1
|
Yang Z, Wu B, Chen Q, Pan J, Wang Z, Wang W. Di-butyl phthalate induces apoptosis in Ctenopharyngodon idellus kidney cells through oxidative stress injury. FISH & SHELLFISH IMMUNOLOGY 2025; 160:110207. [PMID: 39984004 DOI: 10.1016/j.fsi.2025.110207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 01/15/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
Di-butyl phthalate (DBP) is a major type of phthalate (PAE) contaminant widely used as a plasticizer. Its environmental presence poses threat to humans and aquatic organisms. In this study, Ctenopharyngodon idellus kidney (CIK) cell model was exposed to 100 μM DBP to investigate its effects. Apoptosis was assessed using acridine orange/ethidium bromide staining, flow cytometry, and fluorescein isothiocyanate/propidium iodide labeling. DBP exposure increased the percentage of apoptotic cells. Activities of antioxidant enzymes, superoxide dismutase, total antioxidant activity, glutathione peroxidase, and catalase were inhibited by DBP, whereas the levels of peroxide products were increased. Heat shock proteins were upregulated as a defense mechanism against DBP-induced stress. Further analysis revealed that the Pi3k/Akt pathway, which regulates physical processes to protect cell function, was suppressed by DBP exposure. Reverse transcription-quantitative PCR and western blotting revealed that DBP inhibited Pi3k/Akt signaling while apoptosis gene expression was increased. Notably, these effects of heat shock proteins and Pi3k/Akt, were reversed by N-acetylcysteine. In conclusion, DBP accelerates apoptosis of CIK cells by inhibiting the Pi3k/Akt pathway and anti-oxidative enzyme activities, promoting reactive oxygen species accumulation and enhancing peroxide product generation. These findings highlight the cytotoxic effects of DBP and underscore the need for further research. Our results provide a foundation for further study.
Collapse
Affiliation(s)
- Zijiang Yang
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, China
| | - Beining Wu
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, 311300, China
| | - Qiyi Chen
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, 311300, China
| | - Jiarui Pan
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, 311300, China
| | - Zongying Wang
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, China
| | - Wei Wang
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, 311300, China.
| |
Collapse
|
2
|
Zhu Z, Guan Q, Xu B, Bahriz S, Shen A, West TM, Zhang Y, Deng B, Wei W, Han Y, Wang Q, Xiang YK. Inhibition of the upregulated phosphodiesterase 4D isoforms improves SERCA2a function in diabetic cardiomyopathy. Br J Pharmacol 2025; 182:1487-1507. [PMID: 39662482 DOI: 10.1111/bph.17411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 09/04/2024] [Accepted: 10/15/2024] [Indexed: 12/13/2024] Open
Abstract
BACKGROUND AND PURPOSE Sarcoplasmic reticulum Ca2+-ATPase (SERCA2a) is impaired in heart failure. Phosphodiesterases (PDEs) are implicated in the modulation of local cAMP signals and protein kinase A (PKA) activity essential for cardiac function. We characterise PDE isoforms that underlie decreased activities of SERCA2a and reduced cardiac contractile function in diabetic cardiomyopathy. EXPERIMENTAL APPROACH Wild type mice were fed with either normal chow or a high-fat diet (HFD). Cardiomyocytes were isolated for excitation-contraction coupling (ECC), fluorescence resonant energy transfer PKA biosensor and proximity ligation assays. KEY RESULTS The upregulated PDE4D3 and PDE4D9 isoforms in HFD cardiomyocytes specifically bound to SERCA2a but not ryanodine receptor 2 (RyR2) on the sarcoplasmic reticulum (SR). The increased association of PDE4D isoforms with SERCA2a in HFD cardiomyocytes led to reduced local PKA activities and phosphorylation of phospholamban (PLB) but minimally effected the PKA activities and phosphorylation of RyR2. These changes correlate with slower calcium decay tau in the SR and attenuation of ECC in HFD cardiomyocytes. Selective inhibition of PDE4D3 or PDE4D9 restored PKA activities and phosphorylation of PLB at the SERCA2a complex, recovered calcium decay tau, and increased ECC in HFD cardiomyocytes. Therapies with PDE4 inhibitor roflumilast, PDE4D inhibitor BPN14770 or genetical deletion of PDE4D restored PKA phosphorylation of PLB and cardiac contractile function. CONCLUSION AND IMPLICATIONS The current study identifies upregulation of specific PDE4D isoforms that selectively inhibit SERCA2a function in HFD-induced cardiomyopathy, indicating that this remodelling can be targeted to restore cardiac contractility in diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Zhenduo Zhu
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education; Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
- Department of Pharmacology, University of California, Davis, Davis, California, USA
| | - Qiuyun Guan
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education; Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Bing Xu
- Department of Pharmacology, University of California, Davis, Davis, California, USA
- Department of Veterans Affairs Northern California Healthcare System, Mather, California, USA
| | - Sherif Bahriz
- Department of Pharmacology, University of California, Davis, Davis, California, USA
| | - Ao Shen
- School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Toni M West
- Department of Pharmacology, University of California, Davis, Davis, California, USA
| | - Yu Zhang
- School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Bingqing Deng
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Wei
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education; Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Yongsheng Han
- Department of Emergency Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qingtong Wang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education; Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
- Department of Pharmacology, University of California, Davis, Davis, California, USA
| | - Yang K Xiang
- Department of Pharmacology, University of California, Davis, Davis, California, USA
- Department of Veterans Affairs Northern California Healthcare System, Mather, California, USA
| |
Collapse
|
3
|
Mosalam EM, Atya SM, Mesbah NM, Allam S, Mehanna ET. Neuroprotective Effects of Cilomilast and Chlorogenic Acid Against Scopolamine-Induced Memory Deficits via Modulation of the cAMP/PKA-CREB-BDNF Pathway. Int J Mol Sci 2025; 26:3108. [PMID: 40243772 PMCID: PMC11988773 DOI: 10.3390/ijms26073108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 03/22/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive decline, neuroinflammation and neuronal damage. This study aimed to investigate the neuroprotective effects of cilomilast (CILO), a phosphodiesterase-4 (PDE4) inhibitor, alone and in combination with chlorogenic acid (CGA), a natural polyphenol, against scopolamine (SCOP)-induced cognitive impairment in mice. Forty male albino mice were divided into five groups: normal control, SCOP control, CGA + SCOP, CILO + SCOP and CILO + CGA + SCOP. Behavioral assessments, including the Y-maze and pole climbing tests, demonstrated that SCOP significantly impaired cognition, while treatment with CILO and CGA reversed these deficits, with the combination group showing the greatest improvement. Histopathological analyses revealed that CILO and CGA reduced neuronal damage and amyloid beta (Aβ) accumulation. Immunohistochemical and biochemical assessments confirmed a decrease in neuroinflammatory markers, including tumor necrosis factor-alpha (TNF-α) and nuclear factor kappa B (NF-κB). Molecular analyses showed that CILO restored cyclic adenosine monophosphate (cAMP) levels, leading to activation of protein kinase A (PKA), cAMP response element-binding protein (CREB) and brain-derived neurotrophic factor (BDNF), key regulators of neuronal plasticity and survival. CGA enhanced these effects by further inhibiting PDE4, amplifying the neuroprotective response. These findings suggest that PDE4 inhibitors, particularly in combination with CGA, may represent promising therapeutic strategies for AD-related cognitive impairment.
Collapse
Affiliation(s)
- Esraa M. Mosalam
- Biochemistry Department, Faculty of Pharmacy, Menoufia University, Shebin EL-Kom 32511, Menoufia, Egypt
- Department of Pharm D, Faculty of Pharmacy, Jadara University, Irbid 21110, Jordan
| | - Soha M. Atya
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Ismailia, Egypt; (S.M.A.); (N.M.M.)
- El-Bagour Specialized Hospital, El-Bagour 32821, Menoufia, Egypt
| | - Noha M. Mesbah
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Ismailia, Egypt; (S.M.A.); (N.M.M.)
| | - Shady Allam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Menoufia University, Shebin EL-Kom 32511, Menoufia, Egypt;
| | - Eman T. Mehanna
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Ismailia, Egypt; (S.M.A.); (N.M.M.)
| |
Collapse
|
4
|
Zhang F, Zheng T, Wang X, Chen Y, Zhang F, Liu X, Wang S, Yang G, Xie S, Wu Q, Xu C, Zhou Q, Wu D, Luo HB, Huang YY. Structure-Based Optimization of Moracin M as Potent and Selective PDE4 Inhibitors with Antipsoriasis Effects. J Med Chem 2025; 68:6789-6803. [PMID: 40066994 DOI: 10.1021/acs.jmedchem.5c00266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Psoriasis is a complex chronic inflammatory disease that severely affects the quality of life of patients. However, current medications could only control the symptoms but not cure psoriasis with unmet medical needs. Herein, structure-based optimizations of natural product moracin M (IC50 of 2.9 μM) led to a novel PDE4 inhibitor L30 with greatly improved potency (IC50 of 8.6 nM) and remarkable selectivity across other PDEs families (>201-fold). The binding pattern of L30 with PDE4 revealed by cocrystal structure was different from that of roflumilast. Besides, L30 could effectively inhibit the release of inflammatory cytokines and chemokines in Raw264.7 and HaCaT cell lines. Furthermore, topical administration of L30 exhibited significant therapeutic effects in an imiquimod-induced psoriasis mouse model. These findings highlighted the potential of PDE4 inhibitor L30 as a novel lead for the treatment of psoriasis.
Collapse
Affiliation(s)
- Furong Zhang
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
- School of Life and Health Science, Hainan University, Haikou 570228, China
| | - Tiansheng Zheng
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Xue Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Yu Chen
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Feng Zhang
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Xingfu Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Sen Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Guofeng Yang
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Shenghong Xie
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Qi Wu
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Chao Xu
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Qian Zhou
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Deyan Wu
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Hai-Bin Luo
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
- Song Li' Academician Workstation of Hainan University (School of Pharmaceutical Sciences), Yazhou Bay, Sanya 572000, China
| | - Yi-You Huang
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| |
Collapse
|
5
|
Ren HL, Zhang SH, Li PY. The multifaceted role of phosphodiesterase 4 in tumor: from tumorigenesis to immunotherapy. Front Immunol 2025; 16:1528932. [PMID: 40129976 PMCID: PMC11931042 DOI: 10.3389/fimmu.2025.1528932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/24/2025] [Indexed: 03/26/2025] Open
Abstract
Phosphodiesterase 4 (PDE4) is an enzyme that specifically hydrolyzes the second messenger cAMP and has a critical role in the regulation of a variety of cellular functions. In recent years, PDE4 has attracted great interest in cancer research, and its role in tumorigenesis and development has been gradually elucidated. Research indicates that abnormal expression or heightened activity of PDE4 is associated with the initiation and progression of multiple cancers, including lung, colorectal, and hematological cancers, by facilitating cell proliferation, migration, invasion, and anti-apoptosis. Moreover, PDE4 also influences the tumor immune microenvironment, significantly immune evasion by suppressing anti-tumor immune responses, reducing T-cell activation, and promoting the polarization of tumor-associated macrophages toward a pro-tumorigenic phenotype. However, the PDE4 family may have both oncogenic and tumor-suppressive effects, which could depend on the specific type and grade of the tumor. PDE4 inhibitors have garnered substantial interest as potential anti-cancer therapeutics, directly inhibiting tumor cell growth and restoring immune surveillance capabilities to enhance the clearance of tumor cells. Several PDE4 inhibitors are currently under investigation with the aim of exploring their potential in cancer therapy, particularly in combination strategies with immune checkpoint inhibitors, to improve therapeutic efficacy and mitigate the side effects of conventional chemotherapy. This review provides an overview of PDE4 in tumorigenesis, drug resistance, immunotherapy, and the anti-tumor actions of its inhibitors, intending to guide the exploration of PDE4 as a new target in tumor therapy.
Collapse
Affiliation(s)
- Huili-li Ren
- Department of Pharmacy, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shao-hui Zhang
- Department of Pharmacy, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pei-yuan Li
- Division of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Gastroenterology, Wenchang People’s Hospital, Wenchang, Hainan, China
| |
Collapse
|
6
|
Feng J, Cao W, Xu B, Wang Z. Structure-based method for the discovery of selective inhibitors of PED 5 in erectile dysfunction therapy from the Pacific oyster peptides (Crassostrea gigas): Peptidomic analysis, molecular docking, and activity validation. Int J Biol Macromol 2025; 295:139494. [PMID: 39778840 DOI: 10.1016/j.ijbiomac.2025.139494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/16/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025]
Abstract
Erectile dysfunction (ED) is a male sexual disorder mainly caused by a reduction in the cellular concentration of cyclic guanosine monophosphate (cGMP), which is degraded by phosphodiesterase type-5 (PDE-5). Oyster protein (OP) and its hydrolysates have been used for centuries to address male erectile dysfunction, however the mechanisms and evidence supporting their efficacy remain unclear. In this study, OP was hydrolyzed using trypsin to produce peptides that inhibit PDE-5. Following separation by ultrafiltration and Sephadex G-25, a total of 3202 peptides were identified. Virtual screening and molecular docking were employed to identify PDE-5 inhibitory peptides and elucidate their interaction mechanisms with PDE-5. Five peptides with the sequences FLF, LMF, LLW, FGPF, and IPW demonstrated strong interactions with PED5. The results indicated that the key binding sites critical for docking included Phe820, Gln817 and Val782 of the target receptor PED-5. The highest inhibition rate observed for FGPF was 94.6 %, while the inhibition rates for IPW and FLF were 89.0 % and 87.6 %, respectively. The lowest inhibition rate was recorded for LLW at 68 %. These findings suggest that these five peptides have the potential to serve as PDE-5 inhibitors in the health food industry and medicine.
Collapse
Affiliation(s)
- Jianhui Feng
- Center for Mitochondria and Healthy Aging, School of Life Sciences, Yantai University, Yantai 264005, China; College of Life Sciences, Yantai University, Yantai 264005, Shandong, China.
| | - Wenhao Cao
- Center for Mitochondria and Healthy Aging, School of Life Sciences, Yantai University, Yantai 264005, China
| | - Bo Xu
- Center for Mitochondria and Healthy Aging, School of Life Sciences, Yantai University, Yantai 264005, China; College of Life Sciences, Yantai University, Yantai 264005, Shandong, China
| | - Zhenhua Wang
- Center for Mitochondria and Healthy Aging, School of Life Sciences, Yantai University, Yantai 264005, China; College of Life Sciences, Yantai University, Yantai 264005, Shandong, China.
| |
Collapse
|
7
|
Li Y, He X, Li S, Chen S, Zhao Z, Mu Y, Zhao AZ, Zhou S, Li F. The phosphodiesterase-4 inhibitor Zl-n-91 suppresses glioblastoma growth via EGR1/PTEN/AKT pathway. Eur J Pharmacol 2025; 988:177230. [PMID: 39732358 DOI: 10.1016/j.ejphar.2024.177230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/13/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
Glioblastoma multiforme (GBM) is a highly heterogeneous and aggressive brain tumor, which presents significant challenges for treatment in clinical settings. Phosphodiesterase 4 (PDE4) inhibitors can prevent the degradation of cAMP and have been used as a potential targeted therapeutic approach for different cancer types. However, their clinical use is restricted by side effects such as nausea and vomiting. Herein, we investigated the efficacy and therapeutic mechanisms of a specific PDE4 inhibitor, Zl-n-91, on GBM cells. The results demonstrated that Zl-n-91 exhibited greater effectiveness than the well-known PDE4 inhibitor Rolipram in treating GBM. It can notably suppress the proliferation of GBM cells by inducing G0/G1 phase arrest and apoptosis. Additionally, Zl-n-91 significantly inhibited the growth of subcutaneous glioma xenografts. Mechanistically, Zl-n-91 treatment increased the expression and nuclear transcription of Early growth response (EGR1), while knockdown of EGR1 could decrease PTEN levels and increase p-AKT levels, restoring the inhibition of cell proliferation induced by Zl-n-91. Collectively, we revealed for the first time that PDE4 inhibitor Zl-n-91 could inhibit the growth of GBM cells through the EGR1/PTEN/AKT signaling pathway. Zl-n-91, a specific PDE4 inhibitor, may be a promising therapeutic candidate for GBM.
Collapse
Affiliation(s)
- Yuyu Li
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Xin He
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Shiri Li
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Shenjie Chen
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Zhenggang Zhao
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Yunping Mu
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Allan Z Zhao
- Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Southern Medical University, Foshan, 528308, PR China
| | - Sujin Zhou
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Fanghong Li
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
8
|
Kwak HJ, Nam KH. Molecular Properties of Phosphodiesterase 4 and Its Inhibition by Roflumilast and Cilomilast. Molecules 2025; 30:692. [PMID: 39942796 PMCID: PMC11820465 DOI: 10.3390/molecules30030692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/01/2025] [Accepted: 02/02/2025] [Indexed: 02/16/2025] Open
Abstract
Phosphodiesterase 4 (PDE4) catalyzes cyclic adenosine monophosphate (cAMP) hydrolysis, playing a crucial role in the cAMP signaling pathway. cAMP is a secondary messenger involved in numerous physiological functions, such as inflammatory responses, immune responses, neural activity, learning, and memory. PDE4 inhibition is important for controlling anti-inflammatory and neuroprotective effects. In this review, we provide a comprehensive overview of the molecular functions and properties of human PDE4s. The study presents detailed sequence information for the PDE4 isoforms and the structural properties of the catalytic domain in members of the PDE4 family. We also review the inhibitory effects of the PDE4 inhibitors roflumilast and cilomilast related to respiratory diseases in PDE4. The crystal structures of PDE4 in complex with roflumilast and cilomilast are also analyzed. This review provides useful information for the future design of novel PDE4 inhibitors.
Collapse
Affiliation(s)
- Hyun Jeong Kwak
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea
| | - Ki Hyun Nam
- College of General Education, Kookmin University, Seoul 02707, Republic of Korea
| |
Collapse
|
9
|
Schepers M, Vangansewinkel T, Libberecht K, Jeurissen H, Jacobs D, Piccart E, Prior R, Ricciarelli R, Brullo C, Fedele E, Bruno O, Prickaerts J, Lambrichts I, Van Den Bosch L, Vanmierlo T, Wolfs E. Phosphodiesterase 4D inhibition improves the functional and molecular outcome in a mouse and human model of Charcot Marie Tooth disease 1 A. Biomed Pharmacother 2025; 183:117828. [PMID: 39823724 DOI: 10.1016/j.biopha.2025.117828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/03/2025] [Accepted: 01/09/2025] [Indexed: 01/20/2025] Open
Abstract
Charcot-Marie-Tooth disease type 1A (CMT1A) is an inherited peripheral neuropathy caused by a duplication of the peripheral myelin protein 22 (PMP22) gene. It is primarily marked by Schwann cell dedifferentiation and demyelination, leading to motor and sensory deficits. Cyclic adenosine monophosphate (cAMP) is crucial for Schwann cell differentiation and maturation. Therefore, increasing cAMP by inhibiting its degraders, phosphodiesterases (PDE), is a potential therapeutic strategy for CMT1A. This study investigated the therapeutic potential of the specific PDE4D inhibitor Gebr32a using the C3-PMP22 mouse model for CMT1A and patient-induced Pluripotent Stem Cell (iPSC)-derived Schwann cells. C3-PMP22 mice, injected subcutaneously with Gebr32a twice a day for 10 weeks, showed significantly increased nerve conduction in sciatic nerves compared to vehicle-injected controls, indicating improved myelination. Additionally, Gebr32a-treated C3-PMP22 mice exhibited improved sensorimotor functions. Grip strength analysis revealed significantly increased strength in all limbs of Gebr32a-treated C3-PMP22 mice. Post-mortem histological and ultrastructural analysis confirmed enhanced myelination in the sciatic nerve of treated mice compared to controls. In primary mouse CMT1A Schwann cells, Gebr32a dose-dependently increased the expression of pro-myelinating genes such as oct6, Krox20, Mbp, Mpz, and Plp, while downregulating the dedifferentiation marker c-Jun and human PMP22. Similar effects on gene expression were observed in iPSC-derived Schwann cells from a CMT1A patient, highlighting the clinical relevance of our findings. In conclusion, inhibition of PDE4D with Gebr32a improves the functional and molecular outcomes in mouse and human models of CMT1A, highlighting its potential as a new therapeutic strategy for CMT1A disease management.
Collapse
Affiliation(s)
- Melissa Schepers
- NIC&R - Neuro-Immune Connection & Repair, BIOMED, Department of Neuroscience, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium; Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience - Division Translational Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Tim Vangansewinkel
- Laboratory for Functional Imaging & Research on Stem Cells, BIOMED, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven , Belgium
| | - Karen Libberecht
- Laboratory for Functional Imaging & Research on Stem Cells, BIOMED, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven , Belgium
| | - Hanne Jeurissen
- Laboratory for Functional Imaging & Research on Stem Cells, BIOMED, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Darren Jacobs
- NIC&R - Neuro-Immune Connection & Repair, BIOMED, Department of Neuroscience, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium; Laboratory for Functional Imaging & Research on Stem Cells, BIOMED, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Elisabeth Piccart
- NIC&R - Neuro-Immune Connection & Repair, BIOMED, Department of Neuroscience, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Robert Prior
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven - University of Leuven, Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven , Belgium; Department of Ophthalmology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Roberta Ricciarelli
- IRCCS Ospedale Policlinico San Martino, Genova 16100, Italy; Department of Experimental Medicine, Section of General Pathology, School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa, Italy
| | - Chiara Brullo
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa, Italy
| | - Ernesto Fedele
- IRCCS Ospedale Policlinico San Martino, Genova 16100, Italy; Department of Pharmacy, Section of Pharmacology and Toxicology, School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa, Italy
| | - Olga Bruno
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa, Italy
| | | | - Ivo Lambrichts
- Laboratory for Functional Imaging & Research on Stem Cells, BIOMED, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven - University of Leuven, Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven , Belgium
| | - Tim Vanmierlo
- NIC&R - Neuro-Immune Connection & Repair, BIOMED, Department of Neuroscience, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium; Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience - Division Translational Neuroscience, Maastricht University, Maastricht, the Netherlands.
| | - Esther Wolfs
- Laboratory for Functional Imaging & Research on Stem Cells, BIOMED, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium.
| |
Collapse
|
10
|
Kumari S, Bagri K, Deshmukh R. Connecting dots: Preclinical foundations to clinical realities of PDE4 inhibitors in Alzheimer's disease. Inflammopharmacology 2025; 33:593-603. [PMID: 39808238 DOI: 10.1007/s10787-024-01638-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 12/23/2024] [Indexed: 01/16/2025]
Abstract
Alzheimer's Disease (AD), a progressive and age-associated neurodegenerative disorder, is primarily characterized by amyloid-beta (Aβ) plaques and neurofibrillary tangles. Despite advances in targeting Aβ-mediated neuronal damage with anti-Aβ antibodies, these treatments provide only symptomatic relief and fail to address the multifactorial pathology of the disease. This necessitates the exploration of novel therapeutic approaches and a deeper understanding of molecular signaling mechanisms underlying AD. Phosphodiesterases (PDEs), particularly Phosphodiesterase 4 (PDE4), play a pivotal role in regulating cyclic adenosine monophosphate (cAMP), a key molecule involved in memory consolidation and cognitive function. PDE4 inhibitors have demonstrated potential in enhancing memory and cognition in preclinical models of AD by modulating cAMP signaling. However, their clinical translation has been limited due to challenges such as adverse effects, narrow therapeutic windows, and low specificity in mechanism of action. This review bridges the gap between preclinical discoveries and clinical applications of PDE4 inhibitors in AD. It highlights preclinical evidence supporting the neuroprotective and anti-inflammatory effects of PDE4 inhibitors while addressing challenges in their clinical development, including issues of safety, efficacy, and disease-specific targeting. By integrating findings from both preclinical and clinical studies, we provide a comprehensive understanding of the therapeutic potential of PDE4 inhibitors in AD. Furthermore, this review outlines future research directions aimed at optimizing PDE4 inhibition strategies for AD treatment, offering a roadmap to translate foundational insights into clinical realities.
Collapse
Affiliation(s)
- Shilpa Kumari
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, 151001, Punjab, India
- Department of Pharmacology, Central University of Punjab, Bathinda, 151001, Punjab, India
| | - Kajal Bagri
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, 151001, Punjab, India
- Department of Pharmacology, Central University of Punjab, Bathinda, 151001, Punjab, India
| | - Rahul Deshmukh
- Department of Pharmacology, Central University of Punjab, Bathinda, 151001, Punjab, India.
| |
Collapse
|
11
|
Iorkula TH, Jude-Kelly Osayawe O, Odogwu DA, Ganiyu LO, Faderin E, Awoyemi RF, Akodu BO, Ifijen IH, Aworinde OR, Agyemang P, Onyinyechi OL. Advances in pyrazolo[1,5- a]pyrimidines: synthesis and their role as protein kinase inhibitors in cancer treatment. RSC Adv 2025; 15:3756-3828. [PMID: 39911541 PMCID: PMC11795850 DOI: 10.1039/d4ra07556k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/30/2024] [Indexed: 02/07/2025] Open
Abstract
Pyrazolo[1,5-a]pyrimidines are a notable class of heterocyclic compounds with potent protein kinase inhibitor (PKI) activity, playing a critical role in targeted cancer therapy. Protein kinases, key regulators in cellular signalling, are frequently disrupted in cancers, making them important targets for small-molecule inhibitors. This review explores recent advances in pyrazolo[1,5-a]pyrimidine synthesis and their application as PKIs, with emphasis on inhibiting kinases such as CK2, EGFR, B-Raf, MEK, PDE4, BCL6, DRAK1, CDK1 and CDK2, Pim-1, among others. Several synthetic strategies have been developed for the efficient synthesis of pyrazolo[1,5-a]pyrimidines, including cyclization, condensation, three-component reactions, microwave-assisted methods, and green chemistry approaches. Palladium-catalyzed cross-coupling and click chemistry have enabled the introduction of diverse functional groups, enhancing the biological activity and structural diversity of these compounds. Structure-activity relationship (SAR) studies highlight the influence of substituent patterns on their pharmacological properties. Pyrazolo[1,5-a]pyrimidines act as ATP-competitive and allosteric inhibitors of protein kinases, with EGFR-targeting derivatives showing promise in non-small cell lung cancer (NSCLC) treatment. Their inhibitory effects on B-Raf and MEK kinases are particularly relevant in melanoma. Biological evaluations, including in vitro and in vivo studies, have demonstrated their cytotoxicity, kinase selectivity, and antiproliferative effects. Despite these advances, challenges such as drug resistance, off-target effects, and toxicity persist. Future research will focus on optimizing synthetic approaches, improving drug selectivity, and enhancing bioavailability to increase clinical efficacy.
Collapse
Affiliation(s)
- Terungwa H Iorkula
- Department of Chemistry and Biochemistry, Brigham Young University Provo Utah USA
| | | | - Daniel A Odogwu
- Department of Chemistry and Biochemistry, Brigham Young University Provo Utah USA
| | | | - Emmanuel Faderin
- Department of Pharmaceutical Sciences, Southern Illinois University 1Harirpin Dr Edwardsville IL 62026 USA
| | | | - Busayo Odunayo Akodu
- Department of Pharmaceutical Sciences, Southern Illinois University 1Harirpin Dr Edwardsville IL 62026 USA
| | | | | | - Peter Agyemang
- Department of Chemistry, Michigan Technological University 1400 Townsend Dr Houghton MI 49931 USA
| | | |
Collapse
|
12
|
Kelly MP, Nikolaev VO, Gobejishvili L, Lugnier C, Hesslinger C, Nickolaus P, Kass DA, Pereira de Vasconcelos W, Fischmeister R, Brocke S, Epstein PM, Piazza GA, Keeton AB, Zhou G, Abdel-Halim M, Abadi AH, Baillie GS, Giembycz MA, Bolger G, Snyder G, Tasken K, Saidu NEB, Schmidt M, Zaccolo M, Schermuly RT, Ke H, Cote RH, Mohammadi Jouabadi S, Roks AJM. Cyclic nucleotide phosphodiesterases as drug targets. Pharmacol Rev 2025; 77:100042. [PMID: 40081105 DOI: 10.1016/j.pharmr.2025.100042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 01/13/2025] [Indexed: 03/15/2025] Open
Abstract
Cyclic nucleotides are synthesized by adenylyl and/or guanylyl cyclase, and downstream of this synthesis, the cyclic nucleotide phosphodiesterase families (PDEs) specifically hydrolyze cyclic nucleotides. PDEs control cyclic adenosine-3',5'monophosphate (cAMP) and cyclic guanosine-3',5'-monophosphate (cGMP) intracellular levels by mediating their quick return to the basal steady state levels. This often takes place in subcellular nanodomains. Thus, PDEs govern short-term protein phosphorylation, long-term protein expression, and even epigenetic mechanisms by modulating cyclic nucleotide levels. Consequently, their involvement in both health and disease is extensively investigated. PDE inhibition has emerged as a promising clinical intervention method, with ongoing developments aiming to enhance its efficacy and applicability. In this comprehensive review, we extensively look into the intricate landscape of PDEs biochemistry, exploring their diverse roles in various tissues. Furthermore, we outline the underlying mechanisms of PDEs in different pathophysiological conditions. Additionally, we review the application of PDE inhibition in related diseases, shedding light on current advancements and future prospects for clinical intervention. SIGNIFICANCE STATEMENT: Regulating PDEs is a critical checkpoint for numerous (patho)physiological conditions. However, despite the development of several PDE inhibitors aimed at controlling overactivated PDEs, their applicability in clinical settings poses challenges. In this context, our focus is on pharmacodynamics and the structure activity of PDEs, aiming to illustrate how selectivity and efficacy can be optimized. Additionally, this review points to current preclinical and clinical evidence that depicts various optimization efforts and indications.
Collapse
Affiliation(s)
- Michy P Kelly
- Department of Neurobiology, Center for Research on Aging, University of Maryland School of Medicine, Baltimore, Maryland
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Leila Gobejishvili
- Department of Physiology, School of Medicine, University of Louisville, Kentucky, Louisville
| | - Claire Lugnier
- Translational CardioVascular Medicine, CRBS, UR 3074, Strasbourg, France
| | | | - Peter Nickolaus
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - David A Kass
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Rodolphe Fischmeister
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S 1180, Orsay, France
| | - Stefan Brocke
- Department of Immunology, UConn Health, Farmington, Connecticut
| | - Paul M Epstein
- Department of Cell Biology, UConn Health, Farmington, Connecticut
| | - Gary A Piazza
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama
| | - Adam B Keeton
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama
| | - Gang Zhou
- Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - George S Baillie
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Mark A Giembycz
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | - Gretchen Snyder
- Molecular Neuropharmacology, Intra-Cellular Therapies Inc (ITI), New York, New York
| | - Kjetil Tasken
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nathaniel E B Saidu
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics and National Institute for Health and Care Research Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Ralph T Schermuly
- Department of internal Medicine, Justus Liebig University of Giessen, Giessen, Germany
| | - Hengming Ke
- Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, North Carolina
| | - Rick H Cote
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire
| | - Soroush Mohammadi Jouabadi
- Section of Vascular and Metabolic Disease, Department of Internal Medicine, Erasmus MC University Medical Center, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Anton J M Roks
- Section of Vascular and Metabolic Disease, Department of Internal Medicine, Erasmus MC University Medical Center, Erasmus University Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
13
|
Carmona-Rocha E, Rusiñol L, Puig L. Exploring the Therapeutic Landscape: A Narrative Review on Topical and Oral Phosphodiesterase-4 Inhibitors in Dermatology. Pharmaceutics 2025; 17:91. [PMID: 39861739 PMCID: PMC11769339 DOI: 10.3390/pharmaceutics17010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Phosphodiesterase-4 (PDE4) is involved in the synthesis of inflammatory cytokines that mediate several chronic inflammatory disorders, including psoriasis and atopic dermatitis. In recent years, the therapeutic armamentarium in dermatology has expanded with the introduction of PDE4 inhibitors, both in oral and topical formulations. PDE4 inhibitors have gained increasing interest due to their remarkable safety record and ease of prescription, as evidenced by the recent influx of literature detailing its off-label uses. Apremilast was the first PDE4 inhibitor approved by the US Food and Drug Administration (FDA) and the European Medicines Agency (EMA) for psoriasis, psoriatic arthritis, and oral ulcers of Behcet's disease. Off-label use has been reported in diverse dermatological conditions, including aphthous stomatitis, chronic actinic dermatitis, atopic dermatitis, cutaneous sarcoidosis, hidradenitis suppurativa, lichen planus, and discoid lupus erythematosus. Roflumilast is a PDE4 inhibitor that was approved by the FDA and the EMA as an oral treatment of chronic obstructive pulmonary disease. Since patent expiration, several generic formulations of oral roflumilast have become available, and various studies have documented its off-label use in psoriasis and other dermatological conditions such as hidradenitis suppurativa, recurrent oral aphthosis, nummular eczema, lichen planus, and Behçet's disease. Topical roflumilast has received FDA approval for treatment of plaque psoriasis and seborrheic dermatitis. The favorable safety profile encourages its long-term use as an alternative to corticosteroids, addressing the chronic nature of many dermatological conditions. New oral PDE4 inhibitors are being developed, such as orismilast (LEO-32731), mufemilast (Hemay005), difamilast (OPA-15406) or lotamilast (E6005/RVT-501), among others. This narrative review provides a comprehensive synthesis of the pharmacology, clinical efficacy, safety profile, and practical considerations regarding the oral and topical use of PDE4 inhibitors in dermatology.
Collapse
Affiliation(s)
- Elena Carmona-Rocha
- Department of Dermatology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (E.C.-R.); (L.R.)
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain
- Unitat Docent Hospital Universitari Sant Pau, Facultat de Medicina, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| | - Lluís Rusiñol
- Department of Dermatology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (E.C.-R.); (L.R.)
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain
- Unitat Docent Hospital Universitari Sant Pau, Facultat de Medicina, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| | - Lluís Puig
- Department of Dermatology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (E.C.-R.); (L.R.)
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain
- Unitat Docent Hospital Universitari Sant Pau, Facultat de Medicina, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| |
Collapse
|
14
|
Tadinada SM, Walsh EN, Mukherjee U, Abel T. Differential effects of Phosphodiesterase 4A5 on cAMP-dependent forms of long-term potentiation. J Physiol 2024. [PMID: 39693518 DOI: 10.1113/jp286801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 11/21/2024] [Indexed: 12/20/2024] Open
Abstract
cAMP signalling is critical for memory consolidation and certain forms of long-term potentiation (LTP). Phosphodiesterases (PDEs), enzymes that degrade the second messengers cAMP and cGMP, are highly conserved during evolution and represent a unique set of drug targets, given the involvement of these enzymes in several pathophysiological states including brain disorders. The PDE4 family of cAMP-selective PDEs exert regulatory roles in memory and synaptic plasticity, but the specific roles of distinct PDE4 isoforms in these processes are poorly understood. Building on our previous work demonstrating that spatial and contextual memory deficits were caused by expressing selectively the long isoform of the PDE4A subfamily, PDE4A5, in hippocampal excitatory neurons, we now investigate the effects of PDE4A isoforms on different cAMP-dependent forms of LTP. We found that PDE4A5 impairs long-lasting LTP induced by theta burst stimulation (TBS) while sparing long-lasting LTP induced by spaced four-train stimulation (4 × 100 Hz). This effect requires the unique N-terminus of PDE4A5 and is specific to this long isoform. Targeted overexpression of PDE4A5 in area CA1 is sufficient to impair TBS-LTP, suggesting that cAMP levels in the postsynaptic neuron are critical for TBS-LTP. Our results shed light on the inherent differences among the PDE4A subfamily isoforms, emphasizing the importance of the long isoforms, which have a unique N-terminal region. Advancing our understanding of the function of specific PDE isoforms will pave the way for developing isoform-selective approaches to treat the cognitive deficits that are debilitating aspects of psychiatric, neurodevelopmental and neurodegenerative disorders. KEY POINTS: Hippocampal overexpression of PDE4A5, but not PDE4A1 or the N-terminus-truncated PDE4A5 (PDE4A5Δ4), selectively impairs long-term potentiation (LTP) induced by theta burst stimulation (TBS-LTP). Expression of PDE4A5 in area CA1 is sufficient to cause deficits in TBS-LTP. Hippocampal overexpression of the PDE4A isoforms PDE4A1 and PDE4A5 does not impair LTP induced by repeated tetanic stimulation at the CA3-CA1 synapses. These results suggest that PDE4A5, through its N-terminus, regulates cAMP pools that are critical for memory consolidation and expression of specific forms of long-lasting synaptic plasticity at CA3-CA1 synapses.
Collapse
Affiliation(s)
- Satya Murthy Tadinada
- Department of Neuroscience and Pharmacology, The University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA
| | - Emily N Walsh
- Department of Neuroscience and Pharmacology, The University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA
- Interdisciplinary Graduate Program in Neuroscience, The University of Iowa, Iowa City, IA, USA
| | - Utsav Mukherjee
- Department of Neuroscience and Pharmacology, The University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA
- Interdisciplinary Graduate Program in Neuroscience, The University of Iowa, Iowa City, IA, USA
| | - Ted Abel
- Department of Neuroscience and Pharmacology, The University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA
- Interdisciplinary Graduate Program in Neuroscience, The University of Iowa, Iowa City, IA, USA
| |
Collapse
|
15
|
Prickaerts J, Kerckhoffs J, Possemis N, van Overveld W, Verbeek F, Grooters T, Sambeth A, Blokland A. Roflumilast and cognition enhancement: A translational perspective. Biomed Pharmacother 2024; 181:117707. [PMID: 39591666 DOI: 10.1016/j.biopha.2024.117707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024] Open
Abstract
Cognitive impairment affiliated with neurological disorders has a severe impact on daily life functioning and the quality of life of patients. This is associated with a significant and long-lasting health, social and financial burden, not only for the patients, but also for families and the wider society. However, treatment for cognitive impairment is only available for the indication Alzheimer's disease (AD) and its prodromal stage Mild Cognitive Impairment (MCI), although with major adverse effects, i.e. gastrointestinal effects (drugs) or hemorrhages (antibodies). Roflumilast (selective phosphodiesterase type 4 (PDE4) inhibitor) has been approved as an anti-inflammatory drug for the treatment of chronic obstructive pulmonary disease (COPD), although still 5 % of the patients experience nausea or even vomiting at the approved dose of 500 μg. Nonclinical studies demonstrated that roflumilast appears a promising drug the treat cognitive impairment in healthy rodents and a wide variety of animal models of CNS disorders. These effects are attributed to pro-neuroplasticity and anti-inflammatory effects, which appeared dose dependent. Roflumilast has also been tested in clinical studies and showed cognition enhancement at low dosing (100-250 µg) in healthy adults, healthy elderly, MCI and schizophrenia. Currently, clinical trials are underway for testing the pro-cognitive effects in early AD, post stroke cognitive impairment and Fragile X. Overall, the data showed that roflumilast has beneficial effects on cognitive performance. These cognition-enhancing effects are found at doses that were well-tolerated. Based on this favorable therapeutic window, the repurposing of roflumilast for treating cognitive impairments in CNS diseases may offer an affordable treatment option for patients.
Collapse
Affiliation(s)
| | - Jill Kerckhoffs
- Department of Neuropsychology and Psychopharmacology, Maastricht University, Netherlands; Limburg Brain Injury Centre, Maastricht University, Maastricht, Netherlands
| | - Nina Possemis
- Department of Psychiatry and Neuropsychology, Maastricht University, Netherlands
| | | | | | | | - Anke Sambeth
- Department of Neuropsychology and Psychopharmacology, Maastricht University, Netherlands
| | - Arjan Blokland
- Department of Neuropsychology and Psychopharmacology, Maastricht University, Netherlands.
| |
Collapse
|
16
|
Wang J, Ho M, Bunick CG. Chemical, Biochemical, and Structural Similarities and Differences of Dermatological cAMP Phosphodiesterase-IV Inhibitors. J Invest Dermatol 2024:S0022-202X(24)02885-9. [PMID: 39608668 DOI: 10.1016/j.jid.2024.10.597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/09/2024] [Accepted: 10/22/2024] [Indexed: 11/30/2024]
Abstract
Roflumilast, the third phosphodiesterase-IV (PDE4) inhibitor approved for use in dermatology, is indicated for topical treatment of psoriasis, seborrheic dermatitis, and atopic dermatitis, whereas its 2 predecessors, apremilast and crisaborole, are indicated for oral treatment of psoriasis and topical treatment of atopic dermatitis, respectively. All 3 are rationally designed PDE4 inhibitors, but roflumilast is the most potent and effective among the 3, with in vitro inhibitory constant half-maximal inhibitory concentration value of 0.7 nM (roflumilast), 0.14 μM (apremilast), and 0.24 μM (crisaborole), representing differences of over 3 orders of magnitude. PDE4 is a cAMP (an intracellular secondary messenger) hydrolase consisting of at least 4 subtypes of exon-spliced isoforms, which are primarily expressed in immune cells for inflammatory response. PDE4 inhibition lengthens the duration of cAMP signals and increases cellular cAMP concentrations, generating anti-inflammatory effects. We examined the physicochemical principles that make PDE4 inhibitors effective and propose chemical modifications to improve them. Sequence alignment of the catalytic domains of all phosphodiesterases identified many previously unreported invariant residues. These residues bind 1 Zn and 1 Mg ion plus 5 structural water molecules for orienting an attacking μ-hydroxyl/μ-oxo anion and for stabilizing 2 nonbridging phosphate oxygen atoms. The arrangement of the 2 divalent metal ions in phosphodiesterases is not related to that of the classic mechanism for general phosphoryl transfer.
Collapse
Affiliation(s)
- Jimin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA; Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA.
| | - Minh Ho
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Christopher G Bunick
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA; Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA; Program in Translational Biomedicine, Yale School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
17
|
Zheng L, Chen K, Xie Y, Huang J, Xia C, Bao YX, Bi H, Wang J, Zhou ZZ. Discovery of novel N 2-indazole derivatives as phosphodiesterase 4 inhibitors for the treatment of inflammatory bowel disease. Eur J Med Chem 2024; 277:116710. [PMID: 39098133 DOI: 10.1016/j.ejmech.2024.116710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024]
Abstract
Inflammatory bowel disease (IBD) is a chronic and progressive condition with a significant global burden. Currently, available treatments primarily provide symptomatic relief and retard disease progression, yet they do not offer a cure and are frequently associated with adverse effects. Therefore, the discovery of new targets and therapeutic drugs for IBD is crucial. Phosphodiesterase 4 (PDE4) inhibitors have emerged as promising candidates in the search for effective IBD treatments, although dose-dependent side effects hamper their clinical utility. In this study, building upon heterocyclic biaryl derivatives (TPA16), we designed and synthesized a series of N2-substituted indazole-based PDE4D inhibitors, emphasizing improving safety profiles. An enzyme activity screening discovered an optimized compound, LZ-14 (Z21115), which exhibited high PDE4D7 (IC50 = 10.5 nM) inhibitory activity and good selectivity. More interestingly, LZ-14 has demonstrated promising effects in treating IBD in mouse models by improving the inflammatory response and colon injury. Furthermore, LZ-14 displayed low emetogenic potential in ketamine/xylazine anesthesia mice alternative models.
Collapse
Affiliation(s)
- Lei Zheng
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Kun Chen
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yifan Xie
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jiaxi Huang
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Chuang Xia
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ying-Xia Bao
- Guangzhou Baiyunshan Pharmaceutical Co. Ltd., Guangzhou Baiyunshan Pharmaceutical General Factory, Guangzhou, China
| | - Huichang Bi
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jigang Wang
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; Department of Urology, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Zhong-Zhen Zhou
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
18
|
Deng Y, Sun S. Runx1 promotes neuronal injury in ischemic stroke through mediating miR-203-3p/Pde4d axis. Brain Inj 2024; 38:1035-1045. [PMID: 38994671 DOI: 10.1080/02699052.2024.2373914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/27/2024] [Accepted: 06/24/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND It has been reported that Runx1 engaged in IS progression, but the detailed mechanism of Runx1 in IS is still unclear. METHODS Mice and HT22 cells were subjected to the process of middle cerebral artery occlusion and reperfusion (MCAO/R) and oxygen-glucose deprivation/reoxygenation (OGD/R), respectively. Infract volume was tested using TTC staining. The levels of inflammatory cytokines were investigated using ELISA assay. Cell viability was examined utilizing MTS. Apoptosis rate was evaluated using flow cytometry and TUNEL. The productions of SOD and MDA were monitored by means of commercial kits. The correlations among Runx1, miR-203-3p and Pde4d were ascertained using dual luciferase reporter gene, ChIP and RNA-RNA pull-down assays. RESULTS Runx1 and Pde4d were abnormally elevated, while miR-203-3p was notably declined in MCAO/R mice and OGD/R-induced HT22 cells. OGD/R treatment suppressed cell viability and facilitated cell apoptosis, inflammation and oxidative stress, which were compromised by Runx1 knockdown or miR-203-3p upregulation. Runx1 bound to miR-203-3p promoter, thus decreasing miR-203-3p expression. MiR-203-3p inhibited Pde4d expression via targeting Pde4d mRNA. Runx1 deficiency-induced protection effects on OGD/R-treated HT22 cells were offset by miR-203-3p downregulation. CONCLUSION Runx1 aggravated neuronal injury caused by IS through mediating miR-203-3p/Pde4d axis.
Collapse
Affiliation(s)
- Yongwen Deng
- Department of Neurosurgery, Hunan Provincial People's Hospital (The first affiliated hospital of Hunan normal university), Changsha, Hunan, P.R. China
| | - Shengli Sun
- Department of Neurosurgery, Hunan Provincial People's Hospital (The first affiliated hospital of Hunan normal university), Changsha, Hunan, P.R. China
| |
Collapse
|
19
|
Milara J, Ribera P, Marín S, Montero P, Roger I, Tenor H, Cortijo J. Phosphodiesterase 4 is overexpressed in human keloids and its inhibition reduces fibroblast activation and skin fibrosis. Chem Biol Interact 2024; 402:111211. [PMID: 39197814 DOI: 10.1016/j.cbi.2024.111211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/05/2024] [Accepted: 08/26/2024] [Indexed: 09/01/2024]
Abstract
There is a pressing medical need for improved treatments in skin fibrosis including keloids and hypertrophic scars (HTS). This study aimed to characterize the role of phosphodiesterase 4 (PDE4), specifically PDE4B in fibrotic skin remodeling in vitro and in vivo. In vitro, effects of PDE4A-D (Roflumilast) or PDE4B (siRNA) inhibition on TGFβ1-induced myofibroblast differentiation and dedifferentiation were studied in normal (NHDF) and keloid (KF) human dermal fibroblasts. In vivo, the role of PDE4 on HOCl-induced skin fibrosis in mice was addressed in preventive and therapeutic protocols. PDE4B (mRNA, protein) was increased in Keloid > HTS compared to healthy skin and in TGFβ-stimulated NHDF and KF. In Keloid > HTS, collagen Iα1, αSMA, TGFβ1 and NOX4 mRNA were all elevated compared to healthy skin confirming skin fibrosis. In vitro, inhibition of PDE4A-D and PDE4B similarly prevented TGFβ1-induced Smad3 and ERK1/2 phosphorylation and myofibroblast differentiation, elevated NOX4 protein and proliferation in NHDF. PDE4A-D inhibition enabled myofibroblast dedifferentiation and curbed TGFβ1-induced reactive oxygen species and fibroblast senescence. In KF PDE4A-D inhibition restrained TGFβ1-induced Smad3 and ERK1/2 phosphorylation, myofibroblast differentiation and senescence. Mechanistically, PDE4A-D inhibition rescued from TGFβ1-induced loss in PPM1A, a Smad3 phosphatase. In vivo, PDE4 inhibition mitigated HOCl-induced skin fibrosis in mice in preventive and therapeutic protocols. The current study provides novel evidence evolving rationale for PDE4 inhibitors in skin fibrosis (including keloids and HTS) and delivered evidence for a functional role of PDE4B in this fibrotic condition.
Collapse
Affiliation(s)
- Javier Milara
- CIBER de Enfermedades Respiratorias, Health Institute Carlos III, Valencia, Spain; Department of Pharmacology, Faculty of Medicine, University of Valencia, Spain; Pharmacy Unit, University General Hospital Consortium of Valencia, Spain.
| | - Pilar Ribera
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Spain
| | - Severiano Marín
- Plastic Surgery Unit, University General Hospital Consortium, 46014, Valencia, Spain
| | - Paula Montero
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Spain; Faculty of Health Sciences, Universidad Europea de Valencia, 46010, Valencia, Spain
| | - Inés Roger
- CIBER de Enfermedades Respiratorias, Health Institute Carlos III, Valencia, Spain; Department of Pharmacology, Faculty of Medicine, University of Valencia, Spain; Faculty of Health Sciences, Universidad Europea de Valencia, 46010, Valencia, Spain
| | | | - Julio Cortijo
- CIBER de Enfermedades Respiratorias, Health Institute Carlos III, Valencia, Spain; Department of Pharmacology, Faculty of Medicine, University of Valencia, Spain
| |
Collapse
|
20
|
Donders Z, Skorupska IJ, Willems E, Mussen F, Broeckhoven JV, Carlier A, Schepers M, Vanmierlo T. Beyond PDE4 inhibition: A comprehensive review on downstream cAMP signaling in the central nervous system. Biomed Pharmacother 2024; 177:117009. [PMID: 38908196 DOI: 10.1016/j.biopha.2024.117009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/27/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024] Open
Abstract
Cyclic adenosine monophosphate (cAMP) is a key second messenger that regulates signal transduction pathways pivotal for numerous biological functions. Intracellular cAMP levels are spatiotemporally regulated by their hydrolyzing enzymes called phosphodiesterases (PDEs). It has been shown that increased cAMP levels in the central nervous system (CNS) promote neuroplasticity, neurotransmission, neuronal survival, and myelination while suppressing neuroinflammation. Thus, elevating cAMP levels through PDE inhibition provides a therapeutic approach for multiple CNS disorders, including multiple sclerosis, stroke, spinal cord injury, amyotrophic lateral sclerosis, traumatic brain injury, and Alzheimer's disease. In particular, inhibition of the cAMP-specific PDE4 subfamily is widely studied because of its high expression in the CNS. So far, the clinical translation of full PDE4 inhibitors has been hampered because of dose-limiting side effects. Hence, focusing on signaling cascades downstream activated upon PDE4 inhibition presents a promising strategy, offering novel and pharmacologically safe targets for treating CNS disorders. Yet, the underlying downstream signaling pathways activated upon PDE(4) inhibition remain partially elusive. This review provides a comprehensive overview of the existing knowledge regarding downstream mediators of cAMP signaling induced by PDE4 inhibition or cAMP stimulators. Furthermore, we highlight existing gaps and future perspectives that may incentivize additional downstream research concerning PDE(4) inhibition, thereby providing novel therapeutic approaches for CNS disorders.
Collapse
Affiliation(s)
- Zoë Donders
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium
| | - Iga Joanna Skorupska
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium; Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht 6629ER, the Netherlands
| | - Emily Willems
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium
| | - Femke Mussen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium; Department of Immunology and Infection, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium
| | - Jana Van Broeckhoven
- Department of Immunology and Infection, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium; University MS Centre (UMSC) Hasselt - Pelt, Belgium
| | - Aurélie Carlier
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht 6629ER, the Netherlands
| | - Melissa Schepers
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium; University MS Centre (UMSC) Hasselt - Pelt, Belgium
| | - Tim Vanmierlo
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium; University MS Centre (UMSC) Hasselt - Pelt, Belgium.
| |
Collapse
|
21
|
Schepers M, Hendrix S, Mussen F, van Breedam E, Ponsaerts P, Lemmens S, Hellings N, Ricciarelli R, Fedele E, Bruno O, Brullo C, Prickaerts J, Van Broeckhoven J, Vanmierlo T. Amelioration of functional and histopathological consequences after spinal cord injury through phosphodiesterase 4D (PDE4D) inhibition. Neurotherapeutics 2024; 21:e00372. [PMID: 38760316 PMCID: PMC11284540 DOI: 10.1016/j.neurot.2024.e00372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/15/2024] [Accepted: 05/01/2024] [Indexed: 05/19/2024] Open
Abstract
Spinal cord injury (SCI) is a life-changing event that severely impacts the patient's quality of life. Modulating neuroinflammation, which exacerbates the primary injury, and stimulating neuro-regenerative repair mechanisms are key strategies to improve functional recovery. Cyclic adenosine monophosphate (cAMP) is a second messenger crucially involved in both processes. Following SCI, intracellular levels of cAMP are known to decrease over time. Therefore, preventing cAMP degradation represents a promising strategy to suppress inflammation while stimulating regeneration. Intracellular cAMP levels are controlled by its hydrolyzing enzymes phosphodiesterases (PDEs). The PDE4 family is most abundantly expressed in the central nervous system (CNS) and its inhibition has been shown to be therapeutically relevant for managing SCI pathology. Unfortunately, the use of full PDE4 inhibitors at therapeutic doses is associated with severe emetic side effects, hampering their translation toward clinical applications. Therefore, in this study, we evaluated the effect of inhibiting specific PDE4 subtypes (PDE4B and PDE4D) on inflammatory and regenerative processes following SCI, as inhibitors selective for these subtypes have been demonstrated to be well-tolerated. We reveal that administration of the PDE4D inhibitor Gebr32a, even when starting 2 dpi, but not the PDE4B inhibitor A33, improved functional as well as histopathological outcomes after SCI, comparable to results obtained with the full PDE4 inhibitor roflumilast. Furthermore, using a luminescent human iPSC-derived neurospheroid model, we show that PDE4D inhibition stabilizes neural viability by preventing apoptosis and stimulating neuronal differentiation. These findings strongly suggest that specific PDE4D inhibition offers a novel therapeutic approach for SCI.
Collapse
Affiliation(s)
- Melissa Schepers
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, 3500 Hasselt, Belgium; Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, 6229ER Maastricht, the Netherlands; University MS Centre (UMSC) Hasselt - Pelt, Belgium
| | - Sven Hendrix
- Institute for Translational Medicine, Medical School Hamburg, 20457 Hamburg, Germany
| | - Femke Mussen
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, 3500 Hasselt, Belgium; Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, 6229ER Maastricht, the Netherlands; Department of Immunology and Infection, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, 3500 Hasselt, Belgium
| | - Elise van Breedam
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, 2610 Wilrijk, Belgium
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, 2610 Wilrijk, Belgium
| | - Stefanie Lemmens
- Department of Immunology and Infection, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, 3500 Hasselt, Belgium
| | - Niels Hellings
- University MS Centre (UMSC) Hasselt - Pelt, Belgium; Department of Immunology and Infection, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, 3500 Hasselt, Belgium
| | - Roberta Ricciarelli
- IRCCS Ospedale Policlinico San Martino, 16100 Genoa, Italy; Department of Experimental Medicine, Section of General Pathology, University of Genova, 16100 Genoa, Italy
| | - Ernesto Fedele
- IRCCS Ospedale Policlinico San Martino, 16100 Genoa, Italy; Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genoa, 16100 Genoa, Italy
| | - Olga Bruno
- Department of Pharmacy, Section of Medicinal Chemistry, University of Genoa, 16100 Genoa, Italy
| | - Chiara Brullo
- Department of Pharmacy, Section of Medicinal Chemistry, University of Genoa, 16100 Genoa, Italy
| | - Jos Prickaerts
- Peitho Translational, 6229ER Maastricht, the Netherlands
| | - Jana Van Broeckhoven
- University MS Centre (UMSC) Hasselt - Pelt, Belgium; Department of Immunology and Infection, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, 3500 Hasselt, Belgium
| | - Tim Vanmierlo
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, 3500 Hasselt, Belgium; Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, 6229ER Maastricht, the Netherlands; University MS Centre (UMSC) Hasselt - Pelt, Belgium.
| |
Collapse
|
22
|
Sin YY, Cameron RT, Schepers M, MacLeod R, Wright TA, Paes D, van den Hove D, Willems E, Vanmierlo T, Prickaerts J, Blair CM, Baillie GS. Beta-amyloid interacts with and activates the long-form phosphodiesterase PDE4D5 in neuronal cells to reduce cAMP availability. FEBS Lett 2024; 598:1591-1604. [PMID: 38724485 DOI: 10.1002/1873-3468.14902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 07/09/2024]
Abstract
Inhibition of the cyclic-AMP degrading enzyme phosphodiesterase type 4 (PDE4) in the brains of animal models is protective in Alzheimer's disease (AD). We show for the first time that enzymes from the subfamily PDE4D not only colocalize with beta-amyloid (Aβ) plaques in a mouse model of AD but that Aβ directly associates with the catalytic machinery of the enzyme. Peptide mapping suggests that PDE4D is the preferential PDE4 subfamily for Aβ as it possesses a unique binding site. Intriguingly, exogenous addition of Aβ to cells overexpressing the PDE4D5 longform caused PDE4 activation and a decrease in cAMP. We suggest a novel mechanism where PDE4 longforms can be activated by Aβ, resulting in the attenuation of cAMP signalling to promote loss of cognitive function in AD.
Collapse
Affiliation(s)
- Yuan Yan Sin
- School of Cardiovascular and Metabolic Health, University of Glasgow, UK
| | - Ryan T Cameron
- School of Cardiovascular and Metabolic Health, University of Glasgow, UK
| | - Melissa Schepers
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
- Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, The Netherlands
| | - Ruth MacLeod
- School of Cardiovascular and Metabolic Health, University of Glasgow, UK
| | - Tom A Wright
- School of Cardiovascular and Metabolic Health, University of Glasgow, UK
| | - Dean Paes
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
- Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, The Netherlands
| | - Daniel van den Hove
- Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, The Netherlands
| | - Emily Willems
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
- Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, The Netherlands
| | - Tim Vanmierlo
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
- Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, The Netherlands
| | - Jos Prickaerts
- Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, The Netherlands
| | - Connor M Blair
- School of Cardiovascular and Metabolic Health, University of Glasgow, UK
| | - George S Baillie
- School of Cardiovascular and Metabolic Health, University of Glasgow, UK
| |
Collapse
|
23
|
Fan T, Wang W, Wang Y, Zeng M, Liu Y, Zhu S, Yang L. PDE4 inhibitors: potential protective effects in inflammation and vascular diseases. Front Pharmacol 2024; 15:1407871. [PMID: 38915460 PMCID: PMC11194378 DOI: 10.3389/fphar.2024.1407871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/27/2024] [Indexed: 06/26/2024] Open
Abstract
Phosphodiesterase 4 (PDE4) inhibitors are effective therapeutic agents for various inflammatory diseases. Roflumilast, apremilast, and crisaborole have been developed and approved for the treatment of chronic obstructive pulmonary disease psoriatic arthritis, and atopic dermatitis. Inflammation underlies many vascular diseases, yet the role of PDE4 inhibitors in these diseases remains inadequately explored. This review elucidates the clinical applications and anti-inflammatory mechanisms of PDE4 inhibitors, as well as their potential protective effects on vascular diseases. Additionally, strategies to mitigate the adverse reactions of PDE4 inhibitors are discussed. This article emphasizes the need for further exploration of the therapeutic potential and clinical applications of PDE4 inhibitors in vascular diseases.
Collapse
Affiliation(s)
- Tianfei Fan
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Wenjing Wang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yao Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Mingtang Zeng
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Liu
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Shuyao Zhu
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Lin Yang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
24
|
Nummela P, Zafar S, Veikkolainen E, Ukkola I, Cinella V, Ayo A, Asghar MY, Välimäki N, Törnquist K, Karhu A, Laakkonen P, Aaltonen LA, Ristimäki A. GNAS mutation inhibits growth and induces phosphodiesterase 4D expression in colorectal cancer cell lines. Int J Cancer 2024; 154:1987-1998. [PMID: 38319157 DOI: 10.1002/ijc.34865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 12/31/2023] [Accepted: 01/10/2024] [Indexed: 02/07/2024]
Abstract
Approximately 5% of colorectal cancers (CRCs) have a gain-of-function mutation in the GNAS gene, which leads to the activation of cAMP-dependent signaling pathways and associates with poor prognosis. We investigated the effect of an activating GNAS mutation in CRC cell lines on gene expression and cell proliferation in vitro, and tumor growth in vivo. GNAS-mutated (GNASmt) HCT116 cells showed stimulated synthesis of cAMP as compared to parental (Par) cells. The most upregulated gene in the GNASmt cells was cAMP-hydrolyzing phosphodiesterase 4D (PDE4D) as detected by RNA sequencing. To further validate our finding, we analyzed PDE4D expression in a set of human CRC tumors (n = 35) and demonstrated overexpression in GNAS mutant CRC tumors as compared to GNAS wild-type tumors. The GNASmt HCT116 cells proliferated more slowly than the Par cells. PDE4 inhibitor Ro 20-1724 and PDE4D subtype selective inhibitor GEBR-7b further suppressed the proliferation of GNASmt cells without an effect on Par cells. The growth inhibitory effect of these inhibitors was also seen in the intrinsically GNAS-mutated SK-CO-1 CRC cell line having high levels of cAMP synthesis and PDE4D expression. In vivo, GNASmt HCT116 cells formed smaller tumors than the Par cells in nude mice. In conclusion, our findings demonstrate that GNAS mutation results in the growth suppression of CRC cells. Moreover, the GNAS mutation-induced overexpression of PDE4D provides a potential avenue to impede the proliferation of CRC cells through the use of PDE4 inhibitors.
Collapse
Affiliation(s)
- Pirjo Nummela
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
- Department of Pathology, HUSLAB, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Sadia Zafar
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
- Department of Pathology, HUSLAB, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Erika Veikkolainen
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
- Department of Pathology, HUSLAB, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Iiris Ukkola
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
- Department of Pathology, HUSLAB, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Vincenzo Cinella
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
- Department of Pathology, HUSLAB, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Abiodun Ayo
- Translational Cancer Medicine Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Muhammad Yasir Asghar
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, HiLife, University of Helsinki, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Niko Välimäki
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Kid Törnquist
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
| | - Auli Karhu
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Pirjo Laakkonen
- Translational Cancer Medicine Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Lauri A Aaltonen
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Ari Ristimäki
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
- Department of Pathology, HUSLAB, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
25
|
Zahra N, Rafique S, Naveed Z, Nadeem J, Waqas M, Ali A, Shah M, Idrees M. Regulatory pathways and therapeutic potential of PDE4 in liver pathophysiology. Life Sci 2024; 345:122565. [PMID: 38521388 DOI: 10.1016/j.lfs.2024.122565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 03/25/2024]
Abstract
Phosphodiesterase 4 (PDE4), crucial in regulating the cyclic adenosine monophosphate (cAMP) signaling pathway, significantly impacts liver pathophysiology. This article highlights the comprehensive effects of PDE4 on liver health and disease, and its potential as a therapeutic agent. PDE4's role in degrading cAMP disrupts intracellular signaling, increasing pro-inflammatory cytokines like tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6). This contributes to liver inflammation in conditions such as hepatitis and non-alcoholic steatohepatitis (NASH). Additionally, PDE4 is a key factor in liver fibrosis, characterized by excessive extracellular matrix deposition. Inhibiting PDE4 shows promise in reducing liver fibrosis by decreasing the activation of hepatic stellate cells, which is pivotal in fibrogenesis. PDE4 also influences hepatocyte apoptosis a common feature of liver diseases. PDE4 inhibitors protect against hepatocyte apoptosis by raising intracellular cAMP levels, thus activating anti-apoptotic pathways. This suggests potential in targeting PDE4 to prevent hepatocyte loss. Moreover, PDE4 regulates hepatic glucose production and lipid metabolism, essential for liver function. Altering cAMP levels through PDE4 affects enzymes in these metabolic pathways, making PDE4 a target for metabolic disorders like type 2 diabetes and non-alcoholic fatty liver disease (NAFLD). Since PDE4 plays a multifaceted role in liver pathophysiology, influencing PDE4's mechanisms in liver diseases could lead to novel therapeutic strategies. Still, extensive research is required to explore the molecular mechanisms and clinical potential of targeting PDE4 in liver pathologies.
Collapse
Affiliation(s)
- Noureen Zahra
- National Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Shazia Rafique
- National Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan.
| | - Zoya Naveed
- National Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Jannat Nadeem
- National Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Muhammad Waqas
- Department of Biotechnology and Genetic Engineering, Hazara University Mansehra, Pakistan
| | - Amjad Ali
- Department of Biotechnology and Genetic Engineering, Hazara University Mansehra, Pakistan
| | - Masaud Shah
- Department of Physiology Ajou University, South Korea
| | - Muhammad Idrees
- National Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| |
Collapse
|
26
|
AlRuwaili R, Al-Kuraishy HM, Alruwaili M, Khalifa AK, Alexiou A, Papadakis M, Saad HM, Batiha GES. The potential therapeutic effect of phosphodiesterase 5 inhibitors in the acute ischemic stroke (AIS). Mol Cell Biochem 2024; 479:1267-1278. [PMID: 37395897 PMCID: PMC11116240 DOI: 10.1007/s11010-023-04793-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/16/2023] [Indexed: 07/04/2023]
Abstract
Acute ischemic stroke (AIS) is a focal neurological disorder that accounts for 85% of all stroke types, due to occlusion of cerebral arteries by thrombosis and emboli. AIS is also developed due to cerebral hemodynamic abnormality. AIS is associated with the development of neuroinflammation which increases the severity of AIS. Phosphodiesterase enzyme (PDEs) inhibitors have neuro-restorative and neuroprotective effects against the development of AIS through modulation of the cerebral cyclic adenosine monophosphate (cAMP)/cyclic guanosine monophosphate (cGMP)/nitric oxide (NO) pathway. PDE5 inhibitors through mitigation of neuroinflammation may decrease the risk of long-term AIS-induced complications. PDE5 inhibitors may affect the hemodynamic properties and coagulation pathway which are associated with thrombotic complications in AIS. PDE5 inhibitors reduce activation of the pro-coagulant pathway and improve the microcirculatory level in patients with hemodynamic disturbances in AIS. PDE5 inhibitors mainly tadalafil and sildenafil improve clinical outcomes in AIS patients through the regulation of cerebral perfusion and cerebral blood flow (CBF). PDE5 inhibitors reduced thrombomodulin, P-selectin, and tissue plasminogen activator. Herein, PDE5 inhibitors may reduce activation of the pro-coagulant pathway and improve the microcirculatory level in patients with hemodynamic disturbances in AIS. In conclusion, PDE5 inhibitors may have potential roles in the management of AIS through modulation of CBF, cAMP/cGMP/NO pathway, neuroinflammation, and inflammatory signaling pathways. Preclinical and clinical studies are recommended in this regard.
Collapse
Affiliation(s)
- Raed AlRuwaili
- Department of Internal Medicine, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Mubarak Alruwaili
- Department of Internal Medicine, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Amira Karam Khalifa
- Department of Medical Pharmacology, Kasr El-Ainy School of Medicine, Cairo University, El Manial, Cairo, 11562, Egypt
- Lecturer of Medical Pharmacology, Nahda Faculty of Medicine, Beni Suef, Egypt
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
- AFNP Med, 1030, Vienna, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matrouh, 51744, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt
| |
Collapse
|
27
|
Han R, Gaurav A, Mai CW, Gautam V, Gabriel Akyirem A. Phosphodiesterase Inhibitors of Natural Origin. THE NATURAL PRODUCTS JOURNAL 2024; 14. [DOI: 10.2174/0122103155251390230927064442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/03/2023] [Accepted: 08/21/2023] [Indexed: 01/09/2025]
Abstract
Abstract:
Phosphodiesterases (PDEs) function to hydrolyze intracellular cyclic adenosine monophosphate
(cAMP) and cyclic guanosine monophosphate (cGMP), regulating a variety of intracellular
signal transduction and physiological activities. PDEs can be divided into 11 families
(PDE1~11) and the diversity and complex expression of PDE family genes suggest that different
subtypes may have different mechanisms. PDEs are involved in various disease pathologies such
as inflammation, asthma, depression, and erectile dysfunction and are thus targets of interest for
several drug discovery campaigns. Natural products have always been an important source of bioactive
compounds for drug discovery, over the years several natural compounds have shown potential
as inhibitors of PDEs. In this article, phosphodiesterase inhibitors of natural origin have been
reviewed with emphasis on their chemistry and biological activities.
Collapse
Affiliation(s)
- Rui Han
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, UCSI University, Taman Connaught,
Cheras Kuala Lumpur, 56000, Malaysia
| | - Anand Gaurav
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, UCSI University, Taman Connaught,
Cheras Kuala Lumpur, 56000, Malaysia
- Department of Pharmaceutical Sciences, School of Health Sciences and
Technology, UPES, Dehradun, 248007, Uttarakhand, India
- Faculty of Health Sciences, Villa College, QI Campus,
Rahdhebai Hingun, Male', 20373, Republic of Maldives
| | - Chun-Wai Mai
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, UCSI University, Taman Connaught,
Cheras Kuala Lumpur, 56000, Malaysia
| | - Vertika Gautam
- Institute of Pharmaceutical Research, GLA University,
Mathura, 281406, Uttar Pradesh, India
| | - Akowuah Gabriel Akyirem
- School of Pharmacy, Monash University Malaysia Jalan Lagoon Selatan,
47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
28
|
Schepers M, Vanmierlo T. Novel insights in phosphodiesterase 4 subtype inhibition to target neuroinflammation and stimulate remyelination. Neural Regen Res 2024; 19:493-494. [PMID: 37721269 PMCID: PMC10581562 DOI: 10.4103/1673-5374.380899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/05/2023] [Accepted: 05/13/2023] [Indexed: 09/19/2023] Open
Affiliation(s)
- Melissa Schepers
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium; Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands; University MS Center (UMSC) Hasselt – Pelt, Hasselt, Belgium
| | - Tim Vanmierlo
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium; Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands; University MS Center (UMSC) Hasselt – Pelt, Hasselt, Belgium
| |
Collapse
|
29
|
Zhao H, Blokland A, Prickaerts J, Havekes R, Heckman PRA. Treatment with the selective PDE4B inhibitor A-33 or PDE4D inhibitor zatolmilast prevents sleep deprivation-induced deficits in spatial pattern separation. Behav Brain Res 2024; 459:114798. [PMID: 38056709 DOI: 10.1016/j.bbr.2023.114798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/22/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Sleep deprivation (SD) disrupts hippocampus-dependent memory, particularly in the dentate gyrus (DG) region, an area crucial for pattern separation. Previous research showed that non-selective phosphodiesterase type 4 (PDE4) inhibitors like roflumilast can alleviate these deficits. However, it remains unclear whether these outcomes are specific to a particular subfamily of PDE4. Hence, this study examined the specific impact of PDE4B inhibitor (A-33) and PDE4D inhibitor (zatolmilast) on spatial pattern separation in sleep deprived mice. Results demonstrated that SD impairs pattern separation, but both zatolmilast and A-33 alleviate these effects. However, A-33 impaired pattern separation in non-sleep deprived animals. The cognitive benefits of these inhibitors after SD may arise from alterations in relevant signaling pathways in the DG. This study provides initial evidence that inhibiting PDE4B or PDE4D holds promise for mitigating memory deficits due to SD.
Collapse
Affiliation(s)
- Hongyu Zhao
- Dept. Neuropsychology & Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Arjan Blokland
- Dept. Neuropsychology & Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Jos Prickaerts
- Dept. Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Robbert Havekes
- Neurobiology Expert Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Pim R A Heckman
- Dept. Neuropsychology & Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
30
|
Zhang H, Liu Y, Liu J, Chen J, Wang J, Hua H, Jiang Y. cAMP-PKA/EPAC signaling and cancer: the interplay in tumor microenvironment. J Hematol Oncol 2024; 17:5. [PMID: 38233872 PMCID: PMC10792844 DOI: 10.1186/s13045-024-01524-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024] Open
Abstract
Cancer is a complex disease resulting from abnormal cell growth that is induced by a number of genetic and environmental factors. The tumor microenvironment (TME), which involves extracellular matrix, cancer-associated fibroblasts (CAF), tumor-infiltrating immune cells and angiogenesis, plays a critical role in tumor progression. Cyclic adenosine monophosphate (cAMP) is a second messenger that has pleiotropic effects on the TME. The downstream effectors of cAMP include cAMP-dependent protein kinase (PKA), exchange protein activated by cAMP (EPAC) and ion channels. While cAMP can activate PKA or EPAC and promote cancer cell growth, it can also inhibit cell proliferation and survival in context- and cancer type-dependent manner. Tumor-associated stromal cells, such as CAF and immune cells, can release cytokines and growth factors that either stimulate or inhibit cAMP production within the TME. Recent studies have shown that targeting cAMP signaling in the TME has therapeutic benefits in cancer. Small-molecule agents that inhibit adenylate cyclase and PKA have been shown to inhibit tumor growth. In addition, cAMP-elevating agents, such as forskolin, can not only induce cancer cell death, but also directly inhibit cell proliferation in some cancer types. In this review, we summarize current understanding of cAMP signaling in cancer biology and immunology and discuss the basis for its context-dependent dual role in oncogenesis. Understanding the precise mechanisms by which cAMP and the TME interact in cancer will be critical for the development of effective therapies. Future studies aimed at investigating the cAMP-cancer axis and its regulation in the TME may provide new insights into the underlying mechanisms of tumorigenesis and lead to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Hongying Zhang
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yongliang Liu
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jieya Liu
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinzhu Chen
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiao Wang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Hui Hua
- Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yangfu Jiang
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
31
|
Kubota-Ishida N, Kaji C, Matsumoto S, Wakabayashi T, Matsuhira T, Okura I, Cho N, Isshiki S, Kumura K, Tabata Y. ME3183, a novel phosphodiesterase-4 inhibitor, exhibits potent anti-inflammatory effects and is well tolerated in a non-clinical study. Eur J Pharmacol 2024; 962:176202. [PMID: 37996010 DOI: 10.1016/j.ejphar.2023.176202] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/25/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023]
Abstract
Phosphodiesterase 4 (PDE4) inhibitors are expected to exhibit efficacy against inflammatory diseases due to their broad pharmacological activity. The launched PDE4 inhibitors apremilast, crisaborole, and roflumilast have not exhibited sufficient inhibitory potential due to poor margins of effectiveness and tolerability. In this report, we describe the non-clinical efficacy, brain translocation, and vomit-inducing effects of ME3183 compared with apremilast. ME3183 showed extensive cytokine suppression in vitro studies using human peripheral blood mononuclear cells and T cells. ME3183 also significantly suppressed skin inflammation in a chronic oxazolone-induced dermatitis model and showed antipruritic effects in a substance P-induced mouse pruritus model. In these in vitro and in vivo studies, ME3183 also significantly suppressed cytokines, and focusing on tumor necrosis factor-α as a psoriasis-related cytokine and interleukin-4 as an atopic dermatitis-related cytokine, ME3183 potently inhibited both cytokines. ME3183 showed in vivo efficacy at lower doses than apremilast. The brain distribution of ME3183 was sufficiently low in mice and rats. The effective dose of ME3183 for emesis was similar to that of apremilast in ferrets. Given its high-potency inhibitory effects, ME3183 would have a wide margin of efficacy and tolerability. These wide margins demonstrate the effectiveness of ME3183 in treating many inflammatory diseases, such as psoriasis and atopic dermatitis. An on-going phase 2 trial is expected to further demonstrate the efficacy and safety of ME3183.
Collapse
Affiliation(s)
- Natsuki Kubota-Ishida
- R&D Division, Meiji Seika Pharma Co., Ltd., 2-4-16, Kyobashi, Chuo-ku, Tokyo, 104-8002, Japan.
| | - Chizuko Kaji
- R&D Division, Meiji Seika Pharma Co., Ltd., 2-4-16, Kyobashi, Chuo-ku, Tokyo, 104-8002, Japan
| | - Shogo Matsumoto
- R&D Division, Meiji Seika Pharma Co., Ltd., 2-4-16, Kyobashi, Chuo-ku, Tokyo, 104-8002, Japan
| | - Tsubasa Wakabayashi
- R&D Division, Meiji Seika Pharma Co., Ltd., 2-4-16, Kyobashi, Chuo-ku, Tokyo, 104-8002, Japan
| | - Takashi Matsuhira
- R&D Division, Meiji Seika Pharma Co., Ltd., 2-4-16, Kyobashi, Chuo-ku, Tokyo, 104-8002, Japan
| | - Iori Okura
- R&D Division, Meiji Seika Pharma Co., Ltd., 2-4-16, Kyobashi, Chuo-ku, Tokyo, 104-8002, Japan
| | - Naoki Cho
- R&D Division, Meiji Seika Pharma Co., Ltd., 2-4-16, Kyobashi, Chuo-ku, Tokyo, 104-8002, Japan
| | - Satoshi Isshiki
- R&D Division, Meiji Seika Pharma Co., Ltd., 2-4-16, Kyobashi, Chuo-ku, Tokyo, 104-8002, Japan
| | - Ko Kumura
- R&D Division, Meiji Seika Pharma Co., Ltd., 2-4-16, Kyobashi, Chuo-ku, Tokyo, 104-8002, Japan
| | - Yuji Tabata
- R&D Division, Meiji Seika Pharma Co., Ltd., 2-4-16, Kyobashi, Chuo-ku, Tokyo, 104-8002, Japan
| |
Collapse
|
32
|
Blauvelt A, Langley RG, Gordon KB, Silverberg JI, Eyerich K, Sommer MOA, Felding J, Warren RB. Next Generation PDE4 Inhibitors that Selectively Target PDE4B/D Subtypes: A Narrative Review. Dermatol Ther (Heidelb) 2023; 13:3031-3042. [PMID: 37924462 PMCID: PMC10689637 DOI: 10.1007/s13555-023-01054-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/02/2023] [Indexed: 11/06/2023] Open
Abstract
For decades, topical corticosteroids have been the mainstay of treatment for mild-to-moderate inflammatory skin diseases, even though only short-term use is approved for these agents and systemic inflammation is not addressed. Increased understanding of the immunopathogenesis of these conditions, especially for psoriasis and atopic dermatitis, has facilitated the development of antibody-based drugs that neutralize single key cytokines or their associated receptors, such as interleukin (IL)-17A/F, IL-23, and IL-17RA in psoriasis and IL-13 and IL-4Rα in atopic dermatitis. However, oral therapy is still preferred by many patients owing to the ease of use and needle-free administration. Phosphodiesterase 4 (PDE4) inhibitors have been approved for both oral and topical use for inflammatory skin diseases. In this review, we present a summary of an emerging class of selective PDE4B/D inhibitors under clinical development and compare the differences in selectivity of this new generation of PDE4 inhibitors with the less selective currently approved PDE4 inhibitors.
Collapse
Affiliation(s)
- Andrew Blauvelt
- Oregon Medical Research Center, 9495 SW Locust Street, Suite G, Portland, OR, 97223, USA.
| | - Richard G Langley
- Division of Clinical Dermatology and Cutaneous Science, Department of Medicine, Dalhousie University and Nova Scotia Health, Halifax, Canada
| | - Kenneth B Gordon
- Froedtert Hospital and the Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jonathan I Silverberg
- George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Kilian Eyerich
- Technical University of Munich, Munich, Germany
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Morten O A Sommer
- UNION Therapeutics A/S, Hellerup, Denmark
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark (DTU), Lyngby, Denmark
| | | | - Richard B Warren
- Dermatology Centre, Salford Royal NHS Foundation Trust, Manchester NIHR Biomedical Research Centre, The University of Manchester, Manchester, UK
| |
Collapse
|
33
|
Puertas-Umbert L, Alonso J, Hove-Madsen L, Martínez-González J, Rodríguez C. PDE4 Phosphodiesterases in Cardiovascular Diseases: Key Pathophysiological Players and Potential Therapeutic Targets. Int J Mol Sci 2023; 24:17017. [PMID: 38069339 PMCID: PMC10707411 DOI: 10.3390/ijms242317017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
3',5'-cyclic adenosine monophosphate (cAMP) is a second messenger critically involved in the control of a myriad of processes with significant implications for vascular and cardiac cell function. The temporal and spatial compartmentalization of cAMP is governed by the activity of phosphodiesterases (PDEs), a superfamily of enzymes responsible for the hydrolysis of cyclic nucleotides. Through the fine-tuning of cAMP signaling, PDE4 enzymes could play an important role in cardiac hypertrophy and arrhythmogenesis, while it decisively influences vascular homeostasis through the control of vascular smooth muscle cell proliferation, migration, differentiation and contraction, as well as regulating endothelial permeability, angiogenesis, monocyte/macrophage activation and cardiomyocyte function. This review summarizes the current knowledge and recent advances in understanding the contribution of the PDE4 subfamily to cardiovascular function and underscores the intricate challenges associated with targeting PDE4 enzymes as a therapeutic strategy for the management of cardiovascular diseases.
Collapse
Affiliation(s)
- Lídia Puertas-Umbert
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain; (L.P.-U.); (J.A.); (L.H.-M.)
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Judith Alonso
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain; (L.P.-U.); (J.A.); (L.H.-M.)
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain
| | - Leif Hove-Madsen
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain; (L.P.-U.); (J.A.); (L.H.-M.)
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain
| | - José Martínez-González
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain; (L.P.-U.); (J.A.); (L.H.-M.)
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain
| | - Cristina Rodríguez
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain; (L.P.-U.); (J.A.); (L.H.-M.)
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain
| |
Collapse
|
34
|
Latli B, Hrapchak MJ, Tampone TG, Frutos RP, Lee H. Carbon 14 and stable isotope synthesis of two potent and selective phosphodiesterase type 4 inhibitors. J Labelled Comp Radiopharm 2023; 66:353-361. [PMID: 37487707 DOI: 10.1002/jlcr.4054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/26/2023]
Abstract
(R)-2-(4-(Benzo[d]oxazol-2-yl)piperazin-1-yl)-4-((tetrahydro-2H-pyran-4-yl)amino)-6,7-dihydrothieno[3,2-d]pyrimidine 5-oxide (1) and (R)-2-(4-(4-chlorophenoxy)piperidin-1-yl)-4-((tetrahydro-2H-pyran-4-yl)amino)-6,7-dihydrothieno[3,2-d]pyrimidine 5-oxide (2) are two potent and selective inhibitors of phosphodiesterase type 4 (PDE4). In this manuscript, we report the detailed synthesis of these two compounds labeled with carbon 14 and with stable isotopes. The core (R)-4-((tetrahydro-2H-pyran-4-yl)amino)-6,7-dihydrothieno[3,2-d]pyrimidine 5-oxide is common in both inhibitors. In the radioactive synthesis, the carbon 14 atom was introduced in the benzoxazole moiety using [14 C]carbon disulfide to obtain [14 C]-1 in five steps at a 55% overall yield. [14 C]Urea was used to incorporate the carbon 14 atom in two steps in the dihydrothieno[3,2-d]pyrimidine intermediate, which was then transformed in four more steps to [14 C]-2 at a 30% overall yield. Both compounds were isolated with specific activities higher than 54 mCi/mmol, radio- and chemical-purities higher than 99%, and with excellent enantiomeric excess. In the stable isotope synthesis, [2 H8 ]piperazine was used to prepare [2 H8 ]-1 in three steps in 72% overall yield, while [13 C6 ]phenol was used to prepare [13 C6 ]-2 in four steps in 18% overall yield.
Collapse
Affiliation(s)
- Bachir Latli
- The Radiosynthesis Laboratory, Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, USA
| | - Matt J Hrapchak
- The Radiosynthesis Laboratory, Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, USA
| | - Thomas G Tampone
- The Radiosynthesis Laboratory, Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, USA
| | - Rogelio P Frutos
- The Radiosynthesis Laboratory, Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, USA
| | - Heewon Lee
- The Radiosynthesis Laboratory, Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, USA
| |
Collapse
|
35
|
Roy D, Balasubramanian S, Krishnamurthy PT, Sola P, Rymbai E. Phosphodiesterase-4 Inhibition in Parkinson's Disease: Molecular Insights and Therapeutic Potential. Cell Mol Neurobiol 2023; 43:2713-2741. [PMID: 37074485 PMCID: PMC11410141 DOI: 10.1007/s10571-023-01349-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/09/2023] [Indexed: 04/20/2023]
Abstract
Clinicians and researchers are exploring safer and novel treatment strategies for treating the ever-prevalent Parkinson's disease (PD) across the globe. Several therapeutic strategies are used clinically for PD, including dopamine replacement therapy, DA agonists, MAO-B blockers, COMT blockers, and anticholinergics. Surgical interventions such as pallidotomy, particularly deep brain stimulation (DBS), are also employed. However, they only provide temporal and symptomatic relief. Cyclic adenosine monophosphate (cAMP) is one of the secondary messengers involved in dopaminergic neurotransmission. Phosphodiesterase (PDE) regulates cAMP and cGMP intracellular levels. PDE enzymes are subdivided into families and subtypes which are expressed throughout the human body. PDE4 isoenzyme- PDE4B subtype is overexpressed in the substantia nigra of the brain. Various studies have implicated multiple cAMP-mediated signaling cascades in PD, and PDE4 is a common link that can emerge as a neuroprotective and/or disease-modifying target. Furthermore, a mechanistic understanding of the PDE4 subtypes has provided perceptivity into the molecular mechanisms underlying the adverse effects of phosphodiesterase-4 inhibitors (PDE4Is). The repositioning and development of efficacious PDE4Is for PD have gained much attention. This review critically assesses the existing literature on PDE4 and its expression. Specifically, this review provides insights into the interrelated neurological cAMP-mediated signaling cascades involving PDE4s and the potential role of PDE4Is in PD. In addition, we discuss existing challenges and possible strategies for overcoming them.
Collapse
Affiliation(s)
- Dhritiman Roy
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, The Nilgiris, Ooty, 643001, Tamil Nadu, India
| | - Shivaramakrishnan Balasubramanian
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, The Nilgiris, Ooty, 643001, Tamil Nadu, India.
| | - Praveen Thaggikuppe Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, The Nilgiris, Ooty, 643001, Tamil Nadu, India
| | - Piyong Sola
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, The Nilgiris, Ooty, 643001, Tamil Nadu, India
| | - Emdormi Rymbai
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, The Nilgiris, Ooty, 643001, Tamil Nadu, India
| |
Collapse
|
36
|
Jin J, Mazzacuva F, Crocetti L, Giovannoni MP, Cilibrizzi A. PDE4 Inhibitors: Profiling Hits through the Multitude of Structural Classes. Int J Mol Sci 2023; 24:11518. [PMID: 37511275 PMCID: PMC10380597 DOI: 10.3390/ijms241411518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Cyclic nucleotide phosphodiesterases 4 (PDE4) are a family of enzymes which specifically promote the hydrolysis and degradation of cAMP. The inhibition of PDE4 enzymes has been widely investigated as a possible alternative strategy for the treatment of a variety of respiratory diseases, including chronic obstructive pulmonary disease and asthma, as well as psoriasis and other autoimmune disorders. In this context, the identification of new molecules as PDE4 inhibitors continues to be an active field of investigation within drug discovery. This review summarizes the medicinal chemistry journey in the design and development of effective PDE4 inhibitors, analyzed through chemical classes and taking into consideration structural aspects and binding properties, as well as inhibitory efficacy, PDE4 selectivity and the potential as therapeutic agents.
Collapse
Affiliation(s)
- Jian Jin
- Institute of Pharmaceutical Science, King's College London, Stamford Street, London SE1 9NH, UK
| | - Francesca Mazzacuva
- School of Health, Sport and Bioscience, University of East London, London E15 4LZ, UK
| | - Letizia Crocetti
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, Via Ugo Schiff 6, Sesto Fiorentino, University of Florence, 50019 Florence, Italy
| | - Maria Paola Giovannoni
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, Via Ugo Schiff 6, Sesto Fiorentino, University of Florence, 50019 Florence, Italy
| | - Agostino Cilibrizzi
- Institute of Pharmaceutical Science, King's College London, Stamford Street, London SE1 9NH, UK
- Centre for Therapeutic Innovation, University of Bath, Bath BA2 7AY, UK
| |
Collapse
|
37
|
Du B, Luo M, Ren C, Zhang J. PDE4 inhibitors for disease therapy: advances and future perspective. Future Med Chem 2023; 15:1185-1207. [PMID: 37470147 DOI: 10.4155/fmc-2023-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023] Open
Abstract
The PDE4 enzyme family is specifically responsible for hydrolyzing cAMP and plays a vital role in regulating the balance of second messengers. As a crucial regulator in signal transduction, PDE4 has displayed promising pharmacological targets in a variety of diseases, for which its inhibitors have been used as a therapeutic strategy. This review provides a comprehensive summary of the development of PDE4 inhibitors in the past few years, along with the structure, clinical and research progress of multiple inhibitors of PDE4, focusing on the research and development strategies of PDE4 inhibitors. We hope our analysis will provide a significant reference for the future development of new PDE4 inhibitors.
Collapse
Affiliation(s)
- Baochan Du
- Department of Neurology, Joint Research Institution of Altitude Health, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Min Luo
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Changyu Ren
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu, Sichuan, 611130, China
| | - Jifa Zhang
- Department of Neurology, Joint Research Institution of Altitude Health, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
38
|
Paes D, Schepers M, Willems E, Rombaut B, Tiane A, Solomina Y, Tibbo A, Blair C, Kyurkchieva E, Baillie GS, Ricciarelli R, Brullo C, Fedele E, Bruno O, van den Hove D, Vanmierlo T, Prickaerts J. Ablation of specific long PDE4D isoforms increases neurite elongation and conveys protection against amyloid-β pathology. Cell Mol Life Sci 2023; 80:178. [PMID: 37306762 DOI: 10.1007/s00018-023-04804-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 06/13/2023]
Abstract
Inhibition of phosphodiesterase 4D (PDE4D) enzymes has been investigated as therapeutic strategy to treat memory problems in Alzheimer's disease (AD). Although PDE4D inhibitors are effective in enhancing memory processes in rodents and humans, severe side effects may hamper their clinical use. PDE4D enzymes comprise different isoforms, which, when targeted specifically, can increase treatment efficacy and safety. The function of PDE4D isoforms in AD and in molecular memory processes per se has remained unresolved. Here, we report the upregulation of specific PDE4D isoforms in transgenic AD mice and hippocampal neurons exposed to amyloid-β. Furthermore, by means of pharmacological inhibition and CRISPR-Cas9 knockdown, we show that the long-form PDE4D3, -D5, -D7, and -D9 isoforms regulate neuronal plasticity and convey resilience against amyloid-β in vitro. These results indicate that isoform-specific, next to non-selective, PDE4D inhibition is efficient in promoting neuroplasticity in an AD context. Therapeutic effects of non-selective PDE4D inhibitors are likely achieved through actions on long isoforms. Future research should identify which long PDE4D isoforms should be specifically targeted in vivo to both improve treatment efficacy and reduce side effects.
Collapse
Affiliation(s)
- Dean Paes
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Department of Neuroscience, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Melissa Schepers
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Department of Neuroscience, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Emily Willems
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Department of Neuroscience, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Ben Rombaut
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Department of Neuroscience, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Assia Tiane
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Department of Neuroscience, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Yevgeniya Solomina
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Amy Tibbo
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Connor Blair
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Elka Kyurkchieva
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - George S Baillie
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Roberta Ricciarelli
- Section of General Pathology, Department of Experimental Medicine, School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Chiara Brullo
- Section of Medicinal Chemistry, Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa, Italy
| | - Ernesto Fedele
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Section of Pharmacology and Toxicology, Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa, Italy
| | - Olga Bruno
- Section of Medicinal Chemistry, Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa, Italy
| | - Daniel van den Hove
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Tim Vanmierlo
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.
- Department of Neuroscience, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium.
| | - Jos Prickaerts
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
39
|
Schepers M, Malheiro A, Gamardo AS, Hellings N, Prickaerts J, Moroni L, Vanmierlo T, Wieringa P. Phosphodiesterase (PDE) 4 inhibition boosts Schwann cell myelination in a 3D regeneration model. Eur J Pharm Sci 2023; 185:106441. [PMID: 37004962 DOI: 10.1016/j.ejps.2023.106441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/14/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
Phosphodiesterase 4 (PDE4) inhibitors have been extensively researched for their anti-inflammatory and neuroregenerative properties. Despite the known neuroplastic and myelin regenerative properties of nonselective PDE4 inhibitors on the central nervous system, the direct impact on peripheral remyelination and subsequent neuroregeneration has not yet been investigated. Therefore, to examine the possible therapeutic effect of PDE4 inhibition on peripheral glia, we assessed the differentiation of primary rat Schwann cells exposed in vitro to the PDE4 inhibitor roflumilast. To further investigate the differentiation promoting effects of roflumilast, we developed a 3D model of rat Schwann cell myelination that closely resembles the in vivo situation. Using these in vitro models, we demonstrated that pan-PDE4 inhibition using roflumilast significantly promoted differentiation of Schwann cells towards a myelinating phenotype, as indicated by the upregulation of myelin proteins, including MBP and MAG. Additionally, we created a unique regenerative model comprised of a 3D co-culture of rat Schwann cells and human iPSC-derived neurons. Schwann cells treated with roflumilast enhanced axonal outgrowth of iPSC-derived nociceptive neurons, which was accompanied by an accelerated myelination speed, thereby showing not only phenotypic but also functional changes of roflumilast-treated Schwann cells. Taken together, the PDE4 inhibitor roflumilast possesses a therapeutic benefit to stimulate Schwann cell differentiation and, subsequently myelination, as demonstrated in the biologically relevant in vitro platform used in this study. These results can aid in the development of novel PDE4 inhibition-based therapies in the advancement of peripheral regenerative medicine.
Collapse
Affiliation(s)
- Melissa Schepers
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, MD 6200, the Netherlands; Biomedical Research Institute, Hasselt University, Hasselt 3500, Belgium; University MS Center (UMSC) Hasselt-Pelt, Hasselt, Belgium
| | - Afonso Malheiro
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, the Netherlands
| | - Adrián Seijas Gamardo
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, the Netherlands
| | - Niels Hellings
- Biomedical Research Institute, Hasselt University, Hasselt 3500, Belgium; University MS Center (UMSC) Hasselt-Pelt, Hasselt, Belgium
| | - Jos Prickaerts
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, MD 6200, the Netherlands
| | - Lorenzo Moroni
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, the Netherlands
| | - Tim Vanmierlo
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, MD 6200, the Netherlands; Biomedical Research Institute, Hasselt University, Hasselt 3500, Belgium; University MS Center (UMSC) Hasselt-Pelt, Hasselt, Belgium.
| | - Paul Wieringa
- University MS Center (UMSC) Hasselt-Pelt, Hasselt, Belgium
| |
Collapse
|
40
|
Yang X, Long F, Jia W, Zhang M, Su G, Liao M, Zeng Z, Chen W, Chen J. Artesunate inhibits PDE4 leading to intracellular cAMP accumulation, reduced ERK/MAPK signaling, and blockade of influenza A virus vRNP nuclear export. Antiviral Res 2023; 215:105635. [PMID: 37192683 DOI: 10.1016/j.antiviral.2023.105635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/18/2023]
Abstract
Influenza A viruses (IAV) have been a major cause of mortality. Given the potential for future deadly pandemics, effective drugs are needed for the treatment of severe influenzas, such as those caused by H5N1 IAV. The anti-malaria drugs artemisinin and its derivates, including artesunate (AS), have been reported to have broad antiviral activities. Here, we showed AS's antiviral activity against H5N1, H1N1, H3N2 and oseltamivir-resistant influenza A(H1N1)virus in vitro. Moreover, we showed that AS treatment significantly protected mice from lethal challenges with H1N1 and H5N1 IAV. Strikingly, the combination of AS and peramivir treatment significantly improved survival outcomes compared to their monotherapy with either AS or peramivir. Furthermore, we demonstrated mechanistically that AS affected the later stages of IAV replication and limited nuclear export of viral ribonucleoprotein (vRNP) complexes. In A549 cells, we demonstrated for the first time that AS treatment induced cAMP accumulation via inhibiting PDE4, and consequently reduced ERK phosphorylation and blocked IAV vRNP export, and thus suppressed IAV replication. These AS's effects were reversed by the pre-treatment with a cAMP inhibitor SQ22536. Our findings suggest that AS could serve as a novel IAV inhibitor by interfering vRNP nuclear export to prevent and treat IAV infection.
Collapse
Affiliation(s)
- Xia Yang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou, 510642, China; College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Feixiang Long
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou, 510642, China; College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Weixin Jia
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Mingxin Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou, 510642, China; College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Guanming Su
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou, 510642, China; College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Zhenling Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou, 510642, China; College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Weisan Chen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia.
| | - Jianxin Chen
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou, 510642, China; College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
| |
Collapse
|
41
|
Campolo F, Assenza MR, Venneri MA, Barbagallo F. Once upon a Testis: The Tale of Cyclic Nucleotide Phosphodiesterase in Testicular Cancers. Int J Mol Sci 2023; 24:ijms24087617. [PMID: 37108780 PMCID: PMC10146088 DOI: 10.3390/ijms24087617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Phosphodiesterases are key regulators that fine tune the intracellular levels of cyclic nucleotides, given their ability to hydrolyze cAMP and cGMP. They are critical regulators of cAMP/cGMP-mediated signaling pathways, modulating their downstream biological effects such as gene expression, cell proliferation, cell-cycle regulation but also inflammation and metabolic function. Recently, mutations in PDE genes have been identified and linked to human genetic diseases and PDEs have been demonstrated to play a potential role in predisposition to several tumors, especially in cAMP-sensitive tissues. This review summarizes the current knowledge and most relevant findings regarding the expression and regulation of PDE families in the testis focusing on PDEs role in testicular cancer development.
Collapse
Affiliation(s)
- Federica Campolo
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Maria Rita Assenza
- Faculty of Medicine and Surgery, "Kore" University of Enna, 94100 Enna, Italy
| | - Mary Anna Venneri
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Federica Barbagallo
- Faculty of Medicine and Surgery, "Kore" University of Enna, 94100 Enna, Italy
| |
Collapse
|
42
|
Schepers M, Paes D, Tiane A, Rombaut B, Piccart E, van Veggel L, Gervois P, Wolfs E, Lambrichts I, Brullo C, Bruno O, Fedele E, Ricciarelli R, Ffrench-Constant C, Bechler ME, van Schaik P, Baron W, Lefevere E, Wasner K, Grünewald A, Verfaillie C, Baeten P, Broux B, Wieringa P, Hellings N, Prickaerts J, Vanmierlo T. Selective PDE4 subtype inhibition provides new opportunities to intervene in neuroinflammatory versus myelin damaging hallmarks of multiple sclerosis. Brain Behav Immun 2023; 109:1-22. [PMID: 36584795 DOI: 10.1016/j.bbi.2022.12.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/17/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS) characterized by focal inflammatory lesions and prominent demyelination. Even though the currently available therapies are effective in treating the initial stages of disease, they are unable to halt or reverse disease progression into the chronic progressive stage. Thus far, no repair-inducing treatments are available for progressive MS patients. Hence, there is an urgent need for the development of new therapeutic strategies either targeting the destructive immunological demyelination or boosting endogenous repair mechanisms. Using in vitro, ex vivo, and in vivo models, we demonstrate that selective inhibition of phosphodiesterase 4 (PDE4), a family of enzymes that hydrolyzes and inactivates cyclic adenosine monophosphate (cAMP), reduces inflammation and promotes myelin repair. More specifically, we segregated the myelination-promoting and anti-inflammatory effects into a PDE4D- and PDE4B-dependent process respectively. We show that inhibition of PDE4D boosts oligodendrocyte progenitor cells (OPC) differentiation and enhances (re)myelination of both murine OPCs and human iPSC-derived OPCs. In addition, PDE4D inhibition promotes in vivo remyelination in the cuprizone model, which is accompanied by improved spatial memory and reduced visual evoked potential latency times. We further identified that PDE4B-specific inhibition exerts anti-inflammatory effects since it lowers in vitro monocytic nitric oxide (NO) production and improves in vivo neurological scores during the early phase of experimental autoimmune encephalomyelitis (EAE). In contrast to the pan PDE4 inhibitor roflumilast, the therapeutic dose of both the PDE4B-specific inhibitor A33 and the PDE4D-specific inhibitor Gebr32a did not trigger emesis-like side effects in rodents. Finally, we report distinct PDE4D isoform expression patterns in human area postrema neurons and human oligodendroglia lineage cells. Using the CRISPR-Cas9 system, we confirmed that pde4d1/2 and pde4d6 are the key targets to induce OPC differentiation. Collectively, these data demonstrate that gene specific PDE4 inhibitors have potential as novel therapeutic agents for targeting the distinct disease processes of MS.
Collapse
Affiliation(s)
- Melissa Schepers
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium; Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands; University MS Center (UMSC) Hasselt-Pelt, Hasselt, Belgium
| | - Dean Paes
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium; Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Assia Tiane
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium; Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands; University MS Center (UMSC) Hasselt-Pelt, Hasselt, Belgium
| | - Ben Rombaut
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium; Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Elisabeth Piccart
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Lieve van Veggel
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium; Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands; University MS Center (UMSC) Hasselt-Pelt, Hasselt, Belgium
| | - Pascal Gervois
- Department of Cardio and Organ Systems, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Esther Wolfs
- Department of Cardio and Organ Systems, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Ivo Lambrichts
- Department of Cardio and Organ Systems, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Chiara Brullo
- Department of Pharmacy, Section of Medicinal Chemistry, University of Genoa, Genova, Italy
| | - Olga Bruno
- Department of Pharmacy, Section of Medicinal Chemistry, University of Genoa, Genova, Italy
| | - Ernesto Fedele
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Genova, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Roberta Ricciarelli
- IRCCS Ospedale Policlinico San Martino, Genova, Italy; Department of Experimental Medicine, Section of General Pathology, University of Genova, Genova, Italy
| | - Charles Ffrench-Constant
- MRC Centre for Regenerative Medicine and MS Society Edinburgh Centre, Edinburgh bioQuarter, University of Edinburgh, Edinburgh, UK
| | - Marie E Bechler
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Pauline van Schaik
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Wia Baron
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Evy Lefevere
- Rewind Therapeutics NV, Gaston Geenslaan 2, B-3001, Leuven, Belgium
| | - Kobi Wasner
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Anne Grünewald
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Catherine Verfaillie
- Stem Cell Institute, Department of Development and Regeneration, KU Leuven, Belgium
| | - Paulien Baeten
- University MS Center (UMSC) Hasselt-Pelt, Hasselt, Belgium; Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Bieke Broux
- University MS Center (UMSC) Hasselt-Pelt, Hasselt, Belgium; Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Paul Wieringa
- MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration department, Maastricht University, Maastricht, the Netherlands
| | - Niels Hellings
- University MS Center (UMSC) Hasselt-Pelt, Hasselt, Belgium; Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Jos Prickaerts
- Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Tim Vanmierlo
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium; Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands; University MS Center (UMSC) Hasselt-Pelt, Hasselt, Belgium.
| |
Collapse
|
43
|
Moderate-Intensity Intermittent Training Alters the DNA Methylation Pattern of PDE4D Gene in Hippocampus to Improve the Ability of Spatial Learning and Memory in Aging Rats Reduced by D-Galactose. Brain Sci 2023; 13:brainsci13030422. [PMID: 36979232 PMCID: PMC10046546 DOI: 10.3390/brainsci13030422] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/21/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023] Open
Abstract
(1) Background: Aging is the main risk factor for most neurodegenerative diseases, and the inhibition of Phosphodiesterase 4(PDE4) is considered a potential target for the treatment of neurological diseases. The purpose of this study was to investigate the inhibitory effect of moderate-intensity intermittent training (MIIT) on PDE4 in the hippocampus of rats with D-galactose (D-gal)-induced cognitive impairment, and the possible mechanism of improving spatial learning and memory. (2) Methods: the aging rats were treated with D-Gal (150 mg/kg/day, for 6 weeks). The aging rats were treated with MIIT for exercise intervention (45 min/day, 5 days/week, for 8 weeks). The Morris water maze test was performed before and after MIIT to evaluate the spatial learning and memory ability, then to observe the synaptic ultrastructure of the hippocampus CA1 region, to detect the expression of synaptic-related protein synaptophysin (SYP) and postsynaptic density protein 95 (PSD95), and to detect the expression of PDE4 subtypes, cAMP, and its signal pathway protein kinase A (PKA)/cAMP response element binding protein (CREB)/brain-derived neurotrophic factor (BDNF), and the PDE4 methylation level. (3) Results: we found that MIIT for 8 weeks alleviated the decline in spatial learning and memory ability, and improved the synaptic structure of the hippocampus and the expression of synaptic protein SYP and PSD95 in D-Gal aging rats. To elucidate the mechanism of MIIT, we analyzed the expression of PDE4 isoforms PDE4A/PDE4B/PDE4D, cAMP, and the signaling pathway PKA/CREB/BDNF, which play an important role in memory consolidation and maintenance. The results showed that 8 weeks of MIIT significantly up-regulated cAMP, PKA, p-CREB, and BDNF protein expression, and down-regulated PDE4D mRNA and protein expression. Methylation analysis of the PDE4D gene showed that several CG sites in the promoter and exon1 regions were significantly up-regulated. (4) Conclusions: MIIT can improve the synaptic structure of the hippocampus CA1 area and improve the spatial learning and memory ability of aging rats, which may be related to the specific regulation of the PDE4D gene methylation level and inhibition of PDE4D expression.
Collapse
|
44
|
Miao Y, Peng L, Chen Z, Hu Y, Tao L, Yao Y, Wu Y, Yang D, Xu T. Recent advances of Phosphodiesterase 4B in cancer. Expert Opin Ther Targets 2023; 27:121-132. [PMID: 36803246 DOI: 10.1080/14728222.2023.2183496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
INTRODUCTION Phosphodiesterase 4B (PDE4B) is a crucial enzyme in the phosphodiesterases (PDEs), acting as a regulator of cyclic adenosine monophosphate (cAMP). It is involved in cancer process through PDE4B/cAMP signaling pathway. Cancer occurs and develops with the regulation of PDE4B in the body, suggesting that PDE4B is a promising therapeutic target. AREAS COVERED This review covereed the function and mechanism of PDE4B in cancer. We summarized the possible clinical applications of PDE4B, and highlighted the possible ways to develop clinical applications of PDE4B inhibitors. We also discussed some common PDEs inhibitors, and expected the development of combined targeting PDE4B and other PDEs drugs in the future. EXPERT OPINION The existing research and clinical data can strongly prove the role of PDE4B in cancer. PDE4B inhibition can effectively increase cell apoptosis, inhibit cell proliferation, transformation, migration, etc., indicating that PDE4B inhibition can effectively inhibit the development of cancer. Other PDEs may antagonize or coordinate this effect. As for the further study on the relationship between PDE4B and other PDEs in cancer, it is still a challenge to develop multi-targeted PDEs inhibitors.
Collapse
Affiliation(s)
- Yu Miao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui Province, China.,Anhui Key Laboratory of Bioactivity of Natural Products, Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, Anhui Province, China
| | - Li Peng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui Province, China.,Anhui Key Laboratory of Bioactivity of Natural Products, Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, Anhui Province, China
| | - Zhaolin Chen
- Department of Pharmacy, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Hospital, Hefei, Anhui Province, China
| | - Ying Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui Province, China.,Anhui Key Laboratory of Bioactivity of Natural Products, Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, Anhui Province, China
| | - Liangsong Tao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui Province, China.,Anhui Key Laboratory of Bioactivity of Natural Products, Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, Anhui Province, China
| | - Yan Yao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui Province, China.,Anhui Key Laboratory of Bioactivity of Natural Products, Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, Anhui Province, China
| | - Yincui Wu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui Province, China.,Anhui Key Laboratory of Bioactivity of Natural Products, Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, Anhui Province, China
| | - Dashuai Yang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui Province, China.,Anhui Key Laboratory of Bioactivity of Natural Products, Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, Anhui Province, China
| | - Tao Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui Province, China.,Anhui Key Laboratory of Bioactivity of Natural Products, Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, Anhui Province, China
| |
Collapse
|
45
|
Irelan D, Boyd A, Fiedler E, Lochmaier P, McDonough W, Aragon IV, Rachek L, Abou Saleh L, Richter W. Acute PDE4 Inhibition Induces a Transient Increase in Blood Glucose in Mice. Int J Mol Sci 2023; 24:ijms24043260. [PMID: 36834669 PMCID: PMC9963939 DOI: 10.3390/ijms24043260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
cAMP-phosphodiesterase 4 (PDE4) inhibitors are currently approved for the treatment of inflammatory diseases. There is interest in expanding the therapeutic application of PDE4 inhibitors to metabolic disorders, as their chronic application induces weight loss in patients and animals and improves glucose handling in mouse models of obesity and diabetes. Unexpectedly, we have found that acute PDE4 inhibitor treatment induces a temporary increase, rather than a decrease, in blood glucose levels in mice. Blood glucose levels in postprandial mice increase rapidly upon drug injection, reaching a maximum after ~45 min, and returning to baseline within ~4 h. This transient blood glucose spike is replicated by several structurally distinct PDE4 inhibitors, suggesting that it is a class effect of PDE4 inhibitors. PDE4 inhibitor treatment does not reduce serum insulin levels, and the subsequent injection of insulin potently reduces PDE4 inhibitor-induced blood glucose levels, suggesting that the glycemic effects of PDE4 inhibition are independent of changes in insulin secretion and/or sensitivity. Conversely, PDE4 inhibitors induce a rapid reduction in skeletal muscle glycogen levels and potently inhibit the uptake of 2-deoxyglucose into muscle tissues. This suggests that reduced glucose uptake into muscle tissue is a significant contributor to the transient glycemic effects of PDE4 inhibitors in mice.
Collapse
Affiliation(s)
- Daniel Irelan
- Department of Biochemistry & Molecular Biology and Center for Lung Biology, Whiddon College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Abigail Boyd
- Department of Biochemistry & Molecular Biology and Center for Lung Biology, Whiddon College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Edward Fiedler
- Department of Biochemistry & Molecular Biology and Center for Lung Biology, Whiddon College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Peter Lochmaier
- Department of Biochemistry & Molecular Biology and Center for Lung Biology, Whiddon College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Will McDonough
- Department of Biochemistry & Molecular Biology and Center for Lung Biology, Whiddon College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Ileana V. Aragon
- Department of Biochemistry & Molecular Biology and Center for Lung Biology, Whiddon College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Lyudmila Rachek
- Department of Pharmacology, Whiddon College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Lina Abou Saleh
- Department of Biochemistry & Molecular Biology and Center for Lung Biology, Whiddon College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Wito Richter
- Department of Biochemistry & Molecular Biology and Center for Lung Biology, Whiddon College of Medicine, University of South Alabama, Mobile, AL 36688, USA
- Correspondence:
| |
Collapse
|
46
|
Targeting phosphodiesterase 4 as a therapeutic strategy for cognitive improvement. Bioorg Chem 2022; 130:106278. [DOI: 10.1016/j.bioorg.2022.106278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/22/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022]
|
47
|
Non-Selective PDE4 Inhibition Induces a Rapid and Transient Decrease of Serum Potassium in Mice. BIOLOGY 2022; 11:biology11111582. [PMID: 36358283 PMCID: PMC9687940 DOI: 10.3390/biology11111582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
Simple Summary Inhibitors of phosphodiesterase 4 (PDE4), a group of isoenzymes that hydrolyze and inactivate the second messenger cAMP, produce promising therapeutic benefits, including anti-inflammatory and memory-enhancing effects. Here, we report that, unexpectedly, PDE4 inhibitors also reduce serum potassium levels in mice. As both the total potassium content of the body, as well as the distribution of potassium between intra- and extracellular compartments, are critical for normal cellular functions, we further explored this observation. Several structurally distinct PDE4 inhibitors reduce serum potassium levels in mice, suggesting it is a class effect of these drugs. Serum potassium levels decrease within 15 min of drug injection, suggesting that PDE4 inhibition lowers serum potassium levels by promoting a transcellular shift of potassium from the blood into cells. This shift is a characteristically fast process, compared to a loss of total-body potassium via the kidneys or digestive tract (e.g., diarrhea). Indeed, stimulating cAMP synthesis with β-adrenoceptor agonists is known to rapidly shift potassium into cells, and PDE4 inhibitors appear to mimic this process by preventing PDE4-mediated cAMP degradation. Our findings reveal that the various acute physiologic effects of PDE4 inhibitors are paralleled and/or may be affected by reduced serum potassium levels. Abstract The analysis of blood samples from mice treated with the PDE4 inhibitor Roflumilast revealed an unexpected reduction in serum potassium levels, while sodium and chloride levels were unaffected. Treatment with several structurally distinct PAN-PDE4 inhibitors, including Roflumilast, Rolipram, RS25344, and YM976 dose-dependently reduced serum potassium levels, indicating the effect is a class-characteristic property. PDE4 inhibition also induces hypothermia and hypokinesia in mice. However, while general anesthesia abrogates these effects of PDE4 inhibitors, potassium levels decrease to similar extents in both awake as well as in fully anesthetized mice. This suggests that the hypokalemic effects of PDE4 inhibitors occur independently of hypothermia and hypokinesia. PDE4 inhibition reduces serum potassium within 15 min of treatment, consistent with a rapid transcellular shift of potassium. Catecholamines promote the uptake of potassium into the cell via increased cAMP signaling. PDE4 appears to modulate these adrenoceptor-mediated effects, as PDE4 inhibition has no additional effects on serum potassium in the presence of saturating doses of the β-adrenoceptor agonist Isoprenaline or the α2-blocker Yohimbine, and is partially blocked by pre-treatment with the β-blocker Propranolol. Together, these data suggest that PDE4 inhibitors reduce serum potassium levels by modulating the adrenergic regulation of cellular potassium uptake.
Collapse
|
48
|
Liu H, Wang Q, Huang Y, Deng J, Xie X, Zhu J, Yuan Y, He YM, Huang YY, Luo HB, He X. Discovery of novel PDE4 inhibitors targeting the M-pocket from natural mangostanin with improved safety for the treatment of Inflammatory Bowel Diseases. Eur J Med Chem 2022; 242:114631. [PMID: 35985255 DOI: 10.1016/j.ejmech.2022.114631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/19/2022] [Accepted: 07/24/2022] [Indexed: 11/28/2022]
Abstract
Inflammatory Bowel Diseases (IBDs) are chronic disorders with iterative intestinal mucosal inflammation which remain unmet medical needs. PDE4 inhibitors were reported to be novel anti-IBD agents, but their clinical use was hampered by side effects such as emesis and nausea. Herein, structure-based discovery of natural mangostanin (1) targeting the M-pocket resulted in the novel and potent PDE4 inhibitor 22d (IC50 = 3.5 nM) and favorable physico-chemical properties. X-Ray study revealed that 22d interacted tightly with the M-pocket and maintained the key interactions between PDE4 and roflumilast. Worthy to note that compounds 22d and our previously reported 4e and 18a, originating from mangostanin, all caused no emesis on beagle dogs at the oral dose of 10 mg/kg, confirming the safety superiority of scaffold in mangostanin derivatives over that in positive roflumilast. Finally, administration of 22d (5.0 mg/kg, twice-daily) exhibited comparable anti-IBD effects to the positive control dipyridamole (25.0 mg/kg, twice-daily) in the dextran sulfate sodium (DSS)-induced IBD mice model, indicating its potential as a novel anti-IBD agent.
Collapse
Affiliation(s)
- Haobai Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Quan Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, PR China
| | - Yue Huang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, PR China
| | - Jinhui Deng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Xi Xie
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Jiaqi Zhu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Yijun Yuan
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China; Song Li' Academician Workstation of Hainan University (School of Pharmaceutical Sciences), Yazhou Bay, Sanya, 572000, China
| | - Yue-Ming He
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Yi-You Huang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, PR China; Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China; Song Li' Academician Workstation of Hainan University (School of Pharmaceutical Sciences), Yazhou Bay, Sanya, 572000, China.
| | - Hai-Bin Luo
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, PR China; Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China; Song Li' Academician Workstation of Hainan University (School of Pharmaceutical Sciences), Yazhou Bay, Sanya, 572000, China.
| | - Xixin He
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China.
| |
Collapse
|
49
|
Crocetti L, Floresta G, Cilibrizzi A, Giovannoni MP. An Overview of PDE4 Inhibitors in Clinical Trials: 2010 to Early 2022. Molecules 2022; 27:4964. [PMID: 35956914 PMCID: PMC9370432 DOI: 10.3390/molecules27154964] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
Since the early 1980s, phosphodiesterase 4 (PDE4) has been an attractive target for the treatment of inflammation-based diseases. Several scientific advancements, by both academia and pharmaceutical companies, have enabled the identification of many synthetic ligands for this target, along with the acquisition of precise information on biological requirements and linked therapeutic opportunities. The transition from pre-clinical to clinical phase was not easy for the majority of these compounds, mainly due to their significant side effects, and it took almost thirty years for a PDE4 inhibitor to become a drug i.e., Roflumilast, used in the clinics for the treatment of chronic obstructive pulmonary disease. Since then, three additional compounds have reached the market a few years later: Crisaborole for atopic dermatitis, Apremilast for psoriatic arthritis and Ibudilast for Krabbe disease. The aim of this review is to provide an overview of the compounds that have reached clinical trials in the last ten years, with a focus on those most recently developed for respiratory, skin and neurological disorders.
Collapse
Affiliation(s)
- Letizia Crocetti
- NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Giuseppe Floresta
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Agostino Cilibrizzi
- Institute of Pharmaceutical Science, King’s College London, Stamford Street, London SE1 9NH, UK
| | - Maria Paola Giovannoni
- NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
50
|
Computational investigation of the dynamic control of cAMP signaling by PDE4 isoform types. Biophys J 2022; 121:2693-2711. [PMID: 35717559 DOI: 10.1016/j.bpj.2022.06.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/03/2022] [Accepted: 06/14/2022] [Indexed: 11/24/2022] Open
Abstract
Cyclic adenosine monophosphate (cAMP) is a generic signaling molecule that, through precise control of its signaling dynamics, exerts distinct cellular effects. Consequently, aberrant cAMP signaling can have detrimental effects. Phosphodiesterase 4 (PDE4) enzymes profoundly control cAMP signaling and comprise different isoform types of which the enzymatic activity is modulated by differential feedback mechanisms. Because these feedback dynamics are non-linear and occur coincidentally, their effects are difficult to examine experimentally, but can be well simulated computationally. Through understanding the role of PDE4 isoform types in regulating cAMP signaling, PDE4-targeted therapeutic strategies can be better specified. Here, we established a computational model to study how feedback mechanisms on different PDE4 isoform types lead to dynamic, isoform-specific control of cAMP signaling. Ordinary differential equations describing cAMP dynamics were implemented in the VirtualCell (VCell) environment. Simulations indicated that long PDE4 isoforms exert the most profound control on oscillatory cAMP signaling, as opposed to the PDE4-mediated control of single cAMP input pulses. Moreover, elevating cAMP levels or decreasing PDE4 levels revealed different effects on downstream signaling. Together these results underline that cAMP signaling is distinctly regulated by different PDE4 isoform types and that this isoform-specificity should be considered in both computational and experimental follow-up studies to better define PDE4 enzymes as therapeutic targets in diseases in which cAMP signaling is aberrant.
Collapse
|