1
|
Bai W, Wang Y, Ma J, Li G, Wang Y, Yang C, Zhang Q, Li Q, Zhang J, Zhang P. Histone deacetylase Hos1 promotes the homeostasis of Candida albicans cell wall and membrane and its specific inhibitor has an antifungal activity in vivo. Microbiol Res 2025; 296:128132. [PMID: 40112660 DOI: 10.1016/j.micres.2025.128132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 02/26/2025] [Accepted: 03/01/2025] [Indexed: 03/22/2025]
Abstract
The rise of drug-resistant Candida albicans (C. albicans) has led to an urgent need for new therapeutic strategies. Histone deacetylases (HDACs) inhibition has been shown to limit fungal virulence while enhancing the efficacy of antifungal drugs against Candida. However, HDACs are highly conserved from yeast to humans, which has hindered the application of these inhibitors in the antifungal therapy. The aim of this study is to identify a suitable antifungal target and develop specific inhibitors targeting C. albicans HDACs. Based on sequence alignments, the HDAC Hos1 in C. albicans was proposed as a target for further investigation. We evaluated the impact of Hos1 on C. albicans pathogenicity using a murine model of disseminated candidiasis. Results showed that Hos1 null mutant caused less damage to mouse tissues. Additionally, we demonstrated that the reduced virulence was due to inhibition of cell wall O-mannan biosynthesis and altered metabolic flexibility, leading to decreased adaptability of C. albicans. Increased sensitivity of C. albicans to antifungal drugs was attributed to abnormal accumulation of ergosterol in the cell membrane. Furthermore, we identified Hos1 inhibitors from the ZINC database using molecular docking. These inhibitors exhibited highly specific inhibition of the deacetylation activity of C. albicans Hos1. Importantly, the inhibitors not only reduced colonization and invasion by C. albicans in vivo but also synergized with polyene drugs to combat C. albicans by causing abnormal accumulation of ergosterol. Our findings provide detailed insights into antifungal targets and a useful foundation for the discovery of antifungal drugs specifically targeting Candida.
Collapse
Affiliation(s)
- Wenhui Bai
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yanmei Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jia Ma
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi' an, Shaanxi 710061, China
| | - Guanglin Li
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yuchen Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Zonglian College, Xi'an Jiaotong University, Xi' an, Shaanxi 710061, China
| | - Chen Yang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Qiyue Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Qingqing Li
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jiye Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Peipei Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
2
|
Zhang Q, Li G, Wang Y, Yang C, Bai W, Li Q, Zhang J, Zhang P. Cas5 Regulates the Exposure of β-Glucan, the Cell Surface Hydrophobicity, and the Expression of Cell Wall Proteins to Remodel the Candida albicans Cell Wall and Participates in the Recruitment of Neutrophils. Microorganisms 2025; 13:683. [PMID: 40142575 PMCID: PMC11944837 DOI: 10.3390/microorganisms13030683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
Candida albicans (C. albicans) is a major opportunistic fungal pathogen that causes life-threatening infections, particularly in immunocompromised individuals, underscoring the critical need to understand its pathogenic mechanisms. This study investigates the role of Cas5, a key transcription factor, in regulating C. albicans cell wall remodeling, virulence, and host interactions. Genetic manipulation and biochemical assays were used to examine the effects of Cas5 depletion on C. albicans cell wall structure, adhesion to host cells, morphology transition, innate immune cells recruitment, and pathogenicity in a BALB/C mouse model of oropharyngeal candidiasis (OPC). The results showed that the Cas5 depletion mediated β-glucan exposure and enhanced C. albicans's ability to recruit neutrophils in vivo. Additionally, Cas5-mediated changes in cell surface hydrophobicity (CSH), CWP expressions, and morphological transition promoted C. albicans adhesion to biologically active surfaces (host cells) and increased fungal burden in the mouse model of OPC. In conclusion, Cas5 modulates C. albicans cell wall remodeling by masking cell wall β-glucan, altering CSH, and regulating the expression of cell wall proteins (CWPs). Additionally, Cas5 participates in inhibiting neutrophil recruitment and enhancing the C. albicans adhesion to host cells, as well as facilitating morphological transitions. These actions promote the colonization and invasion of C. albicans in OPC pathogenesis.
Collapse
Affiliation(s)
- Qiyue Zhang
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (Q.Z.); (G.L.); (Y.W.); (C.Y.); (W.B.); (Q.L.); (J.Z.)
- Institute of Pharmaceutical Science and Technology, Xi’an Jiaotong University, Xi’an 710061, China
| | - Guanglin Li
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (Q.Z.); (G.L.); (Y.W.); (C.Y.); (W.B.); (Q.L.); (J.Z.)
- Institute of Pharmaceutical Science and Technology, Xi’an Jiaotong University, Xi’an 710061, China
| | - Yanmei Wang
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (Q.Z.); (G.L.); (Y.W.); (C.Y.); (W.B.); (Q.L.); (J.Z.)
- Institute of Pharmaceutical Science and Technology, Xi’an Jiaotong University, Xi’an 710061, China
| | - Chen Yang
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (Q.Z.); (G.L.); (Y.W.); (C.Y.); (W.B.); (Q.L.); (J.Z.)
- Institute of Pharmaceutical Science and Technology, Xi’an Jiaotong University, Xi’an 710061, China
| | - Wenhui Bai
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (Q.Z.); (G.L.); (Y.W.); (C.Y.); (W.B.); (Q.L.); (J.Z.)
- Institute of Pharmaceutical Science and Technology, Xi’an Jiaotong University, Xi’an 710061, China
| | - Qingqing Li
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (Q.Z.); (G.L.); (Y.W.); (C.Y.); (W.B.); (Q.L.); (J.Z.)
- Institute of Pharmaceutical Science and Technology, Xi’an Jiaotong University, Xi’an 710061, China
| | - Jiye Zhang
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (Q.Z.); (G.L.); (Y.W.); (C.Y.); (W.B.); (Q.L.); (J.Z.)
- Institute of Pharmaceutical Science and Technology, Xi’an Jiaotong University, Xi’an 710061, China
| | - Peipei Zhang
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (Q.Z.); (G.L.); (Y.W.); (C.Y.); (W.B.); (Q.L.); (J.Z.)
- Institute of Pharmaceutical Science and Technology, Xi’an Jiaotong University, Xi’an 710061, China
| |
Collapse
|
3
|
Tosiano MA, Lanni F, Mitchell AP, McManus CJ. Roles of P-body factors in Candida albicans filamentation and stress response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.09.602714. [PMID: 40161774 PMCID: PMC11952329 DOI: 10.1101/2024.07.09.602714] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Hyphal growth is strongly associated with virulence in the human fungal pathogen Candida albicans. While hyphal transcriptional networks have been the subject of intense study, relatively little is known about post-transcriptional regulation. Previous work reported that P-Body (PB) factors Dhh1 and Edc3 were required for C. albicans virulence and filamentation, suggesting an essential role for post-transcriptional regulation of these processes. However, the molecular roles of these factors have not been determined. To further study the function of PB factors in filamentation, we generated homozygous deletions of DHH1 and EDC3 in diverse prototrophic clinical strains using transient CRISPR-Cas9. Homozygous DHH1 deletion strongly impaired growth, altered filamentation, and exhibited unusual colony morphology in response to heat stress in five strain backgrounds. Using RNA-seq, we found DHH1 deletion disrupts the regulation of thousands of genes under both yeast and hyphal growth conditions in SC5314 and P57055. This included upregulation of many stress response genes in the absence of external stress, similar to deletion of the S. cerevisiae DHH1 homolog. In contrast, we found EDC3 was not required for heat tolerance or filamentation in diverse strains. These results support a model in which DHH1, but not EDC3, represses hyphal stress response transcripts in yeast and remodels the transcriptome during filamentation. Our work supports distinct requirements for specific mRNA decay factors, bolstering evidence for post-transcriptional regulation of filamentation in C. albicans.
Collapse
Affiliation(s)
- Melissa A. Tosiano
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Frederick Lanni
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Aaron P. Mitchell
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - C. Joel McManus
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
4
|
Tosiano MA, Lanni F, Mitchell AP, McManus CJ. Roles of P-body factors in Candida albicans filamentation and stress response. PLoS Genet 2025; 21:e1011632. [PMID: 40096135 PMCID: PMC11975087 DOI: 10.1371/journal.pgen.1011632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 04/07/2025] [Accepted: 02/20/2025] [Indexed: 03/19/2025] Open
Abstract
Hyphal growth is strongly associated with virulence in the human fungal pathogen Candida albicans. While hyphal transcriptional networks have been the subject of intense study, relatively little is known about post-transcriptional regulation. Previous work reported that P-Body (PB) factors Dhh1 and Edc3 were required for C. albicans virulence and filamentation, suggesting an essential role for post-transcriptional regulation of these processes. However, the molecular roles of these factors have not been determined. To further study the function of PB factors in filamentation, we generated homozygous deletions of DHH1 and EDC3 in diverse prototrophic clinical strains using transient CRISPR-Cas9. Homozygous DHH1 deletion strongly impaired growth, altered filamentation, and exhibited unusual colony morphology in response to heat stress in five strain backgrounds. Using RNA-seq, we found DHH1 deletion disrupts the regulation of thousands of genes under both yeast and hyphal growth conditions in SC5314 and P57055. This included upregulation of many stress response genes in the absence of external stress, similar to deletion of the S. cerevisiae DHH1 homolog. In contrast, we found EDC3 was not required for heat tolerance or filamentation in diverse strains. These results support a model in which DHH1, but not EDC3, represses hyphal stress response transcripts in yeast and remodels the transcriptome during filamentation. Our work supports distinct requirements for specific mRNA decay factors, bolstering evidence for post-transcriptional regulation of filamentation in C. albicans.
Collapse
Affiliation(s)
- Melissa A. Tosiano
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Frederick Lanni
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Aaron P. Mitchell
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - C. Joel McManus
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
5
|
Nemeth T, Zarnocki A, Ladanyi A, Papp C, Ayaydin F, Szebeni GJ, Gacser A. PCR-based CRISPR/Cas9 system for fluorescent tagging: A tool for studying Candida parapsilosis virulence. PLoS One 2025; 20:e0312948. [PMID: 39992908 DOI: 10.1371/journal.pone.0312948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/16/2024] [Indexed: 02/26/2025] Open
Abstract
Candida parapsilosis is persistent in a hospital environment hence it is often associated with nosocomial infections especially amongst low-birth weight neonates. Genetic modification is therefore important to characterise the physiological and virulence related properties of this fungus. A PCR-based CRISPR/Cas9 system has been adopted to facilitate the generation of fluorescent tagged prototroph isolates. We examined a total of eight fluorescent protein coding genes, out of which three were found to be applicable for simultaneous utilisation. We investigated three clinical isolates of C. parapsilosis in terms of their adherence to silicone and their uptake by J774.2 murine macrophages in competition assays. Interestingly, we found significant differences between them in both experiments where GA1 isolate was significantly less resistant to macrophage uptake and CDC317 was significantly more adherent to silicone material. In silico analysis of the agglutinin-like sequences (Als) exposed remarkable diversity in this protein family and additionally, the thorough analysis of the ALS genes revealed evidence of formation of a new gene by intrachromosomal recombination in the GA1 isolate. Finally, we provide a step by step protocol for the application of the PCR-based CRISPR/Cas9 system for fluorescently labelling C. parapsilosis isolates.
Collapse
Affiliation(s)
- Tibor Nemeth
- Department of Biotechnology and Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Andrea Zarnocki
- Department of Biotechnology and Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Anett Ladanyi
- Department of Biotechnology and Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Csaba Papp
- Department of Biotechnology and Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Ferhan Ayaydin
- Functional Cell Biology and Immunology Advanced Core Facility (FCBI-ACF), Hungarian Centre of Excellence for Molecular Medicine (HCEMM), University of Szeged, Szeged, Hungary
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Gabor Janos Szebeni
- Laboratory of Functional Genomics, Core Facility, HUN-REN Biological Research Centre, Szeged, Hungary
- Department of Internal Medicine, Hematology Centre, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Attila Gacser
- Department of Biotechnology and Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- HCEMM-SZTE Pathogen Fungi Research Group, University of Szeged, Szeged, Hungary
- HUN-REN-SZTE Pathomechanisms of Fungal Infections Research Group, University of Szeged, Szeged, Hungary
- IKIKK, Competence Centre for Molecular Biology, Bionics and Biotechnology, University of Szeged, Szeged, Hungary
| |
Collapse
|
6
|
Zhang M, Zhao Y, Cui H, Huang W, Xiong K, Yang S, Duan Y, He Y, Yang L, Su C, Lu Y. CO 2 potentiates echinocandin efficacy during invasive candidiasis therapy via dephosphorylation of Hsp90 by Ptc2 in condensates. Proc Natl Acad Sci U S A 2025; 122:e2417721122. [PMID: 39908105 PMCID: PMC11831212 DOI: 10.1073/pnas.2417721122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/03/2025] [Indexed: 02/07/2025] Open
Abstract
Carbon dioxide is a signaling cue critical for fungal pathogenesis. Ptc2, a type 2C protein phosphatase (PP2C), serves as a conserved CO2 sensor in fungi. By combining phosphoproteomic and biochemical assays, we identified Hsp90 as a direct target of Ptc2 at host CO2 concentrations and Ssb1 as a Ptc2 target protein regardless of CO2 levels in Candida albicans, the most prevalent human fungal pathogen. Ptc2 forms reversible condensates at elevated CO2, which enables the recruitment of Hsp90, but not Ssb1, to condensates, allowing efficient dephosphorylation. This process confers an enhanced susceptibility to caspofungin in vitro and during in vivo infection therapy. Importantly, we demonstrate this phenomenon in non-albicans Candida species. Sequential passages of C. albicans in mice with caspofungin treatment readily induce in vivo drug tolerance, causing therapeutic failure. These evolved strains display increased resistance to caspofungin under host concentrations of CO2 but remain susceptible in air. Collectively, our study reveals a profound impact of host concentrations of CO2 on antifungal drug susceptibility and connects this phenotype to therapeutic outcomes and highlights condensate formation as an efficient means that enables selective recruitment of substrates for certain signaling events.
Collapse
Affiliation(s)
- Mao Zhang
- Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei230032, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei230032, China
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan430072, China
| | - Youzhi Zhao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan430072, China
| | - Hao Cui
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan430072, China
| | - Wenqiang Huang
- Department of Stomatology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei230032, China
| | - Kang Xiong
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan430072, China
| | - Shan Yang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan430072, China
| | - Yuanyuan Duan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan430072, China
| | - Yong He
- Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei230032, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei230032, China
| | - Lianjuan Yang
- Shanghai Dermatology Hospital, School of Medicine, Tongji University, Shanghai200443, China
| | - Chang Su
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan430072, China
| | - Yang Lu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan430072, China
| |
Collapse
|
7
|
Sofras D, Carolus H, Subotić A, Romero CL, Ennis CL, Hernday AD, Nobile CJ, Rybak JM, Van Dijck P. A comparative evaluation of CRISPR-Cas9 allele editing systems in Candida auris: challenging research in a challenging bug. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.09.632232. [PMID: 39829791 PMCID: PMC11741338 DOI: 10.1101/2025.01.09.632232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Candida auris is an emergent fungal pathogen of significant interest for molecular research because of its unique nosocomial persistence, high stress tolerance and common multidrug resistance. To investigate the molecular mechanisms of these or other phenotypes, a handful of CRISPR-Cas9 based allele editing tools have been optimized for C. auris. Nonetheless, allele editing in this species remains a significant challenge, and different systems have different advantages and disadvantages. In this work, we compare four systems to introduce the genetic elements necessary for the production of Cas9 and the guide RNA molecule in the genome of C. auris, replacing the ENO1, LEU2 and HIS1 loci respectively, while the fourth system makes use of an episomal plasmid. We observed that the editing efficiency of all four systems was significantly different and strain dependent. Alarmingly, we did not detect correct integration of linear CRISPR cassette constructs in integration-based systems, in over 4,900 screened transformants. Still, all transformants, whether correctly edited or not, grew on selective nourseothricin media, suggesting common random ectopic integration of the CRISPR cassette. Although the plasmid-based system showed a low transformation success compared to the other systems, it has the highest editing efficiency with 41.9% correct transformants on average. In an attempt to improve editing efficiencies of integration-based systems by silencing the non-homologous end joining (NHEJ) DNA repair pathway, we deleted two main NHEJ factors, KU70 and LIG4. However, no improved editing or targeting efficiencies were detected in ku70Δ, lig4Δ, or ku70Δ/lig4Δ backgrounds. Our research highlights important challenges in precise genome editing of C. auris and sheds light on the advantages and limitations of several methods with the aim to guide scientists in selecting the most appropriate tool for molecular work in this enigmatic fungal pathogen.
Collapse
Affiliation(s)
- Dimitrios Sofras
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Hans Carolus
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Ana Subotić
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Celia Lobo Romero
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Craig L. Ennis
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California Merced, Merced, CA, USA
| | - Aaron D. Hernday
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California Merced, Merced, CA, USA
- Health Sciences Research Institute, University of California Merced, Merced, CA, USA
| | - Clarissa J. Nobile
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California Merced, Merced, CA, USA
- Health Sciences Research Institute, University of California Merced, Merced, CA, USA
| | | | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium
- KU Leuven One Health Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Bekirian C, Valsecchi I, Bachellier-Bassi S, Scandola C, Guijarro JI, Chauvel M, Mourer T, Gow NAR, Aimanianda VK, d'Enfert C, Fontaine T. β-1,6-Glucan plays a central role in the structure and remodeling of the bilaminate fungal cell wall. eLife 2024; 13:RP100569. [PMID: 39636210 PMCID: PMC11620752 DOI: 10.7554/elife.100569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
The cell wall of human fungal pathogens plays critical roles as an architectural scaffold and as a target and modulator of the host immune response. Although the cell wall of the pathogenic yeast Candida albicans is intensively studied, one of the major fibrillar components in its cell wall, β-1,6-glucan, has been largely neglected. Here, we show that β-1,6-glucan is essential for bilayered cell wall organization, cell wall integrity, and filamentous growth. For the first time, we show that β-1,6-glucan production compensates the defect in mannan elongation in the outer layer of the cell wall. In addition, β-1,6-glucan dynamics are also coordinated by host environmental stimuli and stresses with wall remodeling, where the regulation of β-1,6-glucan structure and chain length is a crucial process. As we point out that β-1,6-glucan is exposed at the yeast surface and modulate immune response, β-1,6-glucan must be considered a key factor in host-pathogen interactions.
Collapse
Affiliation(s)
- Clara Bekirian
- Institut Pasteur, Université Paris Cité, INRAE, USC2019, Unité Biologie et Pathogénicité FongiquesParisFrance
| | - Isabel Valsecchi
- EA DYNAMYC 7380, Faculté de Santé, Université Paris-Est Créteil (UPEC), École Nationale Vétérinaire d'Alfort (EnvA), USC AnsesCréteilFrance
| | - Sophie Bachellier-Bassi
- Institut Pasteur, Université Paris Cité, INRAE, USC2019, Unité Biologie et Pathogénicité FongiquesParisFrance
| | - Cyril Scandola
- Institut Pasteur, Université Paris Cité, Ultrastructural Bioimaging UnitParisFrance
| | - J Inaki Guijarro
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Biological NMR and HDX-MS Technological PlatformParisFrance
| | - Murielle Chauvel
- Institut Pasteur, Université Paris Cité, INRAE, USC2019, Unité Biologie et Pathogénicité FongiquesParisFrance
| | - Thierry Mourer
- Institut Pasteur, Advanced Molecular Virology GroupParisFrance
| | - Neil AR Gow
- Medical Research Council Centre for Medical Mycology, University of ExeterExeterUnited Kingdom
| | | | - Christophe d'Enfert
- Institut Pasteur, Université Paris Cité, INRAE, USC2019, Unité Biologie et Pathogénicité FongiquesParisFrance
| | - Thierry Fontaine
- Institut Pasteur, Université Paris Cité, INRAE, USC2019, Unité Biologie et Pathogénicité FongiquesParisFrance
| |
Collapse
|
9
|
Cotter CJ, Trinh CT. CRISPR-GRIT: Guide RNAs with Integrated Repair Templates Enable Precise Multiplexed Genome Editing in the Diploid Fungal Pathogen Candida albicans. CRISPR J 2024; 7:385-394. [PMID: 39436817 DOI: 10.1089/crispr.2024.0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
Candida albicans, an opportunistic fungal pathogen, causes severe infections in immunocompromised individuals. Limited classes and overuse of current antifungals have led to the rapid emergence of antifungal resistance. Thus, there is an urgent need to understand fungal pathogen genetics to develop new antifungal strategies. Genetic manipulation of C. albicans is encumbered by its diploid chromosomes requiring editing both alleles to elucidate gene function. Although the recent development of CRISPR-Cas systems has facilitated genome editing in C. albicans, large-scale and multiplexed functional genomic studies are still hindered by the necessity of cotransforming repair templates for homozygous knockouts. Here, we present CRISPR-GRIT (Guide RNAs with Integrated Repair Templates), a repair template-integrated guide RNA design for expedited gene knockouts and multiplexed gene editing in C. albicans. We envision that this method can be used for high-throughput library screens and identification of synthetic lethal pairs in both C. albicans and other diploid organisms with strong homologous recombination machinery.
Collapse
Affiliation(s)
- Christopher J Cotter
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, Tennessee, USA
| | - Cong T Trinh
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
10
|
Hidalgo-Vico S, Prieto D, Alonso-Monge R, Román E, Maufrais C, d'Enfert C, Pla J. Candida albicans strains adapted to the mouse gut are resistant to bile salts via a Flo8-dependent mechanism. Fungal Genet Biol 2024; 175:103939. [PMID: 39486612 DOI: 10.1016/j.fgb.2024.103939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/15/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Candidaalbicans normally colonizes the human gastrointestinal tract as a commensal. Studying fungal factors involved in colonizing the mammalian gastrointestinal tract requires mouse models with altered microbiota. We have obtained strains of C.albicans through microevolution in the mouse gut for a prolonged period (one year) that display a substantial increase in fitness in this niche. These strains show resistance to bile salts, an increase in their adhesion to the intestinal mucosa, and are unable to filament in response to serum. Genetic analysis revealed some alterations, mainly a triploidy of chr7, a whole chr6 homozygosis, and an SNP in the FLO8 gene (located in the chr6), resulting in a truncated protein version. A wild type FLO8 gene complemented filamentation and bile salt sensitivity but showed an intermediate fitness phenotype in colonization. Alterations in bile salt sensitivity were also evident in bmt mutants, defective in β-mannosylation, and transcriptional targets of Flo8, suggesting a link between the fungal cell wall and mammalian gut colonization via the Flo8 transcriptional regulator.
Collapse
Affiliation(s)
- Susana Hidalgo-Vico
- Departamento de Microbiología y Parasitología-IRYCIS, Facultad de Farmacia, Universidad Complutense de Madrid, Avda. Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Daniel Prieto
- Departamento de Microbiología y Parasitología-IRYCIS, Facultad de Farmacia, Universidad Complutense de Madrid, Avda. Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Rebeca Alonso-Monge
- Departamento de Microbiología y Parasitología-IRYCIS, Facultad de Farmacia, Universidad Complutense de Madrid, Avda. Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Elvira Román
- Departamento de Microbiología y Parasitología-IRYCIS, Facultad de Farmacia, Universidad Complutense de Madrid, Avda. Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Corinne Maufrais
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, 75015 Paris, France; Institut Pasteur, Université Paris Cité, Hub de Bioinformatique et Biostatistique, Centre de Ressources et Recherche en Informatique (C2RI), 75015 Paris, France
| | - Christophe d'Enfert
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, 75015 Paris, France
| | - Jesús Pla
- Departamento de Microbiología y Parasitología-IRYCIS, Facultad de Farmacia, Universidad Complutense de Madrid, Avda. Ramón y Cajal s/n, 28040 Madrid, Spain.
| |
Collapse
|
11
|
Xu T, Wang S, Ma T, Dong Y, Ashby CR, Hao GF. The identification of essential cellular genes is critical for validating drug targets. Drug Discov Today 2024; 29:104215. [PMID: 39428084 DOI: 10.1016/j.drudis.2024.104215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/06/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Accurately identifying biological targets is crucial for advancing treatment options. Essential genes, vital for cell or organism survival, hold promise as potential drug targets in disease treatment. Although many studies have sought to identify essential genes as therapeutic targets in medicine and bioinformatics, systematic reviews on their relationship with drug targets are relatively rare. This work presents a comprehensive analysis to aid in identifying essential genes as potential targets for drug discovery, encompassing their relevance, identification methods, successful case studies, and challenges. This work will facilitate the identification of essential genes as therapeutic targets, thereby boosting new drug development.
Collapse
Affiliation(s)
- Ting Xu
- School of Pharmaceutical Sciences, Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang 550025, China
| | - Shuang Wang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Tingting Ma
- School of Pharmaceutical Sciences, Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang 550025, China
| | - Yawen Dong
- School of Pharmaceutical Sciences, Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang 550025, China.
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, St. John's University, New York, NY, USA.
| | - Ge-Fei Hao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
12
|
Chen R, Feng Y, Cai H, Yang S, She X, Feng J. DNA damage repair factor Rad18 controls virulence partially via transcriptional suppression of genes HWP1 and ECE1 in Candida albicans. Virulence 2024; 15:2433201. [PMID: 39573927 PMCID: PMC11610567 DOI: 10.1080/21505594.2024.2433201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/12/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024] Open
Abstract
DNA damage repair is a crucial cellular mechanism for rectifying DNA lesions arising during growth and development. Among the various repair pathways, postreplication repair (PRR) plays a pivotal role in resolving single-stranded gaps induced by DNA damage. However, the contribution of PRR to virulence remains elusive in the fungal pathogen Candida albicans (C. albicans). In this study, we investigated the role of Rad18, a critical component of PRR, in DNA damage response and virulence in C. albicans. We observed that deletion of RAD18 in C. albicans resulted in heightened sensitivity to DNA damage stress. Through deletion of specific internal domains coupled with spot assay analysis, we show that the internal RING and SAP domains play essential roles in DNA damage response, whereas the ZNF domain was less important. Surprisingly, the lack of Rad18 in C. albicans resulted in heightened intracellular survival within macrophages and elevated virulence in the Galleria mellonella model. RNAseq analysis revealed that loss of Rad18 upregulated the transcription of genes encoding transporters and oxidoreductases, as well as virulence genes, including HWP1 and ECE1. Suppression of the transcription of these virulence genes in the RAD18 deletion strain by a dCas9-mediated CRISPRi system reversed this increased virulence. Taken together, these data demonstrate that Rad18 plays a significant role in virulence partially through transcriptional suppression of virulence genes HWP1 and ECE1 in C. albicans. Our findings provide valuable insights into the intricate relationship between DNA damage response and virulence in C. albicans.
Collapse
Affiliation(s)
- Runlu Chen
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, China
| | - Yuting Feng
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, China
- Department of Clinical Laboratory, Kunshan Hospital of Chinese Medicine, Kunshan, China
| | - Huaxin Cai
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, China
| | - Shaling Yang
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, China
| | - Xiaoyin She
- Emergency and Critical Care Department, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinrong Feng
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, China
| |
Collapse
|
13
|
Kim MJ, White AM, Mitchell AP. Strain variation in Candida albicans glycolytic gene regulation. mSphere 2024; 9:e0057924. [PMID: 39431903 PMCID: PMC11580466 DOI: 10.1128/msphere.00579-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/23/2024] [Indexed: 10/22/2024] Open
Abstract
Central carbon metabolism is vital for the proliferation of Candida albicans, a fungus that is prominent as a commensal and pathogen. Glycolytic genes are activated by overlapping activities of the transcription factors Tye7 and Gal4, as shown by studies in the SC5314 genetic background. However, regulatory relationships can vary among C. albicans isolates. Here, we analyzed Tye7- and Gal4-related phenotypes in five diverse clinical isolates of C. albicans. We tested growth properties and gene expression impact through Nanostring profiling and, for the two strains SC5314 and P87, RNA sequencing. Our results lead to three main conclusions. First, the functional redundancy of Tye7 and Gal4 for glycolytic gene activation is preserved among all strains tested. Second, at the gene expression level, strain P87 is an outlier with regard to tye7Δ/Δ impact, and strain SC5314 is an outlier with regard to gal4Δ/Δ impact. Third, while Gal4 is well known to be dispensable for induction of the GAL1, GAL7, and GAL10 galactose-specific metabolic genes, we find that gal4Δ/Δ mutants of several strains have a mild galactose fermentation defect, as assayed by growth on galactose with the respiration inhibitor antimycin A. Our findings indicate that even a central metabolic regulatory network is subject to strain variation and illustrates an unexpected genotype-phenotype relationship.The fungal commensal and pathogen Candida albicans rely upon metabolic flexibility to colonize and infect host niches. Central carbon metabolism is governed by two regulators, Tye7 and Gal4, as defined in the reference strain SC5314. Here, we have explored the impact of Tye7 and Gal4 on carbon utilization and gene expression across five diverse C. albicans clinical isolates. Novel aspects of this study are the finding that even a central metabolic regulatory network is subject to strain variation and the observation of an unexpected mutant phenotype.
Collapse
Affiliation(s)
- Min-Ju Kim
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Amelia M. White
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Aaron P. Mitchell
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
14
|
Luo G, Zhang J, Wang T, Cui H, Bai Y, Luo J, Zhang J, Zhang M, Di L, Yuan Y, Xiong K, Yu X, Zhang Y, Shen C, Zhu C, Wang Y, Su C, Lu Y. A human commensal-pathogenic fungus suppresses host immunity via targeting TBK1. Cell Host Microbe 2024; 32:1536-1551.e6. [PMID: 39084229 DOI: 10.1016/j.chom.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/11/2024] [Accepted: 07/05/2024] [Indexed: 08/02/2024]
Abstract
Candida albicans stably colonizes humans but is the leading cause of hospital-acquired fungemia. Traditionally, masking immunogenic moieties has been viewed as a tactic for immune evasion. Here, we demonstrate that C. albicans blocks type I interferon (IFN-I) signaling via translocating an effector protein Cmi1 into host cells. Mechanistically, Cmi1 binds and inhibits TANK-binding kinase 1 (TBK1) to abrogate IFN-regulatory factor 3 (IRF3) phosphorylation, thereby suppressing the IFN-I cascade. Murine infection with a cmi1 mutant displays an exaggerated IFN-I response in both kidneys and bone-marrow-derived macrophages, leading to rapid fungal clearance and host survival. Remarkably, the lack of CMI1 compromises gut commensalism and increases IFN-I response in mouse colonic cells. These phenotypes of cmi1 are rescued by the depletion of IFN-I receptor. This work establishes the importance of TBK1 inhibition in fungal pathogenesis and reveals that a human commensal-pathogenic fungus significantly impacts host immunity during gut colonization and infection via delivering effector proteins into host cells.
Collapse
Affiliation(s)
- Gang Luo
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Jingkai Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Tianxu Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Hao Cui
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Yukun Bai
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Jianchen Luo
- College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| | - Jinqiu Zhang
- College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| | - Mao Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Linyan Di
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Yuncong Yuan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Kang Xiong
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiangtai Yu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yaling Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Chao Shen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Cheng Zhu
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Yong Wang
- College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| | - Chang Su
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yang Lu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
15
|
Kaszecki E, Palberg D, Grant M, Griffin S, Dhanjal C, Capperauld M, Emery RJN, Saville BJ. Euglena mutabilis exists in a FAB consortium with microbes that enhance cadmium tolerance. Int Microbiol 2024; 27:1249-1268. [PMID: 38167969 PMCID: PMC11300505 DOI: 10.1007/s10123-023-00474-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/29/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Synthetic algal-fungal and algal-bacterial cultures have been investigated as a means to enhance the technological applications of the algae. This inclusion of other microbes has enhanced growth and improved stress tolerance of the algal culture. The goal of the current study was to investigate natural microbial consortia to gain an understanding of the occurrence and benefits of these associations in nature. The photosynthetic protist Euglena mutabilis is often found in association with other microbes in acidic environments with high heavy metal (HM) concentrations. This may suggest that microbial interactions are essential for the protist's ability to tolerate these extreme environments. Our study assessed the Cd tolerance of a natural fungal-algal-bacterial (FAB) association whereby the algae is E. mutabilis. RESULTS This study provides the first assessment of antibiotic and antimycotic agents on an E. mutabilis culture. The results indicate that antibiotic and antimycotic applications significantly decreased the viability of E. mutabilis cells when they were also exposed to Cd. Similar antibiotic treatments of E. gracilis cultures had variable or non-significant impacts on Cd tolerance. E. gracilis also recovered better after pre-treatment with antibiotics and Cd than did E. mutabilis. The recoveries were assessed by heterotrophic growth without antibiotics or Cd. In contrast, both Euglena species displayed increased chlorophyll production upon Cd exposure. PacBio full-length amplicon sequencing and targeted Sanger sequencing identified the microbial species present in the E. mutabilis culture to be the fungus Talaromyces sp. and the bacterium Acidiphilium acidophilum. CONCLUSION This study uncovers a possible fungal, algal, and bacterial relationship, what we refer to as a FAB consortium. The members of this consortium interact to enhance the response to Cd exposure. This results in a E. mutabilis culture that has a higher tolerance to Cd than the axenic E. gracilis. The description of this interaction provides a basis for explore the benefits of natural interactions. This will provide knowledge and direction for use when creating or maintaining FAB interactions for biotechnological purposes, including bioremediation.
Collapse
Affiliation(s)
- Emma Kaszecki
- Environmental and Life Science Graduate Program, Trent University, Peterborough, ON, Canada
| | - Daniel Palberg
- Environmental and Life Science Graduate Program, Trent University, Peterborough, ON, Canada
| | - Mikaella Grant
- Environmental and Life Science Graduate Program, Trent University, Peterborough, ON, Canada
| | - Sarah Griffin
- Forensic Science Department, Trent University, Peterborough, ON, Canada
| | - Chetan Dhanjal
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | | | - R J Neil Emery
- Environmental and Life Science Graduate Program, Trent University, Peterborough, ON, Canada
- Department of Biology, Trent University, Peterborough, ON, Canada
| | - Barry J Saville
- Environmental and Life Science Graduate Program, Trent University, Peterborough, ON, Canada.
- Forensic Science Department, Trent University, Peterborough, ON, Canada.
| |
Collapse
|
16
|
Lin X, Jiao R, Cui H, Yan X, Zhang K. Physiochemically and Genetically Engineered Bacteria: Instructive Design Principles and Diverse Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403156. [PMID: 38864372 PMCID: PMC11321697 DOI: 10.1002/advs.202403156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/18/2024] [Indexed: 06/13/2024]
Abstract
With the comprehensive understanding of microorganisms and the rapid advances of physiochemical engineering and bioengineering technologies, scientists are advancing rationally-engineered bacteria as emerging drugs for treating various diseases in clinical disease management. Engineered bacteria specifically refer to advanced physiochemical or genetic technologies in combination with cutting edge nanotechnology or physical technologies, which have been validated to play significant roles in lysing tumors, regulating immunity, influencing the metabolic pathways, etc. However, there has no specific reviews that concurrently cover physiochemically- and genetically-engineered bacteria and their derivatives yet, let alone their distinctive design principles and various functions and applications. Herein, the applications of physiochemically and genetically-engineered bacteria, and classify and discuss significant breakthroughs with an emphasis on their specific design principles and engineering methods objective to different specific uses and diseases beyond cancer is described. The combined strategies for developing in vivo biotherapeutic agents based on these physiochemically- and genetically-engineered bacteria or bacterial derivatives, and elucidated how they repress cancer and other diseases is also underlined. Additionally, the challenges faced by clinical translation and the future development directions are discussed. This review is expected to provide an overall impression on physiochemically- and genetically-engineered bacteria and enlighten more researchers.
Collapse
Affiliation(s)
- Xia Lin
- Central Laboratory and Department of UltrasoundSichuan Academy of Medical SciencesSichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaNo. 32, West Second Section, First Ring RoadChengduSichuan610072China
| | - Rong Jiao
- Central Laboratory and Department of UltrasoundSichuan Academy of Medical SciencesSichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaNo. 32, West Second Section, First Ring RoadChengduSichuan610072China
| | - Haowen Cui
- Central Laboratory and Department of UltrasoundSichuan Academy of Medical SciencesSichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaNo. 32, West Second Section, First Ring RoadChengduSichuan610072China
| | - Xuebing Yan
- Department of OncologyAffiliated Hospital of Yangzhou University. No.368Hanjiang Road, Hanjiang DistrictYangzhouJiangsu Province225012China
| | - Kun Zhang
- Central Laboratory and Department of UltrasoundSichuan Academy of Medical SciencesSichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaNo. 32, West Second Section, First Ring RoadChengduSichuan610072China
| |
Collapse
|
17
|
Ramírez-Zavala B, Hoffmann A, Krüger I, Schwanfelder S, Barker KS, Rogers PD, Morschhäuser J. Probing gene function in Candida albicans wild-type strains by Cas9-facilitated one-step integration of two dominant selection markers: a systematic analysis of recombination events at the target locus. mSphere 2024; 9:e0038824. [PMID: 38940507 PMCID: PMC11288041 DOI: 10.1128/msphere.00388-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 05/30/2024] [Indexed: 06/29/2024] Open
Abstract
The adaptation of gene deletion methods based on the CRISPR-Cas9 system has facilitated the genetic manipulation of the pathogenic yeast Candida albicans, because homozygous mutants of this diploid fungus can now be generated in a single step, allowing the rapid screening of candidate genes for their involvement in a phenotype of interest. However, the Cas9-mediated double-strand breaks at the target site may result in an undesired loss of heterozygosity (LOH) on the affected chromosome and cause phenotypic alterations that are not related to the function of the investigated gene. In our present study, we harnessed Cas9-facilitated gene deletion to probe a set of genes that are constitutively overexpressed in strains containing hyperactive forms of the transcription factor Mrr1 for a possible contribution to the fluconazole resistance of such strains. To this aim, we used gene deletion cassettes containing two different dominant selection markers, caSAT1 and HygB, which confer resistance to nourseothricin and hygromycin, respectively, for simultaneous genomic integration in a single step, hypothesizing that this would minimize undesired LOH events at the target locus. We found that selection for resistance to both nourseothricin and hygromycin strongly increased the proportion of homozygous deletion mutants among the transformants compared with selection on media containing only one of the antibiotics, but it did not avoid undesired LOH events. Our results demonstrate that LOH on the target chromosome is a significant problem when using Cas9 for the generation of C. albicans gene deletion mutants, which demands a thorough examination of recombination events at the target site. IMPORTANCE Candida albicans is one of the medically most important fungi and a model organism to study fungal pathogenicity. Investigating gene function in this diploid yeast has been facilitated by the adaptation of gene deletion methods based on the bacterial CRISPR-Cas9 system, because they enable the generation of homozygous mutants in a single step. We found that, in addition to increasing the efficiency of gene replacement by selection markers, the Cas9-mediated double-strand breaks also result in frequent loss of heterozygosity on the same chromosome, even when two different selection markers were independently integrated into the two alleles of the target gene. Since loss of heterozygosity for other genes can result in phenotypic alterations that are not caused by the absence of the target gene, these findings show that it is important to thoroughly analyze recombination events at the target locus when using Cas9 to generate gene deletion mutants in C. albicans.
Collapse
Affiliation(s)
| | - Anna Hoffmann
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Ines Krüger
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Sonja Schwanfelder
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Katherine S. Barker
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - P. David Rogers
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Joachim Morschhäuser
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
18
|
Xiong L, Goerlich K, Do E, Mitchell AP. Strain variation in the Candida albicans iron limitation response. mSphere 2024; 9:e0037224. [PMID: 38980069 PMCID: PMC11288005 DOI: 10.1128/msphere.00372-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/16/2024] [Indexed: 07/10/2024] Open
Abstract
Iron acquisition is critical for pathogens to proliferate during invasive infection, and the human fungal pathogen Candida albicans is no exception. The iron regulatory network, established in reference strain SC5314 and derivatives, includes the central player Sef1, a transcription factor that activates iron acquisition genes in response to iron limitation. Here, we explored potential variation in this network among five diverse C. albicans strains through mutant analysis, Nanostring gene expression profiling, and, for two strains, RNA-Seq. Our findings highlight four features that may inform future studies of natural variation and iron acquisition in this species. (i) Conformity: In all strains, major iron acquisition genes are upregulated during iron limitation, and a sef1Δ/Δ mutation impairs that response and growth during iron limitation. (ii) Response variation: Some aspects of the iron limitation response vary among strains, notably the activation of hypha-associated genes. As this gene set is tied to tissue damage and virulence, variation may impact the progression of infection. (iii) Genotype-phenotype variation: The impact of a sef1Δ/Δ mutation on cell wall integrity varies, and for the two strains examined the phenotype correlated with sef1Δ/Δ impact on several cell wall integrity genes. (iv) Phenotype discovery: DNA repair genes were induced modestly by iron limitation in sef1Δ/Δ mutants, with fold changes we would usually ignore. However, the response occurred in both strains tested and was reminiscent of a much stronger response described in Cryptococcus neoformans, a suggestion that it may have biological meaning. In fact, we observed that the iron limitation of a sef1Δ/Δ mutant caused recessive phenotypes to emerge at two heterozygous loci. Overall, our results show that a network that is critical for pathogen proliferation presents variation outside of its core functions.IMPORTANCEA key virulence factor of Candida albicans is the ability to maintain iron homeostasis in the host where iron is scarce. We focused on a central iron regulator, SEF1. We found that iron regulator Sef1 is required for growth, cell wall integrity, and genome integrity during iron limitation. The novel aspect of this work is the characterization of strain variation in a circuit that is required for survival in the host and the connection of iron acquisition to genome integrity in C. albicans.
Collapse
Affiliation(s)
- Liping Xiong
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | | | - Eunsoo Do
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Aaron P. Mitchell
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
19
|
Yang C, Li G, Zhang Q, Bai W, Li Q, Zhang P, Zhang J. Histone deacetylase Sir2 promotes the systemic Candida albicans infection by facilitating its immune escape via remodeling the cell wall and maintaining the metabolic activity. mBio 2024; 15:e0044524. [PMID: 38682948 PMCID: PMC11237532 DOI: 10.1128/mbio.00445-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/26/2024] [Indexed: 05/01/2024] Open
Abstract
Histone deacetylation affects Candida albicans (C. albicans) pathogenicity by modulating virulence factor expression and DNA damage. The histone deacetylase Sir2 is associated with C. albicans plasticity and maintains genome stability to help C. albicans adapt to various environmental niches. However, whether Sir2-mediated chromatin modification affects C. albicans virulence is unclear. The purpose of our study was to investigate the effect of Sir2 on C. albicans pathogenicity and regulation. Here, we report that Sir2 is required for C. albicans pathogenicity, as its deletion affects the survival rate, fungal burden in different organs and the extent of tissue damage in a mouse model of disseminated candidiasis. We evaluated the impact of Sir2 on C. albicans virulence factors and revealed that the Sir2 null mutant had an impaired ability to adhere to host cells and was more easily recognized by the innate immune system. Comprehensive analysis revealed that the disruption of C. albicans adhesion was due to a decrease in cell surface hydrophobicity rather than the differential expression of adhesion genes on the cell wall. In addition, Sir2 affects the distribution and exposure of mannan and β-glucan on the cell wall, indicating that Sir2 plays a role in preventing the immune system from recognizing C. albicans. Interestingly, our results also indicated that Sir2 helps C. albicans maintain metabolic activity under hypoxic conditions, suggesting that Sir2 contributes to C. albicans colonization at hypoxic sites. In conclusion, our findings provide detailed insights into antifungal targets and a useful foundation for the development of antifungal drugs. IMPORTANCE Candida albicans (C. albicans) is the most common opportunistic fungal pathogen and can cause various superficial infections and even life-threatening systemic infections. To successfully propagate infection, this organism relies on the ability to express virulence-associated factors and escape host immunity. In this study, we demonstrated that the histone deacetylase Sir2 helps C. albicans adhere to host cells and escape host immunity by mediating cell wall remodeling; as a result, C. albicans successfully colonized and invaded the host in vivo. In addition, we found that Sir2 contributes to carbon utilization under hypoxic conditions, suggesting that Sir2 is important for C. albicans survival and the establishment of infection in hypoxic environments. In summary, we investigated the role of Sir2 in regulating C. albicans pathogenicity in detail; these findings provide a potential target for the development of antifungal drugs.
Collapse
Affiliation(s)
- Chen Yang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Guanglin Li
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qiyue Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wenhui Bai
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qingiqng Li
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Peipei Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jiye Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
20
|
Muangsawat S, Chaiyosang P, Sinkanarak P, Sukted J, Thanyasrisung P, Matangkasombut O. Effects of efflux pumps on antifungal activity of chitosan against Candida albicans. J Oral Microbiol 2024; 16:2357976. [PMID: 38813525 PMCID: PMC11133954 DOI: 10.1080/20002297.2024.2357976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024] Open
Abstract
Background Antifungal resistance is a major problem, commonly caused by drug-efflux pump overexpression. To evaluate if chitosan could be effective in drug-resistant Candida infections, we investigated the effects of efflux pumps on antifungal activity of chitosan. Materials and Methods The minimal fungicidal concentration (MFC) of oligomer (7-9 kD) and polymer (900-1,000 kD) chitosan against Saccharomyces cerevisiae and Candida albicans were evaluated by broth and agar dilution methods. The MFCs of S. cerevisiae with single deletion of efflux pump genes, with deletion of seven efflux pumps (AD∆), and AD∆ overexpressing C. albicans efflux pump genes (CDR1, CDR2 and MDR1) were determined. C. albicans with homozygous deletions of CDR1 and of CDR2 were generated using CRISPR-Cas9 system and tested for chitosan susceptibility. Results While deleting any individual efflux pump genes had no effect on chitosan susceptibility, simultaneous deletion of multiple pumps (in AD∆) increased sensitivity to both types of chitosan. Interestingly, the overexpression of CDR1, CDR2 or MDR1 in AD∆ barely affected its sensitivity. Moreover, C. albicans with homozygous deletions of CDR1 and/or CDR2 showed similar sensitivity to wildtype. Conclusion Thus, C. albicans susceptibility to chitosan was not affected by drug-efflux pumps. Chitosan may be a promising antifungal agent against pump-overexpressing azole-resistant C. albicans.
Collapse
Affiliation(s)
- Sureeporn Muangsawat
- Department of Microbiology and Center of Excellence on Oral Microbiology and Immunology, Faculty of Dentistry, Chulalongkorn University, Pathumwan, Bangkok, Thailand
- Interdisciplinary Program on Medical Microbiology, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | | | - Patrawee Sinkanarak
- DDS Program, Faculty of Dentistry, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Juthamas Sukted
- Graduate Program in Applied Biological Sciences, Chulabhorn Graduate Institute, Bangkok, Thailand
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
| | - Panida Thanyasrisung
- Department of Microbiology and Center of Excellence on Oral Microbiology and Immunology, Faculty of Dentistry, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Oranart Matangkasombut
- Department of Microbiology and Center of Excellence on Oral Microbiology and Immunology, Faculty of Dentistry, Chulalongkorn University, Pathumwan, Bangkok, Thailand
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
| |
Collapse
|
21
|
Xiong L, Goerlich K, Mitchell AP. Regulatory features of Candida albicans hemin-induced filamentation. G3 (BETHESDA, MD.) 2024; 14:jkae053. [PMID: 38470537 PMCID: PMC11075532 DOI: 10.1093/g3journal/jkae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/14/2024]
Abstract
Candida albicans is a prominent fungal pathogen that can infect the bloodstream and deep tissues. One key pathogenicity trait is the ability to transition between yeast and hyphal growth. Hyphae are critical for the formation of biofilms, which in turn enable device-associated infection. Among signals that drive hypha formation is the presence of hemin, an oxidized Fe(III)-containing heme derivative found in blood. In this study, we asked 4 questions. First, how uniform is the filamentation response to hemin among C. albicans strains? We tested 26 diverse isolates and found that the strength of a strain's filamentation response to hemin reflected its filamentation level in the absence of hemin. Second, does hemin induce biofilm formation? Hemin biofilm induction was evident in 5 out of 10 isolates tested, including most of the weaker biofilm formers tested. Third, what is the gene expression response to hemin? We compared RNA-seq data for type strain SC5314 grown in pH 5.5 minimal media with or without hemin. We also compared that response to SC5314 grown in pH 7.0 minimal media, where it undergoes well-studied pH-dependent filamentation. We found a common set of 72 genes with upregulated RNA levels in response to both signals, including many known hypha-associated genes. Surprisingly, overlap among those 72 genes with 2 recent consensus definitions of hypha-associated genes was limited to only 16 genes. Fourth, which regulators govern hemin-induced filamentation? A mutant survey indicated that the response depends upon filamentation regulators Efg1, Brg1, and Rim101, but not upon heme acquisition regulator Hap1 or its target genes HMX1, RBT5, PGA10, PGA7, and CSA2. These findings argue that hemin induces hypha formation independently of its utilization.
Collapse
Affiliation(s)
- Liping Xiong
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Katharina Goerlich
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Aaron P Mitchell
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
22
|
Xiong L, Pereira De Sa N, Zarnowski R, Huang MY, Mota Fernandes C, Lanni F, Andes DR, Del Poeta M, Mitchell AP. Biofilm-associated metabolism via ERG251 in Candida albicans. PLoS Pathog 2024; 20:e1012225. [PMID: 38739655 PMCID: PMC11115363 DOI: 10.1371/journal.ppat.1012225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/23/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024] Open
Abstract
Biofilm formation by the fungal pathogen Candida albicans is the basis for its ability to infect medical devices. The metabolic gene ERG251 has been identified as a target of biofilm transcriptional regulator Efg1, and here we report that ERG251 is required for biofilm formation but not conventional free-living planktonic growth. An erg251Δ/Δ mutation impairs biofilm formation in vitro and in an in vivo catheter infection model. In both in vitro and in vivo biofilm contexts, cell number is reduced and hyphal length is limited. To determine whether the mutant defect is in growth or some other aspect of biofilm development, we examined planktonic cell features in a biofilm-like environment, which was approximated with sealed unshaken cultures. Under those conditions, the erg251Δ/Δ mutation causes defects in growth and hyphal extension. Overexpression in the erg251Δ/Δ mutant of the paralog ERG25, which is normally expressed more weakly than ERG251, partially improves biofilm formation and biofilm hyphal content, as well as growth and hyphal extension in a biofilm-like environment. GC-MS analysis shows that the erg251Δ/Δ mutation causes a defect in ergosterol accumulation when cells are cultivated under biofilm-like conditions, but not under conventional planktonic conditions. Overexpression of ERG25 in the erg251Δ/Δ mutant causes some increase in ergosterol levels. Finally, the hypersensitivity of efg1Δ/Δ mutants to the ergosterol inhibitor fluconazole is reversed by ERG251 overexpression, arguing that reduced ERG251 expression contributes to this efg1Δ/Δ phenotype. Our results indicate that ERG251 is required for biofilm formation because its high expression levels are necessary for ergosterol synthesis in a biofilm-like environment.
Collapse
Affiliation(s)
- Liping Xiong
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Nivea Pereira De Sa
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, United States of America
| | - Robert Zarnowski
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Manning Y. Huang
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Caroline Mota Fernandes
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, United States of America
| | - Frederick Lanni
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - David R. Andes
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, United States of America
| | - Aaron P. Mitchell
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
23
|
Gager C, Flores-Mireles AL. Blunted blades: new CRISPR-derived technologies to dissect microbial multi-drug resistance and biofilm formation. mSphere 2024; 9:e0064223. [PMID: 38511958 PMCID: PMC11036814 DOI: 10.1128/msphere.00642-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
The spread of multi-drug-resistant (MDR) pathogens has rapidly outpaced the development of effective treatments. Diverse resistance mechanisms further limit the effectiveness of our best treatments, including multi-drug regimens and last line-of-defense antimicrobials. Biofilm formation is a powerful component of microbial pathogenesis, providing a scaffold for efficient colonization and shielding against anti-microbials, which further complicates drug resistance studies. Early genetic knockout tools didn't allow the study of essential genes, but clustered regularly interspaced palindromic repeat inference (CRISPRi) technologies have overcome this challenge via genetic silencing. These tools rapidly evolved to meet new demands and exploit native CRISPR systems. Modern tools range from the creation of massive CRISPRi libraries to tunable modulation of gene expression with CRISPR activation (CRISPRa). This review discusses the rapid expansion of CRISPRi/a-based technologies, their use in investigating MDR and biofilm formation, and how this drives further development of a potent tool to comprehensively examine multi-drug resistance.
Collapse
Affiliation(s)
- Christopher Gager
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Ana L. Flores-Mireles
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
24
|
Ross RL, Santiago-Tirado FH. Advanced genetic techniques in fungal pathogen research. mSphere 2024; 9:e0064323. [PMID: 38470131 PMCID: PMC11036804 DOI: 10.1128/msphere.00643-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024] Open
Abstract
Although fungi have been important model organisms for solving genetic, molecular, and ecological problems, recently, they are also becoming an important source of infectious disease. Despite their high medical burden, fungal pathogens are understudied, and relative to other pathogenic microbes, less is known about how their gene functions contribute to disease. This is due, in part, to a lack of powerful genetic tools to study these organisms. In turn, this has resulted in inappropriate treatments and diagnostics and poor disease management. There are a variety of reasons genetic studies were challenging in pathogenic fungi, but in recent years, most of them have been overcome or advances have been made to circumvent these barriers. In this minireview, we highlight how recent advances in genetic studies in fungal pathogens have resulted in the discovery of important biology and potential new antifungals and have created the tools to comprehensively study these important pathogens.
Collapse
Affiliation(s)
- Robbi L. Ross
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Felipe H. Santiago-Tirado
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
- Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
25
|
Woodruff AL, Berman J, Anderson M. Strain background of Candida albicans interacts with SIR2 to alter phenotypic switching. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001444. [PMID: 38446018 PMCID: PMC10999749 DOI: 10.1099/mic.0.001444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/15/2024] [Indexed: 03/07/2024]
Abstract
The genetic background between strains of a single species and within a single strain lineage can significantly impact the expression of biological traits. This genetic variation may also reshape epigenetic mechanisms of cell identity and environmental responses that are controlled by interconnected transcriptional networks and chromatin-modifying enzymes. Histone deacetylases, including sirtuins, are critical regulators of chromatin state and have been directly implicated in governing the phenotypic transition between the 'sterile' white state and the mating-competent opaque state in Candida albicans, a common fungal commensal and pathogen of humans. Here, we found that a previously ambiguous role for the sirtuin SIR2 in C. albicans phenotypic switching is likely linked to the genetic background of mutant strains produced in the RM lineage of SC5314. SIR2 mutants in a specific lineage of BWP17 displayed increased frequencies of switching to the opaque state compared to the wild-type. Loss of SIR2 in other SC5314-derived backgrounds, including newly constructed BWP17 sir2Δ/Δ mutants, failed to recapitulate the increased white-opaque switching frequencies observed in the original BWP17 sir2Δ/Δ mutant background. Whole-genome sequencing revealed the presence of multiple imbalanced chromosomes and large loss of heterozygosity tracts that likely interact with SIR2 to increase phenotypic switching in this BWP17 sir2Δ/Δ mutant lineage. These genomic changes are not found in other SC5314-derived sir2Δ/Δ mutants that do not display increased opaque cell formation. Thus, complex karyotypes can emerge during strain construction that modify mutant phenotypes and highlight the importance of validating strain background when interpreting phenotypes.
Collapse
Affiliation(s)
- Andrew L. Woodruff
- Department of Microbiology, The Ohio State University, Columbus, OH, 43210, USA
| | - Judith Berman
- Shmunis School of Biomedical and Cancer Research, The George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Matthew Anderson
- Department of Microbiology, The Ohio State University, Columbus, OH, 43210, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, USA
- Department of Medical Genetics, Laboratory of Genetics, University of Wisconsin – Madison, Madison, WI, 53706, USA
- Center for Genomic Science Innovation, University of Wisconsin – Madison, Madison, WI, 53706, USA
| |
Collapse
|
26
|
Avelar GM, Pradhan A, Ma Q, Hickey E, Leaves I, Liddle C, Rodriguez Rondon AV, Kaune AK, Shaw S, Maufrais C, Sertour N, Bain JM, Larcombe DE, de Assis LJ, Netea MG, Munro CA, Childers DS, Erwig LP, Brown GD, Gow NAR, Bougnoux ME, d'Enfert C, Brown AJP. A CO 2 sensing module modulates β-1,3-glucan exposure in Candida albicans. mBio 2024; 15:e0189823. [PMID: 38259065 PMCID: PMC10865862 DOI: 10.1128/mbio.01898-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Microbial species capable of co-existing with healthy individuals, such as the commensal fungus Candida albicans, exploit multifarious strategies to evade our immune defenses. These strategies include the masking of immunoinflammatory pathogen-associated molecular patterns (PAMPs) at their cell surface. We reported previously that C. albicans actively reduces the exposure of the proinflammatory PAMP, β-1,3-glucan, at its cell surface in response to host-related signals such as lactate and hypoxia. Here, we show that clinical isolates of C. albicans display phenotypic variability with respect to their lactate- and hypoxia-induced β-1,3-glucan masking. We have exploited this variability to identify responsive and non-responsive clinical isolates. We then performed RNA sequencing on these isolates to reveal genes whose expression patterns suggested potential association with lactate- or hypoxia-induced β-1,3-glucan masking. The deletion of two such genes attenuated masking: PHO84 and NCE103. We examined NCE103-related signaling further because NCE103 has been shown previously to encode carbonic anhydrase, which promotes adenylyl cyclase-protein kinase A (PKA) signaling at low CO2 levels. We show that while CO2 does not trigger β-1,3-glucan masking in C. albicans, the Sch9-Rca1-Nce103 signaling module strongly influences β-1,3-glucan exposure in response to hypoxia and lactate. In addition to identifying a new regulatory module that controls PAMP exposure in C. albicans, our data imply that this module is important for PKA signaling in response to environmental inputs other than CO2.IMPORTANCEOur innate immune defenses have evolved to protect us against microbial infection in part via receptor-mediated detection of "pathogen-associated molecular patterns" (PAMPs) expressed by invading microbes, which then triggers their immune clearance. Despite this surveillance, many microbial species are able to colonize healthy, immune-competent individuals, without causing infection. To do so, these microbes must evade immunity. The commensal fungus Candida albicans exploits a variety of strategies to evade immunity, one of which involves reducing the exposure of a proinflammatory PAMP (β-1,3-glucan) at its cell surface. Most of the β-1,3-glucan is located in the inner layer of the C. albicans cell wall, hidden by an outer layer of mannan fibrils. Nevertheless, some β-1,3-glucan can become exposed at the fungal cell surface. However, in response to certain specific host signals, such as lactate or hypoxia, C. albicans activates an anticipatory protective response that decreases β-1,3-glucan exposure, thereby reducing the susceptibility of the fungus to impending innate immune attack. Here, we exploited the natural phenotypic variability of C. albicans clinical isolates to identify strains that do not display the response to β-1,3-glucan masking signals observed for the reference isolate, SC5314. Then, using genome-wide transcriptional profiling, we compared these non-responsive isolates with responsive controls to identify genes potentially involved in β-1,3-glucan masking. Mutational analysis of these genes revealed that a sensing module that was previously associated with CO2 sensing also modulates β-1,3-glucan exposure in response to hypoxia and lactate in this major fungal pathogen of humans.
Collapse
Affiliation(s)
- Gabriela M. Avelar
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Arnab Pradhan
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
- Medical Research Council Centre for Medical Mycology, School of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Qinxi Ma
- Medical Research Council Centre for Medical Mycology, School of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Emer Hickey
- Medical Research Council Centre for Medical Mycology, School of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Ian Leaves
- Medical Research Council Centre for Medical Mycology, School of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Corin Liddle
- Bioimaging Unit, University of Exeter, Exeter, United Kingdom
| | - Alejandra V. Rodriguez Rondon
- Medical Research Council Centre for Medical Mycology, School of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Ann-Kristin Kaune
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Sophie Shaw
- Centre for Genome Enabled Biology and Medicine, University of Aberdeen, Aberdeen, United Kingdom
| | - Corinne Maufrais
- Institut Pasteur, Université Paris Cité, INRAe USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | - Natacha Sertour
- Institut Pasteur, Université Paris Cité, INRAe USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Judith M. Bain
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Daniel E. Larcombe
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
- Medical Research Council Centre for Medical Mycology, School of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Leandro J. de Assis
- Medical Research Council Centre for Medical Mycology, School of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
- Department for Immunology & Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Carol A. Munro
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Delma S. Childers
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Lars P. Erwig
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
- Johnson-Johnson Innovation, EMEA Innovation Centre, London, United Kingdom
| | - Gordon D. Brown
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
- Medical Research Council Centre for Medical Mycology, School of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Neil A. R. Gow
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
- Medical Research Council Centre for Medical Mycology, School of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Marie-Elisabeth Bougnoux
- Institut Pasteur, Université Paris Cité, INRAe USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
- Unité de Parasitologie-Mycologie, Service de Microbiologie Clinique, Hôpital Necker-Enfants-Malades, Assistance Publique des Hôpitaux de Paris (APHP), Paris, France
- Université Paris Cité, Paris, France
| | - Christophe d'Enfert
- Institut Pasteur, Université Paris Cité, INRAe USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Alistair J. P. Brown
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
- Medical Research Council Centre for Medical Mycology, School of Biosciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
27
|
Jiang L, Xu H, Wei M, Gu Y, Yan H, Pan L, Wei C. Transcriptional expression of PHR2 is positively controlled by the calcium signaling transcription factor Crz1 through its binding motif in the promoter. Microbiol Spectr 2024; 12:e0168923. [PMID: 38054721 PMCID: PMC10783099 DOI: 10.1128/spectrum.01689-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE The fungal cell wall consists of glucans, mannoproteins, and chitin and is essential for cell viability, morphogenesis, and pathogenesis. The enzymes of the GH72 family are responsible for ß-(1,3)-glucan elongation and branching, which is crucial for the formation of the glucan-chitin polymer at the bud neck of yeast cells. In the human fungal pathogen Candida albicans, there are five GH72 enzyme-encoding genes: PHR1, PHR2, PHR3, PGA4, and PGA5. It is known that expression of PHR1 and PHR2 is controlled by the pH-responsive Rim101 pathway through the transcription factor Rim101. In this study, we have demonstrated that the transcription expression of PHR2 is also controlled by the transcription factor Crz1 through its binding motif in the promoter. Therefore, we have uncovered a dual-control mechanism by which PHR2 expression is negatively regulated via CaRim101 through the pH-responsive pathway and positively modulated by CaCrz1 through the calcium/calcineurin signaling pathway.
Collapse
Affiliation(s)
- Linghuo Jiang
- Laboratory of Yeast Biology and Fermentation Technology, Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Huihui Xu
- Department of Food Science, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Min Wei
- Laboratory of Yeast Biology and Fermentation Technology, Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Yiying Gu
- Laboratory of Yeast Biology and Fermentation Technology, Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Hongbo Yan
- Department of Food Science, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Lingxin Pan
- Laboratory of Yeast Biology and Fermentation Technology, Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Chunyu Wei
- Laboratory of Yeast Biology and Fermentation Technology, Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
| |
Collapse
|
28
|
Gregor JB, Gutierrez-Schultz VA, Hoda S, Baker KM, Saha D, Burghaze MG, Vazquez C, Burgei KE, Briggs SD. An expanded toolkit of drug resistance cassettes for Candida glabrata, Candida auris, and Candida albicans leads to new insights into the ergosterol pathway. mSphere 2023; 8:e0031123. [PMID: 37929964 PMCID: PMC10732037 DOI: 10.1128/msphere.00311-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/28/2023] [Indexed: 11/07/2023] Open
Abstract
IMPORTANCE The increasing problem of drug resistance and emerging pathogens is an urgent global health problem that necessitates the development and expansion of tools for studying fungal drug resistance and pathogenesis. Prior studies in Candida glabrata, Candida auris, and Candida albicans have been mainly limited to the use of NatMX/SAT1 and HphMX/CaHyg for genetic manipulation in prototrophic strains and clinical isolates. In this study, we demonstrated that NatMX/SAT1, HphMX, KanMX, and/or BleMX drug resistance cassettes when coupled with a CRISPR-ribonucleoprotein (RNP)-based system can be efficiently utilized for deleting or modifying genes in the ergosterol pathway of C. glabrata, C. auris, and C. albicans. Moreover, the utility of these tools has provided new insights into ERG genes and their relationship to azole resistance in Candida. Overall, we have expanded the toolkit for Candida pathogens to increase the versatility of genetically modifying complex pathways involved in drug resistance and pathogenesis.
Collapse
Affiliation(s)
- Justin B. Gregor
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | | | - Smriti Hoda
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | - Kortany M. Baker
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | - Debasmita Saha
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | | | - Cynthia Vazquez
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | - Kendra E. Burgei
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | - Scott D. Briggs
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
- Purdue University Institute for Cancer Research, West Lafayette, Indiana, USA
| |
Collapse
|
29
|
Douglas LM, Min K, Konopka JB. Candida albicans resistance to hypochlorous acid. mBio 2023; 14:e0267123. [PMID: 38032204 PMCID: PMC10746268 DOI: 10.1128/mbio.02671-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
IMPORTANCE Hypochlorous acid (HOCl), commonly known as bleach, is generated during the respiratory burst by phagocytes and is a key weapon used to attack Candida albicans and other microbial pathogens. However, the effects of hypochlorous acid on C. albicans have been less well studied than H2O2, a different type of oxidant produced by phagocytes. HOCl kills C. albicans more effectively than H2O2 and results in disruption of the plasma membrane. HOCl induced a very different transcriptional response than H2O2, and there were significant differences in the susceptibility of mutant strains of C. albicans to these oxidants. Altogether, these results indicate that HOCl has distinct effects on cells that could be targeted in novel therapeutic strategies to enhance the killing of C. albicans and other pathogens.
Collapse
Affiliation(s)
- Lois M. Douglas
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Kyunghun Min
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - James B. Konopka
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
30
|
Arita GS, Ma Q, Leaves I, Pradhan A, Hickey E, Dambuza I, Bebes A, Vincenzi Conrado PC, Barros Galinari C, Vicente Seixas FA, Kioshima ÉS, de Souza Bonfim-Mendonça P, Svidzinski TIE, Brown AJP. The impact of ORF19.36.1 in the pathobiology of Candida albicans. Microb Pathog 2023; 185:106437. [PMID: 37913825 DOI: 10.1016/j.micpath.2023.106437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND Our previous proteomics data obtained from Candida albicans recovered after serial passage in a murine model of systemic infection revealed that Orf19.36.1 expression correlates with the virulence of the fungus. Therefore, the impact of ORF19.36.1 upon virulence was tested in this study. MATERIALS & METHODS CRISPR-Cas9 technology was used to construct homozygous C. albicans orf19.36.1 null mutants and the phenotypes of these mutants examined in vitro (filamentation, invasion, adhesion, biofilm formation, hydrolase activities) and in vivo assays. RESULTS The deletion of ORF19.36.1 did not significantly impact the phenotypes examined or the virulence of C. albicans in two infection models. CONCLUSION These results suggest that, although Orf19.36.1 expression correlates with virulence, this protein is not essential for C. albicans pathobiology.
Collapse
Affiliation(s)
- Glaucia Sayuri Arita
- Department of Clinical Analysis and Biomedicine, Laboratory of Medical Mycology, State University of Maringa, T20 Building, Room 203, Colombo Avenue, 5790 - Zone 7, Maringá, PR, 87020-900, Brazil
| | - Qinxi Ma
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK
| | - Ian Leaves
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK
| | - Arnab Pradhan
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK
| | - Emer Hickey
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK
| | - Ivy Dambuza
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK
| | - Attila Bebes
- Centre for Cytomics, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK
| | - Pollyanna Cristina Vincenzi Conrado
- Department of Clinical Analysis and Biomedicine, Laboratory of Medical Mycology, State University of Maringa, T20 Building, Room 203, Colombo Avenue, 5790 - Zone 7, Maringá, PR, 87020-900, Brazil
| | - Camila Barros Galinari
- Department of Clinical Analysis and Biomedicine, Laboratory of Medical Mycology, State University of Maringa, T20 Building, Room 203, Colombo Avenue, 5790 - Zone 7, Maringá, PR, 87020-900, Brazil
| | - Flávio Augusto Vicente Seixas
- Department of Technology, State University of Maringa, Ângelo Moreira da Fonseca Avenue, 1800 - Danielle Park, Umuarama, PR, 87506-370, Brazil
| | - Érika Seki Kioshima
- Department of Clinical Analysis and Biomedicine, Laboratory of Medical Mycology, State University of Maringa, T20 Building, Room 203, Colombo Avenue, 5790 - Zone 7, Maringá, PR, 87020-900, Brazil
| | - Patrícia de Souza Bonfim-Mendonça
- Department of Clinical Analysis and Biomedicine, Laboratory of Medical Mycology, State University of Maringa, T20 Building, Room 203, Colombo Avenue, 5790 - Zone 7, Maringá, PR, 87020-900, Brazil
| | - Terezinha Inez Estivalet Svidzinski
- Department of Clinical Analysis and Biomedicine, Laboratory of Medical Mycology, State University of Maringa, T20 Building, Room 203, Colombo Avenue, 5790 - Zone 7, Maringá, PR, 87020-900, Brazil.
| | - Alistair J P Brown
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK
| |
Collapse
|
31
|
Ma J, Song J, Young ND, Chang BCH, Korhonen PK, Campos TL, Liu H, Gasser RB. 'Bingo'-a large language model- and graph neural network-based workflow for the prediction of essential genes from protein data. Brief Bioinform 2023; 25:bbad472. [PMID: 38152979 PMCID: PMC10753293 DOI: 10.1093/bib/bbad472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/22/2023] [Accepted: 11/28/2023] [Indexed: 12/29/2023] Open
Abstract
The identification and characterization of essential genes are central to our understanding of the core biological functions in eukaryotic organisms, and has important implications for the treatment of diseases caused by, for example, cancers and pathogens. Given the major constraints in testing the functions of genes of many organisms in the laboratory, due to the absence of in vitro cultures and/or gene perturbation assays for most metazoan species, there has been a need to develop in silico tools for the accurate prediction or inference of essential genes to underpin systems biological investigations. Major advances in machine learning approaches provide unprecedented opportunities to overcome these limitations and accelerate the discovery of essential genes on a genome-wide scale. Here, we developed and evaluated a large language model- and graph neural network (LLM-GNN)-based approach, called 'Bingo', to predict essential protein-coding genes in the metazoan model organisms Caenorhabditis elegans and Drosophila melanogaster as well as in Mus musculus and Homo sapiens (a HepG2 cell line) by integrating LLM and GNNs with adversarial training. Bingo predicts essential genes under two 'zero-shot' scenarios with transfer learning, showing promise to compensate for a lack of high-quality genomic and proteomic data for non-model organisms. In addition, the attention mechanisms and GNNExplainer were employed to manifest the functional sites and structural domain with most contribution to essentiality. In conclusion, Bingo provides the prospect of being able to accurately infer the essential genes of little- or under-studied organisms of interest, and provides a biological explanation for gene essentiality.
Collapse
Affiliation(s)
- Jiani Ma
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Jiangning Song
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - Neil D Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Bill C H Chang
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Pasi K Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Tulio L Campos
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia
- Bioinformatics Core Facility, Instituto Aggeu Magalhaes, Fundaçao Oswaldo Cruz (IAM-Fiocruz), Recife, Pernambuco, Brazil
| | - Hui Liu
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
32
|
Lohse MB, Ziv N, Johnson AD. Variation in transcription regulator expression underlies differences in white-opaque switching between the SC5314 reference strain and the majority of Candida albicans clinical isolates. Genetics 2023; 225:iyad162. [PMID: 37811798 PMCID: PMC10627253 DOI: 10.1093/genetics/iyad162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/26/2023] [Indexed: 10/10/2023] Open
Abstract
Candida albicans, a normal member of the human microbiome and an opportunistic fungal pathogen, undergoes several morphological transitions. One of these transitions is white-opaque switching, where C. albicans alternates between 2 stable cell types with distinct cellular and colony morphologies, metabolic preferences, mating abilities, and interactions with the innate immune system. White-to-opaque switching is regulated by mating type; it is repressed by the a1/α2 heterodimer in a/α cells, but this repression is lifted in a/a and α/α mating type cells (each of which are missing half of the repressor). The widely used C. albicans reference strain, SC5314, is unusual in that white-opaque switching is completely blocked when the cells are a/α; in contrast, most other C. albicans a/α strains can undergo white-opaque switching at an observable level. In this paper, we uncover the reason for this difference. We show that, in addition to repression by the a1/α2 heterodimer, SC5314 contains a second block to white-opaque switching: 4 transcription regulators of filamentous growth are upregulated in this strain and collectively suppress white-opaque switching. This second block is missing in the majority of clinical strains, and, although they still contain the a1/α2 heterodimer repressor, they exhibit a/α white-opaque switching at an observable level. When both blocks are absent, white-opaque switching occurs at very high levels. This work shows that white-opaque switching remains intact across a broad group of clinical strains, but the precise way it is regulated and therefore the frequency at which it occurs varies from strain to strain.
Collapse
Affiliation(s)
- Matthew B Lohse
- Department of Microbiology and Immunology, University of California - San Francisco, San Francisco, CA 94143, USA
| | - Naomi Ziv
- Department of Microbiology and Immunology, University of California - San Francisco, San Francisco, CA 94143, USA
| | - Alexander D Johnson
- Department of Microbiology and Immunology, University of California - San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
33
|
Shrivastava M, Kouyoumdjian GS, Kirbizakis E, Ruiz D, Henry M, Vincent AT, Sellam A, Whiteway M. The Adr1 transcription factor directs regulation of the ergosterol pathway and azole resistance in Candida albicans. mBio 2023; 14:e0180723. [PMID: 37791798 PMCID: PMC10653825 DOI: 10.1128/mbio.01807-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 10/05/2023] Open
Abstract
IMPORTANCE Research often relies on well-studied orthologs within related species, with researchers using a well-studied gene or protein to allow prediction of the function of the ortholog. In the opportunistic pathogen Candida albicans, orthologs are usually compared with Saccharomyces cerevisiae, and this approach has been very fruitful. Many transcription factors (TFs) do similar jobs in the two species, but many do not, and typically changes in function are driven not by modifications in the structures of the TFs themselves but in the connections between the transcription factors and their regulated genes. This strategy of changing TF function has been termed transcription factor rewiring. In this study, we specifically looked for rewired transcription factors, or Candida-specific TFs, that might play a role in drug resistance. We investigated 30 transcription factors that were potentially rewired or were specific to the Candida clade. We found that the Adr1 transcription factor conferred resistance to drugs like fluconazole, amphotericin B, and terbinafine when activated. Adr1 is known for fatty acid and glycerol utilization in Saccharomyces, but our study reveals that it has been rewired and is connected to ergosterol biosynthesis in Candida albicans.
Collapse
Affiliation(s)
- Manjari Shrivastava
- Department of Biology, Concordia University, Montréal, Quebec, Canada
- Center for research, Montreal Heart Institute, Montréal, Quebec, Canada
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montréal, Quebec, Canada
| | | | | | - Daniel Ruiz
- Department of Biology, Concordia University, Montréal, Quebec, Canada
| | - Manon Henry
- Center for research, Montreal Heart Institute, Montréal, Quebec, Canada
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Antony T. Vincent
- Department of Animal Sciences, Université Laval, Quebec City, Canada
| | - Adnane Sellam
- Center for research, Montreal Heart Institute, Montréal, Quebec, Canada
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Malcolm Whiteway
- Department of Biology, Concordia University, Montréal, Quebec, Canada
| |
Collapse
|
34
|
Doss EM, Moore JM, Harman BH, Doud EH, Rubenstein EM, Bernstein DA. Characterization of endoplasmic reticulum-associated degradation in the human fungal pathogen Candida albicans. PeerJ 2023; 11:e15897. [PMID: 37645016 PMCID: PMC10461541 DOI: 10.7717/peerj.15897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/24/2023] [Indexed: 08/31/2023] Open
Abstract
Background Candida albicans is the most prevalent human fungal pathogen. In immunocompromised individuals, C. albicans can cause serious systemic disease, and patients infected with drug-resistant isolates have few treatment options. The ubiquitin-proteasome system has not been thoroughly characterized in C. albicans. Research from other organisms has shown ubiquitination is important for protein quality control and regulated protein degradation at the endoplasmic reticulum (ER) via ER-associated protein degradation (ERAD). Methods Here we perform the first characterization, to our knowledge, of ERAD in a human fungal pathogen. We generated functional knockouts of C. albicans genes encoding three proteins predicted to play roles in ERAD, the ubiquitin ligases Hrd1 and Doa10 and the ubiquitin-conjugating enzyme Ubc7. We assessed the fitness of each mutant in the presence of proteotoxic stress, and we used quantitative tandem mass tag mass spectrometry to characterize proteomic alterations in yeast lacking each gene. Results Consistent with a role in protein quality control, yeast lacking proteins thought to contribute to ERAD displayed hypersensitivity to proteotoxic stress. Furthermore, each mutant displayed distinct proteomic profiles, revealing potential physiological ERAD substrates, co-factors, and compensatory stress response factors. Among candidate ERAD substrates are enzymes contributing to ergosterol synthesis, a known therapeutic vulnerability of C. albicans. Together, our results provide the first description of ERAD function in C. albicans, and, to our knowledge, any pathogenic fungus.
Collapse
Affiliation(s)
- Ellen M. Doss
- Department of Biology, Ball State University, Muncie, Indiana, United States
- Mode of Action and Resistance Management Center of Expertise, Corteva Agriscience, Indianapolis, Indiana, United States
| | - Joshua M. Moore
- Department of Biology, Ball State University, Muncie, Indiana, United States
| | - Bryce H. Harman
- Department of Biology, Ball State University, Muncie, Indiana, United States
| | - Emma H. Doud
- Center for Proteome Analysis, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Eric M. Rubenstein
- Department of Biology, Ball State University, Muncie, Indiana, United States
| | | |
Collapse
|
35
|
Reichard WD, Smith SE, Robertson JB. BLINCAR: a reusable bioluminescent and Cas9-based genetic toolset for repeatedly modifying wild-type Scheffersomyces stipitis. mSphere 2023; 8:e0022423. [PMID: 37345937 PMCID: PMC10449509 DOI: 10.1128/msphere.00224-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023] Open
Abstract
Scheffersomyces stipitis is a yeast that robustly ferments the 5-carbon sugar xylose, making the yeast a valuable candidate for lignocellulosic ethanol fermentation. However, the non-canonical codon usage of S. stipitis is an obstacle for implementing molecular tools that were developed for other yeast species, thereby limiting the molecular toolset available for S. stipitis. Here, we developed a series of molecular tools for S. stipitis including BLINCAR, a Bio-Luminescent Indicator that is Nullified by Cas9-Actuated Recombination, which can be used repeatedly to add different exogenous DNA payloads to the wild-type S. stipitis genome or used repeatedly to remove multiple native S. stipitis genes from the wild-type genome. Through the use of BLINCAR tools, one first produces antibiotic-resistant, bioluminescent colonies of S. stipitis whose bioluminescence highlights those clones that have been genetically modified; then second, once candidate clones have been confirmed, one uses a transient Cas9-producing plasmid to nullify the antibiotic resistance and bioluminescent markers from the prior introduction, thereby producing non-bioluminescent colonies that highlight those clones which have been re-sensitized to the antibiotic and are therefore susceptible to another round of BLINCAR implementation. IMPORTANCE Cellulose and hemicellulose that comprise a large portion of sawdust, leaves, and grass can be valuable sources of fermentable sugars for ethanol production. However, some of the sugars liberated from hemicellulose (like xylose) are not easily fermented using conventional glucose-fermenting yeast like Saccharomyces cerevisiae, so engineering robust xylose-fermenting yeast that is not inhibited by other components liberated from cellulose/hemicellulose will be important for maximizing yield and making lignocellulosic ethanol fermentation cost efficient. The yeast Scheffersomyces stipitis is one such yeast that can ferment xylose; however, it possesses several barriers to genetic manipulation. It is difficult to transform, has only a few antibiotic resistance markers, and uses an alternative genetic code from most other organisms. We developed a genetic toolset for S. stipitis that lowers these barriers and allows a user to deliver and/or delete multiple genetic elements to/from the wild-type genome, thereby expanding S. stipitis's potential.
Collapse
Affiliation(s)
- Walter D. Reichard
- Department of Biology, Middle Tennessee State University, Murfreesboro, Tennessee, USA
| | - Serenah E. Smith
- Department of Biology, Middle Tennessee State University, Murfreesboro, Tennessee, USA
| | - J. Brian Robertson
- Department of Biology, Middle Tennessee State University, Murfreesboro, Tennessee, USA
| |
Collapse
|
36
|
Yang D, Zhang M, Su C, Dong B, Lu Y. Candida albicans exploits N-acetylglucosamine as a gut signal to establish the balance between commensalism and pathogenesis. Nat Commun 2023; 14:3796. [PMID: 37365160 DOI: 10.1038/s41467-023-39284-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 06/02/2023] [Indexed: 06/28/2023] Open
Abstract
Candida albicans is a benign member of gut microbiota, but also causes life-threatening disseminated infections, suggesting that this fungus commensalism has evolved with retention of virulence traits. Here we reveal that N-acetylglucosamine (GlcNAc) enables C. albicans to balance between commensalism and pathogenesis. Although GlcNAc catabolism is beneficial for commensal growth of C. albicans, deleting GlcNAc sensor-transducer Ngs1 confers enhanced fitness, indicating that GlcNAc signaling is detrimental to commensalism. Interestingly, addition of GlcNAc attenuates commensal fitness of gut-evolved C. albicans but retains its disease-causing potential. We further demonstrate that GlcNAc is a major inducer of hypha-associated transcription in the gut, which represents the key determinant for commensal-pathogenic equilibrium. In addition to yeast-to-hypha morphogenesis, we also identify other factors, including Sod5 and Ofi1, that contribute to the balance. Thus, C. albicans uses GlcNAc to build up a tradeoff between fungal programs supporting commensalism and virulence, which may explain its success as a commensal and pathogen.
Collapse
Affiliation(s)
- Dandan Yang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Mao Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Chang Su
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Bin Dong
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Yang Lu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
37
|
Javed MU, Hayat MT, Mukhtar H, Imre K. CRISPR-Cas9 System: A Prospective Pathway toward Combatting Antibiotic Resistance. Antibiotics (Basel) 2023; 12:1075. [PMID: 37370394 DOI: 10.3390/antibiotics12061075] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/05/2023] [Accepted: 05/17/2023] [Indexed: 06/29/2023] Open
Abstract
Antibiotic resistance is rising to dangerously high levels throughout the world. To cope with this problem, scientists are working on CRISPR-based research so that antibiotic-resistant bacteria can be killed and attacked almost as quickly as antibiotic-sensitive bacteria. Nuclease activity is found in Cas9, which can be programmed with a specific target sequence. This mechanism will only attack pathogens in the microbiota while preserving commensal bacteria. This article portrays the delivery methods used in the CRISPR-Cas system, which are both viral and non-viral, along with its implications and challenges, such as microbial dysbiosis, off-target effects, and failure to counteract intracellular infections. CRISPR-based systems have a lot of applications, such as correcting mutations, developing diagnostics for infectious diseases, improving crops productions, improving breeding techniques, etc. In the future, CRISPR-based systems will revolutionize the world by curing diseases, improving agriculture, and repairing genetic disorders. Though all the drawbacks of the technology, CRISPR carries great potential; thus, the modification and consideration of some aspects could result in a mind-blowing technique to attain all the applications listed and present a game-changing potential.
Collapse
Affiliation(s)
| | | | - Hamid Mukhtar
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Kalman Imre
- Department of Animal Production and Veterinary Public Health, Faculty of Veterinary Medicine, University of Life Sciences "King Mihai I" from Timişoara, 300645 Timișoara, Romania
| |
Collapse
|
38
|
Lin L, Wang M, Zeng J, Mao Y, Qin R, Deng J, Ouyang X, Hou X, Sun C, Wang Y, Cai Y, Li M, Tian C, Zhou X, Zhang M, Fan H, Mei H, Sarapultsev A, Wang H, Zhang G, Zipfel PF, Hu Y, Hu D, Luo S. Sequence Variation of Candida albicans Sap2 Enhances Fungal Pathogenicity via Complement Evasion and Macrophage M2-Like Phenotype Induction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2206713. [PMID: 37211685 PMCID: PMC10369283 DOI: 10.1002/advs.202206713] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/29/2023] [Indexed: 05/23/2023]
Abstract
Candida albicans (C. albicans) is an opportunistic pathogen increasingly causing candidiasis worldwide. This study aims to investigate the pattern of systemic immune responses triggered by C. albicans with disease associated variation of Sap2, identifying the novel evasion strategies utilized by clinical isolates. Specifically, a variation in clinical isolates is identified at nucleotide position 817 (G to T). This homozygous variation causes the 273rd amino acid exchange from valine to leucine, close to the proteolytic activation center of Sap2. The mutant (Sap2-273L) generated from SC5314 (Sap2-273V) background carrying the V273L variation within Sap2 displays higher pathogenicity. In comparison to mice infected with Sap2-273V strain, mice infected with Sap2-273L exhibit less complement activation indicated by less serum C3a generation and weaker C3b deposition in the kidney. This inhibitory effect is mainly achieved by Sap2273L -mediated stronger degradation of C3 and C3b. Furthermore, mice infected with Sap2-273L strain exhibit more macrophage phenotype switching from M0 to M2-like and more TGF-β release which further influences T cell responses, generating an immunosuppressed cellular microenvironment characterized by more Tregs and exhausted T cell formation. In summary, the disease-associated sequence variation of Sap2 enhances pathogenicity by complement evasion and M2-like phenotype switching, promoting a more efficient immunosuppressed microenvironment.
Collapse
Affiliation(s)
- Lan Lin
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Moran Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Jingsi Zeng
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yehong Mao
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Renjie Qin
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Jun Deng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Xiaohu Ouyang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Xiaoshuang Hou
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Chunyan Sun
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Yadan Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Yaohua Cai
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Mingyue Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Chunxia Tian
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Xi Zhou
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Min Zhang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Heng Fan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Heng Mei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Alexey Sarapultsev
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, 76, Lenin Prospekt, Chelyabinsk, 454080, Russia
| | - Huafang Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Gensheng Zhang
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Peter F Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745, Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University, 07743, Jena, Germany
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Shanshan Luo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| |
Collapse
|
39
|
Umer MJ, Zheng J, Yang M, Batool R, Abro AA, Hou Y, Xu Y, Gebremeskel H, Wang Y, Zhou Z, Cai X, Liu F, Zhang B. Insights to Gossypium defense response against Verticillium dahliae: the Cotton Cancer. Funct Integr Genomics 2023; 23:142. [PMID: 37121989 DOI: 10.1007/s10142-023-01065-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/15/2023] [Accepted: 04/19/2023] [Indexed: 05/02/2023]
Abstract
The soil-borne pathogen Verticillium dahliae, also referred as "The Cotton Cancer," is responsible for causing Verticillium wilt in cotton crops, a destructive disease with a global impact. To infect cotton plants, the pathogen employs multiple virulence mechanisms such as releasing enzymes that degrade cell walls, activating genes that contribute to virulence, and using protein effectors. Conversely, cotton plants have developed numerous defense mechanisms to combat the impact of V. dahliae. These include strengthening the cell wall by producing lignin and depositing callose, discharging reactive oxygen species, and amassing hormones related to defense. Despite the efforts to develop resistant cultivars, there is still no permanent solution to Verticillium wilt due to a limited understanding of the underlying molecular mechanisms that drive both resistance and pathogenesis is currently prevalent. To address this challenge, cutting-edge technologies such as clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), host-induced gene silencing (HIGS), and gene delivery via nano-carriers could be employed as effective alternatives to control the disease. This article intends to present an overview of V. dahliae virulence mechanisms and discuss the different cotton defense mechanisms against Verticillium wilt, including morphophysiological and biochemical responses and signaling pathways including jasmonic acid (JA), salicylic acid (SA), ethylene (ET), and strigolactones (SLs). Additionally, the article highlights the significance of microRNAs (miRNAs), circular RNAs (circRNAs), and long non-coding RNAs (lncRNAs) in gene expression regulation, as well as the different methods employed to identify and functionally validate genes to achieve resistance against this disease. Gaining a more profound understanding of these mechanisms could potentially result in the creation of more efficient strategies for combating Verticillium wilt in cotton crops.
Collapse
Affiliation(s)
- Muhammad Jawad Umer
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Jie Zheng
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Hainan Yazhou Bay Seed Laboratory, China/National Nanfan, Research Institute of Chinese Academy of Agricultural Sciences, Sanya, 572025, China
| | - Mengying Yang
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Raufa Batool
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Aamir Ali Abro
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yuqing Hou
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yanchao Xu
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Haileslassie Gebremeskel
- Mehoni Agricultural Research Center, Ethiopian Institute of Agricultural Research, Addis Ababa, Ethiopia
| | - Yuhong Wang
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - ZhongLi Zhou
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Hainan Yazhou Bay Seed Laboratory, China/National Nanfan, Research Institute of Chinese Academy of Agricultural Sciences, Sanya, 572025, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University/Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Fang Liu
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
- Hainan Yazhou Bay Seed Laboratory, China/National Nanfan, Research Institute of Chinese Academy of Agricultural Sciences, Sanya, 572025, China.
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China.
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University/Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China.
| | - Baohong Zhang
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA.
| |
Collapse
|
40
|
Pham NN, Chang CW, Chang YH, Tu Y, Chou JY, Wang HY, Hu YC. Rational genome and metabolic engineering of Candida viswanathii by split CRISPR to produce hundred grams of dodecanedioic acid. Metab Eng 2023; 77:76-88. [PMID: 36948241 DOI: 10.1016/j.ymben.2023.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 01/29/2023] [Accepted: 03/14/2023] [Indexed: 03/24/2023]
Abstract
Candida viswanathii is a promising cell factory for producing dodecanedioic acid (DDA) and other long chain dicarboxylic acids. However, metabolic engineering of C. viswanathii is difficult partly due to the lack of synthetic biology toolkits. Here we developed CRISPR-based approaches for rational genome and metabolic engineering of C. viswanathii. We first optimized the CRISPR system and protocol to promote the homozygous gene integration efficiency to >60%. We also designed a split CRISPR system for one-step integration of multiple genes into C. viswanathii. We uncovered that co-expression of CYP52A19, CPRb and FAO2 that catalyze different steps in the biotransformation enhances DDA production and abolishes accumulation of intermediates. We also unveiled that co-expression of additional enzyme POS5 further promotes DDA production and augments cell growth. We harnessed the split CRISPR system to co-integrate these 4 genes (13.6 kb) into C. viswanathii and generated a stable strain that doubles the DDA titer (224 g/L), molar conversion (83%) and productivity (1.87 g/L/h) when compared with the parent strain. This study altogether identifies appropriate enzymes/promoters to augment dodecane conversion to DDA and implicates the potential of split CRISPR system for metabolic engineering of C. viswanathii.
Collapse
Affiliation(s)
- Nam Ngoc Pham
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Chin-Wei Chang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Hao Chang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi Tu
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - June-Yen Chou
- Innovation and R&D Division, Chang Chun Group, Taipei, Taiwan; Dairen Chemical Corp, Taipei, Taiwan
| | | | - Yu-Chen Hu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan; Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
41
|
Gervais NC, La Bella AA, Wensing LF, Sharma J, Acquaviva V, Best M, Cadena López RO, Fogal M, Uthayakumar D, Chavez A, Santiago-Tirado F, Flores-Mireles AL, Shapiro RS. Development and applications of a CRISPR activation system for facile genetic overexpression in Candida albicans. G3 (BETHESDA, MD.) 2023; 13:jkac301. [PMID: 36450451 PMCID: PMC9911074 DOI: 10.1093/g3journal/jkac301] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/02/2021] [Accepted: 11/04/2022] [Indexed: 12/02/2022]
Abstract
For the fungal pathogen Candida albicans, genetic overexpression readily occurs via a diversity of genomic alterations, such as aneuploidy and gain-of-function mutations, with important consequences for host adaptation, virulence, and evolution of antifungal drug resistance. Given the important role of overexpression on C. albicans biology, it is critical to develop and harness tools that enable the analysis of genes expressed at high levels in the fungal cell. Here, we describe the development, optimization, and application of a novel, single-plasmid-based CRISPR activation (CRISPRa) platform for targeted genetic overexpression in C. albicans, which employs a guide RNA to target an activator complex to the promoter region of a gene of interest, thus driving transcriptional expression of that gene. Using this system, we demonstrate the ability of CRISPRa to drive high levels of gene expression in C. albicans, and we assess optimal guide RNA targeting for robust and constitutive overexpression. We further demonstrate the specificity of the system via RNA sequencing. We highlight the application of CRISPR activation to overexpress genes involved in pathogenesis and drug susceptibility, and contribute toward the identification of novel phenotypes. Consequently, this tool will facilitate a broad range of applications for the study of C. albicans genetic overexpression.
Collapse
Affiliation(s)
- Nicholas C Gervais
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1H 5N4, Canada
| | - Alyssa A La Bella
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Lauren F Wensing
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1H 5N4, Canada
| | - Jehoshua Sharma
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1H 5N4, Canada
| | - Victoria Acquaviva
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1H 5N4, Canada
| | - Madison Best
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1H 5N4, Canada
| | | | - Meea Fogal
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1H 5N4, Canada
| | - Deeva Uthayakumar
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1H 5N4, Canada
- Present address: Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Alejandro Chavez
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | - Ana L Flores-Mireles
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1H 5N4, Canada
| |
Collapse
|
42
|
Yeast Carotenoids: Cost-Effective Fermentation Strategies for Health Care Applications. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Carotenoid production from oleaginous red yeast has been considered as a safe alternative to chemically synthesized carotenoids commonly used in the food industry, since plant-based carotenoids are expensive and an irregular source for obtaining pigments. This is a summative review on the factors affecting carotenoid production, cost-effective production strategies using various inexpensive feedstock, metabolic engineering, and strain improvisation. The review specially highlights the various potential applications of carotenoids as anti-microbial, anti-viral, antioxidant, anti-cancerous, anti-malarial agents, etc. The importance of such natural and easily available resources for prevention, evasion, or cure of emerging diseases and their plausible nutraceutical effect demands exhaustive research in this area.
Collapse
|
43
|
Brown AJP. Fungal resilience and host-pathogen interactions: Future perspectives and opportunities. Parasite Immunol 2023; 45:e12946. [PMID: 35962618 PMCID: PMC10078341 DOI: 10.1111/pim.12946] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 01/31/2023]
Abstract
We are constantly exposed to the threat of fungal infection. The outcome-clearance, commensalism or infection-depends largely on the ability of our innate immune defences to clear infecting fungal cells versus the success of the fungus in mounting compensatory adaptive responses. As each seeks to gain advantage during these skirmishes, the interactions between host and fungal pathogen are complex and dynamic. Nevertheless, simply compromising the physiological robustness of fungal pathogens reduces their ability to evade antifungal immunity, their virulence, and their tolerance against antifungal therapy. In this article I argue that this physiological robustness is based on a 'Resilience Network' which mechanistically links and controls fungal growth, metabolism, stress resistance and drug tolerance. The elasticity of this network probably underlies the phenotypic variability of fungal isolates and the heterogeneity of individual cells within clonal populations. Consequently, I suggest that the definition of the fungal Resilience Network represents an important goal for the future which offers the clear potential to reveal drug targets that compromise drug tolerance and synergise with current antifungal therapies.
Collapse
Affiliation(s)
- Alistair J P Brown
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Exeter, UK
| |
Collapse
|
44
|
Aggarwal N, Kitano S, Puah GRY, Kittelmann S, Hwang IY, Chang MW. Microbiome and Human Health: Current Understanding, Engineering, and Enabling Technologies. Chem Rev 2023; 123:31-72. [PMID: 36317983 PMCID: PMC9837825 DOI: 10.1021/acs.chemrev.2c00431] [Citation(s) in RCA: 118] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Indexed: 01/12/2023]
Abstract
The human microbiome is composed of a collection of dynamic microbial communities that inhabit various anatomical locations in the body. Accordingly, the coevolution of the microbiome with the host has resulted in these communities playing a profound role in promoting human health. Consequently, perturbations in the human microbiome can cause or exacerbate several diseases. In this Review, we present our current understanding of the relationship between human health and disease development, focusing on the microbiomes found across the digestive, respiratory, urinary, and reproductive systems as well as the skin. We further discuss various strategies by which the composition and function of the human microbiome can be modulated to exert a therapeutic effect on the host. Finally, we examine technologies such as multiomics approaches and cellular reprogramming of microbes that can enable significant advancements in microbiome research and engineering.
Collapse
Affiliation(s)
- Nikhil Aggarwal
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| | - Shohei Kitano
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| | - Ginette Ru Ying Puah
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Wilmar-NUS
(WIL@NUS) Corporate Laboratory, National
University of Singapore, Singapore 117599, Singapore
- Wilmar
International Limited, Singapore 138568, Singapore
| | - Sandra Kittelmann
- Wilmar-NUS
(WIL@NUS) Corporate Laboratory, National
University of Singapore, Singapore 117599, Singapore
- Wilmar
International Limited, Singapore 138568, Singapore
| | - In Young Hwang
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Department
of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Singapore
Institute of Technology, Singapore 138683, Singapore
| | - Matthew Wook Chang
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Wilmar-NUS
(WIL@NUS) Corporate Laboratory, National
University of Singapore, Singapore 117599, Singapore
- Department
of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| |
Collapse
|
45
|
Application of the Mutant Libraries for Candida albicans Functional Genomics. Int J Mol Sci 2022; 23:ijms232012307. [PMID: 36293157 PMCID: PMC9603287 DOI: 10.3390/ijms232012307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
Candida albicans is a typical opportunistic pathogen in humans that causes serious health risks in clinical fungal infections. The construction of mutant libraries has made remarkable developments in the study of C. albicans molecular and cellular biology with the ongoing advancements of gene editing, which include the application of CRISPR-Cas9 and novel high-efficient transposon. Large-scale genetic screens and genome-wide functional analysis accelerated the investigation of new genetic regulatory mechanisms associated with the pathogenicity and resistance to environmental stress in C. albicans. More importantly, sensitivity screening based on C. albicans mutant libraries is critical for the target identification of novel antifungal compounds, which leads to the discovery of Sec7p, Tfp1p, Gwt1p, Gln4p, and Erg11p. This review summarizes the main types of C. albicans mutant libraries and interprets their applications in morphogenesis, biofilm formation, fungus-host interactions, antifungal drug resistance, and target identification.
Collapse
|
46
|
Mapook A, Hyde KD, Hassan K, Kemkuignou BM, Čmoková A, Surup F, Kuhnert E, Paomephan P, Cheng T, de Hoog S, Song Y, Jayawardena RS, Al-Hatmi AMS, Mahmoudi T, Ponts N, Studt-Reinhold L, Richard-Forget F, Chethana KWT, Harishchandra DL, Mortimer PE, Li H, Lumyong S, Aiduang W, Kumla J, Suwannarach N, Bhunjun CS, Yu FM, Zhao Q, Schaefer D, Stadler M. Ten decadal advances in fungal biology leading towards human well-being. FUNGAL DIVERS 2022; 116:547-614. [PMID: 36123995 PMCID: PMC9476466 DOI: 10.1007/s13225-022-00510-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/28/2022] [Indexed: 11/04/2022]
Abstract
Fungi are an understudied resource possessing huge potential for developing products that can greatly improve human well-being. In the current paper, we highlight some important discoveries and developments in applied mycology and interdisciplinary Life Science research. These examples concern recently introduced drugs for the treatment of infections and neurological diseases; application of -OMICS techniques and genetic tools in medical mycology and the regulation of mycotoxin production; as well as some highlights of mushroom cultivaton in Asia. Examples for new diagnostic tools in medical mycology and the exploitation of new candidates for therapeutic drugs, are also given. In addition, two entries illustrating the latest developments in the use of fungi for biodegradation and fungal biomaterial production are provided. Some other areas where there have been and/or will be significant developments are also included. It is our hope that this paper will help realise the importance of fungi as a potential industrial resource and see the next two decades bring forward many new fungal and fungus-derived products.
Collapse
Affiliation(s)
- Ausana Mapook
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Innovative Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Haizhu District, Guangzhou, 510225 China
| | - Khadija Hassan
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
| | - Blondelle Matio Kemkuignou
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
| | - Adéla Čmoková
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Frank Surup
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Brunswick, Germany
| | - Eric Kuhnert
- Centre of Biomolecular Drug Research (BMWZ), Institute for Organic Chemistry, Leibniz University Hannover, Schneiderberg 38, 30167 Hannover, Germany
| | - Pathompong Paomephan
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
- Department of Biotechnology, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok, 10400 Thailand
| | - Tian Cheng
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Sybren de Hoog
- Center of Expertise in Mycology, Radboud University Medical Center / Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Guizhou Medical University, Guiyang, China
- Microbiology, Parasitology and Pathology Graduate Program, Federal University of Paraná, Curitiba, Brazil
| | - Yinggai Song
- Department of Dermatology, Peking University First Hospital, Peking University, Beijing, China
| | - Ruvishika S. Jayawardena
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Abdullah M. S. Al-Hatmi
- Center of Expertise in Mycology, Radboud University Medical Center / Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Tokameh Mahmoudi
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Nadia Ponts
- INRAE, UR1264 Mycology and Food Safety (MycSA), 33882 Villenave d’Ornon, France
| | - Lena Studt-Reinhold
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln an der Donau, Austria
| | | | - K. W. Thilini Chethana
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Dulanjalee L. Harishchandra
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Peter E. Mortimer
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan China
| | - Huili Li
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan China
| | - Saisamorm Lumyong
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok, 10300 Thailand
| | - Worawoot Aiduang
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Jaturong Kumla
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Nakarin Suwannarach
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Chitrabhanu S. Bhunjun
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Feng-Ming Yu
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Yunnan Key Laboratory of Fungal Diversity and Green Development, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
| | - Qi Zhao
- Yunnan Key Laboratory of Fungal Diversity and Green Development, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
| | - Doug Schaefer
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan China
| | - Marc Stadler
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Brunswick, Germany
| |
Collapse
|
47
|
Cai G, Lin Z, Shi S. Development and expansion of the CRISPR/Cas9 toolboxes for powerful genome engineering in yeast. Enzyme Microb Technol 2022; 159:110056. [PMID: 35561628 DOI: 10.1016/j.enzmictec.2022.110056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 01/09/2023]
Abstract
Yeasts represent a group of the microorganisms most frequently seen in biotechnology. Recently, the class 2 type II CRISPR system (CRISPR/Cas9) has become the principal toolbox for genome editing. By efficiently implementing genetic manipulations such as gene integration/knockout, base editor, and transcription regulation, the development of biotechnological applications in yeasts has been extensively promoted. The genome-level tools based on CRISPR/Cas9, used for screening and identifying functional genes/gene clusters, are also advancing. In general, CRISPR/Cas9-assisted editing tools have gradually become standardized and function as host-orthogonal genetic systems, which results in time-saving for strain engineering and biotechnological application processes. In this review, we summarize the key points of the basic elements in the CRISPR/Cas9 system, including Cas9 variants, guide RNA, donors, and effectors. With a focus on yeast, we have also introduced the development of various CRISPR/Cas9 systems and discussed their future possibilities.
Collapse
Affiliation(s)
- Guang Cai
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Zhenquan Lin
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
48
|
Ojima Y, Yokota N, Tanibata Y, Nerome S, Azuma M. Concentrative Nucleoside Transporter, CNT, Results in Selective Toxicity of Toyocamycin against Candida albicans. Microbiol Spectr 2022; 10:e0113822. [PMID: 35913167 PMCID: PMC9431476 DOI: 10.1128/spectrum.01138-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/12/2022] [Indexed: 11/24/2022] Open
Abstract
Toyocamycin (TM) is an adenosine-analog antibiotic isolated from Streptomyces toyocaensis. It inhibits Candida albicans, several plant fungal pathogens, and human cells, but many fungi, including Saccharomyces cerevisiae, are much less susceptible to TM. Aiming to clarify why TM and its analogs tubercidin and 5-iodotubercidin are active against C. albicans but not S. cerevisiae, this study focused on the absence of purine nucleoside transport activity from S. cerevisiae. When the concentrative nucleoside transporter (CNT) of C. albicans was expressed in S. cerevisiae, the recombinant strain became sensitive to TM and its analogs. The expression of C. albicans purine nucleoside permease in S. cerevisiae did not result in sensitivity to TM. Clustered regularly interspaced short palindromic repeat-mediated disruption of CNT was performed in C. albicans. The CNTΔ strain of C. albicans became insensitive to TM and its analogs. These data suggest that the toxicity of TM and its analogs toward C. albicans results from their transport via CNT. Interestingly, S. cerevisiae also became sensitive to TM and its analogs if human CNT3 was introduced into cells. These findings enhance our understanding of the mechanisms of action of adenosine analogs toward Candida pathogens and human cells. IMPORTANCE We investigated the mechanism of toxicity of TM and its analogs to C. albicans. Inspired by the effect of the copresence of TM and purine nucleosides on cell growth of C. albicans, we investigated the involvement of CNT in the toxicity mechanism by expressing CNT of C. albicans (CaCNT) in S. cerevisiae and deleting CaCNT in C. albicans. Our examinations clearly demonstrated that CaCNT is responsible for the toxicity of TM to C. albicans. S. cerevisiae expressing the human ortholog of CaCNT also became sensitive to TM and its analogs, and the order of effects of the TM analogs was a little different between CaCNT- and hCNT3-expressing S. cerevisiae. These findings are beneficial for an understanding of the mechanisms of action of adenosine analogs toward Candida pathogens and human cells and also the development of new antifungal drugs.
Collapse
Affiliation(s)
- Yoshihiro Ojima
- Department of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, Osaka, Japan
| | - Naoki Yokota
- Department of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, Osaka, Japan
| | - Yuki Tanibata
- Department of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, Osaka, Japan
| | - Shinsuke Nerome
- Department of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, Osaka, Japan
| | - Masayuki Azuma
- Department of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
49
|
Mao Y, Solis NV, Sharma A, Cravener MV, Filler SG, Mitchell AP. Use of the Iron-Responsive RBT5 Promoter for Regulated Expression in Candida albicans. mSphere 2022; 7:e0030522. [PMID: 35862800 PMCID: PMC9429880 DOI: 10.1128/msphere.00305-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/03/2022] [Indexed: 11/20/2022] Open
Abstract
Engineered conditional gene expression is used in appraisal of gene function and pathway relationships. For pathogens like the fungus Candida albicans, conditional expression systems are most useful if they are active in the infection environment and if they can be utilized in multiple clinical isolates. Here, we describe such a system. It employs the RBT5 promoter and can be implemented with a few PCRs. We validated the system with RBT5 promoter fusions to two genes that promote filamentation and polarized growth, UME6 and HGC1, and with efg1Δ/Δ mutants, which are defective in an activator of filamentous growth. An RBT5 promoter fusion to either gene enabled filamentous growth of an efg1Δ/Δ mutant of strain SC5314 in iron-limited media, including RPMI with serum and yeast extract-peptone-dextrose with bathophenanthrolinedisulfonic acid. The RBT5-UME6 fusion promoted filamentation of efg1Δ/Δ mutants in RPMI with serum of four other clinical C. albicans isolates as well. In a mouse model of disseminated candidiasis, the RBT5-UME6 fusion promoted filamentation of the SC5314 efg1Δ/Δ mutant in kidney tissue, an indication that the RBT5 promoter is active in the iron-limited host environment. The RBT5 promoter expands the conditional expression toolkit for C. albicans genetics. IMPORTANCE Genetic strategies have been vital for mechanistic analysis of biological processes. Here, we describe a genetic tool for the fungal pathogen Candida albicans.
Collapse
Affiliation(s)
- Yinhe Mao
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Norma V. Solis
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Anupam Sharma
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Max V. Cravener
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Scott G. Filler
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Aaron P. Mitchell
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
50
|
An Adjuvant-Based Approach Enables the Use of Dominant HYG and KAN Selectable Markers in Candida albicans. mSphere 2022; 7:e0034722. [PMID: 35968963 PMCID: PMC9429937 DOI: 10.1128/msphere.00347-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Candida albicans is a pathobiont fungus that can colonize multiple niches in the human body but is also a frequent cause of both mucosal and systemic disease. Despite its clinical importance, a paucity of dominant selectable markers has hindered the development of tools for genetic manipulation of the species. One factor limiting the utilization of dominant selectable markers is that C. albicans is inherently more resistant to antibiotics used for selection in other species. Here, we showed that the inclusion of suitable adjuvants can enable the use of two aminoglycoside antibiotics, hygromycin B and G418, for positive selection in C. albicans. Combining these antibiotics with an adjuvant, such as quinine or molybdate, substantially suppressed the background growth of C. albicans, thereby enabling transformants expressing CaHygB or CaKan markers to be readily identified. We verified that these adjuvants were not mutagenic to C. albicans and that CaHygB and CaKan markers were orthogonal to the existing marker NAT1/SAT1, and so provide complementary tools for the genetic manipulation of C. albicans strains. Our study also established that adjuvant-based approaches can enable the use of selectable markers that would otherwise be limited by high background growth from susceptible cells. IMPORTANCE Only a single dominant selectable marker has been widely adopted for use in the opportunistic fungal pathogen Candida albicans. This is in stark contrast to model fungi where a repertoire of dominant markers is readily available. A limiting factor for C. albicans has been the high levels of background growth obtained with multiple antibiotics, thereby limiting their use for distinguishing cells that carry an antibiotic-resistance gene from those that do not. Here, we demonstrated that the inclusion of adjuvants can reduce background growth and enable the robust use of both CaHygB and CaKan markers for genetic selection in C. albicans.
Collapse
|