1
|
Batran RZ, Sabt A, Khedr MA, Allayeh AK, Pannecouque C, Kassem AF. 4-Phenylcoumarin derivatives as new HIV-1 NNRTIs: Design, synthesis, biological activities, and computational studies. Bioorg Chem 2023; 141:106918. [PMID: 37866206 DOI: 10.1016/j.bioorg.2023.106918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/05/2023] [Accepted: 10/13/2023] [Indexed: 10/24/2023]
Abstract
A series of 4-phenylcoumarin derivatives was synthesized and evaluated for their cellular anti-HIV-1 and HIV-2 activities as well as their inhibitory effects against HIV-1 reverse transcriptase (RT). The hydrazone compound 8b and the ethylthiosemicarbazide derivative 4c showed the best inhibition activity against wild-type (WT) HIV-1. The promising compounds were further evaluated against HIV-1 RT and exhibited significant inhibitory activity with compound 8b showing comparable effect to the reference NNRTI Efavirenz (IC50 = 9.01 nM). Structure activity relationship study revealed the importance of 6-chloro and 4-phenyl substituents for optimum activity, as well as the 5-atoms linker (=N-NH-CO-CH2-O-) at position 7 of coumarin scaffold that can support the rotation and flexibility of compound 8b to fit well in the binding pocket. The molecular docking of compound 8b demonstrated a typical seahorse binding mode with better binding interactions that covered more residues when compared to Efavirenz.
Collapse
Affiliation(s)
- Rasha Z Batran
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Cairo 12622, Egypt.
| | - Ahmed Sabt
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Mohammed A Khedr
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, Kuwait
| | - Abdou K Allayeh
- Water Pollution Research Department, Environment and Climate Change Institute, National Research Centre, Dokki, Cairo 12622, Egypt
| | | | - Asmaa F Kassem
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Cairo 12622, Egypt
| |
Collapse
|
2
|
Seetaha S, Kamonsutthipaijit N, Yagi-Utsumi M, Seako Y, Yamaguchi T, Hannongbua S, Kato K, Choowongkomon K. Biophysical Characterization of p51 and p66 Monomers of HIV-1 Reverse Transcriptase with Their Inhibitors. Protein J 2023; 42:741-752. [PMID: 37728788 DOI: 10.1007/s10930-023-10156-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2023] [Indexed: 09/21/2023]
Abstract
Human immunodeficiency virus (HIV)-1 reverse transcriptase (HIV-1 RT) is responsible for the transcription of viral RNA genomes into DNA genomes and has become an important target for the treatment of acquired immune deficiency syndrome (AIDS). This study used biophysical techniques to characterize the HIV-1 RT structure, monomer forms, and the non-nucleoside reverse transcriptase inhibitors (NNRTIs) bound forms. Inactive p66W401A and p51W401A were selected as models to study the HIV-1 RT monomer structures. Nuclear magnetic resonance (NMR) spectroscopy revealed that the unliganded forms of p66W401A protein and p51W401A protein had similar conformation to each other in solution. The complexes of p66W401A or p51W401A with inhibitors showed similar conformations to p66 in the RT heterodimer bound to the NNRTIs. Furthermore, the results of paramagnetic relaxation enhancement (PRE)-assisted NMR revealed that the unliganded forms of the p66W401A and p51W401A conformations were different from the unliganded heterodimer, characterized by a greater distance between the fingers and thumb subdomains. Small-angle X-ray scattering (SAXS) experiments confirmed that p66W401A and p51W401A can bind with inhibitors, similar to the p66/p51 heterodimer. The findings of this study increase the structural knowledge base of HIV-1 RT monomers, which may be helpful in the future design of potent viral inhibitors.
Collapse
Affiliation(s)
- Supaphorn Seetaha
- KU Institute for Advanced Studies, Kasetsart University, Bangkok, 10900, Thailand
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Nuntaporn Kamonsutthipaijit
- Synchrotron Light Research Institute, 111 University Avenue, Muang District, Nakhon Ratchasima, 30000, Thailand
| | - Maho Yagi-Utsumi
- Exploratory Research Center on Life and Living Systems, Okazaki, Aichi, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Yanaka Seako
- Exploratory Research Center on Life and Living Systems, Okazaki, Aichi, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Takumi Yamaguchi
- Exploratory Research Center on Life and Living Systems, Okazaki, Aichi, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Supa Hannongbua
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Koichi Kato
- Exploratory Research Center on Life and Living Systems, Okazaki, Aichi, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Kiattawee Choowongkomon
- KU Institute for Advanced Studies, Kasetsart University, Bangkok, 10900, Thailand.
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand.
| |
Collapse
|
3
|
Kirby TW, Gabel SA, DeRose EF, Perera L, Krahn JM, Pedersen LC, London RE. Targeting the Structural Maturation Pathway of HIV-1 Reverse Transcriptase. Biomolecules 2023; 13:1603. [PMID: 38002285 PMCID: PMC10669680 DOI: 10.3390/biom13111603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/19/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Formation of active HIV-1 reverse transcriptase (RT) proceeds via a structural maturation process that involves subdomain rearrangements and formation of an asymmetric p66/p66' homodimer. These studies were undertaken to evaluate whether the information about this maturation process can be used to identify small molecule ligands that retard or interfere with the steps involved. We utilized the isolated polymerase domain, p51, rather than p66, since the initial subdomain rearrangements are largely limited to this domain. Target sites at subdomain interfaces were identified and computational analysis used to obtain an initial set of ligands for screening. Chromatographic evaluations of the p51 homodimer/monomer ratio support the feasibility of this approach. Ligands that bind near the interfaces and a ligand that binds directly to a region of the fingers subdomain involved in subunit interface formation were identified, and the interactions were further characterized by NMR spectroscopy and X-ray crystallography. Although these ligands were found to reduce dimer formation, further efforts will be required to obtain ligands with higher binding affinity. In contrast with previous ligand identification studies performed on the RT heterodimer, subunit interface surfaces are solvent-accessible in the p51 and p66 monomers, making these constructs preferable for identification of ligands that directly interfere with dimerization.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Robert E. London
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, Durham, NC 27709, USA (J.M.K.)
| |
Collapse
|
4
|
Ilina TV, Brosenitsch T, Sluis-Cremer N, Ishima R. Retroviral RNase H: Structure, mechanism, and inhibition. Enzymes 2021; 50:227-247. [PMID: 34861939 DOI: 10.1016/bs.enz.2021.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
All retroviruses encode the enzyme, reverse transcriptase (RT), which is involved in the conversion of the single-stranded viral RNA genome into double-stranded DNA. RT is a multifunctional enzyme and exhibits DNA polymerase and ribonuclease H (RNH) activities, both of which are essential to the reverse-transcription process. Despite the successful development of polymerase-targeting antiviral drugs over the last three decades, no bona fide inhibitor against the RNH activity of HIV-1 RT has progressed to clinical evaluation. In this review article, we describe the retroviral RNH function and inhibition, with primary consideration of the structural aspects of inhibition.
Collapse
Affiliation(s)
- Tatiana V Ilina
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Teresa Brosenitsch
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Nicolas Sluis-Cremer
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Rieko Ishima
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.
| |
Collapse
|
5
|
Corona A, Ballana E, Distinto S, Rogolino D, Del Vecchio C, Carcelli M, Badia R, Riveira-Muñoz E, Esposito F, Parolin C, Esté JA, Grandi N, Tramontano E. Targeting HIV-1 RNase H: N'-(2-Hydroxy-benzylidene)-3,4,5-Trihydroxybenzoylhydrazone as Selective Inhibitor Active against NNRTIs-Resistant Variants. Viruses 2020; 12:v12070729. [PMID: 32640577 PMCID: PMC7412550 DOI: 10.3390/v12070729] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/28/2020] [Accepted: 07/01/2020] [Indexed: 02/07/2023] Open
Abstract
HIV-1 infection requires life-long treatment and with 2.1 million new infections/year, faces the challenge of an increased rate of transmitted drug-resistant mutations. Therefore, a constant and timely effort is needed to identify new HIV-1 inhibitors active against drug-resistant variants. The ribonuclease H (RNase H) activity of HIV-1 reverse transcriptase (RT) is a very promising target, but to date, still lacks an efficient inhibitor. Here, we characterize the mode of action of N’-(2-hydroxy-benzylidene)-3,4,5-trihydroxybenzoylhydrazone (compound 13), an N-acylhydrazone derivative that inhibited viral replication (EC50 = 10 µM), while retaining full potency against the NNRTI-resistant double mutant K103N-Y181C virus. Time-of-addition and biochemical assays showed that compound 13 targeted the reverse-transcription step in cell-based assays and inhibited the RT-associated RNase H function, being >20-fold less potent against the RT polymerase activity. Docking calculations revealed that compound 13 binds within the RNase H domain in a position different from other selective RNase H inhibitors; site-directed mutagenesis studies revealed interactions with conserved amino acid within the RNase H domain, suggesting that compound 13 can be taken as starting point to generate a new series of more potent RNase H selective inhibitors active against circulating drug-resistant variants.
Collapse
Affiliation(s)
- Angela Corona
- Department of Life and Environmental Sciences University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy; (S.D.); (F.E.); (N.G.); (E.T.)
- Correspondence: ; Tel.: +39-070-6754530
| | - Ester Ballana
- AIDS Research Institute—IrsiCaixa, 08916 Badalona, Spain; (E.B.); (R.B.); (E.R.-M.); (J.A.E.)
| | - Simona Distinto
- Department of Life and Environmental Sciences University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy; (S.D.); (F.E.); (N.G.); (E.T.)
| | - Dominga Rogolino
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (D.R.); (M.C.)
| | - Claudia Del Vecchio
- Department of Molecular Medicine, University of Padova, 35122 Padova, Italy; (C.D.V.); (C.P.)
| | - Mauro Carcelli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (D.R.); (M.C.)
| | - Roger Badia
- AIDS Research Institute—IrsiCaixa, 08916 Badalona, Spain; (E.B.); (R.B.); (E.R.-M.); (J.A.E.)
| | - Eva Riveira-Muñoz
- AIDS Research Institute—IrsiCaixa, 08916 Badalona, Spain; (E.B.); (R.B.); (E.R.-M.); (J.A.E.)
| | - Francesca Esposito
- Department of Life and Environmental Sciences University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy; (S.D.); (F.E.); (N.G.); (E.T.)
| | - Cristina Parolin
- Department of Molecular Medicine, University of Padova, 35122 Padova, Italy; (C.D.V.); (C.P.)
| | - José A. Esté
- AIDS Research Institute—IrsiCaixa, 08916 Badalona, Spain; (E.B.); (R.B.); (E.R.-M.); (J.A.E.)
- CienciaTraducida, 08391 Barcelona, Spain
| | - Nicole Grandi
- Department of Life and Environmental Sciences University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy; (S.D.); (F.E.); (N.G.); (E.T.)
| | - Enzo Tramontano
- Department of Life and Environmental Sciences University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy; (S.D.); (F.E.); (N.G.); (E.T.)
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), 09042 Monserrato, Cagliari, Italy
| |
Collapse
|
6
|
Tramontano E, Corona A, Menéndez-Arias L. Ribonuclease H, an unexploited target for antiviral intervention against HIV and hepatitis B virus. Antiviral Res 2019; 171:104613. [PMID: 31550450 DOI: 10.1016/j.antiviral.2019.104613] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 12/18/2022]
Abstract
Ribonucleases H (RNases H) are endonucleolytic enzymes, evolutionarily related to retroviral integrases, DNA transposases, resolvases and numerous nucleases. RNases H cleave RNA in RNA/DNA hybrids and their activity plays an important role in the replication of prokaryotic and eukaryotic genomes, as well as in the replication of reverse-transcribing viruses. During reverse transcription, the RNase H activity of human immunodeficiency virus (HIV) and hepatitis B virus (HBV) degrades the viral genomic RNA to facilitate the synthesis of viral double-stranded DNA. HIV and HBV reverse transcriptases contain DNA polymerase and RNase H domains that act in a coordinated manner to produce double-stranded viral DNA. Although RNase H inhibitors have not been developed into licensed drugs, recent progress has led to the identification of a number of small molecules with inhibitory activity at low micromolar or even nanomolar concentrations. These compounds can be classified into metal-chelating active site inhibitors and allosteric inhibitors. Among them, α-hydroxytropolones, N-hydroxyisoquinolinediones and N-hydroxypyridinediones represent chemotypes active against both HIV and HBV RNases H. In this review we summarize recent developments in the field including the identification of novel RNase H inhibitors, compounds with dual inhibitory activity, broad specificity and efforts to decrease their toxicity.
Collapse
Affiliation(s)
- Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy.
| | - Angela Corona
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Luis Menéndez-Arias
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid), Madrid, Spain.
| |
Collapse
|
7
|
Biological evaluation of molecules of the azaBINOL class as antiviral agents: Inhibition of HIV-1 RNase H activity by 7-isopropoxy-8-(naphth-1-yl)quinoline. Bioorg Med Chem 2019; 27:3595-3604. [DOI: 10.1016/j.bmc.2019.06.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/22/2019] [Accepted: 06/27/2019] [Indexed: 12/13/2022]
|
8
|
Chen AY, Adamek RN, Dick BL, Credille CV, Morrison CN, Cohen SM. Targeting Metalloenzymes for Therapeutic Intervention. Chem Rev 2019; 119:1323-1455. [PMID: 30192523 PMCID: PMC6405328 DOI: 10.1021/acs.chemrev.8b00201] [Citation(s) in RCA: 195] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metalloenzymes are central to a wide range of essential biological activities, including nucleic acid modification, protein degradation, and many others. The role of metalloenzymes in these processes also makes them central for the progression of many diseases and, as such, makes metalloenzymes attractive targets for therapeutic intervention. Increasing awareness of the role metalloenzymes play in disease and their importance as a class of targets has amplified interest in the development of new strategies to develop inhibitors and ultimately useful drugs. In this Review, we provide a broad overview of several drug discovery efforts focused on metalloenzymes and attempt to map out the current landscape of high-value metalloenzyme targets.
Collapse
Affiliation(s)
- Allie Y Chen
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Rebecca N Adamek
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Benjamin L Dick
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Cy V Credille
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Christine N Morrison
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Seth M Cohen
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| |
Collapse
|
9
|
Kamil R, Debnath U, Verma S, Prabhakar Y. Identification of Adjacent NNRTI Binding Pocket in Multi-mutated HIV1- RT Enzyme Model: An in silico Study. Curr HIV Res 2018; 16:121-129. [DOI: 10.2174/1570162x16666180412165004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/25/2018] [Accepted: 04/05/2018] [Indexed: 12/29/2022]
Abstract
Introduction:
A possible strategy to combat mutant strains is to have a thorough structural
evaluation before and after mutations to identify the diversity in the non-nucleoside inhibitor binding
pocket and their effects on enzyme-ligand interactions to generate novel NNRTI’s accordingly.
Objective:
The primary objective of this study was to find effects of multiple point mutations on
NNRTI binding pocket. This study included the contribution of each individual mutation in NNIBP
that propose an adjacent binding pocket which can be used to discover novel NNRTI derivatives.
Methods:
An in Silico model of HIV-1 RT enzyme with multiple mutations K103N, Y181C and
Y188L was developed and evaluated. Two designed NNRTI pyridinone derivatives were selected as
ligands for docking studies with the homology model through alignment based docking and residue
based docking approaches. Binding pockets of wild type HIV-1 RT and multi-mutated homology
model were compared thoroughly.
Result and Discussion:
K103N mutation narrowed the entrance of NNRTI binding pocket and forbade
electrostatic interaction with α amino group of LYS103. Mutations Y181C and Y188L prevented
NNRTI binding by eliminating aromatic π interactions offered by tyrosine rings. Docking
study against new homology model suggested an adjacent binding pocket with combination of residues
in palm and connection domains. This pocket is approximately 14.46Å away from conventional
NNRTI binding site.
Conclusion:
Increased rigidity, steric hindrance and losses of important interactions cumulatively
prompt ligands to adapt adjacent NNRTI binding pocket. The proposed new and adjacent binding
pocket is identified by this study which can further be evaluated to generate novel derivatives.
Collapse
Affiliation(s)
- R.F. Kamil
- R.C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, India
| | - U. Debnath
- Department of Pharmaceutical Chemistry, Guru Nanak Institute of Pharmaceutical Science and Technology, Kolkata 700114, India
| | - S. Verma
- Medicinal and Process Chemistry Division, CSIR- Central Drug Research Institute Lucknow 226031, India
| | - Y.S. Prabhakar
- Medicinal and Process Chemistry Division, CSIR- Central Drug Research Institute Lucknow 226031, India
| |
Collapse
|
10
|
A 2-Hydroxyisoquinoline-1,3-Dione Active-Site RNase H Inhibitor Binds in Multiple Modes to HIV-1 Reverse Transcriptase. Antimicrob Agents Chemother 2017; 61:AAC.01351-17. [PMID: 28760905 DOI: 10.1128/aac.01351-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 07/07/2017] [Indexed: 11/20/2022] Open
Abstract
The RNase H (RNH) function of HIV-1 reverse transcriptase (RT) plays an essential part in the viral life cycle. We report the characterization of YLC2-155, a 2-hydroxyisoquinoline-1,3-dione (HID)-based active-site RNH inhibitor. YLC2-155 inhibits both polymerase (50% inhibitory concentration [IC50] = 2.6 μM) and RNH functions (IC50 = 0.65 μM) of RT but is more effective against RNH. X-ray crystallography, nuclear magnetic resonance (NMR) analysis, and molecular modeling were used to show that YLC2-155 binds at the RNH-active site in multiple conformations.
Collapse
|
11
|
Structural Maturation of HIV-1 Reverse Transcriptase-A Metamorphic Solution to Genomic Instability. Viruses 2016; 8:v8100260. [PMID: 27690082 PMCID: PMC5086598 DOI: 10.3390/v8100260] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/12/2016] [Indexed: 12/13/2022] Open
Abstract
Human immunodeficiency virus 1 (HIV-1) reverse transcriptase (RT)—a critical enzyme of the viral life cycle—undergoes a complex maturation process, required so that a pair of p66 precursor proteins can develop conformationally along different pathways, one evolving to form active polymerase and ribonuclease H (RH) domains, while the second forms a non-functional polymerase and a proteolyzed RH domain. These parallel maturation pathways rely on the structural ambiguity of a metamorphic polymerase domain, for which the sequence–structure relationship is not unique. Recent nuclear magnetic resonance (NMR) studies utilizing selective labeling techniques, and structural characterization of the p66 monomer precursor have provided important insights into the details of this maturation pathway, revealing many aspects of the three major steps involved: (1) domain rearrangement; (2) dimerization; and (3) subunit-selective RH domain proteolysis. This review summarizes the major structural changes that occur during the maturation process. We also highlight how mutations, often viewed within the context of the mature RT heterodimer, can exert a major influence on maturation and dimerization. It is further suggested that several steps in the RT maturation pathway may provide attractive targets for drug development.
Collapse
|
12
|
N-substituted indole carbohydrazide derivatives: synthesis and evaluation of their antiplatelet aggregation activity. ACTA ACUST UNITED AC 2014; 22:65. [PMID: 25238875 PMCID: PMC4172840 DOI: 10.1186/s40199-014-0065-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 09/05/2014] [Indexed: 11/10/2022]
Abstract
Background Platelet aggregation is one of the most important factors in the development of thrombotic disorders which plays a central role in thrombosis (clot formation). Prophylaxis and treatment of arterial thrombosis are achieved using anti-platelet drugs. In this study, a series of novel substituted indole carbohydrazide was synthesized and evaluated for anti-platelet aggregation activity induced by adenosine diphosphate (ADP), arachidonic acid (AA) and collagen. Methods Our synthetic route started from methyl 1H-indole-3-carboxylate (1) and ethyl 1H-indole-2-carboxylate (4) which were reacted with hydrazine monohydrate 99%. The aldol condensation of the later compound with aromatic aldehydes led to the formation of the title compounds. Sixteen indole acylhydrazone derivatives, 3d-m and 6d-i were tested for anti-platelet aggregation activity induced by adenosine diphosphate (ADP), arachidonic acid (AA) and collagen. Results Among the synthesized compounds, 6g and 6h with 100% inhibition, proved to be the most potent derivatives of the 2-substituted indole on platelet aggregation induced by AA and collagen, respectively. In 3-substituted indole 3m with 100% inhibition and 3f and 3i caused 97% inhibition on platelet aggregation induced by collagen and AA, respectively. Conclusion In this study, compounds 6g, 6h, 3m, 3f and 3i showed better inhibition on platelet aggregation induced by AA and collagen among the title compounds. Quantitative structure–activity relationship (QSAR) analysis between the structural parameters of the investigated derivatives and their antiplatelet aggregation activity was performed with various molecular descriptors but, analysis of the physicochemical parameters doesn’t show a significant correlation between the observed activities and general molecular parameters of the synthesized derivatives. Although, due to the existence of several receptors on the platelets surface which are responsible for controlling the platelet aggregation, the investigated compounds in the present study may exert their activities through binding to more than one of these receptors and therefore no straight forward SAR could be obtained for them.
Collapse
|
13
|
Yoneda JD, Albuquerque MG, Leal KZ, Santos FDC, Batalha PN, Brozeguini L, Seidl PR, de Alencastro RB, Cunha AC, de Souza MCB, Ferreira VF, Giongo VA, Cirne-Santos C, Paixão IC. Docking of anti-HIV-1 oxoquinoline-acylhydrazone derivatives as potential HSV-1 DNA polymerase inhibitors. J Mol Struct 2014. [DOI: 10.1016/j.molstruc.2014.05.081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Active site and allosteric inhibitors of the ribonuclease H activity of HIV reverse transcriptase. Future Med Chem 2014; 5:2127-39. [PMID: 24261890 DOI: 10.4155/fmc.13.178] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Despite the wealth of information available for the reverse transcriptase (RT)-associated ribonuclease H (RNaseH) domain of lentiviruses, gammaretroviruses and long terminal repeat containing retrotransposons, exploiting this information in the form of an RNaseH inhibitor with high specificity and low cellular toxicity has been disappointing. However, it is now becoming increasingly evident that the two-subunit HIV-1 RT is a highly versatile enzyme, undergoing major structural alterations in order to interact with, position and ultimately hydrolyze the RNA component of an RNA/DNA hybrid. Thus, in addition to targeting the RNaseH active site, identifying small molecules that bind elsewhere and disrupt catalysis allosterically by impairing conformational flexibility is gaining increased attention. This review summarizes current progress towards development of both active site and allosteric RNaseH inhibitors.
Collapse
|
15
|
Martínez RF, Ávalos M, Babiano R, Cintas P, Light ME, Jiménez JL, Palacios JC. Hydrazones from hydroxy naphthaldehydes. Part 2. Condensations with aromatic N-aminoheterocycles and elucidation of tautomeric structures. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.02.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
16
|
Sanchez TW, Debnath B, Christ F, Otake H, Debyser Z, Neamati N. Discovery of novel inhibitors of LEDGF/p75-IN protein-protein interactions. Bioorg Med Chem 2013; 21:957-63. [PMID: 23306052 PMCID: PMC6188659 DOI: 10.1016/j.bmc.2012.12.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 11/25/2012] [Accepted: 12/03/2012] [Indexed: 11/30/2022]
Abstract
Human lens epithelium-derived growth factor (LEDGF)/p75 plays an important role in the HIV life cycle by stimulating integrase (IN)-led viral DNA integration into cellular chromosomes. Mechanistic studies show the majority of IN inhibitors chelate magnesium ions in the catalytic active site, a region topologically distant from the LEDGF/p75 binding site. Compounds disrupting the formation of LEDGF/p75 and IN complexes serve as a novel mechanistic approach different from current antiretroviral therapies. We previously built pharmacophore models mimicking LEDGF/p75 residues and identified four classes of LEDGF/p75-IN inhibitors. Substructure and similarity searches yielded additional LEDGF/p75-IN inhibitors containing an acylhydrazone moiety. The most potent of the acylhydrazones inhibited LEDGF/p75-IN interaction with an IC(50) value of 400nM. We explored structure-activity relationships (SAR) and identified new acylhydrazones, hydrazines, and diazenes as lead molecules for further optimization. Two lead LEDGF/p75-IN inhibitors showed antiviral activity.
Collapse
Affiliation(s)
- Tino Wilson Sanchez
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | | | | | | |
Collapse
|
17
|
HIV-1 Reverse Transcriptase Still Remains a New Drug Target: Structure, Function, Classical Inhibitors, and New Inhibitors with Innovative Mechanisms of Actions. Mol Biol Int 2012; 2012:586401. [PMID: 22778958 PMCID: PMC3388302 DOI: 10.1155/2012/586401] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 04/03/2012] [Indexed: 12/21/2022] Open
Abstract
During the retrotranscription process, characteristic of all retroviruses, the viral ssRNA genome is converted into integration-competent dsDNA. This process is accomplished by the virus-coded reverse transcriptase (RT) protein, which is a primary target in the current treatments for HIV-1 infection. In particular, in the approved therapeutic regimens two classes of drugs target RT, namely, nucleoside RT inhibitors (NRTIs) and nonnucleoside RT inhibitors (NNRTIs). Both classes inhibit the RT-associated polymerase activity: the NRTIs compete with the natural dNTP substrate and act as chain terminators, while the NNRTIs bind to an allosteric pocket and inhibit polymerization noncompetitively. In addition to these two classes, other RT inhibitors (RTIs) that target RT by distinct mechanisms have been identified and are currently under development. These include translocation-defective RTIs, delayed chain terminators RTIs, lethal mutagenesis RTIs, dinucleotide tetraphosphates, nucleotide-competing RTIs, pyrophosphate analogs, RT-associated RNase H function inhibitors, and dual activities inhibitors. This paper describes the HIV-1 RT function and molecular structure, illustrates the currently approved RTIs, and focuses on the mechanisms of action of the newer classes of RTIs.
Collapse
|
18
|
Distinto S, Esposito F, Kirchmair J, Cardia MC, Gaspari M, Maccioni E, Alcaro S, Markt P, Wolber G, Zinzula L, Tramontano E. Identification of HIV-1 reverse transcriptase dual inhibitors by a combined shape-, 2D-fingerprint- and pharmacophore-based virtual screening approach. Eur J Med Chem 2012; 50:216-29. [PMID: 22361685 DOI: 10.1016/j.ejmech.2012.01.056] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 12/26/2011] [Accepted: 01/27/2012] [Indexed: 01/23/2023]
Abstract
We report the first application of ligand-based virtual screening (VS) methods for discovering new compounds able to inhibit both human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT)-associated functions, DNA polymerase and ribonuclease H (RNase H) activities. The overall VS campaign consisted of two consecutive screening processes. In the first, the VS platform Rapid Overlay of Chemical Structures (ROCS) was used to perform in silico shape-based similarity screening on the NCI compounds database in which a hydrazone derivative, previously shown to inhibit the HIV-1 RT, was chosen. As a result, 34 hit molecules were selected and assayed on both RT-associated functions. In the second, the 4 most potent RT inhibitors identified were selected as queries for parallel VS performed by combining shape-based, 2D-fingerprint and 3D-pharmacophore VS methods. Overall, a set of molecules characterized by new different scaffolds were identified as novel inhibitors of both HIV-1 RT-associated activities in the low micromolar range.
Collapse
Affiliation(s)
- Simona Distinto
- Dipartimento di Scienze della Salute, Università degli Studi Magna Grecia di Catanzaro, Campus Salvatore Venuta, 88100, Catanzaro, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Structural and inhibition studies of the RNase H function of xenotropic murine leukemia virus-related virus reverse transcriptase. Antimicrob Agents Chemother 2012; 56:2048-61. [PMID: 22252812 DOI: 10.1128/aac.06000-11] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
RNase H inhibitors (RNHIs) have gained attention as potential HIV-1 therapeutics. Although several RNHIs have been studied in the context of HIV-1 reverse transcriptase (RT) RNase H, there is no information on inhibitors that might affect the RNase H activity of other RTs. We performed biochemical, virological, crystallographic, and molecular modeling studies to compare the RNase H function and inhibition profiles of the gammaretroviral xenotropic murine leukemia virus-related virus (XMRV) and Moloney murine leukemia virus (MoMLV) RTs to those of HIV-1 RT. The RNase H activity of XMRV RT is significantly lower than that of HIV-1 RT and comparable to that of MoMLV RT. XMRV and MoMLV, but not HIV-1 RT, had optimal RNase H activities in the presence of Mn²⁺ and not Mg²⁺. Using hydroxyl-radical footprinting assays, we demonstrated that the distance between the polymerase and RNase H domains in the MoMLV and XMRV RTs is longer than that in the HIV-1 RT by ∼3.4 Å. We identified one naphthyridinone and one hydroxyisoquinolinedione as potent inhibitors of HIV-1 and XMRV RT RNases H with 50% inhibitory concentrations ranging from ∼0.8 to 0.02 μM. Two acylhydrazones effective against HIV-1 RT RNase H were less potent against the XMRV enzyme. We also solved the crystal structure of an XMRV RNase H fragment at high resolution (1.5 Å) and determined the molecular details of the XMRV RNase H active site, thus providing a framework that would be useful for the design of antivirals that target RNase H.
Collapse
|
20
|
Felts AK, Labarge K, Bauman JD, Patel DV, Himmel DM, Arnold E, Parniak MA, Levy RM. Identification of alternative binding sites for inhibitors of HIV-1 ribonuclease H through comparative analysis of virtual enrichment studies. J Chem Inf Model 2011; 51:1986-98. [PMID: 21714567 PMCID: PMC3159817 DOI: 10.1021/ci200194w] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ribonuclease H (RNase H) domain on the p66 monomer of HIV-1 reverse transcriptase enzyme has become a target for inhibition. The active site is one potential binding site, but other RNase H sites can accommodate inhibitors. Using a combination of experimental and computational studies, potential new binding sites and binding modes have been identified. Libraries of compounds were screened with an experimental assay to identify actives without knowledge of the binding site. The compounds were computationally docked at putative binding sites. Based on positive enrichment of natural-product actives relative to the database of compounds, we propose that many inhibitors bind to an alternative, potentially allosteric, site centered on Q507 of p66. For a series of hydrazone compounds, a small amount of positive enrichment was obtained when active compounds were bound by induced-fit docking at the interface between the DNA:RNA substrate and the RNase H domain near residue Q500.
Collapse
Affiliation(s)
- Anthony K Felts
- BioMaPS Institute for Quantitative Biology, Rutgers University, Piscataway, New Jersey 08854, USA.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Tian B, He M, Tan Z, Tang S, Hewlett I, Chen S, Jin Y, Yang M. Synthesis and antiviral evaluation of new N-acylhydrazones containing glycine residue. Chem Biol Drug Des 2011; 77:189-98. [PMID: 21306567 DOI: 10.1111/j.1747-0285.2010.01050.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
N-acylhydrazones containing glycine residue 3a-j and 8a-h were synthesized as HIV-1 capsid protein assembly inhibitors. The structures of the novel N-acylhydrazone derivatives were characterized using different spectroscopic methods. Antiviral activity demonstrated that compound 8c bearing 4-methylphenyl moiety was the most active with low cytotoxicity.
Collapse
Affiliation(s)
- Baohe Tian
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, PO Box 261, Beijing 100191, China
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Xie X, Xu W, Li T, Liu X. Colorimetric detection of HIV-1 ribonuclease H activity by gold nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2011; 7:1393-1396. [PMID: 21438149 DOI: 10.1002/smll.201002150] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 01/24/2011] [Indexed: 05/30/2023]
Affiliation(s)
- Xiaoji Xie
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore.
| | | | | | | |
Collapse
|
23
|
Martínez RF, Ávalos M, Babiano R, Cintas P, Light ME, Jiménez JL, Palacios JC, Pérez EM, Rastrojo V. Hydrazones from hydroxy naphthaldehydes and N-aminoheterocycles: structure and stereodynamics. Tetrahedron 2011. [DOI: 10.1016/j.tet.2011.01.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Gong Q, Menon L, Ilina T, Miller LG, Ahn J, Parniak MA, Ishima R. Interaction of HIV-1 reverse transcriptase ribonuclease H with an acylhydrazone inhibitor. Chem Biol Drug Des 2011; 77:39-47. [PMID: 21114787 PMCID: PMC3320797 DOI: 10.1111/j.1747-0285.2010.01052.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
HIV-1 reverse transcriptase is a bifunctional enzyme, having both DNA polymerase (RNA- and DNA-dependent) and ribonuclease H activities. HIV-1 reverse transcriptase has been an exceptionally important target for antiretroviral therapeutic development, and nearly half of the current clinically used antiretrovirals target reverse transcriptase DNA polymerase. However, no inhibitors of reverse transcriptase ribonuclease H are on the market or in preclinical development. Several drug-like small molecule inhibitors of reverse transcriptase ribonuclease H have been described, but little structural information is available about the interactions between reverse transcriptase ribonuclease H and inhibitors that exhibit antiviral activity. In this report, we describe NMR studies of the interaction of a new ribonuclease H inhibitor, BHMP07, with a catalytically active HIV-1 reverse transcriptase ribonuclease H domain fragment. We carried out solution NMR experiments to identify the interaction interface of BHMP07 with the ribonuclease H domain fragment. Chemical shift changes of backbone amide signals at different BHMP07 concentrations clearly demonstrate that BHMP07 mainly recognizes the substrate handle region in the ribonuclease H fragment. Using ribonuclease H inhibition assays and reverse transcriptase mutants, the binding specificity of BHMP07 was compared with another inhibitor, dihydroxy benzoyl naphthyl hydrazone. Our results provide a structural characterization of the ribonuclease H inhibitor interaction and are likely to be useful for further improvements of the inhibitors.
Collapse
Affiliation(s)
- Qingguo Gong
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260
| | - Lakshmi Menon
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260
| | - Tatiana Ilina
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260
| | - Lena G. Miller
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260
| | - Jinwoo Ahn
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260
| | - Michael A. Parniak
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260
| | - Rieko Ishima
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260
| |
Collapse
|
25
|
Fuji H, Urano E, Futahashi Y, Hamatake M, Tatsumi J, Hoshino T, Morikawa Y, Yamamoto N, Komano J. Derivatives of 5-nitro-furan-2-carboxylic acid carbamoylmethyl ester inhibit RNase H activity associated with HIV-1 reverse transcriptase. J Med Chem 2010; 52:1380-7. [PMID: 19178289 DOI: 10.1021/jm801071m] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The RNase H activity associated with human immunodeficiency virus type 1 (HIV-1) is an attractive target for an antiretroviral drug development. We screened 20000 small-molecular-weight compounds for RNase H inhibitors and identified a novel RNase H-inhibiting structure characterized by a 5-nitro-furan-2-carboxylic acid carbamoylmethyl ester (NACME) moiety. Two NACME derivatives, 5-nitro-furan-2-carboxylic acid adamantan-1-carbamoylmethyl ester (compound 1) and 5-nitro-furan-2-carboxylic acid [[4-(4-bromo-phenyl)-thiazol-2-yl]-(tetrahydro-furan-2-ylmethyl)-carbamoyl]-methyl ester (compound 2), effectively blocked HIV-1 and MLV RT-associated RNase H activities with IC(50)s of 3-30 microM but had little effect on bacterial RNase H activity in vitro. Additionally, 20-25 microM compound 2 effectively inhibited HIV-1 replication. An in silico docking simulation indicated that the conserved His539 residue, and two metal ions in the RNase H catalytic center are involved in RNase H inhibition by NACME derivatives. Taken together, these data suggest that NACME derivatives may be potent lead compounds for development of a novel class of antiretroviral drugs.
Collapse
Affiliation(s)
- Hideyoshi Fuji
- Department of Physical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Inage-ku, Chiba, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Structural basis for the inhibition of RNase H activity of HIV-1 reverse transcriptase by RNase H active site-directed inhibitors. J Virol 2010; 84:7625-33. [PMID: 20484498 DOI: 10.1128/jvi.00353-10] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HIV/AIDS continues to be a menace to public health. Several drugs currently on the market have successfully improved the ability to manage the viral burden in infected patients. However, new drugs are needed to combat the rapid emergence of mutated forms of the virus that are resistant to existing therapies. Currently, approved drugs target three of the four major enzyme activities encoded by the virus that are critical to the HIV life cycle. Although a number of inhibitors of HIV RNase H activity have been reported, few inhibit by directly engaging the RNase H active site. Here, we describe structures of naphthyridinone-containing inhibitors bound to the RNase H active site. This class of compounds binds to the active site via two metal ions that are coordinated by catalytic site residues, D443, E478, D498, and D549. The directionality of the naphthyridinone pharmacophore is restricted by the ordering of D549 and H539 in the RNase H domain. In addition, one of the naphthyridinone-based compounds was found to bind at a second site close to the polymerase active site and non-nucleoside/nucleotide inhibitor sites in a metal-independent manner. Further characterization, using fluorescence-based thermal denaturation and a crystal structure of the isolated RNase H domain reveals that this compound can also bind the RNase H site and retains the metal-dependent binding mode of this class of molecules. These structures provide a means for structurally guided design of novel RNase H inhibitors.
Collapse
|
27
|
HIV-1 Ribonuclease H: Structure, Catalytic Mechanism and Inhibitors. Viruses 2010; 2:900-926. [PMID: 21994660 PMCID: PMC3185654 DOI: 10.3390/v2040900] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 03/22/2010] [Accepted: 03/24/2010] [Indexed: 11/16/2022] Open
Abstract
Since the human immunodeficiency virus (HIV) was discovered as the etiological agent of acquired immunodeficiency syndrome (AIDS), it has encouraged much research into antiviral compounds. The reverse transcriptase (RT) of HIV has been a main target for antiviral drugs. However, all drugs developed so far inhibit the polymerase function of the enzyme, while none of the approved antiviral agents inhibit specifically the necessary ribonuclease H (RNase H) function of RT. This review provides a background on structure-function relationships of HIV-1 RNase H, as well as an outline of current attempts to develop novel, potent chemotherapeutics against a difficult drug target.
Collapse
|
28
|
Braz VA, Holladay LA, Barkley MD. Efavirenz binding to HIV-1 reverse transcriptase monomers and dimers. Biochemistry 2010; 49:601-10. [PMID: 20039714 PMCID: PMC2896556 DOI: 10.1021/bi901579y] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Efavirenz (EFV) is a nonnucleoside reverse transcriptase inhibitor (NNRTI) of HIV-1 reverse transcriptase (RT) used for the treatment of AIDS. RT is a heterodimer composed of p66 and p51 subunits; p51 is produced from p66 by C-terminal truncation by HIV protease. The monomers can form p66/p66 and p51/p51 homodimers as well as the p66/p51 heterodimer. Dimerization and efavirenz binding are coupled processes. In the crystal structure of the p66/p51-EFV complex, the drug is bound to the p66 subunit. The binding of efavirenz to wild-type and dimerization-defective RT proteins was studied by equilibrium dialysis, tryptophan fluorescence, and native gel electrophoresis. A 1:1 binding stoichiometry was determined for both monomers and homodimers. Equilibrium dissociation constants are approximately 2.5 microM for both p66- and p51-EFV complexes, 250 nM for the p66/p66-EFV complex, and 7 nM for the p51/p51-EFV complex. An equilibrium dissociation constant of 92 nM for the p66/p51-EFV complex was calculated from the thermodynamic linkage between dimerization and inhibitor binding. Binding and unbinding kinetics monitored by fluorescence were slow. Progress curve analyses revealed a one-step, direct binding mechanism with association rate constants k(1) of approximately 13.5 M(-1) s(-1) for monomers and heterodimer and dissociation rate constants k(-1) of approximately 9 x 10(-5) s(-1) for monomers. A conformational selection mechanism is proposed to account for the slow association rate. These results show that efavirenz is a slow, tight-binding inhibitor capable of binding all forms of RT and suggest that the NNRTI binding site in monomers and dimers is similar.
Collapse
Affiliation(s)
| | | | - Mary D. Barkley
- To whom correspondence should be addressed. Telephone: (216) 368-0602. Fax: (216) 368-0604.
| |
Collapse
|
29
|
Pol-Fachin L, Fraga CAM, Barreiro EJ, Verli H. Characterization of the conformational ensemble from bioactive N-acylhydrazone derivatives. J Mol Graph Model 2009; 28:446-54. [PMID: 19942466 DOI: 10.1016/j.jmgm.2009.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 10/15/2009] [Accepted: 10/21/2009] [Indexed: 10/20/2022]
Abstract
The search for bioactive conformations from prototypes is mostly referenced on crystallographic ligand-receptor complexes, in which the molecule conformation is already caged inside its binding site. However, the complexation process is a thermodynamic event depending on both complexed and uncomplexed states. As ligand affinity originates from such equilibrium, the development of novel computational models capable of supplying data on ligand dynamics in biological solutions is potentially applicable in more efficient methods for prediction of compounds binding and affinity. In this context, the current work employs a series of molecular dynamics simulations on three N-acylhydrazone derivatives, already shown to present promising cardioinotropic and vasodilatory activities, in order to obtain a precise characterization of each compound conformational ensemble in aqueous solutions, instead of a single minimum energy conformation. Consequently, we were able to observe the influence of each functional group of the studied molecules on the conformation of the entire compounds and thus on the exposure of functional groups that might potentially bind to target receptors. Additionally, the differences between the molecules conformational behavior were characterized, supporting a spatial and temporal image of each ligand, which may be potentially correlated to their biological activities. So in the context of conformational selection, such strategy may represent a useful methodology to contribute in the choice of ligands conformations for both 3D-QSAR and docking calculations.
Collapse
Affiliation(s)
- Laercio Pol-Fachin
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, CP 15005, Porto Alegre 91500-970, RS, Brazil
| | | | | | | |
Collapse
|
30
|
Synthesis and anti-HIV activity evaluation of novel N′-arylidene-2-[1-(naphthalen-1-yl)-1H-tetrazol-5-ylthio]acetohydrazides. Med Chem Res 2009. [DOI: 10.1007/s00044-009-9220-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Beilhartz GL, Wendeler M, Baichoo N, Rausch J, Le Grice S, Götte M. HIV-1 reverse transcriptase can simultaneously engage its DNA/RNA substrate at both DNA polymerase and RNase H active sites: implications for RNase H inhibition. J Mol Biol 2009; 388:462-74. [PMID: 19289131 PMCID: PMC4285699 DOI: 10.1016/j.jmb.2009.03.025] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Revised: 02/19/2009] [Accepted: 03/09/2009] [Indexed: 02/07/2023]
Abstract
Reverse transcriptase of the human immunodeficiency virus possesses DNA polymerase and ribonuclease (RNase) H activities. Although the nucleic acid binding cleft separating these domains can accommodate structurally diverse duplexes, it is currently unknown whether regular DNA/RNA hybrids can simultaneously contact both active sites. In this study, we demonstrate that ligands capable of trapping the 3'-end of the primer at the polymerase active site affect the specificity of RNase H cleavage without altering the efficiency of the reaction. Experiments under single-turnover conditions reveal that complexes with a bound nucleotide substrate show specific RNase H cleavage at template position -18, while complexes with the pyrophosphate analogue foscarnet show a specific cut at position -19. This pattern is indicative of post-translocated and pre-translocated conformations. The data are inconsistent with models postulating that the substrate toggles between both active sites, such that the primer 3'-terminus is disengaged from the polymerase active site when the template is in contact with the RNase H active site. In contrast, our findings provide strong evidence to suggest that the nucleic acid substrate can engage both active sites at the same time. As a consequence, the bound and intact DNA/RNA hybrid can restrict access of RNase H active site inhibitors. We have mapped the binding site of the recently discovered inhibitor beta-thujaplicinol between the RNase H active site and Y501 of the RNase H primer grip, and have shown that the inhibitor is unable to bind to a preformed reverse transcriptase-DNA/RNA complex. In conclusion, the bound nucleic acid substrate and in turn, active DNA synthesis can represent an obstacle to RNase H inhibition with compounds that bind to the RNase H active site.
Collapse
Affiliation(s)
- Greg L. Beilhartz
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada, H3A 2B4
| | - Michaela Wendeler
- RT Biochemistry Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, MA, USA
| | - Noel Baichoo
- RT Biochemistry Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, MA, USA
| | - Jason Rausch
- RT Biochemistry Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, MA, USA
| | - Stuart Le Grice
- RT Biochemistry Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, MA, USA
| | - Matthias Götte
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada, H3A 2B4
| |
Collapse
|
32
|
Wendeler M, Beilhartz GL, Beutler JA, Götte M, Le Grice SFJ. HIV ribonuclease H: continuing the search for small molecule antagonists. HIV THERAPY 2008; 3:39-53. [PMID: 38961883 PMCID: PMC11221599 DOI: 10.2217/17584310.3.1.39] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Members of the ribonuclease H (RNase H) family of enzymes (EC 3.1.26.4), which are found in nearly all organisms, are endoribonucleases that specifically hydrolyze the phosphodiester bond of RNA in a RNA-DNA hybrid. In retroviruses such as HIV-1, the RNase H activity is part of reverse transcriptase, the enzyme that converts the viral ssRNA into dsDNA suitable for integration into the host cell genome. In HIV-1, RNase H plays an essential role in various stages of reverse transcription, and it has been known for 20 years that inhibiting RNase H activity renders HIV noninfectious. However, the development of potent and selective antagonists of HIV RNase H has made surprisingly slow progress, and so far no RNase H inhibitor is in clinical trial, rendering this enzyme an important, but as yet underexplored, drug target. The recently described crystal structure of human RNase H in complex with a RNA-DNA hybrid provides new insight into the mechanism of HIV RNase H activity, with the potential to unveil new niches for therapeutic intervention. The current status of RNase H screening efforts is reviewed here.
Collapse
Affiliation(s)
- Michaela Wendeler
- HIV Drug Resistance Program, National Cancer Institute-Frederick, Frederick, MD, USA
| | - Greg L Beilhartz
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada
| | - John A Beutler
- Molecular Targets Discovery Program, National Cancer Institute-Frederick, Frederick, MD, USA
| | - Matthias Götte
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada
| | - Stuart FJ Le Grice
- HIV Drug Resistance Program, National Cancer Institute-Frederick, Frederick, MD, USA
| |
Collapse
|
33
|
Agopian A, Gros E, Aldrian-Herrada G, Bosquet N, Clayette P, Divita G. A new generation of peptide-based inhibitors targeting HIV-1 reverse transcriptase conformational flexibility. J Biol Chem 2008; 284:254-264. [PMID: 18952602 DOI: 10.1074/jbc.m802199200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The biologically active form of human immunodeficiency virus (HIV) type 1 reverse transcriptase (RT) is a heterodimer. The formation of RT is a two-step mechanism, including a rapid protein-protein interaction "the dimerization step," followed by conformational changes "the maturation step," yielding the biologically active form of the enzyme. We have previously proposed that the heterodimeric organization of RT constitutes an interesting target for the design of new inhibitors. Here, we propose a new class of RT inhibitors that targets protein-protein interactions and conformational changes involved in the maturation of heterodimeric reverse transcriptase. Based on a screen of peptides derived from the thumb domain of this enzyme, we have identified a short peptide P(AW) that inhibits the maturation step and blocks viral replication at subnanomolar concentrations. P(AW) only binds dimeric RT and stabilizes it in an inactive/non-processive conformation. From a mechanistic point of view, P(AW) prevents proper binding of primer/template by affecting the structural dynamics of the thumb/fingers of p66 subunit. Taken together, these results demonstrate that HIV-1 RT maturation constitutes an attractive target for AIDS chemotherapeutics.
Collapse
Affiliation(s)
- Audrey Agopian
- Centre de Recherches de Biochimie Macromoláculaire, Department of Molecular Biophysics & Therapeutic, UMR-5237 CNRS-UM2-UM1, 1919 Route de Mende, Montpellier 34293 and the SPI-BIO Commissariat á l'ánergie Atomique, Pharmacologie des Rátrovirus, 18 Route du Panorama, BP6, Fontenay aux Roses 9226, France
| | - Edwige Gros
- Centre de Recherches de Biochimie Macromoláculaire, Department of Molecular Biophysics & Therapeutic, UMR-5237 CNRS-UM2-UM1, 1919 Route de Mende, Montpellier 34293 and the SPI-BIO Commissariat á l'ánergie Atomique, Pharmacologie des Rátrovirus, 18 Route du Panorama, BP6, Fontenay aux Roses 9226, France
| | - Gudrun Aldrian-Herrada
- Centre de Recherches de Biochimie Macromoláculaire, Department of Molecular Biophysics & Therapeutic, UMR-5237 CNRS-UM2-UM1, 1919 Route de Mende, Montpellier 34293 and the SPI-BIO Commissariat á l'ánergie Atomique, Pharmacologie des Rátrovirus, 18 Route du Panorama, BP6, Fontenay aux Roses 9226, France
| | - Nathalie Bosquet
- Centre de Recherches de Biochimie Macromoláculaire, Department of Molecular Biophysics & Therapeutic, UMR-5237 CNRS-UM2-UM1, 1919 Route de Mende, Montpellier 34293 and the SPI-BIO Commissariat á l'ánergie Atomique, Pharmacologie des Rátrovirus, 18 Route du Panorama, BP6, Fontenay aux Roses 9226, France
| | - Pascal Clayette
- Centre de Recherches de Biochimie Macromoláculaire, Department of Molecular Biophysics & Therapeutic, UMR-5237 CNRS-UM2-UM1, 1919 Route de Mende, Montpellier 34293 and the SPI-BIO Commissariat á l'ánergie Atomique, Pharmacologie des Rátrovirus, 18 Route du Panorama, BP6, Fontenay aux Roses 9226, France
| | - Gilles Divita
- Centre de Recherches de Biochimie Macromoláculaire, Department of Molecular Biophysics & Therapeutic, UMR-5237 CNRS-UM2-UM1, 1919 Route de Mende, Montpellier 34293 and the SPI-BIO Commissariat á l'ánergie Atomique, Pharmacologie des Rátrovirus, 18 Route du Panorama, BP6, Fontenay aux Roses 9226, France.
| |
Collapse
|
34
|
Grohmann D, Corradi V, Elbasyouny M, Baude A, Horenkamp F, Laufer SD, Manetti F, Botta M, Restle T. Small molecule inhibitors targeting HIV-1 reverse transcriptase dimerization. Chembiochem 2008; 9:916-22. [PMID: 18318036 DOI: 10.1002/cbic.200700669] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The enzymatic activities of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) are strictly correlated with the dimeric forms of this vital retroviral enzyme. Accordingly, the development of inhibitors targeting the dimerization of RT represents a promising alternative antiviral strategy. Based on mutational studies, we applied a structure-based ligand design approach generating pharmacophoric models of the large subunit connection subdomain to possibly identify small molecules from the ASINEX database, which might interfere with the RT subunit interaction. Docking studies of the selected compounds identified several candidates, which were initially tested in an in vitro subunit association assay. One of these molecules (MAS0) strongly reduced the association of the two RT subunits p51 and p66. Most notably, the compound simultaneously inhibited both the polymerase as well as the RNase H activity of the retroviral enzyme, following preincubation with t(1/2) of about 2 h, indicative of a slow isomerization step. This step most probably represents a shift of the RT dimer equilibrium from an active to an inactive conformation. Taken together, to the best of our knowledge, this study represents the first successful rational screen for a small molecule HIV RT dimerization inhibitor, which may serve as attractive hit compound for the development of novel therapeutic agents.
Collapse
Affiliation(s)
- Dina Grohmann
- Institut für Molekulare Medizin, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ilina T, Parniak MA. Inhibitors of HIV-1 reverse transcriptase. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2008; 56:121-67. [PMID: 18086411 DOI: 10.1016/s1054-3589(07)56005-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Tatiana Ilina
- Department of Molecular Genetics and Biochemistry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | |
Collapse
|
36
|
Zhang J. Preparation, characterization, crystal structure and bioactivity determination of ferrocenyl–thiazoleacylhydrazones. Appl Organomet Chem 2008. [DOI: 10.1002/aoc.1338] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
37
|
Himmel DM, Sarafianos SG, Dharmasena S, Hossain MM, McCoy-Simandle K, Ilina T, Clark AD, Knight JL, Julias JG, Clark PK, Krogh-Jespersen K, Levy RM, Hughes SH, Parniak MA, Arnold E. HIV-1 reverse transcriptase structure with RNase H inhibitor dihydroxy benzoyl naphthyl hydrazone bound at a novel site. ACS Chem Biol 2006; 1:702-12. [PMID: 17184135 PMCID: PMC2963427 DOI: 10.1021/cb600303y] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The rapid emergence of drug-resistant variants of human immunodeficiency virus, type 1 (HIV-1), has limited the efficacy of anti-acquired immune deficiency syndrome (AIDS) treatments, and new lead compounds that target novel binding sites are needed. We have determined the 3.15 A resolution crystal structure of HIV-1 reverse transcriptase (RT) complexed with dihydroxy benzoyl naphthyl hydrazone (DHBNH), an HIV-1 RT RNase H (RNH) inhibitor (RNHI). DHBNH is effective against a variety of drug-resistant HIV-1 RT mutants. While DHBNH has little effect on most aspects of RT-catalyzed DNA synthesis, at relatively high concentrations it does inhibit the initiation of RNA-primed DNA synthesis. Although primarily an RNHI, DHBNH binds >50 A away from the RNH active site, at a novel site near both the polymerase active site and the non-nucleoside RT inhibitor (NNRTI) binding pocket. When DHBNH binds, both Tyr181 and Tyr188 remain in the conformations seen in unliganded HIV-1 RT. DHBNH interacts with conserved residues (Asp186, Trp229) and has substantial interactions with the backbones of several less well-conserved residues. On the basis of this structure, we designed substituted DHBNH derivatives that interact with the NNRTI-binding pocket. These compounds inhibit both the polymerase and RNH activities of RT.
Collapse
Affiliation(s)
- Daniel M. Himmel
- Center for Advanced Biotechnology and Medicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854-5627
| | - Stefan G. Sarafianos
- Center for Advanced Biotechnology and Medicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854-5627
| | - Sanjeewa Dharmasena
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261-0001
| | - Mohammed M. Hossain
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261-0001
| | - Kessler McCoy-Simandle
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261-0001
| | - Tatiana Ilina
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261-0001
| | - Arthur D. Clark
- Center for Advanced Biotechnology and Medicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854-5627
| | - Jennifer L. Knight
- Department of Chemistry and Chemical Biology and BIOMAPS Institute for Quantitative Biology, Rutgers University, Piscataway, New Jersey 08854-8066
| | - John G. Julias
- Basic Research Program, SAIC-Frederick, Inc., Frederick, Maryland 21702-1201
| | - Patrick K. Clark
- Basic Research Program, SAIC-Frederick, Inc., Frederick, Maryland 21702-1201
| | - Karsten Krogh-Jespersen
- Department of Chemistry and Chemical Biology and BIOMAPS Institute for Quantitative Biology, Rutgers University, Piscataway, New Jersey 08854-8066
| | - Ronald M. Levy
- Department of Chemistry and Chemical Biology and BIOMAPS Institute for Quantitative Biology, Rutgers University, Piscataway, New Jersey 08854-8066
| | - Stephen H. Hughes
- HIV Drug Resistance Program, NCI-Frederick, Building 539, Frederick, Maryland 21702-1201
| | - Michael A. Parniak
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261-0001
| | - Eddy Arnold
- Center for Advanced Biotechnology and Medicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854-5627
| |
Collapse
|
38
|
Ren J, Nichols CE, Stamp A, Chamberlain PP, Ferris R, Weaver KL, Short SA, Stammers DK. Structural insights into mechanisms of non-nucleoside drug resistance for HIV-1 reverse transcriptases mutated at codons 101 or 138. FEBS J 2006; 273:3850-60. [PMID: 16911530 DOI: 10.1111/j.1742-4658.2006.05392.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Lys101Glu is a drug resistance mutation in reverse transcriptase clinically observed in HIV-1 from infected patients treated with the non-nucleoside inhibitor (NNRTI) drugs nevirapine and efavirenz. In contrast to many NNRTI resistance mutations, Lys101(p66 subunit) is positioned at the surface of the NNRTI pocket where it interacts across the reverse transcriptase (RT) subunit interface with Glu138(p51 subunit). However, nevirapine contacts Lys101 and Glu138 only indirectly, via water molecules, thus the structural basis of drug resistance induced by Lys101Glu is unclear. We have determined crystal structures of RT(Glu138Lys) and RT(Lys101Glu) in complexes with nevirapine to 2.5 A, allowing the determination of water structure within the NNRTI-binding pocket, essential for an understanding of nevirapine binding. Both RT(Glu138Lys) and RT(Lys101Glu) have remarkably similar protein conformations to wild-type RT, except for significant movement of the mutated side-chains away from the NNRTI pocket induced by charge inversion. There are also small shifts in the position of nevirapine for both mutant structures which may influence ring stacking interactions with Tyr181. However, the reduction in hydrogen bonds in the drug-water-side-chain network resulting from the mutated side-chain movement appears to be the most significant contribution to nevirapine resistance for RT(Lys101Glu). The movement of Glu101 away from the NNRTI pocket can also explain the resistance of RT(Lys101Glu) to efavirenz but in this case is due to a loss of side-chain contacts with the drug. RT(Lys101Glu) is thus a distinctive NNRTI resistance mutant in that it can give rise to both direct and indirect mechanisms of drug resistance, which are inhibitor-dependent.
Collapse
Affiliation(s)
- Jingshan Ren
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, Henry Wellcome Building for Genomic Medicine, University of Oxford, UK
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Camarasa MJ, Velázquez S, San-Félix A, Pérez-Pérez MJ, Gago F. Dimerization inhibitors of HIV-1 reverse transcriptase, protease and integrase: A single mode of inhibition for the three HIV enzymes? Antiviral Res 2006; 71:260-7. [PMID: 16872687 DOI: 10.1016/j.antiviral.2006.05.021] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Revised: 05/25/2006] [Accepted: 05/30/2006] [Indexed: 10/24/2022]
Abstract
The genome of human immunodeficiency virus type 1 (HIV-1) encodes 15 distinct proteins, three of which provide essential enzymatic functions: a reverse transcriptase (RT), an integrase (IN), and a protease (PR). Since these enzymes are all homodimers, pseudohomodimers or multimers, disruption of protein-protein interactions in these retroviral enzymes may constitute an alternative way to achieve HIV-1 inhibition. A growing number of dimerization inhibitors for these enzymes is being reported. This mini review summarizes some approaches that have been followed for the development of compounds that inhibit those three enzymes by interfering with the dimerization interfaces between the enzyme subunits.
Collapse
Affiliation(s)
- María-José Camarasa
- Instituto de Química Médica (C.S.I.C.), Juan de la Cierva 3, 28006 Madrid, Spain.
| | | | | | | | | |
Collapse
|
40
|
Sluis-Cremer N, Hamamouch N, San Félix A, Velazquez S, Balzarini J, Camarasa MJ. Structure−Activity Relationships of [2‘,5‘-Bis-O-(tert-butyldimethylsilyl)-β-d-ribofuranosyl]- 3‘-spiro-5‘ ‘-(4‘ ‘-amino-1‘ ‘,2‘ ‘-oxathiole-2‘ ‘,2‘ ‘-dioxide)thymine Derivatives as Inhibitors of HIV-1 Reverse Transcriptase Dimerization. J Med Chem 2006; 49:4834-41. [PMID: 16884295 DOI: 10.1021/jm0604575] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The polymerase activity of HIV-1 reverse transcriptase (RT) is entirely dependent on the heterodimeric structure of the enzyme. Accordingly, RT dimerization represents a target for the development of a new therapeutic class of HIV inhibitors. We previously demonstrated that the N-3-ethyl derivative of 2',5'-bis-O-(tert-butyldimethylsilyl)-beta-D-ribofuranosyl]-3'-spiro-5' '-(4' '-amino-1' ',2' '-oxathiole-2' ',2' '-dioxide)thymine (TSAO-T) destabilizes the inter-subunit interactions of HIV-1 RT [Sluis-Cremer, N.; Dmietrinko, G. I.; Balzarini, J.; Camarasa, M.-J.; Parniak, M. A. Biochemistry 2000, 39, 1427-1433]. In the current study, we evaluated the ability of 64 TSAO-T derivatives to inhibit RT dimerization using a novel screening assay. Five derivatives were identified with improved activity compared to TSAO-T. Four of these harbored hydrophilic or aromatic substituents at the N3 position. Furthermore, a good correlation between the ability of the TSAO-T derivatives to inhibit RT dimerization and the enzyme's polymerase activity was also observed. This study provides an important framework for the rational design of more potent inhibitors of RT dimerization.
Collapse
Affiliation(s)
- Nicolas Sluis-Cremer
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Soriano E, Marco-Contelles J, Tomassi C, Nguyen Van Nhien A, Postel D. Computational Analysis of Aza Analogues of [2‘,5‘-Bis-O-(tert-butyldimethylsilyl)-β-d-ribofuranose]-3‘-spiro-5‘ ‘- (4‘ ‘-amino-1‘ ‘,2‘ ‘-oxathiole-2‘ ‘,2‘ ‘-dioxide) (TSAO) as HIV-1 Reverse Transcriptase Inhibitors: Relevance of Conformational Properties on the Inhibitory Activity. J Chem Inf Model 2006; 46:1666-77. [PMID: 16859298 DOI: 10.1021/ci0600410] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have carried out a theoretical analysis of aza analogues of [2',5'-bis-O-(tert-butyldimethylsilyl)-beta-D-ribofuranosyl]-3'-spiro-5"-(4"-amino-1",2"-oxathiole-2",2"-dioxide) by a variety of computational tools, aimed to account for the effect of the endocyclic amino moiety N-2" on the inhibitory activity against HIV-1. Docking studies suggest that compounds substituted at the N-3 and N-2' ' positions present the same binding mode to the [2',5'-bis-O-(tert-butyldimethylsilyl)-beta-D-ribofuranosyl]-3'-spiro-5"-(4"-amino-1",2"-oxathiole-2",2"-dioxide)thymine prototype, where the endocyclic amino group remains mostly exposed to the solvent. A careful conformational analysis performed through different theoretical levels, from molecular mechanics to high-level quantum mechanical calculations, provides a rationalization based on conformational preferences, which appears as strongly determined by the substitution at N-2", and on electrostatic effects from the bulk water.
Collapse
Affiliation(s)
- Elena Soriano
- Laboratorio de Resonancia Magnética, Instituto de Investigaciones Biomédicas (CSIC), C/ Arturo Duperier 4, 28029 Madrid, Spain.
| | | | | | | | | |
Collapse
|
42
|
Tachedjian G, Radzio J, Sluis-Cremer N. Relationship between enzyme activity and dimeric structure of recombinant HIV-1 reverse transcriptase. Proteins 2006; 60:5-13. [PMID: 15852304 DOI: 10.1002/prot.20480] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The multifunctional enzyme human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) is a heterodimer composed of a 66-kDa (p66) subunit and a p66-derived 51-kDa (p51) subunit. p66/p51 HIV-1 RT contains 1 functional DNA polymerase and 1 ribonuclease H (RNase H) active site, which both reside in the p66 subunit at spatially distinct regions. In this study, we have investigated the relationship between the heterodimeric structure of HIV-1 RT and its enzymatic properties by introducing mutations at RT codon W401 that inhibit the formation of p66/p51 heterodimers. We demonstrate a striking correlation between abrogation of both HIV-1 RT dimerization and DNA polymerase activity. In contrast, the p66 monomers exhibited only moderately slowed catalytic rates of DNA polymerase-dependent and DNA polymerase-independent RNase H cleavage activity compared with the wild-type (WT) enzyme. Furthermore, no major changes in the unique cleavage patterns were observed between the WT and mutant enzymes for the different substrates used in the RNase H cleavage assays. Based on these results, and on our current understanding of HIV-1 RT structure, we propose that the p66 monomer can adopt an open tertiary conformation that is similar to that observed for the subunit in the heterodimeric enzyme. We also propose that the formation of intersubunit interactions in HIV-1 RT regulates the establishment of a functional DNA polymerase active site.
Collapse
Affiliation(s)
- G Tachedjian
- Molecular Interactions Group, Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
| | | | | |
Collapse
|
43
|
Wapling J, Moore KL, Sonza S, Mak J, Tachedjian G. Mutations that abrogate human immunodeficiency virus type 1 reverse transcriptase dimerization affect maturation of the reverse transcriptase heterodimer. J Virol 2005; 79:10247-57. [PMID: 16051818 PMCID: PMC1182633 DOI: 10.1128/jvi.79.16.10247-10257.2005] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The specific impact of mutations that abrogate human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) dimerization on virus replication is not known, as mutations shown previously to inhibit RT dimerization also impact Gag-Pol stability, resulting in pleiotropic effects on HIV-1 replication. We have previously characterized mutations at codon 401 in the HIV-1 RT tryptophan repeat motif that abrogate RT dimerization in vitro, leading to a loss in polymerase activity. The introduction of the RT dimerization-inhibiting mutations W401L and W401A into HIV-1 resulted in the formation of noninfectious viruses with reduced levels of both virion-associated and intracellular RT activity compared to the wild-type virus and the W401F mutant, which does not inhibit RT dimerization in vitro. Steady-state levels of the p66 and p51 RT subunits in viral lysates of the W401L and W401A mutants were reduced, but no significant decrease in Gag-Pol was observed compared to the wild type. In contrast, there was a decrease in processing of p66 to p51 in cell lysates for the dimerization-defective mutants compared to the wild type. The treatment of transfected cells with indinavir suggested that the HIV-1 protease contributed to the degradation of virion-associated RT subunits. These data demonstrate that mutations near the RT dimer interface that abrogate RT dimerization in vitro result in the production of replication-impaired viruses without detectable effects on Gag-Pol stability or virion incorporation. The inhibition of RT activity is most likely due to a defect in RT maturation, suggesting that RT dimerization represents a valid drug target for chemotherapeutic intervention.
Collapse
Affiliation(s)
- Johanna Wapling
- Molecular Interactions Group, Macfarlane Burnet Institute for Medical Research and Public Health, 85 Commercial Road, GPO Box 2284, Melbourne, Victoria 3001, Australia
| | | | | | | | | |
Collapse
|
44
|
Auwerx J, Rodríguez-Barrios F, Ceccherini-Silberstein F, San-Félix A, Velázquez S, De Clercq E, Camarasa MJ, Perno CF, Gago F, Balzarini J. The role of Thr139 in the human immunodeficiency virus type 1 reverse transcriptase sensitivity to (+)-calanolide A. Mol Pharmacol 2005; 68:652-9. [PMID: 15961674 DOI: 10.1124/mol.105.012351] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The coumarins represent a unique class of non-nucleoside reverse transcriptase inhibitors (NNRTIs) that were isolated from tropical plants. (+)-Calanolide A, the most potent compound of this class, selects for the T139I resistance mutation in HIV-1 reverse transcriptase (RT). Seven RTs mutated at amino acid position 139 (Ala, Lys, Tyr, Asp, Ile, Ser, and Gln) were constructed by site-directed mutagenesis. The mutant T139Q enzyme retained full catalytic activity compared with wild-type RT, whereas the mutant T139I, T139S, and T139A RTs retained only 85 to 50% of the activity. Mutant T139K, T139D, and T139Y RTs had seriously impaired catalytic activities. The mutations in the T139I and T139D RTs were shown to destabilize the RT heterodimer. (+)-Calanolide A lost inhibitory activity (up to 20-fold) against the mutant T139Y, T139Q, T139K, and T139I enzymes. All of the mutant enzymes retained marked susceptibility toward the other NNRTIs, including nevirapine, delavirdine, efavirenz, thiocarboxanilide UC-781, quinoxaline GW867420X, TSAO [[2',5'-bis-O-(tert-butyldimethylsilyl)-beta-D-ribofuranosyl]-3'-spiro-5''-(4''-amino-1'',2''-oxathiole-2'',2''-dioxide)] derivatives, and the nucleoside inhibitor, ddGTP. The fact that the T139I RT 1) proved to be resistant to (+)-calanolide A, 2) represents a catalytically efficient enzyme, and 3) requires only a single transition point mutation (ACA-->ATA) in codon 139 seems to explain why mutant T139I RT virus strains, but not virus strains containing other amino acid changes at this position, predominantly emerge in cell cultures under (+)-calanolide A pressure.
Collapse
Affiliation(s)
- Joeri Auwerx
- Rega Institute for Medical Research, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Balzarini J, Auwerx J, Rodríguez-Barrios F, Chedad A, Farkas V, Ceccherini-Silberstein F, García-Aparicio C, Velázquez S, De Clercq E, Perno CF, Camarasa MJ, Gago F. The amino acid Asn136 in HIV-1 reverse transcriptase (RT) maintains efficient association of both RT subunits and enables the rational design of novel RT inhibitors. Mol Pharmacol 2005; 68:49-60. [PMID: 15833734 DOI: 10.1124/mol.105.012435] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The highly conserved Asn136 is in close proximity to the nonnucleoside reverse transcriptase (RT) inhibitor (NNRTI)-specific lipophilic pocket of human immunodeficiency virus type 1 (HIV-1) RT. Site-directed mutagenesis has revealed that the catalytic activity of HIV-1 RT mutated at position Asn136 is heavily compromised. Only 0.07 to 2.1% of wild-type activity is retained, depending on the nature of the amino acid change at position 136. The detrimental effect of the mutations at position 136 occurred when the mutated amino acid was present in the p51 subunit but not in the p66 subunit of the p51/p66 RT heterodimer. All mutant enzymes could be inhibited by second-generation NNRTIs such as efavirenz. They were also markedly more sensitive to the inactivating (denaturating) effect of urea than wild-type RT, and the degree of increased urea sensitivity was highly correlated with the degree of (lower) catalytic activity of the mutant enzymes. Replacing wild-type Asn136 in HIV-1 RT with other amino acids resulted in notably increased amounts of free p51 and p66 monomers. Our findings identify a structural/functional role for Asn136 in stabilization of the RT p66/p51 dimer and provide hints for the rational design of novel NNRTIs or drugs targeting either Asn136 in the beta7-beta8 loop of p51 or its anchoring point on p66 (the peptide backbone of His96) so as to interfere with the RT dimerization process and/or with the structural support that the p51 subunit provides to the p66 subunit and which is essential for the catalytic enzyme activity.
Collapse
Affiliation(s)
- Jan Balzarini
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Mulky A, Sarafianos SG, Jia Y, Arnold E, Kappes JC. Identification of Amino Acid Residues in the Human Immunodeficiency Virus Type-1 Reverse Transcriptase Tryptophan-repeat Motif that are Required for Subunit Interaction Using Infectious Virions. J Mol Biol 2005; 349:673-84. [PMID: 15893326 DOI: 10.1016/j.jmb.2005.03.057] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2005] [Revised: 03/17/2005] [Accepted: 03/21/2005] [Indexed: 10/25/2022]
Abstract
The human immunodeficiency virus type-1 (HIV-1) reverse transcriptase (RT) functions as a heterodimer (p51/p66), which makes disruption of subunit interactions a possible target for antiviral drug design. Our understanding of subunit interface interactions has been limited by the lack of virus-based approaches for studying the heterodimer. Therefore, we developed a novel subunit-specific mutagenesis approach that enables precise molecular analysis of the heterodimer in the context of infectious HIV-1 particles. Here, we analyzed the contributions of amino acid residues comprising the Trp-motif to RT subunit interaction and function. Our results reveal important inter- and intra-subunit interactions of residues in the Trp-motif. A tryptophan cluster in p51 (W398, W402, W406, W414), proximal to the interface, was found to be important for p51/p66 interaction and stability. At the dimer interface, residues W401, Y405 and N363 in p51 and W410 in p66 mediate inter-subunit interactions. The W401 residue is critical for RT dimerization, exerting distinct effects in p51 and p66. Our analysis of the RT heterodimerization enhancing non-nucleoside RT inhibitor (NNRTI), efavirenz, indicates that the effects of drugs on RT dimer stability can be examined in human cells. Thus, we provide the first description of subunit-specific molecular interactions that affect RT heterodimer function and virus infection in vivo. Moreover, with heightened interest in novel RT inhibitors that affect dimerization, we demonstrate the ability to assess the effects of RT inhibitors on subunit interactions in a physiologically relevant context.
Collapse
Affiliation(s)
- Alok Mulky
- Department of Microbiology, University of Alabama at Birmingham, AL 35294, USA
| | | | | | | | | |
Collapse
|
47
|
Auwerx J, Van Nieuwenhove J, Rodríguez-Barrios F, de Castro S, Velázquez S, Ceccherini-Silberstein F, De Clercq E, Camarasa MJ, Perno CF, Gago F, Balzarini J. The N137 and P140 amino acids in the p51 and the P95 amino acid in the p66 subunit of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase are instrumental to maintain catalytic activity and to design new classes of anti-HIV-1 drugs. FEBS Lett 2005; 579:2294-300. [PMID: 15848161 DOI: 10.1016/j.febslet.2005.02.077] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Revised: 02/21/2005] [Accepted: 02/25/2005] [Indexed: 11/21/2022]
Abstract
Amino acids N137 and P140 in the p51 subunit of HIV-1 reverse transcriptase (RT) are part of the beta7-beta8-loop that contributes to the formation of the base of the non-nucleoside RT inhibitor (NNRTI)-binding pocket and makes up a substantial part of the dimerization interface. Amino acid P95 in p66 also markedly contributes to the dimerization binding energy. Nine RT mutants at amino acid 137 were constructed bearing the mutations Y, K, T, D, A, Q, S, H or E. The prolines at amino acid positions 95 and 140 were replaced by alanine in separate enzymes. We found that all mutant RT enzymes showed a dramatically decreased RNA-dependent DNA polymerase activity. None of the mutant RT enzymes showed marked resistance against any of the clinically used NNRTIs but they surprisingly lost significant sensitivity for NRTIs such as ddGTP. The denaturation analyses of the mutant RTs by urea are suggestive for a relevant role of N137 in the stability of the RT heterodimer and support the view that the beta7-beta8 loop in p51 is a hot spot for RT dimerization and instrumental for efficient polymerase catalytic activity. Consequently, N137 and P140 in p51 and P95 in p66 should be attractive targets in the design of new structural classes of RT inhibitors aimed at compromising the optimal interaction of the beta7-beta8 loop in p51 at the p66/p51 dimerization interface.
Collapse
Affiliation(s)
- Joeri Auwerx
- Rega Institute for Medical Research, K.U. Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Sluis-Cremer N, Temiz NA, Bahar I. Conformational changes in HIV-1 reverse transcriptase induced by nonnucleoside reverse transcriptase inhibitor binding. Curr HIV Res 2005; 2:323-32. [PMID: 15544453 PMCID: PMC1298242 DOI: 10.2174/1570162043351093] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nonnucleoside reverse transcriptase inhibitors (NNRTI) are a group of small hydrophobic compounds with diverse structures that specifically inhibit HIV-1 reverse transcriptase (RT). NNRTIs interact with HIV-1 RT by binding to a single site on the p66 subunit of the p66/p51 heterodimeric enzyme, termed the NNRTI-binding pocket (NNRTI-BP). This binding interaction results in both short-range and long-range distortions of RT structure. In this article, we review the structural, computational and experimental evidence of the NNRTI-induced conformational changes in HIV-1 RT and relate them to the mechanism by which these compounds inhibit HIV-1 reverse transcription.
Collapse
Affiliation(s)
- Nicolas Sluis-Cremer
- University of Pittsburgh, Department of Medicine, Division of Infectious Diseases, Pittsburgh, Pennsylvania 15261, USA.
| | | | | |
Collapse
|
49
|
Hannoush RN, Min KL, Damha MJ. Diversity-oriented solid-phase synthesis and biological evaluation of oligonucleotide hairpins as HIV-1 RT RNase H inhibitors. Nucleic Acids Res 2004; 32:6164-75. [PMID: 15570067 PMCID: PMC535663 DOI: 10.1093/nar/gkh948] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2004] [Revised: 10/29/2004] [Accepted: 10/29/2004] [Indexed: 11/13/2022] Open
Abstract
The inhibitory potencies of several hairpins comprising DNA, RNA and 2',5'-linked RNA segments were assessed against the RNase H activity of the human immunodeficiency virus reverse transcriptase (HIV-1 RT), an indispensable enzyme for HIV genomic replication. The hairpin library was constructed via diversity-oriented nucleic-acid synthesis (DONAS), an approach inspired from traditional split-pool synthesis. DONAS provided access to an array of oligonucleotide hairpins possessing distinct conformational, structural and biological properties. The inhibitory potency of these compounds was highly specific towards HIV-1 RT RNase H and strongly depended on the structure of both the stem and tetraloop. Hairpins that have an overall A-type geometry are better inhibitors of RNase H activity than hairpins with 'intermediate' or B-type conformations, although interestingly, the inhibitory activity is quite sensitive to the nucleotide sequence in both the stem and loop regions of the hairpin. The most potent hairpins bear a 3',5'-linked rather than 2',5'-linked RNA loop, but the latter is necessary for activity of hairpins consisting of DNA stems. Inhibitory activity was essentially independent of hairpin thermal stability. The potent hairpins also demonstrated high nuclease resistance in biological media, particularly those bearing a 2',5'-linked tetraloop. These studies collectively bring into light a new class of nucleic acid aptamers that act exclusively upon the retroviral RNase H domain in vitro, and thus represent novel lead compounds for the development of specific and potent HIV-1 RT inhibitors.
Collapse
Affiliation(s)
- Rami N Hannoush
- Department of Chemistry, Otto Maass Chemistry Building, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 2K6, Canada
| | | | | |
Collapse
|
50
|
Götte M. Inhibition of HIV-1 reverse transcription: basic principles of drug action and resistance. Expert Rev Anti Infect Ther 2004; 2:707-16. [PMID: 15482234 DOI: 10.1586/14789072.2.5.707] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nucleoside and non-nucleoside analog inhibitors of HIV Type 1 reverse transcriptase are currently used in the clinic to treat infection with this retrovirus. Following their intracellular activation, nucleoside analogs act as chain terminators, while non-nucleoside analog reverse transcriptase inhibitors bind to a hydrophobic pocket in close proximity to the active site and inhibit the catalytic step. Compounds that belong to the two different classes of drugs are frequently administered in combination to take advantage of the different mechanisms of drug action. However, the development of drug resistance may occur under conditions of continued, residual viral replication, which is a major cause of treatment failure. This review addresses the interaction between different inhibitors and resistance-conferring mutations in the context of combination therapy with drugs that target the reverse transcriptase enzyme. Focus is placed on biochemical mechanisms and the development of future approaches.
Collapse
Affiliation(s)
- Matthias Götte
- Jewish General Hospital, McGill University AIDS Center (226), Lady Davis Institute, 3755, chemin Côte-Ste-Catherine, Montréal, Québec, Canada H3T 1E2.
| |
Collapse
|