1
|
Dorich S, Auger A, Wang L, Burch J, Pellerin C, Chan S, Raymond M, Zhang L, Chefson A, Germain MA, Jananji S, Dumais V, Gaudreault S, Caron A, Dumas-Bérubé É, A Crackower M. Discovery of novel NLRP3 inhibitors enabled by a high-throughput screen. Bioorg Med Chem Lett 2025; 122:130184. [PMID: 40089037 DOI: 10.1016/j.bmcl.2025.130184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/20/2025] [Accepted: 03/09/2025] [Indexed: 03/17/2025]
Abstract
NLRP3 is a key regulator of the innate immune system involved in sensing a variety of pathogen and danger signals. Priming and activation of NLRP3 leads to the release and maturation of pro-inflammatory cytokines, as well as gasdermin D-mediated cell death. Inhibition of dysregulated NLRP3 activity has been associated with promising therapeutic opportunities for a variety of systemic and neurological diseases including atherosclerosis and Parkinson's disease. Herein, we discuss how a high-throughput screen (HTS) allowed us to discover new chemical scaffolds that specifically bind to NLRP3 and inhibit its function in a selective manner. We also describe how an enantiomer of HTS hit 5, compound 11, demonstrated in vivo inhibition of NLRP3.
Collapse
Affiliation(s)
- Stéphane Dorich
- Ventus Therapeutics, Inc., 4800 rue Levy, Saint-Laurent, H4R 2P1, QC, Canada.
| | - Anick Auger
- Ventus Therapeutics, Inc., 4800 rue Levy, Saint-Laurent, H4R 2P1, QC, Canada
| | - Li Wang
- Ventus Therapeutics U.S., Inc., 100 Beaver St., Suite 201, Waltham, MA 02453, USA
| | - Jason Burch
- Ventus Therapeutics, Inc., 4800 rue Levy, Saint-Laurent, H4R 2P1, QC, Canada
| | - Charles Pellerin
- Ventus Therapeutics, Inc., 4800 rue Levy, Saint-Laurent, H4R 2P1, QC, Canada
| | - Silas Chan
- Ventus Therapeutics U.S., Inc., 100 Beaver St., Suite 201, Waltham, MA 02453, USA
| | - Marianne Raymond
- Ventus Therapeutics, Inc., 4800 rue Levy, Saint-Laurent, H4R 2P1, QC, Canada
| | - Lingling Zhang
- Ventus Therapeutics U.S., Inc., 100 Beaver St., Suite 201, Waltham, MA 02453, USA
| | - Amandine Chefson
- Ventus Therapeutics, Inc., 4800 rue Levy, Saint-Laurent, H4R 2P1, QC, Canada
| | - Marie-Anne Germain
- Ventus Therapeutics, Inc., 4800 rue Levy, Saint-Laurent, H4R 2P1, QC, Canada
| | - Silvana Jananji
- Ventus Therapeutics, Inc., 4800 rue Levy, Saint-Laurent, H4R 2P1, QC, Canada
| | - Valérie Dumais
- Ventus Therapeutics, Inc., 4800 rue Levy, Saint-Laurent, H4R 2P1, QC, Canada
| | - Samuel Gaudreault
- Ventus Therapeutics, Inc., 4800 rue Levy, Saint-Laurent, H4R 2P1, QC, Canada
| | - Alexandre Caron
- Ventus Therapeutics, Inc., 4800 rue Levy, Saint-Laurent, H4R 2P1, QC, Canada
| | - Émilie Dumas-Bérubé
- Ventus Therapeutics, Inc., 4800 rue Levy, Saint-Laurent, H4R 2P1, QC, Canada
| | - Michael A Crackower
- Ventus Therapeutics U.S., Inc., 100 Beaver St., Suite 201, Waltham, MA 02453, USA
| |
Collapse
|
2
|
Ren J, Lei G, Dong A, Cao S, Han X, Li H. Therapeutic potential of ADSC-derived exosomes in acute lung injury by regulating macrophage polarization through IRF7/NLRP3 signaling. Int Immunopharmacol 2025; 156:114658. [PMID: 40252464 DOI: 10.1016/j.intimp.2025.114658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/02/2025] [Accepted: 04/08/2025] [Indexed: 04/21/2025]
Abstract
Alveolar macrophages (AMs) play a critical role in regulating pulmonary immunity and inflammation. Acute lung injury (ALI), frequently initiated by sepsis-induced systemic inflammation and cytokine storms, leads to heightened lung permeability and respiratory failure. Adipose-derived stem cell exosomes (ADSC-Exos) have shown promise as therapeutic agents due to their immunomodulatory properties. This study assesses the effectiveness of ADSC-Exos in mitigating ALI by modulating macrophage (mø) polarization and suppressing pyroptosis. In vivo, an LPS-induced ALI mouse model demonstrated that ADSC-Exos attenuated lung tissue inflammation and damage, as verified by histological staining, ELISA, and immunofluorescence. In vitro, LPS-stimulated MH-S cells treated with ADSC-Exos showed a decrease in M1 (iNOS, CD86) and an increase in M2 (CD206, Arg-1) markers, as evidenced by Western blotting (WB) and flow cytometry. Mechanistically, RNA sequencing pinpointed IRF7 as a key upstream regulator of pyroptosis. ADSC-Exos inhibited the NLRP3 inflammasome and pyroptosis, fostering a shift from pro-inflammatory M1 to anti-inflammatory M2 mø phenotypes. Overexpression of IRF7 negated these effects, undermining the protective role of ADSC-Exos. Notably, inhibition of exosome secretion with GW4869 nullified these immunomodulatory effects, underscoring the vital role of ADSC-Exos. This study underscores the therapeutic potential of ADSC-Exos in restoring alveolar mø homeostasis, modulating immune responses, and alleviating lung inflammatory injury in ALI. These findings suggest ADSC-Exos as a feasible strategy for treating sepsis-induced pulmonary complications.
Collapse
Affiliation(s)
- Jingyi Ren
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Guanhong Lei
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ajing Dong
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Shuyan Cao
- Department of Orthopaedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiao Han
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Haibo Li
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
3
|
Taher RF, Abd El ghany EM, El-Gendy ZA, Elghonemy MM, Hassan HA, Abdel Jaleel GA, Hassan A, Sarker TC, Abd-ElGawad AM, Farag MA, Elshamy AI. In vivo anti-ulceration effect of Pancratium maritimum extract against ethanol-induced rats via NLRP3 inflammasome and HMGB1/TLR4/MYD88/NF-κβ signaling pathways and its extract metabolite profile. PLoS One 2025; 20:e0321018. [PMID: 40238859 PMCID: PMC12002509 DOI: 10.1371/journal.pone.0321018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 02/27/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Gastric ulcer is a multifaceted ailment of multiple causes and is chronic warranting the discovery of remedies to alleviate its symptoms and severity. Pancratium maritimum L. is recognized for its several health benefits, although its potential against gastric ulcers has yet to be reported. METHODS AND FINDINGS This study reports on the effects of P. maritimum L. whole plant (PM-EtOH) ethanol extract at a dose of 25, 50, and 100 mg/kg body weight orally for managing ethanol-induced peptic ulcer in rats. The anti-ulceration capacity of PM-EtOH was determined against ethanol (EtOH)-induced rats via biochemical, histological, immunohistochemical, and western blotting assays. The profiling of the bioactive metabolites in P. maritimum extract was based on Ultra-high-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry (UHPLC-ESI-qTOF-MS/MS) analysis. Following PM-EtOH treated group, the gastric glutathione (GSH) level dropped in the ulcer group receiving ethanol was restored to normal levels. Additionally, following PM-EtOH, elevated malondialdehyde (MDA) content in the stomach tissues diminished. PM-EtOH treated group displayed recovery and comparable morphology compared with normal group, concurrent with lower levels of Tumor Necrosis Factor α (TNF-α), MyD88, and NLRP3, along with low expression of Nuclear Factor kappa β (NF-кβ) and high-mobility group box protein 1 (HMGB1) proteins. Immune-histochemicals of caspase-3 and toll-like receptors-4 (TLR-4) showed their normalization. These findings imply that PM-EtOH exerts a protective effect on rat stomach damage that has yet to be further tested in clinical trials for treatment of stomach ulcers. Phytochemical profiling of PM-EtOH via UHPLC-ESI-qTOF-MS/MS led to the identification of 84 metabolites belonging to amino acids, organic acids, phenolic acids, alkaloids, flavonoids, and fatty acids to likely mediate for the observed effects. CONCLUSIONS These outcomes provided evidence for the potential of PM-EtOH in gastric ulcers management.
Collapse
Affiliation(s)
- Rehab F. Taher
- Department of Natural Compounds Chemistry, National Research Centre, Dokki, Giza, Egypt
| | | | - Zeinab A. El-Gendy
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza, Egypt
| | - Mai M. Elghonemy
- Department of Natural Compounds Chemistry, National Research Centre, Dokki, Giza, Egypt
| | - Heba A. Hassan
- Therapeutic Chemistry Department, National Research Centre, Dokki, Giza, Egypt
| | - Gehad A. Abdel Jaleel
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza, Egypt
| | - Azza Hassan
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Tushar C. Sarker
- Texs A&M AgriLife Research Center, Overton, Texas, United States of America
| | - Ahmed M. Abd-ElGawad
- Plant Production Department, College of Food & Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed A. Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Healthcare Department, Saxony Egypt University (SEU), Badr City, Egypt
| | - Abdelsamed I. Elshamy
- Department of Natural Compounds Chemistry, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
4
|
Su H, Yue H, Liu F, Sun Y, Liang S, Zheng X, Zhang Y, Zhang J, Wu J, Han L. Sweroside ameliorates IMQ-induced psoriasiform inflammation by inhibiting NLRP3/Caspase-1 mediated IL-1β elevation. Int Immunopharmacol 2025; 151:114333. [PMID: 40010158 DOI: 10.1016/j.intimp.2025.114333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/30/2025] [Accepted: 02/14/2025] [Indexed: 02/28/2025]
Abstract
Psoriasis is a chronic autoimmune skin disorder with no cure, posing challenges in long-term therapy and economic burden. Sweroside (SOS), an iridoid compound from Gentiana, shows promise for treatment due to its anti-inflammatory properties. In this study, SOS significantly reduced erythema, thickening, and scaling in IMQ-induced psoriasiform mice, lowered serum TNF-α and IL-1β levels, and suppressed inflammatory marker expression. Molecular docking revealed strong binding to IL-1β and NLRP3 proteins. Western blot and RT-PCR confirmed that SOS inhibited NLRP3, Cleaved-Caspase-1, ASC, and IL-1β expression. SOS's inhibition of IL-1β production is mediated through the NLRP3/Caspase-1 pathway. Additionally, SOS regulates IL-1β signal transduction and precursor production, exhibiting anti-inflammatory effects linked to NF-κB signaling inhibition in HaCaT cells. Thus, SOS has potential as a psoriasis treatment.
Collapse
Affiliation(s)
- Haojie Su
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongyu Yue
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fanlu Liu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yue Sun
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shulin Liang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuwei Zheng
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - YaTing Zhang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Junhong Zhang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingjing Wu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ling Han
- Chinese Medicine Guangdong Laboratory, Guangdong Hengqin, China; State Key laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
5
|
Yuan J, Liao Z, Zhu X, Zhu Y, Wu S, Guo L, Fu Y, Liu Y. PM 2.5 exacerbates nasal epithelial barrier dysfunction in allergic rhinitis by inducing NLRP3-mediated pyroptosis via the AhR/CYP1A1/ROS axis. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138145. [PMID: 40209413 DOI: 10.1016/j.jhazmat.2025.138145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/10/2025] [Accepted: 04/01/2025] [Indexed: 04/12/2025]
Abstract
Fine particulate matter (PM2.5), a major air pollutant, plays a critical role in exacerbating respiratory diseases such as allergic rhinitis (AR) by inducing inflammation. While its association with AR is well established, the precise mechanisms by which PM2.5 triggers pyroptosis and compromises nasal epithelial barrier integrity remain unclear. This study investigates the role of PM2.5 in promoting pyroptosis in nasal epithelial cells and its contribution to AR pathogenesis. Clinical analysis revealed significantly elevated levels of NLRP3 inflammasomes and pyroptosis-related proteins in the nasal mucosa of patients with AR compared with the control group. In vitro and in vivo experiments further demonstrated that PM2.5 exposure led to a dose-dependent increase in these markers in nasal epithelial cells and AR mouse models. Functional studies using NLRP3 agonists and inhibitors confirmed that PM2.5 induces NLRP3-mediated pyroptosis, resulting in tight junction protein degradation and compromised epithelial barrier integrity. Mechanistic investigations showed that PM2.5 activates the aryl hydrocarbon receptor (AhR) pathway, driving the transcription of cytochrome P450 1A1 (CYP1A1) and increasing reactive oxygen species (ROS) production. Notably, AhR downregulation alleviated PM2.5-induced pyroptosis and epithelial barrier dysfunction, whereas CYP1A1 overexpression reversed these protective effects, highlighting the pivotal role of the AhR/CYP1A1/ROS axis in mediating PM2.5-induced epithelial damage. In conclusion, this study uncovers a novel mechanism by which PM2.5 promotes NLRP3-mediated pyroptosis through the AhR/CYP1A1/ROS signaling pathway, ultimately leading to epithelial barrier disruption and AR exacerbation. These findings highlight the urgent need for strategies to minimize PM2.5 exposure and mitigate its detrimental effects on respiratory health.
Collapse
Affiliation(s)
- Jiasheng Yuan
- Department of Otorhinolaryngology-Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; Department of Otorhinolaryngology-Head and Neck Surgery, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Zhihuai Liao
- Department of Otorhinolaryngology-Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Xinhua Zhu
- Department of Otorhinolaryngology-Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Yaqiong Zhu
- Department of Otorhinolaryngology-Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Shuhong Wu
- Department of Otorhinolaryngology-Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Liqing Guo
- Department of Otorhinolaryngology-Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Yanpeng Fu
- Department of Otorhinolaryngology-Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Yuehui Liu
- Department of Otorhinolaryngology-Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
6
|
Liu L, Chen Y, Duan Y, Wang X, Chen Q, Yang Y, Lu Q, Shi L, Lin Q, Shen L. Fluorinated multifunctional polymer vesicles for enhanced ocular surface penetration and synergistic treatment of dry eye disease. J Control Release 2025; 379:592-608. [PMID: 39837386 DOI: 10.1016/j.jconrel.2025.01.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/30/2024] [Accepted: 01/14/2025] [Indexed: 01/23/2025]
Abstract
Current pharmacotherapy for DED is limited by a vicious inflammatory cycle in which reactive oxygen species (ROS) play a critical role. Additionally, topical eye drop therapy for DED often suffers from poor ocular availability due to multiple ocular surface barriers. Considering the key role of the ROS-NLRP3-IL-1β signaling axis in DED, in this investigation, fluorinated multifunctional polymer vesicles were developed for enhanced ocular surface penetration and synergistic DED therapy by combining ROS scavenging and immunomodulation. MCC950, an NLRP3-IL-1β inhibitor, was loaded in situ during vesicle preparation. The results demonstrated that fluorocarbon units randomly distributed in the corona layer significantly enhanced ocular surface penetration. Furthermore, the vesicle membrane, composed of polyphenylborate ester blocks, efficiently scavenged excess ROS in inflamed corneal tissue. In response to excessive ROS, a hydrophobic-to-hydrophilic conversion of the vesicle membrane facilitated the efficient release of MCC950 to modulate the NLRP3-caspase-1-IL1β pathway. We believe that this work will provide insightful guidance to achieve effective treatment of DED by enhancing ocular surface penetration.
Collapse
Affiliation(s)
- Lu Liu
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Yifei Chen
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Yong Duan
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Xin Wang
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Qiumeng Chen
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Yuxi Yang
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Qunzan Lu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Linqi Shi
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Quankui Lin
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.
| | - Liangliang Shen
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
7
|
Wang K, Sun Y, Zhu K, Liu Y, Zheng X, Yang Z, Man F, Huang L, Zhu Z, Huang Q, Li Y, Dong H, Zhao J, Li Y. Anti-pyroptosis biomimetic nanoplatform loading puerarin for myocardial infarction repair: From drug discovery to drug delivery. Biomaterials 2025; 314:122890. [PMID: 39427429 DOI: 10.1016/j.biomaterials.2024.122890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/02/2024] [Accepted: 10/10/2024] [Indexed: 10/22/2024]
Abstract
Pyroptosis is a critical pathological mechanism implicated in myocardial damage following myocardial infarction (MI), and the crosstalk between macrophages and pyroptotic cardiomyocytes presents a formidable challenge for anti-pyroptosis therapies of MI. However, as single-target pyroptosis inhibitors frequently fail to address this crosstalk, the efficacy of anti-pyroptosis treatment post-MI remains inadequate. Therefore, the exploration of more potent anti-pyroptosis approaches is imperative for improving outcomes in MI treatment, particularly in addressing the crosstalk between macrophages and pyroptotic cardiomyocytes. Here, in response to this crosstalk, we engineered an anti-pyroptosis biomimetic nanoplatform (NM@PDA@PU), employing polydopamine (PDA) nanoparticles enveloped with neutrophil membrane (NM) for targeted delivery of puerarin (PU). Notably, network pharmacology is deployed to discern the most efficacious anti-pyroptosis drug (puerarin) among the 7 primary active monomers of TCM formulations widely applied in clinical practice and reveal the effect of puerarin on the crosstalk. Additionally, targeted delivery of puerarin could disrupt the malignant crosstalk between macrophages and pyroptotic cardiomyocytes, and enhance the effect of anti-pyroptosis by not only directly inhibiting cardiomyocytes pyroptosis through NLRP3-CASP1-IL-1β/IL-18 signal pathway, but reshaping the inflammatory microenvironment by reprogramming macrophages to anti-inflammatory M2 subtype. Overall, NM@PDA@PU could enhance anti-pyroptosis effect by disrupting the crosstalk between M1 macrophages and pyroptotic cardiomyocytes to protect cardiomyocytes, ameliorate cardiac function and improve ventricular remodeling, which providing new insights for the efficient treatment of MI.
Collapse
Affiliation(s)
- Kun Wang
- Department of Nuclear Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Yu Sun
- Department of Nuclear Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Ke Zhu
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, China
| | - Yiqiong Liu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Xiao Zheng
- Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Zichen Yang
- The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Fulong Man
- The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Li Huang
- The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Ziyang Zhu
- Department of Nuclear Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Qi Huang
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Yan Li
- The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Haiqing Dong
- The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jun Zhao
- Department of Nuclear Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China; State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, China.
| | - Yongyong Li
- Department of Nuclear Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China; State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, China.
| |
Collapse
|
8
|
Starobova H, McCalmont H, Shatunova S, Tay N, Smith CM, Robertson A, Winkler I, Lock RB, Vetter I. Inhibition of the NLRP3 inflammasome using MCC950 reduces vincristine-induced adverse effects in an acute lymphoblastic leukemia patient-derived xenograft model. Hemasphere 2025; 9:e70092. [PMID: 40104043 PMCID: PMC11915122 DOI: 10.1002/hem3.70092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/18/2024] [Accepted: 01/06/2025] [Indexed: 03/20/2025] Open
Abstract
Vincristine is one of the most important chemotherapeutic drugs used to treat acute lymphoblastic leukemia (ALL). Unfortunately, vincristine often causes severe adverse effects, including sensory-motor neuropathies, weight loss, and overall decreased well-being, that are difficult to control and that decrease the quality of life and survival of patients. Recent studies demonstrate that sensory-motor adverse effects of vincristine are driven by neuroinflammatory processes, including the activation of the Nod-like receptor 3 (NLRP3) inflammasome. In this study, we aimed to test the effects of MCC950, a specific NLRP3 inhibitor, on the prevention of vincristine-induced adverse effects as well as tumor progression and vincristine efficacy in NOD/SCID/interleukin-2 receptor γ-negative mice patient-derived xenografts of ALL. We demonstrate that co-administration of MCC950 effectively prevented the development of mechanical allodynia, motor impairment, and weight loss and significantly improved the overall well-being of the animals without negatively impacting the in vivo efficacy of vincristine as a single agent or in combination with standard-of-care drugs. These results provide proof of principle that the adverse effects of vincristine chemotherapy can be prevented using NLRP3 inflammasome inhibitors and provide new options for the development of effective treatment strategies.
Collapse
Affiliation(s)
- Hana Starobova
- Institute for Molecular Bioscience, The University of Queensland St Lucia Queensland Australia
| | - Hannah McCalmont
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer Research, UNSW Sydney Sydney New South Wales Australia
| | - Svetlana Shatunova
- Mater Research Institute, The University of Queensland South Brisbane Queensland Australia
| | - Nicolette Tay
- Institute for Molecular Bioscience, The University of Queensland St Lucia Queensland Australia
| | - Christopher M Smith
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer Research, UNSW Sydney Sydney New South Wales Australia
| | - Avril Robertson
- Institute for Molecular Bioscience, The University of Queensland St Lucia Queensland Australia
- School of Chemistry and Molecular Biosciences The University of Queensland St Lucia Queensland Australia
| | - Ingrid Winkler
- Mater Research Institute, The University of Queensland South Brisbane Queensland Australia
| | - Richard B Lock
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer Research, UNSW Sydney Sydney New South Wales Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland St Lucia Queensland Australia
- School of Pharmacy and Pharmaceutical Sciences The University of Queensland Woolloongabba Queensland Australia
| |
Collapse
|
9
|
Yang J, He B, Dang L, Liu J, Liu G, Zhao Y, Yu P, Wang Q, Wang L, Xin W. Celastrol Regulates the Hsp90-NLRP3 Interaction to Alleviate Rheumatoid Arthritis. Inflammation 2025; 48:346-360. [PMID: 38874810 DOI: 10.1007/s10753-024-02060-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/08/2024] [Accepted: 05/21/2024] [Indexed: 06/15/2024]
Abstract
Previous studies have verified that celastrol (Cel) protects against rheumatoid arthritis (RA) by inhibiting the NLRP3 inflammasome signaling pathway, but the molecular mechanism by which Cel regulates NLRP3 has not been clarified. This study explored the specific mechanisms of Cel in vitro and in vivo. A type II collagen-induced arthritis (CIA) mouse model was used to study the antiarthritic activity of Cel; analysis of paw swelling, determination of the arthritis score, and pathological examinations were performed. The antiproliferative and antimigratory effects of Cel on TNF-α induced fibroblast-like synoviocytes (FLSs) were tested. Proinflammatory factors were evaluated using enzyme-linked immunosorbent assay (ELISA). The expression of NF-κB/NLRP3 pathway components was determined by western blotting and immunofluorescence staining in vitro and in vivo. The putative binding sites between Cel and Hsp90 were predicted through molecular docking, and the binding interactions were determined using the Octet RED96 system and coimmunoprecipitation. Cel decreased arthritis severity and reduced TNF-α-induced FLSs migration and proliferation. Additionally, Cel inhibited NF-κB/NLRP3 signaling pathway activation, reactive oxygen species (ROS) production, and proinflammatory cytokine secretion. Furthermore, Cel interacted directly with Hsp90 and blocked the interaction between Hsp90 and NLRP3 in FLSs. Our findings revealed that Cel regulates NLRP3 inflammasome signaling pathways both in vivo and in vitro. These effects are induced through FLSs inhibition of the proliferation and migration by blocking the interaction between Hsp90 and NLRP3.
Collapse
Affiliation(s)
- Junjie Yang
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Biyao He
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Longjiao Dang
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Jiayu Liu
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Guohao Liu
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Yuwei Zhao
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Pengfei Yu
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Qiaoyun Wang
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Lei Wang
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai, 264003, China.
| | - Wenyu Xin
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
10
|
Inagaki Y, Kamikubo T, Kuriwaki I, Watanabe J, Yamaki S, Iida M, Tomita K, Kakefuda K, Kurokawa J, Kiso T, Saba K, Koike T. Discovery of 2-(6-{[(1R,2R)-2-hydroxycyclohexyl]amino}-4,5-dimethylpyridazin-3-yl)-5-(trifluoromethyl)phenol (ASP0965): A potent, orally active and brain-penetrable NLRP3 inflammasome inhibitor with a novel scaffold for the treatment of α-synucleinopathy. Bioorg Med Chem 2025; 118:118042. [PMID: 39742857 DOI: 10.1016/j.bmc.2024.118042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/03/2024] [Accepted: 12/07/2024] [Indexed: 01/04/2025]
Abstract
NLRP3 inflammasome inhibitor is a highly attractive drug target for the treatment of various inflammatory diseases. Here, we report the discovery of pyridazine derivatives as a new class of scaffold for NLRP3 inflammasome inhibitors. We optimized HTS hit 2a to improve both in vitro IL-1β inhibitory activity and the mean photo effect (MPE) value in the in vitro 3T3 neutral red uptake (NRU) phototoxicity test. As a result, we identified compound 5e (ASP0965) with brain penetrability and showing efficacy in the brain on oral administration in the rat pharmacodynamics (PD) model and the mouse α-synuclein injection model. These findings suggest that compound 5e is a promising clinical candidate for α-synucleinopathy therapeutics.
Collapse
Affiliation(s)
- Yusuke Inagaki
- Tsukuba Research Center, Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan.
| | - Takashi Kamikubo
- Tsukuba Research Center, Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Ikumi Kuriwaki
- Tsukuba Research Center, Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Junko Watanabe
- Tsukuba Research Center, Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Susumu Yamaki
- Tsukuba Research Center, Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Maiko Iida
- Tsukuba Research Center, Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Kyoko Tomita
- Tsukuba Research Center, Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Kenichi Kakefuda
- Tsukuba Research Center, Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Jun Kurokawa
- Tsukuba Research Center, Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Tetsuo Kiso
- Tsukuba Research Center, Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Kengo Saba
- Tsukuba Research Center, Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Takanori Koike
- Tsukuba Research Center, Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| |
Collapse
|
11
|
Meier DT, de Paula Souza J, Donath MY. Targeting the NLRP3 inflammasome-IL-1β pathway in type 2 diabetes and obesity. Diabetologia 2025; 68:3-16. [PMID: 39496966 DOI: 10.1007/s00125-024-06306-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/30/2024] [Indexed: 11/06/2024]
Abstract
Increased activity of the NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome-IL-1β pathway is observed in obesity and contributes to the development of type 2 diabetes and its complications. In this review, we describe the pathological activation of IL-1β by metabolic stress, ageing and the microbiome and present data on the role of IL-1β in metabolism. We explore the physiological role of the IL-1β pathway in insulin secretion and the relationship between circulating levels of IL-1β and the development of diabetes and associated diseases. We highlight the paradoxical nature of IL-1β as both a friend and a foe in glucose regulation and provide details on clinical translation, including the glucose-lowering effects of IL-1 antagonism and its impact on disease modification. We also discuss the potential role of IL-1β in obesity, Alzheimer's disease, fatigue, gonadal dysfunction and related disorders such as rheumatoid arthritis and gout. Finally, we address the safety of NLRP3 inhibition and IL-1 antagonists and the prospect of using this therapeutic approach for the treatment of type 2 diabetes and its comorbidities.
Collapse
Affiliation(s)
- Daniel T Meier
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland.
- Department of Biomedicine, University of Basel, Basel, Switzerland.
| | - Joyce de Paula Souza
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Marc Y Donath
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland.
- Department of Biomedicine, University of Basel, Basel, Switzerland.
| |
Collapse
|
12
|
Coll RC, Schroder K. Inflammasome components as new therapeutic targets in inflammatory disease. Nat Rev Immunol 2025; 25:22-41. [PMID: 39251813 DOI: 10.1038/s41577-024-01075-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 09/11/2024]
Abstract
Inflammation drives pathology in many human diseases for which there are no disease-modifying drugs. Inflammasomes are signalling platforms that can induce pathological inflammation and tissue damage, having potential as an exciting new class of drug targets. Small-molecule inhibitors of the NLRP3 inflammasome that are now in clinical trials have demonstrated proof of concept that inflammasomes are druggable, and so drug development programmes are now focusing on other key inflammasome molecules. In this Review, we describe the potential of inflammasome components as candidate drug targets and the novel inflammasome inhibitors that are being developed. We discuss how the signalling biology of inflammasomes offers mechanistic insights for therapeutic targeting. We also discuss the major scientific and technical challenges associated with drugging these molecules during preclinical development and clinical trials.
Collapse
Affiliation(s)
- Rebecca C Coll
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK.
| | - Kate Schroder
- Institute for Molecular Bioscience (IMB), The University of Queensland, St Lucia, Queensland, Australia.
| |
Collapse
|
13
|
Li X, Zhu R, Liu Q, Sun H, Sheng H, Zhu L. Effects of traditional Chinese medicine polysaccharides on chronic diseases by modulating gut microbiota: A review. Int J Biol Macromol 2024; 282:136691. [PMID: 39437951 DOI: 10.1016/j.ijbiomac.2024.136691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Intestinal tract is the largest immune system of human body. Gut microbiota (GM) can produce a large number of metabolites, such as short-chain fatty acids and bile acids, which regulate the physiological health of the host and affect the development of disease. In recent years, traditional Chinese medicine (TCM) polysaccharides have attracted extensive attention with multiple biological activities and low toxicity. TCM polysaccharides can promote the growth of intestinal beneficial bacteria and inhibit the growth of harmful bacteria by regulating the structure and function of GM, thus playing a crucial role in preventing or treating chronic diseases such as inflammatory bowel disease (IBD), obesity, type 2 diabetes mellitus (T2DM), liver diseases, cancer, etc. In this paper, the research progress of TCM polysaccharides in the treatment of chronic diseases such as inflammatory bowel disease, obesity, T2DM, liver diseases, cancer, etc. by modulating GM was reviewed. Meanwhile, this review makes an in-depth discussion on the shortcomings of the research of TCM polysaccharides on chronic diseases by modulating GM, and new valuable prospection for the future researches of TCM polysaccharides are proposed, which will provide new ideas for the further study of TCM polysaccharides.
Collapse
Affiliation(s)
- Xinyu Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Riran Zhu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Qian Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Henglai Sun
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Huagang Sheng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Liqiao Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
14
|
Li S, Withaar C, Rodrigues PG, Zijlstra SN, de Boer RA, Silljé HHW, Meems LMG. The NLRP3-inflammasome inhibitor MCC950 improves cardiac function in a HFpEF mouse model. Biomed Pharmacother 2024; 181:117711. [PMID: 39616735 DOI: 10.1016/j.biopha.2024.117711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is posing a significant medical challenge due to its growing prevalence, high hospitalization rates and limited response to current treatment options. Accumulating evidence suggests that a comorbidity-driven systemic pro-inflammatory state, including activation of the NLRP3 inflammasome, contributes to the pathogenesis of HFpEF. This study aimed to investigate the potential cardiac protective effects of the selective NLRP3 inhibitor MCC950, in a mouse model of HFpEF. HFpEF was obtained in 18-22 months old female mice using high-fat diet (HFD) and angiotensin II (AngII) infusion. Mice developed HFpEF and comorbidities such as obesity, type 2 diabetes, and hypertension. MCC950 was added to HFD and groups were treated for four weeks until the study endpoint. MCC950 treatment resulted in lower plasma IL-18 levels (-47.3 %), illustrating target engagement. First, we observed that MCC950 treatment improved left ventricular function, demonstrated by enhanced global longitudinal strain (GLS, 3.9 %, P<0.01) and reverse peak longitudinal strain (RPLSR, +46.8 %, P<0.05). Second, MCC950 reduced cardiac hypertrophy (cardiomyocyte size -19.5 %, P<0.001) and fibrosis (-32.5 %, P<0.05), accompanied by lower expression of pro-fibrotic genes. Finally, MCC950 treatment reduced macrophage infiltration in left ventricular tissue and attenuated macrophage accumulation in visceral adipose tissue, even more as compared to caloric restriction. Overall, this suggests that NLRP3 inhibition could be a promising treatment for HFpEF patients with a pro-inflammatory profile, potentially improving heart function, systemic inflammation, and metabolic parameters.
Collapse
Affiliation(s)
- Sunhuo Li
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen 9713 GZ, the Netherlands
| | - Coenraad Withaar
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen 9713 GZ, the Netherlands
| | - Patricia G Rodrigues
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| | - Sietske N Zijlstra
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen 9713 GZ, the Netherlands
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen 9713 GZ, the Netherlands; Cardiovascular Research Institute, Thorax Center, Department of Cardiology, Erasmus Medical Center, Rotterdam 3015 GD, the Netherlands
| | - Herman H W Silljé
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen 9713 GZ, the Netherlands
| | - Laura M G Meems
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen 9713 GZ, the Netherlands.
| |
Collapse
|
15
|
Pennings GJ. NLRP3: More than an Inflammasome? Thromb Haemost 2024; 124:1114-1116. [PMID: 39260395 DOI: 10.1055/a-2413-4672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Affiliation(s)
- Gabrielle J Pennings
- ANZAC Research Institute-Sydney Local Health District, The University of Sydney, Concord NSW, Australia
| |
Collapse
|
16
|
Zheng Y, Zhang X, Wang Z, Zhang R, Wei H, Yan X, Jiang X, Yang L. MCC950 as a promising candidate for blocking NLRP3 inflammasome activation: A review of preclinical research and future directions. Arch Pharm (Weinheim) 2024; 357:e2400459. [PMID: 39180246 DOI: 10.1002/ardp.202400459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 08/26/2024]
Abstract
The NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome is a key component of the innate immune system that triggers inflammation and pyroptosis and contributes to the development of several diseases. Therefore, blocking the activation of the NLRP3 inflammasome has therapeutic potential for the treatment of these diseases. MCC950, a selective small molecule inhibitor, has emerged as a promising candidate for blocking NLRP3 inflammasome activation. Ongoing research is focused on elucidating the specific targets of MCC950 as well as assessfing its metabolism and safety profile. This review discusses the diseases that have been studied in relation to MCC950, with a focus on stroke, Alzheimer's disease, liver injury, atherosclerosis, diabetes mellitus, and sepsis, using bibliometric analysis. It then summarizes the potential pharmacological targets of MCC950 and discusses its toxicity. Furthermore, it traces the progression from preclinical to clinical research for the treatment of these diseases. Overall, this review provides a solid foundation for the clinical therapeutic potential of MCC950 and offers insights for future research and therapeutic approaches.
Collapse
Affiliation(s)
- Yujia Zheng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Xiaolu Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Ziyu Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Ruifeng Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Huayuan Wei
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Xu Yan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Lin Yang
- School of Medicial Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, Jinghai, China
| |
Collapse
|
17
|
Huang H, Peng Y, Xiao L, Wang J, Xin YH, Zhang TH, Li XY, Wei X. Electroacupuncture Promotes Gastric Motility by Suppressing Pyroptosis via NLRP3/Caspase-1/GSDMD Signaling Pathway in Diabetic Gastroparesis Rats. Chin J Integr Med 2024:10.1007/s11655-024-3821-6. [PMID: 39470921 DOI: 10.1007/s11655-024-3821-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 11/01/2024]
Abstract
OBJECTIVE To investigate the mechanism of electroacupuncture (EA) in treating diabetic gastroparesis (DGP) by inhibiting the activation of Nod-like receptor family pyrin domain-containing protein 3 (NLRP3) inflammasome and pyroptosis mediated via NLRP3/cysteinyl aspartate specific proteinase-1 (caspase-1)/gasdermin D (GSDMD) signaling pathway. METHODS Forty Sprague-Dawley rats were randomly divided into 4 groups including the control, DGP model, EA, and MCC950 groups. The DGP model was established by a one-time high-dose intraperitoneal injection of 2% streptozotocin and a high-glucose and high-fat diet for 8 weeks. EA intervention was conducted at Zusanli (ST 36), Liangmen (ST 21) and Sanyinjiao (SP 6) with sparse-dense wave for 15 min, and was administered for 3 courses of 5 days. After intervention, the blood glucose, urine glucose, gastric emptying, and intestinal propulsive rate were observed. Besides, HE staining was used to observe histopathological changes in gastric antrum tissues, and TUNEL staining was utilized to detect DNA damage. Protein expression levels of NLRP3, apoptosis-associated speck-like protein containing CARD (ASC), pro-caspase-1, caspase-1 and GSDMD were measured by Western blot. Immunofluorescence staining was employed to assess the activity of GSDMD-N. Lactate dehydrogenase (LDH) levels were detected by using a biochemical kit. RESULTS DGP rats showed persistent hyperglycemia and a significant decrease in gastrointestinal motility (P<0.05 or P<0.01), accompanied by pathological damage in their gastric antrum tissues. Cellular DNA was obviously damaged, and the expressions of NLRP3, ASC, pro-caspase-1, caspase-1 and GSDMD proteins were significantly elevated, along with enhanced fluorescence signals of GSDMD-N and increased LDH release (P<0.01). EA mitigated hyperglycemia, improved gastrointestinal motility in DGP rats and alleviated their pathological injury (P<0.05). Furthermore, EA reduced cellular DNA damage, lowered the protein levels of NLRP3, ASC, pro-caspase-1, caspase-1 and GSDMD, suppressed GSDMD-N activity, and decreased LDH release (P<0.05 or P<0.01), demonstrating effects comparable to MCC950. CONCLUSION EA promotes gastrointestinal motility and repairs the pathological damage in DGP rats, and its mechanism may be related to the inhibition of NLRP3 inflammasome and pyroptosis mediated by NLRP3/caspase-1/GSDMD pathway.
Collapse
Affiliation(s)
- Hao Huang
- College of Acupuncture-Moxibustion-Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yan Peng
- College of Acupuncture-Moxibustion-Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Le Xiao
- College of Acupuncture-Moxibustion-Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Jing Wang
- College of Acupuncture-Moxibustion-Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yu-Hong Xin
- College of Acupuncture-Moxibustion-Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Tian-Hua Zhang
- College of Acupuncture-Moxibustion-Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Xiao-Yu Li
- College of Acupuncture-Moxibustion-Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Xing Wei
- College of Acupuncture-Moxibustion-Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
18
|
Yalcinkaya M, Tall AR. Genetic and epigenetic regulation of inflammasomes: Role in atherosclerosis. Atherosclerosis 2024; 396:118541. [PMID: 39111028 PMCID: PMC11374466 DOI: 10.1016/j.atherosclerosis.2024.118541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 09/06/2024]
Abstract
The cardiovascular complications of atherosclerosis are thought to arise from an inflammatory response to the accumulation of cholesterol-rich lipoproteins in the arterial wall. The positive outcome of CANTOS (Canakinumab Anti-inflammatory Thrombosis Outcome Study) provided key evidence to support this concept and suggested that inflammasomes and IL-1β are important inflammatory mediators in human atherosclerotic cardiovascular diseases (ACVD). In specific settings NLRP3 or AIM2 inflammasomes can induce inflammatory responses in the arterial wall and promote the formation of unstable atherosclerotic plaques. Clonal hematopoiesis (CH) has recently emerged as a major independent risk factor for ACVD. CH mutations arise during ageing and commonly involves variants in genes mediating epigenetic modifications (TET2, DNMT3A, ASXL1) or cytokine signaling (JAK2). Accumulating evidence points to the role of inflammasomes in the progression of CH-induced ACVD events and has shed light on the regulatory pathways and possible therapeutic approaches that specifically target inflammasomes in atherosclerosis. Epigenetic dynamics play a vital role in regulating the generation and activation of inflammasome components by causing changes in DNA methylation patterns and chromatin assembly. This review examines the genetic and epigenetic regulation of inflammasomes, the intersection of macrophage cholesterol accumulation with inflammasome activation and their roles in atherosclerosis. Understanding the involvement of inflammasomes in atherosclerosis pathogenesis may lead to customized treatments that reduce the burden of ACVD.
Collapse
Affiliation(s)
- Mustafa Yalcinkaya
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| | - Alan R Tall
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
19
|
Doedens JR, Diamond C, Harrison D, Bock MG, Clarke N, Watt AP, Gabel CA. The ester-containing prodrug NT-0796 enhances delivery of the NLRP3 inflammasome inhibitor NDT-19795 to monocytic cells expressing carboxylesterase-1. Biochem Pharmacol 2024; 227:116455. [PMID: 39069136 DOI: 10.1016/j.bcp.2024.116455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/27/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
NT-0796 is an ester prodrug which is metabolized by carboxylesterase-1 (CES1) to yield the carboxylic acid NDT-19795, an inhibitor of the NLR family pyrin domain-containing protein 3 (NLRP3) inflammasome. When applied to human monocytes/macrophages which express CES1, however, NT-0796 is much more potent at inhibiting NLRP3 inflammasome activation than is NDT-19795. Comparison of the binding of NDT-19795 and NT-0796 in a cell-based NLRP3 target engagement assay confirms that NDT-19795 is the active species. Moreover, microsomes expressing CES1 efficiently convert NT-0796 to NDT-19795, confirming CES1-dependent activation. To understand the basis for the enhanced potency of the ester prodrug species in human monocytes, we analyzed the accumulation and de-esterification of NT-0796 in cultured cells. Our studies reveal NT-0796 rapidly accumulates in cells, achieving estimated cellular concentrations above those applied to the medium, with concomitant metabolism to NDT-19795 in CES1-expressing cells. Using cells lacking CES1 or a poorly hydrolysable NT-0796 analog demonstrated that de-esterification is not required for NT-0796 to achieve high cellular levels. As a result of a dynamic equilibrium whereby NDT-19795 formed intracellularly is subsequently released to the medium, concentrations of NT-0796 sufficient to inhibit NLRP3 can be completely metabolized to NDT-19795 resulting in a transient pharmacodynamic response. In contrast, when NDT-19795 is applied directly to cells, observed cell-associated levels are below those present in the medium and remain stable over time. Dynamics observed within the context of a closed tissue culture system highlight the utility of NT-0796 as a vehicle for delivering the NDT-19795 acid payload to CES1 expressing cells.
Collapse
Affiliation(s)
| | | | - David Harrison
- Nodthera Ltd, Little Chesterford, Saffron Walden, Essex CB10 1XL, UK
| | | | - Nicholas Clarke
- Nodthera Ltd, Little Chesterford, Saffron Walden, Essex CB10 1XL, UK
| | - Alan P Watt
- Nodthera Ltd, Little Chesterford, Saffron Walden, Essex CB10 1XL, UK
| | | |
Collapse
|
20
|
Yang X, Sun A, Kong L, Yang X, Zhao X, Wang S. Inhibition of NLRP3 inflammasome alleviates cognitive deficits in a mouse model of anti-NMDAR encephalitis induced by active immunization. Int Immunopharmacol 2024; 137:112374. [PMID: 38851162 DOI: 10.1016/j.intimp.2024.112374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/10/2024]
Abstract
Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is a neurological disorder, characterized by cognitive deficits as one of its vital features. The nucleotide-binding oligomerization domain-like receptor (NLRP3) inflammasome is a key contributor to neuroinflammation and cognitive deficits in neurological diseases. However, the underlying mechanism of anti-NMDAR encephalitis remains unclear, and the biological function of the NLRP3 inflammasome in this condition has not been elucidated. In this study, a mouse model of anti-NMDAR encephalitis was induced by active immunization with the GluN1356-385 peptide (NEA model). The NLRP3 inflammasome in the hippocampus and temporal cortex was investigated using real-time quantitative PCR (RT-qPCR), western blotting, and immunofluorescence staining. The impact of MCC950 on cognitive function and NLRP3 inflammation was assessed. Confocal immunofluorescence staining and Sholl analysis were employed to examine the function and morphology of microglia. In the current study, we discovered overactivation of the NLRP3 inflammasome and an enhanced inflammatory response in the NEA model, particularly in the hippocampus and temporal cortex. Furthermore, significant cognitive dysfunction was observed in the NEA model. While, MCC950, a selective inhibitor of the NLRP3 inflammasome, sharply attenuated the inflammatory response in mice, leading to mitigated cognitive deficits of mice and more regular arrangements of neurons and reduced number of hyperchromatic cells were also observed in the hippocampus area. In addition, we found that the excess elevation of NLRP3 inflammasome was mainly expressed in microglia accompanied with the overactivation of microglia, while MCC950 treatment significantly inhibited the increased number and activated morphological changes of microglia in the NEA model. Altogether, our study reveals the vital role of overactivated NLRP3 signaling pathway in aggravating the inflammatory response and cognitive deficits and the potential protective effect of MCC950 in anti-NMDAR encephalitis. Thus, MCC950 represents a promising strategy for anti-inflammation in anti-NMDAR encephalitis and our study lays a theoretical foundation for it to become a clinically targeted drug.
Collapse
Affiliation(s)
- Xiaxin Yang
- Department of Neurology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China
| | - Anqi Sun
- Department of Neurology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China
| | - Liangbo Kong
- Department of Neurology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China
| | - Xue Yang
- Department of Neurology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China
| | - Xiuhe Zhao
- Department of Neurology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China.
| | - Shengjun Wang
- Department of Neurology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China.
| |
Collapse
|
21
|
Peng Y, Xu Y, Li S, Shao M, Shen Z, Qi W. Mechanism of Vaginal Epithelial Cell Pyroptosis Induced by the NLRP3 Inflammasome in Vulvovaginal Candidiasis. Am J Reprod Immunol 2024; 92:e13893. [PMID: 38958245 DOI: 10.1111/aji.13893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/13/2024] [Accepted: 06/03/2024] [Indexed: 07/04/2024] Open
Abstract
PROBLEM Vulvovaginal candidiasis (VVC) is a common mucosal fungal infection, and Candida albicans is the main causative agent. The NLRP3 inflammasome plays an important role in VVC, but the underlying mechanism is unknown. METHOD OF STUDY Vaginal epithelial cells were divided into three groups: control, C. albicans strain SC5314 (wild-type, WT), and WT+ Matt Cooper Compound 950 (MCC950, a specific NLRP3 inhibitor). After human vaginal epithelial cells were pretreated with 1 µmol/L MCC950 for 2 h, C. albicans (MOI = 1) was cocultured with the human vaginal epithelial cells for 12 h. The cell supernatants were collected, LDH was detected, and the IL-1β and IL-18 levels were determined by ELISA. The expression of the pyroptosis-related proteins NLRP3, Caspase-1 p20 and GSDMD was measured by Western blotting analysis. The protein expression of the pyroptosis-related N-terminus of GSDMD (GSDMD-N) was detected by immunofluorescence. RESULTS In this study, we showed that the WT C. albicans strain induced pyroptosis in vaginal epithelial cells, as indicated by the LDH and proinflammatory cytokine levels and the upregulated levels of the pyroptosis-related proteins NLRP3, Caspase-1 p20, and GSDMD-N. MCC950 reversed the changes in the expression of these proteins and proinflammatory cytokines in vaginal epithelial cells. CONCLUSION C. albicans activated the NLRP3 inflammasome to induce vaginal epithelial cell pyroptosis. MCC950 inhibited the NLRP3 inflammasome, reduced vaginal epithelial cell pyroptosis, and decreased the release of inflammatory cytokines.
Collapse
Affiliation(s)
- Yongmei Peng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, Yunnan, China
| | - Yanan Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, Yunnan, China
| | - Sainan Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, Yunnan, China
| | - Mingkun Shao
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, Yunnan, China
| | - Zijia Shen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, Yunnan, China
| | - Wenjin Qi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
22
|
Zhang L, Tang Y, Huang P, Luo S, She Z, Peng H, Chen Y, Luo J, Duan W, Xiong J, Liu L, Liu L. Role of NLRP3 inflammasome in central nervous system diseases. Cell Biosci 2024; 14:75. [PMID: 38849934 PMCID: PMC11162045 DOI: 10.1186/s13578-024-01256-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
The central nervous system (CNS) is the most delicate system in human body, with the most complex structure and function. It is vulnerable to trauma, infection, neurodegeneration and autoimmune diseases, and activates the immune system. An appropriate inflammatory response contributes to defence against invading microbes, whereas an excessive inflammatory response can aggravate tissue damage. The NLRP3 inflammasome was the first one studied in the brain. Once primed and activated, it completes the assembly of inflammasome (sensor NLRP3, adaptor ASC, and effector caspase-1), leading to caspase-1 activation and increased release of downstream inflammatory cytokines, as well as to pyroptosis. Cumulative studies have confirmed that NLRP3 plays an important role in regulating innate immunity and autoimmune diseases, and its inhibitors have shown good efficacy in animal models of various inflammatory diseases. In this review, we will briefly discuss the biological characteristics of NLRP3 inflammasome, summarize the recent advances and clinical impact of the NLRP3 inflammasome in infectious, inflammatory, immune, degenerative, genetic, and vascular diseases of CNS, and discuss the potential and challenges of NLRP3 as a therapeutic target for CNS diseases.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Yufen Tang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Peng Huang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Senlin Luo
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Zhou She
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Hong Peng
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Yuqiong Chen
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Jinwen Luo
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Wangxin Duan
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Jie Xiong
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Lingjuan Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Liqun Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China.
| |
Collapse
|
23
|
You QY, Hu MD, Qian H. Advanced Nanoarchitectonics of Drug Delivery Systems with Pyroptosis Inhibition for Noncancerous Disease Treatment. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202315199] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Indexed: 01/06/2025]
Abstract
AbstractProgrammed cell death (PCD) is a controlled and organized form of death regulated by genes, allowing cells to adapt to their environment. Pyroptosis, a recently discovered type of programmed cell death, differs from apoptosis and necrosis. It is characterized by the activation of caspase and the cleavage of gasdermin. Many studies have focused on understanding the mechanisms and roles of pyroptosis, particularly in cancer research. While inducing pyroptosis in tumor cells for cancer treatment is a major research focus, it is equally important to explore methods of reducing pyroptosis in noncancerous diseases. Recent advancements in drug delivery systems, specifically nanoarchitectonics, offer site‐specific targeting, prolonged drug circulation, enhanced efficacy, improved solubility, and better absorption. Although several reviews have described how nanoarchitectonics can trigger pyroptosis in tumor cells, little attention is given to their potential to inhibit pyroptosis in noncancerous diseases. Therefore, it is crucial to bridge this gap and explore the future directions for utilizing nanoarchitectonics as a powerful tool against noncancerous diseases. This review aims to delve into the recent progress made in nanoarchitectonics‐based advanced drug delivery systems for the treatment of noncancerous diseases by reducing pyroptosis, while also highlighting potential future perspectives in this emerging field.
Collapse
Affiliation(s)
- Qian Yi You
- Department of Geriatrics and Special Services Medicine Xinqiao Hospital of Army Medical University (Third Military Medical University) 183 Xinqiao Street Chongqing 400037 P. R. China
- Institute of Respiratory Diseases Xinqiao Hospital of Army Medical University (Third Military Medical University) 183 Xinqiao Street Chongqing 400037 P. R. China
| | - Ming Dong Hu
- Department of Geriatrics and Special Services Medicine Xinqiao Hospital of Army Medical University (Third Military Medical University) 183 Xinqiao Street Chongqing 400037 P. R. China
| | - Hang Qian
- Institute of Respiratory Diseases Xinqiao Hospital of Army Medical University (Third Military Medical University) 183 Xinqiao Street Chongqing 400037 P. R. China
| |
Collapse
|
24
|
Kranrod J, Konkel A, Valencia R, Darwesh AM, Fischer R, Schunck WH, Seubert JM. Cardioprotective properties of OMT-28, a synthetic analog of omega-3 epoxyeicosanoids. J Biol Chem 2024; 300:107372. [PMID: 38754781 PMCID: PMC11214398 DOI: 10.1016/j.jbc.2024.107372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/12/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024] Open
Abstract
OMT-28 is a metabolically robust small molecule developed to mimic the structure and function of omega-3 epoxyeicosanoids. However, it remained unknown to what extent OMT-28 also shares the cardioprotective and anti-inflammatory properties of its natural counterparts. To address this question, we analyzed the ability of OMT-28 to ameliorate hypoxia/reoxygenation (HR)-injury and lipopolysaccharide (LPS)-induced endotoxemia in cultured cardiomyocytes. Moreover, we investigated the potential of OMT-28 to limit functional damage and inflammasome activation in isolated perfused mouse hearts subjected to ischemia/reperfusion (IR) injury. In the HR model, OMT-28 (1 μM) treatment largely preserved cell viability (about 75 versus 40% with the vehicle) and mitochondrial function as indicated by the maintenance of NAD+/NADH-, ADP/ATP-, and respiratory control ratios. Moreover, OMT-28 blocked the HR-induced production of mitochondrial reactive oxygen species. Pharmacological inhibition experiments suggested that Gαi, PI3K, PPARα, and Sirt1 are essential components of the OMT-28-mediated pro-survival pathway. Counteracting inflammatory injury of cardiomyocytes, OMT-28 (1 μM) reduced LPS-induced increases in TNFα protein (by about 85% versus vehicle) and NF-κB DNA binding (by about 70% versus vehicle). In the ex vivo model, OMT-28 improved post-IR myocardial function recovery to reach about 40% of the baseline value compared to less than 20% with the vehicle. Furthermore, OMT-28 (1 μM) limited IR-induced NLRP3 inflammasome activation similarly to a direct NLRP3 inhibitor (MCC950). Overall, this study demonstrates that OMT-28 possesses potent cardio-protective and anti-inflammatory properties supporting the hypothesis that extending the bioavailability of omega-3 epoxyeicosanoids may improve their prospects as therapeutic agents.
Collapse
Affiliation(s)
- Joshua Kranrod
- Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | | | - Robert Valencia
- Cardiovascular Research Institute, University of Alberta, Edmonton, Alberta, Canada; Faculty of Medicine and Dentistry, Department of Pharmacology, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Ahmed M Darwesh
- Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | | | - John M Seubert
- Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Institute, University of Alberta, Edmonton, Alberta, Canada; Faculty of Medicine and Dentistry, Department of Pharmacology, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
25
|
Liu Y, Li X, Sun T, Li T, Li Q. Pyroptosis in myocardial ischemia/reperfusion and its therapeutic implications. Eur J Pharmacol 2024; 971:176464. [PMID: 38461908 DOI: 10.1016/j.ejphar.2024.176464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/17/2024] [Accepted: 02/28/2024] [Indexed: 03/12/2024]
Abstract
Ischemic heart disease, a prevalent cardiovascular disease with global significance, is associated with substantial morbidity. Timely and successful reperfusion is crucial for reducing infarct size and enhancing clinical outcomes. However, reperfusion may induce additional myocardium injury, manifesting as myocardial ischemia/reperfusion (MI/R) injury. Pyroptosis is a regulated cell death pathway, the signaling pathway of which is activated during MI/R injury. In this process, the inflammasomes are triggered, initiating the cleavage of gasdermin proteins and pro-interleukins, which results in the formation of membrane pores and the maturation and secretion of inflammatory cytokines. Numerous preclinical evidence underscores the pivotal role of pyroptosis in MI/R injury. Inhibiting pyroptosis is cardioprotective against MI/R injury. Although certain agents exhibiting promise in preclinical studies for attenuating MI/R injury through inhibiting pyroptosis have been identified, the suitability of these compounds for clinical trials remains untested. This review comprehensively summarizes the recent developments in this field, with a specific emphasis on the impact of pyroptosis on MI/R injury. Deciphering these findings not only sheds light on new disease mechanisms but also paves the way for innovative treatments. And then the exploration of the latest advances in compounds that inhibit pyroptosis in MI/R is discussed, which aims to provide insights into potential therapeutic strategies and identify avenues for future research in the pursuit of effective clinical interventions.
Collapse
Affiliation(s)
- Yin Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.
| | - Xi Li
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.
| | - Tingting Sun
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.
| | - Tao Li
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Mitochondria and Metabolism, West China Hospital, Sichuan University, Chengdu, China.
| | - Qian Li
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
26
|
Wang T, Zhao W, Qi Z, Lv S, Xiao Y, Wang Y, Guo Q, Wang L, Peng X. Unmasking the dynamics of Mycoplasma gallisepticum: deciphering HD11 macrophage polarization for innovative infection control strategies. Poult Sci 2024; 103:103652. [PMID: 38537405 PMCID: PMC10987924 DOI: 10.1016/j.psj.2024.103652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/07/2024] [Accepted: 03/09/2024] [Indexed: 04/07/2024] Open
Abstract
Mycoplasma gallisepticum (MG) is a highly contagious avian respiratory pathogen characterized by rapid spread, widespread distribution, and long-term persistence of infection. Previous studies have shown that chicken macrophage HD11 cells play a critical role in the replication and immunomodulation of MG. Macrophages are multifunctional immunomodulatory cells that polarize into different functions and morphologies in response to exogenous stimuli. However, the effect of MG infection on HD11 polarization is not well understood. In this study, we observed a time-dependent increase in both the expression of the MG-related virulence protein pMGA1.2 and the copy number of MG upon MG infection. Polarization studies revealed an upregulation of M1-type marker genes in MG-infected HD11 cells, suggesting that MG mainly induces HD11 macrophages towards M1-type polarization. Furthermore, MG activated the inflammatory vesicle NLRP3 signaling pathway, and NLRP3 inhibitors affected the expression of M1 and M2 marker genes, indicating the crucial regulatory role of the NLRP3 signaling pathway in MG-induced polarization of HD11 macrophages. Our findings reveal a novel mechanism of MG infection, namely the polarization of MG-infected HD11 macrophages. This discovery suggests that altering the macrophage phenotype to inhibit MG infection may be an effective control strategy. These findings provide new perspectives on the pathogenic mechanism and control measures of MG.
Collapse
Affiliation(s)
- Tengfei Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenqing Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhenping Qi
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Shan Lv
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Yufei Xiao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingjie Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiao Guo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Lulu Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiuli Peng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
27
|
Direito R, Barbalho SM, Sepodes B, Figueira ME. Plant-Derived Bioactive Compounds: Exploring Neuroprotective, Metabolic, and Hepatoprotective Effects for Health Promotion and Disease Prevention. Pharmaceutics 2024; 16:577. [PMID: 38794239 PMCID: PMC11124874 DOI: 10.3390/pharmaceutics16050577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
There is a growing trend among consumers to seek out natural foods and products with natural ingredients. This shift in consumer preferences had a direct impact on both food and pharmaceutical industries, leading to a focus of scientific research and commercial efforts to meet these new demands. The aim of this work is to review recent available scientific data on foods of interest, such as the artichoke, gooseberry, and polygonoideae plants, as well as olive oil and red raspberries. Interestingly, the urgency of solutions to the climate change emergency has brought new attention to by-products of grapevine bunch stem and cane, which have been found to contain bioactive compounds with potential health benefits. There is a pressing need for a faster process of translating scientific knowledge from the laboratory to real-world applications, especially in the face of the increasing societal burden associated with non-communicable diseases (NCDs), environmental crises, the post-pandemic world, and ongoing violent conflicts around the world.
Collapse
Affiliation(s)
- Rosa Direito
- Laboratory of Systems Integration Pharmacology, Clinical and Regulatory Science, Research Institute for Medicines, Universidade de Lisboa (iMed.ULisboa), Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal (M.E.F.)
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil;
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Avenida Castro Alves, 62, Marília 17500-000, SP, Brazil
| | - Bruno Sepodes
- Laboratory of Systems Integration Pharmacology, Clinical and Regulatory Science, Research Institute for Medicines, Universidade de Lisboa (iMed.ULisboa), Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal (M.E.F.)
- Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Maria Eduardo Figueira
- Laboratory of Systems Integration Pharmacology, Clinical and Regulatory Science, Research Institute for Medicines, Universidade de Lisboa (iMed.ULisboa), Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal (M.E.F.)
- Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| |
Collapse
|
28
|
Spel L, Hou C, Theodoropoulou K, Zaffalon L, Wang Z, Bertoni A, Volpi S, Hofer M, Gattorno M, Martinon F. HSP90β controls NLRP3 autoactivation. SCIENCE ADVANCES 2024; 10:eadj6289. [PMID: 38416826 PMCID: PMC10901362 DOI: 10.1126/sciadv.adj6289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/24/2024] [Indexed: 03/01/2024]
Abstract
Gain-of-function mutations in NLRP3 are linked to cryopyrin-associated periodic syndromes (CAPS). Although NLRP3 autoinflammasome assembly triggers inflammatory cytokine release, its activation mechanisms are not fully understood. Our study used a functional genetic approach to identify regulators of NLRP3 inflammasome formation. We identified the HSP90β-SGT1 chaperone complex as crucial for autoinflammasome activation in CAPS. A deficiency in HSP90β, but not in HSP90α, impaired the formation of ASC specks without affecting the priming and expression of inflammasome components. Conversely, activating NLRP3 with stimuli such as nigericin or alum bypassed the need for SGT1 and HSP90β, suggesting the existence of alternative inflammasome assembly pathways. The role of HSP90β was further demonstrated in PBMCs derived from CAPS patients. In these samples, the pathological constitutive secretion of IL-1β could be suppressed using a pharmacological inhibitor of HSP90β. This finding underscores the potential of SGT1-HSP90β modulation as a therapeutic strategy in CAPS while preserving NLRP3's physiological functions.
Collapse
Affiliation(s)
- Lotte Spel
- Department of Immunobiology, University of Lausanne, 155 Ch. des Boveresses, Epalinges 1066, Switzerland
| | - Cyrielle Hou
- Department of Immunobiology, University of Lausanne, 155 Ch. des Boveresses, Epalinges 1066, Switzerland
| | - Katerina Theodoropoulou
- Department of Immunobiology, University of Lausanne, 155 Ch. des Boveresses, Epalinges 1066, Switzerland
- Pediatric Unit of Immunology, Allergology, and Rheumatology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Léa Zaffalon
- Department of Immunobiology, University of Lausanne, 155 Ch. des Boveresses, Epalinges 1066, Switzerland
| | - Zhuo Wang
- Department of Immunobiology, University of Lausanne, 155 Ch. des Boveresses, Epalinges 1066, Switzerland
| | - Arinna Bertoni
- UOC Reumatologia e Malattie Autoinfiammatorie, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Stefano Volpi
- UOC Reumatologia e Malattie Autoinfiammatorie, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- DINOGMI, Università degli Studi di Genova, Genoa, Italy
| | - Michaël Hofer
- Pediatric Unit of Immunology, Allergology, and Rheumatology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Marco Gattorno
- UOC Reumatologia e Malattie Autoinfiammatorie, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Fabio Martinon
- Department of Immunobiology, University of Lausanne, 155 Ch. des Boveresses, Epalinges 1066, Switzerland
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW There has been a rapid increase in silicosis cases, particularly related to artificial stone. The key to management is avoidance of silica exposure. Despite this, many develop progressive disease and there are no routinely recommended treatments. This review provides a summary of the literature pertaining to pharmacological therapies for silicosis and examines the plausibility of success of such treatments given the disease pathogenesis. RECENT FINDINGS In-vitro and in-vivo models demonstrate potential efficacy for drugs, which target inflammasomes, cytokines, effector cells, fibrosis, autophagy, and oxidation. SUMMARY There is some evidence for potential therapeutic targets in silicosis but limited translation into human studies. Treatment of silicosis likely requires a multimodal approach, and there is considerable cross-talk between pathways; agents that modulate both inflammation, fibrosis, autophagy, and ROS production are likely to be most efficacious.
Collapse
Affiliation(s)
- Hayley Barnes
- Monash Centre for Occupational and Environmental Health, Monash University
- Department of Respiratory Medicine, Alfred Health
- Central Clinical School, Monash University, Melbourne
| | - Maggie Lam
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton
- Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia
| | - Michelle D Tate
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton
- Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia
| | - Ryan Hoy
- Monash Centre for Occupational and Environmental Health, Monash University
- Department of Respiratory Medicine, Alfred Health
| |
Collapse
|
30
|
Calabrese L, Fiocco Z, Mellett M, Aoki R, Rubegni P, French LE, Satoh TK. Role of the NLRP1 inflammasome in skin cancer and inflammatory skin diseases. Br J Dermatol 2024; 190:305-315. [PMID: 37889986 DOI: 10.1093/bjd/ljad421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/07/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023]
Abstract
Inflammasomes are cytoplasmic protein complexes that play a crucial role in protecting the host against pathogenic and sterile stressors by initiating inflammation. Upon activation, these complexes directly regulate the proteolytic processing and activation of proinflammatory cytokines interleukin (IL)-1β and IL-18 to induce a potent inflammatory response, and induce a programmed form of cell death called pyroptosis to expose intracellular pathogens to the surveillance of the immune system, thus perpetuating inflammation. There are various types of inflammasome complexes, with the NLRP1 (nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-1) inflammasome being the first one identified and currently recognized as the predominant inflammasome sensor protein in human keratinocytes. Human NLRP1 exhibits a unique domain structure, containing both an N-terminal pyrin (PYD) domain and an effector C-terminal caspase recruitment domain (CARD). It can be activated by diverse stimuli, such as viruses, ultraviolet B radiation and ribotoxic stress responses. Specific mutations in NLRP1 or related genes have been associated with rare monogenic skin disorders, such as multiple self-healing palmoplantar carcinoma; familial keratosis lichenoides chronica; autoinflammation with arthritis and dyskeratosis; and dipeptidyl peptidase 9 deficiency. Recent research breakthroughs have also highlighted the involvement of dysfunctions in the NLRP1 pathway in a handful of seemingly unrelated dermatological conditions. These range from monogenic autoinflammatory diseases to polygenic autoimmune diseases such as vitiligo, psoriasis, atopic dermatitis and skin cancer, including squamous cell carcinoma, melanoma and Kaposi sarcoma. Additionally, emerging evidence implicates NLRP1 in systemic lupus erythematosus, pemphigus vulgaris, Addison disease, Papillon-Lefèvre syndrome and leprosy. The aim of this review is to shed light on the implications of pathological dysregulation of the NLRP1 inflammasome in skin diseases and investigate the potential rationale for targeting this pathway as a future therapeutic approach.
Collapse
Affiliation(s)
- Laura Calabrese
- Dermatology Unit, Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
- Institute of Dermatology, Catholic University of the Sacred Heart, Rome, Italy
- Department of Dermatology and Allergy, University Hospital, LMU, Munich, Germany
| | - Zeno Fiocco
- Department of Dermatology and Allergy, University Hospital, LMU, Munich, Germany
| | - Mark Mellett
- Department of Dermatology, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Rui Aoki
- Department of Dermatology and Allergy, University Hospital, LMU, Munich, Germany
| | - Pietro Rubegni
- Dermatology Unit, Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - Lars E French
- Department of Dermatology and Allergy, University Hospital, LMU, Munich, Germany
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Takashi K Satoh
- Department of Dermatology and Allergy, University Hospital, LMU, Munich, Germany
| |
Collapse
|
31
|
Han C, Ge M, Xing P, Xia T, Zhang C, Ma K, Ma Y, Li S, Li W, Liu X, Zhang B, Zhang L, Zhang L. Cystine deprivation triggers CD36-mediated ferroptosis and dysfunction of tumor infiltrating CD8 + T cells. Cell Death Dis 2024; 15:145. [PMID: 38360744 PMCID: PMC10869360 DOI: 10.1038/s41419-024-06503-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/17/2024]
Abstract
Cancer cells develop multiple strategies to evade T cell-mediated killing. On one hand, cancer cells may preferentially rely on certain amino acids for rapid growth and metastasis. On the other hand, sufficient nutrient availability and uptake are necessary for mounting an effective T cell anti-tumor response in the tumor microenvironment (TME). Here we demonstrate that tumor cells outcompete T cells for cystine uptake due to high Slc7a11 expression. This competition induces T-cell exhaustion and ferroptosis, characterized by diminished memory formation and cytokine secretion, increased PD-1 and TIM-3 expression, as well as intracellular oxidative stress and lipid-peroxide accumulation. Importantly, either Slc7a11 deletion in tumor cells or intratumoral cystine supplementation improves T cell anti-tumor immunity. Mechanistically, cystine deprivation in T cells disrupts glutathione synthesis, but promotes CD36 mediated lipid uptake due to dysregulated cystine/glutamate exchange. Moreover, enforced expression of glutamate-cysteine ligase catalytic subunit (Gclc) promotes glutathione synthesis and prevents CD36 upregulation, thus boosting T cell anti-tumor immunity. Our findings reveal cystine as an intracellular metabolic checkpoint that orchestrates T-cell survival and differentiation, and highlight Gclc as a potential therapeutic target for enhancing T cell anti-tumor function.
Collapse
Affiliation(s)
- Chenfeng Han
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, Jiangsu, 215123, China
- Key Laboratory of Synthetic Biology Regulatory Element, Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, Jiangsu, 215123, China
| | - Minmin Ge
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, Jiangsu, 215123, China
- Key Laboratory of Synthetic Biology Regulatory Element, Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, Jiangsu, 215123, China
| | - Pengfei Xing
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Center for Cancer Diagnosis and Treatment, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Laboratory for Combined Radiotherapy and Immunotherapy of Cancer, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Tian Xia
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, Jiangsu, 215123, China
- Key Laboratory of Synthetic Biology Regulatory Element, Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, Jiangsu, 215123, China
- Institute of Biology and Medical Sciences (IBMS), Soochow University, Suzhou, Jiangsu, 215123, China
| | - Cangang Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shaanxi, China
| | - Kaili Ma
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, Jiangsu, 215123, China
- Key Laboratory of Synthetic Biology Regulatory Element, Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, Jiangsu, 215123, China
| | - Yifu Ma
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Center for Cancer Diagnosis and Treatment, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Laboratory for Combined Radiotherapy and Immunotherapy of Cancer, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Shicheng Li
- Center for Cancer Diagnosis and Treatment, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Wenhui Li
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, Jiangsu, 215123, China
- Key Laboratory of Synthetic Biology Regulatory Element, Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, Jiangsu, 215123, China
| | - Xiaowei Liu
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, Jiangsu, 215123, China
- Key Laboratory of Synthetic Biology Regulatory Element, Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, Jiangsu, 215123, China
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shaanxi, China.
| | - Liyuan Zhang
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China.
- Center for Cancer Diagnosis and Treatment, The Second Affiliated Hospital of Soochow University, Suzhou, China.
- Laboratory for Combined Radiotherapy and Immunotherapy of Cancer, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| | - Lianjun Zhang
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, Jiangsu, 215123, China.
- Key Laboratory of Synthetic Biology Regulatory Element, Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
32
|
Teske KA, Corona C, Wilkinson J, Mamott D, Good DA, Zambrano D, Lazar DF, Cali JJ, Robers MB, O'Brien MA. Interrogating direct NLRP3 engagement and functional inflammasome inhibition using cellular assays. Cell Chem Biol 2024; 31:349-360.e6. [PMID: 37858335 DOI: 10.1016/j.chembiol.2023.09.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/20/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023]
Abstract
As a key regulator of the innate immune system, the NLRP3 inflammasome responds to a variety of environmental insults through activation of caspase-1 and release of the proinflammatory cytokines IL-1β and IL-18. Aberrant NLRP3 inflammasome function is implicated in numerous inflammatory diseases, spurring drug discovery efforts at NLRP3 as a therapeutic target. A diverse array of small molecules is undergoing preclinical/clinical evaluation with a reported mode of action involving direct modulation of the NLRP3 pathway. However, for a subset of these ligands the functional link between live-cell target engagement and pathway inhibition has yet to be fully established. Herein we present a cohort of mechanistic assays to both query direct NLRP3 engagement in cells, and functionally interrogate different nodes of NLRP3 pathway activity. This system enabled the stratification of potency for five confirmed NLRP3 inhibitors, and identification of two reported NLRP3 inhibitors that failed to demonstrate direct pathway antagonism.
Collapse
Affiliation(s)
- Kelly A Teske
- Promega Corporation, Research & Development, Madison, WI 53711, USA
| | - Cesear Corona
- Promega Corporation, Research & Development, San Luis Obispo, CA 93401, USA
| | | | - Daniel Mamott
- Promega Corporation, Research & Development, Madison, WI 53711, USA
| | - David A Good
- Promega Corporation, Research & Development, San Luis Obispo, CA 93401, USA
| | - Delia Zambrano
- Promega Corporation, Research & Development, San Luis Obispo, CA 93401, USA
| | - Dan F Lazar
- Promega Corporation, Research & Development, Madison, WI 53711, USA
| | - James J Cali
- Promega Corporation, Research & Development, Madison, WI 53711, USA
| | - Matthew B Robers
- Promega Corporation, Research & Development, Madison, WI 53711, USA.
| | - Martha A O'Brien
- Promega Corporation, Research & Development, Madison, WI 53711, USA.
| |
Collapse
|
33
|
Smolak P, Nguyen M, Diamond C, Wescott H, Doedens JR, Schooley K, Snouwaert JN, Bock MG, Harrison D, Watt AP, Koller BH, Gabel CA. Target Cell Activation of a Structurally Novel NOD-Like Receptor Pyrin Domain-Containing Protein 3 Inhibitor NT-0796 Enhances Potency. J Pharmacol Exp Ther 2024; 388:798-812. [PMID: 38253384 DOI: 10.1124/jpet.123.001941] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024] Open
Abstract
The NOD-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome is a central regulator of innate immunity, essential for processing and release of interleukin-1β and pyroptotic cell death. As endogenous NLRP3 activating triggers are hallmarks of many human chronic inflammatory diseases, inhibition of NLRP3 has emerged as a therapeutic target. Here we identify NDT-19795 as a novel carboxylic acid-containing NLRP3 activation inhibitor in both human and mouse monocytes and macrophages. Remarkably, conversion of the carboxylate to an isopropyl-ester (NT-0796) greatly enhances NLRP3 inhibitory potency in human monocytes. This increase is attributed to the ester-containing pharmacophore being more cell-penetrant than the acid species and, once internalized, the ester being metabolized to NDT-19795 by carboxylesterase-1 (CES-1). Mouse macrophages do not express CES-1, and NT-0796 is ineffective in these cells. Mice also contain plasma esterase (Ces1c) activity which is absent in humans. To create a more human-like model, we generated a mouse line in which the genome was modified, removing Ces1c and replacing this segment of DNA with the human CES-1 gene driven by a mononuclear phagocyte-specific promoter. We show human CES-1 presence in monocytes/macrophages increases the ability of NT-0796 to inhibit NLRP3 activation both in vitro and in vivo. As NLRP3 is widely expressed by monocytes/macrophages, the co-existence of CES-1 in these same cells affords a unique opportunity to direct ester-containing NLRP3 inhibitors precisely to target cells of interest. Profiling NT-0796 in mice humanized with respect to CES-1 biology enables critical modeling of the pharmacokinetics and pharmacodynamics of this novel therapeutic candidate. SIGNIFICANCE STATEMENT: Inhibition of NLRP3 represents a desirable therapeutic strategy for the treatment of multiple human disorders. In this study pharmacological properties of a structurally-novel, ester-containing NLRP3 inhibitor NT-0796 are characterized. To study pharmacodynamics of NT-0796 in vivo, a mouse line was engineered possessing more human-like traits with respect to carboxylesterase biology. In the context of these hCES-1 mice, NT-0796 serves as a more effective inhibitor of NLRP3 activation than the corresponding acid, highlighting the full translational potential of the ester strategy.
Collapse
Affiliation(s)
- Pamela Smolak
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (B.H.K., M.N., J.N.S.); Nodthera, Seattle Washington (P.S., C.D., H.W., J.R.D., K.S., C.A.G.); Nodthera, Cambridge, United Kingdom (D.H., A.P.W.); and Nodthera, Boston, Massachusetts (M.G.B.)
| | - MyTrang Nguyen
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (B.H.K., M.N., J.N.S.); Nodthera, Seattle Washington (P.S., C.D., H.W., J.R.D., K.S., C.A.G.); Nodthera, Cambridge, United Kingdom (D.H., A.P.W.); and Nodthera, Boston, Massachusetts (M.G.B.)
| | - Christine Diamond
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (B.H.K., M.N., J.N.S.); Nodthera, Seattle Washington (P.S., C.D., H.W., J.R.D., K.S., C.A.G.); Nodthera, Cambridge, United Kingdom (D.H., A.P.W.); and Nodthera, Boston, Massachusetts (M.G.B.)
| | - Heather Wescott
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (B.H.K., M.N., J.N.S.); Nodthera, Seattle Washington (P.S., C.D., H.W., J.R.D., K.S., C.A.G.); Nodthera, Cambridge, United Kingdom (D.H., A.P.W.); and Nodthera, Boston, Massachusetts (M.G.B.)
| | - John R Doedens
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (B.H.K., M.N., J.N.S.); Nodthera, Seattle Washington (P.S., C.D., H.W., J.R.D., K.S., C.A.G.); Nodthera, Cambridge, United Kingdom (D.H., A.P.W.); and Nodthera, Boston, Massachusetts (M.G.B.)
| | - Kenneth Schooley
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (B.H.K., M.N., J.N.S.); Nodthera, Seattle Washington (P.S., C.D., H.W., J.R.D., K.S., C.A.G.); Nodthera, Cambridge, United Kingdom (D.H., A.P.W.); and Nodthera, Boston, Massachusetts (M.G.B.)
| | - John N Snouwaert
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (B.H.K., M.N., J.N.S.); Nodthera, Seattle Washington (P.S., C.D., H.W., J.R.D., K.S., C.A.G.); Nodthera, Cambridge, United Kingdom (D.H., A.P.W.); and Nodthera, Boston, Massachusetts (M.G.B.)
| | - Mark G Bock
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (B.H.K., M.N., J.N.S.); Nodthera, Seattle Washington (P.S., C.D., H.W., J.R.D., K.S., C.A.G.); Nodthera, Cambridge, United Kingdom (D.H., A.P.W.); and Nodthera, Boston, Massachusetts (M.G.B.)
| | - David Harrison
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (B.H.K., M.N., J.N.S.); Nodthera, Seattle Washington (P.S., C.D., H.W., J.R.D., K.S., C.A.G.); Nodthera, Cambridge, United Kingdom (D.H., A.P.W.); and Nodthera, Boston, Massachusetts (M.G.B.)
| | - Alan P Watt
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (B.H.K., M.N., J.N.S.); Nodthera, Seattle Washington (P.S., C.D., H.W., J.R.D., K.S., C.A.G.); Nodthera, Cambridge, United Kingdom (D.H., A.P.W.); and Nodthera, Boston, Massachusetts (M.G.B.)
| | - Beverly H Koller
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (B.H.K., M.N., J.N.S.); Nodthera, Seattle Washington (P.S., C.D., H.W., J.R.D., K.S., C.A.G.); Nodthera, Cambridge, United Kingdom (D.H., A.P.W.); and Nodthera, Boston, Massachusetts (M.G.B.)
| | - Christopher A Gabel
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (B.H.K., M.N., J.N.S.); Nodthera, Seattle Washington (P.S., C.D., H.W., J.R.D., K.S., C.A.G.); Nodthera, Cambridge, United Kingdom (D.H., A.P.W.); and Nodthera, Boston, Massachusetts (M.G.B.)
| |
Collapse
|
34
|
Yu X, Matico RE, Miller R, Chauhan D, Van Schoubroeck B, Grauwen K, Suarez J, Pietrak B, Haloi N, Yin Y, Tresadern GJ, Perez-Benito L, Lindahl E, Bottelbergs A, Oehlrich D, Van Opdenbosch N, Sharma S. Structural basis for the oligomerization-facilitated NLRP3 activation. Nat Commun 2024; 15:1164. [PMID: 38326375 PMCID: PMC10850481 DOI: 10.1038/s41467-024-45396-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/19/2024] [Indexed: 02/09/2024] Open
Abstract
The NACHT-, leucine-rich-repeat-, and pyrin domain-containing protein 3 (NLRP3) is a critical intracellular inflammasome sensor and an important clinical target against inflammation-driven human diseases. Recent studies have elucidated its transition from a closed cage to an activated disk-like inflammasome, but the intermediate activation mechanism remains elusive. Here we report the cryo-electron microscopy structure of NLRP3, which forms an open octamer and undergoes a ~ 90° hinge rotation at the NACHT domain. Mutations on open octamer's interfaces reduce IL-1β signaling, highlighting its essential role in NLRP3 activation/inflammasome assembly. The centrosomal NIMA-related kinase 7 (NEK7) disrupts large NLRP3 oligomers and forms NEK7/NLRP3 monomers/dimers which is a critical step preceding the assembly of the disk-like inflammasome. These data demonstrate an oligomeric cooperative activation of NLRP3 and provide insight into its inflammasome assembly mechanism.
Collapse
Affiliation(s)
- Xiaodi Yu
- Johnson & Johnson Innovation Medicine, Spring House, PA, 19044, USA.
| | - Rosalie E Matico
- Johnson & Johnson Innovation Medicine, Spring House, PA, 19044, USA
| | - Robyn Miller
- Johnson & Johnson Innovation Medicine, Spring House, PA, 19044, USA
| | - Dhruv Chauhan
- Johnson & Johnson Innovation Medicine, J&J Interventional Oncology, Beerse, Belgium
| | | | - Karolien Grauwen
- Johnson & Johnson Innovation Medicine, J&J Interventional Oncology, Beerse, Belgium
| | - Javier Suarez
- Johnson & Johnson Innovation Medicine, Spring House, PA, 19044, USA
| | - Beth Pietrak
- Johnson & Johnson Innovation Medicine, Spring House, PA, 19044, USA
| | - Nandan Haloi
- Department of Applied Physics, Swedish e-Science Research Center, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Yanting Yin
- Johnson & Johnson Innovation Medicine, Spring House, PA, 19044, USA
| | | | - Laura Perez-Benito
- Johnson & Johnson Innovation Medicine, Discovery Sciences, Beerse, Belgium
| | - Erik Lindahl
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Astrid Bottelbergs
- Johnson & Johnson Innovation Medicine, Discovery Sciences, Beerse, Belgium
| | - Daniel Oehlrich
- Johnson & Johnson Innovation Medicine, Discovery Sciences, Beerse, Belgium
| | - Nina Van Opdenbosch
- Johnson & Johnson Innovation Medicine, J&J Interventional Oncology, Beerse, Belgium
| | - Sujata Sharma
- Johnson & Johnson Innovation Medicine, Spring House, PA, 19044, USA
| |
Collapse
|
35
|
Liu P, Zhang Z, Chen H, Chen Q. Pyroptosis: Mechanisms and links with diabetic cardiomyopathy. Ageing Res Rev 2024; 94:102182. [PMID: 38182080 DOI: 10.1016/j.arr.2023.102182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 01/07/2024]
Abstract
Diabetes mellitus (DM) is a chronic metabolic disease characterized by hyperglycaemia that seriously affects human health. Diabetic cardiomyopathy (DCM) is a major cardiovascular complication and one of the main causes of death in patients with DM. Although DCM attracts great attention, and new therapeutic methods are continuously developed, there is a lack of effective treatment strategies. Therefore, exploring and targeting new signalling pathways related to the evolution of DCM becomes a hotspot and difficulty in the prevention and treatment of DCM. Pyroptosis is a newly discovered regulated cell death that is heavily dependent on the formation of plasma membrane pores by members of the gasdermin protein family and is reported to be involved in the occurrence, development, and pathogenesis of DCM. In this review, we focus on the molecular mechanisms of pyroptosis, its involvement in the relevant signalling pathways of DCM, and potential pyroptosis-targeting therapeutic strategies for the treatment of DCM. Our review provides new insights into the use of pyroptosis as a useful tool for the prevention and treatment of DCM and clarifies future research directions.
Collapse
Affiliation(s)
- Pan Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, PR China
| | - Zhengdong Zhang
- School of Clinical Medicine, Chengdu Medical College, Chengdu 610500, Sichuan Province, PR China; Department of Orthopedics, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan Province, PR China
| | - Huizhen Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, PR China
| | - Qiu Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, PR China.
| |
Collapse
|
36
|
Panbhare K, Pandey R, Chauhan C, Sinha A, Shukla R, Kaundal RK. Role of NLRP3 Inflammasome in Stroke Pathobiology: Current Therapeutic Avenues and Future Perspective. ACS Chem Neurosci 2024; 15:31-55. [PMID: 38118278 DOI: 10.1021/acschemneuro.3c00536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023] Open
Abstract
Neuroinflammation is a key pathophysiological feature of stroke-associated brain injury. A local innate immune response triggers neuroinflammation following a stroke via activating inflammasomes. The nucleotide-binding oligomerization domain leucine-rich repeat and pyrin domain-containing protein 3 (NLRP3) inflammasome has been heavily implicated in stroke pathobiology. Following a stroke, several stimuli have been suggested to trigger the assembly of the NLRP3 inflammasome. Recent studies have advanced the understanding and revealed several new players regulating NLRP3 inflammasome-mediated neuroinflammation. This article discussed recent advancements in NLRP3 assembly and highlighted stroke-induced mitochondrial dysfunction as a major checkpoint to regulating NLRP3 activation. The NLRP3 inflammasome activation leads to caspase-1-dependent maturation and release of IL-1β, IL-18, and gasdermin D. In addition, genetic or pharmacological inhibition of the NLRP3 inflammasome activation and downstream signaling has been shown to attenuate brain infarction and improve the neurological outcome in experimental models of stroke. Several drug-like small molecules targeting the NLRP3 inflammasome are in different phases of development as novel therapeutics for various inflammatory conditions, including stroke. Understanding how these molecules interfere with NLRP3 inflammasome assembly is paramount for their better optimization and/or development of newer NLRP3 inhibitors. In this review, we summarized the assembly of the NLRP3 inflammasome and discussed the recent advances in understanding the upstream regulators of NLRP3 inflammasome-mediated neuroinflammation following stroke. Additionally, we critically examined the role of the NLRP3 inflammasome-mediated signaling in stroke pathophysiology and the development of therapeutic modalities to target the NLRP3 inflammasome-related signaling for stroke treatment.
Collapse
Affiliation(s)
- Kartik Panbhare
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| | - Rukmani Pandey
- Department of Psychiatry, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Chandan Chauhan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| | - Antarip Sinha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Lucknow, UP 226002, India
| | - Ravinder K Kaundal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| |
Collapse
|
37
|
Lou S, Wu M, Cui S. Targeting NLRP3 Inflammasome: Structure, Function, and Inhibitors. Curr Med Chem 2024; 31:2021-2051. [PMID: 38310392 DOI: 10.2174/0109298673289984231127062528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 02/05/2024]
Abstract
Inflammasomes are multimeric protein complexes that can detect various physiological stimuli and danger signals. As a result, they perform a crucial function in the innate immune response. The NLRP3 inflammasome, as a vital constituent of the inflammasome family, is significant in defending against pathogen invasion and preserving cellhomeostasis. NLRP3 inflammasome dysregulation is connected to various pathological conditions, including inflammatory diseases, cancer, and cardiovascular and neurodegenerative diseases. This profile makes NLRP3 an applicable target for treating related diseases, and therefore, there are rising NLRP3 inhibitors disclosed for therapy. Herein, we summarized the updated advances in the structure, function, and inhibitors of NLRP3 inflammasome. Moreover, we aimed to provide an overview of the existing products and future directions for drug research and development.
Collapse
Affiliation(s)
- Shengying Lou
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Department of Pharmacy, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Miaolian Wu
- Department of Pharmacy, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Sunliang Cui
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| |
Collapse
|
38
|
Barry K, Murphy C, Mansell A. NLRP1- A CINDERELLA STORY: a perspective of recent advances in NLRP1 and the questions they raise. Commun Biol 2023; 6:1274. [PMID: 38104185 PMCID: PMC10725483 DOI: 10.1038/s42003-023-05684-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023] Open
Abstract
NLRP1, while the first inflammasome described, has only recently begun to gain significant attention in disease pathology, inflammation research, and potentially, as a therapeutic target. Recently identified human variants provide key insights into NLRP1 biology while its unique expression in barrier cells such as keratinocytes and airway epithelial cells has aligned with new, human specific agonists. This differentiates NLRP1 from other inflammasomes such as NLRP3 and identifies it as a key therapeutic target in inflammatory diseases. Indeed, recent discoveries highlight that NLRP1 may be the predominant inflammasome in human barrier cells, its primary role akin to NLRP3, to respond to cellular stress. This review focuses on recent studies identifying new human-specific NLRP1 mechanisms of activation of, gain-of-function human variants and disease, its role in responding to cellular stress, and discuss potential advances and the therapeutic potential for NLRP1.
Collapse
Affiliation(s)
- Kristian Barry
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | | | - Ashley Mansell
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia.
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
39
|
Wang J, Ru QM, Yu XH, Wang C, Li K, Han CZY, Li N, Zhao J, Wood JN, Liu X, Wang R, Wang Y. Direct inhibition of microglial activation by a μ receptor selective agonist alleviates inflammatory-induced pain hypersensitivity. Eur J Pharmacol 2023; 961:176182. [PMID: 37951488 DOI: 10.1016/j.ejphar.2023.176182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 11/02/2023] [Accepted: 11/02/2023] [Indexed: 11/14/2023]
Abstract
Opioids are widely used in the treatment of moderate and severe pain. Nociceptive stimulation has been reported to potentially promote microglial activation and neuroinflammation, which also causes chronic pain sensitization. The aim of this study was to demonstrate whether the novel μ receptor agonist MEL-0614 could inhibit activated microglia directly and the associated signaling pathway. Mice were administered lipopolysaccharide and formalin to induce allodynia. Von Frey test was used to detect the anti-allodynia effect of MEL-0614 before and after LPS and formalin injection. In the spinal cord, the levels of proinflammatory cytokines and microglial activation were determined after MEL-0614 administration. BV2 and primary microglia were cultured to further explore the effect of MEL-0614 on LPS-induced microglial activation and key signaling pathways involved. MEL-0614 partially prevented and reversed allodynia induced by LPS and formalin in vivo, which was not inhibited by the μ receptor antagonist CTAP. Minocycline was effective in reversing the established allodynia. MEL-0614 also downregulated the activation of microglia and related proinflammatory cytokines in the spinal cord. Additionally, in BV2 and primary microglia, MEL-0614 inhibited the LPS-induced upregulation of proinflammatory factors, which was unaffected by CTAP. The NLR family pyrin domain containing 3 (NLRP3) related signaling pathway may be involved in the interaction between MEL-0614 and microglia. The opioid agonist MEL-0614 inhibited the activation of microglia and the subsequent upregulation of proinflammatory factors both in vivo and in vitro. Notably, this effect is partially mediated by the μ receptor.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Qiao-Min Ru
- Department of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xiao-Hui Yu
- Department of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Changlong Wang
- Department of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Kai Li
- Department of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Chao-Zhen-Yi Han
- Department of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Na Li
- Department of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jing Zhao
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, United Kingdom
| | - John N Wood
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, United Kingdom
| | - Xin Liu
- Department of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.
| | - Rui Wang
- Department of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, China.
| | - Yuan Wang
- Department of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.
| |
Collapse
|
40
|
Sun S, Li Z, Huang C, Liu J, Yu Q, Jiang X, Yue K, Zhao J, Xu T, Liu Y, Li X, Qin C, Jiang Y. Discovery of Novel 2,3-Dihydro-1 H-indene-5-sulfonamide NLRP3 Inflammasome Inhibitors Targeting Colon as a Potential Therapy for Colitis. J Med Chem 2023; 66:16141-16167. [PMID: 38029358 DOI: 10.1021/acs.jmedchem.3c01511] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
The NLRP3 inflammasome is a multiprotein complex that plays a crucial role in the pathophysiology of multiple inflammation-related diseases. In this study, we designed and synthesized a series of novel 2,3-dihydro-1H-indene-5-sulfonamide analogues as NLRP3 inflammasome inhibitors, and then identified compound 15z as a potent and specific inhibitor (IC50: 0.13 μM) with low toxicity. Mechanistic studies indicate that 15z binds directly to NLRP3 protein (KD: 102.7 nM), blocking the assembly and activation of the NLRP3 inflammasome and effectively inhibiting cell pyroptosis. Given the notable distribution of 15z in the colon, the DSS-induced colitis model was employed to evaluate its in vivo effectiveness. 15z significantly impacted NLRP3 inflammasome activation and relieved inflammatory bowel disease symptoms in this model. Acute and subacute toxicity studies suggested that 15z has a favorable safety profile. Our results indicate that 15z has great potential to be further developed as a candidate for the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Simin Sun
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Zhuoyue Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Center for Targeted Protein Degradation and Drug Discovery, Ocean University of China, Qingdao, Shandong 266003, China
| | - Chao Huang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Jinyu Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Qixin Yu
- Marine Biomedical Research Institute of Qingdao, Qingdao, Shandong 266071, P.R. China
| | - Xiaolin Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Center for Targeted Protein Degradation and Drug Discovery, Ocean University of China, Qingdao, Shandong 266003, China
| | - Kairui Yue
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Jianchun Zhao
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Tongqiang Xu
- Marine Biomedical Research Institute of Qingdao, Qingdao, Shandong 266071, P.R. China
| | - Yankai Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xiaoyang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Center for Targeted Protein Degradation and Drug Discovery, Ocean University of China, Qingdao, Shandong 266003, China
- Marine Biomedical Research Institute of Qingdao, Qingdao, Shandong 266071, P.R. China
| | - Chong Qin
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Center for Targeted Protein Degradation and Drug Discovery, Ocean University of China, Qingdao, Shandong 266003, China
- Marine Biomedical Research Institute of Qingdao, Qingdao, Shandong 266071, P.R. China
| | - Yuqi Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Center for Targeted Protein Degradation and Drug Discovery, Ocean University of China, Qingdao, Shandong 266003, China
- Marine Biomedical Research Institute of Qingdao, Qingdao, Shandong 266071, P.R. China
| |
Collapse
|
41
|
Zhang W, Jiang H, Wu G, Huang P, Wang H, An H, Liu S, Zhang W. The pathogenesis and potential therapeutic targets in sepsis. MedComm (Beijing) 2023; 4:e418. [PMID: 38020710 PMCID: PMC10661353 DOI: 10.1002/mco2.418] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 10/01/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Sepsis is defined as "a life-threatening organ dysfunction caused by dysregulated host systemic inflammatory and immune response to infection." At present, sepsis continues to pose a grave healthcare concern worldwide. Despite the use of supportive measures in treating traditional sepsis, such as intravenous fluids, vasoactive substances, and oxygen plus antibiotics to eradicate harmful pathogens, there is an ongoing increase in both the morbidity and mortality associated with sepsis during clinical interventions. Therefore, it is urgent to design specific pharmacologic agents for the treatment of sepsis and convert them into a novel targeted treatment strategy. Herein, we provide an overview of the molecular mechanisms that may be involved in sepsis, such as the inflammatory response, immune dysfunction, complement deactivation, mitochondrial damage, and endoplasmic reticulum stress. Additionally, we highlight important targets involved in sepsis-related regulatory mechanisms, including GSDMD, HMGB1, STING, and SQSTM1, among others. We summarize the latest advancements in potential therapeutic drugs that specifically target these signaling pathways and paramount targets, covering both preclinical studies and clinical trials. In addition, this review provides a detailed description of the crosstalk and function between signaling pathways and vital targets, which provides more opportunities for the clinical development of new treatments for sepsis.
Collapse
Affiliation(s)
- Wendan Zhang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
- Faculty of PediatricsNational Engineering Laboratory for Birth defects prevention and control of key technologyBeijing Key Laboratory of Pediatric Organ Failurethe Chinese PLA General HospitalBeijingChina
| | - Honghong Jiang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
- Faculty of PediatricsNational Engineering Laboratory for Birth defects prevention and control of key technologyBeijing Key Laboratory of Pediatric Organ Failurethe Chinese PLA General HospitalBeijingChina
| | - Gaosong Wu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Pengli Huang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Haonan Wang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Huazhasng An
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational MedicineThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinanShandongChina
| | - Sanhong Liu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Weidong Zhang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
- Department of PhytochemistrySchool of PharmacySecond Military Medical UniversityShanghaiChina
- The Research Center for Traditional Chinese MedicineShanghai Institute of Infectious Diseases and BiosecurityShanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
42
|
Yalcinkaya M, Liu W, Thomas LA, Olszewska M, Xiao T, Abramowicz S, Papapetrou EP, Westerterp M, Wang N, Tabas I, Tall AR. BRCC3-Mediated NLRP3 Deubiquitylation Promotes Inflammasome Activation and Atherosclerosis in Tet2 Clonal Hematopoiesis. Circulation 2023; 148:1764-1777. [PMID: 37781816 PMCID: PMC10872582 DOI: 10.1161/circulationaha.123.065344] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 09/05/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND Clonal hematopoiesis (CH) has emerged as an independent risk factor for atherosclerotic cardiovascular disease, with activation of macrophage inflammasomes as a potential underlying mechanism. The NLRP3 (NLR family pyrin domain containing 3) inflammasome has a key role in promoting atherosclerosis in mouse models of Tet2 CH, whereas inhibition of the inflammasome product interleukin-1β appeared to particularly benefit patients with TET2 CH in CANTOS (Cardiovascular Risk Reduction Study [Reduction in Recurrent Major CV Disease Events]). TET2 is an epigenetic modifier that decreases promoter methylation. However, the mechanisms underlying macrophage NLRP3 inflammasome activation in TET2 (Tet methylcytosine dioxygenase 2) deficiency and potential links with epigenetic modifications are poorly understood. METHODS We used cholesterol-loaded TET2-deficient murine and embryonic stem cell-derived isogenic human macrophages to evaluate mechanisms of NLRP3 inflammasome activation in vitro and hypercholesterolemic Ldlr-/- mice modeling TET2 CH to assess the role of NLRP3 inflammasome activation in atherosclerosis. RESULTS Tet2 deficiency in murine macrophages acted synergistically with cholesterol loading in cell culture and with hypercholesterolemia in vivo to increase JNK1 (c-Jun N-terminal kinase 1) phosphorylation and NLRP3 inflammasome activation. The mechanism of JNK (c-Jun N-terminal kinase) activation in TET2 deficiency was increased promoter methylation and decreased expression of the JNK-inactivating dual-specificity phosphatase Dusp10. Active Tet1-deadCas9-targeted editing of Dusp10 promoter methylation abolished cholesterol-induced inflammasome activation in Tet2-deficient macrophages. Increased JNK1 signaling led to NLRP3 deubiquitylation and activation by the deubiquitinase BRCC3 (BRCA1/BRCA2-containing complex subunit 3). Accelerated atherosclerosis and neutrophil extracellular trap formation (NETosis) in Tet2 CH mice were reversed by holomycin, a BRCC3 deubiquitinase inhibitor, and also by hematopoietic deficiency of Abro1, an essential scaffolding protein in the BRCC3-containing cytosolic complex. Human TET2-/- macrophages displayed increased JNK1 and NLRP3 inflammasome activation, especially after cholesterol loading, with reversal by holomycin treatment, indicating human relevance. CONCLUSIONS Hypercholesterolemia and TET2 deficiency converge on a common pathway of NLRP3 inflammasome activation mediated by JNK1 activation and BRCC3-mediated NLRP3 deubiquitylation, with potential therapeutic implications for the prevention of cardiovascular disease in TET2 CH.
Collapse
Affiliation(s)
- Mustafa Yalcinkaya
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Wenli Liu
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Leigh-Anne Thomas
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies
| | - Malgorzata Olszewska
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies
| | - Tong Xiao
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Sandra Abramowicz
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Eirini P. Papapetrou
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies
| | - Marit Westerterp
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Nan Wang
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Ira Tabas
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Alan R. Tall
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
43
|
Tong X, Chen L, He S, Liu S, Yao J, Shao Z, Ye Y, Yao S, Lin Z, Zuo J. Forsythia suspensa (Thunb.) Vahl extract ameliorates ulcerative colitis via inhibiting NLRP3 inflammasome activation through the TLR4/MyD88/NF-κB pathway. Immun Inflamm Dis 2023; 11:e1069. [PMID: 38018571 PMCID: PMC10629261 DOI: 10.1002/iid3.1069] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/04/2023] [Accepted: 10/18/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Ulcerative colitis (UC), a chronic inflammatory disease, is caused by abnormal immune system reactions resulting in inflammation and ulcers in the large intestine. Phillygenin (PHI) is a natural compound found in Forsythia suspensa (Thunb.) Vahl, which is known for its antipyretic, anti-inflammatory, antiobesity, and other biological activities. However, the therapeutic role and molecular mechanisms of PHI on UC are still insufficiently researched. METHODS In this study, dextran sulfate sodium (DSS) and 2.5% 2,4,6-trinitro-Benzenesulfonic acid (TNBS)-induced acute UC were used to investigate the therapeutic effects of PHI. We evaluated the effects of PHI on disease activity index (DAI), body weight, mortality, intestinal mucosal barrier, cytokine secretion, and macrophage infiltration into colon tissue using various techniques such as flow cytometry, immunofluorescence, enzyme-linked immunosorbent assay (ELISA), RT-qPCR, and Western blot analysis. RESULTS Our findings revealed that PHI has therapeutic properties in UC treatment. PHI was able to maintain body weight, reduce DAI and mortality, restore the intestinal mucosal barrier, and inhibit cytokine secretion. Flow cytometry assay and immunofluorescence indicated that PHI reduces macrophage infiltration into colon tissue. Mechanistically, PHI may exert anti-inflammatory effects by downregulating the TLR4/MyD88/NF-κB pathway and inhibiting the activation of NLRP3 inflammasome. CONCLUSION In conclusion, PHI possesses significant anti-inflammatory properties and is expected to be a potential drug for UC treatment. Our study delves into the underlying mechanisms of PHI therapy and highlights the potential for further research in developing PHI-based treatments for UC.
Collapse
Affiliation(s)
- Xiao Tong
- University of Chinese Academy of SciencesBeijingChina
- State Key Laboratory of Drug ResearchChinese Academy of SciencesShanghaiChina
| | - Li Chen
- State Key Laboratory of Drug ResearchChinese Academy of SciencesShanghaiChina
| | - Shijun He
- Innovation Research Institute of Traditional Chinese MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | | | - Jiaying Yao
- College of PharmacyJiangxi University of Traditional Chinese MedicineNanchangChina
| | - Zhenguang Shao
- University of Chinese Academy of SciencesBeijingChina
- State Key Laboratory of Drug Research & Natural Products Research CenterChinese Academy of SciencesShanghaiChina
| | - Yang Ye
- University of Chinese Academy of SciencesBeijingChina
- College of PharmacyJiangxi University of Traditional Chinese MedicineNanchangChina
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| | - Sheng Yao
- University of Chinese Academy of SciencesBeijingChina
- College of PharmacyJiangxi University of Traditional Chinese MedicineNanchangChina
- Zhongshan Institute for Drug DiscoveryChinese Academy of SciencesZhongshanChina
| | - Zemin Lin
- State Key Laboratory of Drug ResearchChinese Academy of SciencesShanghaiChina
| | - Jianping Zuo
- University of Chinese Academy of SciencesBeijingChina
- State Key Laboratory of Drug ResearchChinese Academy of SciencesShanghaiChina
- Laboratory of Immunology and VirologyShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
44
|
Liu L, Zhou L, Wang L, Mao Z, Zheng P, Zhang F, Zhang H, Liu H. MUC1 attenuates neutrophilic airway inflammation in asthma by reducing NLRP3 inflammasome-mediated pyroptosis through the inhibition of the TLR4/MyD88/NF-κB pathway. Respir Res 2023; 24:255. [PMID: 37880668 PMCID: PMC10601133 DOI: 10.1186/s12931-023-02550-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 10/02/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Neutrophilic airway inflammation is a challenge in asthma management and is associated with poor patient prognosis. Mucin 1 (MUC1), which contains a cytoplasmic tail (MUC1-CT), has been found to mediate glucocorticoid sensitivity in asthma; however, its role in modulating neutrophilic airway inflammation in asthma remains unknown. METHODS Human-induced sputum cells were collected from healthy participants (n = 12), patients with mild-to-moderate asthma (n = 34), and those with severe asthma (n = 18). In vitro human lung bronchial 1 epithelial cell line (BEAS-2B) was transfected with small interfering RNA against MUC1 (MUC1-siRNA) and then stimulated by lipopolysaccharide (LPS), where some cells were pretreated with a TLR4 inhibitor (TAK-242). In vivo mouse model of asthmatic neutrophil airway inflammation was induced by ovalbumin (OVA)/LPS. Some groups were intraperitoneally injected with MUC1-CT inhibitor (GO-203) and/or TAK-242 . RESULTS The mRNA expression of MUC1 was downregulated in the induced sputum of patients with asthma and correlated with asthmatic neutrophilic airway inflammation. The mRNA expressions of TLR4, MyD88, nucleotide-binding oligomerization domain-like pyrin domain-containing protein 3 (NLRP3), caspase-1, interleukin (IL)-18, and IL-1β in induced sputum cells of patients with asthma were upregulated and related to the mRNA expression of MUC1. LPS activated the TLR4 pathway and NLRP3-mediated pyroptosis in BEAS-2B cells in vitro, which were significantly aggravated after MUC1-siRNA transfection. Furthermore, MUCl-CT interacted with TLR4, and the interaction between TLR4 and MyD88 was significantly increased after MUCl-siRNA transfection. Moreover, TAK-242 ameliorated TLR4/MyD88/nuclear factor kappa B (NF-κB) pathway activation, NLRP3 inflammasome-mediated pyroptosis, and neutrophilic inflammation exacerbated by MUC1 downregulation. GO-203 exacerbated TLR4/MyD88/NF-κB pathway activation in vivo, and NLRP3 inflammasome-mediated pyroptosis reduced in a mouse model of asthmatic neutrophil airway inflammation induced by OVA/LPS; these pathological changes were partially alleviated after TAK-242 application. CONCLUSION This study revealed that MUC1 downregulation plays an important role in asthmatic neutrophilic airway inflammation. MUC1-CT reduces NLRP3 inflammasome-mediated pyroptosis by inhibiting the activation of the TLR4/MyD88/NF-κB pathway, thereby attenuating neutrophil airway inflammation in patients with asthma.
Collapse
Affiliation(s)
- Lu Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Ling Zhou
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingling Wang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenyu Mao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengdou Zheng
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengqin Zhang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huojun Zhang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Huiguo Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
45
|
Liu GZ, Niu TT, Yu Q, Xu BL, Li XQ, Yuan BY, Yuan GB, Yang TT, Li HQ, Sun Y. Ginkgolide attenuates memory impairment and neuroinflammation by suppressing the NLRP3/caspase-1 pathway in Alzheimer's disease. Aging (Albany NY) 2023; 15:10237-10252. [PMID: 37793010 PMCID: PMC10599747 DOI: 10.18632/aging.205072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/17/2023] [Indexed: 10/06/2023]
Abstract
The NLRP3 inflammasome is involved in the neuroinflammatory pathway of Alzheimer's disease (AD). The aim of this study is to explore the roles and underlying mechanisms of ginkgolide (Baiyu®) on amyloid precursor protein (APP)/presenilin 1 (PS1) transgenic mice and a murine microglial cell line, BV-2. In the present study, the APP/PS1 mice were administered with ginkgolide, followed by a Morris water maze test. The mice were then euthanized to obtain brain tissue for histological and Aβ analysis. Additionally, BV-2 cells were pretreated with ginkgolide and then incubated with Aβ1-42 peptide. NLRP3, ASC, and caspase-1 mRNA and protein expression in brain tissue of mice and BV-2 cells were quantified by real-time PCR and western blotting, as well as reactive oxygen species (ROS) production, interleukin (IL)-1β and IL-18 levels by lucigenin technique and ELISA. Compared with the APP/PS1 mice, ginkgolide-treated mice demonstrated the shortened escape latency, reduced plaques, less inflammatory cell infiltration and neuron loss in the hippocampi of APP/PS1 mice. The levels of NLRP3, ASC, caspase-1, ROS, IL-1β, and IL-18 were also decreased in the brain tissue of APP/PS1 mice or Aβ1-42-treated BV-2 cells following ginkgolide treatment. Ginkgolide exerted protective effects on AD, at least partly by inactivating the NLRP3/caspase-1 pathway.
Collapse
Affiliation(s)
- Guang-Zhi Liu
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Tian-Tong Niu
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Qian Yu
- Beijing D.A. Medical Laboratory, Beijing 102600, China
| | - Bao-Lei Xu
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xiao-Qing Li
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Bo-Yi Yuan
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Guo-Bin Yuan
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Ting-Ting Yang
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Hui-Qin Li
- Research and Development Centre, Chengdu Baiyu Pharmaceutical Co., Ltd., Chengdu 611130, China
| | - Yi Sun
- Research and Development Centre, Chengdu Baiyu Pharmaceutical Co., Ltd., Chengdu 611130, China
| |
Collapse
|
46
|
Woo S, Gandhi S, Ghincea A, Saber T, Lee CJ, Ryu C. Targeting the NLRP3 inflammasome and associated cytokines in scleroderma associated interstitial lung disease. Front Cell Dev Biol 2023; 11:1254904. [PMID: 37849737 PMCID: PMC10577231 DOI: 10.3389/fcell.2023.1254904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/19/2023] [Indexed: 10/19/2023] Open
Abstract
SSc-ILD (scleroderma associated interstitial lung disease) is a complex rheumatic disease characterized in part by immune dysregulation leading to the progressive fibrotic replacement of normal lung architecture. Because improved treatment options are sorely needed, additional study of the fibroproliferative mechanisms mediating this disease has the potential to accelerate development of novel therapies. The contribution of innate immunity is an emerging area of investigation in SSc-ILD as recent work has demonstrated the mechanistic and clinical significance of the NLRP3 inflammasome and its associated cytokines of TNFα (tumor necrosis factor alpha), IL-1β (interleukin-1 beta), and IL-18 in this disease. In this review, we will highlight novel pathophysiologic insights afforded by these studies and the potential of leveraging this complex biology for clinical benefit.
Collapse
Affiliation(s)
| | | | | | | | | | - Changwan Ryu
- Department of Internal Medicine, Yale School of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, New Haven, CT, United States
| |
Collapse
|
47
|
Dai Y, Zhou J, Shi C. Inflammasome: structure, biological functions, and therapeutic targets. MedComm (Beijing) 2023; 4:e391. [PMID: 37817895 PMCID: PMC10560975 DOI: 10.1002/mco2.391] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 10/12/2023] Open
Abstract
Inflammasomes are a group of protein complex located in cytoplasm and assemble in response to a wide variety of pathogen-associated molecule patterns, damage-associated molecule patterns, and cellular stress. Generally, the activation of inflammasomes will lead to maturation of proinflammatory cytokines and pyroptotic cell death, both associated with inflammatory cascade amplification. A sensor protein, an adaptor, and a procaspase protein interact through their functional domains and compose one subunit of inflammasome complex. Under physiological conditions, inflammasome functions against pathogen infection and endogenous dangers including mtROS, mtDNA, and so on, while dysregulation of its activation can lead to unwanted results. In recent years, advances have been made to clarify the mechanisms of inflammasome activation, the structural details of them and their functions (negative/positive) in multiple disease models in both animal models and human. The wide range of the stimuli makes the function of inflammasome diverse and complex. Here, we review the structure, biological functions, and therapeutic targets of inflammasomes, while highlight NLRP3, NLRC4, and AIM2 inflammasomes, which are the most well studied. In conclusion, this review focuses on the activation process, biological functions, and structure of the most well-studied inflammasomes, summarizing and predicting approaches for disease treatment and prevention with inflammasome as a target. We aim to provide fresh insight into new solutions to the challenges in this field.
Collapse
Affiliation(s)
- Yali Dai
- Institute of Rocket Force MedicineState Key Laboratory of Trauma and Chemical PoisoningArmy Medical UniversityChongqingChina
| | - Jing Zhou
- Institute of Rocket Force MedicineState Key Laboratory of Trauma and Chemical PoisoningArmy Medical UniversityChongqingChina
- Institute of ImmunologyArmy Medical UniversityChongqingChina
| | - Chunmeng Shi
- Institute of Rocket Force MedicineState Key Laboratory of Trauma and Chemical PoisoningArmy Medical UniversityChongqingChina
| |
Collapse
|
48
|
Jia YR, Guo ZQ, Guo Q, Wang XC. Glycogen Synthase Kinase-3β, NLRP3 Inflammasome, and Alzheimer's Disease. Curr Med Sci 2023; 43:847-854. [PMID: 37721665 DOI: 10.1007/s11596-023-2788-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/25/2023] [Indexed: 09/19/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent cause of dementia worldwide. Because of the progressive neurodegeneration, individual cognitive and behavioral functions are impaired, affecting the quality of life of millions of people. Although the exact pathogenesis of AD has not been fully elucidated, amyloid plaques, neurofibrillary tangles (NFTs), and sustaining neuroinflammation dominate its characteristics. As one of the major tau kinases leading to hyperphosphorylation and aggregation of tau, glycogen synthase kinase-3β (GSK-3β) has been drawing great attention in various AD studies. Another research focus of AD in recent years is the inflammasome, a multiprotein complex acting as a regulator in immunological reactions to exogenous and endogenous danger signals, of which the Nod-like receptor (NLR) family, pyrin domain-containing 3 (NLRP3) inflammasome has been studied mostly in AD and proven to play a significant role in AD development by its activation and downstream effects such as caspase-1 maturation and interleukin (IL)-1β release. Studies have shown that the NLRP3 inflammasome is activated in a GSK-3β-dependent way and that inhibition of the NLRP3 inflammasome downregulates GSK-3β, suggesting that these two important proteins are closely related. This article reviews the respective roles of GSK-3β and the NLRP3 inflammasome in AD as well as their relationship and interaction.
Collapse
Affiliation(s)
- Yue-Ran Jia
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zi-Qing Guo
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qian Guo
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao-Chuan Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| |
Collapse
|
49
|
Zhang W, Jiang H, Huang P, Wu G, Wang Q, Luan X, Zhang H, Yu D, Wang H, Lu D, Wang H, An H, Liu S, Zhang W. Dracorhodin targeting CMPK2 attenuates inflammation: A novel approach to sepsis therapy. Clin Transl Med 2023; 13:e1449. [PMID: 37859535 PMCID: PMC10587737 DOI: 10.1002/ctm2.1449] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 09/23/2023] [Accepted: 10/04/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Despite all modern advances in medicine, an effective drug for treating sepsis has yet to be found. The discovery of CMPK2 spurred hopes for the treatment of sepsis. However, CMPK2-untapped target inhibitors are still an enormous obstacle that has hindered the CMPK2-centric treatment of sepsis. METHODS Here, we found that the CMPK2 gene is highly expressed in the whole blood of sepsis patients by RNA-Seq. First, recombinant CMPK2 was purified by a eukaryotic expression purification system, and the activity of recombinant CMPK2 was detected by the ADP-GLO assay. Second, we developed an affinity MS strategy combined with quantitative lysine reactivity profiling to discover CMPK2 ligands from the active ingredients of Chinese herbs. In addition, the dissociation constant Kd of the ligand and the target protein CMPK2 was further detected by microscale thermophoresis technology. Third, we used this strategy to identify a naturally sourced small molecule, dracorhodin (DP). Using mass spectrometry-based quantitative lysine reactivity profiling combined with a series of mutant tests, the results show that K265 acts as a bright hotspot of DP inhibition of CMPK2. Fourth, immune-histochemical staining, ELISAs, RT-qPCR, flow cytometry and immunoblotting were used to illustrate the potential function and related mechanism of DP in regulating sepsis injury. RESULTS Our results suggest that DP exerts powerful anti-inflammatory effects by regulating the NLRP3 inflammasome via the lipopolysaccharide (LPS)-induced CMPK2 pathway. Strikingly, DP significantly attenuated LPS-induced sepsis in a mouse model, but its effect was weakened in mice with myeloid-specific Cmpk2 ablation. CONCLUSION We provide a new framework that provides more valuable information for new therapeutic approaches to sepsis, including the establishment of screening strategies and the development of target drugs to provide a theoretical basis for ultimately improving clinical outcomes for sepsis patients. Collectively, these findings reveal that DP is a promising CMPK2 inhibitor for the treatment of sepsis.
Collapse
Affiliation(s)
- Wendan Zhang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiP. R. China
- Faculty of PediatricsNational Engineering Laboratory for Birth Defects Prevention and Control of Key TechnologyBeijing Key Laboratory of Pediatric Organ Failurethe Chinese PLA General HospitalBeijingP. R. China
| | - Honghong Jiang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiP. R. China
- Faculty of PediatricsNational Engineering Laboratory for Birth Defects Prevention and Control of Key TechnologyBeijing Key Laboratory of Pediatric Organ Failurethe Chinese PLA General HospitalBeijingP. R. China
| | - Pengli Huang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiP. R. China
| | - Gaosong Wu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiP. R. China
| | - Qun Wang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiP. R. China
| | - Xin Luan
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiP. R. China
| | - Hongwei Zhang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiP. R. China
| | - Dianping Yu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiP. R. China
| | - Hongru Wang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiP. R. China
| | - Dong Lu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiP. R. China
| | - Haonan Wang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiP. R. China
| | - Huazhang An
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicinethe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinanShandongP. R. China
| | - Sanhong Liu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiP. R. China
| | - Weidong Zhang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiP. R. China
- Department of PhytochemistrySchool of PharmacySecond Military Medical UniversityShanghaiP. R. China
- The Research Center for Traditional Chinese MedicineShanghai Institute of Infectious Diseases and BiosecurityShanghai University of Traditional Chinese MedicineShanghaiP. R. China
- Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingP. R. China
| |
Collapse
|
50
|
Chen SY, Li YP, You YP, Zhang HR, Shi ZJ, Liang QQ, Yuan T, Xu R, Xu LH, Zha QB, Ou-Yang DY, He XH. Theaflavin mitigates acute gouty peritonitis and septic organ injury in mice by suppressing NLRP3 inflammasome assembly. Acta Pharmacol Sin 2023; 44:2019-2036. [PMID: 37221235 PMCID: PMC10545837 DOI: 10.1038/s41401-023-01105-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/03/2023] [Indexed: 05/25/2023]
Abstract
Activation of NLR family pyrin domain-containing 3 (NLRP3) inflammasome plays important role in defending against infections, but its aberrant activation is causally linked to many inflammatory diseases, thus being a therapeutic target for these diseases. Theaflavin, one major ingredient of black tea, exhibits potent anti-inflammatory and anti-oxidative activities. In this study, we investigated the therapeutic effects of theaflavin against NLRP3 inflammasome activation in macrophages in vitro and in animal models of related diseases. We showed that theaflavin (50, 100, 200 μM) dose-dependently inhibited NLRP3 inflammasome activation in LPS-primed macrophages stimulated with ATP, nigericin or monosodium urate crystals (MSU), evidenced by reduced release of caspase-1p10 and mature interleukin-1β (IL-1β). Theaflavin treatment also inhibited pyroptosis as shown by decreased generation of N-terminal fragment of gasdermin D (GSDMD-NT) and propidium iodide incorporation. Consistent with these, theaflavin treatment suppressed ASC speck formation and oligomerization in macrophages stimulated with ATP or nigericin, suggesting reduced inflammasome assembly. We revealed that theaflavin-induced inhibition on NLRP3 inflammasome assembly and pyroptosis resulted from ameliorated mitochondrial dysfunction and reduced mitochondrial ROS production, thereby suppressing interaction between NLRP3 and NEK7 downstream of ROS. Moreover, we showed that oral administration of theaflavin significantly attenuated MSU-induced mouse peritonitis and improved the survival of mice with bacterial sepsis. Consistently, theaflavin administration significantly reduced serum levels of inflammatory cytokines including IL-1β and attenuated liver inflammation and renal injury of mice with sepsis, concomitant with reduced generation of caspase-1p10 and GSDMD-NT in the liver and kidney. Together, we demonstrate that theaflavin suppresses NLRP3 inflammasome activation and pyroptosis by protecting mitochondrial function, thus mitigating acute gouty peritonitis and bacterial sepsis in mice, highlighting a potential application in treating NLRP3 inflammasome-related diseases.
Collapse
Affiliation(s)
- Si-Yuan Chen
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Ya-Ping Li
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yi-Ping You
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Hong-Rui Zhang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Zi-Jian Shi
- Department of Fetal Medicine, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Qi-Qi Liang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Tao Yuan
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Rong Xu
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Li-Hui Xu
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Qing-Bing Zha
- Department of Fetal Medicine, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
- Department of Clinical Laboratory, the Fifth Affiliated Hospital of Jinan University, Heyuan, 517000, China.
| | - Dong-Yun Ou-Yang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| | - Xian-Hui He
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
- Department of Clinical Laboratory, the Fifth Affiliated Hospital of Jinan University, Heyuan, 517000, China.
| |
Collapse
|