1
|
Phillips ME, Marr H, Schöneich S, Robillard T, Ter Hofstede HM. Multispecies comparisons support a startle response origin for a novel vibrational signal in the cricket tribe Lebinthini. J Exp Biol 2025; 228:jeb249877. [PMID: 39871696 DOI: 10.1242/jeb.249877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 01/19/2025] [Indexed: 01/29/2025]
Abstract
Many animals communicate using call and response signals, but the evolutionary origins of this type of communication are largely unknown. In most cricket species, males sing and females walk or fly to calling males. In the tribe Lebinthini, however, males produce calls that trigger a vibrational reply from females, and males use the substrate vibrations to find the responding female. Here, we assessed two hypotheses regarding the behavioral origin of this multimodal duet in the Lebinthini. We conducted playback experiments and measured behavioral and neuronal responses in multiple related cricket species to assess whether the precursor to the lebinthine duet was (1) a startle response to high-frequency sound or (2) an elaboration of a pre-existing courtship behavior. We found behavioral similarities between the vibrational response of Lebinthini females and the acoustic startle behavior in other gryllid crickets. Specifically, the amplitude of the vibrational reply increases with male song amplitude in Lebinthini, and the magnitude of vibrations produced by two gryllid species when startled with ultrasound also correlates with the stimulus amplitude. Like in-flight startle behavior, the startle vibrations produced by perched crickets are suppressed when low-frequency sound is played simultaneously. We also observed courtship behavior in four gryllid species and found few instances of female vibration. Vibrational signals observed in Gryllus pennsylvanicus females were not correlated with male calls and occurred more frequently in pairs that did not mate after courtship. Combined, accumulating evidence supports the hypothesis that the lebinthine duet more likely evolved from a startle precursor than from courtship behavior.
Collapse
Affiliation(s)
- Mia E Phillips
- Dartmouth College, Ecology, Evolution, Environment and Society Graduate Program, Hanover, NH 03755, USA
| | - Hannah Marr
- Dartmouth College, Department of Biological Sciences, Hanover, NH 03755, USA
| | - Stefan Schöneich
- Friedrich Schiller University, Institute of Zoology and Evolutionary Research, 07743 Jena, Germany
| | - Tony Robillard
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, SU, EPHE-PSL, UA, Paris 75005, France
| | - Hannah M Ter Hofstede
- Dartmouth College, Ecology, Evolution, Environment and Society Graduate Program, Hanover, NH 03755, USA
- University of Windsor, Department of Integrative Biology, Windsor, ON, Canada, N9B 3P4
| |
Collapse
|
2
|
Park W, Kim J, Jeong I, Lee KJ. Temporal pavlovian conditioning of a model spiking neural network for discrimination sequences of short time intervals. J Comput Neurosci 2025; 53:163-179. [PMID: 39891868 PMCID: PMC11868207 DOI: 10.1007/s10827-025-00896-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/18/2024] [Accepted: 01/24/2025] [Indexed: 02/03/2025]
Abstract
The brain's ability to learn and distinguish rapid sequences of events is essential for timing-dependent tasks, such as those in sports and music. However, the mechanisms underlying this ability remain an active area of research. Here, we present a Pavlovian-conditioned spiking neural network model that may help elucidate these mechanisms. Using "three-factor learning rule," we conditioned an initially random spiking neural network to discriminate a specific spatiotemporal stimulus - a sequence of two or three pulses delivered within ∼ 10 ms to two or three distinct neuronal subpopulations - from other pulse sequences differing by only a few milliseconds. Through conditioning, a feedforward structure emerges that encodes the target pattern's temporal information into specific topographic arrangements of stimulated subpopulations. In the readout phase, discrimination of different inputs is achieved by evaluating the shape and peak-shift characteristics of the spike density functions (SDFs) of input-triggered population bursts. The network's dynamic range - defined by the duration over which pulse sequences are processed accurately - is limited to around 10 ms, as determined by the duration of the input-triggered population burst. However, by introducing axonal conduction delays, we show that the network can generate "superbursts," producing a more complex and extended SDF lasting up to ∼ 30 ms, and potentially much longer. This extension effectively broadens the network's dynamic range for processing temporal sequences. We propose that such conditioning mechanisms may provide insight into the brain's ability to perceive and interpret complex spatiotemporal sensory information encountered in real-world contexts.
Collapse
Affiliation(s)
- Woojun Park
- Physics, Korea University, Seoul, 02841, Korea
| | - Jongmu Kim
- Mechanical Engineering, Korea University, Seoul, 02841, Korea
| | - Inhoi Jeong
- Physics, Korea University, Seoul, 02841, Korea
| | | |
Collapse
|
3
|
Etzler EA, Ter Hofstede HM, Gwynne DT, Ratcliffe JM. Road noise exposure over development increases baseline auditory activity and decision-making time in adult crickets. Commun Biol 2025; 8:280. [PMID: 39987350 PMCID: PMC11846886 DOI: 10.1038/s42003-025-07643-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 01/31/2025] [Indexed: 02/24/2025] Open
Abstract
Female crickets reared in traffic noise have been reported to be faster or slower to locate male song than those reared in silence across species. We reared female Teleogryllus oceanicus in traffic noise and silence, and had adult females locate male song broadcast amidst traffic noise or silence. We recorded activity of two auditory interneurons in a subset of individuals under identical acoustic conditions. Regardless of rearing treatment, crickets were slower to leave their shelter when presented with male song in silence than in traffic noise, while crickets reared in traffic noise were also slower to leave overall. Crickets reared in traffic noise also had higher baseline AN2 activity, but rearing condition did not affect hearing thresholds or auditory response to male song. Our results demonstrate behavioural and auditory effects of long-term exposure to anthropogenic noise. Further, they support the idea that silence itself is a potentially aversive acoustic condition.
Collapse
Affiliation(s)
- Erik A Etzler
- Department of Biology, University of Toronto, Mississauga, ON, Canada.
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada.
| | | | - Darryl T Gwynne
- Department of Biology, University of Toronto, Mississauga, ON, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - John M Ratcliffe
- Department of Biology, University of Toronto, Mississauga, ON, Canada.
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
4
|
Mann W, Erregger B, Hennig RM, Clemens J. Resonant song recognition and the evolution of acoustic communication in crickets. iScience 2025; 28:111695. [PMID: 39877900 PMCID: PMC11773217 DOI: 10.1016/j.isci.2024.111695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/04/2024] [Accepted: 12/23/2024] [Indexed: 01/31/2025] Open
Abstract
Cricket song recognition is thought to evolve through modifications of a shared neural network. However, the species Anurogryllus muticus has an unusual recognition pattern that challenges this view: females respond to both normal male song pulse periods and periods twice as long. Of the three minimal models tested, only a single-neuron model with an oscillating membrane could explain this unusual behavior. A minimal model of the cricket's song network reproduced the behavior after adding a mechanism that, while present in the full network, is not crucial for song recognition in other species. This shows how a shared neural network can produce diverse behaviors and highlights how different computations contribute to evolution. Our results also demonstrate how nonlinear computations can lead to rapid behavioral changes during evolution because small changes in network parameters can lead to large changes in behavior.
Collapse
Affiliation(s)
- Winston Mann
- ENI-G, a Joint Initiative of the University Medical Center Göttingen and the Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Bettina Erregger
- University of Natural Resources and Life Science, Vienna, Austria
| | | | - Jan Clemens
- ENI-G, a Joint Initiative of the University Medical Center Göttingen and the Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Neuroscience, Faculty VI, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
5
|
Levy K, Aidan YY, Paz D, Medlij H, Ayali A. Light alters calling-song characteristics in crickets. J Exp Biol 2025; 228:JEB249404. [PMID: 39876823 PMCID: PMC11928050 DOI: 10.1242/jeb.249404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 01/19/2025] [Indexed: 01/31/2025]
Abstract
Communication is crucial for mate choice and thus for the survival and fitness of most species. In the cricket, females choose males according to their calling-song attractiveness and, exhibiting positive phonotaxis, they approach the chosen male. Light has been widely reported to induce changes in crickets' daily activity patterns, including the males' stridulation behavior. It had remained unknown, however, whether light also affects the calling-song properties and thus may consequently also alter female choice. Here, we present a novel semi-automated process, enabling the analysis of calling-song properties in an extremely large sample size of recording sections from males subjected to lifelong light:dark (LD) or constant light (LL) conditions. Our findings revealed that the LD calling songs consisted of longer chirps, longer inter-syllable intervals and a higher proportion of 4-syllable chirps compared with those of LL males. We also conducted some preliminary female choice experiments suggesting that females (reared in LD conditions) exposed to playbacks of male calling songs exhibit a preference towards LD over LL recordings. We therefore conclude that illumination conditions such as constant light affect the male crickets' calling-song properties in a manner that may be discernible to the females. It remains unclear, however, how and to what extent female mate choice and the species' overall fitness are affected by these changes.
Collapse
Affiliation(s)
- Keren Levy
- School of Zoology,Tel Aviv University, Tel-Aviv 6997801, Israel
| | | | - Dror Paz
- School of Zoology,Tel Aviv University, Tel-Aviv 6997801, Israel
| | - Heba Medlij
- School of Zoology,Tel Aviv University, Tel-Aviv 6997801, Israel
| | - Amir Ayali
- School of Zoology,Tel Aviv University, Tel-Aviv 6997801, Israel
- Sagol School of Neuroscience,Tel Aviv University, Tel-Aviv 6997801, Israel
| |
Collapse
|
6
|
Alluri RK, Rose GJ, McDowell J, Mukhopadhyay A, Leary CJ, Graham JA, Vasquez-Opazo GA. How auditory neurons count temporal intervals and decode information. Proc Natl Acad Sci U S A 2024; 121:e2404157121. [PMID: 39159380 PMCID: PMC11363261 DOI: 10.1073/pnas.2404157121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/05/2024] [Indexed: 08/21/2024] Open
Abstract
The numerical sense of animals includes identifying the numerosity of a sequence of events that occur with specific intervals, e.g., notes in a call or bar of music. Across nervous systems, the temporal patterning of spikes can code these events, but how this information is decoded (counted) remains elusive. In the anuran auditory system, temporal information of this type is decoded in the midbrain, where "interval-counting" neurons spike only after at least a threshold number of sound pulses have occurred with specific timing. We show that this decoding process, i.e., interval counting, arises from integrating phasic, onset-type and offset inhibition with excitation that augments across successive intervals, possibly due to a progressive decrease in "shunting" effects of inhibition. Because these physiological properties are ubiquitous within and across central nervous systems, interval counting may be a general mechanism for decoding diverse information coded/encoded in temporal patterns of spikes, including "bursts," and estimating elapsed time.
Collapse
Affiliation(s)
- Rishi K. Alluri
- School of Biological Sciences, University of Utah, Salt Lake City, UT84112
| | - Gary J. Rose
- School of Biological Sciences, University of Utah, Salt Lake City, UT84112
| | - Jamie McDowell
- Department of Psychology, University of California, Los Angeles, CA90095
| | | | | | - Jalina A. Graham
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH03755
| | | |
Collapse
|
7
|
Medina ND, Margoliash D. Bursts from the past: Intrinsic properties link a network model to zebra finch song. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.18.594825. [PMID: 38798332 PMCID: PMC11118566 DOI: 10.1101/2024.05.18.594825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Neuronal intrinsic excitability is a mechanism implicated in learning and memory that is distinct from synaptic plasticity. Prior work in songbirds established that intrinsic properties (IPs) of premotor basal-ganglia-projecting neurons (HVC X ) relate to learned song. Here we find that temporal song structure is related to specific HVC X IPs: HVC X from birds who sang longer songs including longer invariant vocalizations (harmonic stacks) had IPs that reflected increased post-inhibitory rebound. This suggests a rebound excitation mechanism underlying the ability of HVC X neurons to integrate over long periods of time and represent sequence information. To explore this, we constructed a network model of realistic neurons showing how in-vivo HVC bursting properties link rebound excitation to network structure and behavior. These results demonstrate an explicit link between neuronal IPs and learned behavior. We propose that sequential behaviors exhibiting temporal regularity require IPs to be included in realistic network-level descriptions.
Collapse
|
8
|
Scherberich J, Stange-Marten A, Schöneich S, Merdan-Desik M, Nowotny M. Multielectrode array use in insect auditory neuroscience to unravel the spatio-temporal response pattern in the prothoracic ganglion of Mecopoda elongata. J Exp Biol 2024; 227:jeb245497. [PMID: 38197244 DOI: 10.1242/jeb.245497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/27/2023] [Indexed: 01/11/2024]
Abstract
Mechanoreceptors in hearing organs transduce sound-induced mechanical responses into neuronal signals, which are further processed and forwarded to the brain along a chain of neurons in the auditory pathway. Bushcrickets (katydids) have their ears in the front leg tibia, and the first synaptic integration of sound-induced neuronal signals takes place in the primary auditory neuropil of the prothoracic ganglion. By combining intracellular recordings of the receptor activity in the ear, extracellular multichannel array recordings on top of the prothoracic ganglion and hook electrode recordings at the neck connective, we mapped the timing of neuronal responses to tonal sound stimuli along the auditory pathway from the ears towards the brain. The use of the multielectrode array allows the observation of spatio-temporal patterns of neuronal responses within the prothoracic ganglion. By eliminating the sensory input from one ear, we investigated the impact of contralateral projecting interneurons in the prothoracic ganglion and added to previous research on the functional importance of contralateral inhibition for binaural processing. Furthermore, our data analysis demonstrates changes in the signal integration processes at the synaptic level indicated by a long-lasting increase in the local field potential amplitude. We hypothesize that this persistent increase of the local field potential amplitude is important for the processing of complex signals, such as the conspecific song.
Collapse
Affiliation(s)
- Jan Scherberich
- Animal Physiology Group, Institute of Zoology and Evolutionary Research, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Annette Stange-Marten
- Animal Physiology Group, Institute of Zoology and Evolutionary Research, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Stefan Schöneich
- Animal Physiology Group, Institute of Zoology and Evolutionary Research, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Melisa Merdan-Desik
- Animal Physiology Group, Institute of Zoology and Evolutionary Research, Friedrich-Schiller-University, 07743 Jena, Germany
- Neurobiology and Biosensors Group, Institute of Cell Biology and Neuroscience, Goethe University, 60438 Frankfurt am Main, Germany
| | - Manuela Nowotny
- Animal Physiology Group, Institute of Zoology and Evolutionary Research, Friedrich-Schiller-University, 07743 Jena, Germany
| |
Collapse
|
9
|
Groot AT, Blankers T, Halfwerk W, Burdfield Steel E. The Evolutionary Importance of Intraspecific Variation in Sexual Communication Across Sensory Modalities. ANNUAL REVIEW OF ENTOMOLOGY 2024; 69:21-40. [PMID: 37562048 DOI: 10.1146/annurev-ento-030223-111608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
The evolution of sexual communication is critically important in the diversity of arthropods, which are declining at a fast pace worldwide. Their environments are rapidly changing, with increasing chemical, acoustic, and light pollution. To predict how arthropod species will respond to changing climates, habitats, and communities, we need to understand how sexual communication systems can evolve. In the past decades, intraspecific variation in sexual signals and responses across different modalities has been identified, but never in a comparative way. In this review, we identify and compare the level and extent of intraspecific variation in sexual signals and responses across three different modalities, chemical, acoustic, and visual, focusing mostly on insects. By comparing causes and possible consequences of intraspecific variation in sexual communication among these modalities, we identify shared and unique patterns, as well as knowledge needed to predict the evolution of sexual communication systems in arthropods in a changing world.
Collapse
Affiliation(s)
- Astrid T Groot
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Netherlands; , ,
| | - Thomas Blankers
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Netherlands; , ,
| | - Wouter Halfwerk
- Amsterdam Institute for Life and Environment (A-LIFE), VU Amsterdam, Netherlands;
| | - Emily Burdfield Steel
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Netherlands; , ,
| |
Collapse
|
10
|
Zhang X, Hedwig B. Sound processing in the cricket brain: evidence for a pulse duration filter. J Neurophysiol 2023; 130:953-966. [PMID: 37701942 PMCID: PMC10649838 DOI: 10.1152/jn.00252.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/14/2023] Open
Abstract
The auditory system of female crickets allows them to specifically recognize and approach the species-specific male calling song, defined by sound pulses and silent intervals. Auditory brain neurons form a delay-line and coincidence detector network tuned to the pulse period of the male song. We analyzed the impact of changes in pulse duration on the behavior and the responses of the auditory neurons and the network. We confirm that the ascending neuron AN1 and the local neuron LN2 copy the temporal structure of the song. During ongoing long sound pulses, the delay-line neuron LN5 shows additional rebound responses and the coincidence detector neuron LN3 can generate additional bursts of activity, indicating that these may be driven by intrinsic oscillations of the network. Moreover, the response of the feature detector neuron LN4 is shaped by a combination of inhibitory and excitatory synaptic inputs, and LN4 responds even to long sound pulses with a short depolarization and burst of spikes, like to a sound pulse of natural duration. This response property of LN4 indicates a selective auditory pulse duration filter mechanism of the pattern recognition network, which is tuned to the duration of natural pulses. Comparing the tuning of the phonotactic behavior with the tuning of the local auditory brain neurons to the same test patterns, we find no evidence that a modulation of the phonotactic behavior is reflected at the level of the feature detector neurons. This rather suggests that steering to nonattractive pulse patterns is organized at the thoracic level.NEW & NOTEWORTHY Pulse period selectivity has been reported for the cricket delay-line and coincidence detector network, whereas pulse duration selectivity is evident from behavioral tests. Pulses of increasing duration elicit responses in the pattern recognition neurons, which do not parallel the behavioral responses and indicate additional processing mechanisms. Long sound pulses elicit rhythmic rebound activity and additional bursts, whereas the feature detector neuron reveals a pulse duration filter, expanding our understanding of the pattern recognition process.
Collapse
Affiliation(s)
- Xinyang Zhang
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Berthold Hedwig
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
11
|
Rouse AA, Patel AD, Wainapel S, Kao MH. Sex differences in vocal learning ability in songbirds are linked with differences in flexible rhythm pattern perception. Anim Behav 2023; 203:193-206. [PMID: 37842009 PMCID: PMC10569135 DOI: 10.1016/j.anbehav.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Humans readily recognize familiar rhythmic patterns, such as isochrony (equal timing between events) across a wide range of rates. This reflects a facility with perceiving the relative timing of events, not just absolute interval durations. Several lines of evidence suggest this ability is supported by precise temporal predictions arising from forebrain auditory-motor interactions. We have shown previously that male zebra finches, Taeniopygia guttata, which possess specialized auditory-motor networks and communicate with rhythmically patterned sequences, share our ability to flexibly recognize isochrony across rates. To test the hypothesis that flexible rhythm pattern perception is linked to vocal learning, we ask whether female zebra finches, which do not learn to sing, can also recognize global temporal patterns. We find that females can flexibly recognize isochrony across a wide range of rates but perform slightly worse than males on average. These findings are consistent with recent work showing that while females have reduced forebrain song regions, the overall network connectivity of vocal premotor regions is similar to males and may support predictions of upcoming events. Comparative studies of male and female songbirds thus offer an opportunity to study how individual differences in auditory-motor connectivity influence perception of relative timing, a hallmark of human music perception.
Collapse
Affiliation(s)
- Andrew A. Rouse
- Department of Psychology, Tufts University, Medford, MA, U.S.A
| | - Aniruddh D. Patel
- Department of Psychology, Tufts University, Medford, MA, U.S.A
- Program in Brain, Mind and Consciousness, Canadian Institute for Advanced Research, Toronto, ON, Canada
| | | | - Mimi H. Kao
- Department of Biology, Tufts University, Medford, MA, U.S.A
- Graduate Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, U.S.A
| |
Collapse
|
12
|
Daly KC, Dacks A. The self as part of the sensory ecology: how behavior affects sensation from the inside out. CURRENT OPINION IN INSECT SCIENCE 2023; 58:101053. [PMID: 37290318 DOI: 10.1016/j.cois.2023.101053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/01/2023] [Accepted: 05/09/2023] [Indexed: 06/10/2023]
Abstract
Insects exhibit remarkable sensory and motor capabilities to successfully navigate their environment. As insects move, they activate sensory afferents. Hence, insects are inextricably part of their sensory ecology. Insects must correctly attribute self- versus external sources of sensory activation to make adaptive behavioral choices. This is achieved via corollary discharge circuits (CDCs), motor-to-sensory neuronal pathways providing predictive motor signals to sensory networks to coordinate sensory processing within the context of ongoing behavior. While CDCs provide predictive motor signals, their underlying mechanisms of action and functional consequences are diverse. Here, we describe inferred CDCs and identified corollary discharge interneurons (CDIs) in insects, highlighting their anatomical commonalities and our limited understanding of their synaptic integration into the nervous system. By using connectomics information, we demonstrate that the complexity with which identified CDIs integrate into the central nervous system (CNS) can be revealed.
Collapse
|
13
|
Lu A, Fukutomi M, Shidara H, Ogawa H. Persistence of auditory modulation of wind-induced escape behavior in crickets. Front Physiol 2023; 14:1153913. [PMID: 37250114 PMCID: PMC10214467 DOI: 10.3389/fphys.2023.1153913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/27/2023] [Indexed: 05/31/2023] Open
Abstract
Animals, including insects, change their innate escape behavior triggered by a specific threat stimulus depending on the environmental context to survive adaptively the predators' attack. This indicates that additional inputs from sensory organs of different modalities indicating surrounding conditions could affect the neuronal circuit responsible for the escape behavior. Field crickets, Gryllus bimaculatus, exhibit an oriented running or jumping escape in response to short air puff detected by the abdominal mechanosensory organ called cerci. Crickets also receive a high-frequency acoustic stimulus by their tympanal organs on their frontal legs, which suggests approaching bats as a predator. We have reported that the crickets modulate their wind-elicited escape running in the moving direction when they are exposed to an acoustic stimulus preceded by the air puff. However, it remains unclear how long the effects of auditory inputs indicating surrounding contexts last after the sound is terminated. In this study, we applied a short pulse (200 ms) of 15-kHz pure tone to the crickets in various intervals before the air-puff stimulus. The sound given 200 or 1000 ms before the air puff biased the wind-elicited escape running backward, like the previous studies using the longer and overlapped sound. But the sounds that started 2000 ms before and simultaneously with the air puff had little effect. In addition, the jumping probability was higher only when the delay of air puff to the sound was 1000 ms. These results suggest that the cricket could retain the auditory memory for at least one second and alter the motion choice and direction of the wind-elicited escape behavior.
Collapse
Affiliation(s)
- Anhua Lu
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Matasaburo Fukutomi
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Hisashi Shidara
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
- Department of Biochemistry, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Hiroto Ogawa
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
14
|
Ohashi TS, Ishikawa Y, Awasaki T, Su MP, Yoneyama Y, Morimoto N, Kamikouchi A. Evolutionary conservation and diversification of auditory neural circuits that process courtship songs in Drosophila. Sci Rep 2023; 13:383. [PMID: 36611081 PMCID: PMC9825394 DOI: 10.1038/s41598-022-27349-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/30/2022] [Indexed: 01/09/2023] Open
Abstract
Acoustic communication signals diversify even on short evolutionary time scales. To understand how the auditory system underlying acoustic communication could evolve, we conducted a systematic comparison of the early stages of the auditory neural circuit involved in song information processing between closely-related fruit-fly species. Male Drosophila melanogaster and D. simulans produce different sound signals during mating rituals, known as courtship songs. Female flies from these species selectively increase their receptivity when they hear songs with conspecific temporal patterns. Here, we firstly confirmed interspecific differences in temporal pattern preferences; D. simulans preferred pulse songs with longer intervals than D. melanogaster. Primary and secondary song-relay neurons, JO neurons and AMMC-B1 neurons, shared similar morphology and neurotransmitters between species. The temporal pattern preferences of AMMC-B1 neurons were also relatively similar between species, with slight but significant differences in their band-pass properties. Although the shift direction of the response property matched that of the behavior, these differences are not large enough to explain behavioral differences in song preferences. This study enhances our understanding of the conservation and diversification of the architecture of the early-stage neural circuit which processes acoustic communication signals.
Collapse
Affiliation(s)
- Takuro S. Ohashi
- grid.27476.300000 0001 0943 978XGraduate School of Science, Nagoya University, Nagoya, Aichi 464-8602 Japan
| | - Yuki Ishikawa
- Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan.
| | - Takeshi Awasaki
- grid.411205.30000 0000 9340 2869School of Medicine, Kyorin University, Tokyo, 181-8611 Japan
| | - Matthew P. Su
- grid.27476.300000 0001 0943 978XGraduate School of Science, Nagoya University, Nagoya, Aichi 464-8602 Japan ,grid.27476.300000 0001 0943 978XInstitute for Advanced Research, Nagoya University, Nagoya, Aichi 464-8601 Japan
| | - Yusuke Yoneyama
- grid.27476.300000 0001 0943 978XGraduate School of Science, Nagoya University, Nagoya, Aichi 464-8602 Japan
| | - Nao Morimoto
- grid.39158.360000 0001 2173 7691Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido 060-0815 Japan
| | - Azusa Kamikouchi
- Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan. .,Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8577, Japan.
| |
Collapse
|
15
|
Cillov A, Stumpner A. Local prothoracic auditory neurons in Ensifera. Front Neurosci 2022; 16:1087050. [PMID: 36620451 PMCID: PMC9822282 DOI: 10.3389/fnins.2022.1087050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
A new method for individually staining insect neurons with metal ions was described in the late 60s, closely followed by the introduction of the first bright fluorescent dye, Lucifer Yellow, for the same purpose. These milestones enabled an unprecedented level of detail regarding the neuronal basis of sensory processes such as hearing. Due to their conspicuous auditory behavior, orthopterans rapidly established themselves as a popular model for studies on hearing (first identified auditory neuron: 1974; first local auditory interneuron: 1977). Although crickets (Ensifera, Gryllidae) surpassed grasshoppers (Caelifera) as the main model taxon, surprisingly few neuronal elements have been described in crickets. More auditory neurons are described for bush crickets (Ensifera, Tettigoniidae), but due to their great biodiversity, the described auditory neurons in bush crickets are scattered over distantly related groups, hence being confounded by potential differences in the neuronal pathways themselves. Our review will outline all local auditory elements described in ensiferans so far. We will focus on one bush cricket species, Ancistrura nigrovittata (Phaneropterinae), which has the so-far highest diversity of identified auditory interneurons within Ensifera. We will present one novel and three previously described local prothoracic auditory neuron classes, comparing their morphology and aspects of sensory processing. Finally, we will hypothesize about their functions and evolutionary connections between ensiferan insects.
Collapse
Affiliation(s)
- Ali Cillov
- Department of Cellular Neurobiology, Johann-Friedrich-Blumenbach-Institute of Zoology & Anthropology, University of Göttingen, Göttingen, Germany
| | | |
Collapse
|
16
|
Kernan CE, Jones JS, Robillard T, Schöneich S, ter Hofstede HM. Efficacy constraints on female directional preference stabilize a male call component in a multimodal cricket duet. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Zhang X, Hedwig B. Response properties of spiking and non-spiking brain neurons mirror pulse interval selectivity. Front Cell Neurosci 2022; 16:1010740. [PMID: 36246524 PMCID: PMC9559836 DOI: 10.3389/fncel.2022.1010740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022] Open
Abstract
In the bispotted field cricket auditory pulse pattern recognition of the species-specific calling song is based on a delay-line and coincidence detection network, established by the activity and synaptic connections of only 5 auditory neurons in the brain. To obtain a more detailed understanding of the network and the dynamic of the neural activity over time we analyzed the response properties of these neurons to test patterns, in which the pulse duration was kept constant while the duration of specific pulse intervals was systematically altered. We confirm that the ascending interneuron AN1 and the local interneuron LN2 copy the structure of the pulse pattern, however with limited resolution at short pulse intervals, further evident in downstream neural responses. In the non-spiking delay-line interneuron LN5 during long pulse intervals full-blown rebound potentials develop over a time course of 35–70 ms. LN5 also reveals an overall increase in its membrane potential tuned to chirps of the calling song pulse pattern. This may contribute to the pattern recognition process by driving the activity of the coincidence-detector LN3 and may indicate a further function of the delay-line neuron LN5. The activity of LN3 and of the feature detector LN4 match the tuning of the phonotactic behavior and demonstrate an increasingly sparse coding of the calling song pulse patterns as evident in the response of the feature detector LN4. The circuitry reveals a fundamental mechanism of auditory pattern recognition and demonstrates a principle of neuronal coding.
Collapse
|
18
|
Baker CA, McKellar C, Pang R, Nern A, Dorkenwald S, Pacheco DA, Eckstein N, Funke J, Dickson BJ, Murthy M. Neural network organization for courtship-song feature detection in Drosophila. Curr Biol 2022; 32:3317-3333.e7. [PMID: 35793679 PMCID: PMC9378594 DOI: 10.1016/j.cub.2022.06.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/18/2022] [Accepted: 06/08/2022] [Indexed: 10/17/2022]
Abstract
Animals communicate using sounds in a wide range of contexts, and auditory systems must encode behaviorally relevant acoustic features to drive appropriate reactions. How feature detection emerges along auditory pathways has been difficult to solve due to challenges in mapping the underlying circuits and characterizing responses to behaviorally relevant features. Here, we study auditory activity in the Drosophila melanogaster brain and investigate feature selectivity for the two main modes of fly courtship song, sinusoids and pulse trains. We identify 24 new cell types of the intermediate layers of the auditory pathway, and using a new connectomic resource, FlyWire, we map all synaptic connections between these cell types, in addition to connections to known early and higher-order auditory neurons-this represents the first circuit-level map of the auditory pathway. We additionally determine the sign (excitatory or inhibitory) of most synapses in this auditory connectome. We find that auditory neurons display a continuum of preferences for courtship song modes and that neurons with different song-mode preferences and response timescales are highly interconnected in a network that lacks hierarchical structure. Nonetheless, we find that the response properties of individual cell types within the connectome are predictable from their inputs. Our study thus provides new insights into the organization of auditory coding within the Drosophila brain.
Collapse
Affiliation(s)
- Christa A Baker
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Claire McKellar
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA; Janelia Research Campus, HHMI, Ashburn, VA, USA
| | - Rich Pang
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | - Sven Dorkenwald
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA; Computer Science, Princeton University, Princeton, NJ, USA
| | - Diego A Pacheco
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Nils Eckstein
- Janelia Research Campus, HHMI, Ashburn, VA, USA; Institute of Neuroinformatics UZH/ETHZ, Zurich, Switzerland
| | - Jan Funke
- Janelia Research Campus, HHMI, Ashburn, VA, USA
| | | | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
19
|
Gray DA. Sexual selection and 'species recognition' revisited: serial processing and order-of-operations in mate choice. Proc Biol Sci 2022; 289:20212687. [PMID: 35317675 PMCID: PMC8941403 DOI: 10.1098/rspb.2021.2687] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Following the modern synthesis, mating signals were thought of principally as species recognition traits, a view later challenged by a burgeoning interest in sexual selection-specifically mate choice. In the 1990s, these different signal functions were proposed to represent a single process driven by the shape of female preference functions across both intra- and interspecific signal space. However, the properties of reliable 'recognition' signals (stereotyped; low intraspecific variation) and informative 'quality' signals (condition dependent; high intraspecific variation) seem at odds, perhaps favouring different signal components for different functions. Surprisingly, the idea that different components of mating signals are evaluated in series, first to recognize generally compatible mates and then to select for quality, has never been explicitly tested. Here I evaluate patterns of (i) intraspecific signal variation, (ii) female preference function shape and (iii) phylogenetic signal for male cricket call components known to be processed in series. The results show that signal components processed first tend to have low variation, closed preference functions and low phylogenetic signal, whereas signal components processed later show the opposite, suggesting that mating signal evaluation follows an 'order-of-operations'. Applicability of this finding to diverse groups of organisms and sensory modalities is discussed.
Collapse
Affiliation(s)
- David A Gray
- Department of Biology, California State University Northridge, 18111 Nordhoff Street, Northridge, CA 91330-8303, USA
| |
Collapse
|
20
|
Rogers SM, Kostarakos K, Hedwig B. An auditory-responsive interneuron descending from the cricket brain: a new element in the auditory pathway. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:571-589. [PMID: 36208310 PMCID: PMC9734236 DOI: 10.1007/s00359-022-01577-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/02/2022] [Accepted: 09/22/2022] [Indexed: 12/14/2022]
Abstract
Crickets receive auditory information from their environment via ears located on the front legs. Ascending interneurons forward auditory activity to the brain, which houses a pattern recognition network for phonotaxis to conspecific calling songs and which controls negative phonotaxis to high-frequency sound pulses. Descending brain neurons, however, which are clearly involved in controlling these behaviors, have not yet been identified. We describe a descending auditory-responsive brain neuron with an arborization pattern that coincides with the ring-like auditory neuropil in the brain formed by the axonal arborizations of ascending and local interneurons, indicating its close link to auditory processing. Spiking activity of this interneuron occurs with a short latency to calling song patterns and the neuron copies the sound pulse pattern. The neuron preferentially responds to short sound pulses, but its activity appears to be independent of the calling song pattern recognition process. It also receives a weaker synaptic input in response to high-frequency pulses, which may contribute to its short latency spiking responses. This interneuron could be a crucial part in the auditory-to-motor transformation of the nervous system and contribute to the motor control of cricket auditory behavior.
Collapse
Affiliation(s)
- Stephen M. Rogers
- grid.5335.00000000121885934Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ
UK ,grid.36511.300000 0004 0420 4262Department of Life Sciences, University of Lincoln, Brayford Pool Campus, Lincoln, LN6 7TS UK
| | | | - Berthold Hedwig
- grid.5335.00000000121885934Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ
UK
| |
Collapse
|
21
|
Bent AM, Hedwig B. Tolerant pattern recognition: evidence from phonotactic responses in the cricket Gryllus bimaculatus (de Geer). Proc Biol Sci 2021; 288:20211889. [PMID: 34905710 PMCID: PMC8670955 DOI: 10.1098/rspb.2021.1889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/22/2021] [Indexed: 11/21/2022] Open
Abstract
When the amplitude modulation of species-specific acoustic signals is distorted in the transmission channel, signals become difficult to recognize by the receiver. Tolerant auditory pattern recognition systems, which after having perceived the correct species-specific signal transiently broaden their acceptance of signals, would be advantageous for animals as an adaptation to the constraints of the environment. Using a well-studied cricket species, Gryllus bimaculatus, we analysed tolerance in auditory steering responses to 'Odd' chirps, mimicking a signal distorted by the transmission channel, and control 'Silent' chirps by employing a fine-scale open-loop trackball system. Odd chirps on their own did not elicit a phonotactic response. However, when inserted into a calling song pattern with attractive Normal chirps, the females' phonotactic response toward these patterns was significantly larger than to patterns with Silent chirps. Moreover, females actively steered toward Odd chirps when these were presented within a sequence of attractive chirps. Our results suggest that crickets employ a tolerant pattern recognition system that, once activated, transiently allows responses to distorted sound patterns, as long as sufficient natural chirps are present. As pattern recognition modulates how crickets process non-attractive acoustic signals, the finding is also relevant for the interpretation of two-choice behavioural experiments.
Collapse
Affiliation(s)
- Adam M. Bent
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Berthold Hedwig
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| |
Collapse
|
22
|
Clemens J, Schöneich S, Kostarakos K, Hennig RM, Hedwig B. A small, computationally flexible network produces the phenotypic diversity of song recognition in crickets. eLife 2021; 10:e61475. [PMID: 34761750 PMCID: PMC8635984 DOI: 10.7554/elife.61475] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/03/2021] [Indexed: 01/31/2023] Open
Abstract
How neural networks evolved to generate the diversity of species-specific communication signals is unknown. For receivers of the signals, one hypothesis is that novel recognition phenotypes arise from parameter variation in computationally flexible feature detection networks. We test this hypothesis in crickets, where males generate and females recognize the mating songs with a species-specific pulse pattern, by investigating whether the song recognition network in the cricket brain has the computational flexibility to recognize different temporal features. Using electrophysiological recordings from the network that recognizes crucial properties of the pulse pattern on the short timescale in the cricket Gryllus bimaculatus, we built a computational model that reproduces the neuronal and behavioral tuning of that species. An analysis of the model's parameter space reveals that the network can provide all recognition phenotypes for pulse duration and pause known in crickets and even other insects. Phenotypic diversity in the model is consistent with known preference types in crickets and other insects, and arises from computations that likely evolved to increase energy efficiency and robustness of pattern recognition. The model's parameter to phenotype mapping is degenerate - different network parameters can create similar changes in the phenotype - which likely supports evolutionary plasticity. Our study suggests that computationally flexible networks underlie the diverse pattern recognition phenotypes, and we reveal network properties that constrain and support behavioral diversity.
Collapse
Affiliation(s)
- Jan Clemens
- European Neuroscience Institute Göttingen – A Joint Initiative of the University Medical Center Göttingen and the Max-Planck SocietyGöttingenGermany
- BCCN GöttingenGöttingenGermany
| | - Stefan Schöneich
- University of Cambridge, Department of ZoologyCambridgeUnited Kingdom
- Friedrich-Schiller-University Jena, Institute for Zoology and Evolutionary ResearchJenaGermany
| | - Konstantinos Kostarakos
- University of Cambridge, Department of ZoologyCambridgeUnited Kingdom
- Institute of Biology, University of GrazUniversitätsplatzAustria
| | - R Matthias Hennig
- Humboldt-Universität zu Berlin, Department of BiologyPhilippstrasseGermany
| | - Berthold Hedwig
- University of Cambridge, Department of ZoologyCambridgeUnited Kingdom
| |
Collapse
|
23
|
Vocal learning and flexible rhythm pattern perception are linked: Evidence from songbirds. Proc Natl Acad Sci U S A 2021; 118:2026130118. [PMID: 34272278 PMCID: PMC8307534 DOI: 10.1073/pnas.2026130118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
We can recognize the cadence of a friend’s voice or the rhythm of a familiar song across a wide range of tempi. This shows that our perception of temporal patterns relies strongly on the relative timing of events rather than on specific absolute durations. This tendency is foundational to speech and music perception, but to what extent is it shared by other species? We hypothesize that animals that learn their vocalizations are more likely to share this tendency. Here, we show that a vocal learning songbird robustly recognizes a basic rhythmic pattern independent of rate. Our findings pave the way for neurobiological studies to identify how the brain represents and perceives the temporal structure of auditory sequences. Rhythm perception is fundamental to speech and music. Humans readily recognize a rhythmic pattern, such as that of a familiar song, independently of the tempo at which it occurs. This shows that our perception of auditory rhythms is flexible, relying on global relational patterns more than on the absolute durations of specific time intervals. Given that auditory rhythm perception in humans engages a complex auditory–motor cortical network even in the absence of movement and that the evolution of vocal learning is accompanied by strengthening of forebrain auditory–motor pathways, we hypothesize that vocal learning species share our perceptual facility for relational rhythm processing. We test this by asking whether the best-studied animal model for vocal learning, the zebra finch, can recognize a fundamental rhythmic pattern—equal timing between event onsets (isochrony)—based on temporal relations between intervals rather than on absolute durations. Prior work suggests that vocal nonlearners (pigeons and rats) are quite limited in this regard and are biased to attend to absolute durations when listening to rhythmic sequences. In contrast, using naturalistic sounds at multiple stimulus rates, we show that male zebra finches robustly recognize isochrony independent of absolute time intervals, even at rates distant from those used in training. Our findings highlight the importance of comparative studies of rhythmic processing and suggest that vocal learning species are promising animal models for key aspects of human rhythm perception. Such models are needed to understand the neural mechanisms behind the positive effect of rhythm on certain speech and movement disorders.
Collapse
|
24
|
Symes LB, Robillard T, Martinson SJ, Dong J, Kernan CE, Miller CR, Ter Hofstede HM. Daily signaling rate and the duration of sound per signal are negatively related in Neotropical forest katydids. Integr Comp Biol 2021; 61:887-899. [PMID: 34137809 DOI: 10.1093/icb/icab138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Researchers have long examined the structure of animal advertisement signals, but comparatively little is known about how often these signals are repeated and what factors predict variation in signaling rate across species. Here, we focus on acoustic advertisement signals to test the hypothesis that calling males experience a tradeoff between investment in the duration or complexity of individual calls and investment in signaling over long time periods. This hypothesis predicts that the number of signals that a male produces per 24 hours will negatively correlate with 1) the duration of sound that is produced in each call (the sum of all pulses) and 2) the number of sound pulses per call. To test this hypothesis, we measured call parameters and the number of calls produced per 24 hours in 16 species of sympatric phaneropterine katydids from the Panamanian rainforest. This assemblage also provided us with the opportunity to test a second taxonomically-specific hypothesis about signaling rates in taxa such as phaneropterine katydids that transition from advertisement calls to mating duets to facilitate mate localization. To establish duets, male phaneropterine katydids call and females produce a short acoustic reply. These duets facilitate searching by males, females, or both sexes, depending on the species. We test the hypothesis that males invest either in calling or in searching for females. This hypothesis predicts a negative relationship between how often males signal over 24 hours and how much males move across the landscape relative to females. For the first hypothesis, there was a strong negative relationship between the number of signals and the duration of sound that is produced in each signal, but we find no relationship between the number of signals produced per 24 hours and the number of pulses per signal. This result suggests the presence of cross-taxa tradeoffs that limit signal production and duration, but not the structure of individual signals. These tradeoffs could be driven by energetic limitations, predation pressure, signal efficacy, or other signaling costs. For the second hypothesis, we find a negative relationship between the number of signals produced per day and proportion of the light trap catch that is male, likely reflecting males investing either in calling or in searching. These cross-taxa relationships point to the presence of pervasive trade-offs that fundamentally shape the spatial and temporal dynamics of communication.
Collapse
Affiliation(s)
- Laurel B Symes
- Center for Conservation Bioacoustics, Cornell Lab of Ornithology, Cornell University, 159 Sapsucker Woods Road, Ithaca, NY 14850, USA.,Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Republic of Panamá.,Dartmouth College, Department of Biological Sciences, 78 College Street, Hanover, NH 03755, USA
| | - Tony Robillard
- Institut de Systématique, Evolution et Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, SU, EPHE, UA, 57 rue Cuvier, CP 50, 75231 Paris Cedex 05, France
| | - Sharon J Martinson
- Center for Conservation Bioacoustics, Cornell Lab of Ornithology, Cornell University, 159 Sapsucker Woods Road, Ithaca, NY 14850, USA.,Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Republic of Panamá.,Dartmouth College, Department of Biological Sciences, 78 College Street, Hanover, NH 03755, USA
| | - Jiajia Dong
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, College of Life Sciences, Xuzhou Medical University, Xuzhou 221004, China
| | - Ciara E Kernan
- Dartmouth College, Graduate Program in Ecology, Evolution, Environment and Society, Hanover, NH 03755, USA
| | - Colleen R Miller
- Department of Ecology and Evolutionary Biology, Cornell University
| | - Hannah M Ter Hofstede
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Republic of Panamá.,Dartmouth College, Department of Biological Sciences, 78 College Street, Hanover, NH 03755, USA.,Dartmouth College, Graduate Program in Ecology, Evolution, Environment and Society, Hanover, NH 03755, USA
| |
Collapse
|
25
|
Sung JY, Harris OK, Hensley NM, Chemero AP, Morehouse NI. Beyond cognitive templates: re-examining template metaphors used for animal recognition and navigation. Integr Comp Biol 2021; 61:825-841. [PMID: 33970266 DOI: 10.1093/icb/icab040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The term 'cognitive template' originated from work in human-based cognitive science to describe a literal, stored, neural representation used in recognition tasks. As the study of cognition has expanded to non-human animals, the term has diffused to describe a wider range of animal cognitive tools and strategies that guide action through the recognition of and discrimination between external states. One potential reason for this non-standardized meaning and variable employment is that researchers interested in the broad range of animal recognition tasks enjoy the simplicity of the cognitive template concept and have allowed it to become shorthand for many dissimilar or unknown neural processes without deep scrutiny of how this metaphor might comport with underlying neurophysiology. We review the functional evidence for cognitive templates in fields such as perception, navigation, communication, and learning, highlighting any neural correlates identified by these studies. We find that the concept of cognitive templates has facilitated valuable exploration at the interface between animal behavior and cognition, but the quest for a literal template has failed to attain mechanistic support at the level of neurophysiology. This may be the result of a misled search for a single physical locus for the 'template' itself. We argue that recognition and discrimination processes are best treated as emergent and, as such, may not be physically localized within single structures of the brain. Rather, current evidence suggests that such tasks are accomplished through synergies between multiple distributed processes in animal nervous systems. We thus advocate for researchers to move towards a more ecological, process-oriented conception, especially when discussing the neural underpinnings of recognition-based cognitive tasks.
Collapse
Affiliation(s)
- Jenny Y Sung
- Department of Biological Sciences, University of Cincinnati
| | | | | | | | | |
Collapse
|
26
|
Neurophysiology goes wild: from exploring sensory coding in sound proof rooms to natural environments. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2021; 207:303-319. [PMID: 33835199 PMCID: PMC8079291 DOI: 10.1007/s00359-021-01482-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/21/2021] [Accepted: 03/23/2021] [Indexed: 10/27/2022]
Abstract
To perform adaptive behaviours, animals have to establish a representation of the physical "outside" world. How these representations are created by sensory systems is a central issue in sensory physiology. This review addresses the history of experimental approaches toward ideas about sensory coding, using the relatively simple auditory system of acoustic insects. I will discuss the empirical evidence in support of Barlow's "efficient coding hypothesis", which argues that the coding properties of neurons undergo specific adaptations that allow insects to detect biologically important acoustic stimuli. This hypothesis opposes the view that the sensory systems of receivers are biased as a result of their phylogeny, which finally determine whether a sound stimulus elicits a behavioural response. Acoustic signals are often transmitted over considerable distances in complex physical environments with high noise levels, resulting in degradation of the temporal pattern of stimuli, unpredictable attenuation, reduced signal-to-noise levels, and degradation of cues used for sound localisation. Thus, a more naturalistic view of sensory coding must be taken, since the signals as broadcast by signallers are rarely equivalent to the effective stimuli encoded by the sensory system of receivers. The consequences of the environmental conditions for sensory coding are discussed.
Collapse
|
27
|
Xu M, Shaw KL. Extensive Linkage and Genetic Coupling of Song and Preference Loci Underlying Rapid Speciation in Laupala Crickets. J Hered 2021; 112:204-213. [PMID: 33438016 DOI: 10.1093/jhered/esab001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 01/11/2021] [Indexed: 12/20/2022] Open
Abstract
In nature, closely related species commonly display divergent mating behaviors, suggesting a central role for such traits in the origin of species. Elucidating the genetic basis of divergence in these traits is necessary to understand the evolutionary process leading to reproductive barriers and speciation. The rapidly speciating Hawaiian crickets of the genus Laupala provides an ideal system for dissecting the genetic basis of mating behavior divergence. In Laupala, closely related species differ markedly in male song pulse rate and female preference for pulse rate. These behaviors play an important role in determining mating patterns. Previous studies identified a genetic architecture consisting of numerous small to moderate effect loci causing interspecific differences in pulse rate and preference, including colocalizing pulse rate and preference QTL on linkage group one (LG1). To further interrogate these QTL, we conduct a fine mapping study using high-density SNP linkage maps. With improved statistical power and map resolution, we provide robust evidence for genetic coupling between song and preference, along with two additional pulse rate QTL on LG1, revealing a more resolved picture of the genetic architecture underlying mating behavior divergence. Our sequence-based genetic map, along with dramatically narrowed QTL confidence intervals, allowed us to annotate genes within the QTL regions and identify several exciting candidate genes underlying variation in pulse rate and preference divergence. Such knowledge suggests potential molecular mechanisms underlying the evolution of behavioral barriers.
Collapse
Affiliation(s)
- Mingzi Xu
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY
| | - Kerry L Shaw
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY
| |
Collapse
|
28
|
Rodríguez RL. Back to the Basics of Mate Choice: The Evolutionary Importance of Darwin’s Sense of Beauty. THE QUARTERLY REVIEW OF BIOLOGY 2020. [DOI: 10.1086/711781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
29
|
How auditory selectivity for sound timing arises: The diverse roles of GABAergic inhibition in shaping the excitation to interval-selective midbrain neurons. Prog Neurobiol 2020; 199:101962. [PMID: 33242571 DOI: 10.1016/j.pneurobio.2020.101962] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/25/2020] [Accepted: 11/18/2020] [Indexed: 01/11/2023]
Abstract
Across sensory systems, temporal frequency information is progressively transformed along ascending central pathways. Despite considerable effort to elucidate the mechanistic basis of these transformations, they remain poorly understood. Here we used a novel constellation of approaches, including whole-cell recordings and focal pharmacological manipulation, in vivo, and new computational algorithms that identify conductances resulting from excitation, inhibition and active membrane properties, to elucidate the mechanisms underlying the selectivity of midbrain auditory neurons for long temporal intervals. Surprisingly, we found that stimulus-driven excitation can be increased and its selectivity decreased following attenuation of inhibition with gabazine or intracellular delivery of fluoride. We propose that this nonlinear interaction is due to shunting inhibition. The rate-dependence of this inhibition results in the illusion that excitation to a cell shows greater temporal selectivity than is actually the case. We also show that rate-dependent depression of excitation, an important component of long-interval selectivity, can be decreased after attenuating inhibition. These novel findings indicate that nonlinear shunting inhibition plays a key role in shaping the amplitude and interval selectivity of excitation. Our findings provide a major advance in understanding how the brain decodes intervals and may explain paradoxical temporal selectivity of excitation to midbrain neurons reported previously.
Collapse
|
30
|
Dobbs OL, Talavera JB, Rossi SM, Menjivar S, Gray DA. Signaler-receiver-eavesdropper: Risks and rewards of variation in the dominant frequency of male cricket calls. Ecol Evol 2020; 10:12364-12371. [PMID: 33209294 PMCID: PMC7663976 DOI: 10.1002/ece3.6866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/01/2020] [Accepted: 09/10/2020] [Indexed: 11/09/2022] Open
Abstract
Signals are important for communication and mating, and while they can benefit an individual, they can also be costly and dangerous. Male field crickets call in order to attract female crickets, but gravid females of a parasitoid fly species, Ormia ochracea, are also attracted to the call and use it to pinpoint male cricket hosts. Conspicuousness of the call can vary with frequency, amplitude, and temporal features. Previous work with this system has only considered temporal variation in cricket calls, both large scale, that is, amount of calling and at what time of evening, and small scale, that is, aspects of chirp rate, pulse rate, and numbers of pulses per chirp. Because auditory perception in both crickets and flies relies on the matching of the peak frequency of the call with the peripheral sensory system, peak frequency may be subject to selection both from female crickets and from female flies. Here, we used field playbacks of four different versions of the same male Gryllus lineaticeps calling song that only differed in peak frequency (3.3, 4.3, 5.3, and 6.3 kHz) to test the relative attractiveness of the calls to female crickets and female flies. Our results clearly show that lower frequency calls enhance male safety from fly parasitism, but that the enhanced safety would come at a cost of reduced attraction of female crickets as potential mates. The results imply that eavesdropper pressure can disrupt the matched coevolution of signalers and receivers such that the common concept of matched male-female signaler-receiver coevolution may actually be better described as male-female-predator signaler-receiver-eavesdropper coevolution.
Collapse
Affiliation(s)
- Olivia L. Dobbs
- Department of BiologyCalifornia State University NorthridgeNorthridgeCAUSA
| | | | - Sarina M. Rossi
- Department of BiologyCalifornia State University NorthridgeNorthridgeCAUSA
| | - Stephanie Menjivar
- Department of BiologyCalifornia State University NorthridgeNorthridgeCAUSA
| | - David A. Gray
- Department of BiologyCalifornia State University NorthridgeNorthridgeCAUSA
| |
Collapse
|
31
|
Neuroethology of acoustic communication in field crickets - from signal generation to song recognition in an insect brain. Prog Neurobiol 2020; 194:101882. [PMID: 32673695 DOI: 10.1016/j.pneurobio.2020.101882] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/25/2020] [Accepted: 07/05/2020] [Indexed: 11/22/2022]
Abstract
Field crickets are best known for the loud calling songs produced by males to attract conspecific females. This review aims to summarize the current knowledge of the neurobiological basis underlying the acoustic communication for mate finding in field crickets with emphasis on the recent research progress to understand the neuronal networks for motor pattern generation and auditory pattern recognition of the calling song in Gryllus bimaculatus. Strong scientific interest into the neural mechanisms underlying intraspecific communication has driven persistently advancing research efforts to study the male singing behaviour and female phonotaxis for mate finding in these insects. The growing neurobiological understanding also inspired many studies testing verifiable hypotheses in sensory ecology, bioacoustics and on the genetics and evolution of behaviour. Over last decades, acoustic communication in field crickets served as a very successful neuroethological model system. It has contributed significantly to the scientific process of establishing, reconsidering and refining fundamental concepts in behavioural neurosciences such as command neurons, central motor pattern generation, corollary discharge processing and pattern recognition by sensory feature detection, which are basic building blocks of our modern understanding on how nervous systems control and generate behaviour in all animals.
Collapse
|
32
|
Miller SE, Sheehan MJ, Reeve HK. Coevolution of cognitive abilities and identity signals in individual recognition systems. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190467. [PMID: 32420843 PMCID: PMC7331018 DOI: 10.1098/rstb.2019.0467] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2020] [Indexed: 12/24/2022] Open
Abstract
Social interactions are mediated by recognition systems, meaning that the cognitive abilities or phenotypic diversity that facilitate recognition may be common targets of social selection. Recognition occurs when a receiver compares the phenotypes produced by a sender with a template. Coevolution between sender and receiver traits has been empirically reported in multiple species and sensory modalities, though the dynamics and relative exaggeration of traits from senders versus receivers have received little attention. Here, we present a coevolutionary dynamic model that examines the conditions under which senders and receivers should invest effort in facilitating individual recognition. The model predicts coevolution of sender and receiver traits, with the equilibrium investment dependent on the relative costs of signal production versus cognition. In order for recognition to evolve, initial sender and receiver trait values must be above a threshold, suggesting that recognition requires some degree of pre-existing diversity and cognitive abilities. The analysis of selection gradients demonstrates that the strength of selection on sender signals and receiver cognition is strongest when the trait values are furthest from the optima. The model provides new insights into the expected strength and dynamics of selection during the origin and elaboration of individual recognition, an important feature of social cognition in many taxa. This article is part of the theme issue 'Signal detection theory in recognition systems: from evolving models to experimental tests'.
Collapse
Affiliation(s)
| | - Michael J. Sheehan
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - H. Kern Reeve
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
33
|
Scherberich J, Taszus R, Stoessel A, Nowotny M. Comparative micromechanics of bushcricket ears with and without a specialized auditory fovea region in the crista acustica. Proc Biol Sci 2020; 287:20200909. [PMID: 32576108 PMCID: PMC7329045 DOI: 10.1098/rspb.2020.0909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In some insects and vertebrate species, the specific enlargement of sensory cell epithelium facilitates the perception of particular behaviourally relevant signals. The insect auditory fovea in the ear of the bushcricket Ancylecha fenestrata (Tettigoniidae: Phaneropterinae) is an example of such an expansion of sensory epithelium. Bushcricket ears developed in convergent evolution anatomical and functional similarities to mammal ears, such as travelling waves and auditory foveae, to process information by sound. As in vertebrate ears, sound induces a motion of this insect hearing organ (crista acustica), which can be characterized by its amplitude and phase response. However, detailed micromechanics in this bushcricket ear with an auditory fovea are yet unknown. Here, we fill this gap in knowledge for bushcricket, by analysing and comparing the ear micromechanics in Ancylecha fenestrata and a bushcricket species without auditory fovea (Mecopoda elongata, Tettigoniidae: Mecopodinae) using laser-Doppler vibrometry. We found that the increased size of the crista acustica, expanded by a foveal region in A. fenestrata, leads to higher mechanical amplitudes and longer phase delays in A. fenestrata male ears. Furthermore, area under curve analyses of the organ oscillations reveal that more sensory units are activated by the same stimuli in the males of the auditory fovea-possessing species A. fenestrata. The measured increase of phase delay in the region of the auditory fovea supports the conclusion that tilting of the transduction site is important for the effective opening of the involved transduction channels. Our detailed analysis of sound-induced micromechanics in this bushcricket ear demonstrates that an increase of sensory epithelium with foveal characteristics can enhance signal detection and may also improve the neuronal encoding.
Collapse
Affiliation(s)
- Jan Scherberich
- Institute of Zoology and Evolutionary Research, Friedrich-Schiller-University, Jena, Germany.,Institute of Cell Biology and Neuroscience, Goethe-University, Frankfurt am Main, Germany
| | - Roxana Taszus
- Institute of Zoology and Evolutionary Research, Friedrich-Schiller-University, Jena, Germany
| | - Alexander Stoessel
- Institute of Zoology and Evolutionary Research, Friedrich-Schiller-University, Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Manuela Nowotny
- Institute of Zoology and Evolutionary Research, Friedrich-Schiller-University, Jena, Germany.,Institute of Cell Biology and Neuroscience, Goethe-University, Frankfurt am Main, Germany
| |
Collapse
|
34
|
Sandin F, Nilsson M. Synaptic Delays for Insect-Inspired Temporal Feature Detection in Dynamic Neuromorphic Processors. Front Neurosci 2020; 14:150. [PMID: 32180698 PMCID: PMC7059595 DOI: 10.3389/fnins.2020.00150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/07/2020] [Indexed: 11/13/2022] Open
Abstract
Spiking neural networks are well-suited for spatiotemporal feature detection and learning, and naturally involve dynamic delay mechanisms in the synapses, dendrites, and axons. Dedicated delay neurons and axonal delay circuits have been considered when implementing such pattern recognition networks in dynamic neuromorphic processors. Inspired by an auditory feature detection circuit in crickets, featuring a delayed excitation by post-inhibitory rebound, we investigate disynaptic delay elements formed by inhibitory-excitatory pairs of dynamic synapses. We configured such disynaptic delay elements in the DYNAP-SE neuromorphic processor and characterized the distribution of delayed excitations resulting from device mismatch. Interestingly, we found that the disynaptic delay elements can be configured such that the timing and magnitude of the delayed excitation depend mainly on the efficacy of the inhibitory and excitatory synapses, respectively, and that a neuron with multiple delay elements can be tuned to respond selectively to a specific pattern. Furthermore, we present a network with one disynaptic delay element that mimics the auditory feature detection circuit of crickets, and we demonstrate how varying synaptic weights, input noise and processor temperature affect the circuit. Dynamic delay elements of this kind open up for synapse level temporal feature tuning with configurable delays of up to 100 ms.
Collapse
Affiliation(s)
- Fredrik Sandin
- Embedded Intelligent Systems Lab (EISLAB), Luleå University of Technology, Luleå, Sweden
| | - Mattias Nilsson
- Embedded Intelligent Systems Lab (EISLAB), Luleå University of Technology, Luleå, Sweden
| |
Collapse
|
35
|
Lv M, Zhang X, Hedwig B. Phonotactic steering and representation of directional information in the ascending auditory pathway of a cricket. J Neurophysiol 2020; 123:865-875. [PMID: 31913780 DOI: 10.1152/jn.00737.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Directional hearing is crucial for animals depending on acoustic signals to locate a mate. We focused on crickets to explore the reliability of directional information forwarded to the brain by the ascending auditory interneuron AN1, which is crucial for phonotactic behavior. We presented calling song from -45° to +45° in steps of 3° and compared the phonotactic steering of females walking on a trackball with the directional responses of AN1. Forty percent of females showed good steering behavior and changed their walking direction when the speaker passed the body's longitudinal axis. The bilateral latency difference between right and left AN1 responses was small and may not be reliable for auditory steering. In respect to spike count, all AN1 recordings presented significant bilateral differences for angles larger than ±18°, yet 35% showed a mean significant difference of 1-3 action potentials per chirp when the frontal stimulus deviated by 3° from their length axis. For small angles, some females had a very similar AN1 activity forwarded to the brain, but the accuracy of their steering behavior was substantially different. Our results indicate a correlation between directional steering and the response strength of AN1, especially for large angles. The reliable steering of animals at small angles would have to be based on small bilateral differences of AN1 activity, if AN1 is the only source providing directional information. We discuss whether such bilateral response difference at small angles can provide a reliable measure to generate auditory steering commands descending from the brain, as pattern recognition is intensity independent.NEW & NOTEWORTHY The ascending auditory interneuron AN1 has been implicated in cricket auditory steering, but at small acoustic stimulation angles, it does not provide reliable directional information. We conclude that either the small bilateral auditory activity differences of the AN1 neurons are enhanced to generate reliable descending steering commands or, more likely, directional auditory steering is mediated via a thoracic pathway, as indicated by the reactive steering hypothesis.
Collapse
Affiliation(s)
- M Lv
- Department of Range Land Ecology, China Agricultural University, Beijing, China
| | - X Zhang
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - B Hedwig
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
36
|
Xu M, Shaw KL. Genetic coupling of signal and preference facilitates sexual isolation during rapid speciation. Proc Biol Sci 2019; 286:20191607. [PMID: 31640515 DOI: 10.1098/rspb.2019.1607] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The divergence of sexual signals is ultimately a coevolutionary process: while signals and preferences diverge between lineages, they must remain coordinated within lineages for matings to occur. Divergence in sexual signals makes a major contribution to evolving species barriers. Therefore, the genetic architecture underlying signal-preference coevolution is essential to understanding speciation but remains largely unknown. In Laupala crickets where male song pulse rate and female pulse rate preferences have coevolved repeatedly and rapidly, we tested two contrasting hypotheses for the genetic architecture underlying signal-preference coevolution: linkage disequilibrium between unlinked loci and genetic coupling (linkage disequilibrium resulting from pleiotropy of a shared locus or tight physical linkage). Through selective introgression and quantitative trait locus (QTL) fine mapping, we estimated the location of QTL underlying interspecific variation in both female preference and male pulse rate from the same mapping populations. Remarkably, map estimates of the pulse rate and preference loci are as close as 0.06 cM apart, the strongest evidence to date for genetic coupling between signal and preference loci. As the second pair of colocalizing signal and preference loci in the Laupala genome, our finding supports an intriguing pattern, pointing to a major role for genetic coupling in the quantitative evolution of a reproductive barrier and rapid speciation in Laupala. Owing to its effect on suppressing recombination, a coupled, quantitative genetic architecture offers a powerful and parsimonious genetic mechanism for signal-preference coevolution and the establishment of positive genetic covariance on which the Fisherian runaway process of sexual selection relies.
Collapse
Affiliation(s)
- Mingzi Xu
- Department of Neurobiology and Behavior, Cornell University, 215 Tower Rd, Ithaca, NY 14853, USA
| | - Kerry L Shaw
- Department of Neurobiology and Behavior, Cornell University, 215 Tower Rd, Ithaca, NY 14853, USA
| |
Collapse
|
37
|
Deutsch D, Clemens J, Thiberge SY, Guan G, Murthy M. Shared Song Detector Neurons in Drosophila Male and Female Brains Drive Sex-Specific Behaviors. Curr Biol 2019; 29:3200-3215.e5. [PMID: 31564492 PMCID: PMC6885007 DOI: 10.1016/j.cub.2019.08.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/10/2019] [Accepted: 08/02/2019] [Indexed: 10/25/2022]
Abstract
Males and females often produce distinct responses to the same sensory stimuli. How such differences arise-at the level of sensory processing or in the circuits that generate behavior-remains largely unresolved across sensory modalities. We address this issue in the acoustic communication system of Drosophila. During courtship, males generate time-varying songs, and each sex responds with specific behaviors. We characterize male and female behavioral tuning for all aspects of song and show that feature tuning is similar between sexes, suggesting sex-shared song detectors drive divergent behaviors. We then identify higher-order neurons in the Drosophila brain, called pC2, that are tuned for multiple temporal aspects of one mode of the male's song and drive sex-specific behaviors. We thus uncover neurons that are specifically tuned to an acoustic communication signal and that reside at the sensory-motor interface, flexibly linking auditory perception with sex-specific behavioral responses.
Collapse
Affiliation(s)
- David Deutsch
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA
| | - Jan Clemens
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA; European Neuroscience Institute Göttingen - A Joint Initiative of the University Medical Center Göttingen and the Max-Planck Society, Grisebachstrasse 5, Göttingen 37077, Germany
| | - Stephan Y Thiberge
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA; Bezos Center for Neural Circuit Dynamics, Princeton Neuroscience Institute, Princeton University, Princeton NJ 08540, USA
| | - Georgia Guan
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA; Bezos Center for Neural Circuit Dynamics, Princeton Neuroscience Institute, Princeton University, Princeton NJ 08540, USA.
| |
Collapse
|
38
|
Baker CA, Clemens J, Murthy M. Acoustic Pattern Recognition and Courtship Songs: Insights from Insects. Annu Rev Neurosci 2019; 42:129-147. [PMID: 30786225 DOI: 10.1146/annurev-neuro-080317-061839] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Across the animal kingdom, social interactions rely on sound production and perception. From simple cricket chirps to more elaborate bird songs, animals go to great lengths to communicate information critical for reproduction and survival via acoustic signals. Insects produce a wide array of songs to attract a mate, and the intended receivers must differentiate these calls from competing sounds, analyze the quality of the sender from spectrotemporal signal properties, and then determine how to react. Insects use numerically simple nervous systems to analyze and respond to courtship songs, making them ideal model systems for uncovering the neural mechanisms underlying acoustic pattern recognition. We highlight here how the combination of behavioral studies and neural recordings in three groups of insects-crickets, grasshoppers, and fruit flies-reveals common strategies for extracting ethologically relevant information from acoustic patterns and how these findings might translate to other systems.
Collapse
Affiliation(s)
- Christa A Baker
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08544, USA;
| | - Jan Clemens
- University Medical Center Goettingen, Max-Planck-Society, European Neuroscience Institute, D-37077 Goettingen, Germany;
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08544, USA;
| |
Collapse
|
39
|
Ronacher B. Innate releasing mechanisms and fixed action patterns: basic ethological concepts as drivers for neuroethological studies on acoustic communication in Orthoptera. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:33-50. [PMID: 30617601 PMCID: PMC6394777 DOI: 10.1007/s00359-018-01311-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/12/2018] [Accepted: 12/17/2018] [Indexed: 12/20/2022]
Abstract
This review addresses the history of neuroethological studies on acoustic communication in insects. One objective is to reveal how basic ethological concepts developed in the 1930s, such as innate releasing mechanisms and fixed action patterns, have influenced the experimental and theoretical approaches to studying acoustic communication systems in Orthopteran insects. The idea of innateness of behaviors has directly fostered the search for central pattern generators that govern the stridulation patterns of crickets, katydids or grasshoppers. A central question pervading 50 years of research is how the essential match between signal features and receiver characteristics has evolved and is maintained during evolution. As in other disciplines, the tight interplay between technological developments and experimental and theoretical advances becomes evident throughout this review. While early neuroethological studies focused primarily on proximate questions such as the implementation of feature detectors or central pattern generators, later the interest shifted more towards ultimate questions. Orthoptera offer the advantage that both proximate and ultimate questions can be tackled in the same system. An important advance was the transition from laboratory studies under well-defined acoustic conditions to field studies that allowed to measure costs and benefits of acoustic signaling as well as constraints on song evolution.
Collapse
Affiliation(s)
- Bernhard Ronacher
- Behavioural Physiology Group, Department of Biology, Humboldt-Universität zu Berlin, Philippstraße 13, Haus 18, 10099, Berlin, Germany.
| |
Collapse
|
40
|
Kostarakos K, Römer H. Evolutionarily conserved coding properties favour the neuronal representation of heterospecific signals of a sympatric katydid species. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2018; 204:859-872. [PMID: 30225517 PMCID: PMC6182671 DOI: 10.1007/s00359-018-1282-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/21/2018] [Accepted: 08/23/2018] [Indexed: 11/01/2022]
Abstract
To function as a mechanism in premating isolation, the divergent and species-specific calling songs of acoustic insects must be reliably processed by the afferent auditory pathway of receivers. Here, we analysed the responses of interneurons in a katydid species that uses long-lasting acoustic trills and compared these with previously reported data for homologous interneurons of a sympatric species that uses short chirps as acoustic signals. Some interneurons of the trilling species respond exclusively to the heterospecific chirp due to selective, low-frequency tuning and "novelty detection". These properties have been considered as evolutionary adaptations in the sensory system of the chirper, which allow it to detect signals effectively during the simultaneous calling of the sympatric sibling species. We propose that these two mechanisms, shared by the interneurons of both species, did not evolve in the chirper to guarantee its ability to detect the chirp under masking conditions. Instead we suggest that chirpers evolved an additional, 2-kHz component in their song and exploited pre-existing neuronal properties for detecting their song under masking noise. The failure of some interneurons to respond to the conspecific song in trillers does not prevent intraspecific communication, as other interneurons respond to the trill.
Collapse
Affiliation(s)
| | - Heiner Römer
- Institute of Biology, University of Graz, Universitaetsplatz 2, 8010, Graz, Austria
| |
Collapse
|
41
|
Ai H, Kumaraswamy A, Kohashi T, Ikeno H, Wachtler T. Inhibitory Pathways for Processing the Temporal Structure of Sensory Signals in the Insect Brain. Front Psychol 2018; 9:1517. [PMID: 30186204 PMCID: PMC6110935 DOI: 10.3389/fpsyg.2018.01517] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/31/2018] [Indexed: 11/13/2022] Open
Abstract
Insects have acquired excellent sensory information processing abilities in the process of evolution. In addition, insects have developed communication schemes based on the temporal patterns of specific sensory signals. For instance, male moths approach a female by detecting the spatiotemporal pattern of a pheromone plume released by the female. Male crickets attract a conspecific female as a mating partner using calling songs with species-specific temporal patterns. The dance communication of honeybees relies on a unique temporal pattern of vibration caused by wingbeats during the dance. Underlying these behaviors, neural circuits involving inhibitory connections play a critical common role in processing the exact timing of the signals in the primary sensory centers of the brain. Here, we discuss common mechanisms for processing the temporal patterns of sensory signals in the insect brain.
Collapse
Affiliation(s)
- Hiroyuki Ai
- Department of Earth System Science, Fukuoka University, Fukuoka, Japan
| | - Ajayrama Kumaraswamy
- Department of Biology II, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Tsunehiko Kohashi
- Neuroscience Institute, Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Hidetoshi Ikeno
- School of Human Science and Environment, University of Hyogo, Himeji, Japan
| | - Thomas Wachtler
- Department of Biology II, Ludwig-Maximilians-Universität München, Martinsried, Germany
| |
Collapse
|
42
|
Scherberich J, Hummel J, Schöneich S, Nowotny M. Functional basis of the sexual dimorphism in the auditory fovea of the duetting bushcricket Ancylecha fenestrata. Proc Biol Sci 2018; 284:rspb.2017.1426. [PMID: 29046376 DOI: 10.1098/rspb.2017.1426] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/19/2017] [Indexed: 11/12/2022] Open
Abstract
From mammals to insects, acoustic communication is in many species crucial for successful reproduction. In the duetting bushcricket Ancylecha fenestrata, the mutual acoustic communication between males and females is asymmetrical. We investigated how those signalling disparities are reflected by sexual dimorphism of their ears. Both sexes have tympanic ears in their forelegs, but male ears possess a significantly longer crista acustica containing 35% more scolopidia. With more sensory cells to cover a similar hearing range, the male hearing organ shows a significantly expanded auditory fovea that is tuned to the dominant frequency of the female reply to facilitate phonotactic mate finding. This sex-specific auditory fovea is demonstrated in the mechanical and neuronal responses along the tonotopically organized crista acustica by laservibrometric and electrophysiological frequency mapping, respectively. Morphometric analysis of the crista acustica revealed an interrupted gradient in organ height solely within this auditory fovea region, whereas all other anatomical parameters decrease continuously from proximal to distal. Combining behavioural, anatomical, biomechanical and neurophysiological information, we demonstrate evidence of a pronounced auditory fovea as a sex-specific adaptation of an insect hearing organ for intraspecific acoustic communication.
Collapse
Affiliation(s)
- Jan Scherberich
- Institute of Cell Biology and Neuroscience, Goethe University, Max-von-Laue-Straße 13, 60438 Frankfurt am Main, Germany
| | - Jennifer Hummel
- Institute of Cell Biology and Neuroscience, Goethe University, Max-von-Laue-Straße 13, 60438 Frankfurt am Main, Germany
| | - Stefan Schöneich
- Institute for Biology, University of Leipzig, Talstraße 33, 04103 Leipzig, Germany
| | - Manuela Nowotny
- Institute of Cell Biology and Neuroscience, Goethe University, Max-von-Laue-Straße 13, 60438 Frankfurt am Main, Germany
| |
Collapse
|
43
|
Yamada D, Ishimoto H, Li X, Kohashi T, Ishikawa Y, Kamikouchi A. GABAergic Local Interneurons Shape Female Fruit Fly Response to Mating Songs. J Neurosci 2018; 38:4329-4347. [PMID: 29691331 PMCID: PMC6596007 DOI: 10.1523/jneurosci.3644-17.2018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 03/19/2018] [Accepted: 03/26/2018] [Indexed: 12/16/2022] Open
Abstract
Many animals use acoustic signals to attract a potential mating partner. In fruit flies (Drosophila melanogaster), the courtship pulse song has a species-specific interpulse interval (IPI) that activates mating. Although a series of auditory neurons in the fly brain exhibit different tuning patterns to IPIs, it is unclear how the response of each neuron is tuned. Here, we studied the neural circuitry regulating the activity of antennal mechanosensory and motor center (AMMC)-B1 neurons, key secondary auditory neurons in the excitatory neural pathway that relay song information. By performing Ca2+ imaging in female flies, we found that the IPI selectivity observed in AMMC-B1 neurons differs from that of upstream auditory sensory neurons [Johnston's organ (JO)-B]. Selective knock-down of a GABAA receptor subunit in AMMC-B1 neurons increased their response to short IPIs, suggesting that GABA suppresses AMMC-B1 activity at these IPIs. Connection mapping identified two GABAergic local interneurons that synapse with AMMC-B1 and JO-B. Ca2+ imaging combined with neuronal silencing revealed that these local interneurons, AMMC-LN and AMMC-B2, shape the response pattern of AMMC-B1 neurons at a 15 ms IPI. Neuronal silencing studies further suggested that both GABAergic local interneurons suppress the behavioral response to artificial pulse songs in flies, particularly those with a 15 ms IPI. Altogether, we identified a circuit containing two GABAergic local interneurons that affects the temporal tuning of AMMC-B1 neurons in the song relay pathway and the behavioral response to the courtship song. Our findings suggest that feedforward inhibitory pathways adjust the behavioral response to courtship pulse songs in female flies.SIGNIFICANCE STATEMENT To understand how the brain detects time intervals between sound elements, we studied the neural pathway that relays species-specific courtship song information in female Drosophila melanogaster We demonstrate that the signal transmission from auditory sensory neurons to key secondary auditory neurons antennal mechanosensory and motor center (AMMC)-B1 is the first-step to generate time interval selectivity of neurons in the song relay pathway. Two GABAergic local interneurons are suggested to shape the interval selectivity of AMMC-B1 neurons by receiving auditory inputs and in turn providing feedforward inhibition onto AMMC-B1 neurons. Furthermore, these GABAergic local interneurons suppress the song response behavior in an interval-dependent manner. Our results provide new insights into the neural circuit basis to adjust neuronal and behavioral responses to a species-specific communication sound.
Collapse
Affiliation(s)
- Daichi Yamada
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Hiroshi Ishimoto
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Xiaodong Li
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Tsunehiko Kohashi
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Yuki Ishikawa
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Azusa Kamikouchi
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, Aichi 464-8602, Japan
| |
Collapse
|
44
|
Patella P, Wilson RI. Functional Maps of Mechanosensory Features in the Drosophila Brain. Curr Biol 2018; 28:1189-1203.e5. [PMID: 29657118 PMCID: PMC5952606 DOI: 10.1016/j.cub.2018.02.074] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/19/2018] [Accepted: 02/27/2018] [Indexed: 01/04/2023]
Abstract
Johnston's organ is the largest mechanosensory organ in Drosophila. It contributes to hearing, touch, vestibular sensing, proprioception, and wind sensing. In this study, we used in vivo 2-photon calcium imaging and unsupervised image segmentation to map the tuning properties of Johnston's organ neurons (JONs) at the site where their axons enter the brain. We then applied the same methodology to study two key brain regions that process signals from JONs: the antennal mechanosensory and motor center (AMMC) and the wedge, which is downstream of the AMMC. First, we identified a diversity of JON response types that tile frequency space and form a rough tonotopic map. Some JON response types are direction selective; others are specialized to encode amplitude modulations over a specific range (dynamic range fractionation). Next, we discovered that both the AMMC and the wedge contain a tonotopic map, with a significant increase in tonotopy-and a narrowing of frequency tuning-at the level of the wedge. Whereas the AMMC tonotopic map is unilateral, the wedge tonotopic map is bilateral. Finally, we identified a subregion of the AMMC/wedge that responds preferentially to the coherent rotation of the two mechanical organs in the same angular direction, indicative of oriented steady air flow (directional wind). Together, these maps reveal the broad organization of the primary and secondary mechanosensory regions of the brain. They provide a framework for future efforts to identify the specific cell types and mechanisms that underlie the hierarchical re-mapping of mechanosensory information in this system.
Collapse
Affiliation(s)
- Paola Patella
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave., Boston, MA 02115, USA
| | - Rachel I Wilson
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave., Boston, MA 02115, USA.
| |
Collapse
|
45
|
Li X, Ishimoto H, Kamikouchi A. Auditory experience controls the maturation of song discrimination and sexual response in Drosophila. eLife 2018; 7:e34348. [PMID: 29555017 PMCID: PMC5860867 DOI: 10.7554/elife.34348] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/19/2018] [Indexed: 11/13/2022] Open
Abstract
In birds and higher mammals, auditory experience during development is critical to discriminate sound patterns in adulthood. However, the neural and molecular nature of this acquired ability remains elusive. In fruit flies, acoustic perception has been thought to be innate. Here we report, surprisingly, that auditory experience of a species-specific courtship song in developing Drosophila shapes adult song perception and resultant sexual behavior. Preferences in the song-response behaviors of both males and females were tuned by social acoustic exposure during development. We examined the molecular and cellular determinants of this social acoustic learning and found that GABA signaling acting on the GABAA receptor Rdl in the pC1 neurons, the integration node for courtship stimuli, regulated auditory tuning and sexual behavior. These findings demonstrate that maturation of auditory perception in flies is unexpectedly plastic and is acquired socially, providing a model to investigate how song learning regulates mating preference in insects.
Collapse
Affiliation(s)
- Xiaodong Li
- Graduate School of ScienceNagoya UniversityNagoyaJapan
| | | | | |
Collapse
|
46
|
Blankers T, Vilaça ST, Waurick I, Gray DA, Hennig RM, Mazzoni CJ, Mayer F, Berdan EL. Demography and selection shape transcriptomic divergence in field crickets. Evolution 2018; 72:553-567. [PMID: 29363111 DOI: 10.1111/evo.13435] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 12/18/2017] [Accepted: 01/05/2018] [Indexed: 12/12/2022]
Abstract
Gene flow, demography, and selection can result in similar patterns of genomic variation and disentangling their effects is key to understanding speciation. Here, we assess transcriptomic variation to unravel the evolutionary history of Gryllus rubens and Gryllus texensis, cryptic field cricket species with highly divergent mating behavior. We infer their demographic history and screen their transcriptomes for footprints of selection in the context of the inferred demography. We find strong support for a long history of bidirectional gene flow, which ceased during the late Pleistocene, and a bottleneck in G. rubens consistent with a peripatric origin of this species. Importantly, the demographic history has likely strongly shaped patterns of genetic differentiation (empirical FST distribution). Concordantly, FST -based selection detection uncovers a large number of outliers, likely comprising many false positives, echoing recent theoretical insights. Alternative genetic signatures of positive selection, informed by the demographic history of the sibling species, highlighted a smaller set of loci; many of these are candidates for controlling variation in mating behavior. Our results underscore the importance of demography in shaping overall patterns of genetic divergence and highlight that examining both demography and selection facilitates a more complete understanding of genetic divergence during speciation.
Collapse
Affiliation(s)
- Thomas Blankers
- Behavioural Physiology, Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany.,Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany.,Department of Neurobiology and Behavior, Cornell University, Ithaca, New York 14853
| | - Sibelle T Vilaça
- Berlin Center for Genomics in Biodiversity Research (BeGenDiv), Berlin, Germany.,Leibniz-Institut für Zoo- und Wildtierforschung (IZW), Berlin, Germany
| | - Isabelle Waurick
- Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - David A Gray
- Department of Biology, California State University Northridge, Northridge, California 91330
| | - R Matthias Hennig
- Behavioural Physiology, Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Camila J Mazzoni
- Berlin Center for Genomics in Biodiversity Research (BeGenDiv), Berlin, Germany.,Leibniz-Institut für Zoo- und Wildtierforschung (IZW), Berlin, Germany
| | - Frieder Mayer
- Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Emma L Berdan
- Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany.,Department of Marine Sciences, University of Gothenburg, Gothenburg SE-405 30, Sweden
| |
Collapse
|
47
|
Listening in the bog: I. Acoustic interactions and spacing between males of Sphagniana sphagnorum. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2018; 204:339-351. [PMID: 29441409 PMCID: PMC5849662 DOI: 10.1007/s00359-018-1250-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/14/2017] [Accepted: 02/01/2018] [Indexed: 11/25/2022]
Abstract
Males of the katydid Sphagniana sphagnorum form calling aggregations in boreal sphagnum bogs to attract mates. They broadcast frequency-modulated (FM) songs in steady series, each song comprised of two wing-stroking modes that alternate audio and ultrasonic spectra. NN analysis of three populations found mean distances between 5.1 and 8.4 m, but failed to find spacing regularity: in one males spaced randomly, in another they were clumped, but within the clumps spaced at random. We tested a mechanism for maintaining inter-male distances by playback of conspecific song to resident males and analysing song interactions between neighbouring males in the field. The results indicate that the song rate is an important cue for males. Information coded in song rates is confounded by variation in bog temperatures and by the linear correlation of song rates with temperature. The ultrasonic and audio spectral modes suffer different excess attenuation: the ultrasonic mode is favoured at shorter distances (< 6 m), the audio mode at longer distances (> 6 m), supporting a hypothesized function in distance estimation. Another katydid, Conocephalus fasciatus, shares habitat with S. sphagnorum and could mask its ultrasonic mode; however, mapping of both species indicate the spacing of S. sphagnorum is unaffected by the sympatric species.
Collapse
|
48
|
Gray DA, Gabel E, Blankers T, Hennig RM. Multivariate female preference tests reveal latent perceptual biases. Proc Biol Sci 2017; 283:rspb.2016.1972. [PMID: 27807265 DOI: 10.1098/rspb.2016.1972] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 10/10/2016] [Indexed: 11/12/2022] Open
Abstract
The question of why males of many species produce elaborate mating displays has now been largely resolved: females prefer to mate with males that produce such displays. However, the question of why females prefer such displays has been controversial, with an emerging consensus that such displays often provide information to females about the direct fitness benefits that males provide to females and/or the indirect fitness benefits provided to offspring. Alternative explanations, such as production of arbitrarily attractive sons or innate pre-existing female sensory or perceptual bias, have also received support in certain taxa. Here, we describe multivariate female preference functions for male acoustic traits in two chirping species of field crickets with slow pulse rates; our data reveal cryptic female preferences for long trills that have not previously been observed in other chirping species. The trill preferences are evolutionarily pre-existing in the sense that males have not (yet?) exploited them, and they coexist with chirp preferences as alternative stable states within female song preference space. We discuss escape from neuronal adaptation as a possible mechanism underlying such latent preferences.
Collapse
Affiliation(s)
- D A Gray
- Department of Biology, California State University Northridge, Northridge, CA, USA
| | - E Gabel
- Behavioural Physiology, Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - T Blankers
- Behavioural Physiology, Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany.,Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - R M Hennig
- Behavioural Physiology, Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
49
|
Crickets alter wind-elicited escape strategies depending on acoustic context. Sci Rep 2017; 7:15158. [PMID: 29123249 PMCID: PMC5680309 DOI: 10.1038/s41598-017-15276-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/24/2017] [Indexed: 01/10/2023] Open
Abstract
Acoustic signals trigger various behaviours in insects such as courtship or escape from predators. However, it remains unknown whether insects utilize acoustic signals to recognize environmental contexts. The cricket is a prominent model insect for neuroethological studies on acoustic behaviour because female crickets exhibit positive phonotaxis in response to male calling songs, and flying crickets display avoidance behaviour for high-frequency sounds such as echolocation call of bats. The carrier frequency of these sounds is a major factor in determining whether they initiate these acoustic behaviours. Here, we examined the impacts of different frequencies of tone sounds on cercal-mediated escape behaviour, using a 5-kHz tone corresponding to the calling song and a 15-kHz tone serving as a trigger of avoidance behaviours. Neither frequency elicited a response in the standing cricket by itself, but they had different impacts on walking responses to airflow stimuli. While the 15-kHz tone reduced response probability, extended moving distance, and enhanced turn-angle variability, the 5-kHz tone had no effect. Although both frequencies of tones facilitated walking backward, the 15-kHz tone had a larger effect than the 5-kHz tone. These frequency dependencies of behavioural modulation suggest that crickets can recognize acoustic contexts and alter their escape strategy accordingly.
Collapse
|
50
|
Beetz MJ, Kordes S, García-Rosales F, Kössl M, Hechavarría JC. Processing of Natural Echolocation Sequences in the Inferior Colliculus of Seba's Fruit Eating Bat, Carollia perspicillata. eNeuro 2017; 4:ENEURO.0314-17.2017. [PMID: 29242823 PMCID: PMC5729038 DOI: 10.1523/eneuro.0314-17.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/17/2017] [Accepted: 11/25/2017] [Indexed: 11/21/2022] Open
Abstract
For the purpose of orientation, echolocating bats emit highly repetitive and spatially directed sonar calls. Echoes arising from call reflections are used to create an acoustic image of the environment. The inferior colliculus (IC) represents an important auditory stage for initial processing of echolocation signals. The present study addresses the following questions: (1) how does the temporal context of an echolocation sequence mimicking an approach flight of an animal affect neuronal processing of distance information to echo delays? (2) how does the IC process complex echolocation sequences containing echo information from multiple objects (multiobject sequence)? Here, we conducted neurophysiological recordings from the IC of ketamine-anaesthetized bats of the species Carollia perspicillata and compared the results from the IC with the ones from the auditory cortex (AC). Neuronal responses to an echolocation sequence was suppressed when compared to the responses to temporally isolated and randomized segments of the sequence. The neuronal suppression was weaker in the IC than in the AC. In contrast to the cortex, the time course of the acoustic events is reflected by IC activity. In the IC, suppression sharpens the neuronal tuning to specific call-echo elements and increases the signal-to-noise ratio in the units' responses. When presenting multiple-object sequences, despite collicular suppression, the neurons responded to each object-specific echo. The latter allows parallel processing of multiple echolocation streams at the IC level. Altogether, our data suggests that temporally-precise neuronal responses in the IC could allow fast and parallel processing of multiple acoustic streams.
Collapse
Affiliation(s)
- M. Jerome Beetz
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Frankfurt am Main 60438, Germany
- Department of Behavioral Physiology and Sociobiology, Biozentrum, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Sebastian Kordes
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Frankfurt am Main 60438, Germany
| | - Francisco García-Rosales
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Frankfurt am Main 60438, Germany
| | - Manfred Kössl
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Frankfurt am Main 60438, Germany
| | - Julio C. Hechavarría
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Frankfurt am Main 60438, Germany
| |
Collapse
|