1
|
Prescott NA, Biaco T, Mansisidor A, Bram Y, Rendleman J, Faulkner SC, Lemmon AA, Lim C, Tiersky R, Salataj E, Garcia-Martinez L, Borges RL, Morey L, Hamard PJ, Koche RP, Risca VI, Schwartz RE, David Y. A nucleosome switch primes hepatitis B virus infection. Cell 2025; 188:2111-2126.e21. [PMID: 39983728 DOI: 10.1016/j.cell.2025.01.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 12/20/2024] [Accepted: 01/24/2025] [Indexed: 02/23/2025]
Abstract
Chronic hepatitis B virus (HBV) infection is an incurable pathogen responsible for causing liver disease and hepatocellular carcinoma. During the genesis of infection, HBV establishes an independent minichromosome consisting of the viral covalently closed circular DNA (cccDNA) genome and host histones. The viral X gene must be expressed immediately upon infection to induce degradation of the host silencing factor, the Smc5/6 complex. However, the relationship between cccDNA chromatinization and X gene transcription remains poorly understood. By establishing a reconstituted viral minichromosome platform, we found that nucleosome occupancy in cccDNA regulates X transcription. We corroborated these findings in situ and further showed that the chromatin-destabilizing molecule CBL137 inhibits full-length X transcription and HBV infection in primary human hepatocytes. Our results shed light on a long-standing paradox and represent a potential therapeutic approach for the treatment of chronic HBV infection.
Collapse
Affiliation(s)
- Nicholas A Prescott
- Tri-Institutional PhD Program in Chemical Biology, New York, NY 10065, USA; Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tracy Biaco
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Andrés Mansisidor
- Laboratory of Genome Architecture and Dynamics, The Rockefeller University, New York, NY 10065, USA
| | - Yaron Bram
- Division of Gastroenterology & Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Justin Rendleman
- Laboratory of Genome Architecture and Dynamics, The Rockefeller University, New York, NY 10065, USA
| | - Sarah C Faulkner
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Abigail A Lemmon
- Tri-Institutional PhD Program in Chemical Biology, New York, NY 10065, USA; Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Christine Lim
- Division of Gastroenterology & Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Rachel Tiersky
- Division of Gastroenterology & Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Eralda Salataj
- Epigenetics Research Innovation Laboratory, Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Liliana Garcia-Martinez
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, Miami, FL 33136, USA; Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Rodrigo L Borges
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, Miami, FL 33136, USA; Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Lluis Morey
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, Miami, FL 33136, USA; Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Pierre-Jacques Hamard
- Epigenetics Research Innovation Laboratory, Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Richard P Koche
- Epigenetics Research Innovation Laboratory, Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Viviana I Risca
- Laboratory of Genome Architecture and Dynamics, The Rockefeller University, New York, NY 10065, USA.
| | - Robert E Schwartz
- Division of Gastroenterology & Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Department of Physiology, Biophysics, and System Biology, Weill Cornell Medicine, New York, NY 10065, USA.
| | - Yael David
- Tri-Institutional PhD Program in Chemical Biology, New York, NY 10065, USA; Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA; Department of Physiology, Biophysics, and System Biology, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
2
|
Guo Z, Wang P, Han Y, Jiang S, Yang X, Cao S. SMARCA2 protein: Structure, function and perspectives of drug design. Eur J Med Chem 2025; 286:117319. [PMID: 39879937 DOI: 10.1016/j.ejmech.2025.117319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/21/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
SMARCA2 is an ATPase that regulates chromatin structure via ATP pathways, controlling cell division and differentiation. SMARCA2's bromodomain and ATPase domain, crucial for chromatin remodeling and cell regulation, are therapeutic targets in cancer treatment. This review explores the role of SMARCA2 in cancer development by studying its protein structure and physiological functions. It further discusses the roles and distinctions of SMARCA2 and its related family proteins in cancer. Additionally, this article categorizes known SMARCA2 inhibitors into four classes based on their basic structure and examines their structure-activity relationships (SAR). This review outlines the structural mechanisms of SMARCA2 inhibitors, highlighting interactions with specific amino acids. By analyzing the SAR of inhibitors, we propose a tailored inhibitor model for the bromodomain of SMARCA2, emphasizing α, γ-H-bond donors/acceptors, and β-rigid structures as crucial for effective binding. This research provides guidance for the design and optimization of future drugs targeting the SMARCA2 protein.
Collapse
Affiliation(s)
- Zhaolin Guo
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Peng Wang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Yuxuan Han
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Sisi Jiang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Xinyu Yang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Shuang Cao
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, P. R. China.
| |
Collapse
|
3
|
Wang Y, Yang C, Miranda‐Carboni GA, Kelso H, Seetharaman J, Hwang D, Miller DD, Pfeffer LM. Tyr1497 in the BRG1 Bromodomain of the SWI/SNF Complex is Critical for the Binding and Function of a Selective BRG1 Inhibitor. J Cell Mol Med 2025; 29:e70518. [PMID: 40133216 PMCID: PMC11936724 DOI: 10.1111/jcmm.70518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 03/27/2025] Open
Abstract
BRG1 and BRM are subunits of the SWI/SNF chromatin remodelling complex, which has DNA-stimulated ATPase activity and can destabilise histone-DNA interactions. Targeting SWI/SNF is beneficial for treating various tumours, including glioblastoma (GBM). Our research focussed on BRG1 due to its overexpression in GBM. We developed IV-255, a selective bromodomain (BRD) inhibitor that binds to BRG1 but not BRM. IV-255 sensitised GBM cells to temozolomide (TMZ), the standard GBM treatment. We identified the binding site of IV-255 within the BRG1 BRD and found that the Tyr1497 residue is crucial for IV-255's effect on TMZ-induced GBM cell death, while Asn1540 is not. Structural analyses confirmed that Tyr1497 is involved in the IV-255 binding pocket. Mechanistically, IV-255 increases γH2AX staining in GBM cell nuclei in response to TMZ, indicating an impaired DNA double-strand break response dependent on Tyr1497. IV-255 also sensitised GBM cells to TMZ-induced apoptosis, as shown by PARP and caspase-3 cleavage, which also requires Tyr1497. In conclusion, Tyr1497 within the BRD of BRG1 is critical for its interaction with IV-255 and for sensitising GBM cells to TMZ-induced DNA double-strand breaks and apoptotic cell death.
Collapse
Affiliation(s)
- Yinan Wang
- Department of Pathology and Laboratory Medicine, College of MedicineUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Chuanhe Yang
- Department of Pathology and Laboratory Medicine, College of MedicineUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Gustavo A. Miranda‐Carboni
- Department of Medicine, College of MedicineUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
- The Center for Cancer ResearchUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Hannah Kelso
- Department of Pathology and Laboratory Medicine, College of MedicineUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Jayaraman Seetharaman
- Department of Pharmacology, Addiction Science, and Toxicology, College of MedicineUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Dong‐Jin Hwang
- Department of Pharmaceutical Sciences, College of PharmacyUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Duane D. Miller
- The Center for Cancer ResearchUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
- Department of Pharmaceutical Sciences, College of PharmacyUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Lawrence M. Pfeffer
- Department of Pathology and Laboratory Medicine, College of MedicineUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
- The Center for Cancer ResearchUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| |
Collapse
|
4
|
Yang L, Xia H, Smith K, Gilbertsen AJ, Jbeli AH, Abrahante JE, Bitterman PB, Henke CA. Tumor suppressors RBL1 and PTEN are epigenetically silenced in IPF mesenchymal progenitor cells by a CD44/Brg1/PRMT5 regulatory complex. Am J Physiol Lung Cell Mol Physiol 2024; 327:L949-L963. [PMID: 39406384 PMCID: PMC11684952 DOI: 10.1152/ajplung.00182.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/20/2024] [Accepted: 10/14/2024] [Indexed: 12/06/2024] Open
Abstract
The idiopathic pulmonary fibrosis (IPF) lung contains mesenchymal progenitor cells (MPCs) that display durable activation of oncogenic signaling and cell-autonomous fibrogenicity in vivo. Prior work identified a CD44/Brg1/PRMT5 nuclear regulatory module in IPF MPCs that increased the expression of genes positively regulating pluripotency and self-renewal. Left unanswered is how IPF MPCs evade negative regulation of self-renewal. Here we sought to identify mechanisms disabling negative regulation of self-renewal in IPF MPCs. We demonstrate that expression of the tumor suppressor genes rbl1 and pten is decreased in IPF MPCs. The mechanism involves the CD44-facilitated association of the chromatin remodeler Brg1 with the histone-modifying methyltransferase PRMT5. Brg1 enhances chromatin accessibility leading to PRMT5-mediated methylation of H3R8 and H4R3 on the rbl1 and pten genes, repressing their expression. Genetic knockdown or pharmacological inhibition of either Brg1 or PRMT5 restored RBL1 and PTEN expression reduced IPF MPC self-renewal in vitro and inhibited IPF MPC-mediated pulmonary fibrosis in vivo. Our studies indicate that the CD44/Brg1/PRMT5 regulatory module not only functions to activate positive regulators of pluripotency and self-renewal but also functions to repress tumor suppressor genes rbl1 and pten. This confers IPF MPCs with the cancer-like property of cell-autonomous self-renewal providing a molecular mechanism for relentless fibrosis progression in IPF.NEW & NOTEWORTHY Here we demonstrate that a CD44/Brg1/PRMT5 epigenetic regulatory module represses the tumor suppressor genes RBL1 and PTEN in IPF mesenchymal progenitor cells, thereby promoting their self-renewal and maintenance of a critical pool of fibrogenic mesenchymal progenitor cells.
Collapse
Affiliation(s)
- Libang Yang
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States
| | - Hong Xia
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States
| | - Karen Smith
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States
| | - Adam J Gilbertsen
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States
| | - Aiham H Jbeli
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States
| | - Juan E Abrahante
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota, United States
| | - Peter B Bitterman
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States
| | - Craig A Henke
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States
| |
Collapse
|
5
|
Dai W, Qiao X, Fang Y, Guo R, Bai P, Liu S, Li T, Jiang Y, Wei S, Na Z, Xiao X, Li D. Epigenetics-targeted drugs: current paradigms and future challenges. Signal Transduct Target Ther 2024; 9:332. [PMID: 39592582 PMCID: PMC11627502 DOI: 10.1038/s41392-024-02039-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/14/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Epigenetics governs a chromatin state regulatory system through five key mechanisms: DNA modification, histone modification, RNA modification, chromatin remodeling, and non-coding RNA regulation. These mechanisms and their associated enzymes convey genetic information independently of DNA base sequences, playing essential roles in organismal development and homeostasis. Conversely, disruptions in epigenetic landscapes critically influence the pathogenesis of various human diseases. This understanding has laid a robust theoretical groundwork for developing drugs that target epigenetics-modifying enzymes in pathological conditions. Over the past two decades, a growing array of small molecule drugs targeting epigenetic enzymes such as DNA methyltransferase, histone deacetylase, isocitrate dehydrogenase, and enhancer of zeste homolog 2, have been thoroughly investigated and implemented as therapeutic options, particularly in oncology. Additionally, numerous epigenetics-targeted drugs are undergoing clinical trials, offering promising prospects for clinical benefits. This review delineates the roles of epigenetics in physiological and pathological contexts and underscores pioneering studies on the discovery and clinical implementation of epigenetics-targeted drugs. These include inhibitors, agonists, degraders, and multitarget agents, aiming to identify practical challenges and promising avenues for future research. Ultimately, this review aims to deepen the understanding of epigenetics-oriented therapeutic strategies and their further application in clinical settings.
Collapse
Affiliation(s)
- Wanlin Dai
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xinbo Qiao
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuanyuan Fang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Renhao Guo
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peng Bai
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Shuang Liu
- Shenyang Maternity and Child Health Hospital, Shenyang, China
| | - Tingting Li
- Department of General Internal Medicine VIP Ward, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Yutao Jiang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuang Wei
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhijing Na
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
| | - Xue Xiao
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China.
| | - Da Li
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
- Key Laboratory of Reproductive Dysfunction Diseases and Fertility Remodeling of Liaoning Province, Shenyang, China.
| |
Collapse
|
6
|
Engl W, Kunstar-Thomas A, Chen S, Ng WS, Sielaff H, Zhao ZW. Single-molecule imaging of SWI/SNF chromatin remodelers reveals bromodomain-mediated and cancer-mutants-specific landscape of multi-modal DNA-binding dynamics. Nat Commun 2024; 15:7646. [PMID: 39223123 PMCID: PMC11369179 DOI: 10.1038/s41467-024-52040-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Despite their prevalent cancer implications, the in vivo dynamics of SWI/SNF chromatin remodelers and how misregulation of such dynamics underpins cancer remain poorly understood. Using live-cell single-molecule tracking, we quantify the intranuclear diffusion and chromatin-binding of three key subunits common to all major human SWI/SNF remodeler complexes (BAF57, BAF155 and BRG1), and resolve two temporally distinct stable binding modes for the fully assembled complex. Super-resolved density mapping reveals heterogeneous, nanoscale remodeler binding "hotspots" across the nucleoplasm where multiple binding events (especially longer-lived ones) preferentially cluster. Importantly, we uncover distinct roles of the bromodomain in modulating chromatin binding/targeting in a DNA-accessibility-dependent manner, pointing to a model where successive longer-lived binding within "hotspots" leads to sustained productive remodeling. Finally, systematic comparison of six common BRG1 mutants implicated in various cancers unveils alterations in chromatin-binding dynamics unique to each mutant, shedding insight into a multi-modal landscape regulating the spatio-temporal organizational dynamics of SWI/SNF remodelers.
Collapse
Affiliation(s)
- Wilfried Engl
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore, 119543, Singapore
- Centre for BioImaging Sciences, Faculty of Science, National University of Singapore, Singapore, 117557, Singapore
| | - Aliz Kunstar-Thomas
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore, 119543, Singapore
- Centre for BioImaging Sciences, Faculty of Science, National University of Singapore, Singapore, 117557, Singapore
| | - Siyi Chen
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore, 119543, Singapore
- Centre for BioImaging Sciences, Faculty of Science, National University of Singapore, Singapore, 117557, Singapore
| | - Woei Shyuan Ng
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore, 119543, Singapore
- Centre for BioImaging Sciences, Faculty of Science, National University of Singapore, Singapore, 117557, Singapore
| | - Hendrik Sielaff
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore, 119543, Singapore
- Centre for BioImaging Sciences, Faculty of Science, National University of Singapore, Singapore, 117557, Singapore
| | - Ziqing Winston Zhao
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore, 119543, Singapore.
- Centre for BioImaging Sciences, Faculty of Science, National University of Singapore, Singapore, 117557, Singapore.
- Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore.
- Integrative Sciences and Engineering Programme, National University of Singapore, Singapore, 119077, Singapore.
| |
Collapse
|
7
|
Kang Q, Ma D, Zhao P, Chai X, Huang Y, Gao R, Zhang T, Liu P, Deng B, Feng C, Zhang Y, Lu Y, Li Y, Fang Q, Wang J. BRG1 promotes progression of B-cell acute lymphoblastic leukemia by disrupting PPP2R1A transcription. Cell Death Dis 2024; 15:621. [PMID: 39187513 PMCID: PMC11347705 DOI: 10.1038/s41419-024-06996-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024]
Abstract
Despite advancements in chemotherapy and the availability of novel therapies, the outcome of adult patients with B-cell acute lymphoblastic leukemia (B-ALL) remains unsatisfactory. Therefore, it is necessary to understand the molecular mechanisms underlying the progression of B-ALL. Brahma-related gene 1 (BRG1) is a poor prognostic factor for multiple cancers. Here, the expression of BRG1 was found to be higher in patients with B-ALL, irrespective of the molecular subtype, than in healthy individuals, and its overexpression was associated with a poor prognosis. Upregulation of BRG1 accelerated cell cycle progression into the S phase, resulting in increased cell proliferation, whereas its downregulation facilitated the apoptosis of B-ALL cells. Mechanistically, BRG1 occupies the transcriptional activation site of PPP2R1A, thereby inhibiting its expression and activating the PI3K/AKT signaling pathway to regulate the proto-oncogenes c-Myc and BCL-2. Consistently, silencing of BRG1 and administration of PFI-3 (a specific inhibitor targeting BRG1) significantly inhibited the progression of leukemia and effectively prolonged survival in cell-derived xenograft mouse models of B-ALL. Altogether, this study demonstrates that BRG1-induced overactivation of the PPP2R1A/PI3K/AKT signaling pathway plays an important role in promoting the progression of B-ALL. Therefore, targeting BRG1 represents a promising strategy for the treatment of B-ALL in adults.
Collapse
Affiliation(s)
- Qian Kang
- Medical College, Soochow University, Suzhou, 215006, China
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Dan Ma
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Peng Zhao
- Medical College, Soochow University, Suzhou, 215006, China
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Xiao Chai
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Yi Huang
- Medical College, Soochow University, Suzhou, 215006, China
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Rui Gao
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Tianzhuo Zhang
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Ping Liu
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Bo Deng
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Cheng Feng
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Yan Zhang
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Yinghao Lu
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Yanju Li
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Qin Fang
- Department of Pharmacy, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Jishi Wang
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
- Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
| |
Collapse
|
8
|
Yang J, Kinyamu HK, Ward JM, Scappini E, Muse G, Archer TK. Unlocking cellular plasticity: enhancing human iPSC reprogramming through bromodomain inhibition and extracellular matrix gene expression regulation. Stem Cells 2024; 42:706-719. [PMID: 38825983 PMCID: PMC11291304 DOI: 10.1093/stmcls/sxae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 05/15/2024] [Indexed: 06/04/2024]
Abstract
The transformation from a fibroblast mesenchymal cell state to an epithelial-like state is critical for induced pluripotent stem cell (iPSC) reprogramming. In this report, we describe studies with PFI-3, a small-molecule inhibitor that specifically targets the bromodomains of SMARCA2/4 and PBRM1 subunits of SWI/SNF complex, as an enhancer of iPSC reprogramming efficiency. Our findings reveal that PFI-3 induces cellular plasticity in multiple human dermal fibroblasts, leading to a mesenchymal-epithelial transition during iPSC formation. This transition is characterized by the upregulation of E-cadherin expression, a key protein involved in epithelial cell adhesion. Additionally, we identified COL11A1 as a reprogramming barrier and demonstrated COL11A1 knockdown increased reprogramming efficiency. Notably, we found that PFI-3 significantly reduced the expression of numerous extracellular matrix (ECM) genes, particularly those involved in collagen assembly. Our research provides key insights into the early stages of iPSC reprogramming, highlighting the crucial role of ECM changes and cellular plasticity in this process.
Collapse
Affiliation(s)
- Jun Yang
- Chromatin and Gene Expression Section, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - H Karimi Kinyamu
- Chromatin and Gene Expression Section, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - James M Ward
- Integrative Bioinformatics, Biostatistics, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Erica Scappini
- The Fluorescence Microscopy and Imaging Center, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Ginger Muse
- Chromatin and Gene Expression Section, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Trevor K Archer
- Chromatin and Gene Expression Section, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| |
Collapse
|
9
|
Wu T, Wang B, Gui X, Liu R, Wei D, Xu Y, Zheng S, Li N, Kong M. Targeting the chromatin remodelling protein Brahma-related gene 1 for intervention of pulmonary fibrosis. Clin Transl Med 2024; 14:e1775. [PMID: 39167021 PMCID: PMC11337535 DOI: 10.1002/ctm2.1775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/25/2024] [Accepted: 07/09/2024] [Indexed: 08/23/2024] Open
Affiliation(s)
- Teng Wu
- Departments of Pathophysiology and Human AnatomyKey Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational MedicineNanjing Medical UniversityNanjingChina
| | - Bingshu Wang
- Key Laboratory of Emergency and Trauma of Ministry of EducationEngineering Research Center for Hainan Biological Sample Resources of Major DiseasesHainan Clinical Medical Center, the First Affiliated Hospital of Hainan Medical UniversityHaikouChina
- Department of Pathologythe Second Affiliated Hospital of Hainan Medical UniversityHaikouChina
| | - Xianhua Gui
- Department of Respiratory MedicineAffiliated Nanjing Drum Tower HospitalNanjing University School of MedicineNanjingChina
| | - Ruiqi Liu
- Departments of Pathophysiology and Human AnatomyKey Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational MedicineNanjing Medical UniversityNanjingChina
| | - Dong Wei
- Department of Lung TransplantationWuxi People's Hospital Affiliated with Nanjing Medical UniversityWuxiChina
| | - Yong Xu
- Department of PharmacologyState Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjingChina
| | - Shaojiang Zheng
- Key Laboratory of Emergency and Trauma of Ministry of EducationEngineering Research Center for Hainan Biological Sample Resources of Major DiseasesHainan Clinical Medical Center, the First Affiliated Hospital of Hainan Medical UniversityHaikouChina
| | - Nan Li
- Departments of Pathophysiology and Human AnatomyKey Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational MedicineNanjing Medical UniversityNanjingChina
| | - Ming Kong
- Department of PharmacologyState Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjingChina
| |
Collapse
|
10
|
Liu H, Yue L, Hong W, Zhou J. SMARCA4 (BRG1) activates ABCC3 transcription to promote hepatocellular carcinogenesis. Life Sci 2024; 347:122605. [PMID: 38642845 DOI: 10.1016/j.lfs.2024.122605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/08/2024] [Accepted: 04/01/2024] [Indexed: 04/22/2024]
Abstract
AIMS Hepatocellular carcinoma (HCC) is a lead cause of cancer-related deaths. In the present study we investigated the role of Brahma-related gene 1 (BRG1), a chromatin remodeling protein, in HCC the pathogenesis focusing on identifying novel transcription targets. METHODS AND MATERIALS Hepatocellular carcinogenesis was modeled in mice by diethylnitrosamine (DEN). Cellular transcriptome was evaluated by RNA-seq. RESULTS Hepatocellular carcinoma was appreciably retarded in BRG1 knockout mice compared to wild type littermates. Transcriptomic analysis identified ATP Binding Cassette Subfamily C Member 3 (ABCC3) as a novel target of BRG1. BRG1 over-expression in BRG1low HCC cells (HEP1) up-regulated whereas BRG1 depletion in BRG1high HCC cells (SNU387) down-regulated ABCC3 expression. Importantly, BRG1 was detected to directly bind to the ABCC3 promoter to activate ABCC3 transcription. BRG1 over-expression in HEP1 cells promoted proliferation and migration, both of which were abrogated by ABCC3 silencing. On the contrary, BRG1 depletion in SNU387 cells decelerated proliferation and migration, both of which were rescued by ABCC3 over-expression. Importantly, high BRG1/ABCC3 expression predicted poor prognosis in HCC patients. Mechanistically, ABCC3 regulated hepatocellular carcinogenesis possibly by influencing lysosomal homeostasis. SIGNIFICANCE In conclusion, our data suggest that targeting BRG1 and its downstream target ABCC3 can be considered as a reasonable approach for the intervention of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Huimin Liu
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Linbo Yue
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Wenxuan Hong
- Institute of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Junjing Zhou
- Department of Hepatobiliary Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China.
| |
Collapse
|
11
|
Prescott NA, Mansisidor A, Bram Y, Biaco T, Rendleman J, Faulkner SC, Lemmon AA, Lim C, Hamard PJ, Koche RP, Risca VI, Schwartz RE, David Y. A nucleosome switch primes Hepatitis B Virus infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.03.531011. [PMID: 38915612 PMCID: PMC11195122 DOI: 10.1101/2023.03.03.531011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Chronic hepatitis B virus (HBV) infection is an incurable global health threat responsible for causing liver disease and hepatocellular carcinoma. During the genesis of infection, HBV establishes an independent minichromosome consisting of the viral covalently closed circular DNA (cccDNA) genome and host histones. The viral X gene must be expressed immediately upon infection to induce degradation of the host silencing factor, Smc5/6. However, the relationship between cccDNA chromatinization and X gene transcription remains poorly understood. Establishing a reconstituted viral minichromosome platform, we found that nucleosome occupancy in cccDNA drives X transcription. We corroborated these findings in cells and further showed that the chromatin destabilizing molecule CBL137 inhibits X transcription and HBV infection in hepatocytes. Our results shed light on a long-standing paradox and represent a potential new therapeutic avenue for the treatment of chronic HBV infection.
Collapse
Affiliation(s)
- Nicholas A. Prescott
- Tri-Institutional PhD Program in Chemical Biology; New York, NY 10065, USA
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Andrés Mansisidor
- Laboratory of Genome Architecture and Dynamics, The Rockefeller University; New York, NY 10065, USA
- These authors contributed equally
| | - Yaron Bram
- Division of Gastroenterology & Hepatology, Department of Medicine, Weill Cornell Medicine; New York, NY 10065, USA
- These authors contributed equally
| | - Tracy Biaco
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Department of Pharmacology, Weill Cornell Medicine; New York, NY 10065, USA
- These authors contributed equally
| | - Justin Rendleman
- Laboratory of Genome Architecture and Dynamics, The Rockefeller University; New York, NY 10065, USA
| | - Sarah C. Faulkner
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Abigail A. Lemmon
- Tri-Institutional PhD Program in Chemical Biology; New York, NY 10065, USA
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Christine Lim
- Division of Gastroenterology & Hepatology, Department of Medicine, Weill Cornell Medicine; New York, NY 10065, USA
| | - Pierre-Jacques Hamard
- Epigenetics Research Innovation Lab, Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Richard P. Koche
- Epigenetics Research Innovation Lab, Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Viviana I. Risca
- Laboratory of Genome Architecture and Dynamics, The Rockefeller University; New York, NY 10065, USA
| | - Robert E. Schwartz
- Division of Gastroenterology & Hepatology, Department of Medicine, Weill Cornell Medicine; New York, NY 10065, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine; New York, NY 10065, USA
| | - Yael David
- Tri-Institutional PhD Program in Chemical Biology; New York, NY 10065, USA
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Department of Pharmacology, Weill Cornell Medicine; New York, NY 10065, USA
- Lead Contact
| |
Collapse
|
12
|
Wu X, Meng Y, Chen J, Zhang Y, Xu H. Ablation of Brg1 in fibroblast/myofibroblast lineages attenuates renal fibrosis in mice with diabetic nephropathy. Life Sci 2024; 344:122578. [PMID: 38537899 DOI: 10.1016/j.lfs.2024.122578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/03/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024]
Abstract
AIMS Diabetic nephropathy (DN) is one of the most common complications of diabetes and represents a prototypical form of chronic kidney disease (CKD). Interstitial fibrosis is a key pathological feature of DN. During DN-associated renal fibrosis, resident fibroblasts trans-differentiate into myofibroblasts to remodel the extracellular matrix, the underlying epigenetic mechanism of which is not entirely clear. METHODS Diabetic nephropathy was induced in C57B6/j mice by a single injection with streptozotocin (STZ). Gene expression was examined by quantitative PCR and Western blotting. Renal fibrosis was evaluated by PicroSirius Red staining. RESULTS We report that expression of Brg1, a chromatin remodeling protein, in renal fibroblasts was up-regulated during DN pathogenesis as assessed by single-cell RNA-seq. Treatment with high glucose similarly augmented Brg1 expression in primary renal fibroblasts in vitro. Importantly, Brg1 ablation in quiescent renal fibroblasts or in mature myofibroblasts equivalently attenuated renal fibrosis in the context of diabetic nephropathy in mice. Additionally, administration with a small-molecule Brg1 inhibitor PFI-3 ameliorated renal fibrosis and improved renal function in mice induced to develop DN. SIGNIFICANCE In conclusion, our data provide novel genetic evidence that links Brg1 to fibroblast-myofibroblast transition and renewed rationale for targeting Brg1 in the intervention of DN-associated renal fibrosis.
Collapse
Affiliation(s)
- Xiaoyan Wu
- School of Sports and Health, Nanjing Sport Institute, Nanjing, China
| | - Yufei Meng
- School of Sports and Health, Nanjing Sport Institute, Nanjing, China
| | - Jinsi Chen
- School of Sports and Health, Nanjing Sport Institute, Nanjing, China
| | - Yongchen Zhang
- School of Sports and Health, Nanjing Sport Institute, Nanjing, China
| | - Huihui Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Departments of Pathophysiology and Human Anatomy, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
13
|
Chaudhri A, Lizee G, Hwu P, Rai K. Chromatin Remodelers Are Regulators of the Tumor Immune Microenvironment. Cancer Res 2024; 84:965-976. [PMID: 38266066 DOI: 10.1158/0008-5472.can-23-2244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/24/2023] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
Immune checkpoint inhibitors show remarkable responses in a wide range of cancers, yet patients develop adaptive resistance. This necessitates the identification of alternate therapies that synergize with immunotherapies. Epigenetic modifiers are potent mediators of tumor-intrinsic mechanisms and have been shown to regulate immune response genes, making them prime targets for therapeutic combinations with immune checkpoint inhibitors. Some success has been observed in early clinical studies that combined immunotherapy with agents targeting DNA methylation and histone modification; however, less is known about chromatin remodeler-targeted therapies. Here, we provide a discussion on the regulation of tumor immunogenicity by the chromatin remodeling SWI/SNF complex through multiple mechanisms associated with immunotherapy response that broadly include IFN signaling, DNA damage, mismatch repair, regulation of oncogenic programs, and polycomb-repressive complex antagonism. Context-dependent targeting of SWI/SNF subunits can elicit opportunities for synthetic lethality and reduce T-cell exhaustion. In summary, alongside the significance of SWI/SNF subunits in predicting immunotherapy outcomes, their ability to modulate the tumor immune landscape offers opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Apoorvi Chaudhri
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Gregory Lizee
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Kunal Rai
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
- MDACC Epigenomics Therapy Initiative, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
14
|
Bursch KL, Goetz CJ, Jiao G, Nuñez R, Olp MD, Dhiman A, Khurana M, Zimmermann MT, Urrutia RA, Dykhuizen EC, Smith BC. Cancer-associated polybromo-1 bromodomain 4 missense variants variably impact bromodomain ligand binding and cell growth suppression. J Biol Chem 2024; 300:107146. [PMID: 38460939 PMCID: PMC11002309 DOI: 10.1016/j.jbc.2024.107146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/12/2024] [Accepted: 02/29/2024] [Indexed: 03/11/2024] Open
Abstract
The polybromo, brahma-related gene 1-associated factors (PBAF) chromatin remodeling complex subunit polybromo-1 (PBRM1) contains six bromodomains that recognize and bind acetylated lysine residues on histone tails and other nuclear proteins. PBRM1 bromodomains thus provide a link between epigenetic posttranslational modifications and PBAF modulation of chromatin accessibility and transcription. As a putative tumor suppressor in several cancers, PBRM1 protein expression is often abrogated by truncations and deletions. However, ∼33% of PBRM1 mutations in cancer are missense and cluster within its bromodomains. Such mutations may generate full-length PBRM1 variant proteins with undetermined structural and functional characteristics. Here, we employed computational, biophysical, and cellular assays to interrogate the effects of PBRM1 bromodomain missense variants on bromodomain stability and function. Since mutations in the fourth bromodomain of PBRM1 (PBRM1-BD4) comprise nearly 20% of all cancer-associated PBRM1 missense mutations, we focused our analysis on PBRM1-BD4 missense protein variants. Selecting 16 potentially deleterious PBRM1-BD4 missense protein variants for further study based on high residue mutational frequency and/or conservation, we show that cancer-associated PBRM1-BD4 missense variants exhibit varied bromodomain stability and ability to bind acetylated histones. Our results demonstrate the effectiveness of identifying the unique impacts of individual PBRM1-BD4 missense variants on protein structure and function, based on affected residue location within the bromodomain. This knowledge provides a foundation for drawing correlations between specific cancer-associated PBRM1 missense variants and distinct alterations in PBRM1 function, informing future cancer personalized medicine approaches.
Collapse
Affiliation(s)
- Karina L Bursch
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Structural Genomics Unit, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Christopher J Goetz
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Guanming Jiao
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA
| | - Raymundo Nuñez
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Michael D Olp
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Alisha Dhiman
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA
| | - Mallika Khurana
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Michael T Zimmermann
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Structural Genomics Unit, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Clinical and Translational Sciences Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Raul A Urrutia
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Structural Genomics Unit, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Emily C Dykhuizen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA
| | - Brian C Smith
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Structural Genomics Unit, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| |
Collapse
|
15
|
Hong W, Zhu Y, Lin Y, Tang S, Chen J, Xu L, Jiang J, Zong Y, Zhang Y, Sun A, Wu X. The chromatin remodeling protein BRG1 mediates Ang II induced pro-fibrogenic response in renal fibroblasts. Life Sci 2024; 340:122320. [PMID: 38272440 DOI: 10.1016/j.lfs.2023.122320] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 01/27/2024]
Abstract
AIMS Renal fibrosis is an important pathophysiological process commonly observed in patients chronic kidney disease (CKD). Angiotensin II (Ang II) is a major risk factor for CKD in part by promoting renal fibrosis. In the present study we investigated Brahma-Related Gene 1 (BRG1, encoded by Smarca4) in Ang II induced pro-fibrogenic response in renal fibroblasts. METHODS AND MATERIALS CKD was induced by chronic angiotensin II infusion. Fibroblast- and myofibroblast-specific BRG1 deletion was achieved by crossing the BRG1f/f mice to the Col1a1-CreERT2 mice and the Postn-CreERT2 mice, respectively. KEY FINDINGS BRG1 expression was up-regulated when fibroblasts were exposed to Ang II in vitro and in vivo. BRG1 silencing in primary renal fibroblasts blocked transition to myofibroblasts as evidenced by down-regulation of myofibroblast marker genes and reduction in cell proliferation, migration, and contraction. Consistently, deletion of BRG1 from fibroblasts or from myofibroblasts significantly attenuated renal fibrosis in mice subjected to chronic Ang II infusion. Transcriptomic analysis indicated that BRG1 primarily regulated expression of genes involved in cell migroproliferative behavior and extracellular matrix remodeling. Importantly, administration of PFI-3, a small-molecule BRG1 inhibition, markedly ameliorated Ang II induced renal fibrosis in mice. SIGNIFICANCE Our data support a role for BRG1 in Ang II induced fibrogenic response in renal fibroblasts and suggest that targeting BRG1 could be considered as a reasonable approach for the intervention of CKD.
Collapse
Affiliation(s)
- Wenxuan Hong
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China
| | - Yuwen Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Departments of Pathophysiology and Human Anatomy, Nanjing Medical University, Nanjing, China
| | - Yanshan Lin
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Departments of Pathophysiology and Human Anatomy, Nanjing Medical University, Nanjing, China
| | - Shifan Tang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Departments of Pathophysiology and Human Anatomy, Nanjing Medical University, Nanjing, China
| | - Jinsi Chen
- School of Sports and Health, Nanjing Sport Institute, Nanjing, China
| | - Lei Xu
- School of Sports and Health, Nanjing Sport Institute, Nanjing, China
| | - Jie Jiang
- School of Sports and Health, Nanjing Sport Institute, Nanjing, China
| | - Yuting Zong
- School of Sports and Health, Nanjing Sport Institute, Nanjing, China
| | - Yongchen Zhang
- School of Sports and Health, Nanjing Sport Institute, Nanjing, China
| | - Aijun Sun
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China.
| | - Xiaoyan Wu
- School of Sports and Health, Nanjing Sport Institute, Nanjing, China.
| |
Collapse
|
16
|
Dreier MR, Walia J, de la Serna IL. Targeting SWI/SNF Complexes in Cancer: Pharmacological Approaches and Implications. EPIGENOMES 2024; 8:7. [PMID: 38390898 PMCID: PMC10885108 DOI: 10.3390/epigenomes8010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
SWI/SNF enzymes are heterogeneous multi-subunit complexes that utilize the energy from ATP hydrolysis to remodel chromatin structure, facilitating transcription, DNA replication, and repair. In mammalian cells, distinct sub-complexes, including cBAF, ncBAF, and PBAF exhibit varying subunit compositions and have different genomic functions. Alterations in the SWI/SNF complex and sub-complex functions are a prominent feature in cancer, making them attractive targets for therapeutic intervention. Current strategies in cancer therapeutics involve the use of pharmacological agents designed to bind and disrupt the activity of SWI/SNF complexes or specific sub-complexes. Inhibitors targeting the catalytic subunits, SMARCA4/2, and small molecules binding SWI/SNF bromodomains are the primary approaches for suppressing SWI/SNF function. Proteolysis-targeting chimeras (PROTACs) were generated by the covalent linkage of the bromodomain or ATPase-binding ligand to an E3 ligase-binding moiety. This engineered connection promotes the degradation of specific SWI/SNF subunits, enhancing and extending the impact of this pharmacological intervention in some cases. Extensive preclinical studies have underscored the therapeutic potential of these drugs across diverse cancer types. Encouragingly, some of these agents have progressed from preclinical research to clinical trials, indicating a promising stride toward the development of effective cancer therapeutics targeting SWI/SNF complex and sub-complex functions.
Collapse
Affiliation(s)
- Megan R Dreier
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, 3000 Arlington Ave, Toledo 43614, OH, USA
| | - Jasmine Walia
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, 3000 Arlington Ave, Toledo 43614, OH, USA
| | - Ivana L de la Serna
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, 3000 Arlington Ave, Toledo 43614, OH, USA
| |
Collapse
|
17
|
Ren X, Xu J, Xue Q, Tong Y, Xu T, Wang J, Yang T, Chen Y, Shi D, Li X. BRG1 enhances porcine iPSC pluripotency through WNT/β-catenin and autophagy pathways. Theriogenology 2024; 215:10-23. [PMID: 38000125 DOI: 10.1016/j.theriogenology.2023.11.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023]
Abstract
Brahma-related gene 1 (BRG1) enhances the pluripotency of embryonic and adult stem cells, however, its effect on induced pluripotent stem cell (iPSC) pluripotency has not been reported. The aim of this study was to investigate the effect of BRG1 on porcine iPSC pluripotency and its mechanisms. The effect of BRG1 on porcine iPSC pluripotency was explored by positive and negative control it. The mechanism was investigated by regulating the WNT/β-catenin signaling pathway and autophagy flux. The results showed that inhibition of BRG1 decreased pluripotency-related gene expression in porcine iPSCs; while its overexpression had the opposite effect, the expression of WNT/β-catenin signaling pathway- and autophagy-related genes was significantly up-regulated (P < 0.05) in the BRG1 overexpressed group when compared to the control group. Inhibited pluripotency-related gene or protein expression, decreased autophagy flux, and increased mitochondrial length and mitochondrial membrane potential (MMP) were observed when porcine iPSCs were treated with the WNT/β-catenin signaling pathway inhibitor IWR-1. Forced BRG1 expression restored porcine iPSC pluripotency, increased autophagy flux, shortened mitochondria, and reduced MMP. Lastly, Compound C was used to activate porcine iPSC autophagy, and it was found that the expression of BRG1 and β-catenin increased, and pluripotency-related gene and protein expression was up-regulated; these effects were reversed when the BRG1 inhibitor PFI-3 and IWR-1 were added. These results suggested that BRG1 enhanced the pluripotency of porcine iPSCs through WNT/β-catenin and autophagy pathways.
Collapse
Affiliation(s)
- Xuan Ren
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Jianchun Xu
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Qingsong Xue
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Yi Tong
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Tairan Xu
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Jinli Wang
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Ting Yang
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Yuan Chen
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Deshun Shi
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Xiangping Li
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China.
| |
Collapse
|
18
|
Berlin M, Cantley J, Bookbinder M, Bortolon E, Broccatelli F, Cadelina G, Chan EW, Chen H, Chen X, Cheng Y, Cheung TK, Davenport K, DiNicola D, Gordon D, Hamman BD, Harbin A, Haskell R, He M, Hole AJ, Januario T, Kerry PS, Koenig SG, Li L, Merchant M, Pérez-Dorado I, Pizzano J, Quinn C, Rose CM, Rousseau E, Soto L, Staben LR, Sun H, Tian Q, Wang J, Wang W, Ye CS, Ye X, Zhang P, Zhou Y, Yauch R, Dragovich PS. PROTACs Targeting BRM (SMARCA2) Afford Selective In Vivo Degradation over BRG1 (SMARCA4) and Are Active in BRG1 Mutant Xenograft Tumor Models. J Med Chem 2024; 67:1262-1313. [PMID: 38180485 DOI: 10.1021/acs.jmedchem.3c01781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
The identification of VHL-binding proteolysis targeting chimeras (PROTACs) that potently degrade the BRM protein (also known as SMARCA2) in SW1573 cell-based experiments is described. These molecules exhibit between 10- and 100-fold degradation selectivity for BRM over the closely related paralog protein BRG1 (SMARCA4). They also selectively impair the proliferation of the H1944 "BRG1-mutant" NSCLC cell line, which lacks functional BRG1 protein and is thus highly dependent on BRM for growth, relative to the wild-type Calu6 line. In vivo experiments performed with a subset of compounds identified PROTACs that potently and selectively degraded BRM in the Calu6 and/or the HCC2302 BRG1 mutant NSCLC xenograft models and also afforded antitumor efficacy in the latter system. Subsequent PK/PD analysis established a need to achieve strong BRM degradation (>95%) in order to trigger meaningful antitumor activity in vivo. Intratumor quantitation of mRNA associated with two genes whose transcription was controlled by BRM (PLAU and KRT80) also supported this conclusion.
Collapse
Affiliation(s)
- Michael Berlin
- Arvinas LLC, 5 Science Park, New Haven, Connecticut 06511, United States
| | - Jennifer Cantley
- Arvinas LLC, 5 Science Park, New Haven, Connecticut 06511, United States
| | - Mark Bookbinder
- Arvinas LLC, 5 Science Park, New Haven, Connecticut 06511, United States
| | - Elizabeth Bortolon
- Arvinas LLC, 5 Science Park, New Haven, Connecticut 06511, United States
| | - Fabio Broccatelli
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Greg Cadelina
- Arvinas LLC, 5 Science Park, New Haven, Connecticut 06511, United States
| | - Emily W Chan
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Huifen Chen
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Xin Chen
- Arvinas LLC, 5 Science Park, New Haven, Connecticut 06511, United States
| | - Yunxing Cheng
- Pharmaron Beijing, Co. Ltd., 6 Tai He Road, BDA, Beijing 100176, P. R. China
| | - Tommy K Cheung
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Kim Davenport
- Arvinas LLC, 5 Science Park, New Haven, Connecticut 06511, United States
| | - Dean DiNicola
- Arvinas LLC, 5 Science Park, New Haven, Connecticut 06511, United States
| | - Debbie Gordon
- Arvinas LLC, 5 Science Park, New Haven, Connecticut 06511, United States
| | - Brian D Hamman
- Arvinas LLC, 5 Science Park, New Haven, Connecticut 06511, United States
| | - Alicia Harbin
- Arvinas LLC, 5 Science Park, New Haven, Connecticut 06511, United States
| | - Roy Haskell
- Arvinas LLC, 5 Science Park, New Haven, Connecticut 06511, United States
| | - Mingtao He
- Pharmaron Beijing, Co. Ltd., 6 Tai He Road, BDA, Beijing 100176, P. R. China
| | - Alison J Hole
- Evotec (U.K.) Ltd., 95 Park Drive, Milton Park, Abingdon, Oxfordshire OX14 4RY, U.K
| | - Thomas Januario
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Philip S Kerry
- Evotec (U.K.) Ltd., 95 Park Drive, Milton Park, Abingdon, Oxfordshire OX14 4RY, U.K
| | - Stefan G Koenig
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Limei Li
- Pharmaron Beijing, Co. Ltd., 6 Tai He Road, BDA, Beijing 100176, P. R. China
| | - Mark Merchant
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | | | - Jennifer Pizzano
- Arvinas LLC, 5 Science Park, New Haven, Connecticut 06511, United States
| | - Connor Quinn
- Arvinas LLC, 5 Science Park, New Haven, Connecticut 06511, United States
| | - Christopher M Rose
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Emma Rousseau
- Arvinas LLC, 5 Science Park, New Haven, Connecticut 06511, United States
| | - Leofal Soto
- Arvinas LLC, 5 Science Park, New Haven, Connecticut 06511, United States
| | - Leanna R Staben
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Hongming Sun
- Pharmaron Beijing, Co. Ltd., 6 Tai He Road, BDA, Beijing 100176, P. R. China
| | - Qingping Tian
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jing Wang
- Arvinas LLC, 5 Science Park, New Haven, Connecticut 06511, United States
| | - Weifeng Wang
- Pharmaron Beijing, Co. Ltd., 6 Tai He Road, BDA, Beijing 100176, P. R. China
| | - Crystal S Ye
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Xiaofen Ye
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Penghong Zhang
- Pharmaron Beijing, Co. Ltd., 6 Tai He Road, BDA, Beijing 100176, P. R. China
| | - Yuhui Zhou
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Robert Yauch
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Peter S Dragovich
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
19
|
Li N, Liu H, Xue Y, Zhu Q, Fan Z. The chromatin remodeling protein BRG1 contributes to liver ischemia-reperfusion injury by regulating NOXA expression. Life Sci 2023; 334:122235. [PMID: 37926300 DOI: 10.1016/j.lfs.2023.122235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
AIMS Hepatic ischemia-reperfusion injury (IRI) is a common complication secondary to liver transplantation. Extensive death of hepatocytes, typically in the form of apoptosis, is observed in and contributes to IRI. In the present study we investigated the role of BRG1 (encoded by Smarca4), a chromatin remodeling protein, in the pathogenesis of liver IRI focusing on the transcriptional mechanism and translational potential. METHODS Smarca4f/f mice were crossed to Alb-Cre mice to generate hepatocytes-specific BRG1 knockout mice (CKO). Alterations in cellular transcriptome were evaluated by RNA-seq. RESULTS BRG1 expression was up-regulated in liver tissues of mice subjected to I/R and in hepatocytes exposed to hypoxia-reoxygenation (H/R). Compared to wild type (WT) littermates, the BRG1 CKO mice displayed significant amelioration of liver injury following ischemia-reperfusion as evidenced by decreased ALT/AST levels and cell apoptosis. Primary hepatocytes isolated from the CKO mice were protected from H/R-induced apoptosis compared to those from the WT mice. RNA-seq analysis revealed phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1, also known as NOXA) as a novel target for BRG1. Consistently, NOXA knockdown attenuated liver IRI in mice. More importantly, administration of a small-molecule BRG1 inhibitor (PFI-3) protected the mice from liver IRI. CONCLUSIONS Our data uncover a pivotal role for BRG1 in liver IRI and suggest that targeting BRG1 with small-molecule inhibitors can be considered as a reasonable therapeutic strategy.
Collapse
Affiliation(s)
- Nan Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Departments of Human Anatomy and Pathophysiology, Nanjing Medial University, Nanjing, China
| | - Hong Liu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Departments of Human Anatomy and Pathophysiology, Nanjing Medial University, Nanjing, China
| | - Yujia Xue
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Departments of Human Anatomy and Pathophysiology, Nanjing Medial University, Nanjing, China
| | - Qiang Zhu
- Department of General Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China.
| | - Zhiwen Fan
- Department of Pathology, Nanjing Drum Tower Hospital, Nanjing, China.
| |
Collapse
|
20
|
Yang J, Karimi Kinyamu H, Ward JM, Scappini E, Archer TK. Unlocking cellular plasticity: Enhancing human iPSC reprogramming through bromodomain inhibition and extracellular matrix gene expression regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.13.562265. [PMID: 37873209 PMCID: PMC10592827 DOI: 10.1101/2023.10.13.562265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The transformation of fibroblasts into epithelial cells is critical for iPSC reprogramming. In this report, we describe studies with PFI-3, a small molecule inhibitor that specifically targets the bromodomains of SMARCA2/4 and PBRM1 subunit of SWI/SNF complex, as an enhancer of iPSC reprogramming efficiency. Our findings revealed that PFI-3 induces cellular plasticity in multiple human dermal fibroblasts, leading to a mesenchymal-epithelial transition (MET) during iPSC formation. This transition was characterized by the upregulation of E-cadherin expression, a key protein involved in epithelial cell adhesion. Additionally, we identified COL11A1 as a reprogramming barrier and demonstrated COL11A1 knockdown increased reprogramming efficiency. Notably, we found that PFI-3 significantly reduced the expression of numerous extracellular matrix (ECM) genes, particularly those involved in collagen assembly. Our research provides key insights into the early stages of iPSC reprogramming, highlighting the crucial role of ECM changes and cellular plasticity in this process.
Collapse
|
21
|
Abstract
Bromodomains are acetyl-lysine binding modules that are found in different classes of chromatin-interacting proteins. Among these are large chromatin remodeling complexes such as BAF and PBAF (variants of human SWI/SNF). Previous work has identified chemical probes targeting a subset of the bromodomains present in the BAF and PBAF complexes. Selective inhibitors of the individual bromodomains have proven challenging to discover, as the domains are highly similar. Here, elaboration of an aminopyridazine scaffold used previously to develop probes for the bromodomains of SMARCA2, SMARCA4, and the fifth bromodomain of PBRM1 yielded compounds with both potency and unusual selectivity for the second bromodomain of PBRM1. One of these, GNE-235, and its enantiomer control GNE-234 are suggested for initial cellular investigations of the function of the second bromodomain of PBRM1.
Collapse
Affiliation(s)
- Andrea G Cochran
- Department of Biological Chemistry, Genentech, Inc., South San Francisco, California 94080, United States
| | - Megan Flynn
- Department of Biological Chemistry, Genentech, Inc., South San Francisco, California 94080, United States
| |
Collapse
|
22
|
Yang C, He Y, Wang Y, McKinnon PJ, Shahani V, Miller DD, Pfeffer LM. Next-generation bromodomain inhibitors of the SWI/SNF complex enhance DNA damage and cell death in glioblastoma. J Cell Mol Med 2023; 27:2770-2781. [PMID: 37593885 PMCID: PMC10494295 DOI: 10.1111/jcmm.17907] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/19/2023] Open
Abstract
Glioblastoma (GBM) is an aggressive brain cancer with a poor prognosis. While surgical resection is the primary treatment, adjuvant temozolomide (TMZ) chemotherapy and radiotherapy only provide slight improvement in disease course and outcome. Unfortunately, most treated patients experience recurrence of highly aggressive, therapy-resistant tumours and eventually succumb to the disease. To increase chemosensitivity and overcome therapy resistance, we have modified the chemical structure of the PFI-3 bromodomain inhibitor of the BRG1 and BRM catalytic subunits of the SWI/SNF chromatin remodelling complex. Our modifications resulted in compounds that sensitized GBM to the DNA alkylating agent TMZ and the radiomimetic bleomycin. We screened these chemical analogues using a cell death ELISA with GBM cell lines and a cellular thermal shift assay using epitope tagged BRG1 or BRM bromodomains expressed in GBM cells. An active analogue, IV-129, was then identified and further modified, resulting in new generation of bromodomain inhibitors with distinct properties. IV-255 and IV-275 had higher bioactivity than IV-129, with IV-255 selectively binding to the bromodomain of BRG1 and not BRM, while IV-275 bound well to both BRG1 and BRM bromodomains. In contrast, IV-191 did not bind to either bromodomain or alter GBM chemosensitivity. Importantly, both IV-255 and IV-275 markedly increased the extent of DNA damage induced by TMZ and bleomycin as determined by nuclear γH2AX staining. Our results demonstrate that these next-generation inhibitors selectively bind to the bromodomains of catalytic subunits of the SWI/SNF complex and sensitize GBM to the anticancer effects of TMZ and bleomycin. This approach holds promise for improving the treatment of GBM.
Collapse
Affiliation(s)
- Chuanhe Yang
- Department of Pathology and Laboratory MedicineCollege of Medicine, University of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Yali He
- Department of Pharmaceutical SciencesCollege of Pharmacy, University of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Yinan Wang
- Department of Pathology and Laboratory MedicineCollege of Medicine, University of Tennessee Health Science CenterMemphisTennesseeUSA
| | | | - Vijay Shahani
- Recursion Pharmaceuticals IncTorontoOntarioM5V 2A2Canada
| | - Duane D. Miller
- Department of Pharmaceutical SciencesCollege of Pharmacy, University of Tennessee Health Science CenterMemphisTennesseeUSA
- The Center for Cancer ResearchUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Lawrence M. Pfeffer
- Department of Pathology and Laboratory MedicineCollege of Medicine, University of Tennessee Health Science CenterMemphisTennesseeUSA
- The Center for Cancer ResearchUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| |
Collapse
|
23
|
Kou P, Levy ES, Nguyen AD, Zhang D, Chen S, Cui Y, Zhang X, Broccatelli F, Pizzano J, Cantley J, Bortolon E, Rousseau E, Berlin M, Dragovich P, Sethuraman V. Development of Liposome Systems for Enhancing the PK Properties of Bivalent PROTACs. Pharmaceutics 2023; 15:2098. [PMID: 37631312 PMCID: PMC10458015 DOI: 10.3390/pharmaceutics15082098] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Proteolysis-Targeting Chimeras (PROTACs) are a promising new technology in drug development. They have rapidly evolved in recent years, with several of them in clinical trials. While most of these advances have been associated with monovalent protein degraders, bivalent PROTACs have also entered clinical trials, although progression to market has been limited. One of the reasons is the complex physicochemical properties of the heterobifunctional PROTACs. A promising strategy to improve pharmacokinetics of highly lipophilic compounds, such as PROTACs, is encapsulation in liposome systems. Here we describe liposome systems for intravenous administration to enhance the PK properties of two bivalent PROTAC molecules, by reducing clearance and increasing systemic coverage. We developed and characterized a PROTAC-in-cyclodextrin liposome system where the drug was retained in the liposome core. In PK studies at 1 mg/kg for GNE-01 the PROTAC-in-cyclodextrin liposome, compared to the solution formulation, showed a 80- and a 380-fold enhancement in AUC for mouse and rat studies, respectively. We further investigated the same PROTAC-in-cyclodextrin liposome system with the second PROTAC (GNE-02), where we monitored both lipid and drug concentrations in vivo. Similarly, in a mouse PK study of GEN-02, the PROTAC-in-cyclodextrin liposome system exhibited enhancement in plasma concentration of a 23× increase over the conventional solution formulation. Importantly, the lipid CL correlated with the drug CL. Additionally, we investigated a conventional liposome approach for GNE-02, where the PROTAC resides in the lipid bilayer. Here, a 5× increase in AUC was observed, compared to the conventional solution formulation, and the drug CL was faster than the lipid CL. These results indicate that the different liposome systems can be tailored to translate across multiple PROTAC systems to modulate and improve plasma concentrations. Optimization of the liposomes could further improve tumor concentration and improve the overall therapeutic index (TI). This delivery technology may be well suited to bring novel protein targeted PROTACs into clinics.
Collapse
Affiliation(s)
- Ponien Kou
- Small Molecules Pharmaceutics, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA; (P.K.); (E.S.L.); (A.D.N.)
| | - Elizabeth S. Levy
- Small Molecules Pharmaceutics, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA; (P.K.); (E.S.L.); (A.D.N.)
| | - An D. Nguyen
- Small Molecules Pharmaceutics, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA; (P.K.); (E.S.L.); (A.D.N.)
| | - Donglu Zhang
- Drug Metabolism & Pharmacokinetics, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA; (D.Z.); (S.C.); (Y.C.); (X.Z.); (F.B.)
| | - Shu Chen
- Drug Metabolism & Pharmacokinetics, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA; (D.Z.); (S.C.); (Y.C.); (X.Z.); (F.B.)
| | - Yusi Cui
- Drug Metabolism & Pharmacokinetics, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA; (D.Z.); (S.C.); (Y.C.); (X.Z.); (F.B.)
| | - Xing Zhang
- Drug Metabolism & Pharmacokinetics, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA; (D.Z.); (S.C.); (Y.C.); (X.Z.); (F.B.)
| | - Fabio Broccatelli
- Drug Metabolism & Pharmacokinetics, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA; (D.Z.); (S.C.); (Y.C.); (X.Z.); (F.B.)
| | - Jennifer Pizzano
- Arvinas LLC, 5 Science Park, New Haven, CT 06511, USA; (J.P.); (J.C.); (E.B.); (E.R.); (M.B.)
| | - Jennifer Cantley
- Arvinas LLC, 5 Science Park, New Haven, CT 06511, USA; (J.P.); (J.C.); (E.B.); (E.R.); (M.B.)
| | - Elizabeth Bortolon
- Arvinas LLC, 5 Science Park, New Haven, CT 06511, USA; (J.P.); (J.C.); (E.B.); (E.R.); (M.B.)
| | - Emma Rousseau
- Arvinas LLC, 5 Science Park, New Haven, CT 06511, USA; (J.P.); (J.C.); (E.B.); (E.R.); (M.B.)
| | - Michael Berlin
- Arvinas LLC, 5 Science Park, New Haven, CT 06511, USA; (J.P.); (J.C.); (E.B.); (E.R.); (M.B.)
| | - Peter Dragovich
- Medicinal Chemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA;
| | - Vijay Sethuraman
- Small Molecules Pharmaceutics, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA; (P.K.); (E.S.L.); (A.D.N.)
| |
Collapse
|
24
|
Sharma T, Olea-Flores M, Imbalzano AN. Regulation of the Wnt signaling pathway during myogenesis by the mammalian SWI/SNF ATPase BRG1. Front Cell Dev Biol 2023; 11:1160227. [PMID: 37484913 PMCID: PMC10360407 DOI: 10.3389/fcell.2023.1160227] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
Skeletal muscle differentiation is a tightly regulated process, and the importance of the mammalian SWI/SNF (mSWI/SNF) chromatin remodeling family for regulation of genes involved in skeletal myogenesis is well-established. Our prior work showed that bromodomains of mSWI/SNF ATPases BRG1 and BRM contribute to myogenesis by facilitating the binding of mSWI/SNF enzymes to regulatory regions of myogenic and other target genes. Here, we report that pathway analyses of differentially expressed genes from that study identified an additional role for mSWI/SNF enzymes via the regulation of the Wnt signaling pathway. The Wnt pathway has been previously shown to be important for skeletal muscle development. To investigate the importance of mSWI/SNF enzymes for the regulation of the Wnt pathway, individual and dual knockdowns were performed for BRG1 and BRM followed by RNA-sequencing. The results show that BRG1, but not BRM, is a regulator of Wnt pathway components and downstream genes. Reactivation of Wnt pathway by stabilization of β-catenin could rescue the defect in myogenic gene expression and differentiation due to BRG1 knockdown or bromodomain inhibition using a specific small molecule inhibitor, PFI-3. These results demonstrate that BRG1 is required upstream of β-catenin function. Chromatin immunoprecipitation of BRG1, BRM and β-catenin at promoters of Wnt pathway component genes showed binding of BRG1 and β-catenin, which provides further mechanistic insight to the transcriptional regulation of these genes.
Collapse
Affiliation(s)
| | | | - Anthony N. Imbalzano
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, MA, United States
| |
Collapse
|
25
|
Divakaran A, Harki DA, Pomerantz WC. Recent progress and structural analyses of domain-selective BET inhibitors. Med Res Rev 2023; 43:972-1018. [PMID: 36971240 PMCID: PMC10520981 DOI: 10.1002/med.21942] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 12/21/2022] [Accepted: 02/26/2023] [Indexed: 03/29/2023]
Abstract
Epigenetic mechanisms for controlling gene expression through heritable modifications to DNA, RNA, and proteins, are essential processes in maintaining cellular homeostasis. As a result of their central role in human diseases, the proteins responsible for adding, removing, or recognizing epigenetic modifications have emerged as viable drug targets. In the case of lysine-ε-N-acetylation (Kac ), bromodomains serve as recognition modules ("readers") of this activating epigenetic mark and competition of the bromodomain-Kac interaction with small-molecule inhibitors is an attractive strategy to control aberrant bromodomain-mediated gene expression. The bromodomain and extra-terminal (BET) family proteins contain eight similar bromodomains. These BET bromodomains are among the more commonly studied bromodomain classes with numerous pan-BET inhibitors showing promising anticancer and anti-inflammatory efficacy. However, these results have yet to translate into Food and Drug Administration-approved drugs, in part due to a high degree of on-target toxicities associated with pan-BET inhibition. Improved selectivity within the BET-family has been proposed to alleviate these concerns. In this review, we analyze the reported BET-domain selective inhibitors from a structural perspective. We highlight three essential characteristics of the reported molecules in generating domain selectivity, binding affinity, and mimicking Kac molecular recognition. In several cases, we provide insight into the design of molecules with improved specificity for individual BET-bromodomains. This review provides a perspective on the current state of the field as this exciting class of inhibitors continue to be evaluated in the clinic.
Collapse
Affiliation(s)
- Anand Divakaran
- Department of Medicinal Chemistry, University of Minnesota, 2231 6th St SE, Minneapolis, MN 55455, United States
| | - Daniel A. Harki
- Department of Medicinal Chemistry, University of Minnesota, 2231 6th St SE, Minneapolis, MN 55455, United States
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN55455, United States
| | - William C.K. Pomerantz
- Department of Medicinal Chemistry, University of Minnesota, 2231 6th St SE, Minneapolis, MN 55455, United States
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN55455, United States
| |
Collapse
|
26
|
Li J, Liang XQ, Cui YF, Fu YY, Ma ZY, Cui YT, Dong XH, Huang HJ, Tong TT, Zhu YM, Xue YD, Wang YZ, Ban T, Huo R. PFI-3 induces vasorelaxation with potency to reduce extracellular calcium influx in rat mesenteric artery. PeerJ 2023; 11:e15407. [PMID: 37250720 PMCID: PMC10225122 DOI: 10.7717/peerj.15407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/21/2023] [Indexed: 05/31/2023] Open
Abstract
Background PFI-3 is a small-molecule inhibitor that targets the bromodomains (BRDs) of Brahma-related gene 1 (BRG1). This monomeric compound, which has high selectivity and potent cellular effects, has recently been developed. Although PFI-3 has been reported as a potential therapeutic agent targeting thrombomodulin, its role in the regulation of vascular function remains unknown. Therefore, we aimed to investigate the impact of PFI-3 on arterial vessel tone. Methods A microvascular tension measurement device (DMT) was utilized to identify alterations in vascular tension within the mesenteric artery. To detect variations in cytosolic [Ca2+]i, a Fluo-3/AM fluorescent probe and fluorescence microscope were employed. Additionally, whole-cell patch clamp techniques were utilized to evaluate the activity of L-type voltage-dependent calcium channels (VDCCs) in cultured arterial smooth muscle cells (A10 cells). Results PFI-3 exerted a dose-dependent relaxation effect on rat mesenteric arteries with both intact and denuded endothelium after phenylephrine (PE)- and high-K+-induced constriction. PFI-3-induced vasorelaxation was not affected by the presence of L-NAME/ODQ or K+ channel blockers (Gli/TEA). PFI-3 abolished Ca2+-induced contraction on endothelium-denuded mesenteric arteries preincubated by PE in Ca2+-free solution. Incubation with TG had no impact on PFI-3-induced vasorelaxation pre-contracted by PE. PFI-3 reduced Ca2+-induced contraction on endothelium-denuded mesenteric arteries pre-incubated by KCl (60 mM) in Ca2+-free solution. PFI-3 declined extracellular calcium influx in A10 cells detected by Fluo-3/AM fluorescent probe and fluorescence microscope. Furthermore, we observed that PFI-3 decreased the current densities of L-type VDCC by whole-cell patch clamp techniques. Conclusions PFI-3 blunted PE and high K+-induced vasoconstriction independent of endothelium on rat mesenteric artery. The vasodilatory effect of PFI-3 may be attributed to its inhibition of VDCCs and receptor-operated calcium channels (ROCCs) on vascular smooth muscle cells (VSMCs).
Collapse
Affiliation(s)
- Jing Li
- Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xue-Qi Liang
- Department of Pharmacy, Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, Heilongjiang Province, China
| | - Yun-Feng Cui
- Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yu-Yang Fu
- Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Zi-Yue Ma
- Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Ying-Tao Cui
- Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xian-Hui Dong
- Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Hai-Jun Huang
- Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Ting-Ting Tong
- Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Ya-Mei Zhu
- Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Ya-Dong Xue
- Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yong-Zhen Wang
- Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Tao Ban
- Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Rong Huo
- Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang Province, China
| |
Collapse
|
27
|
Jolly AJ, Lu S, Dubner AM, Strand KA, Mutryn MF, Pilotti-Riley A, Danis EP, Nemenoff RA, Moulton KS, Majesky MW, Weiser-Evans MC. Redistribution of the chromatin remodeler Brg1 directs smooth muscle-derived adventitial progenitor-to-myofibroblast differentiation and vascular fibrosis. JCI Insight 2023; 8:e164862. [PMID: 36976650 PMCID: PMC10243795 DOI: 10.1172/jci.insight.164862] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Vascular smooth muscle-derived Sca1+ adventitial progenitor (AdvSca1-SM) cells are tissue-resident, multipotent stem cells that contribute to progression of vascular remodeling and fibrosis. Upon acute vascular injury, AdvSca1-SM cells differentiate into myofibroblasts and are embedded in perivascular collagen and the extracellular matrix. While the phenotypic properties of AdvSca1-SM-derived myofibroblasts have been defined, the underlying epigenetic regulators driving the AdvSca1-SM-to-myofibroblast transition are unclear. We show that the chromatin remodeler Smarca4/Brg1 facilitates AdvSca1-SM myofibroblast differentiation. Brg1 mRNA and protein were upregulated in AdvSca1-SM cells after acute vascular injury, and pharmacological inhibition of Brg1 by the small molecule PFI-3 attenuated perivascular fibrosis and adventitial expansion. TGF-β1 stimulation of AdvSca1-SM cells in vitro reduced expression of stemness genes while inducing expression of myofibroblast genes that was associated with enhanced contractility; PFI blocked TGF-β1-induced phenotypic transition. Similarly, genetic knockdown of Brg1 in vivo reduced adventitial remodeling and fibrosis and reversed AdvSca1-SM-to-myofibroblast transition in vitro. Mechanistically, TGF-β1 promoted redistribution of Brg1 from distal intergenic sites of stemness genes and recruitment to promoter regions of myofibroblast-related genes, which was blocked by PFI-3. These data provide insight into epigenetic regulation of resident vascular progenitor cell differentiation and support that manipulating the AdvSca1-SM phenotype will provide antifibrotic clinical benefits.
Collapse
Affiliation(s)
- Austin J. Jolly
- Department of Medicine, Division of Renal Diseases and Hypertension
- Medical Scientist Training Program
| | - Sizhao Lu
- Department of Medicine, Division of Renal Diseases and Hypertension
- School of Medicine, Consortium for Fibrosis Research and Translation
| | | | - Keith A. Strand
- Department of Medicine, Division of Renal Diseases and Hypertension
| | - Marie F. Mutryn
- Department of Medicine, Division of Renal Diseases and Hypertension
| | | | | | - Raphael A. Nemenoff
- Department of Medicine, Division of Renal Diseases and Hypertension
- School of Medicine, Consortium for Fibrosis Research and Translation
- Cardiovascular Pulmonary Research Program, and
| | - Karen S. Moulton
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Mark W. Majesky
- Center for Developmental Biology & Regenerative Medicine, Seattle Children’s Research Institute, Seattle, Washington, USA
- Departments of Pediatrics and Pathology, University of Washington, Seattle, Washington, USA
| | - Mary C.M. Weiser-Evans
- Department of Medicine, Division of Renal Diseases and Hypertension
- School of Medicine, Consortium for Fibrosis Research and Translation
- Cardiovascular Pulmonary Research Program, and
| |
Collapse
|
28
|
Pan Z, Zhao Y, Wang X, Xie X, Liu M, Zhang K, Wang L, Bai D, Foster LJ, Shu R, He G. Targeting bromodomain-containing proteins: research advances of drug discovery. MOLECULAR BIOMEDICINE 2023; 4:13. [PMID: 37142850 PMCID: PMC10159834 DOI: 10.1186/s43556-023-00127-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/02/2023] [Indexed: 05/06/2023] Open
Abstract
Bromodomain (BD) is an evolutionarily conserved protein module found in 46 different BD-containing proteins (BCPs). BD acts as a specific reader for acetylated lysine residues (KAc) and serves an essential role in transcriptional regulation, chromatin remodeling, DNA damage repair, and cell proliferation. On the other hand, BCPs have been shown to be involved in the pathogenesis of a variety of diseases, including cancers, inflammation, cardiovascular diseases, and viral infections. Over the past decade, researchers have brought new therapeutic strategies to relevant diseases by inhibiting the activity or downregulating the expression of BCPs to interfere with the transcription of pathogenic genes. An increasing number of potent inhibitors and degraders of BCPs have been developed, some of which are already in clinical trials. In this paper, we provide a comprehensive review of recent advances in the study of drugs that inhibit or down-regulate BCPs, focusing on the development history, molecular structure, biological activity, interaction with BCPs and therapeutic potentials of these drugs. In addition, we discuss current challenges, issues to be addressed and future research directions for the development of BCPs inhibitors. Lessons learned from the successful or unsuccessful development experiences of these inhibitors or degraders will facilitate the further development of efficient, selective and less toxic inhibitors of BCPs and eventually achieve drug application in the clinic.
Collapse
Affiliation(s)
- Zhaoping Pan
- Department of Dermatology & Venerology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuxi Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, Department of Orthodontics and Pediatrics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xiaoyun Wang
- Department of Dermatology & Venerology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xin Xie
- College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Mingxia Liu
- Department of Dermatology & Venerology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Kaiyao Zhang
- Department of Dermatology & Venerology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lian Wang
- Department of Dermatology & Venerology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ding Bai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, Department of Orthodontics and Pediatrics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Leonard J Foster
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Rui Shu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, Department of Orthodontics and Pediatrics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Gu He
- Department of Dermatology & Venerology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
29
|
Duran-Frigola M, Cigler M, Winter GE. Advancing Targeted Protein Degradation via Multiomics Profiling and Artificial Intelligence. J Am Chem Soc 2023; 145:2711-2732. [PMID: 36706315 PMCID: PMC9912273 DOI: 10.1021/jacs.2c11098] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Indexed: 01/28/2023]
Abstract
Only around 20% of the human proteome is considered to be druggable with small-molecule antagonists. This leaves some of the most compelling therapeutic targets outside the reach of ligand discovery. The concept of targeted protein degradation (TPD) promises to overcome some of these limitations. In brief, TPD is dependent on small molecules that induce the proximity between a protein of interest (POI) and an E3 ubiquitin ligase, causing ubiquitination and degradation of the POI. In this perspective, we want to reflect on current challenges in the field, and discuss how advances in multiomics profiling, artificial intelligence, and machine learning (AI/ML) will be vital in overcoming them. The presented roadmap is discussed in the context of small-molecule degraders but is equally applicable for other emerging proximity-inducing modalities.
Collapse
Affiliation(s)
- Miquel Duran-Frigola
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of
Sciences, 1090 Vienna, Austria
- Ersilia
Open Source Initiative, 28 Belgrave Road, CB1 3DE, Cambridge, United Kingdom
| | - Marko Cigler
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of
Sciences, 1090 Vienna, Austria
| | - Georg E. Winter
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of
Sciences, 1090 Vienna, Austria
| |
Collapse
|
30
|
Shishodia S, Nuñez R, Strohmier BP, Bursch KL, Goetz CJ, Olp MD, Jensen DR, Fenske TG, Ordonez-Rubiano SC, Blau ME, Roach MK, Peterson FC, Volkman BF, Dykhuizen EC, Smith BC. Selective and Cell-Active PBRM1 Bromodomain Inhibitors Discovered through NMR Fragment Screening. J Med Chem 2022; 65:13714-13735. [PMID: 36227159 PMCID: PMC9630929 DOI: 10.1021/acs.jmedchem.2c00864] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PBRM1 is a subunit of the PBAF chromatin remodeling complex that uniquely contains six bromodomains. PBRM1 can operate as a tumor suppressor or tumor promoter. PBRM1 is a tumor promoter in prostate cancer, contributing to migratory and immunosuppressive phenotypes. Selective chemical probes targeting PBRM1 bromodomains are desired to elucidate the association between aberrant PBRM1 chromatin binding and cancer pathogenesis and the contributions of PBRM1 to immunotherapy. Previous PBRM1 inhibitors unselectively bind SMARCA2 and SMARCA4 bromodomains with nanomolar potency. We used our protein-detected NMR screening pipeline to screen 1968 fragments against the second PBRM1 bromodomain, identifying 17 hits with Kd values from 45 μM to >2 mM. Structure-activity relationship studies on the tightest-binding hit resulted in nanomolar inhibitors with selectivity for PBRM1 over SMARCA2 and SMARCA4. These chemical probes inhibit the association of full-length PBRM1 to acetylated histone peptides and selectively inhibit growth of a PBRM1-dependent prostate cancer cell line.
Collapse
Affiliation(s)
- Shifali Shishodia
- Department of Biochemistry, Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Raymundo Nuñez
- Department of Biochemistry, Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Brayden P Strohmier
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Karina L Bursch
- Department of Biochemistry, Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Christopher J Goetz
- Department of Biochemistry, Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Michael D Olp
- Department of Biochemistry, Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Davin R Jensen
- Department of Biochemistry, Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Tyler G Fenske
- Department of Biochemistry, Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Sandra C Ordonez-Rubiano
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Maya E Blau
- Department of Biochemistry, Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Mallory K Roach
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Francis C Peterson
- Department of Biochemistry, Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Brian F Volkman
- Department of Biochemistry, Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Emily C Dykhuizen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Brian C Smith
- Department of Biochemistry, Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| |
Collapse
|
31
|
Zhang FL, Li DQ. Targeting Chromatin-Remodeling Factors in Cancer Cells: Promising Molecules in Cancer Therapy. Int J Mol Sci 2022; 23:12815. [PMID: 36361605 PMCID: PMC9655648 DOI: 10.3390/ijms232112815] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/12/2022] [Accepted: 10/19/2022] [Indexed: 03/28/2024] Open
Abstract
ATP-dependent chromatin-remodeling complexes can reorganize and remodel chromatin and thereby act as important regulator in various cellular processes. Based on considerable studies over the past two decades, it has been confirmed that the abnormal function of chromatin remodeling plays a pivotal role in genome reprogramming for oncogenesis in cancer development and/or resistance to cancer therapy. Recently, exciting progress has been made in the identification of genetic alteration in the genes encoding the chromatin-remodeling complexes associated with tumorigenesis, as well as in our understanding of chromatin-remodeling mechanisms in cancer biology. Here, we present preclinical evidence explaining the signaling mechanisms involving the chromatin-remodeling misregulation-induced cancer cellular processes, including DNA damage signaling, metastasis, angiogenesis, immune signaling, etc. However, even though the cumulative evidence in this field provides promising emerging molecules for therapeutic explorations in cancer, more research is needed to assess the clinical roles of these genetic cancer targets.
Collapse
Affiliation(s)
- Fang-Lin Zhang
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Da-Qiang Li
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
32
|
Kofink C, Trainor N, Mair B, Wöhrle S, Wurm M, Mischerikow N, Roy MJ, Bader G, Greb P, Garavel G, Diers E, McLennan R, Whitworth C, Vetma V, Rumpel K, Scharnweber M, Fuchs JE, Gerstberger T, Cui Y, Gremel G, Chetta P, Hopf S, Budano N, Rinnenthal J, Gmaschitz G, Mayer M, Koegl M, Ciulli A, Weinstabl H, Farnaby W. A selective and orally bioavailable VHL-recruiting PROTAC achieves SMARCA2 degradation in vivo. Nat Commun 2022; 13:5969. [PMID: 36216795 PMCID: PMC9551036 DOI: 10.1038/s41467-022-33430-6] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 09/15/2022] [Indexed: 11/09/2022] Open
Abstract
Targeted protein degradation offers an alternative modality to classical inhibition and holds the promise of addressing previously undruggable targets to provide novel therapeutic options for patients. Heterobifunctional molecules co-recruit a target protein and an E3 ligase, resulting in ubiquitylation and proteosome-dependent degradation of the target. In the clinic, the oral route of administration is the option of choice but has only been achieved so far by CRBN- recruiting bifunctional degrader molecules. We aimed to achieve orally bioavailable molecules that selectively degrade the BAF Chromatin Remodelling complex ATPase SMARCA2 over its closely related paralogue SMARCA4, to allow in vivo evaluation of the synthetic lethality concept of SMARCA2 dependency in SMARCA4-deficient cancers. Here we outline structure- and property-guided approaches that led to orally bioavailable VHL-recruiting degraders. Our tool compound, ACBI2, shows selective degradation of SMARCA2 over SMARCA4 in ex vivo human whole blood assays and in vivo efficacy in SMARCA4-deficient cancer models. This study demonstrates the feasibility for broadening the E3 ligase and physicochemical space that can be utilised for achieving oral efficacy with bifunctional molecules.
Collapse
Affiliation(s)
| | - Nicole Trainor
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, UK
- ACRF Chemical Biology Division, Walter and Eliza Hall Institute, Parkville, VIC, Australia
| | - Barbara Mair
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Simon Wöhrle
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Melanie Wurm
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | | | - Michael J Roy
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, UK
- ACRF Chemical Biology Division, Walter and Eliza Hall Institute, Parkville, VIC, Australia
| | - Gerd Bader
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Peter Greb
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | | | - Emelyne Diers
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, UK
| | - Ross McLennan
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, UK
| | - Claire Whitworth
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, UK
| | - Vesna Vetma
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, UK
| | - Klaus Rumpel
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | | | | | | | - Yunhai Cui
- Boehringer Ingelheim Pharma GmbH & Co KG, Biberach, Germany
| | | | - Paolo Chetta
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Stefan Hopf
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Nicole Budano
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | | | | | - Moriz Mayer
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Manfred Koegl
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Alessio Ciulli
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, UK
| | | | - William Farnaby
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, UK.
| |
Collapse
|
33
|
Wu T, Kong M, Xin XJ, Liu RQ, Wang HD, Song MZ, Xu WP, Yuan YB, Yang YY, Xiao PX. Epigenetic repression of THBD transcription by BRG1 contributes to deep vein thrombosis. Thromb Res 2022; 219:121-132. [PMID: 36162255 DOI: 10.1016/j.thromres.2022.09.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND Deep vein thrombosis (DVT) with its major complication, pulmonary embolism, is a global health problem. Endothelial dysfunction is involved in the pathogenesis of DVT. We have previously demonstrated that endothelial specific deletion of Brahma-related gene 1 (BRG1) ameliorates atherosclerosis and aneurysm in animal models. Whether endothelial BRG1 contributes to DVT development remains undetermined. METHODS DVT was induced in mice by ligation of inferior vena cava. Deletion of BRG1 in endothelial cells was achieved by crossing the Cdh5-ERT-Cre mice with the Brg1loxp/loxp mice. RESULTS Here we report that compared to the wild type mice, BRG1 conditional knockout (CKO) mice displayed substantially decreased DVT susceptibility characterized by decreased weight and size of thrombus and reduced immune infiltration. In endothelial cells, thrombomodulin (THBD) expression was significantly decreased by TNF-α stimulation, while BRG1 knockdown or inhibition recovered THBD expression. Further analysis revealed that BRG1 deficiency decreased the CpG methylation levels of the THBD promoter induced by TNF-α. Mechanistically, BRG1 directly upregulated DNMT1 expression after TNF-α treatment in endothelial cells. More importantly, administration of a small-molecule BRG1 inhibitor PFI-3 displayed potent preventive and therapeutic potentials in the DVT model. CONCLUSIONS Our findings implicate BRG1 as an important regulator of DVT pathogenesis likely through epigenetic regulation of THBD expression in endothelial cells and provide translational proof-of-concept for targeting BRG1 in DVT intervention.
Collapse
Affiliation(s)
- Teng Wu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China; Center for Experimental Medicine, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China; Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou, China
| | - Ming Kong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Xiao-Jun Xin
- Department of Cardiology, the Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Rui-Qi Liu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Hui-di Wang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Ming-Zi Song
- Laboratory Center for Experimental Medicine and Department of Clinical Medicine, Jiangsu Health Vocational College, Nanjing, China
| | - Wen-Ping Xu
- Laboratory Center for Experimental Medicine and Department of Clinical Medicine, Jiangsu Health Vocational College, Nanjing, China
| | - Yi-Biao Yuan
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China; Center for Experimental Medicine, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China.
| | - Yu-Yu Yang
- Jiangsu Key Laboratory for Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China.
| | - Ping-Xi Xiao
- Department of Cardiology, the Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
34
|
Němec V, Schwalm MP, Müller S, Knapp S. PROTAC degraders as chemical probes for studying target biology and target validation. Chem Soc Rev 2022; 51:7971-7993. [PMID: 36004812 DOI: 10.1039/d2cs00478j] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Small molecule degraders such as PROTACs (PROteolysis TArgeting Chimeras) have emerged as new promising pharmacological modalities and the first PROTAC drug candidates are now studied clinically. The catalytic properties of PROTACs, acting as chemical degraders of a protein of interest (POI), represent an attractive new strategy for drug development. The development and characterization of PROTACs requires an array of additional assay systems that track the degradation pathway leading ultimately to degradation of the POI, identifying critical steps for PROTAC optimization. In addition to their exciting translational potential, PROTACs represent versatile chemical tools that considerably expanded our chemical biology toolbox and significantly enlarged the proteome that can be modulated by small molecules. Similar to conventional chemical probes, PROTACs used as chemical probes in target validation require comprehensive characterization. As a consequence, PROTAC-specific quality criteria should be defined by the chemical biology community. These criteria need to comprise additional or alternative parameters compared to those for conventional occupancy-driven chemical probes, such as the maximum level of target degradation (Dmax), confirmation of a proteasome dependent degradation mechanism and, importantly, also kinetic parameters of POI degradation. The kinetic aspects are particularly relevant for PROTACs that harbor covalent binding moieties. Here, we review recent progress in the development of assay systems for PROTAC characterization and suggest a set of criteria for PROTACs as high quality chemical probes.
Collapse
Affiliation(s)
- Václav Němec
- Institut für Pharmazeutische Chemie, Goethe-University Frankfurt, Biozentrum, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany. .,Structural Genomics Consortium, Goethe-University Frankfurt, Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Martin P Schwalm
- Institut für Pharmazeutische Chemie, Goethe-University Frankfurt, Biozentrum, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany. .,Structural Genomics Consortium, Goethe-University Frankfurt, Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Susanne Müller
- Institut für Pharmazeutische Chemie, Goethe-University Frankfurt, Biozentrum, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany. .,Structural Genomics Consortium, Goethe-University Frankfurt, Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Stefan Knapp
- Institut für Pharmazeutische Chemie, Goethe-University Frankfurt, Biozentrum, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany. .,Structural Genomics Consortium, Goethe-University Frankfurt, Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany.,German Cancer Consortium (DKTK)/German Cancer Research Center (DKFZ), DKTK site Frankfurt-Mainz, 69120 Heidelberg, Germany
| |
Collapse
|
35
|
Taylor AM, Bailey C, Belmont LD, Campbell R, Cantone N, Côté A, Crawford TD, Cummings R, DeMent K, Duplessis M, Flynn M, Good AC, Huang HR, Joshi S, Leblanc Y, Murray J, Nasveschuk CG, Neiss A, Poy F, Romero FA, Sandy P, Tang Y, Tsui V, Zawadzke L, Sims RJ, Audia JE, Bellon SF, Magnuson SR, Albrecht BK, Cochran AG. GNE-064: A Potent, Selective, and Orally Bioavailable Chemical Probe for the Bromodomains of SMARCA2 and SMARCA4 and the Fifth Bromodomain of PBRM1. J Med Chem 2022; 65:11177-11186. [PMID: 35930799 DOI: 10.1021/acs.jmedchem.2c00662] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bromodomains are acetyllysine recognition domains present in a variety of human proteins. Bromodomains also bind small molecules that compete with acetyllysine, and therefore bromodomains have been targets for drug discovery efforts. Highly potent and selective ligands with good cellular permeability have been proposed as chemical probes for use in exploring the functions of many of the bromodomain proteins. We report here the discovery of a class of such inhibitors targeting the family VIII bromodomains of SMARCA2 (BRM) and SMARCA4 (BRG1), and PBRM1 (polybromo-1) bromodomain 5. We propose one example from this series, GNE-064, as a chemical probe for the bromodomains SMARCA2, SMARCA4, and PBRM1(5) with the potential for in vivo use.
Collapse
Affiliation(s)
- Alexander M Taylor
- Constellation, a Morphosys Company, 215 First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | - Chris Bailey
- Constellation, a Morphosys Company, 215 First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | - Lisa D Belmont
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Robert Campbell
- Constellation, a Morphosys Company, 215 First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | - Nico Cantone
- Constellation, a Morphosys Company, 215 First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | - Alexandre Côté
- Constellation, a Morphosys Company, 215 First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | - Terry D Crawford
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Richard Cummings
- Constellation, a Morphosys Company, 215 First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | - Kevin DeMent
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Martin Duplessis
- Constellation, a Morphosys Company, 215 First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | - Megan Flynn
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Andrew C Good
- Constellation, a Morphosys Company, 215 First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | - Hon-Ren Huang
- Constellation, a Morphosys Company, 215 First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | - Shivangi Joshi
- Constellation, a Morphosys Company, 215 First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | - Yves Leblanc
- Constellation, a Morphosys Company, 215 First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | - Jeremy Murray
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Christopher G Nasveschuk
- Constellation, a Morphosys Company, 215 First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | - Adrianne Neiss
- Constellation, a Morphosys Company, 215 First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | - Florence Poy
- Constellation, a Morphosys Company, 215 First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | - F Anthony Romero
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Peter Sandy
- Constellation, a Morphosys Company, 215 First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | - Yong Tang
- Constellation, a Morphosys Company, 215 First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | - Vickie Tsui
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Laura Zawadzke
- Constellation, a Morphosys Company, 215 First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | - Robert J Sims
- Constellation, a Morphosys Company, 215 First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | - James E Audia
- Constellation, a Morphosys Company, 215 First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | - Steven F Bellon
- Constellation, a Morphosys Company, 215 First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | - Steven R Magnuson
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Brian K Albrecht
- Constellation, a Morphosys Company, 215 First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | - Andrea G Cochran
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
36
|
Super-Enhancers, Phase-Separated Condensates, and 3D Genome Organization in Cancer. Cancers (Basel) 2022; 14:cancers14122866. [PMID: 35740532 PMCID: PMC9221043 DOI: 10.3390/cancers14122866] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 01/27/2023] Open
Abstract
3D chromatin organization plays an important role in transcription regulation and gene expression. The 3D genome is highly maintained by several architectural proteins, such as CTCF, Yin Yang 1, and cohesin complex. This structural organization brings regulatory DNA elements in close proximity to their target promoters. In this review, we discuss the 3D chromatin organization of super-enhancers and their relationship to phase-separated condensates. Super-enhancers are large clusters of DNA elements. They can physically contact with their target promoters by chromatin looping during transcription. Multiple transcription factors can bind to enhancer and promoter sequences and recruit a complex array of transcriptional co-activators and RNA polymerase II to effect transcriptional activation. Phase-separated condensates of transcription factors and transcriptional co-activators have been implicated in assembling the transcription machinery at particular enhancers. Cancer cells can hijack super-enhancers to drive oncogenic transcription to promote cell survival and proliferation. These dysregulated transcriptional programs can cause cancer cells to become highly dependent on transcriptional regulators, such as Mediator and BRD4. Moreover, the expression of oncogenes that are driven by super-enhancers is sensitive to transcriptional perturbation and often occurs in phase-separated condensates, supporting therapeutic rationales of targeting SE components, 3D genome organization, or dysregulated condensates in cancer.
Collapse
|
37
|
Lin S, Liu C, Zhao X, Han X, Li X, Ye Y, Li Z. Recent Advances of Pyridinone in Medicinal Chemistry. Front Chem 2022; 10:869860. [PMID: 35402370 PMCID: PMC8984125 DOI: 10.3389/fchem.2022.869860] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/02/2022] [Indexed: 12/11/2022] Open
Abstract
Pyridinones have been adopted as an important block in medicinal chemistry that could serve as hydrogen bond donors and acceptors. With the help of feasible synthesis routes via established condensation reactions, the physicochemical properties of such a scaffold could be manipulated by adjustment of polarity, lipophilicity, and hydrogen bonding, and eventually lead to its wide application in fragment-based drug design, biomolecular mimetics, and kinase hinge-binding motifs. In addition, most pyridinone derivatives exhibit various biological activities ranging from antitumor, antimicrobial, anti-inflammatory, and anticoagulant to cardiotonic effects. This review focuses on recent contributions of pyridinone cores to medicinal chemistry, and addresses the structural features and structure–activity relationships (SARs) of each drug-like molecule. These advancements contribute to an in-depth understanding of the potential of this biologically enriched scaffold and expedite the development of its new applications in drug discovery.
Collapse
Affiliation(s)
- Shibo Lin
- Department of Pharmacy, Chengdu Second People’s Hospital, Chengdu, China
- *Correspondence: Shibo Lin,
| | - Chun Liu
- Department of Pharmacy, Chengdu Second People’s Hospital, Chengdu, China
| | - Xiaotian Zhao
- Department of Pharmacy, Chengdu Second People’s Hospital, Chengdu, China
| | - Xiao Han
- Department of Pharmacy, Chengdu Second People’s Hospital, Chengdu, China
| | - Xuanhao Li
- Department of Pharmacy, Chengdu Second People’s Hospital, Chengdu, China
| | - Yongqin Ye
- Department of Pharmacy, Chengdu Second People’s Hospital, Chengdu, China
| | - Zheyu Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, China
| |
Collapse
|
38
|
He Y, Yang C, Wang Y, Sacher JR, Sims MM, Pfeffer LM, Miller DD. Novel structural-related analogs of PFI-3 (SRAPs) that target the BRG1 catalytic subunit of the SWI/SNF complex increase the activity of temozolomide in glioblastoma cells. Bioorg Med Chem 2022; 53:116533. [PMID: 34863065 DOI: 10.1016/j.bmc.2021.116533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 11/02/2022]
Abstract
Glioblastoma (GBM) is the most aggressive and treatment-refractory malignant adult brain cancer. After standard of care therapy, the overall median survival for GBM is only ∼6 months with a 5-year survival <10%. Although some patients initially respond to the DNA alkylating agent temozolomide (TMZ), unfortunately most patients become resistant to therapy and brain tumors eventually recur. We previously found that knockout of BRG1 or treatment with PFI-3, a small molecule inhibitor of the BRG1 bromodomain, enhances sensitivity of GBM cells to temozolomide in vitro and in vivo GBM animal models. Those results demonstrated that the BRG1 catalytic subunit of the SWI/SNF chromatin remodeling complex appears to play a critical role in regulating TMZ-sensitivity. In the present study we designed and synthesized Structurally Related Analogs of PFI-3 (SRAPs) and tested their bioactivity in vitro. Among of the SRAPs, 9f and 11d show better efficacy than PFI-3 in sensitizing GBM cells to the antiproliferative and cell death inducing effects of temozolomide in vitro, as well as enhancing the inhibitor effect of temozolomide on the growth of subcutaneous GBM tumors.
Collapse
Affiliation(s)
- Yali He
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Chuanhe Yang
- Department of Pathology and Laboratory Medicine, and Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, United States
| | - Yinan Wang
- Department of Pathology and Laboratory Medicine, and Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, United States
| | - Joshua R Sacher
- Cyclica, Inc., 207 Queens Quay West, Suite 420, Toronto, Ontario M5J 1A7, Canada
| | - Michelle M Sims
- Department of Pathology and Laboratory Medicine, and Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, United States
| | - Lawrence M Pfeffer
- Department of Pathology and Laboratory Medicine, and Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, United States
| | - Duane D Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, United States.
| |
Collapse
|
39
|
Ma X, Cao X, Zhu L, Li Y, Wang X, Wu B, Wei G, Hui L. Pre-existing chromatin accessibility of switchable repressive compartment delineates cell plasticity. Natl Sci Rev 2021; 9:nwab230. [PMID: 35795460 PMCID: PMC9249582 DOI: 10.1093/nsr/nwab230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/14/2022] Open
Abstract
Cell plasticity endows differentiated cells with competence to be reprogrammed to other lineages. Although extrinsic factors driving cell-identity conversion have been extensively characterized, it remains elusive which intrinsic epigenetic attributes, including high-order chromatin organization, delineate cell plasticity. By analysing the transcription-factor-induced transdifferentiation from fibroblasts to hepatocytes, we uncovered contiguous compartment-switchable regions (CSRs) as a unique chromatin unit. Specifically, compartment B-to-A CSRs, enriched with hepatic genes, possessed a mosaic status of inactive chromatin and pre-existing and continuous accessibility in fibroblasts. Pre-existing accessibility enhanced the binding of inducible factor Foxa3, which triggered epigenetic activation and chromatin interaction as well as hepatic gene expression. Notably, these changes were restrained within B-to-A CSR boundaries that were defined by CTCF occupancy. Moreover, such chromatin organization and mosaic status were detectable in different cell types and involved in multiple reprogramming processes, suggesting an intrinsic chromatin attribute in understanding cell plasticity.
Collapse
Affiliation(s)
- Xiaolong Ma
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai200031, China
| | - Xuan Cao
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
| | - Linying Zhu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai200031, China
| | - Ying Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
| | - Xuelong Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
| | - Baihua Wu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai200031, China
| | - Gang Wei
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
| | - Lijian Hui
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai200031, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing100101, China
- Bio-Research Innovation Center, Shanghai Institute of Biochemistry and Cell Biology, Suzhou215121, Jiangsu Province, China
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai201210, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou310024, China
| |
Collapse
|
40
|
Enríquez P, Krajewski K, Strahl BD, Rothbart SB, Dowen RH, Rose RB. Binding specificity and function of the SWI/SNF subunit SMARCA4 bromodomain interaction with acetylated histone H3K14. J Biol Chem 2021; 297:101145. [PMID: 34473995 PMCID: PMC8506967 DOI: 10.1016/j.jbc.2021.101145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 11/30/2022] Open
Abstract
Bromodomains (BD) are conserved reader modules that bind acetylated lysine residues on histones. Although much has been learned regarding the in vitro properties of these domains, less is known about their function within chromatin complexes. SWI/SNF chromatin-remodeling complexes modulate transcription and contribute to DNA damage repair. Mutations in SWI/SNF subunits have been implicated in many cancers. Here we demonstrate that the BD of Caenorhabditis elegans SMARCA4/BRG1, a core SWI/SNF subunit, recognizes acetylated lysine 14 of histone H3 (H3K14ac), similar to its Homo sapiens ortholog. We identify the interactions of SMARCA4 with the acetylated histone peptide from a 1.29 Å-resolution crystal structure of the CeSMARCA4 BD-H3K14ac complex. Significantly, most of the SMARCA4 BD residues in contact with the histone peptide are conserved with other proteins containing family VIII bromodomains. Based on the premise that binding specificity is conserved among bromodomain orthologs, we propose that loop residues outside of the binding pocket position contact residues to recognize the H3K14ac sequence. CRISPR-Cas9-mediated mutations in the SMARCA4 BD that abolish H3K14ac binding in vitro had little or no effect on C. elegans viability or physiological function in vivo. However, combining SMARCA4 BD mutations with knockdown of the SWI/SNF accessory subunit PBRM-1 resulted in severe developmental defects in animals. In conclusion, we demonstrated an essential function for the SWI/SNF bromodomain in vivo and detected potential redundancy in epigenetic readers in regulating chromatin remodeling. These findings have implications for the development of small-molecule BD inhibitors to treat cancers and other diseases.
Collapse
Affiliation(s)
- Paul Enríquez
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina, USA
| | - Krzysztof Krajewski
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Brian D Strahl
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Scott B Rothbart
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Robert H Dowen
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Robert B Rose
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina, USA.
| |
Collapse
|
41
|
Yang C, Wang Y, Sims MM, He Y, Miller DD, Pfeffer LM. Targeting the Bromodomain of BRG-1/BRM Subunit of the SWI/SNF Complex Increases the Anticancer Activity of Temozolomide in Glioblastoma. Pharmaceuticals (Basel) 2021; 14:ph14090904. [PMID: 34577604 PMCID: PMC8467157 DOI: 10.3390/ph14090904] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 11/16/2022] Open
Abstract
Glioblastoma (GBM) is a deadly and incurable brain cancer with limited therapeutic options. PFI-3 is a small-molecule bromodomain (BRD) inhibitor of the BRM/BRG1 subunits of the SWI/SNF chromatin remodeling complex. The objective of this study is to determine the efficacy of PFI-3 as a potential GBM therapy. We report that PFI-3 binds to these BRDs when expressed in GBM cells. PFI-3 markedly enhanced the antiproliferative and cell death-inducing effects of temozolomide (TMZ) in TMZ-sensitive GBM cells as well as overcame the chemoresistance of highly TMZ-resistant GBM cells. PFI-3 also altered gene expression in GBM and enhanced the basal and interferon-induced expression of a subset of interferon-responsive genes. Besides the effects of PFI-3 on GBM cells in vitro, we found that PFI-3 markedly potentiated the anticancer effect of TMZ in an intracranial GBM animal model, resulting in a marked increase in survival of animals bearing GBM tumors. Taken together, we identified the BRG1 and BRM subunits of SWI/SNF as novel targets in GBM and revealed the therapeutic potential of applying small molecule inhibitors of SWI/SNF to improve the clinical outcome in GBM using standard-of-care chemotherapy.
Collapse
Affiliation(s)
- Chuanhe Yang
- Department of Pathology and Laboratory Medicine, Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (C.Y.); (Y.W.); (M.M.S.)
| | - Yinan Wang
- Department of Pathology and Laboratory Medicine, Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (C.Y.); (Y.W.); (M.M.S.)
| | - Michelle M. Sims
- Department of Pathology and Laboratory Medicine, Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (C.Y.); (Y.W.); (M.M.S.)
| | - Yali He
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (Y.H.); (D.D.M.)
| | - Duane D. Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (Y.H.); (D.D.M.)
| | - Lawrence M. Pfeffer
- Department of Pathology and Laboratory Medicine, Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (C.Y.); (Y.W.); (M.M.S.)
- Correspondence:
| |
Collapse
|
42
|
Mélin L, Gesner E, Attwell S, Kharenko OA, van der Horst EH, Hansen HC, Gagnon A. Design and Synthesis of LM146, a Potent Inhibitor of PB1 with an Improved Selectivity Profile over SMARCA2. ACS OMEGA 2021; 6:21327-21338. [PMID: 34471737 PMCID: PMC8387997 DOI: 10.1021/acsomega.1c01555] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/27/2021] [Indexed: 06/01/2023]
Abstract
PB1 is a bromodomain-containing protein hypothesized to act as the nucleosome-recognition subunit of the PBAF complex. Although PB1 is a key component of the PBAF chromatin remodeling complex, its exact role has not been elucidated due to the lack of potent and selective inhibitors. Chemical probes that target specific bromodomains within the complex would constitute highly valuable tools to characterize the function and therapeutic pertinence of PB1 and of each of its bromodomains. Here, we report the design and synthesis of lead compound LM146, which displays strong stabilization of the second and fifth bromodomains of PB1 as shown by DSF. LM146 does not interact with bromodomains outside of sub-family VIII and binds to PB1(2), PB1(5), and SMARCA2B with K D values of 110, 61, and 2100 nM, respectively, providing a ∼34-fold selectivity profile for PB1(5) over SMARCA2.
Collapse
Affiliation(s)
- Léa Mélin
- Département
de Chimie, Université du Québec
à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, Québec H3C 3P8, Canada
| | - Emily Gesner
- Zenith
Epigenetics Ltd., Suite
300, 4820 Richard Road SW, Calgary, Alberta T3E 6L1, Canada
| | - Sarah Attwell
- Zenith
Epigenetics Ltd., Suite
300, 4820 Richard Road SW, Calgary, Alberta T3E 6L1, Canada
| | - Olesya A. Kharenko
- Zenith
Epigenetics Ltd., Suite
300, 4820 Richard Road SW, Calgary, Alberta T3E 6L1, Canada
| | | | - Henrik C. Hansen
- Zenith
Epigenetics Ltd., Suite
300, 4820 Richard Road SW, Calgary, Alberta T3E 6L1, Canada
| | - Alexandre Gagnon
- Département
de Chimie, Université du Québec
à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, Québec H3C 3P8, Canada
| |
Collapse
|
43
|
Gong W, Luo C, Peng F, Xiao J, Zeng Y, Yin B, Chen X, Li S, He X, Liu Y, Cao H, Xu J, Long H. Brahma-related gene-1 promotes tubular senescence and renal fibrosis through Wnt/β-catenin/autophagy axis. Clin Sci (Lond) 2021; 135:1873-1895. [PMID: 34318888 PMCID: PMC8358963 DOI: 10.1042/cs20210447] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/09/2021] [Accepted: 07/28/2021] [Indexed: 02/06/2023]
Abstract
Although accelerated cellular senescence is closely related to the progression of chronic kidney disease (CKD) and renal fibrosis, the underlying mechanisms remain largely unknown. Here, we reported that tubular aberrant expression of Brahma-related gene 1 (BRG1), an enzymatic subunit of the SWItch/Sucrose Non-Fermentable complex, is critically involved in tubular senescence and renal fibrosis. BRG1 was significantly up-regulated in the kidneys, predominantly in tubular epithelial cells, of both CKD patients and unilateral ureteral obstruction (UUO) mice. In vivo, shRNA-mediated knockdown of BRG1 significantly ameliorated renal fibrosis, improved tubular senescence, and inhibited UUO-induced activation of Wnt/β-catenin pathway. In mouse renal tubular epithelial cells (mTECs) and primary renal tubular cells, inhibition of BRG1 diminished transforming growth factor-β1 (TGF-β1)-induced cellular senescence and fibrotic responses. Correspondingly, ectopic expression of BRG1 in mTECs or normal kidneys increased p16INK4a, p19ARF, and p21 expression and senescence-associated β-galactosidase (SA-β-gal) activity, indicating accelerated tubular senescence. Additionally, BRG1-mediated pro-fibrotic responses were largely abolished by small interfering RNA (siRNA)-mediated p16INK4a silencing in vitro or continuous senolytic treatment with ABT-263 in vivo. Moreover, BRG1 activated the Wnt/β-catenin pathway, which further inhibited autophagy. Pharmacologic inhibition of the Wnt/β-catenin pathway (ICG-001) or rapamycin (RAPA)-mediated activation of autophagy effectively blocked BRG1-induced tubular senescence and fibrotic responses, while bafilomycin A1 (Baf A1)-mediated inhibition of autophagy abolished the effects of ICG-001. Further, BRG1 altered the secretome of senescent tubular cells, which promoted proliferation and activation of fibroblasts. Taken together, our results indicate that BRG1 induces tubular senescence by inhibiting autophagy via the Wnt/β-catenin pathway, which ultimately contributes to the development of renal fibrosis.
Collapse
Affiliation(s)
- Wangqiu Gong
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Congwei Luo
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Fenfen Peng
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jing Xiao
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yiqun Zeng
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Bohui Yin
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xiaowen Chen
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Shuting Li
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xiaoyang He
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yanxia Liu
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Huihui Cao
- Traditional Chinese Pharmacological Laboratory, Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jiangping Xu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Haibo Long
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| |
Collapse
|
44
|
Zhou Y, Chen Y, Zhang X, Xu Q, Wu Z, Cao X, Shao M, Shu Y, Lv T, Lu C, Xie M, Wen T, Yang J, Shi Y, Bu H. Brahma-Related Gene 1 Inhibition Prevents Liver Fibrosis and Cholangiocarcinoma by Attenuating Progenitor Expansion. Hepatology 2021; 74:797-815. [PMID: 33650193 DOI: 10.1002/hep.31780] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 01/18/2021] [Accepted: 01/29/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND AIMS Intrahepatic cholangiocarcinoma (iCCA) is closely correlated with hepatic progenitor cell (HPC) expansion and liver fibrosis. Brahma-related gene 1 (Brg1), an enzymatic subunit of the switch/sucrose nonfermentable complex that is critical in stem cell maintenance and tumor promotion, is prominently up-regulated in both HPCs and iCCA; however, its role in this correlation remains undefined. APPROACH AND RESULTS A retrospective cohort study indicated that high Brg1 expression suggests poor prognosis in patients with iCCA. In chronically injured livers induced by a 0.1% 3,5-diethoxycarbonyl-1,4-dihydrocollidine diet or bile duct ligation surgery, HPCs were dramatically activated, as indicated by their enhanced expression of Brg1 and a subset of stem cell markers; however, Brg1 ablation in HPCs strongly suppressed HPC expansion and liver fibrosis. Furthermore, in a chemically induced iCCA model, inhibition of Brg1 by a specific inhibitor or inducible gene ablation markedly improved histology and suppressed iCCA growth. Mechanistically, in addition to transcriptionally promoting both Wnt receptor genes and target genes, Brg1 was found to bind to the β-catenin/transcription factor 4 transcription complex, suggesting a possible approach for regulation of Wnt/β-catenin signaling. CONCLUSIONS We have demonstrated the function of Brg1 in promoting HPC expansion, liver cirrhosis, and, ultimately, iCCA development in chronically injured livers, which is largely dependent on Wnt/β-catenin signaling. Our data suggest that therapies targeting Brg1-expressing HPCs are promising for the treatment of liver cirrhosis and iCCA.
Collapse
Affiliation(s)
- Yongjie Zhou
- Laboratory of PathologyKey Laboratory of Transplant Engineering and ImmunologyNHCWest China HospitalSichuan UniversityChengduChina
- Laboratory of Liver TransplantationFrontiers Science Center for Disease-Related Molecular NetworkWest China HospitalSichuan UniversityChengduChina
| | - Yuwei Chen
- Laboratory of PathologyKey Laboratory of Transplant Engineering and ImmunologyNHCWest China HospitalSichuan UniversityChengduChina
| | - Xiaoyun Zhang
- Laboratory of Liver TransplantationFrontiers Science Center for Disease-Related Molecular NetworkWest China HospitalSichuan UniversityChengduChina
- Department of Liver SurgeryWest China HospitalSichuan UniversityChengduChina
| | - Qing Xu
- Laboratory of PathologyKey Laboratory of Transplant Engineering and ImmunologyNHCWest China HospitalSichuan UniversityChengduChina
| | - Zhenru Wu
- Laboratory of PathologyKey Laboratory of Transplant Engineering and ImmunologyNHCWest China HospitalSichuan UniversityChengduChina
| | - Xiaoyue Cao
- Laboratory of PathologyKey Laboratory of Transplant Engineering and ImmunologyNHCWest China HospitalSichuan UniversityChengduChina
| | - Mingyang Shao
- Laboratory of PathologyKey Laboratory of Transplant Engineering and ImmunologyNHCWest China HospitalSichuan UniversityChengduChina
| | - Yuke Shu
- Laboratory of PathologyKey Laboratory of Transplant Engineering and ImmunologyNHCWest China HospitalSichuan UniversityChengduChina
| | - Tao Lv
- Laboratory of Liver TransplantationFrontiers Science Center for Disease-Related Molecular NetworkWest China HospitalSichuan UniversityChengduChina
- Department of Liver SurgeryWest China HospitalSichuan UniversityChengduChina
| | - Changli Lu
- Department of PathologyWest China HospitalSichuan UniversityChengduChina
| | - Mingjun Xie
- Department of General SurgeryThe First People's Hospital of YibinYibinChina
| | - Tianfu Wen
- Laboratory of Liver TransplantationFrontiers Science Center for Disease-Related Molecular NetworkWest China HospitalSichuan UniversityChengduChina
- Department of Liver SurgeryWest China HospitalSichuan UniversityChengduChina
| | - Jiayin Yang
- Laboratory of Liver TransplantationFrontiers Science Center for Disease-Related Molecular NetworkWest China HospitalSichuan UniversityChengduChina
- Department of Liver SurgeryWest China HospitalSichuan UniversityChengduChina
| | - Yujun Shi
- Laboratory of PathologyKey Laboratory of Transplant Engineering and ImmunologyNHCWest China HospitalSichuan UniversityChengduChina
- Laboratory of Liver TransplantationFrontiers Science Center for Disease-Related Molecular NetworkWest China HospitalSichuan UniversityChengduChina
| | - Hong Bu
- Laboratory of PathologyKey Laboratory of Transplant Engineering and ImmunologyNHCWest China HospitalSichuan UniversityChengduChina
- Department of PathologyWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
45
|
Sharma T, Robinson DCL, Witwicka H, Dilworth FJ, Imbalzano AN. The Bromodomains of the mammalian SWI/SNF (mSWI/SNF) ATPases Brahma (BRM) and Brahma Related Gene 1 (BRG1) promote chromatin interaction and are critical for skeletal muscle differentiation. Nucleic Acids Res 2021; 49:8060-8077. [PMID: 34289068 PMCID: PMC8373147 DOI: 10.1093/nar/gkab617] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/17/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle regeneration is mediated by myoblasts that undergo epigenomic changes to establish the gene expression program of differentiated myofibers. mSWI/SNF chromatin remodeling enzymes coordinate with lineage-determining transcription factors to establish the epigenome of differentiated myofibers. Bromodomains bind to acetylated lysines on histone N-terminal tails and other proteins. The mutually exclusive ATPases of mSWI/SNF complexes, BRG1 and BRM, contain bromodomains with undefined functional importance in skeletal muscle differentiation. Pharmacological inhibition of mSWI/SNF bromodomain function using the small molecule PFI-3 reduced differentiation in cell culture and in vivo through decreased myogenic gene expression, while increasing cell cycle-related gene expression and the number of cells remaining in the cell cycle. Comparative gene expression analysis with data from myoblasts depleted of BRG1 or BRM showed that bromodomain function was required for a subset of BRG1- and BRM-dependent gene expression. Reduced binding of BRG1 and BRM after PFI-3 treatment showed that the bromodomain is required for stable chromatin binding at target gene promoters to alter gene expression. Our findings demonstrate that mSWI/SNF ATPase bromodomains permit stable binding of the mSWI/SNF ATPases to promoters required for cell cycle exit and establishment of muscle-specific gene expression.
Collapse
Affiliation(s)
- Tapan Sharma
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Daniel C L Robinson
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON K1H 8L6, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Hanna Witwicka
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - F Jeffrey Dilworth
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON K1H 8L6, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Anthony N Imbalzano
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
46
|
Boyson SP, Gao C, Quinn K, Boyd J, Paculova H, Frietze S, Glass KC. Functional Roles of Bromodomain Proteins in Cancer. Cancers (Basel) 2021; 13:3606. [PMID: 34298819 PMCID: PMC8303718 DOI: 10.3390/cancers13143606] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 12/31/2022] Open
Abstract
Histone acetylation is generally associated with an open chromatin configuration that facilitates many cellular processes including gene transcription, DNA repair, and DNA replication. Aberrant levels of histone lysine acetylation are associated with the development of cancer. Bromodomains represent a family of structurally well-characterized effector domains that recognize acetylated lysines in chromatin. As part of their fundamental reader activity, bromodomain-containing proteins play versatile roles in epigenetic regulation, and additional functional modules are often present in the same protein, or through the assembly of larger enzymatic complexes. Dysregulated gene expression, chromosomal translocations, and/or mutations in bromodomain-containing proteins have been correlated with poor patient outcomes in cancer. Thus, bromodomains have emerged as a highly tractable class of epigenetic targets due to their well-defined structural domains, and the increasing ease of designing or screening for molecules that modulate the reading process. Recent developments in pharmacological agents that target specific bromodomains has helped to understand the diverse mechanisms that bromodomains play with their interaction partners in a variety of chromatin processes, and provide the promise of applying bromodomain inhibitors into the clinical field of cancer treatment. In this review, we explore the expression and protein interactome profiles of bromodomain-containing proteins and discuss them in terms of functional groups. Furthermore, we highlight our current understanding of the roles of bromodomain-containing proteins in cancer, as well as emerging strategies to specifically target bromodomains, including combination therapies using bromodomain inhibitors alongside traditional therapeutic approaches designed to re-program tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Samuel P. Boyson
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, USA;
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA;
| | - Cong Gao
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (C.G.); (J.B.); (H.P.)
| | - Kathleen Quinn
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA;
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (C.G.); (J.B.); (H.P.)
| | - Joseph Boyd
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (C.G.); (J.B.); (H.P.)
| | - Hana Paculova
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (C.G.); (J.B.); (H.P.)
| | - Seth Frietze
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (C.G.); (J.B.); (H.P.)
- University of Vermont Cancer Center, Burlington, VT 05405, USA
| | - Karen C. Glass
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, USA;
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA;
- University of Vermont Cancer Center, Burlington, VT 05405, USA
| |
Collapse
|
47
|
Wanior M, Krämer A, Knapp S, Joerger AC. Exploiting vulnerabilities of SWI/SNF chromatin remodelling complexes for cancer therapy. Oncogene 2021; 40:3637-3654. [PMID: 33941852 PMCID: PMC8154588 DOI: 10.1038/s41388-021-01781-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/15/2021] [Accepted: 04/06/2021] [Indexed: 02/08/2023]
Abstract
Multi-subunit ATPase-dependent chromatin remodelling complexes SWI/SNF (switch/sucrose non-fermentable) are fundamental epigenetic regulators of gene transcription. Functional genomic studies revealed a remarkable mutation prevalence of SWI/SNF-encoding genes in 20-25% of all human cancers, frequently driving oncogenic programmes. Some SWI/SNF-mutant cancers are hypersensitive to perturbations in other SWI/SNF subunits, regulatory proteins and distinct biological pathways, often resulting in sustained anticancer effects and synthetic lethal interactions. Exploiting these vulnerabilities is a promising therapeutic strategy. Here, we review the importance of SWI/SNF chromatin remodellers in gene regulation as well as mechanisms leading to assembly defects and their role in cancer development. We will focus in particular on emerging strategies for the targeted therapy of SWI/SNF-deficient cancers using chemical probes, including proteolysis targeting chimeras, to induce synthetic lethality.
Collapse
Affiliation(s)
- Marek Wanior
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences (BMLS), Frankfurt am Main, Germany
| | - Andreas Krämer
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences (BMLS), Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany.
- Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences (BMLS), Frankfurt am Main, Germany.
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany.
- German Translational Cancer Network (DKTK) site Frankfurt/Mainz, Frankfurt am Main, Germany.
| | - Andreas C Joerger
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany.
- Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences (BMLS), Frankfurt am Main, Germany.
- German Translational Cancer Network (DKTK) site Frankfurt/Mainz, Frankfurt am Main, Germany.
| |
Collapse
|
48
|
Jaeger MG, Winter GE. Fast-acting chemical tools to delineate causality in transcriptional control. Mol Cell 2021; 81:1617-1630. [PMID: 33689749 DOI: 10.1016/j.molcel.2021.02.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/20/2021] [Accepted: 02/11/2021] [Indexed: 12/11/2022]
Abstract
Multi-dimensional omics profiling continues to illuminate the complexity of cellular processes. Because of difficult mechanistic interpretation of phenotypes induced by slow perturbation, fast experimental setups are increasingly used to dissect causal interactions directly in cells. Here we review a growing body of studies that leverage rapid pharmacological perturbation to delineate causality in gene control. When coupled with kinetically matched readouts, fast chemical genetic tools allow recording of primary phenotypes before confounding secondary effects manifest. The toolbox encompasses directly acting probes, such as active-site inhibitors and proteolysis-targeting chimeras, as well as strategies using genetic engineering to render target proteins chemically tractable, such as analog-sensitive and degron systems. We anticipate that extrapolation of these concepts to single-cell setups will further transform our mechanistic understanding of transcriptional control in the future. Importantly, the concept of leveraging speed to derive causality should be broadly applicable to many aspects of biological regulation.
Collapse
Affiliation(s)
- Martin G Jaeger
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Georg E Winter
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
| |
Collapse
|
49
|
Wei J, Alfajaro MM, DeWeirdt PC, Hanna RE, Lu-Culligan WJ, Cai WL, Strine MS, Zhang SM, Graziano VR, Schmitz CO, Chen JS, Mankowski MC, Filler RB, Ravindra NG, Gasque V, de Miguel FJ, Patil A, Chen H, Oguntuyo KY, Abriola L, Surovtseva YV, Orchard RC, Lee B, Lindenbach BD, Politi K, van Dijk D, Kadoch C, Simon MD, Yan Q, Doench JG, Wilen CB. Genome-wide CRISPR Screens Reveal Host Factors Critical for SARS-CoV-2 Infection. Cell 2021; 184:76-91.e13. [PMID: 33147444 PMCID: PMC7574718 DOI: 10.1016/j.cell.2020.10.028] [Citation(s) in RCA: 372] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/11/2020] [Accepted: 10/15/2020] [Indexed: 12/17/2022]
Abstract
Identification of host genes essential for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection may reveal novel therapeutic targets and inform our understanding of coronavirus disease 2019 (COVID-19) pathogenesis. Here we performed genome-wide CRISPR screens in Vero-E6 cells with SARS-CoV-2, Middle East respiratory syndrome CoV (MERS-CoV), bat CoV HKU5 expressing the SARS-CoV-1 spike, and vesicular stomatitis virus (VSV) expressing the SARS-CoV-2 spike. We identified known SARS-CoV-2 host factors, including the receptor ACE2 and protease Cathepsin L. We additionally discovered pro-viral genes and pathways, including HMGB1 and the SWI/SNF chromatin remodeling complex, that are SARS lineage and pan-coronavirus specific, respectively. We show that HMGB1 regulates ACE2 expression and is critical for entry of SARS-CoV-2, SARS-CoV-1, and NL63. We also show that small-molecule antagonists of identified gene products inhibited SARS-CoV-2 infection in monkey and human cells, demonstrating the conserved role of these genetic hits across species. This identifies potential therapeutic targets for SARS-CoV-2 and reveals SARS lineage-specific and pan-CoV host factors that regulate susceptibility to highly pathogenic CoVs.
Collapse
Affiliation(s)
- Jin Wei
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Mia Madel Alfajaro
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Peter C DeWeirdt
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ruth E Hanna
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - William J Lu-Culligan
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT 06520, USA; Department of Cell Biology, Yale University, New Haven, CT 06520, USA; Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Wesley L Cai
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Madison S Strine
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Shang-Min Zhang
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Vincent R Graziano
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Cameron O Schmitz
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Jennifer S Chen
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Madeleine C Mankowski
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Renata B Filler
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Neal G Ravindra
- Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Computer Science, Yale University, New Haven, CT 06520, USA
| | - Victor Gasque
- Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Computer Science, Yale University, New Haven, CT 06520, USA
| | - Fernando J de Miguel
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA; Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Ajinkya Patil
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Huacui Chen
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Kasopefoluwa Y Oguntuyo
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Laura Abriola
- Yale Center for Molecular Discovery, Yale University, West Haven, CT 06516, USA
| | - Yulia V Surovtseva
- Yale Center for Molecular Discovery, Yale University, West Haven, CT 06516, USA
| | - Robert C Orchard
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Brett D Lindenbach
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06520, USA
| | - Katerina Politi
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA; Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520, USA; Department of Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - David van Dijk
- Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Computer Science, Yale University, New Haven, CT 06520, USA
| | - Cigall Kadoch
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Matthew D Simon
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT 06520, USA; Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Qin Yan
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA; Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - John G Doench
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Craig B Wilen
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA; Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
50
|
Wanior M, Preuss F, Ni X, Krämer A, Mathea S, Göbel T, Heidenreich D, Simonyi S, Kahnt AS, Joerger AC, Knapp S. Pan-SMARCA/PB1 Bromodomain Inhibitors and Their Role in Regulating Adipogenesis. J Med Chem 2020; 63:14680-14699. [PMID: 33216538 DOI: 10.1021/acs.jmedchem.0c01242] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Accessibility of the human genome is modulated by the ATP-driven SWI/SNF chromatin remodeling multiprotein complexes BAF (BRG1/BRM-associated factor) and PBAF (polybromo-associated BAF factor), which involves reading of acetylated histone tails by the bromodomain-containing proteins SMARCA2 (BRM), SMARCA4 (BRG1), and polybromo-1. Dysregulation of chromatin remodeling leads to aberrant cell proliferation and differentiation. Here, we have characterized a set of potent and cell-active bromodomain inhibitors with pan-selectivity for canonical family VIII bromodomains. Targeted SWI/SNF bromodomain inhibition blocked the expression of key genes during adipogenesis, including the transcription factors PPARγ and C/EBPα, and impaired the differentiation of 3T3-L1 murine fibroblasts into adipocytes. Our data highlight the role of SWI/SNF bromodomains in adipogenesis and provide a framework for the development of SWI/SNF bromodomain inhibitors for indirect targeting of key transcription factors regulating cell differentiation.
Collapse
Affiliation(s)
- Marek Wanior
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany.,Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences (BMLS), Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Franziska Preuss
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany.,Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences (BMLS), Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Xiaomin Ni
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany.,Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences (BMLS), Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Andreas Krämer
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany.,Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences (BMLS), Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany.,Frankfurt Cancer Institute (FCI), Paul-Ehrlich-Str. 42-44, 60596 Frankfurt am Main, Germany
| | - Sebastian Mathea
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany.,Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences (BMLS), Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Tamara Göbel
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - David Heidenreich
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany.,Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences (BMLS), Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Svenja Simonyi
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Astrid S Kahnt
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Andreas C Joerger
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany.,Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences (BMLS), Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany.,German Translational Cancer Network (DKTK), Frankfurt/Mainz Site, 60438 Frankfurt am Main, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany.,Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences (BMLS), Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany.,German Translational Cancer Network (DKTK), Frankfurt/Mainz Site, 60438 Frankfurt am Main, Germany.,Frankfurt Cancer Institute (FCI), Paul-Ehrlich-Str. 42-44, 60596 Frankfurt am Main, Germany
| |
Collapse
|