1
|
Arnold W, Jain S, Sinha V, Das A. The Hunt for the Putative Epoxyeicosatrienoic Acid Receptor. ACS Chem Biol 2025; 20:762-777. [PMID: 40127470 PMCID: PMC12012780 DOI: 10.1021/acschembio.5c00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/19/2025] [Accepted: 02/24/2025] [Indexed: 03/26/2025]
Abstract
Epoxyeicosatrienoic acids, or EETs, are signaling molecules formed by the metabolism of arachidonic acid by cytochrome P450 enzymes. They are well-known for their anti-inflammatory effects, their ability to lower blood pressure, and benefits to cardiovascular outcomes. Despite the wealth of data demonstrating their physiological benefits, the putative high-affinity receptor that mediates these effects is yet to be identified. The recent report that the sphingosine-1-phosphate receptor 1 (S1PR1) is a high-affinity receptor for a related epoxy lipid prompted us to ask, "Why has the putative EET receptor not been discovered yet? What information about the discoveries of lipid epoxide receptors can help us identify the putative EET receptor?" In this review, we summarize the evidence supporting that the putative EET receptor exists. We then review the data showing EETs binding to other, low-affinity receptors and the discovery of receptors for similar lipid metabolites that can serve as a model for identifying the putative EET receptor. We hope this review will revitalize the search for this important receptor, which can facilitate the development of anti-inflammatory and cardiovascular therapeutics.
Collapse
Affiliation(s)
- William
R. Arnold
- Stanford
Cryo-EM Center, Stanford University School
of Medicine, Palo Alto, California 94305, United States
| | - Sona Jain
- Departamento
de Morfologia, Universidade Federal de Sergipe, São Cristóvão 49100-000, Sergipe, Brazil
| | - Vidya Sinha
- The
Center for Advanced Studies in Science, Math and Technology at Wheeler
High School, Marietta, Georgia 30068, United States
| | - Aditi Das
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology (GaTech), Atlanta, Georgia 30332, United States
| |
Collapse
|
2
|
Kim S, Kim H, Hong I, Lee M, Kim H, Kwak H, Kim CJ, Kang D, Ahn T, Baek M, Jeong D. CYP4X1 Expression Is Associated with Metastasis and Poor Prognosis in Patients with Colorectal Cancer. Int J Mol Sci 2025; 26:1867. [PMID: 40076494 PMCID: PMC11899201 DOI: 10.3390/ijms26051867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/25/2025] [Accepted: 01/30/2025] [Indexed: 03/14/2025] Open
Abstract
Globally, the mortality rate of colorectal cancer (CRC) remains high. Despite the development of various treatments, such as targeted therapy and immunotherapy, colorectal cancer continues to be a serious health issue worldwide. Identifying new biomarkers is essential for improving prognosis and tailoring targeted therapies for CRC. This study aims to elucidate the role of CYP4X1 in CRC and its association with patient survival and clinicopathological parameters. Using TCGA databases like GENT2, UALCAN, and GEPIA, we analyzed CYP4X1 expression in CRC and normal tissues. Our analysis revealed a significant increase in CYP4X1 expression in CRC tissues compared to normal tissues. And CYP4X1 high expression was strongly associated with advanced TNM stage, poor tumor differentiation, deeper invasion, and lymph node metastasis. Kaplan-Meier analysis revealed that high CYP4X1 expression correlated with shorter survival times. To investigate the relationship between CYP4X1 expression and colon cancer, WST-1, Transwell, and colony formation assays were performed using colon cancer cells with siRNA-mediated CYP4X1 downregulation. CYP4X1 downregulation significantly inhibited cell proliferation, invasion, migration, and colony formation in vitro. Furthermore, the tumor-forming ability in mice injected with cell lines where CYP4X1 expression was suppressed decreased. In conclusion, CYP4X1 overexpression is closely linked to CRC progression as an independent prognostic marker and potential therapeutic target.
Collapse
Affiliation(s)
- Sooyoun Kim
- Department of Pathology, College of Medicine, Soonchunhyang University, 31 Soonchunhyang 6-gil, Dongnam-gu, Cheonan 31151, Chungcheongnam-do, Republic of Korea; (S.K.); (I.H.); (M.L.)
- BK21 Four Project, College of Medicine, Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea
| | - Hakchun Kim
- Soonchunhyang Medical Science Research Institute, College of Medicine, Soonchunhyang University, 25 Bongjeong-ro, Dongnam-gu, Cheonan 31151, Chungcheongnam-do, Republic of Korea;
| | - Inpyo Hong
- Department of Pathology, College of Medicine, Soonchunhyang University, 31 Soonchunhyang 6-gil, Dongnam-gu, Cheonan 31151, Chungcheongnam-do, Republic of Korea; (S.K.); (I.H.); (M.L.)
- BK21 Four Project, College of Medicine, Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea
| | - Minho Lee
- Department of Pathology, College of Medicine, Soonchunhyang University, 31 Soonchunhyang 6-gil, Dongnam-gu, Cheonan 31151, Chungcheongnam-do, Republic of Korea; (S.K.); (I.H.); (M.L.)
- BK21 Four Project, College of Medicine, Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea
| | - Hyeongjoo Kim
- R&D Center Pharmaceutical Laboratory, Korean Drug Co., Ltd., 34, Nonhyeon-ro 28-gil, Gangnam-gu, Seoul 06300, Republic of Korea;
| | - Hyoungjong Kwak
- Research Institute of Clinical Medicine, Woori Madi Medical Center, 111 Baekjedae-ro, Wansan-gu, Jeonju 55082, Jeollabuk-do, Republic of Korea; (H.K.); (C.-J.K.)
| | - Chang-Jin Kim
- Research Institute of Clinical Medicine, Woori Madi Medical Center, 111 Baekjedae-ro, Wansan-gu, Jeonju 55082, Jeollabuk-do, Republic of Korea; (H.K.); (C.-J.K.)
| | - Donghyun Kang
- Department of Surgery, College of Medicine, Soonchunhyang University, 31 Soonchunhyang 6-gil, Dongnam-gu, Cheonan 31151, Chungcheongnam-do, Republic of Korea; (D.K.); (T.A.); (M.B.)
| | - Taesung Ahn
- Department of Surgery, College of Medicine, Soonchunhyang University, 31 Soonchunhyang 6-gil, Dongnam-gu, Cheonan 31151, Chungcheongnam-do, Republic of Korea; (D.K.); (T.A.); (M.B.)
| | - Moojun Baek
- Department of Surgery, College of Medicine, Soonchunhyang University, 31 Soonchunhyang 6-gil, Dongnam-gu, Cheonan 31151, Chungcheongnam-do, Republic of Korea; (D.K.); (T.A.); (M.B.)
| | - Dongjun Jeong
- Department of Pathology, College of Medicine, Soonchunhyang University, 31 Soonchunhyang 6-gil, Dongnam-gu, Cheonan 31151, Chungcheongnam-do, Republic of Korea; (S.K.); (I.H.); (M.L.)
- BK21 Four Project, College of Medicine, Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
3
|
Guengerich FP. Roles of Individual Human Cytochrome P450 Enzymes in Drug Metabolism. Pharmacol Rev 2024; 76:1104-1132. [PMID: 39054072 PMCID: PMC11549934 DOI: 10.1124/pharmrev.124.001173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/28/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024] Open
Abstract
Our knowledge of the roles of individual cytochrome P450 (P450) enzymes in drug metabolism has developed considerably in the past 30 years, and this base has been of considerable use in avoiding serious issues with drug interactions and issues due to variations. Some newer approaches are being considered for "phenotyping" metabolism reactions with new drug candidates. Endogenous biomarkers are being used for noninvasive estimation of levels of individual P450 enzymes. There is also the matter of some remaining "orphan" P450s, which have yet to be assigned reactions. Practical problems that continue in drug development include predicting drug-drug interactions, predicting the effects of polymorphic and other P450 variations, and evaluating interspecies differences in drug metabolism, particularly in the context of "metabolism in safety testing" regulatory issues ["disproportionate (human) metabolites"]. SIGNIFICANCE STATEMENT: Cytochrome P450 enzymes are the major catalysts involved in drug metabolism. The characterization of their individual roles has major implications in drug development and clinical practice.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
4
|
Barata IS, Rueff J, Kranendonk M, Esteves F. Pleiotropy of Progesterone Receptor Membrane Component 1 in Modulation of Cytochrome P450 Activity. J Xenobiot 2024; 14:575-603. [PMID: 38804287 PMCID: PMC11130977 DOI: 10.3390/jox14020034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Progesterone receptor membrane component 1 (PGRMC1) is one of few proteins that have been recently described as direct modulators of the activity of human cytochrome P450 enzymes (CYP)s. These enzymes form a superfamily of membrane-bound hemoproteins that metabolize a wide variety of physiological, dietary, environmental, and pharmacological compounds. Modulation of CYP activity impacts the detoxification of xenobiotics as well as endogenous pathways such as steroid and fatty acid metabolism, thus playing a central role in homeostasis. This review is focused on nine main topics that include the most relevant aspects of past and current PGRMC1 research, focusing on its role in CYP-mediated drug metabolism. Firstly, a general overview of the main aspects of xenobiotic metabolism is presented (I), followed by an overview of the role of the CYP enzymatic complex (IIa), a section on human disorders associated with defects in CYP enzyme complex activity (IIb), and a brief account of cytochrome b5 (cyt b5)'s effect on CYP activity (IIc). Subsequently, we present a background overview of the history of the molecular characterization of PGRMC1 (III), regarding its structure, expression, and intracellular location (IIIa), and its heme-binding capability and dimerization (IIIb). The next section reflects the different effects PGRMC1 may have on CYP activity (IV), presenting a description of studies on the direct effects on CYP activity (IVa), and a summary of pathways in which PGRMC1's involvement may indirectly affect CYP activity (IVb). The last section of the review is focused on the current challenges of research on the effect of PGRMC1 on CYP activity (V), presenting some future perspectives of research in the field (VI).
Collapse
Affiliation(s)
- Isabel S. Barata
- Department of Pediatrics, Division of Endocrinology, Diabetology and Metabolism, University Children’s Hospital, University of Bern, 3010 Bern, Switzerland;
- Translational Hormone Research Program, Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - José Rueff
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal;
| | - Michel Kranendonk
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal;
| | - Francisco Esteves
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal;
| |
Collapse
|
5
|
Guo J, Zhang H, Lin W, Lu L, Su J, Chen X. Signaling pathways and targeted therapies for psoriasis. Signal Transduct Target Ther 2023; 8:437. [PMID: 38008779 PMCID: PMC10679229 DOI: 10.1038/s41392-023-01655-6] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/10/2023] [Accepted: 09/14/2023] [Indexed: 11/28/2023] Open
Abstract
Psoriasis is a common, chronic, and inflammatory skin disease with a high burden on individuals, health systems, and society worldwide. With the immunological pathologies and pathogenesis of psoriasis becoming gradually revealed, the therapeutic approaches for this disease have gained revolutionary progress. Nevertheless, the mechanisms of less common forms of psoriasis remain elusive. Furthermore, severe adverse effects and the recurrence of disease upon treatment cessation should be noted and addressed during the treatment, which, however, has been rarely explored with the integration of preliminary findings. Therefore, it is crucial to have a comprehensive understanding of the mechanisms behind psoriasis pathogenesis, which might offer new insights for research and lead to more substantive progress in therapeutic approaches and expand clinical options for psoriasis treatment. In this review, we looked to briefly introduce the epidemiology, clinical subtypes, pathophysiology, and comorbidities of psoriasis and systematically discuss the signaling pathways involving extracellular cytokines and intracellular transmission, as well as the cross-talk between them. In the discussion, we also paid more attention to the potential metabolic and epigenetic mechanisms of psoriasis and the molecular mechanistic cascades related to its comorbidities. This review also outlined current treatment for psoriasis, especially targeted therapies and novel therapeutic strategies, as well as the potential mechanism of disease recurrence.
Collapse
Affiliation(s)
- Jia Guo
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China
| | - Hanyi Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China
| | - Wenrui Lin
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China
| | - Lixia Lu
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China
| | - Juan Su
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China.
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China.
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China.
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China.
| |
Collapse
|
6
|
Al-saraireh YM, Alshammari FOFO, Satari AO, Al-mahdy YS, Almuhaisen GH, Abu-azzam OH, Uwais AN, Abufraijeh SM, Al-Kharabsheh AM, Al-dalain SM, Al-Qtaitat A, Al-Tarawneh F, Al Shuneigat JM, Al-Sarayreh SA. Cytochrome 4Z1 Expression Connotes Unfavorable Prognosis in Ovarian Cancers. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58091263. [PMID: 36143940 PMCID: PMC9502355 DOI: 10.3390/medicina58091263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 02/05/2023]
Abstract
Background and Objective: Ovarian cancer is a leading cause of death in females. Since its treatment is challenging and causes severe side effects, novel therapies are urgently needed. One of the potential enzymes implicated in the progression of cancers is Cytochrome 4Z1 (CYP4Z1). Its expression in ovarian cancer remains unknown. Therefore, the current study aims to assess CYP4Z1 expression in different subtypes of ovarian cancers. Materials and Methods: Immunohistochemistry was used to characterize CYP4Z1 expression in 192 cases of ovarian cancers along with eight normal ovarian tissues. The enzyme’s association with various clinicopathological characteristics and survival was determined. Results: CYP4Z1 was strongly expressed in 79% of ovarian cancers, compared to negative expression in normal ovarian samples. Importantly, significantly high CYP4Z1 expres-sion was determined in patients with advanced-stage cancer and a high depth of invasion (p < 0.05). Surprisingly, CYP4Z1 expression was significantly associated with a low patient survival rate. Univariate analysis revealed that patient survival was strongly associated with CYP4Z1 expression, tumor stage, depth of invasion, and lymph node metastasis (p < 0.05). Multivariate analysis showed that only CYP4Z1 expression was significantly associated with patient survival (p < 0.05). Conclusions: CYP4Z1 expression is correlated with shorter patient survival and has been identified as an independent indicator of a poor prognosis for ovarian cancer patients.
Collapse
Affiliation(s)
- Yousef M. Al-saraireh
- Department of Pharmacology, Faculty of Medicine, Mutah University, P.O. Box 7, Al-Karak 61710, Jordan
- Correspondence:
| | - Fatemah O. F. O. Alshammari
- Department of Medical Lab Technology, Faculty of Health Sciences, The Public Authority for Applied Education and Training, Shuwaikh 15432, Kuwait
| | - Anas O. Satari
- Faculty of Medicine, Mutah University, P.O. Box 7, Al-Karak 61710, Jordan
| | - Yanal S. Al-mahdy
- Faculty of Medicine, Mutah University, P.O. Box 7, Al-Karak 61710, Jordan
| | - Ghadeer H. Almuhaisen
- Department of Microbiology and Pathology, Faculty of Medicine, Mutah University, P.O. Box 7, Al-Karak 61710, Jordan
| | - Omar H. Abu-azzam
- Department of Obstetrics and Gynecology, Faculty of Medicine, Mutah University, P.O. Box 7, Al-Karak 61710, Jordan
| | - Ala N. Uwais
- Department of Obstetrics and Gynecology, Faculty of Medicine, Mutah University, P.O. Box 7, Al-Karak 61710, Jordan
| | - Seham M. Abufraijeh
- Department of Obstetrics and Gynecology, Faculty of Medicine, Mutah University, P.O. Box 7, Al-Karak 61710, Jordan
| | - Ahlam M. Al-Kharabsheh
- Department of Obstetrics and Gynecology, Faculty of Medicine, Mutah University, P.O. Box 7, Al-Karak 61710, Jordan
| | - Sa’ed M. Al-dalain
- Department of Pharmacology, Faculty of Medicine, Mutah University, P.O. Box 7, Al-Karak 61710, Jordan
| | - Aiman Al-Qtaitat
- Department of Anatomy and Histology, Faculty of Medicine, Mutah University, P.O. Box 7, Al-Karak 61710, Jordan
- Faculty of Dentistry, Zarqa University, Zarqa 13110, Jordan
| | - Fatima Al-Tarawneh
- Department of Allied Medical Sciences, Faculty of Al-Karak, Al-Balqa Applied University, P.O. Box 7, Al-Karak 61710, Jordan
| | - Jehad M. Al Shuneigat
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Mutah University, P.O. Box 7, Al-Karak 61710, Jordan
| | - Sameeh A. Al-Sarayreh
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Mutah University, P.O. Box 7, Al-Karak 61710, Jordan
| |
Collapse
|
7
|
Mo HY, Wei QY, Zhong QH, Zhao XY, Guo D, Han J, Noracharttiyapot W, Visser L, van den Berg A, Xu YM, Lau ATY. Cytochrome P450 27C1 Level Dictates Lung Cancer Tumorigenicity and Sensitivity towards Multiple Anticancer Agents and Its Potential Interplay with the IGF-1R/Akt/p53 Signaling Pathway. Int J Mol Sci 2022; 23:7853. [PMID: 35887201 PMCID: PMC9324654 DOI: 10.3390/ijms23147853] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/28/2022] [Accepted: 07/05/2022] [Indexed: 02/05/2023] Open
Abstract
Cytochrome P450 enzymes (CYP450s) exert mighty catalytic actions in cellular metabolism and detoxication, which play pivotal roles in cell fate determination. Preliminary data shows differential expression levels of CYP27C1, one of the "orphan P450s" in human lung cancer cell lines. Here, we study the functions of CYP27C1 in lung cancer progression and drug endurance, and explore its potential to be a diagnostic and therapeutic target for lung cancer management. Quantitative real-time PCR and immunoblot assays were conducted to estimate the transcription and protein expression level of CYP27C1 in human lung cancer cell lines, which was relatively higher in A549 and H1975 cells, but was lower in H460 cells. Stable CYP27C1-knockdown A549 and H1975 cell lines were established, in which these cells showed enhancement in cell proliferation, colony formation, and migration. In addition, aberrant IGF-1R/Akt/p53 signal transduction was also detected in stable CYP27C1-knockdown human lung cancer cells, which exhibited greater tolerance towards the treatments of anticancer agents (including vinorelbine, picropodophyllin, pacritinib, and SKLB610). This work, for the first time, reveals that CYP27C1 impacts lung cancer cell development by participating in the regulation of the IGF-1R/Akt/p53 signaling pathway, and the level of CYP27C1 plays indispensable roles in dictating the cellular sensitivity towards multiple anticancer agents.
Collapse
Affiliation(s)
- Hai-Ying Mo
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Qi-Yao Wei
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Qiu-Hua Zhong
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Xiao-Yun Zhao
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Dan Guo
- Department of Pathology, Shantou University Medical College, Shantou 515041, China
| | - Jin Han
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Wachiraporn Noracharttiyapot
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Lydia Visser
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Yan-Ming Xu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Andy T. Y. Lau
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
8
|
Pérez-Soto E, Medel-Flores MO, Fernández-Martínez E, Oros-Pantoja R, Miranda-Covarrubias JC, Sánchez-Monroy V. High-Risk HPV with Multiple Infections Promotes CYP2E1, Lipoperoxidation and Pro-Inflammatory Cytokines in Semen of Asymptomatic Infertile Men. Antioxidants (Basel) 2022; 11:antiox11061051. [PMID: 35739948 PMCID: PMC9219901 DOI: 10.3390/antiox11061051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023] Open
Abstract
High-risk human papillomavirus (HR-HPV) infection, followed by chronic inflammation and oxidative stress, is a major risk factor of male infertility. In this study, we explored the potential impact of high-risk (HR) HPV genotypes in single infection (SI) and multiple infections (MI) that promote CYP2E1 expression, oxidative damage and pro-inflammatory cytokines, possibly contributing to sperm damage and male infertility. Semen samples from 101 infertile military men were studied. We analyzed seminal parameters, namely, HPV genotyping, cytochrome P450 2E1 (CYP2E1), oxidative stress biomarkers (total antioxidant capacity (TAC), catalase (CAT) and superoxide dismutase (SOD)), lipid peroxidation (LPO), 8-hydroxiguanosine (8-OHdG) and pro-inflammatory cytokines (IFN-γ, IL-1β, IL-4, IL-6 and IL-8). Eighty-one men (80.2%, 81/101) were positive for HPV infection, and MI-HR-HPV was higher than SI-HR-HPV (63% vs. 37%). HPV-52 was the most frequently detected type (18.5%), followed by HPV-33 (11.1%), and the most frequent combination of genotypes detected was HPV-33,52 (11.1%), followed by HPV-18,31 (6.2%). The group with infected samples presented lower normal morphology and antioxidant levels compared to non-infected samples. In concordance, the infected group showed high levels of LPO, IFN-γ, IL-1β, IL-4 and IL-6 and downregulation of CAT and SOD enzymes. Interestingly, changes in motility B, low levels of TAC, overexpression of CYP2E1, LPO and IL-8 levels were higher in MI-HR-HPV than SI-HR-HPV, suggesting that HPV infection promotes a chronic inflammatory process and a toxic and oxidative microenvironment, which increases with MI-HPV infections.
Collapse
Affiliation(s)
- Elvia Pérez-Soto
- Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07320, Mexico; (E.P.-S.); (M.O.M.-F.)
| | - María Olivia Medel-Flores
- Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07320, Mexico; (E.P.-S.); (M.O.M.-F.)
| | - Eduardo Fernández-Martínez
- Centro de Investigación en Biología de la Reproducción, Área Académica de Medicina del Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Pachuca 42090, Mexico;
| | - Rigoberto Oros-Pantoja
- Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca de Lerdo 50180, Mexico;
| | - José Cruz Miranda-Covarrubias
- Hospital Militar de Especialidades de la Mujer y Neonatología de la Secretaría de la Defensa Nacional, Mexico City 11200, Mexico;
| | - Virginia Sánchez-Monroy
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Salvador Díaz Mirón esq. Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Mexico City 11340, Mexico
- Correspondence: ; Tel.: +52-57296000
| |
Collapse
|
9
|
Bioactivity assessment of essential oils of Cymbopogon species using a network pharmacology approach. Biol Futur 2022; 73:107-118. [PMID: 35098495 DOI: 10.1007/s42977-022-00111-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/17/2022] [Indexed: 10/19/2022]
Abstract
Essential oils of Cymbopogon species have wide commercial applications in fragrance, perfumery, and pharmaceuticals as they exhibit a horizon of bioactivities. Here, essential oils of C. flexuosus and C. martinii were analysed to identify bioactive constituents and bioactivities using a network pharmacology approach. Essential oils were isolated using hydro-distillation in a mini Clevenger apparatus. Analysis of essential oils by GC-MS revealed 20 and 15 chemical constituents in C. flexuosus and C. martinii, respectively. An ingredient-target protein-pathway network was constructed comprising 10 oil constituents (citral, geraniol, geranyl acetate, limonene, linalool, α-terpineol, borneol, α-pinene, myrcene, and n-decanol), 14 target proteins, 51 related pathways, and 108 connections. Analyses of the network showed geraniol, geranyl acetate, limonene, linalool, and citral as major active constituents. A core sub-network constructed from the ingredient-target protein-pathway network revealed bioactivities including anti-cancer, anti-inflammatory and neuroprotective. The protein association network pointed out the major target proteins viz., THRB, FXR, ALOX15, and TSHR and pathways like metabolic, and neuroactive ligand-receptor interaction pathways of essential oil constituents. The target proteins and pathways provided insights into the mechanism of action of bioactive constituents. Based on the results of the study, geraniol was correlated with neuroprotective, citral to chemo-preventive, and limonene to anti-inflammatory activities. Thus, the study offers a new way for the assessment of the bioactivities of Cymbopogon species essential oils leading to the development of new biomedicines.
Collapse
|
10
|
Molina-Ortiz D, Torres-Zárate C, Santes-Palacios R. Human Orphan Cytochromes P450: An Update. Curr Drug Metab 2022; 23:942-963. [PMID: 36503398 DOI: 10.2174/1389200224666221209153032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/25/2022] [Accepted: 11/11/2022] [Indexed: 12/14/2022]
Abstract
Orphan cytochromes P450 (CYP) are enzymes whose biological functions and substrates are unknown. However, the use of new experimental strategies has allowed obtaining more information about their relevance in the metabolism of endogenous and exogenous compounds. Likewise, the modulation of their expression and activity has been associated with pathogenesis and prognosis in different diseases. In this work, we review the regulatory pathways and the possible role of orphan CYP to provide evidence that allow us to stop considering some of them as orphan enzymes and to propose them as possible therapeutic targets in the design of new strategies for the treatment of diseases associated with CYP-mediated metabolism.
Collapse
Affiliation(s)
- Dora Molina-Ortiz
- Laboratorio de Toxicología Genética, Instituto Nacional de Pediatría, Coyoacán 04530, Mexico City, México
| | - Carmen Torres-Zárate
- Laboratorio de Toxicología Genética, Instituto Nacional de Pediatría, Coyoacán 04530, Mexico City, México
| | - Rebeca Santes-Palacios
- Laboratorio de Toxicología Genética, Instituto Nacional de Pediatría, Coyoacán 04530, Mexico City, México
| |
Collapse
|
11
|
Brun NR, Salanga MC, Mora-Zamorano FX, Lamb DC, Goldstone JV, Stegeman JJ. Orphan cytochrome P450 20a1 CRISPR/Cas9 mutants and neurobehavioral phenotypes in zebrafish. Sci Rep 2021; 11:23892. [PMID: 34903767 PMCID: PMC8669017 DOI: 10.1038/s41598-021-03068-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 11/19/2021] [Indexed: 11/08/2022] Open
Abstract
Orphan cytochrome P450 (CYP) enzymes are those for which biological substrates and function(s) are unknown. Cytochrome P450 20A1 (CYP20A1) is the last human orphan P450 enzyme, and orthologs occur as single genes in every vertebrate genome sequenced to date. The occurrence of high levels of CYP20A1 transcripts in human substantia nigra and hippocampus and abundant maternal transcripts in zebrafish eggs strongly suggest roles both in the brain and during early embryonic development. Patients with chromosome 2 microdeletions including CYP20A1 show hyperactivity and bouts of anxiety, among other conditions. Here, we created zebrafish cyp20a1 mutants using CRISPR/Cas9, providing vertebrate models with which to study the role of CYP20A1 in behavior and other neurodevelopmental functions. The homozygous cyp20a1 null mutants exhibited significant behavioral differences from wild-type zebrafish, both in larval and adult animals. Larval cyp20a1-/- mutants exhibited a strong increase in light-simulated movement (i.e., light-dark assay), which was interpreted as hyperactivity. Further, the larvae exhibited mild hypoactivity during the adaptation period of the optomotor assays. Adult cyp20a1 null fish showed a pronounced delay in adapting to new environments, which is consistent with an anxiety paradigm. Taken together with our earlier morpholino cyp20a1 knockdown results, the results described herein suggest that the orphan CYP20A1 has a neurophysiological role.
Collapse
Affiliation(s)
- Nadja R Brun
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - Matthew C Salanga
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | | | - David C Lamb
- Faculty of Medicine, Health and Life Sciences, Swansea University, Swansea, SA2 8PP, UK
| | - Jared V Goldstone
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - John J Stegeman
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA.
| |
Collapse
|
12
|
Abstract
The cytochrome P450 (CYP) superfamily is a diverse and important enzyme family, playing a central role in chemical defense and in synthesis and metabolism of major biological signaling molecules. The CYPomes of four cnidarian genomes (Hydra vulgaris, Acropora digitifera, Aurelia aurita, Nematostella vectensis) were annotated; phylogenetic analyses determined the evolutionary relationships amongst the sequences and with existing metazoan CYPs. 155 functional CYPs were identified and 90 fragments. Genes were from 24 new CYP families and several new subfamilies; genes were in 9 of the 12 established metazoan CYP clans. All species had large expansions of clan 2 diversity, with H. vulgaris having reduced diversity for both clan 3 and mitochondrial clan. We identified potential candidates for xenobiotic metabolism and steroidogenesis. That each genome contained multiple, novel CYP families may reflect the large evolutionary distance within the cnidarians, unique physiology in the cnidarian classes, and/or different ecology of the individual species.
Collapse
|
13
|
Role of Genetic Variation in Cytochromes P450 in Breast Cancer Prognosis and Therapy Response. Int J Mol Sci 2021; 22:ijms22062826. [PMID: 33802237 PMCID: PMC8001203 DOI: 10.3390/ijms22062826] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/16/2022] Open
Abstract
Breast cancer is the most frequent cancer in the female population worldwide. The role of germline genetic variability in cytochromes P450 (CYP) in breast cancer prognosis and individualized therapy awaits detailed elucidation. In the present study, we used the next-generation sequencing to assess associations of germline variants in the coding and regulatory sequences of all human CYP genes with response of the patients to the neoadjuvant cytotoxic chemotherapy and disease-free survival (n = 105). A total of 22 prioritized variants associating with a response or survival in the above evaluation phase were then analyzed by allelic discrimination in the large confirmation set (n = 802). Associations of variants in CYP1B1, CYP4F12, CYP4X1, and TBXAS1 with the response to the neoadjuvant cytotoxic chemotherapy were replicated by the confirmation phase. However, just association of variant rs17102977 in CYP4X1 passed the correction for multiple testing and can be considered clinically and statistically validated. Replicated associations for variants in CYP4X1, CYP24A1, and CYP26B1 with disease-free survival of all patients or patients stratified to subgroups according to therapy type have not passed a false discovery rate test. Although statistically not confirmed by the present study, the role of CYP genes in breast cancer prognosis should not be ruled out. In conclusion, the present study brings replicated association of variant rs17102977 in CYP4X1 with the response of patients to the neoadjuvant cytotoxic chemotherapy and warrants further research of genetic variation CYPs in breast cancer.
Collapse
|
14
|
Weldemichael DM, Zhou K, Su SJ, Zhao L, Marchisio MA, Bureik M. Futile cycling by human microsomal cytochrome P450 enzymes within intact fission yeast cells. Arch Biochem Biophys 2021; 701:108791. [PMID: 33592181 DOI: 10.1016/j.abb.2021.108791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 10/22/2022]
Abstract
Human cytochrome P450 enzymes (CYPs or P450s) are known to be reduced by their electron transfer partners in the absence of substrate and in turn to reduce other acceptor molecules such as molecular oxygen, thereby creating superoxide anions (O2-•). This process is known as futile cycling. Using our previously established fission yeast expression system we have monitored cells expressing each one of the 50 human microsomal CYPs in the absence of substrate for oxidation of dihydroethidium in living cells by flow cytometry. It was found that 38 of these display a statistically significant increase in O2-• production. More specifically, cells expressing some CYPs were found to be intermediate strength O2-• producers, which means that their effect was comparable to that of treatment with 3 mM H2O2. Cells expressing other CYPs had an even stronger effect, with those expressing CYP2B6, CYP5A1, CYP2A13, CYP51A1, or CYP1A2, respectively, being the strongest producers of O2-•.
Collapse
Affiliation(s)
- Dawit M Weldemichael
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin, 300072, PR China
| | - Kun Zhou
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Shi-Jia Su
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Lin Zhao
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Mario Andrea Marchisio
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin, 300072, PR China
| | - Matthias Bureik
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin, 300072, PR China.
| |
Collapse
|
15
|
Everts HB, Akuailou EN. Retinoids in Cutaneous Squamous Cell Carcinoma. Nutrients 2021; 13:E153. [PMID: 33466372 PMCID: PMC7824907 DOI: 10.3390/nu13010153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 02/07/2023] Open
Abstract
Animal studies as early as the 1920s suggested that vitamin A deficiency leads to squamous cell metaplasia in numerous epithelial tissues including the skin. However, humans usually die from vitamin A deficiency before cancers have time to develop. A recent long-term cohort study found that high dietary vitamin A reduced the risk of cutaneous squamous cell carcinoma (cSCC). cSCC is a form of nonmelanoma skin cancer that primarily occurs from excess exposure to ultraviolet light B (UVB). These cancers are expensive to treat and can lead to metastasis and death. Oral synthetic retinoids prevent the reoccurrence of cSCC, but side effects limit their use in chemoprevention. Several proteins involved in vitamin A metabolism and signaling are altered in cSCC, which may lead to retinoid resistance. The expression of vitamin A metabolism proteins may also have prognostic value. This article reviews what is known about natural and synthetic retinoids and their metabolism in cSCC.
Collapse
Affiliation(s)
- Helen B Everts
- Department of Nutrition and Food Sciences, Texas Woman's University, Denton, TX 76209, USA
| | | |
Collapse
|
16
|
Li Y, Su X, Feng C, Liu S, Guan H, Sun Y, He N, Ji M, Hou P. CYP2S1 is a synthetic lethal target in BRAF V600E-driven thyroid cancers. Signal Transduct Target Ther 2020; 5:191. [PMID: 32913191 PMCID: PMC7483764 DOI: 10.1038/s41392-020-00231-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 06/11/2020] [Accepted: 06/19/2020] [Indexed: 12/19/2022] Open
Abstract
BRAFV600E is the most common genetic alteration and has become a major therapeutic target in thyroid cancers; however, intrinsic feedback mechanism limited clinical use of BRAFV600E specific inhibitors. Synthetic lethal is a kind of interaction between two genes, where only simultaneously perturbing both of the genes can lead to lethality. Here, we identified CYP2S1 as a synthetic lethal partner of BRAFV600E in thyroid cancers. First, we found that CYP2S1 was highly expressed in papillary thyroid cancers (PTCs) compared to normal thyroid tissues, particularly in conventional PTCs (CPTCs) and tall-cell PTCs (TCPTCs), and its expression was positively associated with BRAFV600E mutation. CYP2S1 knockdown selectively inhibited cell proliferation, migration, invasion and tumorigenic potential in nude mice, and promoted cell apoptosis in BRAFV600E mutated thyroid cancer cells, but not in BRAF wild-type ones. Mechanistically, BRAFV600E-mediated MAPK/ERK cascade upregulated CYP2S1 expression by an AHR-dependent pathway, while CYP2S1 in turn enhanced transcriptional activity of AHR through its metabolites. This AHR/CYP2S1 feedback loop strongly amplified oncogenic role of BRAFV600E in thyroid cancer cells, thereby causing synthetic lethal interaction between CYP2S1 and BRAFV600E. Finally, we demonstrated CYP2S1 as a potential therapeutic target in both BRAFV600E-drived xenograft and transgenic mouse models by targetedly delivering CYP2S1-specific siRNA. Altogether, our data demonstrate CYP2S1 as a synthetic lethal partner of BRAFV600E in thyroid cancers, and indicate that targeting CYP2S1 will provide a new therapeutic strategy for BRAFV600E mutated thyroid cancers.
Collapse
Affiliation(s)
- Yiqi Li
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Xi Su
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Chao Feng
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Siyu Liu
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Haixia Guan
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of China Medical University, Shenyang, 110001, P.R. China
| | - Yue Sun
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Nongyue He
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, P.R. China.
| | - Meiju Ji
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China.
| | - Peng Hou
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China. .,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China.
| |
Collapse
|
17
|
Saravanakumar A, Sadighi A, Ryu R, Akhlaghi F. Physicochemical Properties, Biotransformation, and Transport Pathways of Established and Newly Approved Medications: A Systematic Review of the Top 200 Most Prescribed Drugs vs. the FDA-Approved Drugs Between 2005 and 2016. Clin Pharmacokinet 2020; 58:1281-1294. [PMID: 30972694 DOI: 10.1007/s40262-019-00750-8] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Enzyme-mediated biotransformation of pharmacological agents is a crucial step in xenobiotic detoxification and drug disposition. Herein, we investigated the metabolism and physicochemical properties of the top 200 most prescribed drugs (established) as well as drugs approved by the US Food and Drug Administration (FDA) between 2005 and 2016 (newly approved). OBJECTIVE Our objective was to capture the changing trends in the routes of administration, physicochemical properties, and prodrug medications, as well as the contributions of drug-metabolizing enzymes and transporters to drug clearance. METHODS The University of Washington Drug Interaction Database (DIDB®) as well as other online resources (e.g., CenterWatch.com, Drugs.com, DrugBank.ca, and PubChem.ncbi.nlm.nih.gov) was used to collect and stratify the dataset required for exploring the above-mentioned trends. RESULTS Analyses revealed that ~ 90% of all drugs in the established and newly approved drug lists were administered systemically (oral or intravenous). Meanwhile, the portion of biologics (molecular weight > 1 kDa) was 15 times greater in the newly approved list than established drugs. Additionally, there was a 4.5-fold increase in the number of compounds with a high calculated partition coefficient (cLogP > 3) and a high total polar surface area (> 75 Å2) in the newly approved drug vs. the established category. Further, prodrugs in established or newly approved lists were found to be converted to active compounds via hydrolysis, demethylases, and kinases. The contribution of cytochrome P450 (CYP) 3A4, as the major biotransformation pathway, has increased from 40% in the established drug list to 64% in the newly approved drug list. Moreover, the role of CYP1A2, CYP2C19, and CYP2D6 were decreased as major metabolizing enzymes among the newly approved medications. Among non-CYP major metabolizers, the contribution of alcohol dehydrogenases/aldehyde dehydrogenases (ADH/ALDH) and sulfotransferases decreased in the newly approved drugs compared with the established list. Furthermore, the highest contribution among uptake and efflux transporters was found for Organic Anion Transporting Polypeptide 1B1 (OATP1B1) and P-glycoprotein (P-gp), respectively. CONCLUSIONS The higher portion of biologics in the newly approved drugs compared with the established list confirmed the growing demands for protein- and antibody-based therapies. Moreover, the larger number of hydrophilic drugs found in the newly approved list suggests that the probability of toxicity is likely to decrease. With regard to CYP-mediated major metabolism, CYP3A5 showed an increased involvement owing to the identification of unique probe substrates to differentiate CYP3As. Furthermore, the contribution of OATP1B1 and P-gp did not show a significant shift in the newly approved drugs as compared to the established list because of their broad substrate specificity.
Collapse
Affiliation(s)
- Anitha Saravanakumar
- Clinical Pharmacokinetics Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Office 495 A, 7 Greenhouse Road, Kingston, RI, 02881, USA
| | - Armin Sadighi
- Clinical Pharmacokinetics Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Office 495 A, 7 Greenhouse Road, Kingston, RI, 02881, USA
| | - Rachel Ryu
- Clinical Pharmacokinetics Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Office 495 A, 7 Greenhouse Road, Kingston, RI, 02881, USA
| | - Fatemeh Akhlaghi
- Clinical Pharmacokinetics Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Office 495 A, 7 Greenhouse Road, Kingston, RI, 02881, USA.
| |
Collapse
|
18
|
Sharma S, Durairaj P, Bureik M. Rapid and convenient biotransformation procedure for human drug metabolizing enzymes using permeabilized fission yeast cells. Anal Biochem 2020; 607:113704. [PMID: 32697953 DOI: 10.1016/j.ab.2020.113704] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/27/2020] [Accepted: 03/29/2020] [Indexed: 12/14/2022]
Abstract
The development of convenient assays for the in vitro study of drug metabolizing enzymes (DMEs) such as cytochromes P450 (CYPs) and UDP-glucuronosyltransferases (UGTs) greatly facilitates metabolism studies of candidate drug compounds and other xenobiotics. We have developed and optimized an experimental approach that combines the advantages of recombinant expression in yeast with a microsomal-like biotransformation and thus allows for rapid and convenient enzymatic assays. Recombinant strains of the fission yeast Schizosaccharomyces pombe have previously been demonstrated to functionally express human CYPs and UGTs. Permeabilization of such cells with Triton X-100 results in the formation of enzyme bags, which can be used as biocatalysts. This protocol describes the preparation of such enzyme bags (3 h) and their application in enzyme activity assays (4 h) utilizing either pro-luminescent substrates and luminescence measurements or non-luminescent substrates and liquid chromatography coupled to mass spectrometry (LC-MS). Both applications provide practical tools for investigating CYP and UGT reactions in vitro without the need for additional sophisticated instrumentation or expertise.
Collapse
Affiliation(s)
- Shishir Sharma
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin, 300072, China
| | - Pradeepraj Durairaj
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin, 300072, China
| | - Matthias Bureik
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
19
|
Chiang JY, Ferrell JM. Up to date on cholesterol 7 alpha-hydroxylase (CYP7A1) in bile acid synthesis. LIVER RESEARCH 2020; 4:47-63. [PMID: 34290896 PMCID: PMC8291349 DOI: 10.1016/j.livres.2020.05.001] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cholesterol 7 alpha-hydroxylase (CYP7A1, EC1.14) is the first and rate-limiting enzyme in the classic bile acid synthesis pathway. Much progress has been made in understanding the transcriptional regulation of CYP7A1 gene expression and the underlying molecular mechanisms of bile acid feedback regulation of CYP7A1 and bile acid synthesis in the last three decades. Discovery of bile acid-activated receptors and their roles in the regulation of lipid, glucose and energy metabolism have been translated to the development of bile acid-based drug therapies for the treatment of liver-related metabolic diseases such as alcoholic and non-alcoholic fatty liver diseases, liver cirrhosis, diabetes, obesity and hepatocellular carcinoma. This review will provide an update on the advances in our understanding of the molecular biology and mechanistic insights of the regulation of CYP7A1 in bile acid synthesis in the last 40 years.
Collapse
|
20
|
Durairaj P, Fan L, Sharma SS, Jie Z, Bureik M. Identification of new probe substrates for human CYP20A1. Biol Chem 2020; 401:361-365. [DOI: 10.1515/hsz-2019-0307] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/08/2019] [Indexed: 12/16/2022]
Abstract
AbstractCYP20A1 is a well-conserved member of the human cytochrome P450 enzyme family for which no endogenous or xenobiotic substrate is known. We have recently shown that this enzyme has moderate activity towards two proluciferin probe substrates. In order to facilitate the search for physiological substrates we have tested nine additional proluciferins in this study and identified three such probe substrates that give much higher product yields. Using one of these probes, we demonstrate inhibition of CYP20A1 activity by 1-benzylimidazole, ketoconazole and letrozole. Finally, we show that the combination of two common single nucleotide polymorphisms (SNPs) ofCYP20A1leads to an enzyme (CYP20A1Leu97Phe346) with reduced activity.
Collapse
Affiliation(s)
- Pradeepraj Durairaj
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin 300072, China
| | - Linbing Fan
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin 300072, China
| | - Sangeeta Shrestha Sharma
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin 300072, China
| | - Zhao Jie
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin 300072, China
| | - Matthias Bureik
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin 300072, China
| |
Collapse
|
21
|
Feyereisen R. Origin and evolution of the CYP4G subfamily in insects, cytochrome P450 enzymes involved in cuticular hydrocarbon synthesis. Mol Phylogenet Evol 2020; 143:106695. [DOI: 10.1016/j.ympev.2019.106695] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/23/2019] [Accepted: 11/26/2019] [Indexed: 11/27/2022]
|
22
|
Kanoh N, Kawamata-Asano A, Suzuki K, Takahashi Y, Miyazawa T, Nakamura T, Moriya T, Hirano H, Osada H, Iwabuchi Y, Takahashi S. An integrated screening system for the selection of exemplary substrates for natural and engineered cytochrome P450s. Sci Rep 2019; 9:18023. [PMID: 31792277 PMCID: PMC6888865 DOI: 10.1038/s41598-019-54473-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/14/2019] [Indexed: 11/26/2022] Open
Abstract
Information about substrate and product selectivity is critical for understanding the function of cytochrome P450 monooxygenases. In addition, comprehensive understanding of changes in substrate selectivity of P450 upon amino acid mutation would enable the design and creation of engineered P450s with desired selectivities. Therefore, systematic methods for obtaining such information are required. Herein, we developed an integrated P450 substrate screening system for the selection of “exemplary” substrates for a P450 of interest. The established screening system accurately selected the known exemplary substrates and also identified previously unknown exemplary substrates for microbial-derived P450s from a library containing sp3-rich synthetic small molecules. Synthetically potent transformations were also found by analyzing the reactions and oxidation products. The screening system was applied to analyze the substrate selectivity of the P450 BM3 mutants F87A and F87A/A330W, which acquired an ability to hydroxylate non-natural substrate steroids regio- and stereoselectively by two amino acid mutations. The distinct transition of exemplary substrates due to each single amino acid mutation was revealed, demonstrating the utility of the established system.
Collapse
Affiliation(s)
- Naoki Kanoh
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan. .,Institute of Medicinal Chemistry, Hoshi University, 2-4-1 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan.
| | - Ayano Kawamata-Asano
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Kana Suzuki
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Yusuke Takahashi
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Takeshi Miyazawa
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Takemichi Nakamura
- Molecular Structure Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Takashi Moriya
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Hiroyuki Hirano
- Chemical Resource Development Research Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Hiroyuki Osada
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Chemical Resource Development Research Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Yoshiharu Iwabuchi
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Shunji Takahashi
- Natural Product Biosynthesis Research Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
23
|
Durairaj P, Fan L, Du W, Ahmad S, Mebrahtu D, Sharma S, Ashraf RA, Liu J, Liu Q, Bureik M. Functional expression and activity screening of all human cytochrome P450 enzymes in fission yeast. FEBS Lett 2019; 593:1372-1380. [DOI: 10.1002/1873-3468.13441] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 04/29/2019] [Accepted: 05/10/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Pradeepraj Durairaj
- School of Pharmaceutical Science and Technology Health Sciences Platform Tianjin University China
| | - Linbing Fan
- School of Pharmaceutical Science and Technology Health Sciences Platform Tianjin University China
| | - Wei Du
- School of Pharmaceutical Science and Technology Health Sciences Platform Tianjin University China
| | - Shabir Ahmad
- School of Pharmaceutical Science and Technology Health Sciences Platform Tianjin University China
| | - Dawit Mebrahtu
- School of Pharmaceutical Science and Technology Health Sciences Platform Tianjin University China
| | - Shishir Sharma
- School of Pharmaceutical Science and Technology Health Sciences Platform Tianjin University China
| | - Rana Azeem Ashraf
- School of Pharmaceutical Science and Technology Health Sciences Platform Tianjin University China
| | - Jiaxin Liu
- School of Pharmaceutical Science and Technology Health Sciences Platform Tianjin University China
| | - Qian Liu
- School of Pharmaceutical Science and Technology Health Sciences Platform Tianjin University China
| | - Matthias Bureik
- School of Pharmaceutical Science and Technology Health Sciences Platform Tianjin University China
| |
Collapse
|
24
|
Rendic SP, Peter Guengerich F. Human cytochrome P450 enzymes 5-51 as targets of drugs and natural and environmental compounds: mechanisms, induction, and inhibition - toxic effects and benefits. Drug Metab Rev 2019; 50:256-342. [PMID: 30717606 DOI: 10.1080/03602532.2018.1483401] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cytochrome P450 (P450, CYP) enzymes have long been of interest due to their roles in the metabolism of drugs, pesticides, pro-carcinogens, and other xenobiotic chemicals. They have also been of interest due to their very critical roles in the biosynthesis and metabolism of steroids, vitamins, and certain eicosanoids. This review covers the 22 (of the total of 57) human P450s in Families 5-51 and their substrate selectivity. Furthermore, included is information and references regarding inducibility, inhibition, and (in some cases) stimulation by chemicals. We update and discuss important aspects of each of these 22 P450s and questions that remain open.
Collapse
Affiliation(s)
| | - F Peter Guengerich
- b Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , TN , USA
| |
Collapse
|
25
|
Ahmed Laskar A, Younus H. Aldehyde toxicity and metabolism: the role of aldehyde dehydrogenases in detoxification, drug resistance and carcinogenesis. Drug Metab Rev 2019; 51:42-64. [DOI: 10.1080/03602532.2018.1555587] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Amaj Ahmed Laskar
- Enzymology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Hina Younus
- Enzymology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
26
|
Poleggi A, van der Lee S, Capellari S, Puopolo M, Ladogana A, De Pascali E, Lia D, Formato A, Bartoletti-Stella A, Parchi P, van Duijn C, Pocchiari M. Age at onset of genetic (E200K) and sporadic Creutzfeldt-Jakob diseases is modulated by the CYP4X1 gene. J Neurol Neurosurg Psychiatry 2018; 89:1243-1249. [PMID: 30032116 DOI: 10.1136/jnnp-2018-318756] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/13/2018] [Accepted: 06/13/2018] [Indexed: 01/29/2023]
Abstract
OBJECTIVES The Glu to Lys change at codon 200 (E200K) of the PRNP gene is the most frequent mutation associated to genetic Creutzfeldt-Jakob disease (CJD) and the only one responsible for geographical clusters. Patients carrying this mutation develop disease at different ages and show variable clinical phenotypes that are not affected by the methione/valine polymorphism at codon 129 of the PRNP gene suggesting the influence of other factors. The objective of this study is to look for genes other than PRNP that might be responsible of this variability. METHODS We searched for other genes by performing genome-wide analyses (GWA) on 19 patients with genetic CJD and 18 healthy subjects carrying the E200K mutation of PRNP and belonging to the Calabrian cluster in Italy. We then validate this result in 32 patients with E200K CJD from non-cluster areas and 259 patients with sporadic CJD referred to the Italian CJD national registry. RESULTS AND CONCLUSIONS We identified two single nucleotide polymorphisms on the CYP4X1 gene locus as candidate disease modifiers in patients with E200K CJD of the cluster area and confirmed this finding in 32 patients with E200K CJD from non-cluster areas and 259 patients with sporadic CJD. Our results indicate that the CYP4X1 gene modulates the onset of disease in patients with E200K genetic and sporadic CJD. This finding improves our understanding on the pathogenesis of CJD, suggests new targets for developing novel therapeutic strategies and might be useful for the stratification of patients in future preventive treatment trials.
Collapse
Affiliation(s)
- Anna Poleggi
- Department of Neuroscience, Istituto Superiore di Sanità, Roma, Italy
| | - Sven van der Lee
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Sabina Capellari
- IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy.,Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Maria Puopolo
- Department of Neuroscience, Istituto Superiore di Sanità, Roma, Italy
| | - Anna Ladogana
- Department of Neuroscience, Istituto Superiore di Sanità, Roma, Italy
| | | | - Debora Lia
- Department of Neuroscience, Istituto Superiore di Sanità, Roma, Italy
| | - Alessia Formato
- Department of Neuroscience, Istituto Superiore di Sanità, Roma, Italy
| | - Anna Bartoletti-Stella
- IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy.,Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Piero Parchi
- IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy.,Department of Diagnostic Experimental and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Cornelia van Duijn
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands.,Translational Epidemiology, Faculty Science, Leiden University, Leiden, The Netherlands
| | | |
Collapse
|
27
|
Roles of Cytochrome P450 in Metabolism of Ethanol and Carcinogens. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1032:15-35. [PMID: 30362088 DOI: 10.1007/978-3-319-98788-0_2] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cytochrome P450 (P450) enzymes are involved in the metabolism of carcinogens, as well as drugs, steroids, vitamins, and other classes of chemicals. P450s also oxidize ethanol, in particular P450 2E1. P450 2E1 oxidizes ethanol to acetaldehyde and then to acetic acid, roles also played by alcohol and aldehyde dehydrogenases. The role of P450 2E1 in cancer is complex in that P450 2E1 is also induced by ethanol, P450 2E1 is involved in the bioactivation and detoxication of a number of chemical carcinogens, and ethanol is an inhibitor of P450 2E1. Contrary to some literature, P450 2E1 expression and induction itself does not cause global oxidative stress in vivo, as demonstrated in studies using isoniazid treatment and gene deletion studies with rats and mice. However, a major fraction of P450 2E1 is localized in liver mitochondria instead of the endoplasmic reticulum, and studies with site-directed rat P450 2E1 mutants and natural human P450 2E1 N-terminal variants have shown that P450 2E1 localized in mitochondria is catalytically active and more proficient in producing reactive oxygen species and damage. The role of the mitochondrial oxidative stress in ethanol toxicity is still under investigation, as is the mechanism of altered electron transport to P450s that localize inside mitochondria instead of their typical endoplasmic reticulum environment.
Collapse
|
28
|
Independent pseudogenization of CYP2J19 in penguins, owls and kiwis implicates gene in red carotenoid synthesis. Mol Phylogenet Evol 2018; 118:47-53. [DOI: 10.1016/j.ympev.2017.09.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 09/18/2017] [Accepted: 09/20/2017] [Indexed: 01/26/2023]
|
29
|
Membrane-bound human orphan cytochrome P450 2U1: Sequence singularities, construction of a full 3D model, and substrate docking. Biochimie 2017; 140:166-175. [DOI: 10.1016/j.biochi.2017.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 07/20/2017] [Indexed: 12/14/2022]
|
30
|
Johnson KM, Phan TTN, Albertolle ME, Guengerich FP. Human mitochondrial cytochrome P450 27C1 is localized in skin and preferentially desaturates trans-retinol to 3,4-dehydroretinol. J Biol Chem 2017; 292:13672-13687. [PMID: 28701464 DOI: 10.1074/jbc.m116.773937] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 06/29/2017] [Indexed: 11/06/2022] Open
Abstract
Recently, zebrafish and human cytochrome P450 (P450) 27C1 enzymes have been shown to be retinoid 3,4-desaturases. The enzyme is unusual among mammalian P450s in that the predominant oxidation is a desaturation and in that hydroxylation represents only a minor pathway. We show by proteomic analysis that P450 27C1 is localized to human skin, with two proteins of different sizes present, one being a cleavage product of the full-length form. P450 27C1 oxidized all-trans-retinol to 3,4-dehydroretinol, 4-hydroxy (OH) retinol, and 3-OH retinol in a 100:3:2 ratio. Neither 3-OH nor 4-OH retinol was an intermediate in desaturation. No kinetic burst was observed in the steady state; neither the rate of substrate binding nor product release was rate-limiting. Ferric P450 27C1 reduction by adrenodoxin was 3-fold faster in the presence of the substrate and was ∼5-fold faster than the overall turnover. Kinetic isotope effects of 1.5-2.3 (on kcat/Km ) were observed with 3,3-, 4,4-, and 3,3,4,4-deuterated retinol. Deuteration at C-4 produced a 4-fold increase in 3-hydroxylation due to metabolic switching, with no observable effect on 4-hydroxylation. Deuteration at C-3 produced a strong kinetic isotope effect for 3-hydroxylation but not 4-hydroxylation. Analysis of the products of deuterated retinol showed a lack of scrambling of a putative allylic radical at C-3 and C-4. We conclude that the most likely catalytic mechanism begins with abstraction of a hydrogen atom from C-4 (or possibly C-3) initiating the desaturation pathway, followed by a sequential abstraction of a hydrogen atom or proton-coupled electron transfer. Adrenodoxin reduction and hydrogen abstraction both contribute to rate limitation.
Collapse
Affiliation(s)
- Kevin M Johnson
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Thanh T N Phan
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Matthew E Albertolle
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - F Peter Guengerich
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| |
Collapse
|
31
|
A novel humanized mouse lacking murine P450 oxidoreductase for studying human drug metabolism. Nat Commun 2017; 8:39. [PMID: 28659616 PMCID: PMC5489481 DOI: 10.1038/s41467-017-00049-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 05/02/2017] [Indexed: 12/30/2022] Open
Abstract
Only one out of 10 drugs in development passes clinical trials. Many fail because experimental animal models poorly predict human xenobiotic metabolism. Human liver chimeric mice are a step forward in this regard, as the human hepatocytes in chimeric livers generate human metabolites, but the remaining murine hepatocytes contain an expanded set of P450 cytochromes that form the major class of drug-metabolizing enzymes. We therefore generated a conditional knock-out of the NADPH-P450 oxidoreductase (Por) gene combined with Il2rg− /−/Rag2− /−/Fah− /− (PIRF) mice. Here we show that homozygous PIRF mouse livers are readily repopulated with human hepatocytes, and when the murine Por gene is deleted (<5%), they predominantly use human cytochrome metabolism. When given the anticancer drug gefitinib or the retroviral drug atazanavir, the Por-deleted humanized PIRF mice develop higher levels of the major human metabolites than current models. Humanized, murine Por-deficient PIRF mice can thus predict human drug metabolism and should be useful for preclinical drug development. Human liver chimeric mice are increasingly used for drug testing in preclinical development, but express residual murine p450 cytochromes. Here the authors generate mice lacking the Por gene in the liver, and show that human cytochrome metabolism is used following repopulation with human hepatocytes.
Collapse
|
32
|
Alnabulsi A, Swan R, Cash B, Alnabulsi A, Murray GI. The differential expression of omega-3 and omega-6 fatty acid metabolising enzymes in colorectal cancer and its prognostic significance. Br J Cancer 2017; 116:1612-1620. [PMID: 28557975 PMCID: PMC5518862 DOI: 10.1038/bjc.2017.135] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/13/2017] [Accepted: 04/24/2017] [Indexed: 12/28/2022] Open
Abstract
Background: Colorectal cancer is a common malignancy and one of the leading causes of cancer-related deaths. The metabolism of omega fatty acids has been implicated in tumour growth and metastasis. Methods: This study has characterised the expression of omega fatty acid metabolising enzymes CYP4A11, CYP4F11, CYP4V2 and CYP4Z1 using monoclonal antibodies we have developed. Immunohistochemistry was performed on a tissue microarray containing 650 primary colorectal cancers, 285 lymph node metastasis and 50 normal colonic mucosa. Results: The differential expression of CYP4A11 and CYP4F11 showed a strong association with survival in both the whole patient cohort (hazard ratio (HR)=1.203, 95% CI=1.092–1.324, χ2=14.968, P=0.001) and in mismatch repair-proficient tumours (HR=1.276, 95% CI=1.095–1.488, χ2=9.988, P=0.007). Multivariate analysis revealed that the differential expression of CYP4A11 and CYP4F11 was independently prognostic in both the whole patient cohort (P=0.019) and in mismatch repair proficient tumours (P=0.046). Conclusions: A significant and independent association has been identified between overall survival and the differential expression of CYP4A11 and CYP4F11 in the whole patient cohort and in mismatch repair-proficient tumours.
Collapse
Affiliation(s)
- Abdo Alnabulsi
- Department of Pathology, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25, 2ZD, UK.,Vertebrate Antibodies, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| | - Rebecca Swan
- Department of Pathology, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25, 2ZD, UK
| | - Beatriz Cash
- Vertebrate Antibodies, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| | - Ayham Alnabulsi
- Vertebrate Antibodies, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| | - Graeme I Murray
- Department of Pathology, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25, 2ZD, UK
| |
Collapse
|
33
|
Dhers L, Ducassou L, Boucher JL, Mansuy D. Cytochrome P450 2U1, a very peculiar member of the human P450s family. Cell Mol Life Sci 2017; 74:1859-1869. [PMID: 28083596 PMCID: PMC11107762 DOI: 10.1007/s00018-016-2443-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/15/2016] [Accepted: 12/16/2016] [Indexed: 12/14/2022]
Abstract
Cytochrome P450 2U1 (CYP2U1) exhibits several distinctive characteristics among the 57 human CYPs, such as its presence in almost all living organisms with a highly conserved sequence, its particular gene organization with only five exons, its major location in thymus and brain, and its protein sequence involving an unusually long N-terminal region containing 8 proline residues and an insert of about 20 amino acids containing 5 arginine residues after the transmembrane helix. Few substrates, including fatty acids, N-arachidonoylserotonin (AS), and some drugs, have been reported so far. However, its biological roles remain largely unknown, even though CYP2U1 mutations have been involved in some pathological situations, such as complicated forms of hereditary spastic paraplegia. These data together with its ability to hydroxylate some fatty acids and AS suggest its possible role in lipid metabolism.
Collapse
Affiliation(s)
- L Dhers
- UMR 8601 CNRS, Université Paris Descartes, Paris Sorbonne Cité, 45 rue des Saints Pères, 75006, Paris, France
| | - L Ducassou
- UMR 8601 CNRS, Université Paris Descartes, Paris Sorbonne Cité, 45 rue des Saints Pères, 75006, Paris, France
| | - J-L Boucher
- UMR 8601 CNRS, Université Paris Descartes, Paris Sorbonne Cité, 45 rue des Saints Pères, 75006, Paris, France.
| | - D Mansuy
- UMR 8601 CNRS, Université Paris Descartes, Paris Sorbonne Cité, 45 rue des Saints Pères, 75006, Paris, France
| |
Collapse
|
34
|
Dhers L, Pietrancosta N, Ducassou L, Ramassamy B, Dairou J, Jaouen M, André F, Mansuy D, Boucher JL. Spectral and 3D model studies of the interaction of orphan human cytochrome P450 2U1 with substrates and ligands. Biochim Biophys Acta Gen Subj 2017; 1861:3144-3153. [DOI: 10.1016/j.bbagen.2016.07.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/06/2016] [Accepted: 07/21/2016] [Indexed: 02/08/2023]
|
35
|
Toselli F, Dodd PR, Gillam EMJ. Emerging roles for brain drug-metabolizing cytochrome P450 enzymes in neuropsychiatric conditions and responses to drugs. Drug Metab Rev 2016; 48:379-404. [DOI: 10.1080/03602532.2016.1221960] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
36
|
Cerny MA. Prevalence of Non-Cytochrome P450-Mediated Metabolism in Food and Drug Administration-Approved Oral and Intravenous Drugs: 2006-2015. Drug Metab Dispos 2016; 44:1246-52. [PMID: 27084892 DOI: 10.1124/dmd.116.070763] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 04/14/2016] [Indexed: 02/13/2025] Open
Abstract
In recent years, claims of increased involvement of non-cytochrome P450 (non-P450) enzymes in the metabolism of drugs have appeared in the literature. However, no temporal summaries of the contribution of non-P450 enzymes to the metabolism of drugs have been published. Using data from human radiolabeled absorption, distribution, metabolism, and excretion studies available for a set of 125 orally or intravenously administered small-molecule drugs approved by the United States Food and Drug Administration from 2006 to 2015, the contributions of P450 and non-P450 enzymes to the formation of major metabolites (≥10% of dose) were assessed and tabulated. Over this time frame, the involvement of P450 versus non-P450 enzymes in the formation of major metabolites is compared, and the individual non-P450 enzymes responsible are described. This analysis indicates that non-P450 enzymes contribute significantly to the metabolism of the 125 drugs analyzed. Approximately 30% of the metabolism of these drugs is carried out by non-P450 enzymes, with the predominant non-P450 enzymes identified being glucuronosyltransferases (11.7%), hydrolases (10.8%), carbonyl reductases (2.4%), and aldehyde oxidase (1.1%). Although significant, the relative contribution of non-P450 enzymes to drug metabolism does not appear to have increased dramatically over the last 10 years. As the current evaluation involves drugs which emerged from the discovery phase >10 years ago, this evaluation may not reflect the current or evolving situation in some research organizations; therefore, additional monitoring and assessment of the involvement of non-P450 enzymes in the metabolism of drugs will be conducted in the future.
Collapse
Affiliation(s)
- Matthew A Cerny
- Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Pfizer, Inc., Groton, Connecticut
| |
Collapse
|
37
|
Lopes RJ, Johnson JD, Toomey MB, Ferreira MS, Araujo PM, Melo-Ferreira J, Andersson L, Hill GE, Corbo JC, Carneiro M. Genetic Basis for Red Coloration in Birds. Curr Biol 2016; 26:1427-34. [PMID: 27212400 PMCID: PMC5125026 DOI: 10.1016/j.cub.2016.03.076] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 02/08/2016] [Accepted: 03/24/2016] [Indexed: 12/28/2022]
Abstract
The yellow and red feather pigmentation of many bird species [1] plays pivotal roles in social signaling and mate choice [2, 3]. To produce red pigments, birds ingest yellow carotenoids and endogenously convert them into red ketocarotenoids via an oxidation reaction catalyzed by a previously unknown ketolase [4-6]. We investigated the genetic basis for red coloration in birds using whole-genome sequencing of red siskins (Spinus cucullata), common canaries (Serinus canaria), and "red factor" canaries, which are the hybrid product of crossing red siskins with common canaries [7]. We identified two genomic regions introgressed from red siskins into red factor canaries that are required for red coloration. One of these regions contains a gene encoding a cytochrome P450 enzyme, CYP2J19. Transcriptome analysis demonstrates that CYP2J19 is significantly upregulated in the skin and liver of red factor canaries, strongly implicating CYP2J19 as the ketolase that mediates red coloration in birds. Interestingly, a second introgressed region required for red feathers resides within the epidermal differentiation complex, a cluster of genes involved in development of the integument. Lastly, we present evidence that CYP2J19 is involved in ketocarotenoid formation in the retina. The discovery of the carotenoid ketolase has important implications for understanding sensory function and signaling mediated by carotenoid pigmentation.
Collapse
Affiliation(s)
- Ricardo J Lopes
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
| | - James D Johnson
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Matthew B Toomey
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mafalda S Ferreira
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
| | - Pedro M Araujo
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal; Marine and Environmental Sciences Centre (MARE), Department of Life Sciences, University of Coimbra, 3004-517 Coimbra, Portugal
| | - José Melo-Ferreira
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s⁄n., 4169-007 Porto, Portugal
| | - Leif Andersson
- Science of Life Laboratory Uppsala, Department of Medical Biochemistry and Microbiology, Uppsala University, 75123 Uppsala, Sweden; Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden; Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77845, USA
| | - Geoffrey E Hill
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA.
| | - Joseph C Corbo
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Miguel Carneiro
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s⁄n., 4169-007 Porto, Portugal.
| |
Collapse
|
38
|
Marlow JJ, Skennerton CT, Li Z, Chourey K, Hettich RL, Pan C, Orphan VJ. Proteomic Stable Isotope Probing Reveals Biosynthesis Dynamics of Slow Growing Methane Based Microbial Communities. Front Microbiol 2016; 7:563. [PMID: 27199908 PMCID: PMC4850331 DOI: 10.3389/fmicb.2016.00563] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 04/04/2016] [Indexed: 01/02/2023] Open
Abstract
Marine methane seep habitats represent an important control on the global flux of methane. Nucleotide-based meta-omics studies outline community-wide metabolic potential, but expression patterns of environmentally relevant proteins are poorly characterized. Proteomic stable isotope probing (proteomic SIP) provides additional information by characterizing phylogenetically specific, functionally relevant activity in mixed microbial communities, offering enhanced detection through system-wide product integration. Here we applied proteomic SIP to 15NH4+ and CH4 amended seep sediment microcosms in an attempt to track protein synthesis of slow-growing, low-energy microbial systems. Across all samples, 3495 unique proteins were identified, 11% of which were 15N-labeled. Consistent with the dominant anaerobic oxidation of methane (AOM) activity commonly observed in anoxic seep sediments, proteins associated with sulfate reduction and reverse methanogenesis—including the ANME-2 associated methylenetetrahydromethanopterin reductase (Mer)—were all observed to be actively synthesized (15N-enriched). Conversely, proteins affiliated with putative aerobic sulfur-oxidizing epsilon- and gammaproteobacteria showed a marked decrease over time in our anoxic sediment incubations. The abundance and phylogenetic range of 15N-enriched methyl-coenzyme M reductase (Mcr) orthologs, many of which exhibited novel post-translational modifications, suggests that seep sediments provide niches for multiple organisms performing analogous metabolisms. In addition, 26 proteins of unknown function were consistently detected and actively expressed under conditions supporting AOM, suggesting that they play important roles in methane seep ecosystems. Stable isotope probing in environmental proteomics experiments provides a mechanism to determine protein durability and evaluate lineage-specific responses in complex microbial communities placed under environmentally relevant conditions. Our work here demonstrates the active synthesis of a metabolically specific minority of enzymes, revealing the surprising longevity of most proteins over the course of an extended incubation experiment in an established, slow-growing, methane-impacted environmental system.
Collapse
Affiliation(s)
- Jeffrey J Marlow
- Division of Geological and Planetary Sciences, California Institute of Technology Pasadena, CA, USA
| | - Connor T Skennerton
- Division of Geological and Planetary Sciences, California Institute of Technology Pasadena, CA, USA
| | - Zhou Li
- Chemical Sciences Division, Oak Ridge National Laboratory Oak Ridge, TN, USA
| | - Karuna Chourey
- Chemical Sciences Division, Oak Ridge National Laboratory Oak Ridge, TN, USA
| | - Robert L Hettich
- Chemical Sciences Division, Oak Ridge National Laboratory Oak Ridge, TN, USA
| | - Chongle Pan
- Chemical Sciences Division, Oak Ridge National Laboratory Oak Ridge, TN, USA
| | - Victoria J Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology Pasadena, CA, USA
| |
Collapse
|
39
|
Cook D, Finnigan J, Cook K, Black G, Charnock S. Cytochromes P450. INSIGHTS INTO ENZYME MECHANISMS AND FUNCTIONS FROM EXPERIMENTAL AND COMPUTATIONAL METHODS 2016; 105:105-26. [DOI: 10.1016/bs.apcsb.2016.07.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
40
|
Enright JM, Toomey MB, Sato SY, Temple SE, Allen JR, Fujiwara R, Kramlinger VM, Nagy LD, Johnson KM, Xiao Y, How MJ, Johnson SL, Roberts NW, Kefalov VJ, Guengerich FP, Corbo JC. Cyp27c1 Red-Shifts the Spectral Sensitivity of Photoreceptors by Converting Vitamin A1 into A2. Curr Biol 2015; 25:3048-57. [PMID: 26549260 PMCID: PMC4910640 DOI: 10.1016/j.cub.2015.10.018] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/04/2015] [Accepted: 10/06/2015] [Indexed: 10/22/2022]
Abstract
Some vertebrate species have evolved means of extending their visual sensitivity beyond the range of human vision. One mechanism of enhancing sensitivity to long-wavelength light is to replace the 11-cis retinal chromophore in photopigments with 11-cis 3,4-didehydroretinal. Despite over a century of research on this topic, the enzymatic basis of this perceptual switch remains unknown. Here, we show that a cytochrome P450 family member, Cyp27c1, mediates this switch by converting vitamin A1 (the precursor of 11-cis retinal) into vitamin A2 (the precursor of 11-cis 3,4-didehydroretinal). Knockout of cyp27c1 in zebrafish abrogates production of vitamin A2, eliminating the animal's ability to red-shift its photoreceptor spectral sensitivity and reducing its ability to see and respond to near-infrared light. Thus, the expression of a single enzyme mediates dynamic spectral tuning of the entire visual system by controlling the balance of vitamin A1 and A2 in the eye.
Collapse
Affiliation(s)
- Jennifer M Enright
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Matthew B Toomey
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shin-ya Sato
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shelby E Temple
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - James R Allen
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rina Fujiwara
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Valerie M Kramlinger
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Leslie D Nagy
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kevin M Johnson
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Yi Xiao
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Martin J How
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Stephen L Johnson
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nicholas W Roberts
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Vladimir J Kefalov
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Joseph C Corbo
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
41
|
Kwon OK, Sim J, Kim SJ, Sung E, Kim JY, Jeong TC, Lee S. Comprehensive Analysis of in Vivo Phosphoproteome of Mouse Liver Microsomes. J Proteome Res 2015; 14:5215-24. [PMID: 26487105 DOI: 10.1021/acs.jproteome.5b00812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Protein phosphorylation at serine, threonine, and tyrosine residues are some of the most widespread reversible post-translational modifications. Microsomes are vesicle-like bodies, not ordinarily present within living cells, which form from pieces of the endoplasmic reticulum (ER), plasma membrane, mitochondria, or Golgi apparatus of broken eukaryotic cells. Here we investigated the total phosphoproteome of mouse liver microsomes (MLMs) using TiO2 enrichment of phosphopeptides coupled to on-line 2D-LC-MS/MS. In total, 699 phosphorylation sites in 527 proteins were identified in MLMs. When compared with the current phosphoSitePlus database, 155 novel phosphoproteins were identified in MLM. The distributions of phosphosites were 89.4, 8.0, and 2.6% for phosphoserine, phosphotheronine, and phosphotyrosine, respectively. By Motif-X analysis, eight Ser motifs and one Thr motif were found, and five acidic, two basophilic-, and two proline-directed motifs were assigned. The potential functions of phosphoproteins in MLM were assigned by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. In GO annotation, phosphorylated microsomal proteins were involved in mRNA processing, mRNA metabolic processes, and RNA splicing. In the KEGG pathway analysis, phosphorylated microsomal proteins were highly enriched in ribosome protein processing in ER and ribosomes and in RNA transport. Furthermore, we determined that 52 and 23 phosphoproteins were potential substrates of cAMP-dependent protein kinase A and casein kinase II, respectively, many of which are 40S/60S ribosomal proteins. Overall, our results provide an overview of features of protein phosphorylation in MLMs that should be a valuable resource for the future understanding of protein synthesis or translation involving phosphorylation.
Collapse
Affiliation(s)
- Oh Kwang Kwon
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University , Daegu 41566, Republic of Korea
| | - JuHee Sim
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University , Daegu 41566, Republic of Korea
| | - Sun Ju Kim
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University , Daegu 41566, Republic of Korea
| | - Eunji Sung
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University , Daegu 41566, Republic of Korea
| | - Jin Young Kim
- Mass Spectrometry Research Center, Korea Basic Science Institute , Ochang, Chungbuk 28115, Republic of Korea
| | - Tae Cheon Jeong
- College of Pharmacy, Yeungnam University , Gyeongsan 38541, Republic of Korea
| | - Sangkyu Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University , Daegu 41566, Republic of Korea
| |
Collapse
|
42
|
Ducassou L, Jonasson G, Dhers L, Pietrancosta N, Ramassamy B, Xu-Li Y, Loriot MA, Beaune P, Bertho G, Lombard M, Mansuy D, André F, Boucher JL. Expression in yeast, new substrates, and construction of a first 3D model of human orphan cytochrome P450 2U1: Interpretation of substrate hydroxylation regioselectivity from docking studies. Biochim Biophys Acta Gen Subj 2015; 1850:1426-37. [DOI: 10.1016/j.bbagen.2015.03.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/23/2015] [Accepted: 03/30/2015] [Indexed: 11/17/2022]
|
43
|
A fluorescent microplate assay quantifies bacterial efflux and demonstrates two distinct compound binding sites in AcrB. Antimicrob Agents Chemother 2015; 59:2388-97. [PMID: 25645845 DOI: 10.1128/aac.05112-14] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A direct assay of efflux by Escherichia coli AcrAB-TolC and related multidrug pumps would have great value in discovery of new Gram-negative antibiotics. The current understanding of how efflux is affected by the chemical structure and physical properties of molecules is extremely limited, derived from antibacterial data for compounds that inhibit growth of wild-type E. coli. We adapted a previously described fluorescent efflux assay to a 96-well microplate format that measured the ability of test compounds to compete for efflux with Nile Red (an environment-sensitive fluor), independent of antibacterial activity. We show that Nile Red and the lipid-sensitive probe DiBAC4-(3) [bis-(1,3-dibutylbarbituric acid)-trimethine oxonol] can quantify efflux competition in E. coli. We extend the previous findings that the tetracyclines compete with Nile Red and show that DiBAC4-(3) competes with macrolides. The extent of the competition shows a modest correlation with the effect of the acrB deletion on MICs within the compound sets for both dyes. Crystallographic studies identified at least two substrate binding sites in AcrB, the proximal and distal pockets. High-molecular-mass substrates bound the proximal pocket, while low-mass substrates occupied the distal pocket. As DiBAC4-(3) competes with macrolides but not with Nile Red, we propose that DiBAC4-(3) binds the proximal pocket and Nile Red likely binds the distal site. In conclusion, competition with fluorescent probes can be used to study the efflux process for diverse chemical structures and may provide information as to the site of binding and, in some cases, enable rank-ordering a series of related compounds by efflux.
Collapse
|
44
|
Lavandera J, Ruspini S, Batlle A, Buzaleh AM. Cytochrome P450 expression in mouse brain: specific isoenzymes involved in Phase I metabolizing system of porphyrinogenic agents in both microsomes and mitochondria. Biochem Cell Biol 2015; 93:102-7. [DOI: 10.1139/bcb-2014-0088] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Brain cytochrome P450 (CYP) metabolizes a variety of drugs to produce their pharmacological effects within the brain. We have previously observed that porphyrinogenic agents altered CYP levels in brain. The aim of this work was to further study the involvement of mice brain mitochondrial and microsomal Phase I drug metabolizing system when porphyrinogenic agents, such as Enflurane, Isoflurane, allylisopropylacetamide, veronal, ethanol, and Griseofulvin were administered. To this end, CYP2E1, CYP2B1, and CYP3A4 expression were measured. NADPH cytochrome P450 reductase (CPR) expression was also determined. Western Blots were performed in microsomes and mitochondria of whole brain. Some of the drugs studied altered expression mainly in microsomes. Chronic Isoflurane augmented mitochondrial isoform, although this anaesthetic diminished microsomal expression. Ethanol and topical Griseofulvin affected expression in microsomes but not in mitochondria. CYP2E1 mitochondrial activity was induced by acute Enflurane; while the activity of the microsomal protein was enhanced in alcoholised animals. Ethanol also induced CYP2E1 expression in microsomes, although Isoflurane provoked opposite effects in mitochondria and microsomes. Expression of CPR was also induced. Several reports support an emergent role of CYP enzymes in the pathogenesis of neurological disorders, so CYP response in brain could be one of the multiples factors influencing porphyria acute attacks.
Collapse
Affiliation(s)
- Jimena Lavandera
- Cátedra de Bromatología y Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Silvina Ruspini
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET, Hospital de Clínicas José de San Martín, Universidad de Buenos Aires, Av. Córdoba 2351, 1120, Buenos Aires, Argentina
| | - Alcira Batlle
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET, Hospital de Clínicas José de San Martín, Universidad de Buenos Aires, Av. Córdoba 2351, 1120, Buenos Aires, Argentina
| | - Ana María Buzaleh
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET, Hospital de Clínicas José de San Martín, Universidad de Buenos Aires, Av. Córdoba 2351, 1120, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| |
Collapse
|
45
|
Computational identification and binding analysis of orphan human cytochrome P450 4X1 enzyme with substrates. BMC Res Notes 2015; 8:9. [PMID: 25595103 PMCID: PMC4322450 DOI: 10.1186/s13104-015-0976-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 01/05/2015] [Indexed: 01/25/2023] Open
Abstract
Background Cytochrome P450s (CYPs) are important heme-containing proteins, well known for their monooxygenase reaction. The human cytochrome P450 4X1 (CYP4X1) is categorized as “orphan” CYP because of its unknown function. In recent studies it is found that this enzyme is expressed in neurovascular functions of the brain. Also, various studies have found the expression and activity of orphan human cytochrome P450 4X1 in cancer. It is found to be a potential drug target for cancer therapy. However, three-dimensional structure, the active site topology and substrate specificity of CYP4X1 remain unclear. Methods In the present study, the three-dimensional structure of orphan human cytochrome P450 4X1 was generated by homology modeling using Modeller 9v8. The generated structure was accessed for geometrical errors and energy stability using PROCHECK, VERFIY 3D and PROSA. A molecular docking analysis was carried out against substrates arachidonic acid and anandamide and the docked substrates were predicted for drug-likeness, ADME-Tox parameters and biological spectrum activity. Results The three-dimensional model of orphan human cytochrome P450 4X1 was generated and assessed with various structural validation programmes. Docking of orphan human cytochrome P450 4X1 with arachidonic acid revealed that TYR 112, ALA 126, ILE 222, ILE 223, THR 312, LEU 315, ALA 316, ASP 319, THR 320, PHE 491 and ILE 492 residues were actively participating in the interaction, while docking of CYP4X1 with anandamide showed that TYR 112, GLN 114, PRO 118, ALA 126, ILE 222, ILE 223, SER 251, LEU 315, ALA 316 and PHE 491 key residues were involved in strong interaction. Conclusion From this study, several key residues were identified to be responsible for the binding of arachidonic acid and anandamide with orphan human cytochrome P450 4X1. Both substrates obeyed Lipinski rule of five in drug-likeness test and biological spectrum prediction showed anticarcinogenic activity. Compared to anandamide, arachidonic acid showed strong interaction with cytochrome P450 4X1 and also less health effect in certain human system in ADME-Tox prediction. These findings provide useful information on the biological role and structure-based drug design of orphan human cytochrome P450 4X1.
Collapse
|
46
|
Rendic S, Guengerich FP. Survey of Human Oxidoreductases and Cytochrome P450 Enzymes Involved in the Metabolism of Xenobiotic and Natural Chemicals. Chem Res Toxicol 2014; 28:38-42. [PMID: 25485457 PMCID: PMC4303333 DOI: 10.1021/tx500444e] [Citation(s) in RCA: 316] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Analyzing the literature resources used in our previous reports, we calculated the fractions of the oxidoreductase enzymes FMO (microsomal flavin-containing monooxygenase), AKR (aldo-keto reductase), MAO (monoamine oxidase), and cytochrome P450 participating in metabolic reactions. The calculations show that the fractions of P450s involved in the metabolism of all chemicals (general chemicals, natural, and physiological compounds, and drugs) are rather consistent in the findings that >90% of enzymatic reactions are catalyzed by P450s. Regarding drug metabolism, three-fourths of the human P450 reactions can be accounted for by a set of five P450s: 1A2, 2C9, 2C19, 2D6, and 3A4, and the largest fraction of the P450 reactions is catalyzed by P450 3A enzymes. P450 3A4 participation in metabolic reactions of drugs varied from 13% for general chemicals to 27% for drugs.
Collapse
Affiliation(s)
| | - F Peter Guengerich
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine , Nashville, Tennessee 37232-0146, United States
| |
Collapse
|
47
|
Xu S, Ren Z, Wang Y, Ding X, Jiang Y. Preferential expression of cytochrome CYP CYP2R1 but not CYP1B1 in human cord blood hematopoietic stem and progenitor cells. Acta Pharm Sin B 2014; 4:464-9. [PMID: 26579418 PMCID: PMC4629107 DOI: 10.1016/j.apsb.2014.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 09/29/2014] [Accepted: 10/14/2014] [Indexed: 11/27/2022] Open
Abstract
Cytochrome P450 (CYP) enzymes metabolize numerous endogenous substrates, such as retinoids, androgens, estrogens and vitamin D, that can modulate important cellular processes, including proliferation, differentiation and apoptosis. The aim of this study is to characterize the expression of CYP genes in CD34+ human cord blood hematopoietic stem and early progenitor cells (CBHSPCs) as a first step toward assessment of the potential biological functions of CYP enzymes in regulating the expansion or differentiation of these cells. CD34+ CBHSPCs were purified from umbilical cord blood via antibody affinity chromatography. Purity of CD34+ CBHSPCs was assessed using fluorescence-activated cell sorting. RNA was isolated from purified CD34+ CBHSPCs and total mononuclear cells (MNCs) for RNA-PCR analysis of CYP expression. Fourteen human CYPs were detected in the initial screening with qualitative RT-PCR in CD34+ CBHSPCs. Further quantitative RNA-PCR analysis of the detected CYP transcripts yielded evidence for preferential expression of CYP2R1 in CD34+ CBHSPCs relative to MNCs; and for greater expression of CYP1B1 in MNCs relative to CD34+ CBHSPCs. These findings provide the basis for further studies on possible functions of CYP2R1 and CYP1B1 in CBHSPCs׳ proliferation and/or differentiation and their potential utility as targets for drugs designed to modulate CD34+ CBHSPC expansion or differentiation.
Collapse
Key Words
- CBHSPCs, cord blood HSPCs
- CD34+
- CYP, cytochrome P450
- CYP1B1
- CYP2R1
- Ct, threshold cycle
- Cytochrome P450
- FACS, fluorescence-activated cell sorting
- Gene expression
- HSPCs, hematopoietic stem and early progenitor cells
- Hematopoietic stem cells
- MNCs, mononuclear cells
- OD, optical density
- PCR, polymerase chain reaction
- PE, R-phycoerythrin
- RT, reverse transcription
- bp, base pair
- kbp, kilobase pair
Collapse
|
48
|
Cederbaum AI. Molecular mechanisms of the microsomal mixed function oxidases and biological and pathological implications. Redox Biol 2014; 4:60-73. [PMID: 25498968 PMCID: PMC4309856 DOI: 10.1016/j.redox.2014.11.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 11/13/2014] [Accepted: 11/16/2014] [Indexed: 12/11/2022] Open
Abstract
The cytochrome P450 mixed function oxidase enzymes play a major role in the metabolism of important endogenous substrates as well as in the biotransformation of xenobiotics. The liver P450 system is the most active in metabolism of exogenous substrates. This review briefly describes the liver P450 (CYP) mixed function oxidase system with respect to its enzymatic components and functions. Electron transfer by the NADPH-P450 oxidoreductase is required for reduction of the heme of P450, necessary for binding of molecular oxygen. Binding of substrates to P450 produce substrate binding spectra. The P450 catalytic cycle is complex and rate-limiting steps are not clear. Many types of chemical reactions can be catalyzed by P450 enzymes, making this family among the most diverse catalysts known. There are multiple forms of P450s arranged into families based on structural homology. The major drug metabolizing CYPs are discussed with respect to typical substrates, inducers and inhibitors and their polymorphic forms. The composition of CYPs in humans varies considerably among individuals because of sex and age differences, the influence of diet, liver disease, presence of potential inducers and/or inhibitors. Because of such factors and CYP polymorphisms, and overlapping drug specificity, there is a large variability in the content and composition of P450 enzymes among individuals. This can result in large variations in drug metabolism by humans and often can contribute to drug–drug interactions and adverse drug reactions. Because of many of the above factors, especially CYP polymorphisms, there has been much interest in personalized medicine especially with respect to which CYPs and which of their polymorphic forms are present in order to attempt to determine what drug therapy and what dosage would reflect the best therapeutic strategy in treating individual patients. The CYP P450 system is important in metabolism of endogenous substrates and drugs. About 150 forms of CYPs have been identified and they are grouped into families. CYPs catalyze a wide variety of reactions and are among the most diverse catalysts known. Electrons are passed to the CYP via NADPH+NADPH-cytochrome P450 reductase. Metabolism of certain compounds by CYPs generate reactive intermediates which are toxic.
Collapse
Affiliation(s)
- Arthur I Cederbaum
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, Box 1603, 1 Gustave L Levy Place, New York, NY 10029, USA.
| |
Collapse
|
49
|
Gutierrez-Mazariegos J, Schubert M, Laudet V. Evolution of retinoic acid receptors and retinoic acid signaling. Subcell Biochem 2014; 70:55-73. [PMID: 24962881 DOI: 10.1007/978-94-017-9050-5_4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Retinoic acid (RA) is a vitamin A-derived morphogen controlling important developmental processes in vertebrates, and more generally in chordates, including axial patterning and tissue formation and differentiation. In the embryo, endogenous RA levels are controlled by RA synthesizing and degrading enzymes and the RA signal is transduced by two retinoid receptors: the retinoic acid receptor (RAR) and the retinoid X receptor (RXR). Both RAR and RXR are members of the nuclear receptor superfamily of ligand-activated transcription factors and mainly act as heterodimers to activate the transcription of target genes in the presence of their ligand, all-trans RA. This signaling pathway was long thought to be a chordate innovation, however, recent findings of gene homologs involved in RA signaling in the genomes of a wide variety of non-chordate animals, including ambulacrarians (sea urchins and acorn worms) and lophotrochozoans (annelids and mollusks), challenged this traditional view and suggested that the RA signaling pathway might have a more ancient evolutionary origin than previously thought. In this chapter, we discuss the evolutionary history of the RA signaling pathway, and more particularly of the RARs, which might have experienced independent gene losses and duplications in different animal lineages. In sum, the available data reveal novel insights into the origin of the RA signaling pathway as well as into the evolutionary history of the RARs.
Collapse
Affiliation(s)
- Juliana Gutierrez-Mazariegos
- Molecular Zoology Team, Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, INRA, Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364, Lyon Cedex 07, France,
| | | | | |
Collapse
|
50
|
Uno Y, Hosaka S, Yamazaki H. Identification and analysis of CYP7A1, CYP17A1, CYP20A1, CYP27A1 and CYP51A1 in cynomolgus macaques. J Vet Med Sci 2014; 76:1647-50. [PMID: 25649950 PMCID: PMC4300383 DOI: 10.1292/jvms.14-0313] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cytochromes P450 (P450) are important for not only drug metabolism and toxicity, but also biosynthesis and metabolism of cholesterol and bile acids, and steroid synthesis. In cynomolgus macaques, widely used in biomedical research, we have characterized P450 cDNAs, which were isolated as expressed sequence tags of cynomolgus macaque liver. In this study, cynomolgus CYP7A1, CYP17A1, CYP20A1, CYP27A1 and CYP51A1 cDNAs were characterized by sequence analysis, phylogenetic analysis and tissue expression pattern. By sequence analysis, these five cynomolgus P450s had high sequence identities (94-99%) to the human orthologs in amino acids. By phylogenetic analysis, each cynomolgus P450 was more closely related to the human ortholog as compared with the dog or rat ortholog. By quantitative polymerase chain reaction, among the 10 tissue types, CYP7A1 and CYP17A1 mRNAs were preferentially expressed in liver and adrenal gland, respectively. Cynomolgus CYP27A1 and CYP51A1 mRNAs were most abundantly expressed in liver and testis, respectively. Cynomolgus CYP20A1 mRNA was expressed in all the tissues, including brain and liver. Tissue expression patterns of each cynomolgus P450 were generally similar to that of the human ortholog. These results suggest the molecular similarities of CYP7A1, CYP17A1, CYP20A1, CYP27A1 and CYP51A1 between cynomolgus macaques and humans.
Collapse
Affiliation(s)
- Yasuhiro Uno
- Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., Kainan, Wakayama 642-0017, Japan
| | | | | |
Collapse
|