1
|
Wu D, Eugenis I, Hu C, Kim S, Kanugovi A, Yue S, Wheeler JR, Fathali I, Feeley S, Shrager JB, Huang NF, Rando TA. Bioinstructive scaffolds enhance stem cell engraftment for functional tissue regeneration. NATURE MATERIALS 2025:10.1038/s41563-025-02212-y. [PMID: 40247020 DOI: 10.1038/s41563-025-02212-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/17/2025] [Indexed: 04/19/2025]
Abstract
Stem cell therapy is a promising approach for tissue regeneration after traumatic injury, yet current applications are limited by inadequate control over the fate of stem cells after transplantation. Here we introduce a bioconstruct engineered for the staged release of growth factors, tailored to direct different phases of muscle regeneration. The bioconstruct is composed of a decellularized extracellular matrix containing polymeric nanocapsules sequentially releasing basic fibroblast growth factor and insulin-like growth factor 1, which promote the proliferation and differentiation of muscle stem cells, respectively. When applied to a volumetric muscle loss defect in an animal model, the bioconstruct enhances myofibre formation, angiogenesis, innervation and functional restoration. Further, it promotes functional muscle formation with human or aged murine muscle stem cells, highlighting the translational potential of this bioconstruct. Overall, these results highlight the potential of bioconstructs with orchestrated growth factor release for stem cell therapies in traumatic injury.
Collapse
Affiliation(s)
- Di Wu
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Department of Neurology, UCLA, Los Angeles, CA, USA
| | - Ioannis Eugenis
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Caroline Hu
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Soochi Kim
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Department of Neurology, UCLA, Los Angeles, CA, USA
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, Republic of Korea
| | - Abhijnya Kanugovi
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Joshua R Wheeler
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Iman Fathali
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | | | - Joseph B Shrager
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Ngan F Huang
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
- The Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Thomas A Rando
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
- Broad Stem Cell Research Center, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Albeitawi S, Bani-Mousa SU, Jarrar B, Aloqaily I, Al-Shlool N, Alsheyab G, Kassab A, Qawasmi B, Awaisheh A. Associations Between Follicular Fluid Biomarkers and IVF/ICSI Outcomes in Normo-Ovulatory Women-A Systematic Review. Biomolecules 2025; 15:443. [PMID: 40149979 PMCID: PMC11940193 DOI: 10.3390/biom15030443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025] Open
Abstract
(1) Background: The follicular fluid (FF) comprises a large portion of ovarian follicles, and serves as both a communication and growth medium for oocytes, and thus should be representative of the metabolomic status of the follicle. This review aims to explore FF biomarkers as well as their effects on fertilization, oocyte, and embryo development, and later on implantation and maintenance of pregnancy. (2) Methods: This review was registered in the PROSPERO database with the ID: CRD42025633101. We parsed PubMed, Scopus, and Google Scholar for research on the effects of different FF biomarkers on IVF/ICSI outcomes in normo-ovulatory women. Included studies were assessed for risk of bias using the NOS scale. Data were extracted and tabulated by two independent researchers. (3) Results: 22 included articles, with a sample size range of 31 to 414 and a median of 60 participants, contained 61 biomarkers, including proteins, growth factors, steroid and polypeptide hormones, inflammation and oxidative stress markers, amino acids, vitamins, lipids of different types, and miRNAs. Most of the biomarkers studied had significant effects on IVF/ICSI outcomes, and seem to have roles in various cellular pathways responsible for oocyte and embryo growth, implantation, placental formation, and maintenance of pregnancy. The FF metabolome also seems to be interconnected, with its various components influencing the levels and activities of each other through feedback loops. (4) Conclusions: FF biomarkers can be utilized for diagnostic and therapeutic purposes in IVF; however, further studies are required for choosing the most promising ones due to heterogeneity of results. Widespread adoption of LC-MS and miRNA microarrays can help quantify a representative FF metabolome, and we see great potential for in vitro supplementation (IVS) of some FF biomarkers in improving IVF/ICSI outcomes.
Collapse
Affiliation(s)
- Soha Albeitawi
- Department of Pediatrics, Family Medicine and Obstetrics & Gynecology, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; (B.J.); (I.A.); (N.A.-S.); (G.A.); (A.K.); (B.Q.); (A.A.)
| | | | - Baraa Jarrar
- Department of Pediatrics, Family Medicine and Obstetrics & Gynecology, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; (B.J.); (I.A.); (N.A.-S.); (G.A.); (A.K.); (B.Q.); (A.A.)
| | - Ibrahim Aloqaily
- Department of Pediatrics, Family Medicine and Obstetrics & Gynecology, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; (B.J.); (I.A.); (N.A.-S.); (G.A.); (A.K.); (B.Q.); (A.A.)
| | - Nour Al-Shlool
- Department of Pediatrics, Family Medicine and Obstetrics & Gynecology, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; (B.J.); (I.A.); (N.A.-S.); (G.A.); (A.K.); (B.Q.); (A.A.)
| | - Ghaida Alsheyab
- Department of Pediatrics, Family Medicine and Obstetrics & Gynecology, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; (B.J.); (I.A.); (N.A.-S.); (G.A.); (A.K.); (B.Q.); (A.A.)
| | - Ahmad Kassab
- Department of Pediatrics, Family Medicine and Obstetrics & Gynecology, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; (B.J.); (I.A.); (N.A.-S.); (G.A.); (A.K.); (B.Q.); (A.A.)
| | - Baha’a Qawasmi
- Department of Pediatrics, Family Medicine and Obstetrics & Gynecology, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; (B.J.); (I.A.); (N.A.-S.); (G.A.); (A.K.); (B.Q.); (A.A.)
| | - Abdalrahman Awaisheh
- Department of Pediatrics, Family Medicine and Obstetrics & Gynecology, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; (B.J.); (I.A.); (N.A.-S.); (G.A.); (A.K.); (B.Q.); (A.A.)
| |
Collapse
|
3
|
Smith TJ. Controversies Surrounding IGF-I Receptor Involvement in Thyroid-Associated Ophthalmopathy. Thyroid 2025; 35:232-244. [PMID: 39909461 DOI: 10.1089/thy.2024.0606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Background: Thyroid-associated ophthalmopathy (TAO, aka thyroid eye disease [TED], Graves' orbitopathy) remains poorly understood and inadequately treated since its initial description. It is disfiguring, can threaten vision, and represents an autoimmune process closely associated with thyroid disease. Unambiguous connections linking TAO to the glandular maladies of Graves' disease (GD) remain incompletely clarified. Detecting the thyrotropin receptor (TSHR) in periocular tissues suggests that this cell-surface protein represents a shared autoantigen with the thyroid gland, but we now know that its expression is ubiquitous. Most patients with TAO have relatively high circulating levels of activating anti-TSHR autoantibodies. Emerging more recently is the importance of insulin-like growth factor I receptor (IGF-IR) in the pathogenesis of TAO. The TSHR/IGF-IR signaling complex apparently drives circulating fibrocytes and the unique phenotypes of fibroblasts inhabiting the TAO orbit (GD-OF). Methods: The PubMed database was scanned for articles dating back to the earliest time periods covered. Keywords used for primary searches included thyroid-associated ophthalmopathy, Graves' orbitopathy, TED, orbit, TSH receptor, IGF-I receptor, and autoimmune thyroid disease. Secondary searches used numerous other search terms. Results: GD-OF have been characterized extensively as being particularly responsive to the immunological factors and key effectors in TAO pathogenesis. Both TSHR and IGF-IR are overexpressed by GD-OF and CD34+ fibrocytes and form a signaling complex. They are activated through this TSHR/IGF-IR complex to produce large amounts of hyaluronan and express multiple cytokines. This complex mediates cellular responses to pathogenic IgGs in TAO. CD34+ fibrocytes and CD34+ OF also express relatively high levels of multiple thyroid autoantigens. Identifying IGF-IR as a key component of a receptor complex and its intertwining signaling activities with those of TSHR has led to a targeted medical therapy for TAO. This therapy involves the selective systemic inhibition of IGF-IR. Conclusions: Much has been learned over the preceding decades about the pathogenesis of TAO. Among these is the identification of IGF-IR as a pivotal component underpinning the disease. This has led directly to development of an effective targeted therapy. Important gaps in our understanding persist, and current therapies have limitations. Thus, despite these advancements, considerably more remains to be achieved.
Collapse
Affiliation(s)
- Terry J Smith
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, Ann Arbor, Michigan, USA
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
4
|
S. DSN, Sundararajan V. Gene expression analysis reveals mir-29 as a linker regulatory molecule among rheumatoid arthritis, inflammatory bowel disease, and dementia: Insights from systems biology approach. PLoS One 2025; 20:e0316584. [PMID: 39813219 PMCID: PMC11734936 DOI: 10.1371/journal.pone.0316584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/12/2024] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a degenerative autoimmune disease, often managed through symptomatic treatment. The co-occurrence of the reported extra-articular comorbidities such as inflammatory bowel disease (IBD), and dementia may complicate the pathology of the disease as well as the treatment strategies. Therefore, in our study, we aim to elucidate the key genes, and regulatory elements implicated in the progression and association of these diseases, thereby highlighting the linked potential therapeutic targets. METHODOLOGY Ten microarray datasets each for RA, and IBD, and nine datasets for dementia were obtained from Gene Expression Omnibus. We identified common differentially expressed genes (DEGs) and constructed a gene-gene interaction network. Subsequently, topology analysis for hub gene identification, cluster and functional enrichment, and regulatory network analysis were performed. The hub genes were then validated using independent microarray datasets from Gene Expression Omnibus. RESULTS A total of 198 common DEGs were identified from which CD44, FN1, IGF1, COL1A2, and POSTN were identified as the hub genes in our study. These hub genes were mostly enriched in significant processes and pathways like tissue development, collagen binding, cell adhesion, regulation of ERK1/2 cascade, PI3K-AKT signaling, and cell surface receptor signaling. Key transcription factors TWIST2, CEBPA, EP300, HDAC1, HDAC2, NFKB1, RELA, TWIST1, and YY1 along with the miRNA hsa-miR-29 were found to regulate the expression of the hub genes significantly. Among these regulatory molecules, miR-29 emerged as a significant linker molecule, bridging the molecular mechanisms of RA, IBD, and dementia. Validation of our hub genes demonstrated a similar expression trend in the independent datasets used for our study. CONCLUSION Our study underscores the significant role of miR-29 in modulating the expression of hub genes and the associated transcription factors, which are crucial in the comorbidity status of RA, dementia, and IBD. This regulatory mechanism highlights miR-29 as a key player in the pathogenesis of these comorbid diseases.
Collapse
Affiliation(s)
- Devi Soorya Narayana S.
- Integrative Multiomics Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Vino Sundararajan
- Integrative Multiomics Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
5
|
Huang H, Zhao L, Kong X, Zhu J, Lu J. Vinegar powder exerts immunomodulatory effects through alleviating immune system damage and protecting intestinal integrity and microbiota homeostasis. FOOD BIOSCI 2025; 63:105687. [DOI: 10.1016/j.fbio.2024.105687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Ortega MA, Fraile-Martinez O, García-Montero C, Diaz-Pedrero R, Lopez-Gonzalez L, Monserrat J, Barrena-Blázquez S, Alvarez-Mon MA, Lahera G, Alvarez-Mon M. Understanding immune system dysfunction and its context in mood disorders: psychoneuroimmunoendocrinology and clinical interventions. Mil Med Res 2024; 11:80. [PMID: 39681901 DOI: 10.1186/s40779-024-00577-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/01/2024] [Indexed: 12/18/2024] Open
Abstract
Mood disorders include a set of psychiatric manifestations of increasing prevalence in our society, being mainly represented by major depressive disorder (MDD) and bipolar disorder (BD). The etiopathogenesis of mood disorders is extremely complex, with a wide spectrum of biological, psychological, and sociocultural factors being responsible for their appearance and development. In this sense, immune system dysfunction represents a key mechanism in the onset and pathophysiology of mood disorders, worsening mainly the central nervous system (neuroinflammation) and the periphery of the body (systemic inflammation). However, these alterations cannot be understood separately, but as part of a complex picture in which different factors and systems interact with each other. Psychoneuroimmunoendocrinology (PNIE) is the area responsible for studying the relationship between these elements and the impact of mind-body integration, placing the immune system as part of a whole. Thus, the dysfunction of the immune system is capable of influencing and activating different mechanisms that promote disruption of the psyche, damage to the nervous system, alterations to the endocrine and metabolic systems, and disruption of the microbiota and intestinal ecosystem, as well as of other organs and, in turn, all these mechanisms are responsible for inducing and enhancing the immune dysfunction. Similarly, the clinical approach to these patients is usually multidisciplinary, and the therapeutic arsenal includes different pharmacological (for example, antidepressants, antipsychotics, and lithium) and non-pharmacological (i.e., psychotherapy, lifestyle, and electroconvulsive therapy) treatments. These interventions also modulate the immune system and other elements of the PNIE in these patients, which may be interesting to understand the therapeutic success or failure of these approaches. In this sense, this review aims to delve into the relationship between immune dysfunction and mood disorders and their integration in the complex context of PNIE. Likewise, an attempt will be made to explore the effects on the immune system of different strategies available in the clinical approach to these patients, in order to identify the mechanisms described and their possible uses as biomarkers.
Collapse
Affiliation(s)
- Miguel A Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain.
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain.
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain.
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain.
| | - Raul Diaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
| | - Laura Lopez-Gonzalez
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
| | - Silvestra Barrena-Blázquez
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
- Department of Nursing and Physiotherapy, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain
| | - Miguel Angel Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031, Madrid, Spain
| | - Guillermo Lahera
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
- Psychiatry Service, Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias, 28806, Alcalá de Henares, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
- Immune System Diseases-Rheumatology and Internal Medicine Service, University Hospital Príncipe de Asturias, CIBEREHD, 28806, Alcalá de Henares, Spain
| |
Collapse
|
7
|
Wang M, Liu L. Advances of IGF-1R inhibitors in Graves' ophthalmopathy. Int Ophthalmol 2024; 44:435. [PMID: 39578269 DOI: 10.1007/s10792-024-03358-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/08/2024] [Indexed: 11/24/2024]
Abstract
Graves' ophthalmopathy is the most common extra-thyroidal organ manifestation of Graves' disease. The mainstay of clinical treatment is glucocorticoids; however, side effects and relapse are common problems, and current treatment options cannot alter the disease progression. IGF-1R is an important component of the signaling pathway in Graves' ophthalmopathy, and downstream signaling of IGF-1 and IGF-1R plays a role in many immune-related diseases, possibly leading to disease occurrence through changes in immune phenotype and protein synthesis. Teprotumumab is a human monoclonal antibody targeting the insulin-like growth factor-I receptor (IGF-1R). Clinical trials have shown that teprotumumab reduces proptosis better than placebo, and may be beneficial for patients with worsening disease after steroid cessation. In this review, we discuss the role and prospects of IGF-1R inhibitors in thyroid-associated ophthalmopathy.
Collapse
Affiliation(s)
- Meilan Wang
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong, China
| | - Lian Liu
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
8
|
Zhang W, Lee A, Tiwari AK, Yang MQ. Characterizing the Tumor Microenvironment and Its Prognostic Impact in Breast Cancer. Cells 2024; 13:1518. [PMID: 39329702 PMCID: PMC11429566 DOI: 10.3390/cells13181518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
The tumor microenvironment (TME) is crucial in cancer development and therapeutic response. Immunotherapy is increasingly recognized as a critical component of cancer treatment. While immunotherapies have shown efficacy in various cancers, including breast cancer, patient responses vary widely. Some patients receive significant benefits, while others experience minimal or no improvement. This disparity underscores the complexity and diversity of the immune system. In this study, we investigated the immune landscape and cell-cell communication within the TME of breast cancer through integrated analysis of bulk and single-cell RNA sequencing data. We established profiles of tumor immune infiltration that span across a broad spectrum of adaptive and innate immune cells. Our clustering analysis of immune infiltration identified three distinct patient groups: high T cell abundance, moderate infiltration, and low infiltration. Patients with low immune infiltration exhibited the poorest survival rates, while those in the moderate infiltration group showed better outcomes than those with high T cell abundance. Moreover, the high cell abundance group was associated with a greater tumor burden and higher rates of TP53 mutations, whereas the moderate infiltration group was characterized by a lower tumor burden and elevated PIK3CA mutations. Analysis of an independent single-cell RNA-seq breast cancer dataset confirmed the presence of similar infiltration patterns. Further investigation into ligand-receptor interactions within the TME unveiled significant variations in cell-cell communication patterns among these groups. Notably, we found that the signaling pathways SPP1 and EGF were exclusively active in the low immune infiltration group, suggesting their involvement in immune suppression. This work comprehensively characterizes the composition and dynamic interplay in the breast cancer TME. Our findings reveal associations between the extent of immune infiltration and clinical outcomes, providing valuable prognostic information for patient stratification. The unique mutations and signaling pathways associated with different patient groups offer insights into the mechanisms underlying diverse tumor immune infiltration and the formation of an immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Wenjuan Zhang
- MidSouth Bioinformatics Center and Joint Bioinformatics Graduate Program, University of Arkansas for Medical Sciences, Little Rock, AR 72204, USA
| | - Alex Lee
- Biology Department, University of Arkansas at Little Rock, Little Rock, AR 72204, USA
| | - Amit K. Tiwari
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Mary Qu Yang
- MidSouth Bioinformatics Center and Joint Bioinformatics Graduate Program, University of Arkansas for Medical Sciences, Little Rock, AR 72204, USA
| |
Collapse
|
9
|
Wang X, Cao L, Liu S, Zhou Y, Zhou J, Zhao W, Gao S, Liu R, Shi Y, Shao C, Fang J. The critical roles of IGFs in immune modulation and inflammation. Cytokine 2024; 183:156750. [PMID: 39243567 DOI: 10.1016/j.cyto.2024.156750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/31/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Insulin-like growth factors (IGFs) are crucial for embryonic and postnatal growth and development, influencing cell survival, metabolism, myogenesis, and cancer progression. Many studies have demonstrated that IGFs also play prominent roles in the modulation of both innate and adaptive immune systems during inflammation. Strikingly, IGFs dictate the phenotype and functional properties of macrophages and T cells. Furthermore, the interplay between IGFs and inflammatory cytokines may generate tissue-protective properties during inflammation. Herein, we review the recent advances on the dialogue between immune cells and IGFs, especially zooming in on the significance of immunomodulatory properties in inflammatory conditions, cancer and autoimmune diseases. The investigation of IGFs may have broad clinical implications.
Collapse
Affiliation(s)
- Xin Wang
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Lijuan Cao
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China; Department of Experimental Medicine and Biochemical Sciences, TOR, University of Rome "Tor Vergata", Rome, Italy
| | - Shisong Liu
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yipeng Zhou
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Jiarui Zhou
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Wenxuan Zhao
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Shengqi Gao
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Rui Liu
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China; Department of Experimental Medicine and Biochemical Sciences, TOR, University of Rome "Tor Vergata", Rome, Italy
| | - Yufang Shi
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China; Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Changshun Shao
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China.
| | - Jiankai Fang
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
10
|
Adasheva DA, Serebryanaya DV. IGF Signaling in the Heart in Health and Disease. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1402-1428. [PMID: 39245453 DOI: 10.1134/s0006297924080042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/11/2024] [Accepted: 06/22/2024] [Indexed: 09/10/2024]
Abstract
One of the most vital processes of the body is the cardiovascular system's proper operation. Physiological processes in the heart are regulated by the balance of cardioprotective and pathological mechanisms. The insulin-like growth factor system (IGF system, IGF signaling pathway) plays a pivotal role in regulating growth and development of various cells and tissues. In myocardium, the IGF system provides cardioprotective effects as well as participates in pathological processes. This review summarizes recent data on the role of IGF signaling in cardioprotection and pathogenesis of various cardiovascular diseases, as well as analyzes severity of these effects in various scenarios.
Collapse
Affiliation(s)
- Daria A Adasheva
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Daria V Serebryanaya
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| |
Collapse
|
11
|
Dec P, Żyłka M, Burszewski P, Modrzejewski A, Pawlik A. Recent Advances in the Use of Stem Cells in Tissue Engineering and Adjunct Therapies for Tendon Reconstruction and Future Perspectives. Int J Mol Sci 2024; 25:4498. [PMID: 38674084 PMCID: PMC11050411 DOI: 10.3390/ijms25084498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Due to their function, tendons are exposed to acute injuries. This type of damage to the musculoskeletal system represents a challenge for clinicians when natural regeneration and treatment methods do not produce the expected results. Currently, treatment is long and associated with long-term complications. In this review, we discuss the use of stem cells in the treatment of tendons, including how to induce appropriate cell differentiation based on gene therapy, growth factors, tissue engineering, proteins involved in regenerative process, drugs and three-dimensional (3D) structures. A multidirectional approach as well as the incorporation of novel components of the therapy will improve the techniques used and benefit patients with tendon injuries in the future.
Collapse
Affiliation(s)
- Paweł Dec
- Plastic and Reconstructive Surgery Department, 109 Military Hospital, 71-422 Szczecin, Poland; (P.D.); (M.Ż.); (P.B.)
| | - Małgorzata Żyłka
- Plastic and Reconstructive Surgery Department, 109 Military Hospital, 71-422 Szczecin, Poland; (P.D.); (M.Ż.); (P.B.)
| | - Piotr Burszewski
- Plastic and Reconstructive Surgery Department, 109 Military Hospital, 71-422 Szczecin, Poland; (P.D.); (M.Ż.); (P.B.)
| | | | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| |
Collapse
|
12
|
Yi H, Chen G, Qiu S, Maxwell JT, Lin G, Criswell T, Zhang Y. Urine-derived stem cells genetically modified with IGF1 improve muscle regeneration. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2024; 12:64-87. [PMID: 38736619 PMCID: PMC11087207 DOI: 10.62347/qskh2686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/18/2024] [Indexed: 05/14/2024]
Abstract
OBJECTIVE In this study we aimed to determine the impact of human urine derived stem cells (USC) and genetically modified USC that were designed to overexpress myogenic growth factor IGF1 (USCIGF), on the regenerative capacity of cardiotoxin (CTX)-injured murine skeletal muscle. METHODS We overexpressed IGF1 in USC and investigated the alterations in myogenic capacity and regenerative function in cardiotoxin-injured muscle tissues. RESULTS Compared with USC alone, USCIGF1 activated the IGF1-Akt-mTOR signaling pathway, significantly improved myogenic differentiation capacity in vitro, and enhanced the secretion of myogenic growth factors and cytokines. In addition, IGF1 overexpression increased the ability of USC to fuse with skeletal myocytes to form myotubes, regulated the pro-regenerative immune response and inflammatory cytokines, and increased myogenesis in an in vivo model of skeletal muscle injury. CONCLUSION Overall, USC genetically modified to overexpress IGF1 significantly enhanced skeletal muscle regeneration by regulating myogenic differentiation, paracrine effects, and cell fusion, as well as by modulating immune responses in injured skeletal muscles in vivo. This study provides a novel perspective for evaluating the myogenic function of USC as a nonmyogenic cell source in skeletal myogenesis. The combination of USC and IGF1 expression has the potential to provide a novel efficient therapy for skeletal muscle injury and associated muscular defects in patients with urinary incontinence.
Collapse
Affiliation(s)
- Hualin Yi
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of MedicineWinston Salem, North Carolina, USA
- Department of Spine Surgery and Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Sun Yat-sen University First Affiliated HospitalGuangzhou, Guangdong, China
| | - Gang Chen
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and ScienceXiangyang, Hubei, China
| | - Shuai Qiu
- Department of Microsurgery and Orthopedic Trauma, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, Guangdong, China
| | - Joshua T Maxwell
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of MedicineWinston Salem, North Carolina, USA
| | - Guiting Lin
- Department of Urology, University of CaliforniaSan Francisco, California, USA
| | - Tracy Criswell
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of MedicineWinston Salem, North Carolina, USA
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of MedicineWinston Salem, North Carolina, USA
| |
Collapse
|
13
|
Mo C, Tong T, Guo Y, Li Z, Zhong L. Growth hormone-secreting pituitary adenoma combined with Graves' disease: retrospective case series and literature review. Endocr Connect 2024; 13:e230439. [PMID: 38349236 PMCID: PMC10959044 DOI: 10.1530/ec-23-0439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/13/2024] [Indexed: 03/05/2024]
Abstract
Purpose The coexistence of growth hormone-secreting pituitary adenoma (GHPA) and Graves' disease (GD) is rare. This study aimed to investigate the relationship between growth hormone (GH)/insulin-like growth factor 1 (IGF-1) levels and thyroid function in patients with GHPA combined with GD and to explore the underlying mechanisms. Methods Eleven patients with GHPA combined with GD during 2015-2022 were collected by searching the medical record system of Beijing Tiantan Hospital, Capital Medical University. Changes in GH/IGF-1 levels and thyroid function were compared before and after the application of antithyroid drugs (ATD) and before and after transsphenoidal surgery (TSS) or somatostatin analog (SSA) treatment, respectively. Results After the application of ATD, with the decrease of thyroid hormone levels, GH/IGF-1 levels also decreased gradually. In patients without ATD application, after surgery or SSA treatment, thyroid hormone levels decreased as GH/IGF-1 decreased. Conclusion Hyperthyroidism due to GD promotes the secretion of GH/IGF-1, and when thyroid hormone levels were decreased by the use of ATD, GH and IGF-1 levels were also decreased, suggesting that thyroid hormones may influence the synthesis and secretion of GH/IGF-1. The use of ATD to control thyrotoxicosis before TSS is not only beneficial in reducing the risk of anesthesia but may help to promote biochemical control of GHPA. On the other hand, high levels of GH/IGF-1 in patients with GHPA also exacerbate GD hyperthyroidism, which is ameliorated by a decrease in GH/IGF-1 levels by TSS or SSA treatment, suggesting that the GH-IGF-1 axis promotes growth, thyroid function, and thyroid hormone metabolism.
Collapse
Affiliation(s)
- Caiyan Mo
- Department of Endocrinology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tao Tong
- Department of Endocrinology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ying Guo
- Department of Endocrinology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zheng Li
- Department of Endocrinology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Liyong Zhong
- Department of Endocrinology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
Yanar KE, Gür C, Değirmençay Ş, Aydın Ö, Aktaş MS, Baysal S. Insulin-like growth factor-1 expression levels in pro-inflammatory response in calves with neonatal systemic inflammatory response syndrome. Vet Immunol Immunopathol 2024; 268:110706. [PMID: 38159440 DOI: 10.1016/j.vetimm.2023.110706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/13/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
The objective of this study was to investigate the mRNA expression of insulin-like growth factor-1 (IGF-1), pro-inflammatory cytokines (IL-1β, IL-6, IL-18, and TNF-α), serum immunoglobulin profiles (IgG and IgM), and lipid peroxidation status (MDA) in relation to pro-inflammatory cytokines. A case-controlled, prospective, and observational investigation was completed on 85 calves. Total RNA was isolated from whole blood samples of both the SIRS and healthy calves, followed by reverse transcription into cDNA. The resulting cDNAs were mixed with iTaq Universal SYBR Green Supermix and primers specific to the relevant genes using the Rotor-Gene Q instrument. After the reaction was completed, gene expressions were normalised against β-actin using the 2-ΔΔCT method. The mRNA levels of pro-inflammatory cytokines namely (IL-1β [SIRS: 2.15 ± 0.55, Control: 1.13 ± 0.62; P = 0.001], IL-6 [SIRS: 2.82 ± 0.52, Control: 0.91 ± 0.11; P < 0.001], IL-18 [SIRS: 1.92 ± 0.41, Control: 0.99 ± 0.13; P < 0.001], and TNF-α [SIRS: 2.59 ± 0.28, Control: 0.93 ± 0.09; P < 0.001]) and IGF-1 (SIRS: 3.55 ± 0.55, Control: 0.91 ± 0.15; P < 0.001) were up-regulated in calves with SIRS, while serum IgG (SIRS: 4.16 ± 0.26, Control: 1.73 ± 0.17; P < 0.001), IgM (SIRS: 1.55 ± 0.11, Control: 1.09 ± 0.13; P < 0.001), and MDA levels (SIRS: 41.12 ± 3.48, Control: 3.76 ± 0.81; P < 0.001) increased significantly in these calves. Furthermore, significant (P < 0.01) positive correlations were found in calves with SIRS in relation to the expression levels of IL-1β, IL-6, IL-18, TNF-α, IGF-1, serum immunoglobulins, and MDA levels. These results suggest that IGF-1 could be a valuable pro-inflammatory marker, considering its high positive correlation with the expression levels of pro-inflammatory cytokines (IL-1β, IL-6, IL-18, and TNF-α) and markers (MDA, IgG, and IgM) in calves with SIRS.
Collapse
Affiliation(s)
- Kerim Emre Yanar
- Department of Internal Medicine, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
| | - Cihan Gür
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Şükrü Değirmençay
- Department of Internal Medicine, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Ömer Aydın
- Department of Internal Medicine, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Mustafa Sinan Aktaş
- Department of Internal Medicine, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Sümeyye Baysal
- Department of Internal Medicine, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| |
Collapse
|
15
|
Bayati P, Taherian M, Mojtabavi N. Immunomodulatory effects of the induced pluripotent stem cells through expressing IGF-related factors and IL-10 in vitro. Int J Immunopathol Pharmacol 2024; 38:3946320241276899. [PMID: 39162714 PMCID: PMC11337182 DOI: 10.1177/03946320241276899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/04/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Induced Pluripotent Stem Cells (IPSCs) represent an innovative strategy for addressing challenging diseases, including various rheumatologic conditions. Aside from their regenerative capacities, some studies have shown the potential of these cells in the modulation of inflammatory responses. The underlying mechanisms by which they exert their effects have yet to be fully comprehended. Therefore, we aimed to explore the gene expression linked to the IGF pathway as well as IL-10 and TGF-β, which are known to exert immunomodulatory effects. METHODS A C57/Bl6 pregnant mouse was used for obtaining mouse embryonic fibroblasts (MEFs), then the IPSCs were induced using lentiviral vectors expressing the pluripotency genes (OCT4, SOX2, KLF1, and c-MYC). Cells were cultured for 72 h in DMEM high glucose plus leukemia inhibitory factor; Evaluating the gene expression was conducted using specific primers for Igf1, Igf2, Igfbp3, Igfbp4, Irs1, Il-10, and Tgf-β genes, as well as SYBR green qPCR master mix. The data were analyzed using the 2-ΔΔCT method and were compared by employing the t test; the results were plotted using GraphPad PRISM software. MEFs were utilized as controls. RESULTS Gene expression analyses revealed that Igf-1, Igf-bp3, Igf-bp4, and Il-10 were significantly overexpressed (p ≤ .01), while Igf-2 and Tgf-b genes were significantly downregulated in the lysates from IPSCs in comparison with the control MEFs. The Irs1 gene expression was not altered significantly. CONCLUSION IPSCs are potentially capable of modulating inflammatory responses through the expression of various anti-inflammatory mediators from the IGF signaling, as well as IL-10. This discovery uncovers a previously unknown dimension of IPSCs' therapeutic effects, potentially leading to more advanced in vivo research and subsequent clinical trials.
Collapse
Affiliation(s)
- Paria Bayati
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Marjan Taherian
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Nazanin Mojtabavi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Li Y, He C, Liu R, Xiao Z, Sun B. Stem cells therapy for diabetes: from past to future. Cytotherapy 2023; 25:1125-1138. [PMID: 37256240 DOI: 10.1016/j.jcyt.2023.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/05/2023] [Accepted: 04/24/2023] [Indexed: 06/01/2023]
Abstract
Diabetes mellitus is a chronic disease of carbohydrate metabolism characterized by uncontrolled hyperglycemia due to the body's impaired ability to produce or respond to insulin. Oral or injectable exogenous insulin and its analogs cannot mimic endogenous insulin secreted by healthy individuals, and pancreatic and islet transplants face a severe shortage of sources and transplant complications, all of which limit the widespread use of traditional strategies in diabetes treatment. We are now in the era of stem cells and their potential in ameliorating human disease. At the same time, the rapid development of gene editing and cell-encapsulation technologies has added to the wings of stem cell therapy. However, there are still many unanswered questions before stem cell therapy can be applied clinically to patients with diabetes. In this review, we discuss the progress of strategies to obtain insulin-producing cells from different types of stem cells, the application of gene editing in stem cell therapy for diabetes, as well as summarize the current advanced cell encapsulation technologies in diabetes therapy and look forward to the future development of stem cell therapy in diabetes.
Collapse
Affiliation(s)
- Yumin Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Cong He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China; Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital,The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Rui Liu
- Department of Genetic Engineering, College of Natural Science, University of Suwon, Kyunggi-Do, Republic of Korea
| | - Zhongdang Xiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.
| | - Bo Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.
| |
Collapse
|
17
|
Ghiasi H, Khaldari M, Taherkhani R. Identification of hub genes associated with somatic cell score in dairy cow. Trop Anim Health Prod 2023; 55:349. [PMID: 37796357 DOI: 10.1007/s11250-023-03766-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 09/19/2023] [Indexed: 10/06/2023]
Abstract
CONTEXT Somatic cell count (SCC) is used as an indicator of udder health. The log transformation of SCC is called somatic cell score (SCS). AIM Several QTL and genes have been identified that are associated with SCS. This study aimed to identify the most important genes associated with SCS. METHODS This study compiled 168 genes that were reported to be significantly linked to SCS. Pathway analysis and network analysis were used to identify hub genes. KEY RESULTS Pathway analysis of these genes identified 73 gene ontology (GO) terms associated with SCS. These GO terms are associated with molecular function, biological processes, and cellular components, and the identified pathways are directly or indirectly linked with the immune system. In this study, a gene network was constructed, and from this network, the 17 hub genes (CD4, CXCL8, TLR4, STAT1, TLR2, CXCL9, CCR2, IGF1, LEP, SPP1, GH1, GHR, VWF, TNFSF11, IL10RA, NOD2, and PDGFRB) associated to SCS were identified. The subnetwork analysis yielded 10 clusters, with cluster 1 containing all identified hub genes (except for the VWF gene). CONCLUSION Most hub genes and pathways identified in our study were mainly involved in inflammatory and cytokine responses. IMPLICATIONS Result obtained in current study provides knowledge of the genetic basis and biological mechanisms controlling SCS. Therefore, the identified hub genes may be regarded as the main gene for the genomic selection of mastitis resistance.
Collapse
Affiliation(s)
- Heydar Ghiasi
- Department of Animal Science, Faculty of Agricultural Science, Payame Noor University, Tehran, 19395-4697, Iran.
| | - Majid Khaldari
- Department of Animal Science, Faculty of Agriculture, Lorestan University, Khorram-Abad, Iran
| | - Reza Taherkhani
- Department of Animal Science, Faculty of Agricultural Science, Payame Noor University, Tehran, 19395-4697, Iran
| |
Collapse
|
18
|
Martens H. Invited Review: Increasing Milk Yield and Negative Energy Balance: A Gordian Knot for Dairy Cows? Animals (Basel) 2023; 13:3097. [PMID: 37835703 PMCID: PMC10571806 DOI: 10.3390/ani13193097] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
The continued increase in milk production during the last century has not been accompanied by an adequate dry matter intake (DMI) by cows, which therefore experience a negative energy balance (NEB). NEB is low and of minor importance at low milk yield (MY), such as for the nutrition of one calf, and under these circumstances is considered "natural". MY and low DMI around parturition are correlated and are the reason for the genetic correlation between increasing MY and increasing NEB up to 2000 MJ or more for 2-3 months postpartum in high-genetic-merit dairy cows. The extension and duration of NEB in high-producing cows cannot be judged as "natural" and are compensated by the mobilization of nutrients, particularly of fat. The released non-esterified fatty acids (NEFAs) overwhelm the metabolic capacity of the cow and lead to the ectopic deposition of NEFAs as triglycerides (TGs) in the liver. The subsequent lipidosis and the concomitant hampered liver functions cause subclinical and clinical ketosis, both of which are associated with "production diseases", including oxidative and endoplasmatic stress, inflammation and immunosuppression. These metabolic alterations are regulated by homeorhesis, with the priority of the physiological function of milk production. The prioritization of one function, namely, milk yield, possibly results in restrictions in other physiological (health) functions under conditions of limited resources (NEB). The hormonal framework for this metabolic environment is the high concentration of growth hormone (GH), the low concentration of insulin in connection with GH-dependent insulin resistance and the low concentration of IGF-1, the so-called GH-IGF-1 axis. The fine tuning of the GH-IGF-1 axis is uncoupled because the expression of the growth hormone receptor (GHR-1A) in the liver is reduced with increasing MY. The uncoupled GH-IGF-1 axis is a serious impairment for the GH-dependent stimulation of gluconeogenesis in the liver with continued increased lipolysis in fat tissue. It facilitates the pathogenesis of lipidosis with ketosis and, secondarily, "production diseases". Unfortunately, MY is still increasing at inadequate DMI with increasing NEB and elevated NEFA and beta-hydroxybutyric acid concentrations under conditions of low glucose, thereby adding health risks. The high incidences of diseases and of early culling and mortality in dairy cows are well documented and cause severe economic problems with a waste of resources and a challenge to the environment. Moreover, the growing public concerns about such production conditions in agriculture can no longer be ignored.
Collapse
Affiliation(s)
- Holger Martens
- Institute of Veterinary Physiology, Free University of Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| |
Collapse
|
19
|
Shapiro MR, Peters LD, Brown ME, Cabello-Kindelan C, Posgai AL, Bayer AL, Brusko TM. Insulin-like Growth Factor-1 Synergizes with IL-2 to Induce Homeostatic Proliferation of Regulatory T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1108-1122. [PMID: 37594278 PMCID: PMC10511790 DOI: 10.4049/jimmunol.2200651] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 08/01/2023] [Indexed: 08/19/2023]
Abstract
IL-2 has been proposed to restore tolerance via regulatory T cell (Treg) expansion in autoimmunity, yet off-target effects necessitate identification of a combinatorial approach allowing for lower IL-2 dosing. We recently reported reduced levels of immunoregulatory insulin-like growth factor-1 (IGF1) during type 1 diabetes progression. Thus, we hypothesized that IGF1 would synergize with IL-2 to expand Tregs. We observed IGF1 receptor was elevated on murine memory and human naive Treg subsets. IL-2 and IGF1 promoted PI3K/Akt signaling in Tregs, inducing thymically-derived Treg expansion beyond either agent alone in NOD mice. Increased populations of murine Tregs of naive or memory, as well as CD5lo polyclonal or CD5hi likely self-reactive, status were also observed. Expansion was attributed to increased IL-2Rγ subunit expression on murine Tregs exposed to IL-2 and IGF1 as compared with IL-2 or IGF1 alone. Assessing translational capacity, incubation of naive human CD4+ T cells with IL-2 and IGF1 enhanced thymically-derived Treg proliferation in vitro, without the need for TCR ligation. We then demonstrated that IGF1 and IL-2 or IL-7, which is also IL-2Rγ-chain dependent, can be used to induce proliferation of genetically engineered naive human Tregs or T conventional cells, respectively. These data support the potential use of IGF1 in combination with common γ-chain cytokines to drive homeostatic T cell expansion, both in vitro and in vivo, for cellular therapeutics and ex vivo gene editing.
Collapse
Affiliation(s)
- Melanie R. Shapiro
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL
| | - Leeana D. Peters
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL
| | - Matthew E. Brown
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL
| | | | - Amanda L. Posgai
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL
| | - Allison L. Bayer
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL
| | - Todd M. Brusko
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL
- Department of Pediatrics, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL
| |
Collapse
|
20
|
Baxter RC. Signaling Pathways of the Insulin-like Growth Factor Binding Proteins. Endocr Rev 2023; 44:753-778. [PMID: 36974712 PMCID: PMC10502586 DOI: 10.1210/endrev/bnad008] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/25/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023]
Abstract
The 6 high-affinity insulin-like growth factor binding proteins (IGFBPs) are multifunctional proteins that modulate cell signaling through multiple pathways. Their canonical function at the cellular level is to impede access of insulin-like growth factor (IGF)-1 and IGF-2 to their principal receptor IGF1R, but IGFBPs can also inhibit, or sometimes enhance, IGF1R signaling either through their own post-translational modifications, such as phosphorylation or limited proteolysis, or by their interactions with other regulatory proteins. Beyond the regulation of IGF1R activity, IGFBPs have been shown to modulate cell survival, migration, metabolism, and other functions through mechanisms that do not appear to involve the IGF-IGF1R system. This is achieved by interacting directly or functionally with integrins, transforming growth factor β family receptors, and other cell-surface proteins as well as intracellular ligands that are intermediates in a wide range of pathways. Within the nucleus, IGFBPs can regulate the diverse range of functions of class II nuclear hormone receptors and have roles in both cell senescence and DNA damage repair by the nonhomologous end-joining pathway, thus potentially modifying the efficacy of certain cancer therapeutics. They also modulate some immune functions and may have a role in autoimmune conditions such as rheumatoid arthritis. IGFBPs have been proposed as attractive therapeutic targets, but their ubiquity in the circulation and at the cellular level raises many challenges. By understanding the diversity of regulatory pathways with which IGFBPs interact, there may still be therapeutic opportunities based on modulation of IGFBP-dependent signaling.
Collapse
Affiliation(s)
- Robert C Baxter
- Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital,St Leonards, NSW 2065, Australia
| |
Collapse
|
21
|
Lathe R, St Clair D. Programmed ageing: decline of stem cell renewal, immunosenescence, and Alzheimer's disease. Biol Rev Camb Philos Soc 2023; 98:1424-1458. [PMID: 37068798 DOI: 10.1111/brv.12959] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/19/2023]
Abstract
The characteristic maximum lifespan varies enormously across animal species from a few hours to hundreds of years. This argues that maximum lifespan, and the ageing process that itself dictates lifespan, are to a large extent genetically determined. Although controversial, this is supported by firm evidence that semelparous species display evolutionarily programmed ageing in response to reproductive and environmental cues. Parabiosis experiments reveal that ageing is orchestrated systemically through the circulation, accompanied by programmed changes in hormone levels across a lifetime. This implies that, like the circadian and circannual clocks, there is a master 'clock of age' (circavital clock) located in the limbic brain of mammals that modulates systemic changes in growth factor and hormone secretion over the lifespan, as well as systemic alterations in gene expression as revealed by genomic methylation analysis. Studies on accelerated ageing in mice, as well as human longevity genes, converge on evolutionarily conserved fibroblast growth factors (FGFs) and their receptors, including KLOTHO, as well as insulin-like growth factors (IGFs) and steroid hormones, as key players mediating the systemic effects of ageing. Age-related changes in these and multiple other factors are inferred to cause a progressive decline in tissue maintenance through failure of stem cell replenishment. This most severely affects the immune system, which requires constant renewal from bone marrow stem cells. Age-related immune decline increases risk of infection whereas lifespan can be extended in germfree animals. This and other evidence suggests that infection is the major cause of death in higher organisms. Immune decline is also associated with age-related diseases. Taking the example of Alzheimer's disease (AD), we assess the evidence that AD is caused by immunosenescence and infection. The signature protein of AD brain, Aβ, is now known to be an antimicrobial peptide, and Aβ deposits in AD brain may be a response to infection rather than a cause of disease. Because some cognitively normal elderly individuals show extensive neuropathology, we argue that the location of the pathology is crucial - specifically, lesions to limbic brain are likely to accentuate immunosenescence, and could thus underlie a vicious cycle of accelerated immune decline and microbial proliferation that culminates in AD. This general model may extend to other age-related diseases, and we propose a general paradigm of organismal senescence in which declining stem cell proliferation leads to programmed immunosenescence and mortality.
Collapse
Affiliation(s)
- Richard Lathe
- Division of Infection Medicine, Chancellor's Building, University of Edinburgh Medical School, Little France, Edinburgh, EH16 4SB, UK
| | - David St Clair
- Institute of Medical Sciences, School of Medicine, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
22
|
Soundrarajan N, Somasundaram P, Kim D, Cho HS, Jeon H, Ahn B, Kang M, Song H, Park C. Effective Healing of Staphylococcus aureus-Infected Wounds in Pig Cathelicidin Protegrin-1-Overexpressing Transgenic Mice. Int J Mol Sci 2023; 24:11658. [PMID: 37511418 PMCID: PMC10380341 DOI: 10.3390/ijms241411658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Antimicrobial peptides (AMPs) are promising alternatives to existing treatments for multidrug-resistant bacteria-infected wounds. Therefore, the effect of protegrin-1 (PG1), a potent porcine AMP with broad-spectrum activity, on wound healing was evaluated. PG1-overexpressing transgenic mice were used as an in vivo model to evaluate its healing efficiency against Staphylococcus aureus-infected (106 colony forming units) wounds. We analyzed the wounds under four specific conditions in the presence or absence of antibiotic treatment. We observed the resolution of bacterial infection and formation of neo-epithelium in S. aureus-infected wounds of the mice, even without antibiotic treatment, whereas all wild-type mice with bacterial infection died within 8 to 10 days due to uncontrolled bacterial proliferation. Interestingly, the wound area on day 7 was smaller (p < 0.01) in PG1 transgenic mice than that in the other groups, including antibiotic-treated mice, suggesting that PG1 exerts biological effects other than bactericidal effect. Additionally, we observed that the treatment of primary epidermal keratinocytes with recombinant PG1 enhanced cell migration in in vitro scratch and cell migration assays. This study contributes to the understanding of broad-spectrum endogenous cathelicidins with potent antimicrobial activities, such as PG1, on wound healing. Furthermore, our findings suggest that PG1 is a potent therapeutic candidate for wound healing.
Collapse
Affiliation(s)
| | - Prathap Somasundaram
- Department of Stem Cells and Regenerative Biology, Konkuk University, Hwayang-dong, Seoul 05029, Republic of Korea
| | - Dohun Kim
- Department of Stem Cells and Regenerative Biology, Konkuk University, Hwayang-dong, Seoul 05029, Republic of Korea
| | - Hye-Sun Cho
- Department of Stem Cells and Regenerative Biology, Konkuk University, Hwayang-dong, Seoul 05029, Republic of Korea
| | - Hyoim Jeon
- Department of Stem Cells and Regenerative Biology, Konkuk University, Hwayang-dong, Seoul 05029, Republic of Korea
| | - Byeonyong Ahn
- Department of Stem Cells and Regenerative Biology, Konkuk University, Hwayang-dong, Seoul 05029, Republic of Korea
| | - Mingue Kang
- Department of Stem Cells and Regenerative Biology, Konkuk University, Hwayang-dong, Seoul 05029, Republic of Korea
| | - Hyuk Song
- Department of Stem Cells and Regenerative Biology, Konkuk University, Hwayang-dong, Seoul 05029, Republic of Korea
| | - Chankyu Park
- Department of Stem Cells and Regenerative Biology, Konkuk University, Hwayang-dong, Seoul 05029, Republic of Korea
| |
Collapse
|
23
|
Hu Y, Chen J, Lin K, Yu X. Efficacy and Safety of intravenous monoclonal antibodies in patients with moderate-to-severe active Graves'ophthalmopathy: a systematic review and meta-analysis. Front Endocrinol (Lausanne) 2023; 14:1160936. [PMID: 37288301 PMCID: PMC10242093 DOI: 10.3389/fendo.2023.1160936] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/08/2023] [Indexed: 06/09/2023] Open
Abstract
Backgrounds The effects of various treatments on Graves' ophthalmopathy (GO) have been studied. As monoclonal antibodies (mAbs) have been proposed for the treatment of moderate to severe GO, direct comparisons between different mAbs are lacking.We therefore conducted this meta-analysis to objectively compare the efficacy and safety of intravenous mAbs. Methods To identify eligible trials, references published before September 2022 were electronically searched in PubMed, Web of Science, Pubmed, Embase,Cochrane Library, CBM, CNKI,Wan-Fang and ICTRP databases.The Newcastle-Ottawa scale (NOS) and the Cochrane Risk of Bias Assessment Tool were used to assess the risk of bias of the original studies.The primary and secondary outcomes were the response and inactivation rates, with the secondary outcomes being the clinical activity score (CAS),the improvement of proptosis and diplopia improvement,and the adverse event rate. Publication bias was evaluated, along with subgroup and sensitivity analyses. Results A total of 12 trials with 448 patients were included. The meta-analysis showed that TCZ (tocilizumab) was most likely to be the best treatment in terms of response according to indirect contrast, followed by TMB (teprotumumab) and RTX (rituximab).TCZ, followed by TMB and RTX, was also most likely to be the best treatment in terms of reducing proptosis. In terms of improving diplopia, TMB was most likely to be the best treatment, followed by TCZ and RTX.TCZ was the highest probability of safety, followed by RTX and TMB. Conclusions Based on the best available evidence,TCZ should be the preferred treatment for moderate to severe GO.In the absence of head-to-head trials,indirect comparisons of treatments are routinely used to estimate the effectiveness of the treatments of interest. In addition,the optimal dose and potential mechanism of action of monoclonal antibodies remain to be established,and it is encouraging that the treatment paradigm for GO may change in the future.This study was designed in accordance with the Preferred Reporting Items for conducting Systematic Reviews and Meta-Analyses (PRISMA)(27). Systematic Review Registration http://www.crd.york.ac.uk/prospero, identifier CRD42023398170.
Collapse
Affiliation(s)
- Yu Hu
- Laboratory of Endocrinology and Metabolism/Department of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Endocrinology and Metabolism, Chengdu First People’s Hospital, Chengdu, China
| | - Jinhua Chen
- Department of General Practice, Chengdu First People’s Hospital, Chengdu, China
| | - Ken Lin
- Department of Endocrinology and Metabolism, Chengdu First People’s Hospital, Chengdu, China
| | - Xijie Yu
- Laboratory of Endocrinology and Metabolism/Department of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
24
|
El-Shafei NH, Zaafan MA, Kandil EA, Sayed RH. Simvastatin ameliorates testosterone-induced prostatic hyperplasia in rats via modulating IGF-1/PI3K/AKT/FOXO signaling. Eur J Pharmacol 2023; 950:175762. [PMID: 37164119 DOI: 10.1016/j.ejphar.2023.175762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/01/2023] [Accepted: 05/01/2023] [Indexed: 05/12/2023]
Abstract
Benign prostatic hyperplasia (BPH) is characterized by non-malignant enlargement of prostate cells causing many lower urinary tract symptoms. BPH pathogenesis includes androgens receptors signaling pathways, oxidative stress, apoptosis, and possibly changes in IGF-1/PI3K/AKT/FOXO pathway. Altogether, modulating IGF-1/PI3K/AKT/FOXO signaling along with regulating oxidative stress and apoptosis might preserve prostatic cells from increased proliferation. Beyond statins' common uses, they also have anti-inflammatory, antioxidant, and anti-tumor effects. This study aims to determine simvastatin's beneficial effect on testosterone-induced BPH. Rats were randomly allocated into four groups, 9 rats each. The control group received olive oil subcutaneously and distilled water orally for 30 consecutive days. The second group received simvastatin (20 mg/kg, p.o.) dissolved in distilled water. The BPH-induced group received testosterone enanthate (3 mg/kg, s.c.) dissolved in olive oil, and the BPH-induced treated group received both simvastatin and testosterone. Testosterone significantly increased prostate index and severity of histopathological alterations in prostate tissues as well as 5-alpha reductase enzyme level in contrast to simvastatin treatment that reversed the testosterone-induced alterations in these parameters. Likewise, testosterone up-regulated IGF-1/PI3K/AKT signaling pathway and down-regulated FOXO transcription factor. It also decreased apoptotic markers level in prostatic tissue BAX, caspase-3, and caspase-9, while it elevated Bcl-2 level. In addition, it alleviated reduced GSH and GPX5 levels and SOD activity. Simvastatin treatment significantly opposed testosterone's effect on all aforementioned parameters. In conclusion, this study demonstrates that simvastatin is a possible treatment for BPH which may be attributed to its effect on IGF-1/PI3K/AKT/FOXO signaling pathway as well as anti-oxidant and apoptotic effects.
Collapse
Affiliation(s)
- Nyera H El-Shafei
- Department of Pharmacology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Egypt
| | - Mai A Zaafan
- Department of Pharmacology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Egypt
| | - Esraa A Kandil
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Rabab H Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|
25
|
Spadaro JZ, Kohli AA. Pathogenesis of Thyroid Eye Disease. Int Ophthalmol Clin 2023; 63:65-80. [PMID: 36963828 DOI: 10.1097/iio.0000000000000464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
|
26
|
Lin W, Lin Z, Lin X, Peng Z, Liang X, Wei S. Integrated analysis and clinical correlation analysis of hub genes, immune infiltration, and potential therapeutic agents related to lupus nephritis. Lupus 2023; 32:633-643. [PMID: 36912500 DOI: 10.1177/09612033231161587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
BACKGROUND Lupus nephritis (LN) is the most common complication of systemic lupus erythematosus (SLE). This study aimed to explore biomarkers, mechanisms, and potential novel agents regarding LN through bioinformatic analysis. METHOD Four expression profiles were downloaded from the Gene Expression Omnibus (GEO) database and differentially expressed genes (DEGs) were acquired. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGGs) pathway enrichment analyses of DEGs were performed using the R software. The protein-protein interaction (PPI) network was developed using the STRING database. Additionally, five algorithms were used to screen out the hub genes. Expression of the hub genes were validated using Nephroseq v5. CIBERSORT was used to evaluate the infiltration of immune cells. Finally, The Drug-Gene Interaction Database was used to predict potential targeted drugs. RESULT FOS and IGF1 were identified as hub genes, with excellent specificity and sensitivity diagnosis of LN. FOS was also related to renal injury. LN patients had lower activated and resting dendritic cells (DCs) and higher M1 macrophages and activated NK cells than healthy control (HC). FOS had a positive correlation with activated mast cells and a negative correlation with resting mast cells. IGF1 had a positive correlation with activated DCs and a negative correlation with monocytes. The targeted drugs were dusigitumab and xentuzumab target for IGF1. CONCLUSION We analyzed the transcriptomic signature of LN along with the landscape of the immune cell. FOS and IGF1 are promising biomarkers for diagnosing and evaluating the progression of LN. The drug-gene interaction analyses provide a list of candidate drugs for the precise treatment of LN.
Collapse
Affiliation(s)
- Weiyi Lin
- Zhujiang Hospital, The Second School of Clinical Medicine, 70570Southern Medical University, Guangzhou, The People's Republic of China
| | - Zien Lin
- Zhujiang Hospital, The Second School of Clinical Medicine, 70570Southern Medical University, Guangzhou, The People's Republic of China
| | - Xiaobing Lin
- Zhujiang Hospital, The Second School of Clinical Medicine, 70570Southern Medical University, Guangzhou, The People's Republic of China
| | - Zhishen Peng
- Zhujiang Hospital, The Second School of Clinical Medicine, 70570Southern Medical University, Guangzhou, The People's Republic of China
| | - Xiaofeng Liang
- Zhujiang Hospital, The Second School of Clinical Medicine, 70570Southern Medical University, Guangzhou, The People's Republic of China
| | - Shanshan Wei
- Department of Dermatology, Zhujiang Hospital, 70570Southern Medical University, Guangzhou, The People's Republic of China
| |
Collapse
|
27
|
Ivan DC, Berve KC, Walthert S, Monaco G, Borst K, Bouillet E, Ferreira F, Lee H, Steudler J, Buch T, Prinz M, Engelhardt B, Locatelli G. Insulin-like growth factor-1 receptor controls the function of CNS-resident macrophages and their contribution to neuroinflammation. Acta Neuropathol Commun 2023; 11:35. [PMID: 36890580 PMCID: PMC9993619 DOI: 10.1186/s40478-023-01535-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 03/10/2023] Open
Abstract
Signaling by insulin-like growth factor-1 (IGF-1) is essential for the development of the central nervous system (CNS) and regulates neuronal survival and myelination in the adult CNS. In neuroinflammatory conditions including multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE), IGF-1 can regulate cellular survival and activation in a context-dependent and cell-specific manner. Notwithstanding its importance, the functional outcome of IGF-1 signaling in microglia/macrophages, which maintain CNS homeostasis and regulate neuroinflammation, remains undefined. As a result, contradictory reports on the disease-ameliorating efficacy of IGF-1 are difficult to interpret, together precluding its potential use as a therapeutic agent. To fill this gap, we here investigated the role of IGF-1 signaling in CNS-resident microglia and border associated macrophages (BAMs) by conditional genetic deletion of the receptor Igf1r in these cell types. Using a series of techniques including histology, bulk RNA sequencing, flow cytometry and intravital imaging, we show that absence of IGF-1R significantly impacted the morphology of both BAMs and microglia. RNA analysis revealed minor changes in microglia. In BAMs however, we detected an upregulation of functional pathways associated with cellular activation and a decreased expression of adhesion molecules. Notably, genetic deletion of Igf1r from CNS-resident macrophages led to a significant weight gain in mice, suggesting that absence of IGF-1R from CNS-resident myeloid cells indirectly impacts the somatotropic axis. Lastly, we observed a more severe EAE disease course upon Igf1r genetic ablation, thus highlighting an important immunomodulatory role of this signaling pathway in BAMs/microglia. Taken together, our work shows that IGF-1R signaling in CNS-resident macrophages regulates the morphology and transcriptome of these cells while significantly decreasing the severity of autoimmune CNS inflammation.
Collapse
Affiliation(s)
- Daniela C Ivan
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, CH-3012, Bern, Switzerland
| | - Kristina Carolin Berve
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, CH-3012, Bern, Switzerland
| | - Sabrina Walthert
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, CH-3012, Bern, Switzerland
| | - Gianni Monaco
- Institute of Neuropathology, University of Freiburg, Freiburg, Germany
| | - Katharina Borst
- Institute of Neuropathology, University of Freiburg, Freiburg, Germany
| | - Elisa Bouillet
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, CH-3012, Bern, Switzerland
| | - Filipa Ferreira
- Institute of Laboratory Animal Science, University of Zurich, Zurich, Switzerland
| | - Henry Lee
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, CH-3012, Bern, Switzerland
| | - Jasmin Steudler
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, CH-3012, Bern, Switzerland
| | - Thorsten Buch
- Institute of Laboratory Animal Science, University of Zurich, Zurich, Switzerland
| | - Marco Prinz
- Institute of Neuropathology, University of Freiburg, Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Britta Engelhardt
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, CH-3012, Bern, Switzerland
| | - Giuseppe Locatelli
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, CH-3012, Bern, Switzerland.
| |
Collapse
|
28
|
Venuto S, Coda ARD, González-Pérez R, Laselva O, Tolomeo D, Storlazzi CT, Liso A, Conese M. IGFBP-6 Network in Chronic Inflammatory Airway Diseases and Lung Tumor Progression. Int J Mol Sci 2023; 24:4804. [PMID: 36902237 PMCID: PMC10003725 DOI: 10.3390/ijms24054804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
The lung is an accomplished organ for gas exchanges and directly faces the external environment, consequently exposing its large epithelial surface. It is also the putative determinant organ for inducing potent immune responses, holding both innate and adaptive immune cells. The maintenance of lung homeostasis requires a crucial balance between inflammation and anti-inflammation factors, and perturbations of this stability are frequently associated with progressive and fatal respiratory diseases. Several data demonstrate the involvement of the insulin-like growth factor (IGF) system and their binding proteins (IGFBPs) in pulmonary growth, as they are specifically expressed in different lung compartments. As we will discuss extensively in the text, IGFs and IGFBPs are implicated in normal pulmonary development but also in the pathogenesis of various airway diseases and lung tumors. Among the known IGFBPs, IGFBP-6 shows an emerging role as a mediator of airway inflammation and tumor-suppressing activity in different lung tumors. In this review, we assess the current state of IGFBP-6's multiple roles in respiratory diseases, focusing on its function in the inflammation and fibrosis in respiratory tissues, together with its role in controlling different types of lung cancer.
Collapse
Affiliation(s)
- Santina Venuto
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | | | - Ruperto González-Pérez
- Allergy Department, Hospital Universitario de Canarias, 38320 Tenerife, Spain
- Severe Asthma Unit, Hospital Universitario de Canarias, 38320 Tenerife, Spain
| | - Onofrio Laselva
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Doron Tolomeo
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Clelia Tiziana Storlazzi
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Arcangelo Liso
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Massimo Conese
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| |
Collapse
|
29
|
Meng M, Sun Y, Bai Y, Xu J, Sun J, Han L, Sun H, Han R. A polysaccharide from Pleurotus citrinopileatus mycelia enhances the immune response in cyclophosphamide-induced immunosuppressed mice via p62/Keap1/Nrf2 signal transduction pathway. Int J Biol Macromol 2023; 228:165-177. [PMID: 36543297 DOI: 10.1016/j.ijbiomac.2022.12.142] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/21/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
The manuscript aimed to study the immunoregulatory activity and the mechanism of the polysaccharide (CMP) from Pleurotus citrinopileatus mycelia. The mice were divided into normal group, model group, different dosage of CMP (50, 100 and 200 mg/kg, respectively) groups and levamisole hydrochloride treated group. The results showed that, compared with the model group, CMP could significantly improve the auricle swelling rate, half hemolysis value and phagocytic index in mice. The indices of immune organs were raised, and tissue damage of spleen was relieved. Splenic Th1 cells were decreased, while Th2 cells were increased, furthermore the proliferation of splenic lymphocytes and the cytotoxicity of NK cells were increased. The levels of interleukin-12 (IL-12), interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) in spleen were decreased, while interleukin-4 (IL-4) and interleukin-10 (IL-10) were increased. In serum and spleen, the levels of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) activities were increased, while the level of malondialdehyde (MDA) was decreased. And the levels of Immunoglobulin were also increased. Western blot showed that CMP had immunoregulatory activity by activating Nrf2, Keap1, p62, HO-1, and NQO1 in the p62/Keap1/Nrf2 signaling pathway. The study proved that CMP could be used as a biological Immune regulating agent.
Collapse
Affiliation(s)
- Meng Meng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Ying Sun
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Yuhe Bai
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Jin Xu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Jingge Sun
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Lirong Han
- Key Laboratory of Public Health Safety of Hebei Province, Ministry of Education & College of Public Health, Hebei University, Baoding 071002, China
| | - Huiqing Sun
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Ran Han
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China.
| |
Collapse
|
30
|
Tan YQ, Zhang J, Zhou G. Autophagy-related 9 homolog B regulates T-cell-mediated immune responses in oral lichen planus. Arch Oral Biol 2023; 146:105589. [PMID: 36442338 DOI: 10.1016/j.archoralbio.2022.105589] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/25/2022]
Abstract
OBJECTIVES This study aimed to explore the impacts of autophagy-related 9 homolog B (ATG9B)-mediated autophagy on T-cell immune responses in oral lichen planus. DESIGN ATG9B expression was detected in lesions and local T cells by immunohistochemical analysis and immunofluorescence assay. The effects of ATG9B-mediated autophagy on T-cell immune responses were explored after ATG9B-overexpression or ATG9B-knockdown lentivirus transfection. A coculture system of activated T cells and lipopolysaccharide-induced keratinocytes was used to simulate the main cell crosstalk in oral lichen planus. RESULTS The expression of ATG9B upregulated in lesions and local T cells of oral lichen planus, especially in non-erosive oral lichen planus, suggesting that ATG9B may be a diagnostic factor for oral lichen planus. Notably, ATG9B-knockdown T cells of oral lichen planus demonstrated autophagy suppression, enhanced proliferation, and attenuated apoptosis, whereas overexpression of ATG9B showed opposite effects on T cells. In the coculture system of T cells and keratinocytes, ATG9B-knockdown T cells of oral lichen planus, but not ATG9B-overexpression T cells, promoted the proliferation and apoptosis of their cocultured keratinocytes. Additionally, exogenous insulin-like growth factor 1 (IGF1) significantly reversed the apoptosis rates of keratinocytes cocultured with T cells expressing abnormal ATG9B. Furthermore, ATG9B-overexpression T cells showed decreased secretion of interferon-γ and tumor necrosis factor-α in the coculture system. CONCLUSIONS This study revealed the regulatory roles of ATG9B-mediated T-cell autophagy on T-cell immune responses and crosstalk between T cells and keratinocytes in of oral lichen planus.
Collapse
Affiliation(s)
- Ya-Qin Tan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei, MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jing Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei, MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Gang Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei, MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
31
|
Fallahi P, Ragusa F, Paparo SR, Elia G, Balestri E, Mazzi V, Patrizio A, Botrini C, Benvenga S, Ferrari SM, Antonelli A. Teprotumumab for the treatment of thyroid eye disease. Expert Opin Biol Ther 2023; 23:123-131. [PMID: 36695097 DOI: 10.1080/14712598.2023.2172328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Thyroid eye disease (TED) is an autoimmune disease characterized by inflammation of orbital and extraocular muscles. It induces proptosis and diplopia, leading to a worsening of quality of life (QoL) because of its impact on physical appearance, and visual function. The natural history involves an 'active TED,' which is an autoimmune inflammatory response targeting orbital soft tissues, and 'inactive TED,' where there is tissue expansion remodeling. To date, glucocorticoids represent the main medical therapy, even if often ineffective and associated with side effects. AREAS COVERED In TED, the autoimmune process leads to production of TSH-R and IGF-1 R autoantibodies. This induces inflammatory changes in the orbital tissue, and activation of fibroblasts with accumulation of glycosaminoglycans, leading to consequent proptosis, and diplopia. In two previous randomized, double-masked, placebo-controlled, parallel-group, multicenter trials, teprotumumab has been shown to be effective in improving proptosis, inflammation, diplopia, and QoL. More recently, it has been shown that teprotumumab is also effective in chronic-inactive TED. Teprotumumab was approved by the FDA on 21 January 2020 for the treatment of TED. EXPERT OPINION For the above-mentioned reasons teprotumumab represents a potential first line therapy for TED that could replace the use of steroids in the next future.
Collapse
Affiliation(s)
- Poupak Fallahi
- Department of Translational Research of New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Francesca Ragusa
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Sabrina Rosaria Paparo
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Giusy Elia
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Eugenia Balestri
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Valeria Mazzi
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Armando Patrizio
- Department of Emergency Medicine, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Chiara Botrini
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Salvatore Benvenga
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy.,Master Program on Childhood, Adolescent and Women's Endocrine Health, University of Messina, Messina, Italy.,Interdepartmental Program of Molecular & Clinical Endocrinology, and Women's Endocrine Health, University Hospital, Policlinico Universitario G. Martino, Messina, Italy
| | | | - Alessandro Antonelli
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| |
Collapse
|
32
|
Miescher I, Rieber J, Calcagni M, Buschmann J. In Vitro and In Vivo Effects of IGF-1 Delivery Strategies on Tendon Healing: A Review. Int J Mol Sci 2023; 24:ijms24032370. [PMID: 36768692 PMCID: PMC9916536 DOI: 10.3390/ijms24032370] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/18/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023] Open
Abstract
Tendon injuries suffer from a slow healing, often ending up in fibrovascular scar formation, leading to inferior mechanical properties and even re-rupture upon resumption of daily work or sports. Strategies including the application of growth factors have been under view for decades. Insulin-like growth factor-1 (IGF-1) is one of the used growth factors and has been applied to tenocyte in vitro cultures as well as in animal preclinical models and to human patients due to its anabolic and matrix stimulating effects. In this narrative review, we cover the current literature on IGF-1, its mechanism of action, in vitro cell cultures (tenocytes and mesenchymal stem cells), as well as in vivo experiments. We conclude from this overview that IGF-1 is a potent stimulus for improving tendon healing due to its inherent support of cell proliferation, DNA and matrix synthesis, particularly collagen I, which is the main component of tendon tissue. Nevertheless, more in vivo studies have to be performed in order to pave the way for an IGF-1 application in orthopedic clinics.
Collapse
|
33
|
Du H, Zhou Y, Du X, Zhang P, Cao Z, Sun Y. Insulin-like growth factor binding protein 5b of Trachinotus ovatus and its heparin-binding motif play a critical role in host antibacterial immune responses via NF-κB pathway. Front Immunol 2023; 14:1126843. [PMID: 36865533 PMCID: PMC9972581 DOI: 10.3389/fimmu.2023.1126843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 01/25/2023] [Indexed: 02/16/2023] Open
Abstract
Introduction Insulin-like growth factor binding protein 5 (IGFBP5) exerts an essential biological role in many processes, including apoptosis, cellular differentiation, growth, and immune responses. However, compared to mammalians, our knowledge of IGFBP5 in teleosts remains limited. Methods In this study, TroIGFBP5b, an IGFBP5 homologue from golden pompano (Trachinotus ovatus) was identified. Quantitative real-time PCR (qRT-PCR) was used to check its mRNA expression level in healthy condition and after stimulation. In vivo overexpression and RNAi knockdown method were performed to evaluate the antibacterial profile. We constructed a mutant in which HBM was deleted to better understand the mechanism of its role in antibacterial immunity. Subcellular localization and nuclear translocation were verified by immunoblotting. Further, proliferation of head kidney lymphocytes (HKLs) and phagocytic activity of head kidney macrophages (HKMs) were detected through CCK-8 assay and flow cytometry. Immunofluorescence microscopy assay (IFA) and dual luciferase reporter (DLR) assay were used to evaluate the activity in nuclear factor-κB (NF-κβ) pathway. Results The TroIGFBP5b mRNA expression level was upregulated after bacterial stimulation. In vivo, TroIGFBP5b overexpression significantly improved the antibacterial immunity of fish. In contrast, TroIGFBP5b knockdown significantly decreased this ability. Subcellular localization results showed that TroIGFBP5b and TroIGFBP5b-δHBM were both present in the cytoplasm of GPS cells. After stimulation, TroIGFBP5b-δHBM lost the ability to transfer from the cytoplasm to the nucleus. In addition, rTroIGFBP5b promoted the proliferation of HKLs and phagocytosis of HKMs, whereas rTroIGFBP5b-δHBM, suppressed these facilitation effects. Moreover, the in vivo antibacterial ability of TroIGFBP5b was suppressed and the effects of promoting expression of proinflammatory cytokines in immune tissues were nearly lost after HBM deletion. Furthermore, TroIGFBP5b induced NF-κβ promoter activity and promoted nuclear translocation of p65, while these effects were inhibited when the HBM was deleted. Discussion Taken together, our results suggest that TroIGFBP5b plays an important role in golden pompano antibacterial immunity and activation of the NF-κβ signalling pathway, providing the first evidence that the HBM of TroIGFBP5b plays a critical role in these processes in teleosts.
Collapse
Affiliation(s)
- Hehe Du
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China.,Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, China
| | - Yongcan Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China.,Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, China.,Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, China
| | - Xiangyu Du
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, China
| | - Panpan Zhang
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, China
| | - Zhenjie Cao
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, China
| | - Yun Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China.,Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, China.,Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, China
| |
Collapse
|
34
|
Luong PT, Nguyen TTD, Nguyen NT, Ngo HT, Nguyen HN, Pho DH, Nguyen HT. Insulin-like growth factor binding protein-2 as a biomarker for lupus nephritis. Pediatr Int 2023; 65:e15613. [PMID: 37698235 DOI: 10.1111/ped.15613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 03/10/2023] [Accepted: 06/28/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND Lupus nephritis (LN) is a serious manifestation of systemic lupus erythematosus (SLE). The aim of this study was to identify serum insulin-like growth factor binding protein-2 (IGFBP-2) as a novel non-invasive biomarker for clinical disease and renal pathology in pediatric LN. METHODS A cross-sectional study on 93 newly diagnosed LN children who were biopsy-proven, 35 SLE children with no renal involvement as disease controls, and 30 healthy controls (HC) with age and gender-matched. All children were ELISA tested for serum IGFBP-2 levels. Clinical, laboratory, histopathological features of LN patients were collected. RESULTS Compared to SLE or HC, serum IGFBP-2 levels were significantly elevated in LN patients. Serum IGFBP-2 could distinguish LN patients from two others (AUC = 0.937, p < 0.001 for LN vs. HC; 0.897, p < 0.0001 for LN vs. SLE). In ROC analysis, IGFBP-2 had a higher ability to differentiate between LN and SLE than anti-dsDNA with AUC values of 0.895 and 0.643, respectively. LN children with systemic lupus erythematosus disease activity index (SLEDAI) in high activity had significantly higher IGFBP-2 concentration than the others with SLEDAI in moderate activity. Serum IGFBP-2 correlated with albuminemia levels (r = 0.415, p < 0.001), urine protein-to-creatinine levels (r = 0.316, p = 0.002), estimated glomerular filtration rate (r = 0.438, p < 0.001), complement C3 (r = 0.333, p = 0.001). More importantly, serum IGFBP-2 correlated with the activity index of renal pathology (r = 0.312, p = 0.007, n = 75). CONCLUSIONS Serum IGFBP-2 is a promising biomarker for pediatric lupus nephritis, reflective of disease activity and activity index in renal patients.
Collapse
Affiliation(s)
- Phuong Thi Luong
- Hanoi Medical University, Hanoi, Vietnam
- Vietnam National Children's Hospital, Hanoi, Vietnam
| | - Thuy Thi Dieu Nguyen
- Hanoi Medical University, Hanoi, Vietnam
- Vietnam National Children's Hospital, Hanoi, Vietnam
| | | | - Hang Thu Ngo
- Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam
| | - Huy Ngoc Nguyen
- Hanoi Medical University, Hanoi, Vietnam
- Vietnam National Children's Hospital, Hanoi, Vietnam
| | - Diep Hong Pho
- Vietnam National Children's Hospital, Hanoi, Vietnam
| | | |
Collapse
|
35
|
Mohamed AI, Beseni BK, Msomi NZ, Salau VF, Erukainure OL, Aljoundi A, Islam MS. The antioxidant and antidiabetic potentials of polyphenolic-rich extracts of Cyperus rotundus (Linn.). J Biomol Struct Dyn 2022; 40:12075-12087. [PMID: 34455935 DOI: 10.1080/07391102.2021.1967197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this study, the rhizome of Cyperus rotundus L was investigated for its antioxidant and antidiabetic effects using in vitro and in silico experimental models. Its crude extracts (ethyl acetate, ethanol and aqueous) were screened in vitro for their antioxidant activity using ferric-reducing antioxidant power (FRAP) and 1,1-diphenyl-2-picrylhydrazyl (DPPH), as well as their inhibitory effect on α-glucosidase enzyme. Subsequently, the extracts were subjected to Gas Chromatography-Mass Spectrometry (GC-MS) analysis to elucidate their possible bioactive compounds. Furthermore, computational molecular docking of selected phenolic compounds was conducted to determine their mode of α-glucosidase inhibitory activity. The aqueous extract displayed the highest level of total phenolic content and significantly higher scavenging activity in both FRAP and DPPH assays compared to ethyl acetate and ethanol extracts. In FRAP and DPPH assays, IC50 values of aqueous extract were 448.626 µg/mL and 418.74 µg/mL, respectively. Aqueous extract further presented higher α-glucosidase inhibitory activity with an IC50 value of 383.75 µg/mL. GC-MS analysis revealed the presence of the following phenolic compounds: 4-methyl-2-(2,4,4-trimethylpentan-2-yl) phenol, Phenol,2-methyl-4-(1,1,3,3-tetramethylbutyl)- and 1-ethoxy-2-isopropylbenzene. Molecular docking study revealed 1-ethoxy-2-isopropylbenzene formed two hydrogen bonds with the interacting residues in the active site of α-glucosidase enzyme. Furthermore, 4-methyl-2-(2,4,4-trimethylpentan-2-yl) phenol had the lowest binding energy inferring the best affinity for α-glucosidase active site. These results suggest the possible antioxidant and antidiabetic potential of Cyperus rotundus.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Almahi I Mohamed
- Department of Biochemistry, University of KwaZulu-Natal, Durban, South Africa
| | - Brian K Beseni
- Department of Biochemistry, University of KwaZulu-Natal, Durban, South Africa
| | - Nontokozo Z Msomi
- Department of Biochemistry, University of KwaZulu-Natal, Durban, South Africa
| | - Veronica F Salau
- Department of Biochemistry, University of KwaZulu-Natal, Durban, South Africa
| | - Ochuko L Erukainure
- Department of Biochemistry, University of KwaZulu-Natal, Durban, South Africa.,Department of Pharmacology, University of the Free State, Bloemfontein, South Africa
| | - Aimen Aljoundi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tripoli, Tripoli, Libya
| | - Md Shahidul Islam
- Department of Biochemistry, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
36
|
Zhang P, Zhu H. Cytokines in Thyroid-Associated Ophthalmopathy. J Immunol Res 2022; 2022:2528046. [PMID: 36419958 PMCID: PMC9678454 DOI: 10.1155/2022/2528046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 09/07/2023] Open
Abstract
Thyroid-associated ophthalmopathy (TAO), also known as thyroid eye disease (TED) or Graves' orbitopathy (GO), is a complex autoimmune condition causing visual impairment, disfigurement, and harm to patients' physical and mental health. The pathogenesis of TAO has not been fully elucidated, and the mainstream view is that coantigens shared by the thyroid and orbit trigger remodeling of extraocular muscles and orbital connective tissues through an inflammatory response. In recent years, cytokines and the immune responses they mediate have been crucial in disease progression, and currently, common evidence has shown that drugs targeting cytokines, such as tocilizumab, infliximab, and adalimumab, may be novel targets for therapy. In this review, we summarize the research development of different cytokines in TAO pathogenesis in the hope of discovering new therapeutic targets.
Collapse
Affiliation(s)
- Pengbo Zhang
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Huang Zhu
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| |
Collapse
|
37
|
Lan T, Li H, Yang S, Shi M, Han L, Sahu SK, Lu Y, Wang J, Zhou M, Liu H, Huang J, Wang Q, Zhu Y, Wang L, Xu Y, Lin C, Liu H, Hou Z. The chromosome-scale genome of the raccoon dog: Insights into its evolutionary characteristics. iScience 2022; 25:105117. [PMID: 36185367 PMCID: PMC9523411 DOI: 10.1016/j.isci.2022.105117] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/07/2022] [Accepted: 09/08/2022] [Indexed: 11/28/2022] Open
Affiliation(s)
- Tianming Lan
- BGI Life Science Joint Research Center, Northeast Forestry University, Harbin 150040, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Haimeng Li
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shangchen Yang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Minhui Shi
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Han
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Yaxian Lu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Jiangang Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Mengchao Zhou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Hui Liu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), College of Forestry, Hainan University, Haikou 570228, China
| | - Junxuan Huang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Qing Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yixin Zhu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Wang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanchun Xu
- BGI Life Science Joint Research Center, Northeast Forestry University, Harbin 150040, China
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
- Corresponding author
| | - Chuyu Lin
- Shenzhen Zhong Nong Jing Yue Biotech Company Limited, Shenzhen 518120, China
- Corresponding author
| | - Huan Liu
- BGI Life Science Joint Research Center, Northeast Forestry University, Harbin 150040, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China
- Corresponding author
| | - Zhijun Hou
- BGI Life Science Joint Research Center, Northeast Forestry University, Harbin 150040, China
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
- Corresponding author
| |
Collapse
|
38
|
Li Y, He Y, Xiang J, Feng L, Wang Y, Chen R. The Functional Mechanism of MicroRNA in Oral Lichen Planus. J Inflamm Res 2022; 15:4261-4274. [PMID: 35923905 PMCID: PMC9342247 DOI: 10.2147/jir.s369304] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/10/2022] [Indexed: 11/23/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are transcribed from the genomes of mammals and other complex organisms, and many of them are alternately spliced and processed into smaller products. Types of ncRNAs include microRNAs (miRNAs), circular RNAs, and long ncRNAs. miRNAs are about 21 nucleotides long and form a broad class of post-transcriptional regulators of gene expression that affect numerous developmental and physiological processes in eukaryotes. They usually act as negative regulators of mRNA expression through complementary binding sequences in the 3’-UTR of the target mRNA, leading to translation inhibition and target degradation. In recent years, the importance of ncRNA in oral lichen planus (OLP), particularly miRNA, has attracted extensive attention. However, the biological functions of miRNAs and their mechanisms in OLP are still unclear. In this review, we discuss the role and function of miRNAs in OLP, and we also describe their potential functional roles as biomarkers for the diagnosis of OLP. MiRNAs are promising new therapeutic targets, but more work is needed to understand their biological functions.
Collapse
Affiliation(s)
- Yunshan Li
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230032, People’s Republic of China
| | - Yaodong He
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230032, People’s Republic of China
| | - Junwei Xiang
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230032, People’s Republic of China
| | - Linfei Feng
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Yuanyin Wang
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230032, People’s Republic of China
- Correspondence: Yuanyin Wang; Ran Chen, College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230032, People’s Republic of China, Email ;
| | - Ran Chen
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230032, People’s Republic of China
| |
Collapse
|
39
|
Washburn RL, Hibler T, Kaur G, Dufour JM. Sertoli Cell Immune Regulation: A Double-Edged Sword. Front Immunol 2022; 13:913502. [PMID: 35757731 PMCID: PMC9218077 DOI: 10.3389/fimmu.2022.913502] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/29/2022] [Indexed: 12/18/2022] Open
Abstract
The testis must create and maintain an immune privileged environment to protect maturing germ cells from autoimmune destruction. The establishment of this protective environment is due, at least in part, to Sertoli cells. Sertoli cells line the seminiferous tubules and form the blood-testis barrier (BTB), a barrier between advanced germ cells and the immune system. The BTB compartmentalizes the germ cells and facilitates the appropriate microenvironment necessary for spermatogenesis. Further, Sertoli cells modulate innate and adaptive immune processes through production of immunoregulatory compounds. Sertoli cells, when transplanted ectopically (outside the testis), can also protect transplanted tissue from the recipient’s immune system and reduce immune complications in autoimmune diseases primarily by immune regulation. These properties make Sertoli cells an attractive candidate for inflammatory disease treatments and cell-based therapies. Conversely, the same properties that protect the germ cells also allow the testis to act as a reservoir site for infections. Interestingly, Sertoli cells also have the ability to mount an antimicrobial response, if necessary, as in the case of infections. This review aims to explore how Sertoli cells act as a double-edged sword to both protect germ cells from an autoimmune response and activate innate and adaptive immune responses to fight off infections.
Collapse
Affiliation(s)
- Rachel L Washburn
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Immunology and Infectious Disease Concentration, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Taylor Hibler
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Immunology and Infectious Disease Concentration, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Gurvinder Kaur
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Jannette M Dufour
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Immunology and Infectious Disease Concentration, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
40
|
FitzPatrick AM. Is Estrogen a Missing Culprit in Thyroid Eye Disease? Sex Steroid Hormone Homeostasis Is Key to Other Fibrogenic Autoimmune Diseases - Why Not This One? Front Immunol 2022; 13:898138. [PMID: 35784325 PMCID: PMC9248759 DOI: 10.3389/fimmu.2022.898138] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Sex bias in autoimmune disease (AID) prevalence is known, but the role of estrogen in disease progression is more complex. Estrogen can even be protective in some AIDs; but in systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and systemic sclerosis (SSc), estrogen, its metabolites, and its receptors have been demonstrated to play critical, localized inflammatory roles. Estrogen is instrumental to the fibrosis seen in RA, SLE, SSc and other disease states, including breast cancer and uterine leiomyomas. Fibrotic diseases tend to share a common pattern in which lymphocyte-monocyte interactions generate cytokines which stimulate the deposition of fibrogenic connective tissue. RA, SLE, SSc and thyroid eye disease (TED) have very similar inflammatory and fibrotic patterns-from pathways to tissue type. The thorough investigations that demonstrated estrogen's role in the pathology of RA, SLE, and SSc could, and possibly should, be carried out in TED. One might even expect to find an even greater role for estrogen, and sex steroid homeostasis in TED, given that TED is typically sequalae to Graves' disease (GD), or Hashimoto's disease (HD), and these are endocrine disorders that can create considerable sex steroid hormone dysregulation. This paper highlights the pathophysiology similarities in 4 AIDs, examines the evidence of sex steroid mediated pathology across 3 AIDs and offers a case study and speculation on how this may be germane to TED.
Collapse
|
41
|
Olojede SO, Lawal SK, Faborode OS, Dare A, Aladeyelu OS, Moodley R, Rennie CO, Naidu EC, Azu OO. Testicular ultrastructure and hormonal changes following administration of tenofovir disoproxil fumarate-loaded silver nanoparticle in type-2 diabetic rats. Sci Rep 2022; 12:9633. [PMID: 35688844 PMCID: PMC9187647 DOI: 10.1038/s41598-022-13321-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/23/2022] [Indexed: 11/10/2022] Open
Abstract
Reproductive dysfunctions (RDs) characterized by impairment in testicular parameters, and metabolic disorders such as insulin resistance and type 2 diabetes mellitus (T2DM) are on the rise among human immunodeficiency virus (HIV) patients under tenofovir disoproxil fumarate (TDF) and highly active antiretroviral therapy (HAART). These adverse effects require a nanoparticle delivery system to circumvent biological barriers and ensure adequate ARVDs to viral reservoir sites like testis. This study aimed to investigate the effect of TDF-loaded silver nanoparticles (AgNPs), TDF-AgNPs on sperm quality, hormonal profile, insulin-like growth factor 1 (IGF-1), and testicular ultrastructure in diabetic rats, a result of which could cater for the neglected reproductive and metabolic dysfunctions in HIV therapeutic modality. Thirty-six adult Sprague–Dawley rats were assigned to diabetic and non-diabetic (n = 18). T2DM was induced by fructose-streptozotocin (Frt-STZ) rat model. Subsequently, the rats in both groups were subdivided into three groups each (n = 6) and administered distilled water, TDF, and TDF-AgNP. In this study, administration of TDF-AgNP to diabetic rats significantly reduced (p < 0.05) blood glucose level (268.7 ± 10.8 mg/dL) from 429 ± 16.9 mg/dL in diabetic control and prevented a drastic reduction in sperm count and viability. More so, TDF-AgNP significantly increased (p < 0.05) Gonadotropin-Releasing Hormone (1114.3 ± 112.6 µg), Follicle Stimulating Hormone (13.2 ± 1.5 IU/L), Luteinizing Hormone (140.7 ± 15.2 IU/L), testosterone (0.2 ± 0.02 ng/L), and IGF-1 (1564.0 ± 81.6 ng/mL) compared to their respective diabetic controls (383.4 ± 63.3, 6.1 ± 1.2, 76.1 ± 9.1, 0.1 ± 0.01, 769.4 ± 83.7). Also, TDF-AgNP treated diabetic rats presented an improved testicular architecture marked with the thickened basement membrane, degenerated Sertoli cells, spermatogenic cells, and axoneme. This study has demonstrated that administration of TDF-AgNPs restored the function of hypothalamic-pituitary–gonadal axis, normalized the hormonal profile, enhanced testicular function and structure to alleviate reproductive dysfunctions in diabetic rats. This is the first study to conjugate TDF with AgNPs and examined its effects on reproductive indices, local gonadal factor and testicular ultrastructure in male diabetic rats with the potential to cater for neglected reproductive dysfunction in HIV therapeutic modality.
Collapse
Affiliation(s)
- Samuel Oluwaseun Olojede
- Discipline of Clinical Anatomy, School of Laboratory Medicine & Medical Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, 719 Umbilo Road, Durban, South Africa.
| | - Sodiq Kolawole Lawal
- Discipline of Clinical Anatomy, School of Laboratory Medicine & Medical Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, 719 Umbilo Road, Durban, South Africa
| | - Oluwaseun Samuel Faborode
- Discipline of Physiology, School of Laboratory Medicine & Medical Sciences, College of Health Sciences, Westville Campus, University of KwaZulu-Natal, Durban, South Africa.,Department of Physiology, Faculty of Basic Medical Sciences, Bingham University, Karu, Nasarawa State, Nigeria
| | - Ayobami Dare
- Discipline of Physiology, School of Laboratory Medicine & Medical Sciences, College of Health Sciences, Westville Campus, University of KwaZulu-Natal, Durban, South Africa
| | - Okikioluwa Stephen Aladeyelu
- Discipline of Clinical Anatomy, School of Laboratory Medicine & Medical Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, 719 Umbilo Road, Durban, South Africa
| | - Roshila Moodley
- The Department of Chemistry, The University of Manchester, Manchester, UK
| | - Carmen Olivia Rennie
- Discipline of Clinical Anatomy, School of Laboratory Medicine & Medical Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, 719 Umbilo Road, Durban, South Africa
| | - Edwin Coleridge Naidu
- Discipline of Clinical Anatomy, School of Laboratory Medicine & Medical Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, 719 Umbilo Road, Durban, South Africa
| | - Onyemaechi Okpara Azu
- Department of Human, Biological & Translational Medical Sciences, School of Medicine, University of Namibia, Hage Geingob Campus, Private Bag 13301, Windhoek, Namibia
| |
Collapse
|
42
|
Hatmal MM, Al-Hatamleh MAI, Olaimat AN, Alshaer W, Hasan H, Albakri KA, Alkhafaji E, Issa NN, Al-Holy MA, Abderrahman SM, Abdallah AM, Mohamud R. Immunomodulatory Properties of Human Breast Milk: MicroRNA Contents and Potential Epigenetic Effects. Biomedicines 2022; 10:1219. [PMID: 35740242 PMCID: PMC9219990 DOI: 10.3390/biomedicines10061219] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023] Open
Abstract
Infants who are exclusively breastfed in the first six months of age receive adequate nutrients, achieving optimal immune protection and growth. In addition to the known nutritional components of human breast milk (HBM), i.e., water, carbohydrates, fats and proteins, it is also a rich source of microRNAs, which impact epigenetic mechanisms. This comprehensive work presents an up-to-date overview of the immunomodulatory constituents of HBM, highlighting its content of circulating microRNAs. The epigenetic effects of HBM are discussed, especially those regulated by miRNAs. HBM contains more than 1400 microRNAs. The majority of these microRNAs originate from the lactating gland and are based on the remodeling of cells in the gland during breastfeeding. These miRNAs can affect epigenetic patterns by several mechanisms, including DNA methylation, histone modifications and RNA regulation, which could ultimately result in alterations in gene expressions. Therefore, the unique microRNA profile of HBM, including exosomal microRNAs, is implicated in the regulation of the genes responsible for a variety of immunological and physiological functions, such as FTO, INS, IGF1, NRF2, GLUT1 and FOXP3 genes. Hence, studying the HBM miRNA composition is important for improving the nutritional approaches for pregnancy and infant's early life and preventing diseases that could occur in the future. Interestingly, the composition of miRNAs in HBM is affected by multiple factors, including diet, environmental and genetic factors.
Collapse
Affiliation(s)
- Ma’mon M. Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Mohammad A. I. Al-Hatamleh
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia;
| | - Amin N. Olaimat
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (A.N.O.); (M.A.A.-H.)
| | - Walhan Alshaer
- Cell Therapy Center (CTC), The University of Jordan, Amman 11942, Jordan;
| | - Hanan Hasan
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan;
| | - Khaled A. Albakri
- Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Enas Alkhafaji
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, Amman 11942, Jordan;
| | - Nada N. Issa
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Murad A. Al-Holy
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (A.N.O.); (M.A.A.-H.)
| | - Salim M. Abderrahman
- Department of Biology and Biotechnology, Faculty of Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Atiyeh M. Abdallah
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar;
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia;
| |
Collapse
|
43
|
Targeting Insulin-Like Growth Factor-I in Management of Neurological Disorders. Neurotox Res 2022; 40:874-883. [PMID: 35476315 DOI: 10.1007/s12640-022-00513-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/29/2022] [Accepted: 04/15/2022] [Indexed: 12/13/2022]
Abstract
The degradation of neurons marks as the pathological reason for onset of most of the neurological diseases although the functional deficiencies and symptoms may vary. Insulin-like growth factor-I (IGF-I) boosts regeneration of both motor and sensory neurons and thus presents as a potential treatment in management of neurological disorders. IGF-I is a pleiotropic agent which stimulates the survival and outgrowth of neurons accompanied by their motility as well as myelination by glial cells. This hormone has been found to possess neuroprotective properties which is in association with its antioxidant and mitochondrial protection activity. Studying and exploring the signaling pathways which mediate pleotropic responses intracellularly have elucidated significant therapeutic approach in treatment and management of neurological disorders by IGF-I. The current review highlights the role of IGF-I in management of major neurological disorders such as depression, Parkinson's disease, and Alzheimer's disease and also covers the mechanisms involved in the process.
Collapse
|
44
|
Lee H, Suh YS, Lee SI, Cheon YH, Kim M, Noh HS, Kim HO. Serum IGF-1 in patients with rheumatoid arthritis: correlation with disease activity. BMC Res Notes 2022; 15:128. [PMID: 35382860 PMCID: PMC8981634 DOI: 10.1186/s13104-022-06008-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/15/2022] [Indexed: 11/18/2022] Open
Abstract
Objective Insulin-like growth factor (IGF)-1 participates in modulating immunity and inflammation. Its bioactivity is controlled by six IGF-binding proteins (IGFBP-1 to IGFBP-6). In particular, the IGFBP-3 level is reportedly linked to the disease activity of rheumatoid arthritis (RA), consistent with our previous study. Therefore, the present study aimed to reproduce the previous results. Results The serum IGFBP-3 level was not significantly different among the three groups according to disease activity based on the DAS28-ESR/CRP (p > 0.05) but was significantly different between the low- and high-disease-activity groups based on the DAS28-CRP (p = 0.036). Meanwhile, the interleukin-6 (IL-6) level moderately correlated with DAS28-CRP (Spearman’s rho = 0.583, p < 0.001).
Collapse
Affiliation(s)
- Hanna Lee
- Division of Rheumatology, Department of Internal Medicine, Gyeongsang National University School of Medicine and Hospital, Jinju, 52727, Korea
| | - Young Sun Suh
- Division of Rheumatology, Department of Internal Medicine, Gyeongsang National University School of Medicine and Changwon Hospital, Changwon, 51427, Korea
| | - Sang-Il Lee
- Division of Rheumatology, Department of Internal Medicine, Gyeongsang National University School of Medicine and Hospital, Jinju, 52727, Korea
| | - Yun-Hong Cheon
- Division of Rheumatology, Department of Internal Medicine, Gyeongsang National University School of Medicine and Hospital, Jinju, 52727, Korea
| | - Mingyo Kim
- Division of Rheumatology, Department of Internal Medicine, Gyeongsang National University School of Medicine and Hospital, Jinju, 52727, Korea
| | - Hae Sook Noh
- Division of Rheumatology, Department of Internal Medicine, Gyeongsang National University School of Medicine and Institute of Health Science, Gyeongsang National University Hospital, Jinju, 52727, Korea
| | - Hyun-Ok Kim
- Division of Rheumatology, Department of Internal Medicine, Gyeongsang National University School of Medicine and Changwon Hospital, Changwon, 51427, Korea.
| |
Collapse
|
45
|
Hossain MU, Ahammad I, Bhattacharjee A, Chowdhury ZM, Rahman A, Rahman TA, Omar TM, Hasan MK, Islam MN, Hossain Emon MT, Chandra Das K, Keya CA, Salimullah M. Protein-protein interactions network model underlines a link between hormonal and neurological disorders. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.100866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
46
|
Fernando R, Caldera O, Smith TJ. Therapeutic IGF-I receptor inhibition alters fibrocyte immune phenotype in thyroid-associated ophthalmopathy. Proc Natl Acad Sci U S A 2021; 118:e2114244118. [PMID: 34949642 PMCID: PMC8719891 DOI: 10.1073/pnas.2114244118] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2021] [Indexed: 01/20/2023] Open
Abstract
Thyroid-associated ophthalmopathy (TAO) represents a disfiguring and potentially blinding autoimmune component of Graves' disease. It appears to be driven, at least in part, by autoantibodies targeting the thyrotropin receptor (TSHR)/insulin-like growth factor I receptor (IGF-IR) complex. Actions mediated through either TSHR or IGF-IR are dependent on IGF-IR activity. CD34+ fibrocytes, monocyte lineage cells, reside uniquely in the TAO orbit, where they masquerade as CD34+ orbital fibroblasts. Fibrocytes present antigens to T cells through their display of the major histocompatibility complex class II (MHC II) while providing costimulation through B7 proteins (CD80, CD86, and programmed death-ligand 1 [PD-L1]). Here, we demonstrate that teprotumumab, an anti-IGF-IR inhibitor, attenuates constitutive expression and induction by the thyroid-stimulating hormone of MHC II and these B7 members in CD34+ fibrocytes. These actions are mediated through reduction of respective gene transcriptional activity. Other IGF-IR inhibitors (1H7 and linsitinib) and knocking down IGF-IR gene expression had similar effects. Interrogation of circulating fibrocytes collected from patients with TAO, prior to and following teprotumumab treatment in vivo during a phase 2 clinical trial, demonstrated reductions in cell-surface MHC II and B7 proteins similar to those found following IGF-IR inhibitor treatment in vitro. Teprotumumab therapy reduces levels of interferon-γ and IL-17A expression in circulating CD4+ T cells, effects that may be indirect and mediated through actions of the drug on fibrocytes. Teprotumumab was approved by the US Food and Drug Administration for TAO. Our current findings identify potential mechanisms through which teprotumumab might be eliciting its clinical response systemically in patients with TAO, potentially by restoring immune tolerance.
Collapse
Affiliation(s)
- Roshini Fernando
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105
| | - Oshadi Caldera
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105
| | - Terry J Smith
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105
| |
Collapse
|
47
|
Hashimoto M, Konda JD, Perrino S, Celia Fernandez M, Lowy AM, Brodt P. Targeting the IGF-Axis Potentiates Immunotherapy for Pancreatic Ductal Adenocarcinoma Liver Metastases by Altering the Immunosuppressive Microenvironment. Mol Cancer Ther 2021; 20:2469-2482. [PMID: 34552012 PMCID: PMC8677570 DOI: 10.1158/1535-7163.mct-20-0144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/13/2021] [Accepted: 09/15/2021] [Indexed: 01/18/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy, resistant to chemotherapy and associated with high incidence of liver metastases and poor prognosis. Using murine models of aggressive PDAC, we show here that in mice bearing hepatic metastases, treatment with the IGF-Trap, an inhibitor of type I insulin-like growth factor receptor (IGF-IR) signaling, profoundly altered the local, immunosuppressive tumor microenvironment in the liver, curtailing the recruitment of myeloid-derived suppressor cells, reversing innate immune cell polarization and inhibiting metastatic expansion. Significantly, we found that immunotherapy with anti-PD-1 antibodies also reduced the growth of experimental PDAC liver metastases, and this effect was enhanced when combined with IGF-Trap treatment, resulting in further potentiation of a T-cell response. Our results show that a combinatorial immunotherapy based on dual targeting of the prometastatic immune microenvironment of the liver via IGF blockade, on one hand, and reversing T-cell exhaustion on the other, can provide a significant therapeutic benefit in the management of PDAC metastases.
Collapse
Affiliation(s)
- Masakazu Hashimoto
- Department of Surgery, McGill University and the Cancer Program of the Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - John David Konda
- Department of Surgery, McGill University and the Cancer Program of the Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Stephanie Perrino
- Department of Surgery, McGill University and the Cancer Program of the Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Maria Celia Fernandez
- Department of Surgery, McGill University and the Cancer Program of the Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Andrew M Lowy
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Centre at UC San Diego Health, La Jolla, California
| | - Pnina Brodt
- Department of Surgery, McGill University and the Cancer Program of the Research Institute of the McGill University Health Center, Montreal, Quebec, Canada.
- Department of Medicine, McGill University and the Cancer Program of the Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
- Department of Oncology, McGill University and the Cancer Program of the Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| |
Collapse
|
48
|
Guijarro LG, Cano-Martínez D, Toledo-Lobo MV, Salinas PS, Chaparro M, Gómez-Lahoz AM, Zoullas S, Rodríguez-Torres R, Román ID, Monasor LS, Ruiz-Llorente L, Del Carmen Boyano-Adánez M, Guerra I, Iborra M, Cabriada JL, Bujanda L, Taxonera C, García-Sánchez V, Marín-Jiménez I, Acosta MBD, Vera I, Martín-Arranz MD, Mesonero F, Sempere L, Gomollón F, Hinojosa J, Alvarez-Mon M, Gisbert JP, Ortega MA, Hernández-Breijo B, On Behalf Of The Predicrohn Study Group From Geteccu. Relationship between IGF-1 and body weight in inflammatory bowel diseases: Cellular and molecular mechanisms involved. Biomed Pharmacother 2021; 144:112239. [PMID: 34601192 DOI: 10.1016/j.biopha.2021.112239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 10/20/2022] Open
Abstract
Inflammatory bowel diseases (IBD), represented by ulcerative colitis (UC) and Crohn's disease (CD), are characterized by chronic inflammation of the gastrointestinal tract, what leads to diarrhea, malnutrition, and weight loss. Depression of the growth hormone-insulin-like growth factor-1 axis (GH-IGF-1 axis) could be responsible of these symptoms. We demonstrate that long-term treatment (54 weeks) of adult CD patients with adalimumab (ADA) results in a decrease in serum IGF-1 without changes in serum IGF-1 binding protein (IGF1BP4). These results prompted us to conduct a preclinical study to test the efficiency of IGF-1 in the medication for experimental colitis. IGF-1 treatment of rats with DSS-induced colitis has a beneficial effect on the following circulating biochemical parameters: glucose, albumin, and total protein levels. In this experimental group we also observed healthy maintenance of colon size, body weight, and lean mass in comparison with the DSS-only group. Histological analysis revealed restoration of the mucosal barrier with the IGF-1 treatment, which was characterized by healthy quantities of mucin production, structural maintenance of adherers junctions (AJs), recuperation of E-cadherin and β-catenin levels and decrease in infiltrating immune cells and in metalloproteinase-2 levels. The experimentally induced colitis caused activation of apoptosis markers, including cleaved caspase 3, caspase 8, and PARP and decreases cell-cycle checkpoint activators including phosphorylated Rb, cyclin E, and E2F1. The IGF-1 treatment inhibited cyclin E depletion and partially protects PARP levels. The beneficial effects of IGF-1 in experimental colitis could be explained by a re-sensitization of the IGF-1/IRS-1/AKT cascade to exogenous IGF-1. Given these results, we postulate that IGF-1 treatment of IBD patients could prove to be successful in reducing disease pathology.
Collapse
Affiliation(s)
- Luis G Guijarro
- Department of System Biology, University of Alcalá, Alcalá de Henares, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Spain; Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - David Cano-Martínez
- Department of System Biology, University of Alcalá, Alcalá de Henares, Spain
| | - M Val Toledo-Lobo
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; Department of Biomedicine and Biotechnology, University of Alcalá, Alcalá de Henares, Spain
| | | | - María Chaparro
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Spain; Gastroenterology Unit Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid, Spain
| | - Ana M Gómez-Lahoz
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain
| | - Sofía Zoullas
- Department of System Biology, University of Alcalá, Alcalá de Henares, Spain
| | - Rosa Rodríguez-Torres
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
| | - Irene D Román
- Department of System Biology, University of Alcalá, Alcalá de Henares, Spain
| | | | - Lidia Ruiz-Llorente
- Department of System Biology, University of Alcalá, Alcalá de Henares, Spain
| | | | - Iván Guerra
- Gastroenterology Department, Hospital Universitario de Fuenlabrada & Instituto de Investigación Hospital Universitario La Paz (IdiPaz), Spain
| | - Marisa Iborra
- Gastroenterology Unit, Hospital Universitario de La Fe (CIBEREHD), Valencia, Spain
| | - José Luis Cabriada
- Gastroenterology Unit, Hospital Universitario de Galdakano, Vizcaya, Spain
| | - Luis Bujanda
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Spain; Department of Gastroenterology. Biodonostia Health Research Institute. Universidad del País Vasco (UPV/EHU). San Sebastián, Spain
| | - Carlos Taxonera
- Gastroenterology Unit, Hospital Universitario Clínico San Carlos and IdISSC, Madrid, Spain
| | - Valle García-Sánchez
- Gastroenterology Unit, Hospital Universitario Reina Sofía/Universidad de Córdoba, Spain
| | - Ignacio Marín-Jiménez
- Gastroenterology Unit, Hospital Universitario Gregorio Marañón e IiSGM, Madrid, Spain
| | | | - Isabel Vera
- Gastroenterology Unit, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | | | - Francisco Mesonero
- Gastroenterology Unit, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Laura Sempere
- Gastroenterology Unit, Hospital Universitario Alicante, Alicante, Spain
| | - Fernando Gomollón
- Gastroenterology Unit, Hospital Clínico Universitario, Lozano Blesa, IIS Aragón, Zaragoza, Spain
| | - Joaquín Hinojosa
- Gastroenterology Unit, Hospital Universitario Manises, Valencia, Spain
| | - Melchor Alvarez-Mon
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Spain; Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain; Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine, University Hospital Príncipe de Asturias, Alcalá de Henares, Spain
| | - Javier P Gisbert
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Spain; Gastroenterology Unit Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid, Spain.
| | - Miguel A Ortega
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; Department of Biomedicine and Biotechnology, University of Alcalá, Alcalá de Henares, Spain.
| | - Borja Hernández-Breijo
- Department of System Biology, University of Alcalá, Alcalá de Henares, Spain; Immuno-Rheumatology Research Group. IdiPaz. Hospital Universitario La Paz, Madrid, Spain
| | | |
Collapse
|
49
|
Loneliness: An Immunometabolic Syndrome. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182212162. [PMID: 34831917 PMCID: PMC8618012 DOI: 10.3390/ijerph182212162] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022]
Abstract
Loneliness has been defined as an agonizing encounter, experienced when the need for human intimacy is not met adequately, or when a person’s social network does not match their preference, either in number or attributes. This definition helps us realize that the cause of loneliness is not merely being alone, but rather not being in the company we desire. With loneliness being introduced as a measurable, distinct psychological experience, it has been found to be associated with poor health behaviors, heightened stress response, and inadequate physiological repairing activity. With these three major pathways of pathogenesis, loneliness can do much harm; as it impacts both immune and metabolic regulation, altering the levels of inflammatory cytokines, growth factors, acute-phase reactants, chemokines, immunoglobulins, antibody response against viruses and vaccines, and immune cell activity; and affecting stress circuitry, glycemic control, lipid metabolism, body composition, metabolic syndrome, cardiovascular function, cognitive function and mental health, respectively. Taken together, there are too many immunologic and metabolic manifestations associated with the construct of loneliness, and with previous literature showcasing loneliness as a distinct psychological experience and a health determinant, we propose that loneliness, in and of itself, is not just a psychosocial phenomenon. It is also an all-encompassing complex of systemic alterations that occur with it, expanding it into a syndrome of events, linked through a shared network of immunometabolic pathology. This review aims to portray a detailed picture of loneliness as an “immunometabolic syndrome”, with its multifaceted pathology.
Collapse
|
50
|
Ando M, Kondo T, Tomisato W, Ito M, Shichino S, Srirat T, Mise-Omata S, Nakagawara K, Yoshimura A. Rejuvenating Effector/Exhausted CAR T Cells to Stem Cell Memory-Like CAR T Cells By Resting Them in the Presence of CXCL12 and the NOTCH Ligand. CANCER RESEARCH COMMUNICATIONS 2021; 1:41-55. [PMID: 36860911 PMCID: PMC9973402 DOI: 10.1158/2767-9764.crc-21-0034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/07/2021] [Accepted: 09/21/2021] [Indexed: 06/18/2023]
Abstract
UNLABELLED T cells with a stem cell memory (TSCM) phenotype provide long-term and potent antitumor effects for T-cell transfer therapies. Although various methods for the induction of TSCM-like cells in vitro have been reported, few methods generate TSCM-like cells from effector/exhausted T cells. We have reported that coculture with the Notch ligand-expressing OP9 stromal cells induces TSCM-like (iTSCM) cells. Here, we established a feeder-free culture system to improve iTSCM cell generation from expanded chimeric antigen receptor (CAR)-expressing T cells; culturing CAR T cells in the presence of IL7, CXCL12, IGF-I, and the Notch ligand, hDLL1. Feeder-free CAR-iTSCM cells showed the expression of cell surface markers and genes similar to that of OP9-hDLL1 feeder cell-induced CAR-iTSCM cells, including the elevated expression of SCM-associated genes, TCF7, LEF1, and BCL6, and reduced expression of exhaustion-associated genes like LAG3, TOX, and NR4A1. Feeder-free CAR-iTSCM cells showed higher proliferative capacity depending on oxidative phosphorylation and exhibited higher IL2 production and stronger antitumor activity in vivo than feeder cell-induced CAR-iTSCM cells. Our feeder-free culture system represents a way to rejuvenate effector/exhausted CAR T cells to SCM-like CAR T cells. SIGNIFICANCE Resting CAR T cells with our defined factors reprograms exhausted state to SCM-like state and enables development of improved CAR T-cell therapy.
Collapse
Affiliation(s)
- Makoto Ando
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Taisuke Kondo
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Wataru Tomisato
- Oncology Research Laboratories I, Daiichi Sankyo Co., Ltd., Shinagawa-ku, Tokyo, Japan
| | - Minako Ito
- Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Shigeyuki Shichino
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda City, Chiba, Japan
| | - Tanakorn Srirat
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Setsuko Mise-Omata
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | | | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|