1
|
Gaidarov I, Frazer J, Chen X, Dang H, Cordova I, Liaw C, Sage C, Unett DJ. Mechanisms of constitutive and agonist-induced 5-HT 2B internalization, persistent endosomal signaling and paradoxical regulation of agonist pharmacology. Cell Signal 2025; 131:111769. [PMID: 40169062 DOI: 10.1016/j.cellsig.2025.111769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 03/14/2025] [Accepted: 03/25/2025] [Indexed: 04/03/2025]
Abstract
Certain ergot derivatives, particularly cabergoline, produce wash-resistant signaling through the 5-HT2B receptor persisting for many hours without loss of potency or efficacy. Previously, we reported that this signaling may be mediated by sequestered or internalized receptors. Here, we evaluated numerous mechanistic aspects of 5-HT2B internalization and wash-resistant signaling and directly addressed the role of internalization. In the absence of an agonist, 5-HT2B undergoes robust, constitutive internalization and recycling and is distributed at equilibrium between cell surface and intracellular compartments. Both constitutive and agonist-induced internalization are mediated through dynamin-dependent clathrin-mediated endocytosis. Constitutive internalization is unaffected by application of 5-HT2B inverse agonists. We identified two, adjacent di-leucine motifs followed by a di-acidic cluster in the C-terminal tail of 5-HT2B that are responsible for constitutive internalization of the receptor. Mutations in either of the leucine clusters or in the di-acidic motif partially inhibit constitutive 5-HT2B internalization. A 5-HT2B mutant in which both di-leucine clusters are disrupted, displays no constitutive internalization while undergoing robust agonist induced internalization. We demonstrate that wash-resistant signaling of ergots is mediated by persistently/irreversibly internalized signaling receptor complexes. Paradoxically, the potencies of ergot agonists are influenced by receptor internalization; measured potencies are reduced upon inhibition of receptor internalization, while potencies for 5-HT or other conventional agonists are unaffected. This phenomenon represents a novel mechanism by which agonist-dependent kinetics of receptor internalization and recycling affects not only the duration of receptor signaling, but also a basic pharmacological parameter such as agonist potency.
Collapse
Affiliation(s)
- Ibragim Gaidarov
- Eurofins Beacon Discovery, 6118 Nancy Ridge Drive, San Diego, CA 92121, USA.
| | - John Frazer
- Eurofins Beacon Discovery, 6118 Nancy Ridge Drive, San Diego, CA 92121, USA
| | - Xiaohua Chen
- Eurofins Beacon Discovery, 6118 Nancy Ridge Drive, San Diego, CA 92121, USA
| | - Huong Dang
- Eurofins Beacon Discovery, 6118 Nancy Ridge Drive, San Diego, CA 92121, USA
| | - Isabel Cordova
- Eurofins Beacon Discovery, 6118 Nancy Ridge Drive, San Diego, CA 92121, USA
| | - Chen Liaw
- Eurofins Beacon Discovery, 6118 Nancy Ridge Drive, San Diego, CA 92121, USA
| | - Carleton Sage
- Eurofins Beacon Discovery, 6118 Nancy Ridge Drive, San Diego, CA 92121, USA
| | - David J Unett
- Eurofins Beacon Discovery, 6118 Nancy Ridge Drive, San Diego, CA 92121, USA
| |
Collapse
|
2
|
Endt F, Guo T, Steinritz D, Amend N, Gudermann T, Breit A. Carfentanil stabilizes µ opioid receptor conformations that are ultra-efficient in inhibiting cAMP, resistant to naloxone or nalmefene but sensitive to naltrexone. Arch Toxicol 2025; 99:2903-2915. [PMID: 40317337 PMCID: PMC12198324 DOI: 10.1007/s00204-025-04048-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/27/2025] [Indexed: 05/07/2025]
Abstract
The highly potent opioid carfentanil (CAR) represents a growing health risk. CAR acts via Gi/o-coupled µ opioid receptors (µOR) and exhibits ultra-high toxicity. So far, no clear association between pharmacodynamics and toxicity of CAR has been described. We created a HEK-293 cell line stably expressing the µOR and, determined ligand binding affinity (Ki) and potency (EC50) of CAR, fentanyl, remifentanil, morphine or the endogenous ligand endomorphin-1. We found that µOR bind CAR with ~ 10-times higher affinity than fentanyl or remifentanil and with ~ 70-times higher affinity than morphine. Potency of CAR to inhibit cAMP was ~ 85-times higher compared to the fentanyl's and ~ 620 higher compared to morphine. Thus, CAR's toxicity rather associates with receptor potency than affinity. When receptor occupancy at EC50-values was calculated, it appeared that CAR is ~ 8-times more efficient to inhibit cAMP in comparison to morphine, fentanyl or remifentanil. Hence, we postulate that CAR stabilizes µOR conformations that are ultra-efficient in inhibiting cAMP. The OR antagonists naloxone and nalmefene are used as antidotes against opioid intoxication. Both antagonists revealed 10 to 100-times higher IC50-values against CAR-mediated cAMP inhibition compared to the other opioids, indicating that µOR conformations stabilized by CAR are rather resistant towards clinically used antidotes. Of note, when the long acting OR antagonist naltrexone was tested, it exhibited a ~ 65-times higher potency to inhibit CAR but not fentanyl compared to naloxone. Our data highlight the unique nature of CAR's interactions with µOR and provide first pharmacodynamic indication that naltrexone might be a superior antidote.
Collapse
Affiliation(s)
- Franziska Endt
- Walther Straub Institute of Pharmacology and Toxicology, Medical Faculty, LMU Munich, Goethestrasse 33, 80336, Munich, Germany
| | - Tao Guo
- Walther Straub Institute of Pharmacology and Toxicology, Medical Faculty, LMU Munich, Goethestrasse 33, 80336, Munich, Germany
| | - Dirk Steinritz
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Niko Amend
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Thomas Gudermann
- Walther Straub Institute of Pharmacology and Toxicology, Medical Faculty, LMU Munich, Goethestrasse 33, 80336, Munich, Germany
| | - Andreas Breit
- Walther Straub Institute of Pharmacology and Toxicology, Medical Faculty, LMU Munich, Goethestrasse 33, 80336, Munich, Germany.
| |
Collapse
|
3
|
Singhal SM, Szlaga A, Chen YC, Conrad WS, Hnasko TS. Mu-opioid receptor activation potentiates excitatory transmission at the habenulo-peduncular synapse. Cell Rep 2025; 44:115874. [PMID: 40540395 DOI: 10.1016/j.celrep.2025.115874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 04/28/2025] [Accepted: 05/30/2025] [Indexed: 06/22/2025] Open
Abstract
Identifying how opioids modulate signaling in relevant neurocircuitry is essential for developing new therapeutic strategies for opioid addiction. The medial habenula (MHb) is a mu-opioid receptor (MOR) hotspot that projects predominantly to the interpeduncular nucleus (IPN); however, little is known about MOR function in this pathway. Using reporter mice, we observed MOR expression in a subset of MHb and IPN neurons, where its activation induces inhibitory effects on neuronal activity. However, stimulation of MOR+ axons at the habenulo-peduncular (HP) synapse leads to excitatory currents that are significantly potentiated by MOR agonism. These facilitatory effects were also observed at cholinergic-defined HP synapses, depend on a monosynaptic mechanism, and are disrupted by genetic disruption of MOR in the presynaptic MHb. Thus, MORs induce a canonical inhibitory effect in somatodendritic compartments but non-canonical facilitatory effects on evoked glutamate transmission at the HP synapse, establishing a distinct mode by which MORs can modulate neuronal function.
Collapse
Affiliation(s)
- Sarthak M Singhal
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Agata Szlaga
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yen-Chu Chen
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - William S Conrad
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Thomas S Hnasko
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA; Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA.
| |
Collapse
|
4
|
Indriani DW, Rahmawati SI, Bayu A, Ahmadi P, Sari AN, Zuraida Z, Dharmayanti NLPI, Putra MY. Serotonin release mediates analgesia via opioidergic system and withdrawal symptoms in chronic kratom extract-treated mice. BMC Complement Med Ther 2025; 25:205. [PMID: 40483515 PMCID: PMC12145653 DOI: 10.1186/s12906-025-04947-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 05/28/2025] [Indexed: 06/11/2025] Open
Abstract
BACKGROUND Kratom alleviates pain by activating μu-opioid receptors (MOR), which trigger serotonin release to produce analgesia. Serotonin also interferes drug abuse effect. This study aimed to determine the role of serotonin in kratom-induced pain relief and withdrawal symptoms in mice. METHODS The analgesic effect was assessed using the hot-plate test. To induce withdrawal symptoms, mice received naloxone after being treated with kratom extracts for five days at increasing doses. Another group of morphine-dependent mice was treated with kratom extracts to ameliorate their withdrawal symptoms. A molecular docking study and molecular dynamics were conducted to predict the binding target of alkaloid kratom for increasing serotonin levels. RESULTS Chronic administration of kratom alkaloid extract (20 mg/kg) produced analgesic effects comparable to morphine (10 mg/kg). In contrast, kratom crude extracts (10 mg/kg and 20 mg/kg) demonstrated lower analgesia activity. This analgesic effect was mediated by MOR activation, leading to decreased intracellular cAMP and increased serotonin transmission. Repeated and increasing doses of crude or alkaloid kratom extracts (8 mg/kg to 45 mg/kg) produced less severe withdrawal symptoms than morphine. Increased dopamine and serotonin levels contributed to the onset of withdrawal symptoms. In the morphine group, treatment with kratom extracts increased serotonin levels while reducing dopamine. Molecular docking and molecular dynamics result revealed that kratom alkaloids interacts more readily with tryptophan hydroxylase, the enzyme responsible for serotonin biosynthesis. CONCLUSIONS Kratom extracts have the potential to provide analgesic effects and withdrawal symptoms, both of which are mediated by elevated serotonin release.
Collapse
Grants
- 2/III.9/HK/2024 the Research Organization for Health, National Research and Innovation Agency (BRIN), Republic of Indonesia through "Rumah Program Biofarmaseutikal and Biosimilar" 2024
- 2/III.9/HK/2024 the Research Organization for Health, National Research and Innovation Agency (BRIN), Republic of Indonesia through "Rumah Program Biofarmaseutikal and Biosimilar" 2024
- 2/III.9/HK/2024 the Research Organization for Health, National Research and Innovation Agency (BRIN), Republic of Indonesia through "Rumah Program Biofarmaseutikal and Biosimilar" 2024
- 2/III.9/HK/2024 the Research Organization for Health, National Research and Innovation Agency (BRIN), Republic of Indonesia through "Rumah Program Biofarmaseutikal and Biosimilar" 2024
- the Research Organization for Health, National Research and Innovation Agency (BRIN), Republic of Indonesia through “Rumah Program Biofarmaseutikal and Biosimilar” 2024
Collapse
Affiliation(s)
- Dwi Wahyu Indriani
- Research Center for Vaccine and Drugs, Research Organization for Health, National Research and Innovation Agency (BRIN), Jalan Raya Jakarta-Bogor Km. 46, Bogor, West Java, 16911, Indonesia.
| | - Siti Irma Rahmawati
- Research Center for Vaccine and Drugs, Research Organization for Health, National Research and Innovation Agency (BRIN), Jalan Raya Jakarta-Bogor Km. 46, Bogor, West Java, 16911, Indonesia
| | - Asep Bayu
- Research Center for Vaccine and Drugs, Research Organization for Health, National Research and Innovation Agency (BRIN), Jalan Raya Jakarta-Bogor Km. 46, Bogor, West Java, 16911, Indonesia
| | - Peni Ahmadi
- Research Center for Vaccine and Drugs, Research Organization for Health, National Research and Innovation Agency (BRIN), Jalan Raya Jakarta-Bogor Km. 46, Bogor, West Java, 16911, Indonesia
| | - Anissa Nofita Sari
- Research Center for Vaccine and Drugs, Research Organization for Health, National Research and Innovation Agency (BRIN), Jalan Raya Jakarta-Bogor Km. 46, Bogor, West Java, 16911, Indonesia
| | - Zuraida Zuraida
- Research Center for Vaccine and Drugs, Research Organization for Health, National Research and Innovation Agency (BRIN), Jalan Raya Jakarta-Bogor Km. 46, Bogor, West Java, 16911, Indonesia
| | - Ni Luh Putu Indi Dharmayanti
- Research Organization for Health, National Research and Innovation Agency (BRIN), Jalan Raya Jakarta-Bogor Km. 46, Bogor, West Java, 16911, Indonesia
| | - Masteria Yunovilsa Putra
- Research Center for Vaccine and Drugs, Research Organization for Health, National Research and Innovation Agency (BRIN), Jalan Raya Jakarta-Bogor Km. 46, Bogor, West Java, 16911, Indonesia.
- Faculty of Pharmacy, Universitas Indonesia, Jalan Prof. DR. Mahar Mardjono, Pondok Cina, Beji, Depok, West Java, 16424, Indonesia.
- National Metabolomics Collaborative Research Center, Faculty of Pharmacy, Universitas Indonesia, Kampus UI Depok, Depok, West Java, 16424, Indonesia.
| |
Collapse
|
5
|
Koita O, Lebowitz JJ, Williams JT. Tolerance in Thalamic Paraventricular Nucleus Neurons Following Chronic Treatment of Animals with Morphine. eNeuro 2025; 12:ENEURO.0249-24.2025. [PMID: 40456612 PMCID: PMC12177709 DOI: 10.1523/eneuro.0249-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 04/21/2025] [Accepted: 04/30/2025] [Indexed: 06/22/2025] Open
Abstract
Neurons in the paraventricular nucleus of the thalamus (PVT) integrate visceral and limbic inputs and project to multiple brain regions to bias behavior toward aversive or defensive states. This study examines MOR signaling in anterior PVT neurons in brain slices from untreated and morphine-treated animals. Imaging in a MOR-Cre reporter rat revealed extensive expression in aPVT cells, and the application of [Met]5- enkephalin (ME) induced outward currents which were abolished by the MOR-selective antagonist CTAP. A saturating concentration of ME resulted in desensitization that was blocked by compound 101, indicating a phosphorylation-dependent process. The opioid sensitivity of amygdala-, nucleus accumbens-, and prefrontal cortex-projecting neurons was then examined. Neurons that projected to the amygdala were more sensitive to ME than cortical- and accumbal-projecting cells. Following chronic treatment, tolerance to morphine was found in neurons projecting to the amygdala and nucleus accumbens with a trend toward tolerance observed in neurons projecting to the prefrontal cortex. The results reveal that adaptations to chronic opioid exposure are in the aPVT circuits contribute to affective pain processing and may provide specific insights into the etiology of withdrawal following the cessation of opioid use.
Collapse
Affiliation(s)
- Omar Koita
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239
| | - Joseph J Lebowitz
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239
| | - John T Williams
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239
| |
Collapse
|
6
|
North RJ, Cooper G, Mears L, Bothner B, Dlakić M, Merzdorf CS. Persistent Transcriptome Alterations in Zebrafish Embryos After Discontinued Opioid Exposure. Int J Mol Sci 2025; 26:4840. [PMID: 40429979 PMCID: PMC12111994 DOI: 10.3390/ijms26104840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 05/15/2025] [Accepted: 05/15/2025] [Indexed: 05/29/2025] Open
Abstract
Much attention has been paid to the public health crisis that has resulted from the opioid epidemic. Given the high number of opioid users that are of childbearing age, the impact of utero exposure is a serious concern. Unfortunately, there is little knowledge regarding the consequences of opioid exposure during early development. While neurobehavioral effects of opioid exposure are well-documented, effects of exposure on embryogenesis remain largely unexplored. To address this gap in knowledge, we investigated the effects of oxycodone and fentanyl exposure on gene expression in zebrafish (Danio rerio) embryos using whole embryo RNA sequencing. Embryos were exposed to environmentally relevant (oxycodone HCl 10.6 ng/L and fentanyl citrate 0.629 ng/L) and therapeutically relevant doses (oxycodone HCl 35.14 μg/L and fentanyl citrate 3.14 μg/L) from 2 to 24 h post-fertilization (hpf), followed by another 24 h of opioid-free development. mRNA profiling at 48 hpf revealed dose- and drug-specific gene expression changes. Lower doses of oxycodone and fentanyl both induced more differentially expressed transcripts (DETs) than higher doses, potentially indicative of opioid receptor desensitization occurring at higher concentrations. In total, 892 DETs (corresponding to 866 genes) were identified across all conditions suggesting continued differential gene expression well after cessation of opioid exposure. Gene ontology analysis revealed changes in gene expression relating to extracellular matrix (ECM) organization, cell adhesion, and visual and nervous system formation. Key pathways include those involved in axon guidance, synapse formation, and ECM biosynthesis/remodeling, all of which have potential implications on neural connectivity and sensory development. These findings demonstrate that very early developmental exposure to opioids induces persistent transcriptomic changes which may have lasting implications for vertebrate cellular functions. Overall, these data provide insights into the molecular mechanisms of opioid-induced alterations during development.
Collapse
Affiliation(s)
- Ryan J. North
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA; (R.J.N.); (L.M.); (M.D.)
| | - Gwendolyn Cooper
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA; (G.C.); (B.B.)
| | - Lucas Mears
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA; (R.J.N.); (L.M.); (M.D.)
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA; (G.C.); (B.B.)
| | - Mensur Dlakić
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA; (R.J.N.); (L.M.); (M.D.)
| | - Christa S. Merzdorf
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA; (R.J.N.); (L.M.); (M.D.)
| |
Collapse
|
7
|
Li Z, Liu J, Ju J, Peng X, Zhao W, Ren J, Jia X, Wang J, Tu Y, Gao F. Contributions of synaptic energetic dysfunction by microtubule dynamics and microtubule-based mitochondrial transport disorder to morphine tolerance. Br J Pharmacol 2025. [PMID: 40361281 DOI: 10.1111/bph.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/12/2025] [Accepted: 03/16/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND AND PURPOSE Morphine is among the most powerful analgesic, but its long-term use can cause tolerance. Synaptic ATP supply is critical for maintaining synaptic transmission. Microtubule-based mitochondrial transport ensures synaptic energy supply. How synaptic energy changes with morphine and the role of microtubule tracks in synaptic mitochondrial energy supply remain elusive. Chronic morphine treatment can destroy microtubule cytoskeletons. We investigated the effect of the microtubule cytoskeleton on synaptic mitochondrial energy supply and the mechanism of microtubule dynamics after morphine exposure. EXPERIMENTAL APPROACH Rats were treated with long-term morphine and the effect on thermal pain thresholds was evaluated by the tail-flick latency test. Various antagonists and agonists were used elucidated the role and mechanism of synaptic mitochondrial energy supply and microtubules in morphine tolerance in vivo and in SH-SY5Y cells. KEY RESULTS Chronic morphine treatment reduced synaptic mitochondrial ATP production. Improving mitochondrial oxidative phosphorylation (OXPHOS) alleviated the downregulation of synaptic ATP levels. Microtubule-stabilizing agents prevented microtubule disruption and ameliorated synaptic energy deficit via microtubule-based microtubule transport. In SH-SY5Y cells, morphine exposure reduced microtubule expression. And re-opening the synaptic Ca2+ channel by agonist alleviated microtubule decrease by calcium/calmodulin-dependent protein kinase 2 (CAMKK2)/AMP-activated protein kinase (AMPK) pathway. CONCLUSION AND IMPLICATIONS This study demonstrates that the microtubule cytoskeleton regulated by the Ca2+-CAMKK2-AMPK axis is critical for synaptic mitochondrial transport and ATP production, explaining an interplay between chronic morphine-induced abnormal neuroadaptation and synaptic energetic dysfunction. These findings implicated a potential clinical strategy for prolonging the opioid antinociceptive effect during long-term pain control.
Collapse
Affiliation(s)
- Zheng Li
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Anesthesiology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Jie Liu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Ju
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoling Peng
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Zhao
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jihao Ren
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoqian Jia
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jihong Wang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ye Tu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Gao
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Niesters M, Dahan A. Tolerant to Tolerance. Anesthesiology 2025; 142:438-439. [PMID: 39932343 DOI: 10.1097/aln.0000000000005316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Affiliation(s)
- Marieke Niesters
- Department of Anesthesiology and Pain Medicine, Leiden University Medical Center, Leiden, The Netherlands; Centre for Human Drug Research, Leiden, The Netherlands
| | - Albert Dahan
- Leiden University Medical Center, Leiden, The Netherlands; MediD Consultancy Group, Amsterdam, The Netherlands; Outcomes Research Consortium, Houston, Texas
| |
Collapse
|
9
|
Al-Hassan A, Weissman B, Chowdhury S, Sawires J, Soti V. Comparative Efficacy of Dexmedetomidine and Remifentanil in Reducing Postoperative Pain and Opioid Use: A Systematic Review. Cureus 2025; 17:e79759. [PMID: 40028430 PMCID: PMC11870770 DOI: 10.7759/cureus.79759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 02/27/2025] [Indexed: 03/05/2025] Open
Abstract
Postoperative pain management is a critical component of patient care following surgical procedures. Opioid analgesics, particularly Remifentanil, have been traditionally used to manage pain, but these drugs come with significant risks, including opioid-induced hyperalgesia (OIH) and the potential for dependence on opioids. Dexmedetomidine, an alpha-2 adrenergic receptor agonist, is a promising non-opioid alternative. This systematic review aims to compare the efficacy of Dexmedetomidine and Remifentanil in reducing postoperative pain and opioid use, as well as to evaluate their safety profiles. A systematic literature review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, utilizing PubMed and ClinicalTrials.gov. The findings revealed that both agents provided effective intraoperative analgesia. However, Dexmedetomidine consistently outperformed Remifentanil in reducing postoperative pain and opioid consumption. Additionally, Dexmedetomidine was associated with lower pain scores in the immediate postoperative period, particularly in spinal and gynecological surgeries. Despite its advantages in pain control and opioid-sparing effects, Dexmedetomidine was associated with slower recovery times, such as delayed eye-opening and longer extubation periods. In contrast, Remifentanil, with its rapid onset and offset, facilitated quicker recovery but resulted in increased postoperative opioid requirements and a higher incidence of OIH. Dexmedetomidine's side effects include bradycardia and hypotension, which were generally manageable and less severe than those associated with Remifentanil. Dexmedetomidine represents a promising alternative to Remifentanil for postoperative pain management. Its ability to reduce opioid consumption and mitigate the risk of OIH makes it an attractive option, particularly in patients at risk for opioid misuse or dependency. Nevertheless, further large-scale studies with diverse patient populations are needed to confirm these findings and refine the optimal dosing regimens for Dexmedetomidine.
Collapse
Affiliation(s)
- Abbas Al-Hassan
- Anesthesiology and Critical Care, Lake Erie College of Osteopathic Medicine, Elmira, USA
| | - Brandon Weissman
- Internal Medicine, Lake Erie College of Osteopathic Medicine, Elmira, USA
| | | | - John Sawires
- Anesthesiology and Critical Care, Lake Erie College of Osteopathic Medicine, Elmira, USA
| | - Varun Soti
- Pharmacology and Therapeutics, Lake Erie College of Osteopathic Medicine, Elmira, USA
| |
Collapse
|
10
|
Yang LK, Wang W, Guo DY, Dong B. Non-canonical signaling initiated by hormone-responsive G protein-coupled receptors from subcellular compartments. Pharmacol Ther 2025; 266:108788. [PMID: 39722422 DOI: 10.1016/j.pharmthera.2024.108788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/13/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024]
Abstract
G protein-coupled receptors (GPCRs), the largest family of membrane receptors in the mammalian genomes, regulate almost all known physiological processes by transducing numerous extracellular stimuli including almost two-thirds of endogenous hormones and neurotransmitters. The traditional view held that GPCR signaling occurs exclusively at the cell surface, where the receptors bind with the ligands and undergo conformational changes to recruit and activate heterotrimeric G proteins. However, with the application of advanced biochemical and biophysical techniques, this conventional model is challenged by the elucidation of spatiotemporal GPCR activation with the evidence that receptors can signal from subcellular compartments to exhibit various molecular and cellular responses with physiological and pathophysiological relevance. Thus, this 'location bias' of GPCR signaling has become another layer of complexity of GPCR signal transduction. In this review, we generally introduce the development of the concept of compartmentalized GPCR signaling and comprehensively summarize the receptors reported to be localized on the membranes of different intracellular organelles. We review the physiological functions of these compartmentalized GPCRs with emphasis on some well-characterized prototypical hormone/neurotransmitter-binding receptors, including β2-adrenergic receptor, opioid receptors, parathyroid hormone type 1 receptor, thyroid-stimulating hormone receptor, cannabinoid receptor type 1, and metabotropic glutamate receptor 5, as examples. In addition, the therapeutic implications of compartmentalized GPCR signaling by introducing lipophilic or hydrophilic ligands for intracellular targeting, lipid conjugation anchor drugs, and strategy to modulate receptor internalization/resensitization, are highlighted and open new avenues in GPCR pharmacology and therapeutics.
Collapse
Affiliation(s)
- Li-Kun Yang
- Fang Zongxi Center for Marine EvoDevo, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Wei Wang
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada; Department of Clinical Laboratory, Xiamen Huli Guoyu Clinic, Co., Ltd., Xiamen, China
| | - Dong-Yu Guo
- Department of Clinical Laboratory, Xiamen Huli Guoyu Clinic, Co., Ltd., Xiamen, China
| | - Bo Dong
- Fang Zongxi Center for Marine EvoDevo, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Insititute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China..
| |
Collapse
|
11
|
Jie J, Jihao R, Zheng L, Jie L, Xiaoling P, Wei Z, Feng G. Unraveling morphine tolerance: CCL2 induces spinal cord apoptosis via inhibition of Nrf2 signaling pathway and PGC-1α-mediated mitochondrial biogenesis. Brain Behav Immun 2025; 124:347-362. [PMID: 39667633 DOI: 10.1016/j.bbi.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/12/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024] Open
Abstract
BACKGROUND Morphine effectively relieves severe pain but leads to analgesic tolerance with long-term use.The molecular mechanisms underlying morphine tolerance remain incompletely understood. Existing literature suggests that chemokine CCL2, present in the spinal cord, plays a role in central nervous system inflammation, including neuropathic pain. Nevertheless, the precise mechanism through which CCL2 mediates morphine tolerance has yet to be elucidated. Consequently, this study aims to investigate the molecular pathways by which CCL2 contributes to the development of morphine analgesic tolerance. METHODS Rats were administered intrathecal morphine (10 μg/5 μl) twice a day for seven consecutive days to induce a model of morphine nociceptive tolerance. Western blotting and quantitative real-time polymerase chain reaction (qRT-PCR) were used to detect the expression levels of CCL2 and its related mechanism molecules. Immunofluorescence was used to detect the localization of CCL2 in the spinal cord. Intrathecal injections of inhibitors or agonists to artificially regulate the expression of relevant molecules. The thermal tail-flick experiment was performed to evaluate morphine tolerance in rats. RESULTS Morphine-induced CCL2 expression was significantly increased in spinal cord, while conversely, the expressions of Nrf2 and PGC-1a were downregulated. Immunofluorescence showed that the enhanced immune response of CCL2 mainly co-localized with neurons. In vivo, we confirmed that intrathecally injection of CCL2 inhibitor Bindarit could effectively alleviate the occurrence of apoptosis and alleviate morphine tolerance. Similarly, pretreatment with Nrf2 signaling pathway agonist Oltipraz and PGC-1α agonist ZLN005 also achieved similar results, respectively. ROS Fluorescence Assay Kit indicated that increasing the expression of PGC-1α could alleviate the occurrence of apoptosis by reducing the level of ROS. CONCLUSION Our data emphasize that chemokine CCL2 inhibited the Nrf2 signaling pathway and PGC-1α-mediated mitochondrial biogenesis, alleviating the occurrence of apoptosis in spinal cord, thereby participating in morphine tolerance. This may provide new targets for the treatment of morphine tolerance.
Collapse
Affiliation(s)
- Ju Jie
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ren Jihao
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Zheng
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liu Jie
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Xiaoling
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhao Wei
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gao Feng
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
12
|
Degro CE, Jiménez-Vargas NN, Guzman-Rodriguez M, Schincariol H, Tsang Q, Reed DE, Lomax AE, Bunnett NW, Stein C, Vanner SJ. A pH-sensitive opioid does not exhibit analgesic tolerance in a mouse model of colonic inflammation. Br J Pharmacol 2025; 182:581-595. [PMID: 39396524 DOI: 10.1111/bph.17363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND AND PURPOSE Tolerance to the analgesic effects of opioids and resultant dose escalation is associated with worsening of side effects and greater addiction risk. Here, we compare the development of tolerance to the conventional opioid fentanyl with a novel pH-sensitive μ-opioid receptor (MOR) agonist, (±)-N-(3-fluoro-1-phenethylpiperidine-4-yl)-N-phenyl propionamide (NFEPP) that is active only in acidic inflammatory microenvironments. EXPERIMENTAL APPROACH An opioid tolerance model was developed in male C57BL/6 mice, with and without dextran sulphate sodium colitis, using increasing doses of either fentanyl or NFEPP over 5 days. Visceral nociception was assessed in vivo by measuring visceromotor responses (VMRs) to noxious colorectal distensions and in vitro measuring colonic afferent nerve activity of mesenteric nerves and performing patch-clamp recordings from isolated dorsal root ganglia neurons. Somatic thermal nociception was tested using a tail immersion assay. Cardiorespiratory effects were analysed by pulse oximeter experiments. KEY RESULTS VMRs and tail immersion tests demonstrated tolerance to fentanyl, but not to NFEPP in colitis mice. Cross-tolerance also occurred to fentanyl, but not to NFEPP. The MOR agonist DAMGO inhibited colonic afferent nerve activity in colitis mice exposed to chronic NFEPP, but not those from fentanyl-treated mice. Similarly, in patch-clamp recordings from isolated dorsal root ganglia neurons, DAMGO inhibited neurons from NFEPP-, but not fentanyl-treated mice. CONCLUSION AND IMPLICATIONS NFEPP did not exhibit tolerance in an inflammatory pain model, unlike fentanyl. Consequently, dose escalation to maintain analgesia during an evolving inflammation could be avoided, mitigating the potential risk of side effects.
Collapse
Affiliation(s)
- Claudius E Degro
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, Ontario, Canada
- Department of General and Visceral Surgery, Charité - Universitätsmedizin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Benjamin Franklin, Berlin, Germany
| | | | - Mabel Guzman-Rodriguez
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, Ontario, Canada
| | - Hailey Schincariol
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, Ontario, Canada
| | - Quentin Tsang
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, Ontario, Canada
| | - David E Reed
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, Ontario, Canada
| | - Alan E Lomax
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, Ontario, Canada
| | - Nigel W Bunnett
- Department of Molecular Pathobiology, Pain Research Center, New York University, College of Dentistry, New York, New York, USA
- Department of Neuroscience and Physiology, Neuroscience Institute, Grossman, School of Medicine, New York University, New York, New York, USA
| | - Christoph Stein
- Department of Experimental Anaesthesiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Stephen J Vanner
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
13
|
Król W, Machelak W, Zielińska M. Positive allosteric modulation of µ-opioid receptor - A new possible approach in the pain management? Biochem Pharmacol 2025; 232:116686. [PMID: 39615602 DOI: 10.1016/j.bcp.2024.116686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/08/2024]
Abstract
The antinociceptive effect of the opioid drugs is achieved through activation of the µ-opioid receptor (MOP). The orthosteric and allosteric sites of opioid receptors may be modulated, orthosteric site by endogenous i.e.β-endorphin and exogenous opioids (morphine, oxycodone, fentanyl); whereas BMS-986121, BMS-986122, Comp5, MS1, Ignavine or even oxytocin act on the allosteric site of the MOP. Opioid therapy is associated with numerous side effects, such as: respiratory depression, sedation, constipation, and importantly, prolonged therapy can influence the development of tolerance, overdose, and addiction. Opioid tolerance is a result of MOP internalization and desensitization, preceded by MOP phosphorylation, performed by protein kinases such as: PKA, PKC, GRKs or CaMKII. In vitro and in vivo data suggest that positive allosteric modulators may enhance antinociception triggered by orthosteric ligands and reduce side effects, which would allow the dose of opioids to be reduced and thus provide a more effective therapy. In this review, we present that positive modulation of the allosteric sites of MOP may constitute a new strategy for pain therapy.
Collapse
Affiliation(s)
- Wojciech Król
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Weronika Machelak
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Marta Zielińska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
14
|
Soyer A, Leterrier S, Goutal S, Corvo C, Saba W, Caillé F, Bo GD, Winkeler A, Thibault K, Leroy C, Tournier N. Decreased opioid receptor availability and impaired neurometabolic coupling as signatures of morphine tolerance in male rats: A positron emission tomography study. Biomed Pharmacother 2025; 183:117848. [PMID: 39823723 DOI: 10.1016/j.biopha.2025.117848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/10/2025] [Accepted: 01/10/2025] [Indexed: 01/20/2025] Open
Abstract
Translational neuroimaging techniques are needed to address the impact of opioid tolerance on brain function and quantitatively monitor the impaired neuropharmacological response to opioids at the CNS level. A multiparametric PET study was conducted in rats. Rats received morphine daily to induce tolerance (15 mg/kg/day for 5 days), followed by 2-day withdrawal. Then, opioid effects were precipitated using a buprenorphine challenge (0.1 mg/kg, s.c, BUP-challenge), which safely enables full occupancy of available mu-opioid receptors (MOR). The impact of the BUP-challenge on the pain threshold was estimated using the hot-plate test. The corresponding availability of MOR was estimated using [11C]buprenorphine PET imaging (n = 4). The brain glucose metabolism was investigated using [18F]2-fluoro-D-deoxy-glucose ([18F]FDG) PET imaging after the BUP-challenge or saline (n = 5-6). Opioid tolerance was confirmed by the attenuated antinociceptive response to the BUP-challenge in morphine-treated rats compared to saline controls (p < 0.001). In tolerant rats, [11C]buprenorphine binding was decreased in MOR-rich regions (p < 0.01), and the baseline uptake of [18F]FDG was decreased (p < 0.05). The BUP-challenge decreased [18F]FDG uptake to a lower extent in tolerant rats compared with opioid-naive animals (p < 0.05), suggesting impaired neurometabolic coupling. Moreover, the impact of the BUP-challenge on the neurometabolic connectivity across brain regions was disrupted by opioid tolerance. PET imaging enables the study of the decreased availability of MOR and impaired neurometabolic coupling as molecular signatures of opioid tolerance in rats. Combining molecular neuroimaging with a suitable pharmacological challenge may provide a translational and quantitative paradigm to explore opioid tolerance at the CNS level in parallel to pharmacodynamics.
Collapse
Affiliation(s)
- Amélie Soyer
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Université Paris-Saclay, Orsay, France
| | - Sarah Leterrier
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Université Paris-Saclay, Orsay, France
| | - Sébastien Goutal
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Université Paris-Saclay, Orsay, France
| | - Cassandre Corvo
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Université Paris-Saclay, Orsay, France
| | - Wadad Saba
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Université Paris-Saclay, Orsay, France
| | - Fabien Caillé
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Université Paris-Saclay, Orsay, France
| | - Gregory Dal Bo
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Université Paris-Saclay, Orsay, France; Department of Radiation Biological Effects, Armed Forces Biomedical Research Institute, Bretigny-sur-Orge 91220, France
| | - Alexandra Winkeler
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Université Paris-Saclay, Orsay, France
| | - Karine Thibault
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Université Paris-Saclay, Orsay, France; Department of Radiation Biological Effects, Armed Forces Biomedical Research Institute, Bretigny-sur-Orge 91220, France
| | - Claire Leroy
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Université Paris-Saclay, Orsay, France
| | - Nicolas Tournier
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Université Paris-Saclay, Orsay, France.
| |
Collapse
|
15
|
Wedemeyer MJ, Chavera TS, Berg KA, Clarke WP. Insurmountable antagonism of human mu opioid receptors by buprenorphine is due to hemi-equilibrium. Eur J Pharmacol 2025; 987:177192. [PMID: 39667424 DOI: 10.1016/j.ejphar.2024.177192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/30/2024] [Accepted: 12/08/2024] [Indexed: 12/14/2024]
Abstract
Buprenorphine is an FDA approved drug for the treatment of opioid use disorder and is a long-lasting, low efficacy (partial) agonist of the μ opioid receptor. As a partial agonist, buprenorphine can act as either an agonist or an antagonist depending on the efficiency of the cellular signaling system. Here we investigated the antagonist properties of buprenorphine using a genetically-encoded biosensor to monitor cAMP levels in real time in HEK293 cells expressing a relatively low density of the human μ receptor. Pre-treatment of cells with buprenorphine decreased the maximal response (Emax) of the μ receptor agonists DAMGO and fentanyl, consistent with expectations of a long-lasting partial agonist in these cells. However, buprenorphine pretreatment also reduced the potency of these agonists. In a Schild analysis, the reduction in Emax saturated with increasing concentrations of buprenorphine, while the reduction in potency did not. This unexpected behavior of buprenorphine on potency was mediated through the orthosteric site, as pretreatment with the opioid receptor antagonist naloxone prevented buprenorphine antagonism. Computation simulations using a model of hemi-equilibrium indicated that buprenorphine's slow receptor dissociation could account for both effects of antagonism. In support of this kinetic explanation, buprenorphine antagonism became surmountable with additional agonist incubation time. In this system, buprenorphine appeared to behave both as a competitive and non-competitive (insurmountable) antagonist due to its slow dissociation resulting in partial re-equilibration (hemi-equilibrium). As fast-acting biosensors become more prevalent, it will be important to consider kinetically-mediated effects such as hemi-equilibrium when characterizing the pharmacological properties of antagonists.
Collapse
Affiliation(s)
- Michael J Wedemeyer
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA, United States
| | - Teresa S Chavera
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA, United States
| | - Kelly A Berg
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA, United States
| | - William P Clarke
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA, United States.
| |
Collapse
|
16
|
García-Domínguez M. A Comprehensive Analysis of Fibromyalgia and the Role of the Endogenous Opioid System. Biomedicines 2025; 13:165. [PMID: 39857749 PMCID: PMC11762748 DOI: 10.3390/biomedicines13010165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Fibromyalgia represents a chronic pain disorder characterized by musculoskeletal pain, fatigue, and cognitive impairments. The exact mechanisms underlying fibromyalgia remain undefined; as a result, diagnosis and treatment present considerable challenges. On the other hand, the endogenous opioid system is believed to regulate pain intensity and emotional responses; hence, it might be expected to play a key role in the enhanced sensitivity experienced by fibromyalgia patients. One explanation for the emergence of disrupted pain modulation in individuals with fibromyalgia is a significant reduction in opioid receptor activity or an imbalance in the levels of endogenous opioid peptides. Further research is essential to clarify the complex details of the mechanisms underlying this abnormality. This complexity arises from the notion that an improved understanding could contribute to the development of innovative therapeutic strategies aimed at targeting the endogenous opioid system in the context of fibromyalgia. Although progress is being made, a complete understanding of these complexities remains a significant challenge. This paradigm has the potential to revolutionize the complex management of fibromyalgia, although its implementation may experience challenges. The effectiveness of this approach depends on multiple factors, but the implications could be profound. Despite the challenges involved in this transformation, the potential for improving patient care is considerable, as this condition has long been inadequately treated.
Collapse
Affiliation(s)
- Mario García-Domínguez
- Program of Immunology and Immunotherapy, CIMA-Universidad de Navarra, 31008 Pamplona, Spain;
- Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| |
Collapse
|
17
|
Li J, Inoue A, Manglik A, von Zastrow M. Role of the G protein-coupled receptor kinase 2/3 N terminus in discriminating the endocytic effects of opioid agonist drugs. Mol Pharmacol 2025; 107:100003. [PMID: 39919161 DOI: 10.1124/molpharm.124.000951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
Endocytosis of the μ-type opioid receptor (MOR) is a fundamentally important cellular regulatory process that is characteristically driven less effectively by partial relative to full agonist ligands. Such agonist-selective endocytic discrimination depends on how strongly drugs promote MOR binding to β-arrestins, and this, in turn, depends on how strongly they stimulate phosphorylation of the MOR cytoplasmic tail by G protein-coupled receptor kinases (GRKs) from the GRK2/3 subfamily. While these relatively "downstream" steps in the agonist selective endocytic pathway are now well defined, it remains unclear how agonist-bound receptors are distinguished "upstream" by GRKs. Focusing on GRK2 as a prototype, we show that this single GRK subtype can distinguish the endocytic activities of different MOR agonists in cells lacking other GRKs and that agonist selectivity is introduced at the most upstream step of GRK2 binding to MOR. This interaction requires prior membrane recruitment of GRK2 by its conserved Pleckstrin homology domain and is enhanced by phosphorylation of the MOR tail, but neither reaction can explain the high degree of agonist selectivity in the observed interaction of GRK2 with MOR. We identify the N-terminal domain (NTD) of GRK2, which is identical in GRK3, as a discrete element required for the full agonist selectivity of MOR-GRK2 interaction and show that the NTD is also required for GRK2 to promote MOR endocytosis after it is bound. We propose a simple cellular mechanism of upstream agonist discrimination that is organized as a series of biochemical checkpoints and uses the NTD as an agonist-selective sensor. SIGNIFICANCE STATEMENT: This study investigates how G protein-coupled receptor kinases (GRKs) distinguish the effects of opioid agonist drugs on regulated endocytosis of the μ-type opioid receptor (MOR). It shows that a single GRK subtype is sufficient to determine the agonist selectivity of MOR internalization, agonists are distinguished by how strongly they promote GRK2 recruitment by MOR, and the GRK2/3 N terminus is a key determinant of agonist discrimination.
Collapse
Affiliation(s)
- Joy Li
- Tetrad Graduate Program, Department of Biochemistry and Biophysics, University of California San Francisco School of Medicine, San Francisco, California, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA; Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, California, USA; Quantitative Biology Institute, University of California San Francisco, San Francisco, California, USA
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan; Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida-Shimo-Adachi-cho, Sakyo-ku, Kyoto, Japan
| | - Aashish Manglik
- Quantitative Biology Institute, University of California San Francisco, San Francisco, California, USA; Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA; Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, California, USA
| | - Mark von Zastrow
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA; Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, California, USA; Quantitative Biology Institute, University of California San Francisco, San Francisco, California, USA.
| |
Collapse
|
18
|
Dagunts A, Adoff H, Novy B, Maria MD, Lobingier BT. Retromer Opposes Opioid-Induced Downregulation of the Mu Opioid Receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.02.626482. [PMID: 39677727 PMCID: PMC11642924 DOI: 10.1101/2024.12.02.626482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The mu opioid receptor (MOR) is protected from opioid-induced trafficking to lysosomes and proteolytic downregulation by its ability to access the endosomal recycling pathway through its C-terminal recycling motif, LENL. MOR sorting towards the lysosome results in downregulation of opioid signaling while recycling of MOR to the plasma membrane preserves signaling function. However, the mechanisms by which LENL promotes MOR recycling are unknown, and this sequence does not match any known consensus recycling motif. Here we took a functional genomics approach with a comparative genome-wide screen design to identify genes which control opioid receptor expression and downregulation. We identified 146 hits including all three subunits of the endosomal Retromer complex. We show that the LENL motif in MOR is a novel Retromer recycling motif and that LENL is a necessary, sufficient, and conserved mechanism to give MOR access to the Retromer recycling pathway and protect MOR from agonist-induced downregulation to multiple clinically relevant opioids including fentanyl and methadone.
Collapse
Affiliation(s)
- Aleksandra Dagunts
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Hayden Adoff
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Brandon Novy
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Monica De Maria
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Braden T Lobingier
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
19
|
Ahlström FH, Viisanen H, Karhinen L, Velagapudi V, Blomqvist KJ, Lilius TO, Rauhala PV, Kalso EA. Gene expression in the dorsal root ganglion and the cerebrospinal fluid metabolome in polyneuropathy and opioid tolerance in rats. IBRO Neurosci Rep 2024; 17:38-51. [PMID: 38933596 PMCID: PMC11201153 DOI: 10.1016/j.ibneur.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
First-line pharmacotherapy for peripheral neuropathic pain (NP) of diverse pathophysiology consists of antidepressants and gabapentinoids, but only a minority achieve sufficient analgesia with these drugs. Opioids are considered third-line analgesics in NP due to potential severe and unpredictable adverse effects in long-term use. Also, opioid tolerance and NP may have shared mechanisms, raising further concerns about opioid use in NP. We set out to further elucidate possible shared and separate mechanisms after chronic morphine treatment and oxaliplatin-induced and diabetic polyneuropathies, and to identify potential diagnostic markers and therapeutic targets. We analysed thermal nociceptive behaviour, the transcriptome of dorsal root ganglia (DRG) and the metabolome of cerebrospinal fluid (CSF) in these three conditions, in rats. Several genes were differentially expressed, most following oxaliplatin and least after chronic morphine treatment, compared with saline-treated rats. A few genes were differentially expressed in the DRGs in all three models (e.g. Csf3r and Fkbp5). Some, e.g. Alox15 and Slc12a5, were differentially expressed in both diabetic and oxaliplatin models. Other differentially expressed genes were associated with nociception, inflammation, and glial cells. The CSF metabolome was most significantly affected in the diabetic rats. Interestingly, we saw changes in nicotinamide metabolism, which has been associated with opioid addiction and withdrawal, in the CSF of morphine-tolerant rats. Our results offer new hypotheses for the pathophysiology and treatment of NP and opioid tolerance. In particular, the role of nicotinamide metabolism in opioid addiction deserves further study.
Collapse
Affiliation(s)
- Fredrik H.G. Ahlström
- Department of Pharmacology, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
- Individualized Drug Therapy Research Programme, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
| | - Hanna Viisanen
- Department of Pharmacology, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
- Individualized Drug Therapy Research Programme, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
| | - Leena Karhinen
- Department of Pharmacology, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
| | - Vidya Velagapudi
- Metabolomics Unit, Institute for Molecular Medicine Finland FIMM, University of Helsinki, P.O. Box 20, FI-00014, Finland
| | - Kim J. Blomqvist
- Department of Pharmacology, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
- Individualized Drug Therapy Research Programme, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
| | - Tuomas O. Lilius
- Department of Pharmacology, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
- Individualized Drug Therapy Research Programme, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
- Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Tukholmankatu 8C, 00014, Finland
- Department of Emergency Medicine and Services, University of Helsinki and HUS Helsinki University Hospital, Haartmaninkatu 4, Helsinki 00290, Finland
| | - Pekka V. Rauhala
- Department of Pharmacology, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
- Individualized Drug Therapy Research Programme, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
| | - Eija A. Kalso
- Department of Pharmacology, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
- SleepWell Research Programme, Faculty of Medicine, , University of Helsinki, Haartmaninkatu 3, 00014, Finland
- Department of Anaesthesiology and Intensive Care Medicine, Helsinki University Hospital and University of Helsinki, HUS, Stenbäckinkatu 9, P.O. Box 440, 00029, Finland
| |
Collapse
|
20
|
Yuan Z, Lu B, Zhang M, Lu Y, Wang Z, Zhang W, Cheng H, Wu Z, Ji Q. Effect of NLRP3 inflammasome induced astrocyte phenotype alteration in morphine tolerance. Front Pharmacol 2024; 15:1434295. [PMID: 39600361 PMCID: PMC11588488 DOI: 10.3389/fphar.2024.1434295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
Introduction Morphine is a widely used analgesic, but its prolonged use often leads to tolerance, limiting its therapeutic efficacy. Research implicates the NLRP3 inflammasome and reactive astrocytes in the development of morphine tolerance, with reactive astrocytes classified into A1 neurotoxic and A2 neuroprotective phenotypes. This study explores the role of the NLRP3 inflammasome and the transformation of astrocyte phenotypes in the progression of morphine tolerance. Methods A model of morphine tolerance was established by administering morphine intrathecally for seven consecutive days. To inhibit NLRP3 inflammasome activation, we coadministered MCC950, a selective NLRP3 inhibitor. Thermal withdrawal latency was used to assess tolerance development. Protein and mRNA levels of GFAP, IL-18, NLRP3, C3 (A1 marker), and S100A10 (A2 marker) in the spinal cord were measured using Western blotting (WB) and real-time quantitative polymerase chain reaction (RT-qPCR). Immunofluorescence was employed to assess the colocalization of C3 and GFAP. Results Seven days of morphine administration induced tolerance, which was associated with increased levels of GFAP, IL-18, NLRP3, and C3, and a decreased level of S100A10. Coadministration of morphine and MCC950 significantly slowed the development of morphine tolerance and reversed changes in NLRP3, IL-18, GFAP, C3, and S100A10 protein levels. Discussion Our findings indicate a significant link between NLRP3 inflammasome activation and morphine tolerance, suggesting that NLRP3 contributes to the transformation of astrocytes to the A1 phenotype. Inhibiting NLRP3 inflammasome activation holds promise in reversing astrocyte phenotype changes, potentially mitigating morphine tolerance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zhifang Wu
- Department of Anesthesiology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qing Ji
- Department of Anesthesiology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
21
|
Jouvenel A, Tassou A, Thouaye M, Ruel J, Antri M, Leyris JP, Giraudin A, Mallié S, Sar C, Diouloufet L, Sonrier C, Daubeuf F, Bertin J, Alves S, Ventéo S, Frossard N, Carroll P, Mechaly I, Rognan D, Sokoloff P, Dallel R, Delmas P, Valmier J, Rivat C. FLT3 signaling inhibition abrogates opioid tolerance and hyperalgesia while preserving analgesia. Nat Commun 2024; 15:9633. [PMID: 39511220 PMCID: PMC11543937 DOI: 10.1038/s41467-024-54054-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 10/30/2024] [Indexed: 11/15/2024] Open
Abstract
Navigating the duality of opioids' potent analgesia and side effects, including tolerance and hyperalgesia, is a significant challenge in chronic pain management, often prompting hazardous dose escalation to maintain analgesic effects. The peripheral mu-opioid receptor (MOR) is known to mediate these contradictory effects. Here, we show that the fms-like tyrosine kinase receptor 3 (FLT3) in peripheral somatosensory neurons drives morphine tolerance and hyperalgesia in a male rodent model. We found that chronic morphine treatment increases FLT3 and MOR co-expression, and that inhibiting FLT3 represses MOR-induced hyperactivation of the cyclic adenosine monophosphate (cAMP) signaling pathway, mitigating maladaptive excitatory processes engaged after chronic morphine treatment. Furthermore, in postsurgical or inflammatory models of chronic pain, co-administering morphine with a FLT3-specific inhibitor not only prevents or suppresses tolerance and hyperalgesia but also potentiates the analgesic efficacy of morphine, without aggravating other morphine-induced adverse effects. Our findings suggest that pairing morphine with FLT3 inhibitors could become a promising avenue for chronic pain management to safely harness the power of opioids, without the risk of dose escalation. By enhancing morphine analgesic potency through FLT3 inhibition, this approach could minimize opioid dosage, thereby curtailing the risk of addiction and other opioid-related side effects.
Collapse
Affiliation(s)
- Antoine Jouvenel
- Université de Montpellier, Montpellier, France
- Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France
| | - Adrien Tassou
- Université de Montpellier, Montpellier, France
- Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France
| | - Maxime Thouaye
- Université de Montpellier, Montpellier, France
- Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France
| | - Jérôme Ruel
- Centre de Recherche en CardioVasculaire et Nutrition, Aix-Marseille Université - INSERM 1263 -INRAE 1260, Marseille, France
| | | | | | | | - Sylvie Mallié
- Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France
| | - Chamroeum Sar
- Université de Montpellier, Montpellier, France
- Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France
| | - Lucie Diouloufet
- Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France
- Biodol Therapeutics, 165 rue Denis Papin, Montarnaud, 34570, France
| | - Corinne Sonrier
- Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France
- Biodol Therapeutics, 165 rue Denis Papin, Montarnaud, 34570, France
| | - François Daubeuf
- Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS/Université de Strasbourg, 67400, Illkirch, France
| | - Juliette Bertin
- Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France
- Biodol Therapeutics, 165 rue Denis Papin, Montarnaud, 34570, France
| | - Stacy Alves
- Université de Montpellier, Montpellier, France
- Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France
| | - Stéphanie Ventéo
- Université de Montpellier, Montpellier, France
- Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France
| | - Nelly Frossard
- Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS/Université de Strasbourg, 67400, Illkirch, France
| | - Patrick Carroll
- Université de Montpellier, Montpellier, France
- Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France
| | - Ilana Mechaly
- Université de Montpellier, Montpellier, France
- Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France
| | - Didier Rognan
- Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS/Université de Strasbourg, 67400, Illkirch, France
| | - Pierre Sokoloff
- Biodol Therapeutics, 165 rue Denis Papin, Montarnaud, 34570, France
| | | | - Patrick Delmas
- Centre de Recherche en CardioVasculaire et Nutrition, Aix-Marseille Université - INSERM 1263 -INRAE 1260, Marseille, France
| | - Jean Valmier
- Université de Montpellier, Montpellier, France.
- Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France.
| | - Cyril Rivat
- Université de Montpellier, Montpellier, France.
- Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France.
| |
Collapse
|
22
|
Xiao X, Yang J, Bai Q, Wang Z, Chen Y, Si Y, Xu Y, Li Z, Bu H. Involvement of spinal NADPH oxidase 4 and endoplasmic reticulum stress in morphine-tolerant rats. J Neurochem 2024; 168:3745-3759. [PMID: 38069511 DOI: 10.1111/jnc.16026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 10/25/2024]
Abstract
Morphine tolerance (MT) is currently a challenging issue related to intractable pain treatment. Studies have shown that reactive oxygen species (ROSs) derived from NADPH oxidase (NOX) and produced in response to endoplasmic reticulum (ER) stress participate in MT development. However, which NOX subtype initiates ER stress during MT development is unclear. NOX4 is mainly expressed on intracellular membranes, such as the ER and mitochondrial membranes, and its sole function is to produce ROS. Whether NOX4 is activated during MT development and the mechanisms underlying the association between NOX4 and ER stress during this process still need to be confirmed. In our study, we used the classic morphine-tolerant rat model and evaluated the analgesic effect of intrathecally injected morphine through a hot water tail-flick assay. Our research demonstrated for the first time that chronic morphine administration upregulates NOX4 expression in the spinal cord by activating three ER stress sensors, protein kinase RNA-like ER kinase (PERK), inositol-requiring enzyme 1 (IRE1) and activating transcription factor 6 (ATF6), subsequently leading to the activation of microtubule-associated protein 1 light chain 3 b (LC3B) and P62 (a well-known autophagy marker) in GABAergic neurons. Our results may suggest that regulating NOX4 and the key mechanism underlying ER stress or autophagy may be a promising strategy to treat and prevent MT development.
Collapse
Affiliation(s)
- Xuyang Xiao
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingjie Yang
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qian Bai
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhitao Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yue Si
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yaowei Xu
- Institute of Neuroscience, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhisong Li
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huilian Bu
- Department of Pain Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
23
|
Davis MP, DiScala S, Davis A. Respiratory Depression Associated with Opioids: A Narrative Review. Curr Treat Options Oncol 2024; 25:1438-1450. [PMID: 39432171 DOI: 10.1007/s11864-024-01274-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2024] [Indexed: 10/22/2024]
Abstract
OPINION All opioids have a risk of causing respiratory depression and reduced cerebral circulation. Fentanyl has the greatest risk of causing both. This is particularly a concern when combined with illicit opioids such as diamorphine (also known as heroin). Fentanyl should not be used as a frontline potent opioid due its significant risks. Buprenorphine, a schedule III opioid, morphine, or hydromorphone is preferred, followed by oxycodone, which has a significant risk of abuse relative to buprenorphine and morphine. Although all opioids were equally effective in producing analgesia, the relative safety of each opioid is no longer a secondary concern when prescribing. In the face of an international opioid epidemic, clinicians need to choose opioid analgesics safely, wisely, and carefully.
Collapse
Affiliation(s)
| | - Sandra DiScala
- West Palm Beach VA Healthcare System, West Palm Beach, Florida, USA
| | - Amy Davis
- Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
24
|
Kundu D, Min X, Wang S, Peng L, Tian X, Wang M, Kim KM. Transactivation of the EGF receptor as a novel desensitization mechanism for G protein-coupled receptors, illustrated by dopamine D2-like and β 2 adrenergic receptors. Cell Mol Biol Lett 2024; 29:132. [PMID: 39468452 PMCID: PMC11514929 DOI: 10.1186/s11658-024-00652-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/11/2024] [Indexed: 10/30/2024] Open
Abstract
Transactivation of epidermal growth factor receptors (EGFR) provides intricate control over multiple regulatory cellular processes that merge the diversity of G protein-coupled receptors (GPCRs) with the robust signaling capacities of receptor tyrosine kinases. Contrary to the typical assertions, our findings demonstrate that EGFR transactivation contributes to the desensitization of GPCRs. Repeated agonist stimulation of certain GPCRs enhanced EGFR transactivation, triggering a series of cellular events associated with GPCR desensitization. This effect was observed in receptors undergoing desensitization (D3R, K149C-D2R, β2AR) but not in those resistant to desensitization (D2R, C147K-D3R, D4R, β2AR mutants lacking GRK2 or GRK6 phosphorylation sites). The EGFR inhibitor AG1478 prevented both desensitization and the associated cellular events. Similarly, these cellular events were also observed when cells were treated with EGF, but only in GPCRs that undergo desensitization. These findings suggest that EGFR transactivation diversifies pathways involved in ERK activation through the EGFR signaling system and also mediates GPCR desensitization. Alongside the widely accepted steric hindrance model, these findings offer new insights into understanding the mechanisms of GPCR desensitization, which occurs through complex cellular processes.
Collapse
Affiliation(s)
- Dooti Kundu
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju, 61186, Korea
| | - Xiao Min
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju, 61186, Korea
| | - Shujie Wang
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju, 61186, Korea
| | - Lulu Peng
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju, 61186, Korea
| | - Xinru Tian
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju, 61186, Korea
| | - Mengling Wang
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju, 61186, Korea
| | - Kyeong-Man Kim
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju, 61186, Korea.
| |
Collapse
|
25
|
Galambos AR, Essmat N, Lakatos PP, Szücs E, Boldizsár I, Abbood SK, Karádi DÁ, Kirchlechner-Farkas JM, Király K, Benyhe S, Riba P, Tábi T, Harsing LG, Zádor F, Al-Khrasani M. Glycine Transporter 1 Inhibitors Minimize the Analgesic Tolerance to Morphine. Int J Mol Sci 2024; 25:11136. [PMID: 39456918 PMCID: PMC11508341 DOI: 10.3390/ijms252011136] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Opioid analgesic tolerance (OAT), among other central side effects, limits opioids' indispensable clinical use for managing chronic pain. Therefore, there is an existing unmet medical need to prevent OAT. Extrasynaptic N-methyl D-aspartate receptors (NMDARs) containing GluN2B subunit blockers delay OAT, indicating the involvement of glutamate in OAT. Glycine acts as a co-agonist on NMDARs, and glycine transporters (GlyTs), particularly GlyT-1 inhibitors, could affect the NMDAR pathways related to OAT. Chronic subcutaneous treatments with morphine and NFPS, a GlyT-1 inhibitor, reduced morphine antinociceptive tolerance (MAT) in the rat tail-flick assay, a thermal pain model. In spinal tissues of rats treated with a morphine-NFPS combination, NFPS alone, or vehicle-comparable changes in µ-opioid receptor activation, protein and mRNA expressions were seen. Yet, no changes were observed in GluN2B mRNA levels. An increase was observed in glycine and glutamate contents of cerebrospinal fluids from animals treated with a morphine-NFPS combination and morphine, respectively. Finally, GlyT-1 inhibitors are likely to delay MAT by mechanisms relying on NMDARs functioning rather than an increase in opioid efficacy. This study, to the best of our knowledge, shows for the first time the impact of GlyT-1 inhibitors on MAT. Nevertheless, future studies are required to decipher the exact mechanisms.
Collapse
Affiliation(s)
- Anna Rita Galambos
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1085 Budapest, Hungary; (A.R.G.); (N.E.); (I.B.J.); (S.K.A.); (D.Á.K.); (J.M.K.-F.); (K.K.); (P.R.); (L.G.H.J.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Üllői út 26., H-1085 Budapest, Hungary; (P.P.L.); (T.T.)
| | - Nariman Essmat
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1085 Budapest, Hungary; (A.R.G.); (N.E.); (I.B.J.); (S.K.A.); (D.Á.K.); (J.M.K.-F.); (K.K.); (P.R.); (L.G.H.J.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Üllői út 26., H-1085 Budapest, Hungary; (P.P.L.); (T.T.)
| | - Péter P. Lakatos
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Üllői út 26., H-1085 Budapest, Hungary; (P.P.L.); (T.T.)
- Department of Pharmacodynamics, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary
| | - Edina Szücs
- Institute of Genetics, HUN-REN Biological Research Centre, Temesvári krt. 62, H-6726 Szeged, Hungary;
| | - Imre Boldizsár
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1085 Budapest, Hungary; (A.R.G.); (N.E.); (I.B.J.); (S.K.A.); (D.Á.K.); (J.M.K.-F.); (K.K.); (P.R.); (L.G.H.J.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Üllői út 26., H-1085 Budapest, Hungary; (P.P.L.); (T.T.)
| | - Sarah Kadhim Abbood
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1085 Budapest, Hungary; (A.R.G.); (N.E.); (I.B.J.); (S.K.A.); (D.Á.K.); (J.M.K.-F.); (K.K.); (P.R.); (L.G.H.J.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Üllői út 26., H-1085 Budapest, Hungary; (P.P.L.); (T.T.)
| | - Dávid Á. Karádi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1085 Budapest, Hungary; (A.R.G.); (N.E.); (I.B.J.); (S.K.A.); (D.Á.K.); (J.M.K.-F.); (K.K.); (P.R.); (L.G.H.J.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Üllői út 26., H-1085 Budapest, Hungary; (P.P.L.); (T.T.)
| | - Judit Mária Kirchlechner-Farkas
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1085 Budapest, Hungary; (A.R.G.); (N.E.); (I.B.J.); (S.K.A.); (D.Á.K.); (J.M.K.-F.); (K.K.); (P.R.); (L.G.H.J.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Üllői út 26., H-1085 Budapest, Hungary; (P.P.L.); (T.T.)
| | - Kornél Király
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1085 Budapest, Hungary; (A.R.G.); (N.E.); (I.B.J.); (S.K.A.); (D.Á.K.); (J.M.K.-F.); (K.K.); (P.R.); (L.G.H.J.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Üllői út 26., H-1085 Budapest, Hungary; (P.P.L.); (T.T.)
| | - Sándor Benyhe
- HUN-REN Biological Research Centre, Institute of Biochemistry, Temesvári krt. 62, H-6726 Szeged, Hungary;
| | - Pál Riba
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1085 Budapest, Hungary; (A.R.G.); (N.E.); (I.B.J.); (S.K.A.); (D.Á.K.); (J.M.K.-F.); (K.K.); (P.R.); (L.G.H.J.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Üllői út 26., H-1085 Budapest, Hungary; (P.P.L.); (T.T.)
| | - Tamás Tábi
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Üllői út 26., H-1085 Budapest, Hungary; (P.P.L.); (T.T.)
- Department of Pharmacodynamics, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary
| | - Laszlo G. Harsing
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1085 Budapest, Hungary; (A.R.G.); (N.E.); (I.B.J.); (S.K.A.); (D.Á.K.); (J.M.K.-F.); (K.K.); (P.R.); (L.G.H.J.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Üllői út 26., H-1085 Budapest, Hungary; (P.P.L.); (T.T.)
| | - Ferenc Zádor
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1085 Budapest, Hungary; (A.R.G.); (N.E.); (I.B.J.); (S.K.A.); (D.Á.K.); (J.M.K.-F.); (K.K.); (P.R.); (L.G.H.J.)
| | - Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1085 Budapest, Hungary; (A.R.G.); (N.E.); (I.B.J.); (S.K.A.); (D.Á.K.); (J.M.K.-F.); (K.K.); (P.R.); (L.G.H.J.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Üllői út 26., H-1085 Budapest, Hungary; (P.P.L.); (T.T.)
| |
Collapse
|
26
|
Kao HT, Mürner-Lavanchy I, Lerch S, von Stosch E, Berger T, Koenig J, Kaess M. Longitudinal associations between beta-endorphin, nonsuicidal self-injury and comorbid psychopathology. Psychiatry Res 2024; 340:116142. [PMID: 39182317 DOI: 10.1016/j.psychres.2024.116142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/06/2024] [Accepted: 08/10/2024] [Indexed: 08/27/2024]
Abstract
Homeostasis models posit that nonsuicidal self-injury (NSSI) serves, in part, to upregulate the endogenous opioid system in order to compensate for an opioid deficiency. A few studies have demonstrated lower basal levels of beta-endorphin (BE), an endogenous opioid, in individuals with NSSI. However, longitudinal studies are missing. Hence, the present study aimed to investigate the longitudinal associations between NSSI, comorbid psychopathology (i.e., borderline personality disorder and depressive symptoms), pain sensitivity and basal BE levels in adolescents with NSSI. N = 53 adolescents with NSSI disorder undergoing specialized treatment participated in baseline and one-year follow-up assessments. BE was measured in plasma; pain sensitivity was assessed with a heat pain stimulation paradigm. Associations between BE and change in NSSI, borderline personality disorder and depressive symptoms as well as pain sensitivity were examined using negative binomial and linear regression analyses. We found that an increase in basal BE was significantly associated with a decrease in depressive symptoms. No associations between BE and NSSI, borderline personality disorder symptoms or pain sensitivity were observed. Our findings may confirm a role of plasma BE in the etiology of depressive symptoms but challenge current models of endogenous opioid homeostasis in NSSI.
Collapse
Affiliation(s)
- Han-Tin Kao
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Ines Mürner-Lavanchy
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Faculty of Psychology, University of Basel, Basel, Switzerland
| | - Stefan Lerch
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Elisabeth von Stosch
- Section for Experimental Child and Adolescent Psychiatry, Department of Child and Adolescent Psychiatry, Centre for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| | - Thomas Berger
- Department of Clinical Psychology and Psychotherapy, University of Bern, Bern, Switzerland
| | - Julian Koenig
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Cologne, Germany
| | - Michael Kaess
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Section for Translational Psychobiology in Child and Adolescent Psychiatry, Department of Child and Adolescent Psychiatry, Centre for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
27
|
Green HM, Manning JJ, Greig IR, Ross RA, Finlay DB, Glass M. Positive allosteric modulation of the cannabinoid CB 1 receptor potentiates endocannabinoid signalling and changes ERK1/2 phosphorylation kinetics. Br J Pharmacol 2024; 181:3642-3662. [PMID: 38831545 DOI: 10.1111/bph.16433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/16/2024] [Accepted: 04/20/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND AND PURPOSE Activation of CB1 by exogenous agonists causes adverse effects in vivo. Positive allosteric modulation may offer improved therapeutic potential and a reduced on-target adverse effect profile compared with orthosteric agonists, due to reduced desensitisation/tolerance, but this has not been directly tested. This study investigated the ability of PAMs/ago-PAMs to induce receptor regulation pathways, including desensitisation and receptor internalisation. EXPERIMENTAL APPROACH Bioluminescence resonance energy transfer (BRET) assays in HEK293 cells were performed to investigate G protein dissociation, ERK1/2 phosphorylation and β-arrestin 2 translocation, while immunocytochemistry was performed to measure internalisation of CB1 in response to the PAMs ZCZ011, GAT229 and ABD1236 alone and in combination with the orthosteric agonists AEA, 2-AG, and AMB-FUBINACA. KEY RESULTS ZCZ011, GAT229 and ABD1236 were allosteric agonists in all pathways tested. The ago-PAM ZCZ011 induced a biphasic ERK1/2 phosphorylation time course compared to transient activation by orthosteric agonists. In combination with 2-AG but not AEA or AMB-FUBINACA, ZCZ011 and ABD1236 caused the transient peak of ERK1/2 phosphorylation to become sustained. All PAMs increased the potency and efficacy of AEA-induced signalling in all pathways tested; however, no notable potentiation of 2-AG or AMB-FUBINACA was observed. CONCLUSION AND IMPLICATIONS Ago-PAMs can potentiate endocannabinoid CB1 agonism by AEA to a larger extent compared with 2-AG. However, all compounds were found to be allosteric agonists and induce activation of CB1 in the absence of endocannabinoid, including β-arrestin 2 recruitment and internalisation. Thus, the spatiotemporal signalling of endogenous cannabinoids will not be retained in vivo.
Collapse
Affiliation(s)
- Hayley M Green
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Jamie J Manning
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Ian R Greig
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Ruth A Ross
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - David B Finlay
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Michelle Glass
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
28
|
Budda D, Gülave B, van Hasselt JGC, de Lange ECM. Non-linear blood-brain barrier transport and dosing strategies influence receptor occupancy ratios of morphine and its metabolites in pain matrix. Br J Pharmacol 2024; 181:3856-3868. [PMID: 38663441 DOI: 10.1111/bph.16394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 03/12/2024] [Accepted: 03/17/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND AND PURPOSE Morphine is important for treatment of acute and chronic pain. However, there is high interpatient variability and often inadequate pain relief and adverse effects. To better understand variability in the dose-effect relationships of morphine, we investigated the effects of its non-linear blood-brain barrier (BBB) transport on μ-receptor occupancy in different CNS locations, in conjunction with its main metabolites that bind to the same receptor. EXPERIMENTAL APPROACH CNS exposure profiles for morphine, M3G and M6G for clinically relevant dosing regimens based on intravenous, oral immediate- and extended-release formulations were generated using a physiology-based pharmacokinetic model of the CNS, with non-linear BBB transport of morphine. The simulated CNS exposure profiles were then used to derive corresponding μ-receptor occupancies at multiple CNS pain matrix locations. KEY RESULTS Simulated CNS exposure profiles for morphine, M3G and M6G, associated with non-linear BBB transport of morphine resulted in varying μ-receptor occupancies between different dose regimens, formulations and CNS locations. At lower doses, the μ-receptor occupancy of morphine was relatively higher than at higher doses of morphine, due to the relative contribution of M3G and M6G. At such higher doses, M6G showed higher occupancy than morphine, whereas M3G occupancy was low throughout the dose ranges. CONCLUSION AND IMPLICATIONS Non-linear BBB transport of morphine affects the μ-receptor occupancy ratios of morphine with its metabolites, depending on dose and route of administration, and CNS location. These predictions need validation in animal or clinical experiments, to understand the clinical implications.
Collapse
Affiliation(s)
- Divakar Budda
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Berfin Gülave
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - J G Coen van Hasselt
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Elizabeth C M de Lange
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
29
|
Zhao Y, Zhang Z, Gou D, Li P, Yang T, Niu Z, Simon JP, Guan X, Li X, He C, Dong S. Intrathecal administration of MCRT produced potent antinociception in chronic inflammatory pain models via μ-δ heterodimer with limited side effects. Biomed Pharmacother 2024; 179:117389. [PMID: 39243426 DOI: 10.1016/j.biopha.2024.117389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/25/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024] Open
Abstract
An important goal in the opioid field is to discover effective analgesic drugs with minimal side effects. MCRT demonstrated potent antinociceptive effects with limited side effects, making it a promising candidate. However, its pharmacological properties and how it minimizes side effects remain unknown. Various mouse pain and opioid side effect models were used to evaluate the antinociceptive properties and safety at the spinal level. The targets of MCRT were identified through cAMP measurement, isolated tissue assays, and pharmacological experiments. Immunofluorescence was employed to visualize protein expression. MCRT displayed distinct antinociceptive effects between acute and chronic inflammatory pain models due to its multifunctional properties at the μ opioid receptor (MOR), µ-δ heterodimer (MDOR), and neuropeptide FF receptor 2 (NPFFR2). Activation of NPFFR2 reduced MOR-mediated antinociception, leading to bell-shaped response curves in acute pain models. However, activation of MDOR produced more effective antinociception in chronic inflammatory pain models. MCRT showed limited tolerance and opioid-induced hyperalgesia in both acute and chronic pain models and did not develop cross-tolerance to morphine. Additionally, MCRT did not exhibit addictive properties, gastrointestinal inhibition, and effects on motor coordination. Mechanistically, peripheral chronic inflammation or repeated administration of morphine and MCRT induced an increase in MDOR in the spinal cord. Chronic administration of MCRT had no apparent effect on microglial activation in the spinal cord. These findings suggest that MCRT is a versatile compound that provides potent antinociception with minimal opioid-related side effects. MDOR could be a promising target for managing chronic inflammatory pain and addressing the opioid crisis.
Collapse
MESH Headings
- Animals
- Injections, Spinal
- Chronic Pain/drug therapy
- Receptors, Opioid, mu/metabolism
- Mice
- Male
- Inflammation/drug therapy
- Analgesics, Opioid/administration & dosage
- Analgesics, Opioid/adverse effects
- Analgesics, Opioid/pharmacology
- Disease Models, Animal
- Receptors, Neuropeptide/metabolism
- Receptors, Neuropeptide/antagonists & inhibitors
- Receptors, Opioid, delta/metabolism
- Mice, Inbred C57BL
- Analgesics/pharmacology
- Analgesics/administration & dosage
- Morphine/administration & dosage
- Morphine/pharmacology
- Spinal Cord/drug effects
- Spinal Cord/metabolism
- Hyperalgesia/drug therapy
- Humans
- Oligopeptides/administration & dosage
- Oligopeptides/pharmacology
Collapse
Affiliation(s)
- Yaofeng Zhao
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Zhonghua Zhang
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Dingnian Gou
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Pengtao Li
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Tong Yang
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Zhanyu Niu
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Jerine Peter Simon
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Xuyan Guan
- Cuiying Honors College, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Xinyu Li
- Cuiying Honors College, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Chunbo He
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Shouliang Dong
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China.
| |
Collapse
|
30
|
Beaurain M, Salabert AS, Payoux P, Gras E, Talmont F. NMDA Receptors: Distribution, Role, and Insights into Neuropsychiatric Disorders. Pharmaceuticals (Basel) 2024; 17:1265. [PMID: 39458906 PMCID: PMC11509972 DOI: 10.3390/ph17101265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND N-methyl-D-aspartate receptors (NMDARs) are members of the ionotropic glutamate receptor family. These ligand-gated channels are entwined with numerous fundamental neurological functions within the central nervous system (CNS), and numerous neuropsychiatric disorders may arise from their malfunction. METHODS The purpose of the present review is to provide a detailed description of NMDARs by addressing their molecular structures, activation mechanisms, and physiological roles in the mammalian brain. In the second part, their role in various neuropsychiatric disorders including stroke, epilepsy, anti-NMDA encephalitis, Alzheimer's and Huntington's diseases, schizophrenia, depression, neuropathic pain, opioid-induced tolerance, and hyperalgesia will be covered. RESULTS Finally, through a careful exploration of the main non-competitive NMDARs antagonists (channel-blockers). CONCLUSION We discuss the strengths and limitations of the various molecular structures developed for diagnostic or therapeutic purposes.
Collapse
Affiliation(s)
- Marie Beaurain
- ToNIC, Toulouse NeuroImaging Center, INSERM, UPS, Université de Toulouse, 31024 Toulouse, France; (M.B.); (A.-S.S.); (P.P.)
| | - Anne-Sophie Salabert
- ToNIC, Toulouse NeuroImaging Center, INSERM, UPS, Université de Toulouse, 31024 Toulouse, France; (M.B.); (A.-S.S.); (P.P.)
| | - Pierre Payoux
- ToNIC, Toulouse NeuroImaging Center, INSERM, UPS, Université de Toulouse, 31024 Toulouse, France; (M.B.); (A.-S.S.); (P.P.)
| | - Emmanuel Gras
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069), CNRS, UPS, Université de Toulouse, 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France;
| | - Franck Talmont
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS, UPS, Université de Toulouse, 31077 Toulouse, France
| |
Collapse
|
31
|
Williamson J, Kermanizadeh A. A Review of Toxicological Profile of Fentanyl-A 2024 Update. TOXICS 2024; 12:690. [PMID: 39453110 PMCID: PMC11510970 DOI: 10.3390/toxics12100690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/11/2024] [Accepted: 09/20/2024] [Indexed: 10/26/2024]
Abstract
Fentanyl and its analogues are synthetic opioids of varying potencies that are unfortunately heavily abused. Over the last 15 years, fentanyl and its analogues have contributed to the increasing prominence of hospitalisation and numerous deaths due to drug overdose. In this comprehensive literature review, the mechanism of toxicity of the drug in humans is evaluated. A systematic approach was used whereby the relevant literature has been detailed where the toxicity of fentanyl and/or its analogues to different organs/systems were investigated. Furthermore, the review covers the post-mortem toxicological data and demographic information from past fatal cases where fentanyl was believed to be involved. Such insight into fentanyl toxicity is useful as an aid to better understand the toxic doses of the drug and the suspected mechanism of action and the unexpected complications associated with overdose incidences involving the drug. Finally, the review offers an overview of the traditional and emerging test systems used to investigate the adverse effects of fentanyl on human health.
Collapse
Affiliation(s)
| | - Ali Kermanizadeh
- College of Science and Engineering, University of Derby, Derby DE22 1GB, UK
| |
Collapse
|
32
|
Wang R, Li S, Wang B, Wang G, Zheng H. Impact of opioids and mu-opioid receptors on oncologic metastasis. Am J Cancer Res 2024; 14:4236-4247. [PMID: 39417177 PMCID: PMC11477826 DOI: 10.62347/scls3277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/22/2024] [Indexed: 10/19/2024] Open
Abstract
Opioids are the most effective and widely used treatments for acute and chronic pain in patients with cancer. This review focuses on the impact of opioids and mu-opioid receptors (MORs) on the stages of oncologic metastasis. Studies have shown that opioids can facilitate tumor progression and are related to a poor prognosis in patients with cancer. As the primary receptor for opioids, MORs play a significant role in regulating malignant tumor transformation and are involved in processes, such as proliferation, angiogenesis, epithelial-mesenchymal transition (EMT), circulating tumor cells (CTCs) and the tumor microenvironment (TME). While clinical trials have investigated the relationship between opioids and patient prognosis, further research is needed to clarify the relationship between opioids, MORs and metastasis.
Collapse
Affiliation(s)
- Runjia Wang
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinan, Shandong, China
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| | - Shuai Li
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| | - Bomin Wang
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinan, Shandong, China
| | - Gongming Wang
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinan, Shandong, China
| | - Hui Zheng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| |
Collapse
|
33
|
Jaeckel ER, Arias-Hervert ER, Perez-Medina AL, Schulz S, Birdsong WT. Chronic morphine treatment induces sex- and synapse-specific cellular tolerance on thalamo-cortical mu opioid receptor signaling. J Neurophysiol 2024; 132:968-978. [PMID: 39110512 PMCID: PMC11427077 DOI: 10.1152/jn.00265.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 09/12/2024] Open
Abstract
How cellular adaptations give rise to opioid analgesic tolerance to opioids like morphine is not well understood. For one, pain is a complex phenomenon comprising both sensory and affective components, largely mediated through separate circuits. Glutamatergic projections from the medial thalamus (MThal) to the anterior cingulate cortex (ACC) are implicated in processing of affective pain, a relatively understudied component of the pain experience. The goal of this study was to determine the effects of chronic morphine exposure on mu-opioid receptor (MOR) signaling on MThal-ACC synaptic transmission within the excitatory and feedforward inhibitory pathways. Using whole cell patch-clamp electrophysiology and optogenetics to selectively target these projections, we measured morphine-mediated inhibition of optically evoked postsynaptic currents in ACC layer V pyramidal neurons in drug-naïve and chronically morphine-treated mice. We found that morphine perfusion inhibited the excitatory and feedforward inhibitory pathways similarly in females but caused greater inhibition of the inhibitory pathway in males. Chronic morphine treatment robustly attenuated morphine presynaptic inhibition within the inhibitory pathway in males, but not females, and mildly attenuated presynaptic inhibition within the excitatory pathway in both sexes. These effects were not observed in MOR phosphorylation-deficient mice. This study indicates that chronic morphine treatment induces cellular tolerance to morphine within a thalamo-cortical circuit relevant to pain and opioid analgesia. Furthermore, it suggests this tolerance may be driven by MOR phosphorylation. Overall, these findings improve our understanding of how chronic opioid exposure alters cellular signaling in ways that may contribute to opioid analgesic tolerance.NEW & NOTEWORTHY Opioid signaling within the anterior cingulate cortex (ACC) is important for opioid modulation of affective pain. Glutamatergic medial thalamus (MThal) neurons synapse in the ACC and opioids, acting through mu opioid receptors (MORs), acutely inhibit synaptic transmission from MThal synapses. However, the effect of chronic opioid exposure on MThal-ACC synaptic transmission is not known. Here, we demonstrate that chronic morphine treatment induces cellular tolerance at these synapses in a sex-specific and phosphorylation-dependent manner.
Collapse
Affiliation(s)
- Elizabeth R Jaeckel
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, United States
| | - Erwin R Arias-Hervert
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, United States
| | | | - Stefan Schulz
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller University, Jena, Germany
| | - William T Birdsong
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
34
|
Heidari A, Hajikarim-Hamedani A, Hosseindoost S, Ghane Y, Sadat-Shirazi M, Zarrindast MR. Parental Exposure to Morphine Before Conception Decreases Morphine and Cocaine-Induced Locomotor Sensitization in Male Offspring. Dev Psychobiol 2024; 66:e22514. [PMID: 38922890 DOI: 10.1002/dev.22514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 05/22/2024] [Indexed: 06/28/2024]
Abstract
Repeated exposure to abused drugs leads to reorganizing synaptic connections in the brain, playing a pivotal role in the relapse process. Additionally, recent research has highlighted the impact of parental drug exposure before gestation on subsequent generations. This study aimed to explore the influence of parental morphine exposure 10 days prior to pregnancy on drug-induced locomotor sensitization. Adult male and female Wistar rats were categorized into morphine-exposed and control groups. Ten days after their last treatment, they were mated, and their male offspring underwent morphine, methamphetamine, cocaine, and nicotine-induced locomotor sensitization tests. The results indicated increased locomotor activity in both groups after drug exposure, although the changes were attenuated in morphine and cocaine sensitization among the offspring of morphine-exposed parents (MEPs). Western blotting analysis revealed altered levels of D2 dopamine receptors (D2DRs) in the prefrontal cortex and nucleus accumbens of the offspring from MEPs. Remarkably, despite not having direct in utero drug exposure, these offspring exhibited molecular alterations affecting morphine and cocaine-induced sensitization. The diminished sensitization to morphine and cocaine suggested the development of a tolerance phenotype in these offspring. The changes in D2DR levels in the brain might play a role in these adaptations.
Collapse
Affiliation(s)
- Amirhossein Heidari
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Saereh Hosseindoost
- Pain Research Center, Neuroscience Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Yekta Ghane
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mitra Sadat-Shirazi
- Development, Molecular & Chemical Biology, Tufts University, Boston, Massachusetts, USA
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Underwood O, Fritzwanker S, Glenn J, Blum NK, Batista-Gondin A, Drube J, Hoffmann C, Briddon SJ, Schulz S, Canals M. Key phosphorylation sites for robust β-arrestin2 binding at the MOR revisited. Commun Biol 2024; 7:933. [PMID: 39095612 PMCID: PMC11297201 DOI: 10.1038/s42003-024-06571-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024] Open
Abstract
Desensitisation of the mu-opioid receptor (MOR) is proposed to underlie the initiation of opioid analgesic tolerance and previous work has shown that agonist-induced phosphorylation of the MOR C-tail contributes to this desensitisation. Moreover, phosphorylation is important for β-arrestin recruitment to the receptor, and ligands of different efficacies induce distinct phosphorylation barcodes. The C-tail 370TREHPSTANT379 motif harbours Ser/Thr residues important for these regulatory functions. 375Ser is the primary phosphorylation site of a ligand-dependent, hierarchical, and sequential process, whereby flanking 370Thr, 376Thr and 379Thr get subsequently and rapidly phosphorylated. Here we used GRK KO cells, phosphosite specific antibodies and site-directed mutagenesis to evaluate the contribution of the different GRK subfamilies to ligand-induced phosphorylation barcodes and β-arrestin2 recruitment. We show that both GRK2/3 and GRK5/6 subfamilies promote phosphorylation of 370Thr and 375Ser. Importantly, only GRK2/3 induce phosphorylation of 376Thr and 379Thr, and we identify these residues as key sites to promote robust β-arrestin recruitment to the MOR. These data provide insight into the mechanisms of MOR regulation and suggest that the cellular complement of GRK subfamilies plays an important role in determining the tissue responses of opioid agonists.
Collapse
Affiliation(s)
- Owen Underwood
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, Midlands, UK
| | - Sebastian Fritzwanker
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Jaqueline Glenn
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, Midlands, UK
| | - Nina Kathleen Blum
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Arisbel Batista-Gondin
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Victoria, Australia
| | - Julia Drube
- Institut fur Molekulare Zellbiologie, CMB - Center for Molecular Biomedicine, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Carsten Hoffmann
- Institut fur Molekulare Zellbiologie, CMB - Center for Molecular Biomedicine, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Stephen J Briddon
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, Midlands, UK
| | - Stefan Schulz
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
- 7TM Antibodies GmbH, Hans-Knöll-Straße 6, D-07745, Jena, Germany
| | - Meritxell Canals
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK.
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, Midlands, UK.
| |
Collapse
|
36
|
Nisbett KE. Moxie begets MOXI: The journey to a novel hypothesis about Mu-opioid and OXytocin system Interactions. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2024; 19:100244. [PMID: 39104824 PMCID: PMC11298892 DOI: 10.1016/j.cpnec.2024.100244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 08/07/2024] Open
Abstract
This narrative review summarizes the early life of the author, Khalin E. Nisbett, and highlights the factors that led to her career in research and her development of two novel research hypotheses: the Mu-opioid and OXytocin system Interaction (MOXI) hypothesis and Mu-Opioid receptor antagonist and OXytocin receptor Agonist In Combination (MOXAIC) treatment hypothesis. Notably, Nisbett's career began in the era after countless studies demonstrated that oxytocin is not just a female neurotransmitter and not just a female reproductive hormone, an era in which researchers are exploring the role of oxytocin in emotion regulation, social interaction, and cognitive processing across both sexes. As such, the previously held perspective that oxytocin is "just a female hormone" did not impede Nisbett's ideas. Intrigued by science, emotion regulation, and social interaction, she began to explore the role of oxytocin and opioids in emotion regulation. On the heels of earlier theories, such as the Tend-and-Befriend theory and Opioid Theory of Social Attachment, she began to develop the MOXI hypothesis, which postulates that the μ-opioid receptor and oxytocin systems interact to mediate social interaction and emotion regulation. In this narrative review, Nisbett summarizes two studies that explored (i) the role of oxytocin in anxiety- and depression-like behavior and (ii) the effect of opioid receptor blockade on the anxiolytic-like effect of oxytocin, which led to a revision of the MOXI hypothesis and postulation of the Mu-Opioid receptor antagonist and OXytocin receptor Agonist In Combination (MOXAIC) treatment hypothesis. Nisbett also discusses several limitations of these hypotheses and her current research interests and aspirations.
Collapse
Affiliation(s)
- Khalin E. Nisbett
- Graduate Program in Neuroscience, Graduate College, University of Illinois Chicago, Chicago, IL, 60607, USA
- Stress & Addiction Neuroscience Unit, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, 21224, USA
- Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
| |
Collapse
|
37
|
Gonzalez-Hernandez AJ, Munguba H, Levitz J. Emerging modes of regulation of neuromodulatory G protein-coupled receptors. Trends Neurosci 2024; 47:635-650. [PMID: 38862331 PMCID: PMC11324403 DOI: 10.1016/j.tins.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/13/2024]
Abstract
In the nervous system, G protein-coupled receptors (GPCRs) control neuronal excitability, synaptic transmission, synaptic plasticity, and, ultimately, behavior through spatiotemporally precise initiation of a variety of signaling pathways. However, despite their critical importance, there is incomplete understanding of how these receptors are regulated to tune their signaling to specific neurophysiological contexts. A deeper mechanistic picture of neuromodulatory GPCR function is needed to fully decipher their biological roles and effectively harness them for the treatment of neurological and psychiatric disorders. In this review, we highlight recent progress in identifying novel modes of regulation of neuromodulatory GPCRs, including G protein- and receptor-targeting mechanisms, receptor-receptor crosstalk, and unique features that emerge in the context of chemical synapses. These emerging principles of neuromodulatory GPCR tuning raise critical questions to be tackled at the molecular, cellular, synaptic, and neural circuit levels in the future.
Collapse
Affiliation(s)
| | - Hermany Munguba
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA; Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA; Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
38
|
Sanchez GA, Smrcka AV, Jutkiewicz EM. Biasing G βγ Downstream Signaling with Gallein Inhibits Development of Morphine Tolerance and Potentiates Morphine-Induced Nociception in a Tolerant State. Mol Pharmacol 2024; 106:47-55. [PMID: 38769020 PMCID: PMC11187686 DOI: 10.1124/molpharm.124.000875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024] Open
Abstract
Opioid analgesics are widely used as a treatment option for pain management and relief. However, the misuse of opioid analgesics has contributed to the current opioid epidemic in the United States. Prescribed opioids such as morphine, codeine, oxycodone, and fentanyl are mu-opioid receptor (MOR) agonists primarily used in the clinic to treat pain or during medical procedures, but development of tolerance limits their utility for treatment of chronic pain. Here we explored the effects of biasing Gβγ signaling on tolerance development after chronic morphine treatment in vivo. We hypothesized that biasing Gβγ signaling with gallein could prevent activation of regulatory signaling pathways that result in tolerance to antinociceptive effects of MOR agonists. Gallein has been shown to bind to Gβγ and inhibit interactions of Gβγ with phospholipase-Cβ3 (PLCβ3) or G-protein-coupled receptor kinase 2 (GRK2) but not G-protein inwardly rectifying potassium (GIRK) channels. In mice, morphine-induced antinociception was evaluated in the 55°C warm water tail withdrawal assay. We used two paradigms for gallein treatment: administration during and after three times-daily morphine administration. Our results show that gallein cotreatment during repeated administration of morphine decreased opioid tolerance development and that gallein treatment in an opioid-tolerant state enhanced the potency of morphine. Mechanistically, our data suggest that PLCβ3 is necessary for potentiating effects of gallein in an opioid-tolerant state but not in preventing the development of tolerance. These studies demonstrate that small molecules that target Gβγ signaling could reduce the need for large doses of opioid analgesics to treat pain by producing an opioid-sparing effect. SIGNIFICANCE STATEMENT: Biasing Gβγ signaling prevents tolerance to repeated morphine administration in vivo and potentiates the antinociceptive effects of morphine in an opioid-tolerant state. Mechanistically, phospholipase-Cβ is necessary for potentiating effects of gallein in an opioid-tolerant state but not in preventing the development of tolerance. This study identifies a novel treatment strategy to decrease the development of tolerance to the analgesic effects of mu-opioid receptor agonists, which are necessary to improve pain treatment and decrease the incidence of opioid use disorder.
Collapse
Affiliation(s)
- Gissell A Sanchez
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan
| | - Alan V Smrcka
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan
| | | |
Collapse
|
39
|
Ferng D, Sun W, Shieh BH. Differential activation of rhodopsin triggers distinct endocytic trafficking and recycling in vivo via differential phosphorylation. PLoS One 2024; 19:e0303882. [PMID: 38848405 PMCID: PMC11161057 DOI: 10.1371/journal.pone.0303882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/02/2024] [Indexed: 06/09/2024] Open
Abstract
Activated GPCRs are phosphorylated and internalized mostly via clathrin-mediated endocytosis (CME), which are then sorted for recycling or degradation. We investigated how differential activation of the same GPCR affects its endocytic trafficking in vivo using rhodopsin as a model in pupal photoreceptors of flies expressing mCherry-tagged rhodopsin 1 (Rh1-mC) or GFP-tagged arrestin 1 (Arr1-GFP). Upon blue light stimulation, activated Rh1 recruited Arr1-GFP to the rhabdomere, which became co-internalized and accumulated in cytoplasmic vesicles of photoreceptors. This internalization was eliminated in shits1 mutants affecting dynamin. Moreover, it was blocked by either rdgA or rdgB mutations affecting the PIP2 biosynthesis. Together, the blue light-initiated internalization of Rh1 and Arr1 belongs to CME. Green light stimulation also triggered the internalization and accumulation of activated Rh1-mC in the cytoplasm but with faster kinetics. Importantly, Arr1-GFP was also recruited to the rhabdomere but not co-internalized with Rh1-mC. This endocytosis was not affected in shits1 nor rdgA mutants, indicating it is not CME. We explored the fate of internalized Rh1-mC following CME and observed it remained in cytoplasmic vesicles following 30 min of dark adaptation. In contrast, in the non-CME Rh1-mC appeared readily recycled back to the rhabdomere within five min of dark treatment. This faster recycling may be regulated by rhodopsin phosphatase, RdgC. Together, we demonstrate two distinct endocytic and recycling mechanisms of Rh1 via two light stimulations. It appears that each stimulation triggers a distinct conformation leading to different phosphorylation patterns of Rh1 capable of recruiting Arr1 to rhabdomeres. However, a more stable interaction leads to the co-internalization of Arr1 that orchestrates CME. A stronger Arr1 association appears to impede the recycling of the phosphorylated Rh1 by preventing the recruitment of RdgC. We conclude that conformations of activated rhodopsin determine the downstream outputs upon phosphorylation that confers differential protein-protein interactions.
Collapse
Affiliation(s)
- Darwin Ferng
- Department of Pharmacology, Center for Molecular Neuroscience and Vision Research Center, Vanderbilt University, Nashville, TN, United States of America
| | - Wesley Sun
- Department of Pharmacology, Center for Molecular Neuroscience and Vision Research Center, Vanderbilt University, Nashville, TN, United States of America
| | - Bih-Hwa Shieh
- Department of Pharmacology, Center for Molecular Neuroscience and Vision Research Center, Vanderbilt University, Nashville, TN, United States of America
| |
Collapse
|
40
|
Makvand M, Mirtorabi SD, Campbell A, Zali A, Ahangari G. Exploring neuroadaptive cellular pathways in chronic morphine exposure: An in-vitro analysis of cabergoline and Mdivi-1 co-treatment effects on the autophagy-apoptosis axis. J Cell Biochem 2024; 125:e30558. [PMID: 38577900 DOI: 10.1002/jcb.30558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/08/2024] [Accepted: 03/07/2024] [Indexed: 04/06/2024]
Abstract
The complex impacts of prolonged morphine exposure continue to be a significant focus in the expanding area of addiction studies. This research investigates the effectiveness of a combined treatment using Cabergoline and Mdivi-1 to counteract the neuroadaptive changes caused by in vitro morphine treatment. The impact of Methadone, Cabergoline, and a combination of Cabergoline and Mdivi-1 on the cellular and molecular responses associated with Morphine-induced changes was studied in human Neuroblastoma (SK-N-MC) and Glioblastoma (U87-MG) cell lines that were exposed to prolong Morphine treatment. Cabergoline and Mdivi-1 combined treatment effectively influenced the molecular alterations associated with neuroadaptation in chronic morphine-exposed neural cells. This combination therapy normalized autophagy and reduced oxidative stress by enhancing total-antioxidant capacity, mitigating apoptosis, restoring BDNF expression, and balancing apoptotic elements. Our research outlines morphine's dual role in modulating mitochondrial dynamics via the dysregulation of the autophagy-apoptosis axis. This emphasizes the significant involvement of DRP1 activity in neurological adaptation processes, as well as disturbances in the dopaminergic pathway during in vitro chronic exposure to morphine in neural cells. This study proposes a novel approach by recommending the potential effectiveness of combining Cabergoline and Mdivi-1 to modulate the neuroadaptations caused by morphine. Additionally, we identified BDNF and PCNA in neural cells as potential neuroprotective markers for assessing the effectiveness of drugs against opioid toxicity, emphasizing the need for further validation. The study uncovers diverse effects observed in pretreated morphine glioblastoma cells under treatment with Cabergoline and methadone. This highlights the potential for new treatments in the DRD2 pathway and underscores the importance of investigating the interplay between autophagy and apoptosis to advance research in managing cancer-related pain. The study necessitates an in-depth investigation into the relationship between autophagy and apoptosis, with a specific emphasis on protein interactions and the dynamics of cell signaling.
Collapse
Affiliation(s)
- Mina Makvand
- Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | | | - Arezoo Campbell
- Department of Pharmaceutical Sciences, Western University of Health Sciences, Pomona, California, USA
| | - Alireza Zali
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghasem Ahangari
- Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
41
|
Badshah I, Anwar M, Murtaza B, Khan MI. Molecular mechanisms of morphine tolerance and dependence; novel insights and future perspectives. Mol Cell Biochem 2024; 479:1457-1485. [PMID: 37470850 DOI: 10.1007/s11010-023-04810-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023]
Abstract
Drug addiction is a devastating condition that poses a serious burden on the society. The use of some drugs like morphine for their tremendous analgesic properties is also accompanied with developing tolerance, dependence and the withdrawal symptoms. These symptoms are frequently severe enough to reinforce the person in recovery to start over the use of drug again and hinder the clinical use of drugs like morphine for chronic pain. Research into opioid receptors and related molecular pathways has seen resurgence in the wake of the growing opioid epidemic. The current study provides a comprehensive scientific exploration of the molecular mechanisms and underlying signalling in morphine tolerance and dependence. It also critically evaluates current therapeutic approaches, shedding light on their efficacy and limitations, and future prospects.
Collapse
Affiliation(s)
- Ismail Badshah
- Riphah Institute of Pharmaceutical Sciences, G-7/4 Campus, Islamabad, Pakistan
| | - Maira Anwar
- Riphah Institute of Pharmaceutical Sciences, G-7/4 Campus, Islamabad, Pakistan
| | - Babar Murtaza
- Riphah Institute of Pharmaceutical Sciences, G-7/4 Campus, Islamabad, Pakistan.
| | - Muhammad Imran Khan
- Department of Biomedical Sciences, Pak Austria Fachhochschule: Institute of Applied Sciences and Technology, Haripur, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
42
|
Chaudun F, Python L, Liu Y, Hiver A, Cand J, Kieffer BL, Valjent E, Lüscher C. Distinct µ-opioid ensembles trigger positive and negative fentanyl reinforcement. Nature 2024; 630:141-148. [PMID: 38778097 PMCID: PMC11153127 DOI: 10.1038/s41586-024-07440-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 04/19/2024] [Indexed: 05/25/2024]
Abstract
Fentanyl is a powerful painkiller that elicits euphoria and positive reinforcement1. Fentanyl also leads to dependence, defined by the aversive withdrawal syndrome, which fuels negative reinforcement2,3 (that is, individuals retake the drug to avoid withdrawal). Positive and negative reinforcement maintain opioid consumption, which leads to addiction in one-fourth of users, the largest fraction for all addictive drugs4. Among the opioid receptors, µ-opioid receptors have a key role5, yet the induction loci of circuit adaptations that eventually lead to addiction remain unknown. Here we injected mice with fentanyl to acutely inhibit γ-aminobutyric acid-expressing neurons in the ventral tegmental area (VTA), causing disinhibition of dopamine neurons, which eventually increased dopamine in the nucleus accumbens. Knockdown of µ-opioid receptors in VTA abolished dopamine transients and positive reinforcement, but withdrawal remained unchanged. We identified neurons expressing µ-opioid receptors in the central amygdala (CeA) whose activity was enhanced during withdrawal. Knockdown of µ-opioid receptors in CeA eliminated aversive symptoms, suggesting that they mediate negative reinforcement. Thus, optogenetic stimulation caused place aversion, and mice readily learned to press a lever to pause optogenetic stimulation of CeA neurons that express µ-opioid receptors. Our study parses the neuronal populations that trigger positive and negative reinforcement in VTA and CeA, respectively. We lay out the circuit organization to develop interventions for reducing fentanyl addiction and facilitating rehabilitation.
Collapse
Affiliation(s)
- Fabrice Chaudun
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Laurena Python
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Yu Liu
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Agnes Hiver
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jennifer Cand
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Brigitte L Kieffer
- INSERM U1114, University of Strasbourg Institute for Advanced Study, Strasbourg, France
| | - Emmanuel Valjent
- IGF, Université de Montpellier CNRS, Inserm, Montpellier, France
| | - Christian Lüscher
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
- Clinic of Neurology, Department of Clinical Neurosciences, Geneva University Hospital, Geneva, Switzerland.
| |
Collapse
|
43
|
Fagan RR, Lee DF, Geron M, Scherrer G, von Zastrow M, Ehrlich AT. Selective targeting of mu opioid receptors to primary cilia. Cell Rep 2024; 43:114164. [PMID: 38678559 PMCID: PMC11257377 DOI: 10.1016/j.celrep.2024.114164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/21/2024] [Accepted: 04/11/2024] [Indexed: 05/01/2024] Open
Abstract
Opioid receptors are therapeutically important G protein-coupled receptors (GPCRs) with diverse neuromodulatory effects. The functional consequences of opioid receptor activation are known to depend on receptor location in the plasma membrane, but mechanisms mediating selective localization of receptors to any particular membrane domain remain elusive. Here, we demonstrate the targeting of the mu opioid receptor (MOR) to the primary cilium, a discrete microdomain of the somatic plasma membrane, both in vivo and in cultured cells. We further show that ciliary targeting is specific to MORs, requires a 17-residue sequence unique to the MOR cytoplasmic tail, and additionally requires the Tubby-like protein 3 (TULP3) ciliary adaptor protein. Our results reveal the potential for opioid receptors to undergo selective localization to the primary cilium. We propose that ciliary targeting is mediated through an elaboration of the recycling pathway, directed by a specific C-terminal recycling sequence in cis and requiring TULP3 in trans.
Collapse
Affiliation(s)
- Rita R Fagan
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - David F Lee
- Department of Cell Biology and Physiology, UNC Neuroscience Center, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matan Geron
- Department of Cell Biology and Physiology, UNC Neuroscience Center, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Grégory Scherrer
- Department of Cell Biology and Physiology, UNC Neuroscience Center, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; New York Stem Cell Foundation, Chapel Hill, NC 27599, USA
| | - Mark von Zastrow
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Aliza T Ehrlich
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
44
|
Kong C, Castro DC, Lee J, Piston DW. The role of mu-opioid receptors in pancreatic islet alpha cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593899. [PMID: 38798528 PMCID: PMC11118541 DOI: 10.1101/2024.05.13.593899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
30% of people in the United States have diabetes or pre-diabetes. Many of these individuals will develop diabetic neuropathy as a comorbidity, which is often treated with exogenous opioids like morphine, oxycodone, or tramadol. Although these opioids are effective analgesics, growing evidence indicates that they may directly impact the endocrine pancreas function in human and preclinical models. One common feature of these exogenous opioid ligands is their preference for the mu opioid receptor (MOPR), so we aimed to determine if endogenous MOPRs directly regulate pancreatic islet metabolism and hormone secretion. We show that pharmacological antagonism of MOPRs enhances glucagon secretion, but not insulin secretion, from human islets under high glucose conditions. This increased secretion is accompanied by increased cAMP signaling. mRNA expression of MOPRs is enriched in human islet α-cells, but downregulated in T2D islet donors, suggesting a link between metabolism and MOPR expression. Conditional genetic knockout of MOPRs in murine α-cells increases glucagon secretion in high glucose conditions without increasing glucagon content. Consistent with downregulation of MOPRs during metabolic disease, conditional MOPR knockout mice treated with a high fat diet show impaired glucose tolerance, increased glucagon secretion, increased insulin content, and increased islet size. Finally, we show that MOPR-mediated changes in glucagon secretion are driven, in part, by KATP channel activity. Together, these results demonstrate a direct mechanism of action for endogenous opioid regulation of endocrine pancreas.
Collapse
Affiliation(s)
- Chen Kong
- Department of Cell Biology & Physiology, Washington University School of Medicine, St Louis, Missouri, 63110, USA
| | - Daniel C. Castro
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Missouri, 63110, USA
| | - Jeongmin Lee
- Department of Cell Biology & Physiology, Washington University School of Medicine, St Louis, Missouri, 63110, USA
| | - David W. Piston
- Department of Cell Biology & Physiology, Washington University School of Medicine, St Louis, Missouri, 63110, USA
| |
Collapse
|
45
|
Esmaili-Shahzade-Ali-Akbari P, Ghaderi A, Sadeghi A, Nejat F, Mehramiz A. The Role of Orexin Receptor Antagonists in Inhibiting Drug Addiction: A Review Article. ADDICTION & HEALTH 2024; 16:130-139. [PMID: 39051042 PMCID: PMC11264478 DOI: 10.34172/ahj.2024.1491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 04/15/2024] [Indexed: 07/27/2024]
Abstract
The orexinergic system and its receptors are involved in many physiological processes. Their functions in energy homeostasis, arousal, cognition, stress processing, endocrine functions, and pain modulation have been investigated. Many studies have shown that the orexinergic system cooperates with the dopaminergic system in the addiction process. Emerging evidence suggests that the orexinergic system can be effective in the induction of drug dependence and tolerance. Therefore, several researches have been conducted on the effect of orexin receptor (OXR) antagonists on reducing tolerance and dependence caused by drug abuse. Due to the significant growth of the studies on the orexinergic system, the current literature was conducted to collect the findings of previous studies on orexin and its receptors in the induction of drug addiction. In addition, cellular and molecular mechanisms of the possible role of orexin in drug tolerance and dependence are discussed. The findings indicate that the administration of OXR antagonists reduces drug dependence. OXR blockers seem to counteract the addictive effects of drugs through multiple mechanisms, such as preventing neuronal adaptation. This review proposes the potential clinical use of OXR antagonists in the treatment of drug dependence.
Collapse
Affiliation(s)
- Peyman Esmaili-Shahzade-Ali-Akbari
- Department of Addiction Studies, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Ghaderi
- Department of Addiction Studies, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Atena Sadeghi
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Fatemeh Nejat
- Department of Biology and Health Sciences, Meredith College, Raleigh, North Carolina, USA
| | - Alireza Mehramiz
- Department of Physical Therapy, Faculty of Paramedical and Rehabilitation Science, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
46
|
Chen D, Zhang M, Zhang Q, Wu S, Yu B, Zhang X, Hu X, Zhang S, Yang Z, Kuang J, Xu B, Fang Q. The blockade of neuropeptide FF receptor 1 and 2 differentially contributed to the modulating effects on fentanyl-induced analgesia and hyperalgesia in mice. Eur J Pharmacol 2024; 969:176457. [PMID: 38395375 DOI: 10.1016/j.ejphar.2024.176457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 02/25/2024]
Abstract
Neuropeptide FF (NPFF) plays a critical role in various physiological processes through the activation of neuropeptide FF receptor 1 and 2 (NPFFR1 and NPFFR2). Numerous evidence has indicated that NPFF exhibits opposite opioid-modulating effects on opioid-induced analgesia after supraspinal and spinal administrations, while the detailed role of NPFFR1 and NPFFR2 remains unclear. In this study, we employed pharmacological and genetic inhibition of NPFFR to investigate the modulating roles of central NPFFR1 and NPFFR2 in opioid-induced analgesia and hyperalgesia, using a male mouse model of acute fentanyl-induced analgesia and secondary hyperalgesia. Our findings revealed that intrathecal (i.t.) injection of the nonselective NPFFR antagonist RF9 significantly enhanced fentanyl-induced analgesia, whereas intracerebroventricular (i.c.v.) injection did not show the same effect. Moreover, NPFFR2 deficient (npffr2-/-) mice exhibited stronger analgesic responses to fentanyl compared to wild type (WT) or NPFFR1 knockout (npffr1-/-) mice. Intrathecal injection of RF9 in npffr1-/- mice also significantly enhanced fentanyl-induced analgesia. These results indicate a crucial role of spinal NPFFR2 in the enhancement of opioid analgesia. Contrastingly, hyperalgesia induced by fentanyl was markedly reversed in npffr1-/- mice but remained unaffected in npffr2-/- mice. Similarly, i.c.v. injection of the selective NPFFR1 antagonist RF3286 effectively prevented fentanyl-induced hyperalgesia in WT or npffr2-/- mice. Notably, co-administration of i.c.v. RF3286 and i.t. RF9 augmented fentanyl-induced analgesia while reducing hyperalgesia. Collectively, these findings highlight the modulating effects of blocking spinal NPFFR2 and supraspinal NPFFR1 on fentanyl-induced analgesia and hyperalgesia, respectively, which shed a light on understanding the pharmacological function of NPFF system in future studies.
Collapse
Affiliation(s)
- Dan Chen
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Mengna Zhang
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Qinqin Zhang
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Shuyuan Wu
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Bowen Yu
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Xiaodi Zhang
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Xuanran Hu
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Shichao Zhang
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Zhenyun Yang
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Junzhe Kuang
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Biao Xu
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China.
| | - Quan Fang
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China.
| |
Collapse
|
47
|
Weber AN, Trebach J, Brenner MA, Thomas MM, Bormann NL. Managing Opioid Withdrawal Symptoms During the Fentanyl Crisis: A Review. Subst Abuse Rehabil 2024; 15:59-71. [PMID: 38623317 PMCID: PMC11016949 DOI: 10.2147/sar.s433358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/05/2024] [Indexed: 04/17/2024] Open
Abstract
Illicitly manufactured fentanyl (IMF) is a significant contributor to the increasing rates of overdose-related deaths. Its high potency and lipophilicity can complicate opioid withdrawal syndromes (OWS) and the subsequent management of opioid use disorder (OUD). This scoping review aimed to collate the current OWS management of study populations seeking treatment for OWS and/or OUD directly from an unregulated opioid supply, such as IMF. Therefore, the focus was on therapeutic interventions published between January 2010 and November 2023, overlapping with the period of increasing IMF exposure. A health science librarian conducted a systematic search on November 13, 2023. A total of 426 studies were screened, and 173 studies were reviewed at the full-text level. Forty-nine studies met the inclusion criteria. Buprenorphine and naltrexone were included in most studies with the goal of transitioning to a long-acting injectable version. Various augmenting agents were tested (buspirone, memantine, suvorexant, gabapentin, and pregabalin); however, the liberal use of adjunctive medication and shortened timelines to initiation had the most consistently positive results. Outside of FDA-approved medications for OUD, lofexidine, gabapentin, and suvorexant have limited evidence for augmenting opioid agonist initiation. Trials often have low retention rates, particularly when opioid agonist washout is required. Neurostimulation strategies were promising; however, they were developed and studied early. Precipitated withdrawal is a concern; however, the rates were low and adequately mitigated or managed with low- or high-dose buprenorphine induction. Maintenance treatment continues to be superior to detoxification without continued management. Shorter induction protocols allow patients to initiate evidence-based treatment more quickly, reducing the use of illicit or non-prescribed substances.
Collapse
Affiliation(s)
| | - Joshua Trebach
- Department of Emergency Medicine, University of Iowa, Iowa City, IA, USA
| | - Marielle A Brenner
- Department of Emergency Medicine, University of Iowa, Iowa City, IA, USA
| | | | - Nicholas L Bormann
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
48
|
Wu C, Hu L, Liu B, Zeng X, Ma H, Cao Y, Li H, Zhang X. TRAF6-mediated ubiquitination of AKT in the nucleus is a critical event underlying the desensitization of G protein-coupled receptors. Cell Commun Signal 2024; 22:213. [PMID: 38566235 PMCID: PMC10986131 DOI: 10.1186/s12964-024-01592-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Desensitization of G protein-coupled receptors (GPCRs) refers to the attenuation of receptor responsiveness by prolonged or intermittent exposure to agonists. The binding of β-arrestin to the cytoplasmic cavity of the phosphorylated receptor, which competes with the G protein, has been widely accepted as an extensive model for explaining GPCRs desensitization. However, studies on various GPCRs, including dopamine D2-like receptors (D2R, D3R, D4R), have suggested the existence of other desensitization mechanisms. The present study employed D2R/D3R variants with different desensitization properties and utilized loss-of-function approaches to uncover the mechanisms underlying GPCRs homologous desensitization, focusing on the signaling cascade that regulates the ubiquitination of AKT. RESULTS AKT undergoes K8/14 ubiquitination by TRAF6, which occurs in the nucleus and promotes its membrane recruitment, phosphorylation and activation under receptor desensitization conditions. The nuclear entry of TRAF6 relies on the presence of the importin complex. Src regulates the nuclear entry of TRAF6 by mediating the interaction between TRAF6 and importin β1. Ubiquitinated AKT translocates to the plasma membrane where it associates with Mdm2 to phosphorylate it at the S166 and S186 residues. Thereafter, phosphorylated Mdm2 is recruited to the nucleus, resulting in the deubiquitination of β-Arr2. The deubiquitinated β-Arr2 then forms a complex with Gβγ, which serves as a biomarker for GPCRs desensitization. Like in D3R, ubiquitination of AKT is also involved in the desensitization of β2 adrenoceptors. CONCLUSION Our study proposed that the property of a receptor that causes a change in the subcellular localization of TRAF6 from the cytoplasm to the nucleus to mediate AKT ubiquitination could initiate the desensitization of GPCRs.
Collapse
Affiliation(s)
- Chengyan Wu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Li Hu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Bing Liu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Xingyue Zeng
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Haixiang Ma
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Yongkai Cao
- Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Huijun Li
- Department of Pharmaceuticals, People's Hospital of Zunyi City Bo Zhou District, Zunyi, 563000, China
| | - Xiaohan Zhang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
49
|
Frazure M, Greene CL, Iceman KE, Howland DR, Pitts T. Dysphagia as a Missing Link Between Post-surgical- and Opioid-Related Pneumonia. Lung 2024; 202:179-187. [PMID: 38538927 PMCID: PMC11135177 DOI: 10.1007/s00408-024-00672-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/21/2024] [Indexed: 04/07/2024]
Abstract
PURPOSE Postoperative pneumonia remains a common complication of surgery, despite increased attention. The purpose of our study was to determine the effects of routine surgery and post-surgical opioid administration on airway protection risk. METHODS Eight healthy adult cats were evaluated to determine changes in airway protection status and for evidence of dysphagia in two experiments. (1) In four female cats, airway protection status was tracked following routine abdominal surgery (spay surgery) plus low-dose opioid administration (buprenorphine 0.015 mg/kg, IM, q8-12 h; n = 5). (2) Using a cross-over design, four naive cats (2 male, 2 female) were treated with moderate-dose (0.02 mg/kg) or high-dose (0.04 mg/kg) buprenorphine (IM, q8-12 h; n = 5). RESULTS Airway protection was significantly affected in both experiments, but the most severe deficits occurred post-surgically as 75% of the animals exhibited silent aspiration. CONCLUSION Oropharyngeal swallow is impaired by the partial mu-opioid receptor agonist buprenorphine, most remarkably in the postoperative setting. These findings have implications for the prevention and management of aspiration pneumonia in vulnerable populations.
Collapse
Affiliation(s)
- Michael Frazure
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, USA
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research Center, College of Medicine, University of Louisville, Louisville, KY, USA
| | - Clinton L Greene
- Department of Speech Language and Hearing Sciences and Dalton Cardiovascular Center, University of Missouri, 701 S Fifth St, Columbia, MO, 65203, USA
| | - Kimberly E Iceman
- Department of Speech Language and Hearing Sciences and Dalton Cardiovascular Center, University of Missouri, 701 S Fifth St, Columbia, MO, 65203, USA
| | - Dena R Howland
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research Center, College of Medicine, University of Louisville, Louisville, KY, USA
| | - Teresa Pitts
- Department of Speech Language and Hearing Sciences and Dalton Cardiovascular Center, University of Missouri, 701 S Fifth St, Columbia, MO, 65203, USA.
| |
Collapse
|
50
|
Bi K, Lei Y, Kong D, Li Y, Fan X, Luo X, Yang J, Wang G, Li X, Xu Y, Luo H. Progress in the study of intestinal microbiota involved in morphine tolerance. Heliyon 2024; 10:e27187. [PMID: 38533077 PMCID: PMC10963202 DOI: 10.1016/j.heliyon.2024.e27187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 01/09/2024] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
Morphine is a widely used opioid for treatment of pain. The attendant problems including morphine tolerance and morphine dependence pose a major public health challenge. In recent years, there has been increasing interest in the gastrointestinal microbiota in many physiological and pathophysiological processes. The connectivity network between the gut microbiota and the brain is involved in multiple biological systems, and bidirectional communication between them is critical in gastrointestinal tract homeostasis, the central nervous system, and the microbial system. Many research have previously shown that morphine has a variety of effects on the gastrointestinal tract, but none have determined the function of intestinal microbiota in morphine tolerance. This study reviewed the mechanisms of morphine tolerance from the perspective of dysregulation of microbiota-gut-brain axis homeostasis, by summarizing the possible mechanisms originating from the gut that may affect morphine tolerance and the improvement of morphine tolerance through the gut microbiota.
Collapse
Affiliation(s)
- Ke Bi
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, 650032, China
| | - Yi Lei
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Deshenyue Kong
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, 650032, China
| | - Yuansen Li
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, 650032, China
| | - Xuan Fan
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, 650032, China
| | - Xiao Luo
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, 650032, China
| | - Jiqun Yang
- Third People's Hospital of Kunming City/Drug Rehabilitation Hospital of Kunming City, Kunming, 650041, China
| | - Guangqing Wang
- Drug Rehabilitation Administration of Yunnan Province, Kunming, 650032, China
| | - Xuejun Li
- Drug Rehabilitation Administration of Yunnan Province, Kunming, 650032, China
| | - Yu Xu
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Huayou Luo
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| |
Collapse
|