surgical Sciences, University of Verona, Italy
| | - Luca Dalle Carbonare
- Medicina Interna D, Department of Biomedical and Surgical Sciences, University of Verona, Italy
| | | | - Sonia Zenari
- Medicina Interna D, Department of Biomedical and Surgical Sciences, University of Verona, Italy
| | - Mirko Zanatta
- Medicina Interna D, Department of Biomedical and Surgical Sciences, University of Verona, Italy
| | - Elena Balducci
- Department of Oncology and Hematologic Oncology - Noale Hospital, Italy
| | - Orazio Vinante
- Department of Oncology and Hematologic Oncology - Noale Hospital, Italy
| | - Vincenzo Lo Cascio
- Medicina Interna D, Department of Biomedical and Surgical Sciences, University of Verona, Italy
| |
Collapse
|
39
|
Carujo S, Estanyol JM, Ejarque A, Agell N, Bachs O, Pujol MJ. Glyceraldehyde 3-phosphate dehydrogenase is a SET-binding protein and regulates cyclin B-cdk1 activity. Oncogene 2006; 25:4033-42. [PMID: 16474839 DOI: 10.1038/sj.onc.1209433] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We report here that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) interacts in vitro and in vivo with the protein SET. This interaction is performed through the acidic domain of SET located at the carboxy terminal region. On analysing the functional relevance of SET-GAPDH interaction, we observed that GAPDH reverses in a dose-dependent manner, the inhibition of cyclin B-cdk1 activity produced by SET. Similarly to SET, GAPDH associates with cyclin B, suggesting that the regulation of cyclin B-cdk1 activity might be mediated not only by the interaction of GAPDH with SET but also with cyclin B. To analyse the putative role of GAPDH on cell cycle progression, HCT116 cells were transfected with a GAPDH expression vector. Results indicate that overexpression of GAPDH does not affect the timing of DNA replication but induces an increase in the number of mitosis, an advancement of the peak of cyclin B-cdk1 activity and an acceleration of cell cycle progression. All these results suggest that GAPDH might be involved in cell cycle regulation by modulating cyclin B-cdk1 activity.
Collapse
Affiliation(s)
- S Carujo
- Departament de Biologia Cellular i Anatomia Patològica, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
40
|
Stocco G, Martelossi S, Barabino A, Fontana M, Lionetti P, Decorti G, Malusà N, Bartoli F, Fezzi M, Giraldi T, Ventura A. TPMT genotype and the use of thiopurines in paediatric inflammatory bowel disease. Dig Liver Dis 2005; 37:940-945. [PMID: 16202677 DOI: 10.1016/j.dld.2005.08.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2005] [Revised: 08/18/2005] [Accepted: 08/29/2005] [Indexed: 12/11/2022]
Abstract
BACKGROUND Thiopurines are used in the treatment of inflammatory bowel disease. They are metabolised via methylation by thiopurine-S-methyltransferase (TPMT), which displays a genetically determined polymorphic activity. Subjects with reduced TPMT activity have a higher concentration of active thiopurine metabolites and may be at increased risk of bone-marrow suppression. AIMS To evaluate the relevance of TPMT genotyping in the management of thiopurines therapy in inflammatory bowel disease patients. PATIENTS AND METHODS Adverse effects and clinical response were determined retrospectively and correlated with TPMT genotype in 70 paediatric inflammatory bowel disease patients. RESULTS Nineteen patients (27.1%) developed adverse effects; of the 51 who did not, 34 (66.7%) responded to treatment. Five patients (7.1%) were heterozygous for a variant TPMT allele; two of these (40%) were intolerant to thiopurines, compared to 17 of the 65 patients (26.2%) with a wild type gene (O.R. 1.88, 95% CI 0.29-12.2, p=0.61); among the 34 responders, the median dosage of the drug required to obtain remission was lower for mutated than for wild type patients (1.6mgkg(-1)day(-1) versus 2.0mgkg(-1)day(-1), p=0.043). CONCLUSIONS There was no significant association between adverse effects of thiopurines and TPMT heterozygous genotype, but TPMT genotyping could be useful in establishing the most appropriate dose of thiopurines to start treatment.
Collapse
Affiliation(s)
- G Stocco
- Department of Biomedical Sciences, University of Trieste, Via L.Giorgieri 7,9, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Sirover MA. New nuclear functions of the glycolytic protein, glyceraldehyde-3-phosphate dehydrogenase, in mammalian cells. J Cell Biochem 2005; 95:45-52. [PMID: 15770658 DOI: 10.1002/jcb.20399] [Citation(s) in RCA: 265] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recent studies establish that the glycolytic protein, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), is not simply a classical metabolic protein involved in energy production. Instead, it is a multifunctional protein with defined functions in numerous subcellular processes. New investigations establish a primary role for GAPDH in a variety of critical nuclear pathways apart from its already recognized role in apoptosis. These new roles include its requirement for transcriptional control of histone gene expression, its essential function in nuclear membrane fusion, its necessity for the recognition of fraudulently incorporated nucleotides in DNA, and its mandatory participation in the maintenance of telomere structure. Each of these new functions requires GAPDH association into a series of multienzyme complexes. Although other proteins in those complexes are variable, GAPDH remains the single constant protein in each structure. To undertake these new functions, GAPDH is recruited to the nucleus in S phase or its intracellular distribution is regulated as a function of drug exposure. Other investigations relate a substantial role for nuclear GAPDH in hyperglycemic stress and the development of metabolic syndrome. Considerations of future directions as well as the role of GAPDH post-translational modification as a basis for its multifunctional activities is suggested.
Collapse
Affiliation(s)
- Michael A Sirover
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA.
| |
Collapse
|
42
|
Kanai H, Sawa A, Chen RW, Leeds P, Chuang DM. Valproic acid inhibits histone deacetylase activity and suppresses excitotoxicity-induced GAPDH nuclear accumulation and apoptotic death in neurons. THE PHARMACOGENOMICS JOURNAL 2005; 4:336-44. [PMID: 15289798 DOI: 10.1038/sj.tpj.6500269] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Valproic acid (VPA), used to treat bipolar mood disorder and seizures, also inhibits histone deacetylase (HDAC). Here, we found that VPA and other HDAC inhibitors, butyrate and trichostatin A, robustly protected mature cerebellar granule cell cultures from excitotoxicity induced by SYM 2081 ((2S, 4R)-4-methylglutamate), an inhibitor of excitatory amino-acid transporters and an agonist of low-affinity kainate receptors. These neuroprotective effects required protracted treatment and were correlated with enhanced acetylated histone levels, indicating HDAC inhibition. SYM-induced excitotoxicity was blocked by MK-801 ((5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate), supporting that the toxicity was largely N-methyl-D-aspartate receptor dependent. SYM excitotoxicity had apoptotic characteristics and was prevented by a caspase inhibitor. SYM-induced apoptosis was associated with a rapid and robust nuclear accumulation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a housekeeping gene previously shown to be proapoptotic. VPA pretreatment suppressed SYM 2081-induced GAPDH nuclear accumulation, concurrent with its neuroprotective effects. Chromatin immunoprecipitation (ChIP) revealed that GAPDH is copresent with acetylated histone H3, including Lys9-acetylated histone, and that VPA treatment caused a time-dependent decrease in the levels of nuclear GAPDH with a concomitant increase in acetylated histones in the ChIP complex. Our results strongly suggest that VPA protects neurons from excitotoxicity through inhibition of HDAC activity and that this protective effect may involve suppression of excitotoxicity-induced accumulation of GAPDH protein in the nucleus.
Collapse
Affiliation(s)
- H Kanai
- Molecular Neurobiology Section, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
43
|
Xing C, LaPorte JR, Barbay JK, Myers AG. Identification of GAPDH as a protein target of the saframycin antiproliferative agents. Proc Natl Acad Sci U S A 2004; 101:5862-6. [PMID: 15079082 PMCID: PMC395888 DOI: 10.1073/pnas.0307476101] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2003] [Indexed: 01/06/2023] Open
Abstract
Saframycin A (SafA) is a member of a class of natural products with potent antiproliferative effects in leukemia- and tumor-derived cells. This activity is frequently conjectured to derive from the ability of saframycins to covalently modify duplex DNA. We used a DNA-linked affinity purification technique to identify GAPDH as a protein target of DNA-small molecule adducts of several members of the saframycin class. Nuclear translocation of GAPDH occurs upon treatment of cancer cells with saframycins, and depletion of cellular GAPDH levels by small interfering RNA transfection confers drug resistance. Roeder and coworkers have recently suggested that GAPDH is a key transcriptional coactivator necessary for entry into S phase. Our data suggest that GAPDH is also capable of forming a ternary complex with saframycin-related compounds and DNA that induces a toxic response in cells. These studies implicate a previously unknown molecular mechanism of antiproliferative activity and, given that one member of the saframycin class has shown efficacy in cancer treatment, suggest that GAPDH may be a potential target for chemotherapeutic intervention.
Collapse
Affiliation(s)
- Chengguo Xing
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02128, USA
| | | | | | | |
Collapse
|
44
|
Brown VM, Krynetski EY, Krynetskaia NF, Grieger D, Mukatira ST, Murti KG, Slaughter CA, Park HW, Evans WE. A novel CRM1-mediated nuclear export signal governs nuclear accumulation of glyceraldehyde-3-phosphate dehydrogenase following genotoxic stress. J Biol Chem 2004; 279:5984-92. [PMID: 14617633 DOI: 10.1074/jbc.m307071200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a multifunctional protein with glycolytic and non-glycolytic functions, including pro-apoptotic activity. GAPDH accumulates in the nucleus after cells are treated with genotoxic drugs, and it is present in a protein complex that binds DNA modified by thioguanine incorporation. We identified a novel CRM1-dependent nuclear export signal (NES) comprising 13 amino acids (KKVVKQASEGPLK) in the C-terminal domain of GAPDH, truncation or mutation of which abrogated CRM1 binding and caused nuclear accumulation of GAPDH. Alanine scanning of the sequence encompassing the putative NES demonstrated at least two regions important for nuclear export. Site mutagenesis of Lys259 did not affect oligomerization but impaired nuclear efflux of GAPDH, indicating that this amino acid residue is essential for proper functioning of this NES. This novel NES does not contain multiple leucine residues unlike other CRM1-interacting NES, is conserved in GAPDH from multiple species, and has sequence similarities to the export signal found in feline immunodeficiency virus Rev protein. Similar sequences (KKVV*7-13PLK) were found in two other human proteins, U5 small nuclear ribonucleoprotein, and transcription factor BT3.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Alanine/chemistry
- Amino Acid Sequence
- Amino Acids/chemistry
- Antibodies, Monoclonal
- Apoptosis
- Cell Line, Tumor
- Cell Nucleus/metabolism
- Chromatography
- Cytosol/metabolism
- DNA/metabolism
- Epitopes/chemistry
- Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism
- Green Fluorescent Proteins
- Humans
- Karyopherins/metabolism
- Luminescent Proteins/metabolism
- Lysine/chemistry
- Microscopy, Confocal
- Microscopy, Fluorescence
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Mutation
- Nuclear Localization Signals
- Peptides/chemistry
- Precipitin Tests
- Protein Binding
- Protein Structure, Tertiary
- Receptors, Cytoplasmic and Nuclear
- Recombinant Fusion Proteins/metabolism
- Ribonucleoprotein, U5 Small Nuclear/chemistry
- Trans-Activators/chemistry
- Transfection
- Exportin 1 Protein
Collapse
Affiliation(s)
- Victor M Brown
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Krynetskaia NF, Brenner TL, Krynetski EY, Du W, Panetta JC, Ching-Hon P, Evans WE. Msh2 deficiency attenuates but does not abolish thiopurine hematopoietic toxicity in msh2-/- mice. Mol Pharmacol 2003; 64:456-65. [PMID: 12869651 DOI: 10.1124/mol.64.2.456] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The amount of MSH2 protein, a major component of the mismatch repair system, was found to differ >10-fold in leukemia cells from children with newly diagnosed acute lymphoblastic leukemia, with a subgroup of patients (17%) having undetectable MSH2 protein. We therefore used a murine Msh2 knockout model to elucidate the in vivo importance of MSH2 protein expression in determining thiopurine hematopoietic cytotoxicity. After mercaptopurine (MP) treatment (30 mg/kg/day for 14 days), there was a significantly greater decrease in circulating leukocytes in Msh2+/+ and Msh2+/- mice when compared with Msh2-/- mice (p < 0.002). Likewise, the decrease in erythrocyte counts was more prominent in mice with at least one functional Msh2 allele. MP doses of more than 50 mg/kg/day for 14 days resulted in treatment-related deaths, but Msh2-/- mice had a significant survival advantage (p = 0.02). Murine embryonic fibroblasts (MEFs) from Msh2+/+ mice also exhibited increased sensitivity to MP when compared with MEFs from Msh2-/- mice (IC50, 3.8 +/- 0.1 microM versus 11.9 +/- 1.3 microM, p < 0.001). After MP treatment, deoxythioguanosine incorporation into DNA was similar in mice and MEFs with each of the Msh2 genotypes. Electromobility shift assay experiments identified an Msh2-containing GT- or GST-DNA-nuclear protein complex in Msh2+/+ but not Msh2-/- MEFs. Together, these findings establish that hematopoietic toxicity in vivo after treatment with mercaptopurine is attenuated but not abolished by MSH2 deficiency.
Collapse
Affiliation(s)
- Natalia F Krynetskaia
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, 332 N. Lauderdale, Memphis, TN 38105, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Bohon J, de los Santos CR. Structural effect of the anticancer agent 6-thioguanine on duplex DNA. Nucleic Acids Res 2003; 31:1331-8. [PMID: 12582253 PMCID: PMC150222 DOI: 10.1093/nar/gkg203] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The incorporation of 6-thioguanine (S6G) into DNA is an essential step in the cytotoxic activity of thiopurines. However, the structural effects of this substitution on duplex DNA have not been fully characterized. Here, we present the solution structures of DNA duplexes containing S6G opposite thymine (S6G.T) and opposite cytosine (S6G.C), solved by high-resolution NMR spectroscopy and restrained molecular dynamics. The data indicate that both duplexes adopt right-handed helical conformations with all Watson-Crick hydrogen bonding in place. The S6G.T structures exhibit a wobble-type base pairing at the lesion site, with thymine shifted toward the major groove and S6G displaced toward the minor groove. Aside from the lesion site, the helices, including the flanking base pairs, are not highly perturbed by the presence of the lesion. Surprisingly, thermal dependence experiments suggest greater stability in the S6G-T mismatch than the S6G-C base pair.
Collapse
Affiliation(s)
- Jen Bohon
- Department of Biophysics, State University of New York at Stony Brook, Stony Brook, NY 11794-8651, USA
| | | |
Collapse
|
47
|
Somerville L, Krynetski EY, Krynetskaia NF, Beger RD, Zhang W, Marhefka CA, Evans WE, Kriwacki RW. Structure and dynamics of thioguanine-modified duplex DNA. J Biol Chem 2003; 278:1005-11. [PMID: 12401802 DOI: 10.1074/jbc.m204243200] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Mercaptopurine and thioguanine, two of the most widely used antileukemic agents, exert their cytotoxic, therapeutic effects by being incorporated into DNA as deoxy-6-thioguanosine. However, the molecular mechanism(s) by which incorporation of these thiopurines into DNA translates into cytotoxicity is unknown. The solution structure of thioguanine-modified duplex DNA presented here shows that the effects of the modification on DNA structure were subtle and localized to the modified base pair. Specifically, thioguanine existed in the keto form, formed weakened Watson-Crick hydrogen bonds with cytosine and caused a modest approximately 10 degrees opening of the modified base pair toward the major groove. In contrast, thioguanine significantly altered base pair dynamics, causing an approximately 80-fold decrease in the base pair lifetime with cytosine compared with normal guanine. This perturbation was consistent with the approximately 6 degrees C decrease in DNA melting temperature of the modified oligonucleotide, the 1.13 ppm upfield shift of the thioguanine imino proton resonance, and the large increase in the exchange rate of the thioguanine imino proton with water. Our studies provide new mechanistic insight into the effects of thioguanine incorporation into DNA at the level of DNA structure and dynamics, provide explanations for the effects of thioguanine incorporation on the activity of DNA-processing enzymes, and provide a molecular basis for the specific recognition of thioguanine-substituted sites by proteins. These combined effects likely cooperate to produce the cellular responses that underlie the therapeutic effects of thiopurines.
Collapse
Affiliation(s)
- Lilla Somerville
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Carroll WL, Bhojwani D, Min DJ, Raetz E, Relling M, Davies S, Downing JR, Willman CL, Reed JC. Pediatric acute lymphoblastic leukemia. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2003; 2003:102-131. [PMID: 14633779 DOI: 10.1182/asheducation-2003.1.102] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The outcome for children with acute lymphoblastic leukemia (ALL) has improved dramatically with current therapy resulting in an event free survival exceeding 75% for most patients. However significant challenges remain including developing better methods to predict which patients can be cured with less toxic treatment and which ones will benefit from augmented therapy. In addition, 25% of patients fail therapy and novel treatments that are focused on undermining specifically the leukemic process are needed urgently. In Section I, Dr. Carroll reviews current approaches to risk classification and proposes a system that incorporates well-established clinical parameters, genetic lesions of the blast as well as early response parameters. He then provides an overview of emerging technologies in genomics and proteomics and how they might lead to more rational, biologically based classification systems. In Section II, Drs. Mary Relling and Stella Davies describe emerging findings that relate to host features that influence outcome, the role of inherited germline variation. They highlight technical breakthroughs in assessing germline differences among patients. Polymorphisms of drug metabolizing genes have been shown to influence toxicity and the best example is the gene thiopurine methyltransferase (TPMT) a key enzyme in the metabolism of 6-mercaptopurine. Polymorphisms are associated with decreased activity that is also associated with increased toxicity. The role of polymorphisms in other genes whose products play an important role in drug metabolism as well as cytokine genes are discussed. In Sections III and IV, Drs. James Downing and Cheryl Willman review their findings using gene expression profiling to classify ALL. Both authors outline challenges in applying this methodology to analysis of clinical samples. Dr. Willman describes her laboratory's examination of infant leukemia and precursor B-ALL where unsupervised approaches have led to the identification of inherent biologic groups not predicted by conventional morphologic, immunophenotypic and cytogenetic variables. Dr. Downing describes his results from a pediatric ALL expression database using over 327 diagnostic samples, with 80% of the dataset consisting of samples from patients treated on a single institutional protocol. Seven distinct leukemia subtypes were identified representing known leukemia subtypes including: BCR-ABL, E2A-PBX1, TEL-AML1, rearrangements in the MLL gene, hyperdiploid karyotype (i.e., > 50 chromosomes), and T-ALL as well as a new leukemia subtype. A subset of genes have been identified whose expression appears to be predictive of outcome but independent verification is needed before this type of analysis can be integrated into treatment assignment. Chemotherapeutic agents kill cancer cells by activating apoptosis, or programmed cell death. In Section V, Dr. John Reed describes major apoptotic pathways and the specific role of key proteins in this response. The expression level of some of these proteins, such as BCL2, BAX, and caspase 3, has been shown to be predictive of ultimate outcome in hematopoietic tumors. New therapeutic approaches that modulate the apoptotic pathway are now available and Dr. Reed highlights those that may be applicable to the treatment of childhood ALL.
Collapse
Affiliation(s)
- William L Carroll
- Mount Sinai and New York University Schools of Medicine, New York, NY 10029-6574, USA
| | | | | | | | | | | | | | | | | |
Collapse
|