1
|
Koudelka A, Buchan GJ, Cechova V, O'Brien JP, Stevenson ER, Uvalle CE, Liu H, Woodcock SR, Mullett SJ, Zhang C, Freeman BA, Gelhaus SL. Lipoxin A 4 yields an electrophilic 15-oxo metabolite that mediates FPR2 receptor-independent anti-inflammatory signaling. J Lipid Res 2025; 66:100705. [PMID: 39566850 PMCID: PMC11729656 DOI: 10.1016/j.jlr.2024.100705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024] Open
Abstract
The enzymatic oxidation of arachidonic acid is proposed to yield trihydroxytetraene species (termed lipoxins) that resolve inflammation via ligand activation of the formyl peptide receptor, FPR2. While cell and murine models activate signaling responses to synthetic lipoxins, primarily lipoxin A4 (LXA4), there are expanding concerns about the reported biological formation, detection, and signaling mechanisms ascribed to LXA4 and related di- and tri-hydroxy ω-6 and ω-3 fatty acids. The generation and signaling actions of LXA4 and its primary 15-oxo metabolite were assessed in control, lipopolysaccharide-activated, and arachidonic acid-supplemented RAW264.7 and bone marrow-derived macrophages. Despite the expression of catalytically active enzymes required for LXA4 synthesis, both LXA4 and its 15-oxo-LXA4 metabolite were undetectable in all conditions. Moreover, synthetic LXA4 and the membrane-permeable 15-oxo-LXA4 methyl ester, which rapidly de-esterified to 15-oxo-LXA4, displayed no ligand activity for the putative LXA4 receptor FPR2. Alternatively, 15-oxo-LXA4, an electrophilic α,β-unsaturated ketone, alkylates nucleophilic amino acids and can modulate redox-sensitive transcriptional regulatory protein and enzyme function. 15-oxo-LXA4 activated nuclear factor (erythroid related factor 2)-like 2-regulated expression of anti-inflammatory and repair genes and inhibited NF-κB-regulated pro-inflammatory mediator expression. Synthetic LXA4 showed no impact on these macrophage anti-inflammatory and repair responses. In summary, these data show an absence of macrophage LXA4 formation and receptor-mediated signaling actions of synthetic LXA4. Rather, if present in sufficient concentrations, LXA4 and other mono- and poly-hydroxylated unsaturated fatty acids synthesized by macrophages would be readily oxidized to electrophilic α,β-unsaturated ketone products that modulate the redox-sensitive cysteine proteome via G-protein coupled receptor-independent mechanisms.
Collapse
Affiliation(s)
- Adolf Koudelka
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Gregory J Buchan
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Veronika Cechova
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - James P O'Brien
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Emily R Stevenson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Division of Pulmonary and Critical Care Sleep Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Crystal E Uvalle
- Health Sciences Mass Spectrometry Core, University of Pittsburgh, Pittsburgh, PA, USA
| | - Heng Liu
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Steven R Woodcock
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Steven J Mullett
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Health Sciences Mass Spectrometry Core, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cheng Zhang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Bruce A Freeman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Stacy L Gelhaus
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Health Sciences Mass Spectrometry Core, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Fan HL, Han ZT, Gong XR, Wu YQ, Fu YJ, Zhu TM, Li H. Macrophages in CRSwNP: Do they deserve more attention? Int Immunopharmacol 2024; 134:112236. [PMID: 38744174 DOI: 10.1016/j.intimp.2024.112236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
Chronic rhinosinusitis (CRS) represents a heterogeneous disorder primarily characterized by the persistent inflammation of the nasal cavity and paranasal sinuses. The subtype known as chronic rhinosinusitis with nasal polyposis (CRSwNP) is distinguished by a significantly elevated recurrence rate and augmented challenges in the management of nasal polyps. The pathogenesis underlying this subtype remains incompletely understood. Macrophages play a crucial role in mediating the immune system's response to inflammatory stimuli. These cells exhibit remarkable plasticity and heterogeneity, differentiating into either the pro-inflammatory M1 phenotype or the anti-inflammatory and reparative M2 phenotype depending on the surrounding microenvironment. In CRSwNP, macrophages demonstrate reduced production of Interleukin 10 (IL-10), compromised phagocytic activity, and decreased autophagy. Dysregulation of pro-resolving mediators may occur during the inflammatory resolution process, which could potentially hinder the adequate functioning of anti-inflammatory macrophages in facilitating resolution. Collectively, these factors may contribute to the prolonged inflammation observed in CRSwNP. Additionally, macrophages may enhance fibrin cross-linking through the release of factor XIII-A (FAXIII), promoting fibrin deposition and plasma protein retention. Macrophages also modulate vascular permeability by releasing Vascular endothelial growth factor (VEGF). Moreover, they may disrupt the balance between Matrix Metalloproteinases (MMPs) and Tissue Inhibitors of Metalloproteinases (TIMPs), which favors extracellular matrix (ECM) degradation, edema formation, and pseudocyst development. Accumulating evidence suggests a close association between macrophage infiltration and CRSwNP; however, the precise mechanisms underlying this relationship warrant further investigation. In different subtypes of CRSwNP, different macrophage phenotypic aggregations trigger different types of inflammatory features. Increasing evidence suggests that macrophage infiltration is closely associated with CRSwNP, but the mechanism and the relationship between macrophage typing and CRSwNP endophenotyping remain to be further explored. This review discusses the role of different types of macrophages in the pathogenesis of different types of CRSwNP and their contribution to polyp formation, in the hope that a better understanding of the role of macrophages in specific CRSwNP will contribute to a precise and individualized understanding of the disease.
Collapse
Affiliation(s)
- Hong-Li Fan
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhou-Tong Han
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xin-Ru Gong
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yu-Qi Wu
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yi-Jie Fu
- School of Preclinical Medicine, Chengdu University, Chengdu, Sichuan, China
| | - Tian-Min Zhu
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Hui Li
- School of Preclinical Medicine, Chengdu University, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Koudelka A, Buchan GJ, Cechova V, O’Brien JP, Liu H, Woodcock SR, Mullett SJ, Zhang C, Freeman BA, Gelhaus SL. Lipoxin A 4 yields an electrophilic 15-oxo metabolite that mediates FPR2 receptor-independent anti-inflammatory signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579101. [PMID: 38370667 PMCID: PMC10871244 DOI: 10.1101/2024.02.06.579101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The enzymatic oxidation of arachidonic acid is proposed to yield trihydroxytetraene species (termed lipoxins) that resolve inflammation via ligand activation of the formyl peptide receptor, FPR2. While cell and murine models activate signaling responses to synthetic lipoxins, primarily 5S,6R,15S-trihydroxy-7E,9E,11Z,13E-eicosatetraenoic acid (lipoxin A4, LXA4), there are expanding concerns about the biological formation, detection and signaling mechanisms ascribed to LXA4 and related di- and tri-hydroxy ω-6 and ω-3 fatty acids. Herein, the generation and actions of LXA4 and its primary 15-oxo metabolite were assessed in control, LPS-activated and arachidonic acid supplemented RAW 264.7 macrophages. Despite protein expression of all enzymes required for LXA4 synthesis, both LXA4 and its 15-oxo-LXA4 metabolite were undetectable. Moreover, synthetic LXA4 and the membrane permeable 15-oxo-LXA4 methyl ester that is rapidly de-esterified to 15-oxo-LXA4, displayed no ligand activity for the putative LXA4 receptor FPR2, as opposed to the FPR2 ligand WKYMVm. Alternatively, 15-oxo-LXA4, an electrophilic α,β-unsaturated ketone, alkylates nucleophilic amino acids such as cysteine to modulate redox-sensitive transcriptional regulatory protein and enzyme function. 15-oxo-LXA4 activated nuclear factor (erythroid related factor 2)-like 2 (Nrf2)-regulated gene expression of anti-inflammatory and repair genes and inhibited nuclear factor (NF)-κB-regulated pro-inflammatory mediator expression. LXA4 did not impact these macrophage anti-inflammatory and repair responses. In summary, these data show an absence of macrophage LXA4 formation and receptor-mediated signaling actions. Rather, if LXA4 were present in sufficient concentrations, this, and other more abundant mono- and poly-hydroxylated unsaturated fatty acids can be readily oxidized to electrophilic α,β-unsaturated ketone products that modulate the redox-sensitive cysteine proteome via G-protein coupled receptor-independent mechanisms.
Collapse
Affiliation(s)
- Adolf Koudelka
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine (Pittsburgh, PA 15213)
| | - Gregory J. Buchan
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine (Pittsburgh, PA 15213)
| | - Veronika Cechova
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine (Pittsburgh, PA 15213)
| | - James P. O’Brien
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine (Pittsburgh, PA 15213)
| | - Heng Liu
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine (Pittsburgh, PA 15213)
| | - Steven R. Woodcock
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine (Pittsburgh, PA 15213)
| | - Steven J. Mullett
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine (Pittsburgh, PA 15213)
- Health Sciences Mass Spectrometry Core, University of Pittsburgh (Pittsburgh, PA 15213)
| | - Cheng Zhang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine (Pittsburgh, PA 15213)
| | - Bruce A. Freeman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine (Pittsburgh, PA 15213)
| | - Stacy L. Gelhaus
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine (Pittsburgh, PA 15213)
- Health Sciences Mass Spectrometry Core, University of Pittsburgh (Pittsburgh, PA 15213)
| |
Collapse
|
4
|
Yokomizo T, Shimizu T. The leukotriene B 4 receptors BLT1 and BLT2 as potential therapeutic targets. Immunol Rev 2023; 317:30-41. [PMID: 36908237 DOI: 10.1111/imr.13196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Leukotriene B4 (LTB4 ) was recognized as an arachidonate-derived chemotactic factor for inflammatory cells and an important drug target even before the molecular identification of its receptors. We cloned the high- and low-affinity LTB4 receptors, BLT1 and BLT2, respectively, and examined their functions by generating and studying gene-targeted mice. BLT1 is involved in the pathogenesis of various inflammatory and immune diseases, including asthma, psoriasis, contact dermatitis, allergic conjunctivitis, age-related macular degeneration, and immune complex-mediated glomerulonephritis. Meanwhile, BLT2 is a high-affinity receptor for 12-hydroxyheptadecatrienoic acid, which is involved in the maintenance of dermal and intestinal barrier function, and the acceleration of skin and corneal wound healing. Thus, BLT1 antagonists and BLT2 agonists are promising candidates in the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Takehiko Yokomizo
- Department of Biochemistry, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Takao Shimizu
- Institute of Microbial Chemistry, Tokyo, Japan
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
5
|
Mirra D, Esposito R, Spaziano G, Rafaniello C, Iovino P, Cione E, Gallelli L, D'Agostino B. Association between Sex-Related ALOX5 Gene Polymorphisms and Lung Atopy Risk. J Clin Med 2023; 12:jcm12082775. [PMID: 37109111 PMCID: PMC10145460 DOI: 10.3390/jcm12082775] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/29/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Atopy is an exaggerated IgE-mediated immune response to foreign antigens in which metabolic abnormalities of the leukotrienes (LTs) pathway play a crucial role. Recent studies have described sex as a key variable in LT biosynthesis, partly explaining why treatment with anti-LT drugs in atopic subjects leads to better control of symptoms in women. In addition, variability in LT production is often associated with single nucleotide polymorphisms (SNPs) in the arachidonate 5-lipoxygenase (ALOX5) gene, which encodes the leukotriene-synthesizing enzyme machinery, 5-lipoxygenase (5-LO). This study aimed to investigate whether two SNPs of ALOX5 are implicated in sex differences in allergic diseases in a prospective cohort of 150 age- and sex-matched atopic and healthy subjects. Rs2029253 and rs2115819 were genotyped using allele-specific RT-PCR, and serum levels of 5-LO and LTB4 were measured by ELISA. Both polymorphisms are significantly more common in women than in men, and their influences on LT production vary as a function of sex, leading to a decrease in men's and an increase in women's serum levels of 5-LO and LTB4. These data represent a new resource for understanding sex-related differences in lung inflammatory diseases, partly explaining why women are more likely to develop allergic disorders than men.
Collapse
Affiliation(s)
- Davida Mirra
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Renata Esposito
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Giuseppe Spaziano
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Concetta Rafaniello
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, 80138 Naples, Italy
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Pasquale Iovino
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Luca Gallelli
- Clinical Pharmacology and Pharmacovigilance Unit, Department of Health Sciences, Mater Domini Hospital, University of Catanzaro, 88100 Catanzaro, Italy
| | - Bruno D'Agostino
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| |
Collapse
|
6
|
Yang M, Li M, Lyu Z, Yang Z. Implication of Ferroptosis in Cholangiocarcinoma: A Potential Future Target? Cancer Manag Res 2023; 15:335-342. [PMID: 37063167 PMCID: PMC10093512 DOI: 10.2147/cmar.s406150] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/30/2023] [Indexed: 04/18/2023] Open
Abstract
Cholangiocarcinoma (CCA), the second most common liver neoplasm, has a poor overall 5-year survival rate of less than 10%. A deeper understanding of the molecular pathogenesis contributing to CCA progression is essential for developing better therapeutic approaches to manage this disease. Ferroptosis, an oxidative iron-dependent form of regulated cell death, has been reported to be involved in tumorigenesis and progression. In particular, ferroptosis and inflammation, which are common issues in cholangiocarcinogenesis and CCA development, might be in concert with disease progression. Notably, the key feature of cancer cells is "iron addiction", which is crucial for the high metabolic demand in carcinogenesis and cancer progression. Additionally, iron metabolism is of great importance in ferroptosis. Moreover, that cancer cells are vulnerable to ferroptosis might be a possible mechanism of CCA development. Although the underlying mechanism of how ferroptosis is implicated in CCA development requires further investigation, developing a new strategy combined with a pro-ferroptotic treatment would be an exciting CCA treatment approach in the future.
Collapse
Affiliation(s)
- Mingyu Yang
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 25000, People’s Republic of China
| | - Meng Li
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 25000, People’s Republic of China
| | - Zhuozhen Lyu
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 25000, People’s Republic of China
| | - Zhen Yang
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 25000, People’s Republic of China
- Correspondence: Zhen Yang, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, JingWu Road, Jinan, Shandong, 25000, People’s Republic of China, Tel +86 15168867123, Email
| |
Collapse
|
7
|
Zhao H, Shang H. The role of ferroptosis in the side effects of dexamethasone. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2156623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Hongjiang Zhao
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Hongkai Shang
- Department of Gynecology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| |
Collapse
|
8
|
Wang S, Liu Z, Geng J, Li L, Feng X. An overview of ferroptosis in non-alcoholic fatty liver disease. Biomed Pharmacother 2022; 153:113374. [PMID: 35834990 DOI: 10.1016/j.biopha.2022.113374] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a public health problem associated with high mortality and high morbidity rates worldwide. Presently, its complex pathophysiology is still unclear, and there is no specific drug to reverse NAFLD. Ferroptosis is an iron-dependent and non-apoptotic form of cell death characterized by the iron-induced accumulation of lipid reactive oxygen species (ROS), which damage nucleic acids, proteins, and lipids; generate intracellular oxidative stress; and ultimately cause cell death. Emerging evidence indicates that ferroptosis is involved in the progression of NAFLD, although the mechanism of action of ferroptosis in NAFLD is still poorly understood. Herein, we summarize the mechanism of action of ferroptosis in certain diseases, especially in the pathogenesis of NAFLD, and discuss the potential therapeutic approaches currently used to treat NAFLD. This review also highlights further directions for the treatment and prevention of NAFLD and related diseases.
Collapse
Affiliation(s)
- Shendong Wang
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China; Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Zhaojun Liu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China; Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Jiafeng Geng
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China; Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Liangge Li
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China; Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Xiujing Feng
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China; Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China.
| |
Collapse
|
9
|
Varadharajan V, Massey WJ, Brown JM. Membrane-bound O-acyltransferase 7 (MBOAT7)-driven phosphatidylinositol remodeling in advanced liver disease. J Lipid Res 2022; 63:100234. [PMID: 35636492 PMCID: PMC9240865 DOI: 10.1016/j.jlr.2022.100234] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 01/21/2023] Open
Abstract
Advanced liver diseases account for approximately 2 million deaths annually worldwide. Roughly, half of liver disease-associated deaths arise from complications of cirrhosis and the other half driven by viral hepatitis and hepatocellular carcinoma. Unfortunately, the development of therapeutic strategies to treat subjects with advanced liver disease has been hampered by a lack of mechanistic understanding of liver disease progression and a lack of human-relevant animal models. An important advance has been made within the past several years, as several genome-wide association studies have discovered that an SNP near the gene encoding membrane-bound O-acyltransferase 7 (MBOAT7) is associated with severe liver diseases. This common MBOAT7 variant (rs641738, C>T), which reduces MBOAT7 expression, confers increased susceptibility to nonalcoholic fatty liver disease, alcohol-associated liver disease, and liver fibrosis in patients chronically infected with viral hepatitis. Recent studies in mice also show that Mboat7 loss of function can promote hepatic steatosis, inflammation, and fibrosis, causally linking this phosphatidylinositol remodeling enzyme to liver health in both rodents and humans. Herein, we review recent insights into the mechanisms by which MBOAT7-driven phosphatidylinositol remodeling influences liver disease progression and discuss how rapid progress in this area could inform drug discovery moving forward.
Collapse
Affiliation(s)
- Venkateshwari Varadharajan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - William J Massey
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - J Mark Brown
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
10
|
Nirujogi TS, Kotha SR, Chung S, Reader BF, Yenigalla A, Zhang L, Shapiro JP, Wisler J, Christman JW, Maddipati K, Parinandi NL, Karpurapu M. Lipidomic Profiling of Bronchoalveolar Lavage Fluid Extracellular Vesicles Indicates Their Involvement in Lipopolysaccharide-Induced Acute Lung Injury. J Innate Immun 2022; 14:555-568. [PMID: 35367992 PMCID: PMC9485986 DOI: 10.1159/000522338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/13/2022] [Indexed: 12/25/2022] Open
Abstract
Emerging data support the pivotal role of extracellular vesicles (EVs) in normal cellular physiology and disease conditions. However, despite their abundance, there is much less information about the lipid mediators carried in EVs, especially in the context of acute lung injury (ALI). Our data demonstrate that C57BL/6 mice subjected to intranasal Escherichia coli lipopolysaccharide (LPS)-induced ALI release, a higher number of EVs into the alveolar space, compared to saline-treated controls. EVs released during ALI originated from alveolar epithelial cells, macrophages, and neutrophils and carry a diverse array of lipid mediators derived from ω-3 and ω-6 polyunsaturated fatty acids (PUFA). The eicosanoids in EVs correlated with cellular levels of arachidonic acid, expression of cytosolic phospholipase A2, cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome epoxygenase p450 proteins in pulmonary macrophages. Furthermore, EVs from LPS-toll-like receptor 4 knockout (TLR4-/-) mice contained significantly lower amounts of COX and LOX catalyzed eicosanoids and ω-3 PUFA metabolites. More importantly, EVs from LPS-treated wild-type mice increased TNF-α release by macrophages and reduced alveolar epithelial monolayer barrier integrity compared to EVs from LPS-treated TLR4-/- mice. In summary, our study demonstrates for the first time that the EV carried PUFA metabolite profile in part depends on the inflammatory status of the lung macrophages and modulates pulmonary macrophage and alveolar epithelial cell function during LPS-induced ALI.
Collapse
Affiliation(s)
- Teja Srinivas Nirujogi
- Davis Heart and Lung Research Institute, Pulmonary, Critical Care and Sleep Medicine, Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Sainath R. Kotha
- Comprehensive Cancer Center, Office of Health Sciences, Ohio State University, Columbus, Ohio, USA
| | - Sangwoon Chung
- Davis Heart and Lung Research Institute, Pulmonary, Critical Care and Sleep Medicine, Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Brenda F. Reader
- Comprehensive Transplant Center, Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Anita Yenigalla
- Davis Heart and Lung Research Institute, Pulmonary, Critical Care and Sleep Medicine, Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Liwen Zhang
- Proteomics Shared Resources, Mass Spectrometry and Proteomics Facility, Ohio State University, Columbus, Ohio, USA
| | - John P. Shapiro
- Department of Internal Medicine, Nephrology, Ohio State University, Columbus, Ohio, USA
| | - Jon Wisler
- Divison of Trauma and Critical Care, Department of Surgery, Ohio State University, Columbus, Ohio, USA
| | - John W. Christman
- Davis Heart and Lung Research Institute, Pulmonary, Critical Care and Sleep Medicine, Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Krishnarao Maddipati
- Department of Pathology, Lipidomics Core Facility, Wayne State University, Detroit, Michigan, USA
| | - Narasimham L. Parinandi
- Davis Heart and Lung Research Institute, Pulmonary, Critical Care and Sleep Medicine, Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Manjula Karpurapu
- Davis Heart and Lung Research Institute, Pulmonary, Critical Care and Sleep Medicine, Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
11
|
Ebrahimi N, Adelian S, Shakerian S, Afshinpour M, Chaleshtori SR, Rostami N, Hamblin MR, Aref AR. Crosstalk between ferroptosis and the epithelial-mesenchymal transition: implications for inflammation and cancer therapy. Cytokine Growth Factor Rev 2022; 64:33-45. [DOI: 10.1016/j.cytogfr.2022.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/19/2022] [Indexed: 02/07/2023]
|
12
|
Eicosanoid receptors as therapeutic targets for asthma. Clin Sci (Lond) 2021; 135:1945-1980. [PMID: 34401905 DOI: 10.1042/cs20190657] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 07/23/2021] [Accepted: 08/03/2021] [Indexed: 12/16/2022]
Abstract
Eicosanoids comprise a group of oxidation products of arachidonic and 5,8,11,14,17-eicosapentaenoic acids formed by oxygenases and downstream enzymes. The two major pathways for eicosanoid formation are initiated by the actions of 5-lipoxygenase (5-LO), leading to leukotrienes (LTs) and 5-oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE), and cyclooxygenase (COX), leading to prostaglandins (PGs) and thromboxane (TX). A third group (specialized pro-resolving mediators; SPMs), including lipoxin A4 (LXA4) and resolvins (Rvs), are formed by the combined actions of different oxygenases. The actions of the above eicosanoids are mediated by approximately 20 G protein-coupled receptors, resulting in a variety of both detrimental and beneficial effects on airway smooth muscle and inflammatory cells that are strongly implicated in asthma pathophysiology. Drugs targeting proinflammatory eicosanoid receptors, including CysLT1, the receptor for LTD4 (montelukast) and TP, the receptor for TXA2 (seratrodast) are currently in use, whereas antagonists of a number of other receptors, including DP2 (PGD2), BLT1 (LTB4), and OXE (5-oxo-ETE) are under investigation. Agonists targeting anti-inflammatory/pro-resolving eicosanoid receptors such as EP2/4 (PGE2), IP (PGI2), ALX/FPR2 (LXA4), and Chemerin1 (RvE1/2) are also being examined. This review summarizes the contributions of eicosanoid receptors to the pathophysiology of asthma and the potential therapeutic benefits of drugs that target these receptors. Because of the multifactorial nature of asthma and the diverse pathways affected by eicosanoid receptors, it will be important to identify subgroups of asthmatics that are likely to respond to any given therapy.
Collapse
|
13
|
Giménez-Bastida JA, González-Sarrías A, Laparra-Llopis JM, Schneider C, Espín JC. Targeting Mammalian 5-Lipoxygenase by Dietary Phenolics as an Anti-Inflammatory Mechanism: A Systematic Review. Int J Mol Sci 2021; 22:7937. [PMID: 34360703 PMCID: PMC8348464 DOI: 10.3390/ijms22157937] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 12/15/2022] Open
Abstract
5-Lipoxygenase (5-LOX) plays a key role in inflammation through the biosynthesis of leukotrienes and other lipid mediators. Current evidence suggests that dietary (poly)phenols exert a beneficial impact on human health through anti-inflammatory activities. Their mechanisms of action have mostly been associated with the modulation of pro-inflammatory cytokines (TNF-α, IL-1β), prostaglandins (PGE2), and the interaction with NF-κB and cyclooxygenase 2 (COX-2) pathways. Much less is known about the 5-lipoxygenase (5-LOX) pathway as a target of dietary (poly)phenols. This systematic review aimed to summarize how dietary (poly)phenols target the 5-LOX pathway in preclinical and human studies. The number of studies identified is low (5, 24, and 127 human, animal, and cellular studies, respectively) compared to the thousands of studies focusing on the COX-2 pathway. Some (poly)phenolics such as caffeic acid, hydroxytyrosol, resveratrol, curcumin, nordihydroguaiaretic acid (NDGA), and quercetin have been reported to reduce the formation of 5-LOX eicosanoids in vitro. However, the in vivo evidence is inconclusive because of the low number of studies and the difficulty of attributing effects to (poly)phenols. Therefore, increasing the number of studies targeting the 5-LOX pathway would largely expand our knowledge on the anti-inflammatory mechanisms of (poly)phenols.
Collapse
Affiliation(s)
- Juan Antonio Giménez-Bastida
- Laboratory of Food and Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, Department Food Science and Technology, CEBAS-CSIC, P.O. Box 164, Campus de Espinardo, 30100 Murcia, Spain;
| | - Antonio González-Sarrías
- Laboratory of Food and Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, Department Food Science and Technology, CEBAS-CSIC, P.O. Box 164, Campus de Espinardo, 30100 Murcia, Spain;
| | - José Moisés Laparra-Llopis
- Group of Molecular Immunonutrition in Cancer, Madrid Institute for Advanced Studies in Food (IMDEA-Food), 28049 Madrid, Spain;
| | - Claus Schneider
- Division of Clinical Pharmacology, Department of Pharmacology, Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical School, Nashville, TN 37232, USA;
| | - Juan Carlos Espín
- Laboratory of Food and Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, Department Food Science and Technology, CEBAS-CSIC, P.O. Box 164, Campus de Espinardo, 30100 Murcia, Spain;
| |
Collapse
|
14
|
Hamri S, Jouha J, Oumessaoud A, Pujol M, Khouili M, Guillaumet G. Convenient approach for the synthesis of ONO-LB-457, a potent leukotriene B4 receptor antagonist. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
McGovern T, Ano S, Farahnak S, McCuaig S, Martin JG. Cellular Source of Cysteinyl Leukotrienes Following Chlorine Exposure. Am J Respir Cell Mol Biol 2020; 63:681-689. [PMID: 32697598 DOI: 10.1165/rcmb.2019-0385oc] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Exposure of mice to high concentrations of chlorine leads to the synthesis of cysteinyl leukotrienes (cysLTs). CysLTs contribute to chlorine-induced airway hyperresponsiveness. The aim of the current study was to determine the cellular source of the cysLTs. To achieve this aim, we exposed mice to 100 ppm of chlorine for 5 minutes. Intranasal instillation of clodronate in liposomes and of diphtheria toxin in CD11c-DTR mice was used to deplete macrophages. CCR2-/- mice were used to assess the contribution of recruited macrophages. Eosinophils and neutrophils were depleted with specific antibodies. Platelet-neutrophil aggregation was prevented with an antibody against P-selectin. The potential roles of phagocytosis of neutrophils by macrophages and of transcellular metabolism between epithelial cells and neutrophils were explored in coculture systems. We found that depletion of neutrophils was the only intervention that inhibited the synthesis of cysLTs at 24 hours after chlorine exposure. Although macrophages did synthesize cysLTs in response to phagocytosis of neutrophils, depletion of macrophages did not reduce the increment in cysLTs triggered by chlorine exposure. However, coculture of airway epithelial cells with neutrophils resulted in a significant increase in the synthesis of cysLTs, dependent on the expression of 5-lipoxygenase by neutrophils. We conclude that cysLT synthesis following chlorine exposure may be dependent on transcellular metabolism by neutrophil-epithelial interactions.
Collapse
Affiliation(s)
- Toby McGovern
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre and McGill University, Montreal, Quebec, Canada
| | - Satoshi Ano
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre and McGill University, Montreal, Quebec, Canada
| | - Soroor Farahnak
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre and McGill University, Montreal, Quebec, Canada
| | - Sarah McCuaig
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre and McGill University, Montreal, Quebec, Canada
| | - James G Martin
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre and McGill University, Montreal, Quebec, Canada
| |
Collapse
|
16
|
Armstrong M, Manke J, Nkrumah-Elie Y, Shaikh SR, Reisdorph N. Improved quantification of lipid mediators in plasma and tissues by liquid chromatography tandem mass spectrometry demonstrates mouse strain specific differences. Prostaglandins Other Lipid Mediat 2020; 151:106483. [PMID: 32998074 DOI: 10.1016/j.prostaglandins.2020.106483] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/25/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023]
Abstract
A liquid chromatography tandem mass spectrometry-based method for the quantitation of 39 lipid mediators in four sample types and in two mouse strains is described. The method builds upon existing methodologies for analysis of lipid mediators by A) utilizing a bead homogenization step for tissue samples; this eliminates the need for homogenization glassware and improves homogenization consistency, B) optimizing the isolation and purification of lipid mediators with polymeric reverse phase SPE columns with lower sorbent masses; this results in lower solvent elution volumes without loss of recovery and C) utilizing an on-column enrichment method to improve analyte focusing before chromatographic separation. The method is linear from 0.25-250 pg on column for low level lipid mediators and from 5-5000 pg on column for high level lipid mediators. The addition of a methyl formate elution step to a previously published method dramatically improved precision and recovery for the cysteinyl leukotrienes. Accuracy and precision for 4 different sample types including human plasma, mouse lung, mouse spleen and mouse liver is demonstrated. Liver samples had extremely high levels of a tentatively identified bile acid which interfered with quantitation of resolvin E1, 11B-prostaglandin F2a and thromboxane A2. Results from 2 different tissue sources from untreated mice (C57BL/6 versus BALB/c) showed dramatically different concentrations of lipid mediators.
Collapse
Affiliation(s)
- Michael Armstrong
- University of Colorado, Skaggs School of Pharmacy, 12850 E. Montview Blvd., Aurora, Colorado, United States
| | - Jonathan Manke
- University of Colorado, Skaggs School of Pharmacy, 12850 E. Montview Blvd., Aurora, Colorado, United States
| | - Yasmeen Nkrumah-Elie
- Chromadex Inc., Chromadex External Research Program (CERP), Longmont, Colorado, United States
| | - Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina, Chapel Hill, North Carolina, United States
| | - Nichole Reisdorph
- University of Colorado, Skaggs School of Pharmacy, 12850 E. Montview Blvd., Aurora, Colorado, United States.
| |
Collapse
|
17
|
Li A, Zhang L, Li J, Fang Z, Li S, Peng Y, Zhang M, Wang X. Effect of RvD1/FPR2 on inflammatory response in chorioamnionitis. J Cell Mol Med 2020; 24:13397-13407. [PMID: 33025767 PMCID: PMC7701521 DOI: 10.1111/jcmm.15963] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/20/2020] [Accepted: 09/18/2020] [Indexed: 12/31/2022] Open
Abstract
Chorioamnionitis (CAM), as a common intrauterine infectious disease, is the leading cause of premature birth, stillbirth, neonatal infection and sepsis. The formyl peptide receptor 2 (FPR2) is a member of GPCRs widely distributed in a variety of tissues and is associated with many inflammatory diseases. With the discovery of FPR2 in human placenta, the possibility of exploring the function of FPR2 in obstetrics is evolving. The Resolvin D1 (RvD1) plays an important role in the resolution of inflammation by combining with FPR2. In this study, we evaluated the role of FPR2 and RvD1 in CAM, not only in the human placenta but also in mouse models. The expression of FPR2 increased in the placenta of CAM patients and the downstream PPARγ/NF-κB signalling changed accordingly. Moreover, Fpr2-/- mice were highly susceptible to LPS, displaying a worse CAM symptom, compared with WT mice. By establishing a model of trophoblast inflammation in vitro, it was confirmed that RvD1 rescued the effect of LPS on inflammation by combining with FPR2 and its downstream PPARγ/NF-κB pathway. Otherwise, RvD1 improved the preterm labour in a mouse model of CAM induced by LPS. Altogether, these findings show that RvD1 alleviated the inflammation of trophoblast in vivo and in vitro through FPR2/PPARγ/NF-κB pathway, suggesting RvD1/FPR2 might be a novel therapeutic strategy to alleviate CAM.
Collapse
Affiliation(s)
- Anna Li
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Jinan, China
| | - Lin Zhang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Jinan, China
| | - Junxia Li
- Department of Occupational and Environmental Hygiene, School of Public Health, Weifang Medical University, Weifang, China
| | - Zhenya Fang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Jinan, China
| | - Shuxian Li
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Jinan, China
| | - Yanjie Peng
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Jinan, China
| | - Meihua Zhang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Jinan, China
| | - Xietong Wang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Jinan, China.,Department of Obstetrics and Gynecology, Provincial Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
18
|
Briottet M, Shum M, Urbach V. The Role of Specialized Pro-Resolving Mediators in Cystic Fibrosis Airways Disease. Front Pharmacol 2020; 11:1290. [PMID: 32982730 PMCID: PMC7493015 DOI: 10.3389/fphar.2020.01290] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/04/2020] [Indexed: 12/26/2022] Open
Abstract
Cystic Fibrosis (CF) is a recessive genetic disease due to mutations of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene encoding the CFTR chloride channel. The ion transport abnormalities related to CFTR mutation generate a dehydrated airway surface liquid (ASL) layer, which is responsible for an altered mucociliary clearance, favors infections and persistent inflammation that lead to progressive lung destruction and respiratory failure. The inflammatory response is normally followed by an active resolution phase to return to tissue homeostasis, which involves specialized pro-resolving mediators (SPMs). SPMs promote resolution of inflammation, clearance of microbes, tissue regeneration and reduce pain, but do not evoke unwanted immunosuppression. The airways of CF patients showed a decreased production of SPMs even in the absence of pathogens. SPMs levels in the airway correlated with CF patients' lung function. The prognosis for CF has greatly improved but there remains a critical need for more effective treatments that prevent excessive inflammation, lung damage, and declining pulmonary function for all CF patients. This review aims to highlight the recent understanding of CF airway inflammation and the possible impact of SPMs on functions that are altered in CF airways.
Collapse
Affiliation(s)
| | | | - Valerie Urbach
- Institut national de la santé et de la recherche médicale (Inserm) U955, Institut Mondor de Recherche Biomédicale (IMRB), Créteil, France
| |
Collapse
|
19
|
Powell WS, Rokach J. Targeting the OXE receptor as a potential novel therapy for asthma. Biochem Pharmacol 2020; 179:113930. [PMID: 32240653 PMCID: PMC10656995 DOI: 10.1016/j.bcp.2020.113930] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/19/2020] [Indexed: 12/11/2022]
Abstract
5-Oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE) is an arachidonic acid metabolite formed by oxidation of the 5-lipoxygenase (5-LO) product 5S-hydroxy-6,8,11,14-eicosatetraenoic acid (5S-HETE) by the NADP+-dependent enzyme 5-hydroxyeicosanoid dehydrogenase. It is the only 5-LO product with appreciable chemoattractant activity for human eosinophils. Its actions are mediated by the selective OXE receptor, which is highly expressed on eosinophils, basophils, neutrophils and monocytes. Orthologs of the OXER1 gene, which encodes this receptor, are found in many species except for rodents. Intradermal injection of 5-oxo-ETE into humans and monkeys elicits eosinophil infiltration into the skin, raising the possibility that it may play a pathophysiological role in eosinophilic diseases. To investigate this and possibly identify a novel therapy we sought to prepare synthetic antagonists that could selectively block the OXE receptor. We synthesized a series of indole-based compounds bearing substituents that mimic the regions of 5-oxo-ETE that are required for biological activity, which we modified to reduce metabolism. The most potent of these OXE receptor antagonists is S-Y048, which is a potent inhibitor of 5-oxo-ETE-induced calcium mobilization (IC50, 20 pM) and has a long half-life following oral administration. S-Y048 inhibited allergen-induced eosinophil infiltration into the skin of rhesus monkeys that had been experimentally sensitized to house dust mite and inhibited pulmonary inflammation resulting from challenge with aerosolized allergen. These data provide the first evidence for a pathophysiological role for 5-oxo-ETE in mammals and suggest that potent and selective OXE receptor antagonists such as S-Y048 may be useful therapeutic agents in asthma and other eosinophilic diseases.
Collapse
Affiliation(s)
- William S Powell
- Meakins-Christie Laboratories, Centre for Translational Biology, McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC H4A 3J1, Canada.
| | - Joshua Rokach
- Claude Pepper Institute and Department of Chemistry, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901-6982, USA
| |
Collapse
|
20
|
Szczuko M, Palma J, Kikut J, Komorniak N, Ziętek M. Changes of lipoxin levels during pregnancy and the monthly-cycle, condition the normal course of pregnancy or pathology. Inflamm Res 2020; 69:869-881. [PMID: 32488315 PMCID: PMC7395003 DOI: 10.1007/s00011-020-01358-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/09/2020] [Accepted: 05/13/2020] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE AND DESIGN The purpose of the review was to gather information on the role and possibilities of using lipoxin in the treatment of infertility and maintaining a normal pregnancy. Ovulation, menstruation, embryo implantation, and childbirth are reactions representing short-term inflammatory events involving lipoxin activities. Lipoxin A4 (LXA4) is an arachidonic acid metabolite, and in cooperation with its positional isomer lipoxin B4 (LXB4), it is a major lipoxin in mammals. Biosynthesis process occurs in two stages: in the first step, the donor cell releases the eicosanoid intermediate; secondarily, the acceptor cell gets and converts the intermediate product into LXA4 (leukocyte/platelet interaction). RESULTS Generating lipoxin synthesis may also be triggered by salicylic acid, which acetylates cyclooxygenase-2. Lipoxin A4 and its analogues are considered as specialized pro-resolving mediators. LXA4 is an important component for a proper menstrual cycle, embryo implantation, pregnancy, and delivery. Its level in the luteal phase is high, while in the follicular phase, it decreases, which coincides with an increase in estradiol concentration with which it competes for the receptor. LXA4 inhibits the progression of endometriosis. However, during the peri-implantation period, before pregnancy is confirmed clinically, high levels of LXA4 can contribute to early pregnancy loss and may cause miscarriage. After implantation, insufficient LXA4 levels contribute to incorrect maternal vessel remodeling; decreased, shallow trophoblastic invasion; and the immuno-energetic abnormality of the placenta, which negatively affects fetal growth and the maintenance of pregnancy. Moreover, the level of LXA4 increases in the final stages of pregnancy, allowing vessel remodeling and placental separation. METHODS The review evaluates the literature published in the PubMed and Embase database up to 31 December 2019. The passwords were checked on terms: lipoxin and pregnancy with combined endometriosis, menstrual cycle, implantation, pre-eclampsia, fetal growth restriction, and preterm labor. CONCLUSIONS Although no human studies have been performed so far, the cell and animal model study results suggest that LXA4 will be used in obstetrics and gynecology soon.
Collapse
Affiliation(s)
- Małgorzata Szczuko
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, Szczecin, Poland.
| | - Joanna Palma
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, Szczecin, Poland
| | - Justyna Kikut
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, Szczecin, Poland
| | - Natalia Komorniak
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, Szczecin, Poland
| | - Maciej Ziętek
- Department of Perinatology, Obstetrics and Gynecology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
21
|
Sun Y, Chen P, Zhai B, Zhang M, Xiang Y, Fang J, Xu S, Gao Y, Chen X, Sui X, Li G. The emerging role of ferroptosis in inflammation. Biomed Pharmacother 2020; 127:110108. [PMID: 32234642 DOI: 10.1016/j.biopha.2020.110108] [Citation(s) in RCA: 478] [Impact Index Per Article: 95.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/12/2020] [Accepted: 03/17/2020] [Indexed: 01/12/2023] Open
Abstract
Ferroptosis is a newly discovered type of cell death triggered by intracellular phospholipid peroxidation that is morphologically, biologically and genetically distinct from other types of cell death. Ferroptosis is classified as regulated necrosis and is more immunogenic than apoptosis. To date, compelling evidence indicates that ferroptosis plays an important role in inflammation, and several antioxidants functioning as ferroptosis inhibitors have been shown to exert anti-inflammatory effects in experimental models of certain diseases. Our review provides an overview of the link between ferroptosis and inflammation; a better understanding of the mechanisms underlying ferroptosis and inflammation may hasten the development of promising therapeutic strategies involving ferroptosis inhibitors to address inflammation.
Collapse
Affiliation(s)
- Yitian Sun
- The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 310015, Zhejiang, China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou 310018, Zhejiang, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou 310018, Zhejiang, China
| | - Peng Chen
- Holistic Integrative Pharmacy Institutes and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou 310018, Zhejiang, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou 310018, Zhejiang, China
| | - Bingtao Zhai
- Holistic Integrative Pharmacy Institutes and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou 310018, Zhejiang, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou 310018, Zhejiang, China
| | - Mingming Zhang
- Holistic Integrative Pharmacy Institutes and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou 310018, Zhejiang, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou 310018, Zhejiang, China
| | - Yu Xiang
- Holistic Integrative Pharmacy Institutes and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou 310018, Zhejiang, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou 310018, Zhejiang, China
| | - Jiaheng Fang
- The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 310015, Zhejiang, China
| | - Sinan Xu
- The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 310015, Zhejiang, China
| | - Yufei Gao
- The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 310015, Zhejiang, China
| | - Xin Chen
- The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 310015, Zhejiang, China
| | - Xinbing Sui
- The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 310015, Zhejiang, China; Holistic Integrative Pharmacy Institutes and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou 310018, Zhejiang, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou 310018, Zhejiang, China.
| | - Guoxiong Li
- The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 310015, Zhejiang, China.
| |
Collapse
|
22
|
|
23
|
Zhang T, Hao H, Zhou XY. The role of lipoxin in regulating tumor immune microenvironments. Prostaglandins Other Lipid Mediat 2019; 144:106341. [PMID: 31152809 DOI: 10.1016/j.prostaglandins.2019.106341] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/21/2019] [Accepted: 05/28/2019] [Indexed: 12/31/2022]
|
24
|
Friedmann Angeli JP, Krysko DV, Conrad M. Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion. Nat Rev Cancer 2019; 19:405-414. [PMID: 31101865 DOI: 10.1038/s41568-019-0149-1] [Citation(s) in RCA: 827] [Impact Index Per Article: 137.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ferroptosis is a recently recognized cell death modality that is morphologically, biochemically and genetically distinct from other forms of cell death and that has emerged to play an important role in cancer biology. Recent discoveries have highlighted the metabolic plasticity of cancer cells and have provided intriguing insights into how metabolic rewiring is a critical event for the persistence, dedifferentiation and expansion of cancer cells. In some cases, this metabolic reprogramming has been linked to an acquired sensitivity to ferroptosis, thus opening up new opportunities to treat therapy-insensitive tumours. However, it is not yet clear what metabolic determinants are critical for therapeutic resistance and evasion of immune surveillance. Therefore, a better understanding of the processes that regulate ferroptosis sensitivity should ultimately aid in the discovery of novel therapeutic strategies to improve cancer treatment. In this Perspectives article, we provide an overview of the known mechanisms that regulate sensitivity to ferroptosis in cancer cells and how the modulation of metabolic pathways controlling ferroptosis might reshape the tumour niche, leading to an immunosuppressive microenvironment that promotes tumour growth and progression.
Collapse
Affiliation(s)
| | - Dmitri V Krysko
- Department of Human Structure and Repair, Ghent University and Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation
| | - Marcus Conrad
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
25
|
Tyurina YY, St Croix CM, Watkins SC, Watson AM, Epperly MW, Anthonymuthu TS, Kisin ER, Vlasova II, Krysko O, Krysko DV, Kapralov AA, Dar HH, Tyurin VA, Amoscato AA, Popova EN, Bolevich SB, Timashev PS, Kellum JA, Wenzel SE, Mallampalli RK, Greenberger JS, Bayir H, Shvedova AA, Kagan VE. Redox (phospho)lipidomics of signaling in inflammation and programmed cell death. J Leukoc Biol 2019; 106:57-81. [PMID: 31071242 PMCID: PMC6626990 DOI: 10.1002/jlb.3mir0119-004rr] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 04/12/2019] [Accepted: 04/19/2019] [Indexed: 02/06/2023] Open
Abstract
In addition to the known prominent role of polyunsaturated (phospho)lipids as structural blocks of biomembranes, there is an emerging understanding of another important function of these molecules as a highly diversified signaling language utilized for intra- and extracellular communications. Technological developments in high-resolution mass spectrometry facilitated the development of a new branch of metabolomics, redox lipidomics. Analysis of lipid peroxidation reactions has already identified specific enzymatic mechanisms responsible for the biosynthesis of several unique signals in response to inflammation and regulated cell death programs. Obtaining comprehensive information about millions of signals encoded by oxidized phospholipids, represented by thousands of interactive reactions and pleiotropic (patho)physiological effects, is a daunting task. However, there is still reasonable hope that significant discoveries, of at least some of the important contributors to the overall overwhelmingly complex network of interactions triggered by inflammation, will lead to the discovery of new small molecule regulators and therapeutic modalities. For example, suppression of the production of AA-derived pro-inflammatory mediators, HXA3 and LTB4, by an iPLA2 γ inhibitor, R-BEL, mitigated injury associated with the activation of pro-inflammatory processes in animals exposed to whole-body irradiation. Further, technological developments promise to make redox lipidomics a powerful approach in the arsenal of diagnostic and therapeutic instruments for personalized medicine of inflammatory diseases and conditions.
Collapse
Affiliation(s)
- Yulia Y Tyurina
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Claudette M St Croix
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Simon C Watkins
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alan M Watson
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Michael W Epperly
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tamil S Anthonymuthu
- Department of Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Elena R Kisin
- Exposure Assessment Branch, NIOSH/CDC, Morgantown, West Virginia, USA
| | - Irina I Vlasova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
- Laboratory of Navigational Redox Lipidomics, IM Sechenov Moscow State Medical University, Moscow, Russia
| | - Olga Krysko
- Upper Airways Research Laboratory, Department of Head and Skin, Ghent University, and Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Dmitri V Krysko
- Cell Death Investigation and Therapy Laboratory, Department of Human Structure and Repair, Ghent University, and Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Alexandr A Kapralov
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Haider H Dar
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Vladimir A Tyurin
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Andrew A Amoscato
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Elena N Popova
- Laboratory of Navigational Redox Lipidomics, IM Sechenov Moscow State Medical University, Moscow, Russia
| | - Sergey B Bolevich
- Laboratory of Navigational Redox Lipidomics, IM Sechenov Moscow State Medical University, Moscow, Russia
| | - Peter S Timashev
- Laboratory of Navigational Redox Lipidomics, IM Sechenov Moscow State Medical University, Moscow, Russia
| | - John A Kellum
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sally E Wenzel
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Joel S Greenberger
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hulya Bayir
- Department of Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anna A Shvedova
- Exposure Assessment Branch, NIOSH/CDC, Morgantown, West Virginia, USA
| | - Valerian E Kagan
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Laboratory of Navigational Redox Lipidomics, IM Sechenov Moscow State Medical University, Moscow, Russia
| |
Collapse
|
26
|
Rothbauer M, Charwat V, Bachmann B, Sticker D, Novak R, Wanzenböck H, Mathies RA, Ertl P. Monitoring transient cell-to-cell interactions in a multi-layered and multi-functional allergy-on-a-chip system. LAB ON A CHIP 2019; 19:1916-1921. [PMID: 31070645 DOI: 10.1039/c9lc00108e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We have developed a highly integrated lab-on-a-chip containing embedded electrical microsensors, μdegassers and pneumatically-actuated micropumps to monitor allergic hypersensitivity. Rapid antigen-mediated histamine release (e.g. s to min) and resulting muscle contraction (<30 min) is detected by connecting an immune compartment containing sensitized basophile cells to a vascular co-culture model.
Collapse
Affiliation(s)
- Mario Rothbauer
- Faculty of Technical Chemistry, Vienna University of Technology, Getreidemarkt 9, 1060 Vienna, Austria. and Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Verena Charwat
- Department of Biotechnology, University of Agricultural Resources and Life Sciences, Muthgasse 18, 1090 Vienna, Austria
| | - Barbara Bachmann
- Faculty of Technical Chemistry, Vienna University of Technology, Getreidemarkt 9, 1060 Vienna, Austria. and Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria and AUVA Research Centre, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, 1200 Vienna, Austria
| | - Drago Sticker
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Richard Novak
- Department of Chemistry, University of California at Berkeley, Lewis Hall, Berkeley, California, USA
| | - Heinz Wanzenböck
- Faculty of Electrical Engineering, Vienna University of Technology, Gußhausstr. 25-25a, 1040 Vienna, Austria
| | - Richard A Mathies
- Department of Chemistry, University of California at Berkeley, Lewis Hall, Berkeley, California, USA
| | - Peter Ertl
- Faculty of Technical Chemistry, Vienna University of Technology, Getreidemarkt 9, 1060 Vienna, Austria. and Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| |
Collapse
|
27
|
Kim EW, De Leon A, Jiang Z, Radu RA, Martineau AR, Chan ED, Bai X, Su WL, Montoya DJ, Modlin RL, Liu PT. Vitamin A Metabolism by Dendritic Cells Triggers an Antimicrobial Response against Mycobacterium tuberculosis. mSphere 2019; 4:e00327-19. [PMID: 31167948 PMCID: PMC6553556 DOI: 10.1128/msphere.00327-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 05/12/2019] [Indexed: 12/24/2022] Open
Abstract
Epidemiological evidence correlates low serum vitamin A (retinol) levels with increased susceptibility to active tuberculosis (TB); however, retinol is biologically inactive and must be converted into its bioactive form, all-trans retinoic acid (ATRA). Given that ATRA triggers a Niemann-Pick type C2 (NPC2)-dependent antimicrobial response against Mycobacterium tuberculosis, we investigated the mechanism by which the immune system converts retinol into ATRA at the site of infection. We demonstrate that granulocyte-macrophage colony-stimulating factor (GM-CSF)-derived dendritic cells (DCs), but not macrophages, express enzymes in the vitamin A metabolic pathway, including aldehyde dehydrogenase 1 family, member a2 (ALDH1A2) and short-chain dehydrogenase/reductase family, member 9 (DHRS9), enzymes capable of the two-step conversion of retinol into ATRA, which is subsequently released from the cell. Additionally, mRNA and protein expression levels of ALDH1A2 and DC marker CD1B were lower in tuberculosis lung tissues than in normal lung. The conditioned medium from DCs cultured with retinol stimulated antimicrobial activity from M. tuberculosis-infected macrophages, as well as the expression of NPC2 in monocytes, which was blocked by specific inhibitors, including retinoic acid receptor inhibitor (RARi) or N,N-diethylaminobenzaldehyde (DEAB), an ALDH1A2 inhibitor. These results indicate that metabolism of vitamin A by DCs transactivates macrophage antimicrobial responses.IMPORTANCE Tuberculosis (TB) is the leading cause of death by a single infectious agent worldwide. One factor that contributes to the success of the microbe is the deficiency in immunomodulatory nutrients, such as vitamin A (retinol), which are prevalent in areas where TB is endemic. Clinical trials show that restoration of systemic retinol levels in active TB patients is ineffective in mitigating the disease; however, laboratory studies demonstrate that activation of the vitamin A pathway in Mycobacterium tuberculosis-infected macrophages triggers an antimicrobial response. Therefore, the goal of this study was to determine the link between host retinol levels and retinoic acid-mediated antimicrobial responses against M. tuberculosis By combining established in vitro models with in situ studies of lung tissue from TB patients, this study demonstrates that the innate immune system utilizes transcellular metabolism leading to activation between dendritic cells and macrophages as a means to combat the pathogen.
Collapse
Affiliation(s)
- Elliot W Kim
- Department of Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, USA
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery, The Orthopaedic Hospital Research Center, Los Angeles, Los Angeles, California, USA
| | - Avelino De Leon
- Division of Dermatology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Zhichun Jiang
- Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Roxana A Radu
- Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Adrian R Martineau
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Edward D Chan
- Department of Medicine and Academic Affairs, National Jewish Health, Denver, Colorado, USA
| | - Xiyuan Bai
- Department of Medicine and Academic Affairs, National Jewish Health, Denver, Colorado, USA
| | - Wen-Lin Su
- Division of Pulmonary and Critical Care Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
| | - Dennis J Montoya
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, California, USA
| | - Robert L Modlin
- Division of Dermatology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
- Department of Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, USA
| | - Philip T Liu
- Division of Dermatology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery, The Orthopaedic Hospital Research Center, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
28
|
Ma Y, Yang X, Chatterjee V, Meegan JE, Beard Jr. RS, Yuan SY. Role of Neutrophil Extracellular Traps and Vesicles in Regulating Vascular Endothelial Permeability. Front Immunol 2019; 10:1037. [PMID: 31143182 PMCID: PMC6520655 DOI: 10.3389/fimmu.2019.01037] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/23/2019] [Indexed: 12/22/2022] Open
Abstract
The microvascular endothelium serves as the major barrier that controls the transport of blood constituents across the vessel wall. Barrier leakage occurs during infection or sterile inflammation, allowing plasma fluid and cells to extravasate and accumulate in surrounding tissues, an important pathology underlying a variety of infectious diseases and immune disorders. The leak process is triggered and regulated by bidirectional communications between circulating cells and vascular cells at the blood-vessel interface. While the molecular mechanisms underlying this complex process remain incompletely understood, emerging evidence supports the roles of neutrophil-endothelium interaction and neutrophil-derived products, including neutrophil extracellular traps and vesicles, in the pathogenesis of vascular barrier injury. In this review, we summarize the current knowledge on neutrophil-induced changes in endothelial barrier structures, with a detailed presentation of recently characterized molecular pathways involved in the production and effects of neutrophil extracellular traps and extracellular vesicles. Additionally, we discuss the therapeutic implications of altering neutrophil interactions with the endothelial barrier in treating inflammatory diseases.
Collapse
Affiliation(s)
- Yonggang Ma
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Xiaoyuan Yang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Victor Chatterjee
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Jamie E. Meegan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Richard S. Beard Jr.
- Department of Biological Sciences, Biomolecular Research Center, Boise State University, Boise, ID, United States
| | - Sarah Y. Yuan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
29
|
Lemurell M, Ulander J, Emtenäs H, Winiwarter S, Broddefalk J, Swanson M, Hayes MA, Prieto Garcia L, Westin Eriksson A, Meuller J, Cassel J, Saarinen G, Yuan ZQ, Löfberg C, Karlsson S, Sundqvist M, Whatling C. Novel Chemical Series of 5-Lipoxygenase-Activating Protein Inhibitors for Treatment of Coronary Artery Disease. J Med Chem 2019; 62:4325-4349. [DOI: 10.1021/acs.jmedchem.8b02012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
30
|
Pettersen D, Broddefalk J, Emtenäs H, Hayes MA, Lemurell M, Swanson M, Ulander J, Whatling C, Amilon C, Ericsson H, Westin Eriksson A, Granberg K, Plowright AT, Shamovsky I, Dellsèn A, Sundqvist M, Någård M, Lindstedt EL. Discovery and Early Clinical Development of an Inhibitor of 5-Lipoxygenase Activating Protein (AZD5718) for Treatment of Coronary Artery Disease. J Med Chem 2019; 62:4312-4324. [PMID: 30869888 DOI: 10.1021/acs.jmedchem.8b02004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
5-Lipoxygenase activating protein (FLAP) inhibitors attenuate 5-lipoxygenase pathway activity and reduce the production of proinflammatory and vasoactive leukotrienes. As such, they are hypothesized to have therapeutic benefit for the treatment of diseases that involve chronic inflammation including coronary artery disease. Herein, we disclose the medicinal chemistry discovery and the early clinical development of the FLAP inhibitor AZD5718 (12). Multiparameter optimization included securing adequate potency in human whole blood, navigation away from Ames mutagenic amine fragments while balancing metabolic stability and PK properties allowing for clinically relevant exposures after oral dosing. The superior safety profile of AZD5718 compared to earlier frontrunner compounds allowed us to perform a phase 1 clinical study in which AZD5718 demonstrated a dose dependent and greater than 90% suppression of leukotriene production over 24 h. Currently, AZD5718 is evaluated in a phase 2a study for treatment of coronary artery disease.
Collapse
|
31
|
Murphy RC, Folco G. Lysophospholipid acyltransferases and leukotriene biosynthesis: intersection of the Lands cycle and the arachidonate PI cycle. J Lipid Res 2019; 60:219-226. [PMID: 30606731 DOI: 10.1194/jlr.s091371] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/03/2019] [Indexed: 12/18/2022] Open
Abstract
Leukotrienes (LTs) are autacoids derived from the precursor arachidonic acid (AA) via the action of five-lipoxygenase (5-LO). When inflammatory cells are activated, 5-LO translocates to the nuclear membrane to initiate oxygenation of AA released by cytosolic phospholipase A2 (cPLA2) into leukotriene A4 (LTA4). LTA4 can also be exported from an activated donor cell into an acceptor cell by the process of transcellular biosynthesis. When thimerosal is added to cells, the level of free AA increases by inhibition of lysophospholipid acyltransferases of the Lands pathway of phospholipid remodeling. Another arachidonate phospholipid cycle involves phosphatidylinositol (PI) in the plasma membrane that undoubtedly intersects with the Lands pathway of phospholipid remodeling. The highest abundance of PI occurs between the ER and the plasma membrane and is probably a result of the importance of the PI signaling cascade in cellular biochemistry. Because transport proteins mediate the rapid intracellular movement of phospholipids, largely as result of physical membrane contact, 5-LO-dependent production of LTA4 could be mediated by the disappearance of free AA from the nuclear membrane, transfer to the ER for Lands cycle reesterification into PI, and population of PI(18:0/20:4) for cell membrane signaling.
Collapse
Affiliation(s)
- Robert C Murphy
- Department of Pharmacology, University of Colorado Denver, Aurora, CO 80045
| | - Giancarlo Folco
- Department of Pharmacology, University of Colorado Denver, Aurora, CO 80045
| |
Collapse
|
32
|
Sonnweber T, Pizzini A, Nairz M, Weiss G, Tancevski I. Arachidonic Acid Metabolites in Cardiovascular and Metabolic Diseases. Int J Mol Sci 2018; 19:ijms19113285. [PMID: 30360467 PMCID: PMC6274989 DOI: 10.3390/ijms19113285] [Citation(s) in RCA: 306] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/20/2018] [Accepted: 10/21/2018] [Indexed: 12/20/2022] Open
Abstract
Lipid and immune pathways are crucial in the pathophysiology of metabolic and cardiovascular disease. Arachidonic acid (AA) and its derivatives link nutrient metabolism to immunity and inflammation, thus holding a key role in the emergence and progression of frequent diseases such as obesity, diabetes, non-alcoholic fatty liver disease, and cardiovascular disease. We herein present a synopsis of AA metabolism in human health, tissue homeostasis, and immunity, and explore the role of the AA metabolome in diverse pathophysiological conditions and diseases.
Collapse
Affiliation(s)
- Thomas Sonnweber
- Department of Internal Medicine II, Medical University Innsbruck, Innsbruck 6020, Austria.
| | - Alex Pizzini
- Department of Internal Medicine II, Medical University Innsbruck, Innsbruck 6020, Austria.
| | - Manfred Nairz
- Department of Internal Medicine II, Medical University Innsbruck, Innsbruck 6020, Austria.
| | - Günter Weiss
- Department of Internal Medicine II, Medical University Innsbruck, Innsbruck 6020, Austria.
| | - Ivan Tancevski
- Department of Internal Medicine II, Medical University Innsbruck, Innsbruck 6020, Austria.
| |
Collapse
|
33
|
Araújo AC, Tang X, Haeggström JZ. Targeting cysteinyl-leukotrienes in abdominal aortic aneurysm. Prostaglandins Other Lipid Mediat 2018; 139:24-28. [PMID: 30248405 DOI: 10.1016/j.prostaglandins.2018.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/21/2018] [Accepted: 09/20/2018] [Indexed: 12/12/2022]
Abstract
Abdominal aortic aneurysm (AAA) is an asymptomatic dilatation of the vessel wall exceeding the normal vessel diameter by 50%, accompanied by intramural thrombus formation. Since the aneurysm can rupture, AAA is a life-threatening vascular disease, which may be amenable to surgical repair. At present, no pharmacological therapy for AAA is available. The 5-lipoxygenase (5-LOX) pathway of arachidonic acid metabolism leads to biosynthesis of leukotrienes (LTs), potent lipid mediators with pro-inflammatory biological actions. Among the LTs, cysteinyl-leukotrienes (cys-LT) are well-recognized signaling molecules in human asthma and allergic rhinitis. However, the effects of these molecules in cardiovascular diseases have only recently been explored. Drugs antagonizing the CysLT1 receptor, termed lukasts and typified by montelukast, are established therapeutics for clinical management of asthma. Lukasts are safe, well-tolerated drugs that can be administered during long time periods. Here we describe recent data indicating that montelukast may be used for prevention and treatment of AAA, thus representing a promising pharmacological tool for a deadly vascular disease with significant socio-economic impact.
Collapse
Affiliation(s)
- Ana Carolina Araújo
- Division of Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 65 Solna, Sweden
| | - Xiao Tang
- Division of Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 65 Solna, Sweden
| | - Jesper Z Haeggström
- Division of Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 65 Solna, Sweden.
| |
Collapse
|
34
|
Hanna VS, Hafez EAA. Synopsis of arachidonic acid metabolism: A review. J Adv Res 2018; 11:23-32. [PMID: 30034873 PMCID: PMC6052663 DOI: 10.1016/j.jare.2018.03.005] [Citation(s) in RCA: 352] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/08/2018] [Accepted: 03/11/2018] [Indexed: 12/11/2022] Open
Abstract
Arachidonic acid (AA), a 20 carbon chain polyunsaturated fatty acid with 4 double bonds, is an integral constituent of biological cell membrane, conferring it with fluidity and flexibility. The four double bonds of AA predispose it to oxygenation that leads to a plethora of metabolites of considerable importance for the proper function of the immune system, promotion of allergies and inflammation, resolving of inflammation, mood, and appetite. The present review presents an illustrated synopsis of AA metabolism, corroborating the instrumental importance of AA derivatives for health and well-being. It provides a comprehensive outline on AA metabolic pathways, enzymes and signaling cascades, in order to develop new perspectives in disease treatment and diagnosis.
Collapse
Affiliation(s)
- Violette Said Hanna
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | | |
Collapse
|
35
|
Sebastiani G, Ceccarelli E, Castagna MG, Dotta F. G-protein-coupled receptors (GPCRs) in the treatment of diabetes: Current view and future perspectives. Best Pract Res Clin Endocrinol Metab 2018; 32:201-213. [PMID: 29678286 DOI: 10.1016/j.beem.2018.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
G-protein coupled receptors (GPCRs) represent the largest receptor family in the genome and are of great interest for the design of novel drugs in a wide variety of diseases including neurologic disorders, obesity and Type 2 diabetes mellitus. The latter is a chronic disease characterized by insulin resistance and impaired insulin secretion, affecting >400 million patients worldwide. Here we provide an overview on: a) The molecular basis of GPCR signalling and of its involvement in the regulation of insulin secretion and of glucose homeostasis; b) the role of GPCRs in type 2 diabetes pathophysiology and as therapeutic targets of current and future glucose-lowering drugs.
Collapse
Affiliation(s)
- Guido Sebastiani
- Department of Medicine, Surgery and Neurosciences, University of Siena, Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Elena Ceccarelli
- Department of Medicine, Surgery and Neurosciences, University of Siena, Italy
| | | | - Francesco Dotta
- Department of Medicine, Surgery and Neurosciences, University of Siena, Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy.
| |
Collapse
|
36
|
From blood coagulation to innate and adaptive immunity: the role of platelets in the physiology and pathology of autoimmune disorders. Rheumatol Int 2018; 38:959-974. [PMID: 29492586 PMCID: PMC5954012 DOI: 10.1007/s00296-018-4001-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 02/22/2018] [Indexed: 12/14/2022]
Abstract
Thrombosis and cardiovascular complications are common manifestations of a variety of pathological conditions, including infections and chronic inflammatory diseases. Hence, there is great interest in determining the hitherto unforeseen immune role of the main blood coagulation executor-the platelet. Platelets store and release a plethora of immunoactive molecules, generate microparticles, and interact with cells classically belonging to the immune system. The observed effects of platelet involvement in immune processes, especially in autoimmune diseases, are conflicting-from inciting inflammation to mediating its resolution. An in-depth understanding of the role of platelets in inflammation and immunity could open new therapeutic pathways for patients with autoimmune disorders. This review aims to summarize the current knowledge on the role of platelets in the patomechanisms of autoimmune disorders and suggests directions for future research.
Collapse
|
37
|
Koeberle A, Werz O. Natural products as inhibitors of prostaglandin E 2 and pro-inflammatory 5-lipoxygenase-derived lipid mediator biosynthesis. Biotechnol Adv 2018; 36:1709-1723. [PMID: 29454981 DOI: 10.1016/j.biotechadv.2018.02.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/19/2018] [Accepted: 02/14/2018] [Indexed: 12/31/2022]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) inhibit prostanoid formation and represent prevalent therapeutics for treatment of inflammatory disorders. However, NSAIDs are afflicted with severe side effects, which might be circumvented by more selective suppression of pro-inflammatory eicosanoid biosynthesis. This concept led to dual inhibitors of microsomal prostaglandin E2 synthase (mPGES)-1 and 5-lipoxygenase that are crucial enzymes in the biosynthesis of pro-inflammatory prostaglandin E2 and leukotrienes. The potential of their dual inhibition in light of superior efficacy and safety is discussed. Focus is placed on natural products, for which direct inhibition of mPGES-1 and leukotriene biosynthesis has been confirmed.
Collapse
Affiliation(s)
- Andreas Koeberle
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, Jena 07743, Germany.
| | - Oliver Werz
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, Jena 07743, Germany.
| |
Collapse
|
38
|
Drug discovery approaches targeting 5-lipoxygenase-activating protein (FLAP) for inhibition of cellular leukotriene biosynthesis. Eur J Med Chem 2017; 153:34-48. [PMID: 28784429 DOI: 10.1016/j.ejmech.2017.07.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/29/2017] [Accepted: 07/12/2017] [Indexed: 11/23/2022]
Abstract
Leukotrienes are proinflammatory lipid mediators associated with diverse chronic inflammatory diseases such as asthma, COPD, IBD, arthritis, atherosclerosis, dermatitis and cancer. Cellular leukotrienes are produced from arachidonic acid via the 5-lipoxygenase pathway in which the 5-lipoxygenase activating protein, also named as FLAP, plays a critical role by operating as a regulatory protein for efficient transfer of arachidonic acid to 5-lipoxygenase. By blocking leukotriene production, FLAP inhibitors may behave as broad-spectrum leukotriene modulators, which might be of therapeutic use for chronic inflammatory diseases requiring anti-leukotriene therapy. The early development of FLAP inhibitors (i.e. MK-886, MK-591, BAY-X-1005) mostly concentrated on asthma cure, and resulted in promising readouts in preclinical and clinical studies with asthma patients. Following the recent elucidation of the 3D-structure of FLAP, development of new inhibitor chemotypes is highly accelerated, eventually leading to the evolution of many un-drug-like structures into more drug-like entities such as AZD6642 and BI665915 as development candidates. The most clinically advanced FLAP inhibitor to date is GSK2190918 (formerly AM803) that has successfully completed phase II clinical trials in asthmatics. Concluding, although there are no FLAP inhibitors reached to the drug approval phase yet, due to the rising number of indications for anti-LT therapy such as atherosclerosis, FLAP inhibitor development remains a significant research field. FLAP inhibitors reviewed herein are classified into four sub-classes as the first-generation FLAP inhibitors (indole and quinoline derivatives), the second-generation FLAP inhibitors (diaryl-alkanes and biaryl amino-heteroarenes), the benzimidazole-containing FLAP inhibitors and other FLAP inhibitors with polypharmacology for easiness of the reader. Hence, we meticulously summarize how FLAP inhibitors historically developed from scratch to their current advanced state, and leave the reader with a positive view that a FLAP inhibitor might soon reach to the need of patients who may require anti-LT therapy.
Collapse
|
39
|
Sandén E, Dyberg C, Krona C, Gallo-Oller G, Olsen TK, Enríquez Pérez J, Wickström M, Estekizadeh A, Kool M, Visse E, Ekström TJ, Siesjö P, Johnsen JI, Darabi A. Establishment and characterization of an orthotopic patient-derived Group 3 medulloblastoma model for preclinical drug evaluation. Sci Rep 2017; 7:46366. [PMID: 28417956 PMCID: PMC5394470 DOI: 10.1038/srep46366] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/15/2017] [Indexed: 12/25/2022] Open
Abstract
Medulloblastomas comprise a heterogeneous group of tumours and can be subdivided into four molecular subgroups (WNT, SHH, Group 3 and Group 4) with distinct prognosis, biological behaviour and implications for targeted therapies. Few experimental models exist of the aggressive and poorly characterized Group 3 tumours. In order to establish a reproducible transplantable Group 3 medulloblastoma model for preclinical therapeutic studies, we acquired a patient-derived tumour sphere culture and inoculated low-passage spheres into the cerebellums of NOD-scid mice. Mice developed symptoms of brain tumours with a latency of 17–18 weeks. Neurosphere cultures were re-established and serially transplanted for 3 generations, with a negative correlation between tumour latency and numbers of injected cells. Xenografts replicated the phenotype of the primary tumour, including high degree of clustering in DNA methylation analysis, high proliferation, expression of tumour markers, MYC amplification and elevated MYC expression, and sensitivity to the MYC inhibitor JQ1. Xenografts maintained maintained expression of tumour-derived VEGFA and stromal-derived COX-2. VEGFA, COX-2 and c-Myc are highly expressed in Group 3 compared to other medulloblastoma subgroups, suggesting that these molecules are relevant therapeutic targets in Group 3 medulloblastoma.
Collapse
Affiliation(s)
- Emma Sandén
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Neurosurgery, Lund, Sweden
| | - Cecilia Dyberg
- Karolinska Institutet, Department of Women´s and Children´s Health, Childhood Cancer Research Unit, Stockholm, Sweden
| | - Cecilia Krona
- Uppsala University, Department of Immunology, Genetics and Pathology, Uppsala, Sweden
| | - Gabriel Gallo-Oller
- Karolinska Institutet, Department of Women´s and Children´s Health, Childhood Cancer Research Unit, Stockholm, Sweden
| | - Thale Kristin Olsen
- Karolinska Institutet, Department of Women´s and Children´s Health, Childhood Cancer Research Unit, Stockholm, Sweden
| | - Julio Enríquez Pérez
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Neurosurgery, Lund, Sweden
| | - Malin Wickström
- Karolinska Institutet, Department of Women´s and Children´s Health, Childhood Cancer Research Unit, Stockholm, Sweden
| | - Atosa Estekizadeh
- Karolinska University Hospital, Solna, Center for Molecular Medicine, and Karolinska Institutet, Department of Clinical Neuroscience, Stockholm, Sweden
| | - Marcel Kool
- German Cancer Research Center DKFZ, Division of Pediatric Neurooncology, Heidelberg, Germany
| | - Edward Visse
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Neurosurgery, Lund, Sweden
| | - Tomas J Ekström
- Karolinska University Hospital, Solna, Center for Molecular Medicine, and Karolinska Institutet, Department of Clinical Neuroscience, Stockholm, Sweden
| | - Peter Siesjö
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Neurosurgery, Lund, Sweden.,Lund University, Skane University Hospital, Department of Clinical Sciences Lund, Neurosurgery, Lund, Sweden
| | - John Inge Johnsen
- Karolinska Institutet, Department of Women´s and Children´s Health, Childhood Cancer Research Unit, Stockholm, Sweden
| | - Anna Darabi
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Neurosurgery, Lund, Sweden
| |
Collapse
|
40
|
Neuman JC, Fenske RJ, Kimple ME. Dietary polyunsaturated fatty acids and their metabolites: Implications for diabetes pathophysiology, prevention, and treatment. NUTRITION AND HEALTHY AGING 2017; 4:127-140. [PMID: 28447067 PMCID: PMC5391679 DOI: 10.3233/nha-160004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2023]
Affiliation(s)
- Joshua C. Neuman
- Interdisciplinary Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Rachel J. Fenske
- Interdisciplinary Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Michelle E. Kimple
- Interdisciplinary Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medicine, Division of Endocrinology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| |
Collapse
|
41
|
Moore GY, Pidgeon GP. Cross-Talk between Cancer Cells and the Tumour Microenvironment: The Role of the 5-Lipoxygenase Pathway. Int J Mol Sci 2017; 18:E236. [PMID: 28125014 PMCID: PMC5343774 DOI: 10.3390/ijms18020236] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/03/2017] [Accepted: 01/13/2017] [Indexed: 12/15/2022] Open
Abstract
5-lipoxygenase is an enzyme responsible for the synthesis of a range of bioactive lipids signalling molecules known collectively as eicosanoids. 5-lipoxygenase metabolites such as 5-hydroxyeicosatetraenoic acid (5-HETE) and a number of leukotrienes are mostly derived from arachidonic acid and have been shown to be lipid mediators of inflammation in different pathological states including cancer. Upregulated 5-lipoxygenase expression and metabolite production is found in a number of cancer types and has been shown to be associated with increased tumorigenesis. 5-lipoxygenase activity is present in a number of diverse cell types of the immune system and connective tissue. In this review, we discuss potential routes through which cancer cells may utilise the 5-lipoxygenase pathway to interact with the tumour microenvironment during the development and progression of a tumour. Furthermore, immune-derived 5-lipoxygenase signalling can drive both pro- and anti-tumour effects depending on the immune cell subtype and an overview of evidence for these opposing effects is presented.
Collapse
Affiliation(s)
- Gillian Y Moore
- Department of Surgery, Trinity College Dublin, Dublin 8, Ireland.
| | - Graham P Pidgeon
- Department of Surgery, Trinity College Dublin, Dublin 8, Ireland.
| |
Collapse
|
42
|
Lin HN, Cottrell J, O'Connor JP. Variation in lipid mediator and cytokine levels during mouse femur fracture healing. J Orthop Res 2016; 34:1883-1893. [PMID: 26919197 DOI: 10.1002/jor.23213] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/23/2016] [Indexed: 02/04/2023]
Abstract
Fracture healing is regulated by a variety of inflammatory mediators and growth factors which act over time to regenerate the injured tissue. This study used a mouse femur fracture model to quantify the temporal expression pattern of lipid mediators, cytokines, and related mRNAs during healing. Cyclooxygenase (COX-1 and COX-2) and 5-lipoxygenase (5-LO) derived lipid mediators, cytokines, and mRNA levels were quantified using mass spectrometry (LC-MS/MS), bead-based multiplex assays (xMAP), and quantitative PCR of cDNA (RTqPCR), respectively. Our analysis found that, the early inflammatory response (between 0 and 4 days after fracture) in the mouse femur fracture model coincided with elevated levels of COX-derived lipid mediators and inflammatory cytokines but with decreased levels of 5-LO-derived lipid mediators. Further, the COX-derived lipid mediators remained elevated for at least 7 days after fracture, suggesting that the COX-derived lipid mediators have additional functions during later phases of the fracture healing response. Differences were also found between mRNA levels and corresponding cytokines and lipid mediator levels, supporting a role for post-transcriptional regulation of gene expression. The temporal changes in fracture callus lipid mediator levels and inflammatory cytokines support a general positive role for inflammatory cytokines and COX-derived lipid mediators on fracture healing and a general negative role for 5-lipoxygenase derived lipid mediators during the initial stages of repair. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1883-1893, 2016.
Collapse
Affiliation(s)
- Hsuan-Ni Lin
- Department of Biochemistry and Molecular Biology, Rutgers, the State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, New Jersey 07103.,Department of Biochemistry and Molecular Biology, Graduate School of Biomedical Sciences, 185 South Orange Avenue, Newark, New Jersey 07103
| | - Jessica Cottrell
- Department of Biochemistry and Molecular Biology, Rutgers, the State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, New Jersey 07103.,Department of Biological Sciences, Seton Hall University, 400 South Orange Avenue, South Orange, New Jersey 07079
| | - J Patrick O'Connor
- Department of Biochemistry and Molecular Biology, Rutgers, the State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, New Jersey 07103.,Department of Biochemistry and Molecular Biology, Graduate School of Biomedical Sciences, 185 South Orange Avenue, Newark, New Jersey 07103
| |
Collapse
|
43
|
Kim S, Jeong KJ, Cho SK, Park JW, Park WJ. Caffeic acid, morin hydrate and quercetin partially attenuate sulfur mustard-induced cell death by inhibiting the lipoxygenase pathway. Mol Med Rep 2016; 14:4454-4460. [DOI: 10.3892/mmr.2016.5766] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 09/05/2016] [Indexed: 11/06/2022] Open
|
44
|
Pyasi K, Tufvesson E, Moitra S. Evaluating the role of leukotriene-modifying drugs in asthma management: Are their benefits 'losing in translation'? Pulm Pharmacol Ther 2016; 41:52-59. [PMID: 27651322 DOI: 10.1016/j.pupt.2016.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 09/13/2016] [Accepted: 09/16/2016] [Indexed: 02/06/2023]
Abstract
Leukotrienes (LTs) initiate a cascade of reactions that cause bronchoconstriction and inflammation in asthma. LT-modifying drugs have been proved very effective to reduce inflammation and associated exacerbation however despite some illustrious clinical trials the usage of these drugs remains overlooked because the evidence to support their utility in asthma management has been mixed and varied between studies. Although, there are plenty of evidences which suggest that the leukotriene-modifying drugs provide consistent improvement even after just the first oral dose and reduce asthma exacerbations, the beneficial effect of these drugs has remained sparse and widely debated. And these beneficial effects are often overlooked because most of the clinical studies include a mixed population of asthmatics who do not respond to LT-modifiers equally. Therefore, in the present era of personalized medicine, it is important to properly stratify the patients and non-invasive measurements of biomarkers may warrant the possibility to characterize biological/pathological pathway to direct treatment to those who will benefit from it. Endotyping based on individual's leukotriene levels should probably ascertain a subgroup of patients that would clearly benefit from the treatment even though the trial fails to show overall significance. In this article, we have methodically evaluated contemporary literature describing the efficacy of LT-modifying drugs in the management of asthma and highlighted the importance of phenotyping the asthmatics for better treatment outcomes.
Collapse
Affiliation(s)
- Kanchan Pyasi
- Molecular Respiratory Research Laboratory, Chest Research Foundation, Pune, India
| | - Ellen Tufvesson
- Department of Respiratory Medicine and Allergology, Lund University, Lund, Sweden
| | - Subhabrata Moitra
- Department of Respiratory Medicine and Allergology, Lund University, Lund, Sweden; Department of Pneumology, Allergy and Asthma Research Centre, Kolkata, India.
| |
Collapse
|
45
|
Kim TY, Kim J, Choo HYP, Kwon HJ. Inhibition of 5-lipoxygenase suppresses vascular endothelial growth factor-induced angiogenesis in endothelial cells. Biochem Biophys Res Commun 2016; 478:1117-22. [PMID: 27530926 DOI: 10.1016/j.bbrc.2016.08.078] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 08/12/2016] [Indexed: 01/08/2023]
Abstract
5-Lipoxygenase (5-LOX) is an enzyme that converts arachidonic acid from the cell membrane into leukotriene, a signal lipid mediator. 5-LOX deficiency markedly attenuates the formation of aneurysms in knockout mice. In addition, Zileuton, a clinical drug targeting 5-LOX, is used for treatment of asthma. However, it is unclear whether 5-LOX inhibition results in anti-angiogenic effects for applications in cancer therapy. To explore the roles of 5-LOX in angiogenesis and its potential as a therapeutic target in cancer, the effects of a newly synthesized 5-LOX inhibitor, F3, on in vitro and in vivo angiogenesis were investigated. The results showed that 5-LOX inhibition by F3 suppressed in vitro vascular endothelial growth factor (VEGF)-induced tube formation and chemo-invasion of endothelial cells (ECs). 5-LOX inhibition also decreased VEGF-induced extracellular signal-regulated kinase (ERK) phosphorylation in ECs. Notably, 5-LOX knockdown phenocopied the anti-angiogenic activity of the 5-LOX inhibitor F3 in a concentration-dependent manner. F3 did not affect the activities of VEGF receptor 2 or AKT. In vivo, the compound significantly inhibited the formation of the chorioallantoic membrane at nontoxic doses. These results demonstrated that 5-LOX played an important role in angiogenesis and that its inhibitor F3 could be a new anti-angiogenic agent targeting VEGF signaling.
Collapse
Affiliation(s)
- Tae Young Kim
- Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science & Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Joohye Kim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Hea-Young Park Choo
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Ho Jeong Kwon
- Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science & Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea.
| |
Collapse
|
46
|
Lukic A, Ji J, Idborg H, Samuelsson B, Palmberg L, Gabrielsson S, Rådmark O. Pulmonary epithelial cancer cells and their exosomes metabolize myeloid cell-derived leukotriene C4 to leukotriene D4. J Lipid Res 2016; 57:1659-69. [PMID: 27436590 DOI: 10.1194/jlr.m066910] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Indexed: 01/03/2023] Open
Abstract
Leukotrienes (LTs) play major roles in lung immune responses, and LTD4 is the most potent agonist for cysteinyl LT1, leading to bronchoconstriction and tissue remodeling. Here, we studied LT crosstalk between myeloid cells and pulmonary epithelial cells. Monocytic cells (Mono Mac 6 cell line, primary dendritic cells) and eosinophils produced primarily LTC4 In coincubations of these myeloid cells and epithelial cells, LTD4 became a prominent product. LTC4 released from the myeloid cells was further transformed by the epithelial cells in a transcellular manner. Formation of LTD4 was rapid when catalyzed by γ-glutamyl transpeptidase (GGT)1 in the A549 epithelial lung cancer cell line, but considerably slower when catalyzed by GGT5 in primary bronchial epithelial cells. When A549 cells were cultured in the presence of IL-1β, GGT1 expression increased about 2-fold. Also exosomes from A549 cells contained GGT1 and augmented LTD4 formation. Serine-borate complex (SBC), an inhibitor of GGT, inhibited conversion of LTC4 to LTD4 Unexpectedly, SBC also upregulated translocation of 5-lipoxygenase (LO) to the nucleus in Mono Mac 6 cells, and 5-LO activity. Our results demonstrate an active role for epithelial cells in biosynthesis of LTD4, which may be of particular relevance in the lung.
Collapse
Affiliation(s)
- Ana Lukic
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry II, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Jie Ji
- Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Helena Idborg
- Rheumatology Unit, Department of Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Bengt Samuelsson
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry II, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Lena Palmberg
- Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Susanne Gabrielsson
- Department of Medicine Solna, Unit for Immunology and Allergy, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Olof Rådmark
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry II, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
47
|
Fischer GJ, Keller NP. Production of cross-kingdom oxylipins by pathogenic fungi: An update on their role in development and pathogenicity. J Microbiol 2016; 54:254-64. [PMID: 26920885 DOI: 10.1007/s12275-016-5620-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/05/2016] [Indexed: 01/05/2023]
Abstract
Oxylipins are a class of molecules derived from the incorporation of oxygen into polyunsaturated fatty acid substrates through the action of oxygenases. While extensively investigated in the context of mammalian immune responses, over the last decade it has become apparent that oxylipins are a common means of communication among and between plants, animals, and fungi to control development and alter host-microbe interactions. In fungi, some oxylipins are derived nonenzymatically while others are produced by lipoxygenases, cyclooxygenases, and monooxygenases with homology to plant and human enzymes. Recent investigations of numerous plant and human fungal pathogens have revealed oxylipins to be involved in the establishment and progression of disease. This review highlights oxylipin production by pathogenic fungi and their role in fungal development and pathogen/host interactions.
Collapse
Affiliation(s)
- Gregory J Fischer
- Department of Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
48
|
Koeberle A, Laufer SA, Werz O. Design and Development of Microsomal Prostaglandin E2 Synthase-1 Inhibitors: Challenges and Future Directions. J Med Chem 2016; 59:5970-86. [DOI: 10.1021/acs.jmedchem.5b01750] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Andreas Koeberle
- Chair
of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Stefan A. Laufer
- Department
of Pharmaceutical Chemistry, Pharmaceutical Institute, University of Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Oliver Werz
- Chair
of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, University Jena, Philosophenweg 14, 07743 Jena, Germany
| |
Collapse
|
49
|
Lubin A, Geerinckx S, Bajic S, Cabooter D, Augustijns P, Cuyckens F, Vreeken RJ. Enhanced performance for the analysis of prostaglandins and thromboxanes by liquid chromatography-tandem mass spectrometry using a new atmospheric pressure ionization source. J Chromatogr A 2016; 1440:260-265. [PMID: 26948759 DOI: 10.1016/j.chroma.2016.02.055] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 02/18/2016] [Indexed: 11/30/2022]
Abstract
Eicosanoids, including prostaglandins and thromboxanes are lipid mediators synthetized from polyunsaturated fatty acids. They play an important role in cell signaling and are often reported as inflammatory markers. LC-MS/MS is the technique of choice for the analysis of these compounds, often in combination with advanced sample preparation techniques. Here we report a head to head comparison between an electrospray ionization source (ESI) and a new atmospheric pressure ionization source (UniSpray). The performance of both interfaces was evaluated in various matrices such as human plasma, pig colon and mouse colon. The UniSpray source shows an increase in method sensitivity up to a factor 5. Equivalent to better linearity and repeatability on various matrices as well as an increase in signal intensity were observed in comparison to ESI.
Collapse
Affiliation(s)
- Arnaud Lubin
- Discovery Sciences, Janssen R&D, Beerse, Belgium
| | | | - Steve Bajic
- Waters Corporation, Wilmslow, United Kingdom
| | - Deirdre Cabooter
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Patrick Augustijns
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | | | | |
Collapse
|
50
|
Oh DY, Olefsky JM. G protein-coupled receptors as targets for anti-diabetic therapeutics. Nat Rev Drug Discov 2016; 15:161-72. [PMID: 26822831 DOI: 10.1038/nrd.2015.4] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|