1
|
Batista A, Kęsy J, Sadowska K, Karolewski Z, Bocianowski J, Woźniak A, Morkunas I. The role of silver nanoparticles in yellow lupine (Lupinus luteus L.) defense response to Fusarium oxysporum f.sp. lupini. Sci Rep 2025; 15:16136. [PMID: 40341719 PMCID: PMC12062378 DOI: 10.1038/s41598-025-00464-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 04/28/2025] [Indexed: 05/10/2025] Open
Abstract
This study presents the influence of silver nanoparticles (AgNPs) on the growth of yellow lupine (Lupinus luteus L.cv. Diament and Lupinus luteus L.cv. Mister), and some metabolic reactions triggered by AgNPs during the seed germination stage and development of the seedling. Also, the role of AgNPs in defense mechanisms of the above of yellow lupine varieties against hemibiotrofic patogen Fusarium oxysporum f.sp. lupini. AgNPs enhanced the growth of yellow lupine seedlings, particularly root length and fresh biomass. Furthermore, AgNPs triggered defense-related phytohormones, such as abscisic acid (ABA), jasmonates (JA/MeJA), and salicylic acid (SA), which were involved in defense response of yellow lupine against F. oxysporum infection. The application of AgNPs significantly enhanced the growth of yellow lupine seedlings, increasing root length by over 400% and fresh biomass by 183% compared to the control. Moreover, AgNPs also significantly triggered an important defense-related phytohormone ABA, which increased by 103- and 38-times in Diament and Mister varieties, respectively. AgNPs influenced soluble sugar levels, such as sucrose and fructose, in yellow lupine, which may be related to defense mechanisms. The treatment with AgNPs induced a hormetic effect, where the roots of seedlings exhibited increased growth and defense responses at low concentrations. The level of gibberellic acid (GA) increased by 556% and 297% in AgNP-pretreated embryo axes of Diament and Mister varieties, respectively. Sugar levels, such as sucrose and fructose, were also influenced by AgNPs. In Diament variety, sucrose and fructose levels increased by 60% and 146%, respectively. However, F. oxysporum infection caused a strong decline in sugar levels. Overall, the study suggests that AgNPs can be used to enhance plant growth and defense against pathogens.
Collapse
Affiliation(s)
- Anielkis Batista
- Department of Plant Physiology, Faculty of Agriculture, Horticulture and Biotechnology, Poznań University of Life Sciences, Wołyńska 35, 60-637, Poznań, Poland
- Polytechnic Institute of Huila, Universidade Mandume ya Ndemufayo, 3FJP+27X, Lubango, Angola
| | - Jacek Kęsy
- Department of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100, Toruń, Poland
| | - Katarzyna Sadowska
- Laboratory of the Plant Diseases Clinic and Pathogen Bank, Institute of Plant Protection - National Research Institute, Władysława Węgorka 20, 60- 318, Poznań, Poland
| | - Zbigniew Karolewski
- Department of Phytopathology, Seed Science and Technology, Faculty of Agriculture, Horticulture and Biotechnology, Poznań University of Life Sciences, Dąbrowskiego 159, 60-594, Poznań, Poland
| | - Jan Bocianowski
- Department of Mathematical and Statistical Methods, Faculty of Agriculture, Horticulture and Biotechnology, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637, Poznań, Poland
| | - Agnieszka Woźniak
- Department of Plant Physiology, Faculty of Agriculture, Horticulture and Biotechnology, Poznań University of Life Sciences, Wołyńska 35, 60-637, Poznań, Poland
| | - Iwona Morkunas
- Department of Plant Physiology, Faculty of Agriculture, Horticulture and Biotechnology, Poznań University of Life Sciences, Wołyńska 35, 60-637, Poznań, Poland.
| |
Collapse
|
2
|
Chen J, Yuan K, Xue Z, Chen G, Chen S, Ou D, Zheng P, Ye Y. Dredging wastewater discharge caused mangrove sediment antibiotic accumulation and affected functional microbes in carbon and nitrogen metabolism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 375:126326. [PMID: 40311739 DOI: 10.1016/j.envpol.2025.126326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 04/14/2025] [Accepted: 04/27/2025] [Indexed: 05/03/2025]
Abstract
Antibiotic pollution is a major environmental concern in mariculture activities along coastlines with mangrove forests. However, the content, composition, and ecological impacts of such pollution within mangrove ecosystems have been limitedly explored. In this study, surface sediments and sediment profiles (40 cm deep) were investigated for 14 antibiotics, elemental parameters, and functional gene abundance at mangrove sites affected by dredging wastewater discharge from mariculture ponds along the Jiulong River Estuary. The results revealed that all 14 antibiotics were detected in the surface sediments, with total antibiotics below 6 ng gDW-1 at sites without direct wastewater dicharge. In contrast, sediment profiles from sites receiving wastewater discharge exhibited higher antibiotic contents, reaching up to 19.6 ng gDW-1 in the surface sediments. Fluoroquinolones (ofloxacin and enrofloxacin) were the dominant antibiotic classes of antibiotics, and the deeper sediment layers were also contaminated with antibiotics because of wastewater discharge. Antibiotic accumulation resulting from wastewater discharge significantly affected the functional microbes involved in carbon and nitrogen metabolism. Positive correlations were observed between ofloxacin (florfenicol) and the gene abundance of nosZ and nirK while amoA abundance showed negative correlations. Increased levels of enrofloxacin (terramycin and sulfamethazine), as well as organic carbon and total nitrogen, were associated with higher abundances of narG and mcrA genes. Overall, prolonged wastewater discharge from mariculture activities led to antibiotic accumulation, extending into deep sediment layers, potentially reshaping the functional microbes involved in carbon and nitrogen metabolism. Therefore, future strategies are urgently needed to address antibiotic pollution caused by wastewater discharge near mangrove forests.
Collapse
Affiliation(s)
- Jiahui Chen
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian, China; Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China; Key Laboratory of Marine Ecological Conservation and Restoration, Ministry of Natural Resources, Xiamen, China
| | - Ke Yuan
- School of Marine Science, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Zhiyong Xue
- Forestry Workstation of Fugong Town, Zhangzhou Forestry Bureau, Zhangzhou, China
| | - Guangcheng Chen
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian, China; Key Laboratory of Marine Ecological Conservation and Restoration, Ministry of Natural Resources, Xiamen, China.
| | - Shunyang Chen
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian, China; Key Laboratory of Marine Ecological Conservation and Restoration, Ministry of Natural Resources, Xiamen, China
| | - Danyun Ou
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian, China; Key Laboratory of Marine Ecological Conservation and Restoration, Ministry of Natural Resources, Xiamen, China
| | - Pengxiang Zheng
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian, China
| | - Yong Ye
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen University, China.
| |
Collapse
|
3
|
Shao B, Xie YG, Zhang L, Ruan Y, Liang B, Zhang R, Xu X, Wang W, Lin Z, Pei X, Wang X, Zhao L, Zhou X, Wu X, Xing D, Wang A, Lee DJ, Ren N, Canfield DE, Hedlund BP, Hua ZS, Chen C. Versatile nitrate-respiring heterotrophs are previously concealed contributors to sulfur cycle. Nat Commun 2025; 16:1202. [PMID: 39885140 PMCID: PMC11782648 DOI: 10.1038/s41467-025-56588-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 01/22/2025] [Indexed: 02/01/2025] Open
Abstract
Heterotrophic denitrifiers play crucial roles in global carbon and nitrogen cycling. However, their inability to oxidize sulfide renders them vulnerable to this toxic molecule, which inhibits the key enzymatic reaction responsible for reducing nitrous oxide (N2O), thereby raising greenhouse gas emissions. Here, we applied microcosm incubations, community-isotope-corrected DNA stable-isotope probing, and metagenomics to characterize a cohort of heterotrophic denitrifiers in estuarine sediments that thrive by coupling sulfur oxidation with denitrification through chemolithoheterotrophic metabolism. Remarkably, ecophysiology experiments from enrichments demonstrate that such heterotrophs expedite denitrification with sulfur acting as alternative electron sources and substantially curtail N2O emissions in both organic-rich and organic-limited environments. Their flexible, non-sulfur-dependent physiology may confer competitive advantages over conventional heterotrophic denitrifiers in detoxifying sulfide, adapting to organic matter fluctuations, and mitigating greenhouse gas emissions. Our study provides insights into the ecological role of heterotrophic denitrifiers in microbial communities with implications for sulfur cycling and climate change.
Collapse
Affiliation(s)
- Bo Shao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Yuan-Guo Xie
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, PR China
| | - Long Zhang
- College of Life Sciences, Huaibei Normal University, 235000, Huaibei, PR China
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yang Ruan
- Jangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-based Fertilizers of China, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China
| | - Ruochen Zhang
- School of Civil and Transportation, Hebei University of Technology, Tianjin, 300401, PR China
| | - Xijun Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Wei Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Zhengda Lin
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Xuanyuan Pei
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, PR China
| | - Xueting Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Xu Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China
| | - Xiaohui Wu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, PR China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Donald E Canfield
- Nordcee, Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA
- Nevada Institute of Personalized Medicine, Las Vegas, NV, 89154, USA
| | - Zheng-Shuang Hua
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, PR China.
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| |
Collapse
|
4
|
Vicente TT, Arsalani S, Quiel MS, Fernandes GSP, da Silva KR, Fukada SY, Gualdi AJ, Guidelli ÉJ, Baffa O, Carneiro AAO, Ramos AP, Pavan TZ. Improving the Theranostic Potential of Magnetic Nanoparticles by Coating with Natural Rubber Latex for Ultrasound, Photoacoustic Imaging, and Magnetic Hyperthermia: An In Vitro Study. Pharmaceutics 2024; 16:1474. [PMID: 39598597 PMCID: PMC11597301 DOI: 10.3390/pharmaceutics16111474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES Magnetic nanoparticles (MNPs) have gained attention in theranostics for their ability to combine diagnostic imaging and therapeutic capabilities in a single platform, enhancing targeted treatment and monitoring. Surface coatings are essential for stabilizing MNPs, improving biocompatibility, and preventing oxidation that could compromise their functionality. Natural rubber latex (NRL) offers a promising coating alternative due to its biocompatibility and stability-enhancing properties. While NRL-coated MNPs have shown potential in applications such as magnetic resonance imaging, their effectiveness in theranostics, particularly magnetic hyperthermia (MH) and photoacoustic imaging (PAI), remains underexplored. METHODS In this study, iron oxide nanoparticles were synthesized via coprecipitation, using NRL as the coating agent. The samples were labeled by NRL amount used during synthesis: NRL-100 for 100 μL and NRL-400 for 400 μL. RESULTS Characterization results showed that NRL-100 and NRL-400 samples exhibited improved stability with zeta potentials of -27 mV and -30 mV, respectively and higher saturation magnetization values of 79 emu/g and 88 emu/g of Fe3O4. Building on these findings, we evaluated the performance of these nanoparticles in biomedical applications, including magnetomotive ultrasound (MMUS), PAI, and MH. NRL-100 and NRL-400 samples showed greater displacements and higher contrast in MMUS than uncoated samples (5, 8, and 9 µm) at 0.5 wt%. In addition, NRL-coated samples demonstrated an improved signal-to-noise ratio (SNR) in PAI. SNR values were 24.72 (0.51), 31.44 (0.44), and 33.81 (0.46) dB for the phantoms containing uncoated MNPs, NRL-100, and NRL-400, respectively. Calorimetric measurements for MH confirmed the potential of NRL-coated MNPs as efficient heat-generating agents, showing values of 43 and 40 W/g for NRL-100 and NRL-400, respectively. CONCLUSIONS Overall, NRL-coated MNPs showed great promise as contrast agents in MMUS and PAI imaging, as well as in MH applications.
Collapse
Affiliation(s)
- Thiago T. Vicente
- Department of Physics, FFCLRP, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, São Paulo, Brazil; (T.T.V.); (S.A.); (M.S.Q.); (G.S.P.F.); (É.J.G.); (O.B.); (A.A.O.C.)
| | - Saeideh Arsalani
- Department of Physics, FFCLRP, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, São Paulo, Brazil; (T.T.V.); (S.A.); (M.S.Q.); (G.S.P.F.); (É.J.G.); (O.B.); (A.A.O.C.)
- UT Southwestern Medical Center, Biomedical Engineering Department, Dallas, TA 75235-7323, USA
| | - Mateus S. Quiel
- Department of Physics, FFCLRP, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, São Paulo, Brazil; (T.T.V.); (S.A.); (M.S.Q.); (G.S.P.F.); (É.J.G.); (O.B.); (A.A.O.C.)
| | - Guilherme S. P. Fernandes
- Department of Physics, FFCLRP, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, São Paulo, Brazil; (T.T.V.); (S.A.); (M.S.Q.); (G.S.P.F.); (É.J.G.); (O.B.); (A.A.O.C.)
| | - Keteryne R. da Silva
- Department of BioMolecular Sciences, FCFRP, University of São Paulo, Av. Professor Doutor Zeferino Vaz, sn, Ribeirão Preto 14040-901, São Paulo, Brazil; (K.R.d.S.); (S.Y.F.)
| | - Sandra Y. Fukada
- Department of BioMolecular Sciences, FCFRP, University of São Paulo, Av. Professor Doutor Zeferino Vaz, sn, Ribeirão Preto 14040-901, São Paulo, Brazil; (K.R.d.S.); (S.Y.F.)
| | - Alexandre J. Gualdi
- Department of Physics, Federal University of São Carlos, Rod. Washington Luiz, km 235, São Carlos 13565-905, São Paulo, Brazil;
| | - Éder J. Guidelli
- Department of Physics, FFCLRP, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, São Paulo, Brazil; (T.T.V.); (S.A.); (M.S.Q.); (G.S.P.F.); (É.J.G.); (O.B.); (A.A.O.C.)
| | - Oswaldo Baffa
- Department of Physics, FFCLRP, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, São Paulo, Brazil; (T.T.V.); (S.A.); (M.S.Q.); (G.S.P.F.); (É.J.G.); (O.B.); (A.A.O.C.)
| | - Antônio A. O. Carneiro
- Department of Physics, FFCLRP, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, São Paulo, Brazil; (T.T.V.); (S.A.); (M.S.Q.); (G.S.P.F.); (É.J.G.); (O.B.); (A.A.O.C.)
| | - Ana Paula Ramos
- Department of Chemistry, FFCLRP, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, São Paulo, Brazil;
| | - Theo Z. Pavan
- Department of Physics, FFCLRP, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, São Paulo, Brazil; (T.T.V.); (S.A.); (M.S.Q.); (G.S.P.F.); (É.J.G.); (O.B.); (A.A.O.C.)
| |
Collapse
|
5
|
Zhou J, Zheng Y, Hou L, Qi L, Mao T, Yin G, Liu M. Nitrogen input modulates the effects of coastal acidification on nitrification and associated N 2O emission. WATER RESEARCH 2024; 261:122041. [PMID: 38972235 DOI: 10.1016/j.watres.2024.122041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
Acidification of coastal waters, synergistically driven by increasing atmospheric carbon dioxide (CO2) and intensive land-derived nutrient inputs, exerts significant stresses on the biogeochemical cycles of coastal ecosystem. However, the combined effects of anthropogenic nitrogen (N) inputs and aquatic acidification on nitrification, a critical process of N cycling, remains unclear in estuarine and coastal ecosystems. Here, we showed that increased loading of ammonium (NH4+) in estuarine and coastal waters alleviated the inhibitory effect of acidification on nitrification rates but intensified the production of the potent greenhouse gas nitrous oxide (N2O), thus accelerating global climate change. Metatranscriptomes and natural N2O isotopic signatures further suggested that the enhanced emission of N2O may mainly source from hydroxylamine (NH2OH) oxidation rather than from nitrite (NO2-) reduction pathway of nitrifying microbes. This study elucidates how anthropogenic N inputs regulate the effects of coastal acidification on nitrification and associated N2O emissions, thereby enhancing our ability to predict the feedbacks of estuarine and coastal ecosystems to climate change and human perturbations.
Collapse
Affiliation(s)
- Jie Zhou
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China; School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
| | - Yanling Zheng
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China; School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China; State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China.
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China.
| | - Lin Qi
- School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
| | - Tieqiang Mao
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
| | - Guoyu Yin
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China; School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
| | - Min Liu
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China; School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
| |
Collapse
|
6
|
An Z, Chen F, Hou L, Chen Q, Liu M, Zheng Y. Microplastics promote methane emission in estuarine and coastal wetlands. WATER RESEARCH 2024; 259:121853. [PMID: 38843628 DOI: 10.1016/j.watres.2024.121853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/14/2024] [Accepted: 05/28/2024] [Indexed: 06/25/2024]
Abstract
Increasing microplastic (MP) pollution poses significant threats to estuarine and coastal ecosystems. However, the effects of MPs on the emission of methane (CH4), a potent greenhouse gas, within these ecosystems and the underlying regulatory mechanisms have not been elucidated. Here, a combination of 13C stable isotope-based method and molecular techniques was applied to investigate how conventional petroleum-based MPs [polyethylene (PE) and polyvinyl chloride (PVC)] and biodegradable MPs [polylactic acid (PLA) and polyadipate/butylene terephthalate (PBAT)] regulate CH4 production and consumption and thus affect CH4 emission dynamics in estuarine and coastal wetlands. Results indicated that both conventional and biodegradable MPs enhanced the emission of CH4 (P < 0.05), with the promoting effect being more significant for biodegradable MPs. However, the mechanisms by which conventional and biodegradable MPs promote CH4 emissions were different. Specifically, conventional MPs stimulated the emission of CH4 by inhibiting the processes of CH4 consumption, but had no significant effect on CH4 production rate. Nevertheless, biodegradable MPs promoted CH4 emissions via accelerating the activities the methanogens while inhibiting the oxidation of CH4, thus resulting in a higher degree of promoting effect on CH4 emissions than conventional MPs. Consistently, quantitative PCR further revealed a significant increase in the abundance of methyl-coenzyme M reductase gene (mcrA) of methanogens under the exposure of biodegradable MPs (P < 0.05), but not conventional MPs. Furthermore, the relative abundance of most genes involved in CH4 oxidation exhibited varying degrees of reduction after exposure to all types of MPs, based on metagenomics data. This study reveals the effects of MPs on CH4 emissions in estuarine and coastal ecosystems and their underlying mechanisms, highlighting that the emerging biodegradable MPs exhibited a greater impact than conventional MPs on promoting CH4 emissions in these globally important ecosystems, thereby accelerating global climate change.
Collapse
Affiliation(s)
- Zhirui An
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| | - Feiyang Chen
- Research Center for Monitoring and Environmental Sciences, Taihu Basin & East China Sea Ecological Environment Supervision and Administration Authority, Ministry of Ecology and Environment, Shanghai 200125, China
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| | - Qiqing Chen
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| | - Min Liu
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
| | - Yanling Zheng
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China; School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China.
| |
Collapse
|
7
|
Zhang Z, Lin J, Owens G, Chen Z. Deciphering silver nanoparticles perturbation effects and risks for soil enzymes worldwide: Insights from machine learning and soil property integration. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134052. [PMID: 38493625 DOI: 10.1016/j.jhazmat.2024.134052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/15/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Globally extensive research into how silver nanoparticles (AgNPs) affect enzyme activity in soils with differing properties has been limited by cost-prohibitive sampling. In this study, customized machine learning (ML) was used to extract data patterns from complex research, with a hit rate of Random Forest > Multiple Imputation by Chained Equations > Decision Tree > K-Nearest Neighbors. Results showed that soil properties played a pivotal role in determining AgNPs' effect on soil enzymes, with the order being pH > organic matter (OM) > soil texture ≈ cation exchange capacity (CEC). Notably, soil enzyme activity was more sensitive to AgNPs in acidic soil (pH < 5.5), while elevated OM content (>1.9 %) attenuated AgNPs toxicity. Compared to soil acidification, reducing soil OM content is more detrimental in exacerbating AgNPs' toxicity and it emerged that clay particles were deemed effective in curbing their toxicity. Meanwhile sand particles played a very different role, and a sandy soil sample at > 40 % of the water holding capacity (WHC), amplified the toxicity of AgNPs. Perturbation mapping of how soil texture alters enzyme activity under AgNPs exposure was generated, where soils with sand (45-65 %), silt (< 22 %), and clay (35-55 %) exhibited even higher probability of positive effects of AgNPs. The average calculation results indicate the sandy clay loam (75.6 %), clay (74.8 %), silt clay (65.8 %), and sandy clay (55.9 %) texture soil demonstrate less AgNPs inhibition effect. The results herein advance the prediction of the effect of AgNPs on soil enzymes globally and determine the soil types that are more sensitive to AgNPs worldwide.
Collapse
Affiliation(s)
- Zhenjun Zhang
- Fujian Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350117, Fujian Province, China
| | - Jiajiang Lin
- Fujian Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350117, Fujian Province, China.
| | - Gary Owens
- Environmental Contaminants Group, Future Industries Institute, University of South Australian, Mawson Lakes, SA 5095, Australia
| | - Zuliang Chen
- Fujian Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350117, Fujian Province, China.
| |
Collapse
|
8
|
Sun P, Bai J, Lian J, Tan Y, Chen X. Single and Combined Effects of Phenanthrene and Silver Nanoparticles on Denitrification Processes in Coastal Marine Sediments. Microorganisms 2024; 12:745. [PMID: 38674689 PMCID: PMC11051833 DOI: 10.3390/microorganisms12040745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
The increasing production and utilization of polycyclic aromatic hydrocarbons (PAHs) and commercial silver nanoparticles (AgNPs) have raised concerns about their potential environmental release, with coastal sediments as a substantial sink. To better understanding the effects of these contaminants on denitrification processes in coastal marine sediments, a short-term exposure simulation experiment was conducted. We investigated the effects of single and combined contamination of phenanthrene (Phe) and AgNPs on denitrification processes in a coastal marine sediment. Results showed that all contaminated treatment groups had different degrees of inhibitory effect on denitrification activity, denitrifying enzyme activity, total bacteria count and denitrifying genes. The inhibitory effect sequence of each treatment group was combined treatment > AgNPs treatment > Phe treatment. Moreover, the inhibitory effects of denitrifying genes were much larger than that of total bacteria count, indicating that the pollutants had specific toxic effects on denitrifying bacteria. The sequence of sensitivity of three reduction process to pollutants was N2O > NO2- > NO3-. All contaminated treatment groups could increase NO3-, NO2- and N2O accumulation. Furthermore, according to the linear relationship between functional gene or reductase and denitrification process, we also found that the abundance of denitrifying genes could better predict the influence of Phe and AgNPs on sediment denitrification than the denitrifying bacterial diversity. In addition, at the genus level, the community structure of nirS- and nosZ-type denitrifying bacteria changed dramatically, while changes at the phylum level were comparatively less pronounced. Single and combined contamination of Phe and AgNPs could reduce the dominance of Pseudomonas, which may lead to a potential slow-down in the degradation of Phe and inhibition of denitrification, especially the combined contamination. Overall, our study revealed that combined contamination of Phe and AgNPs could lead to an increase in NO3-, NO2- and N2O accumulation in coastal sediment, which poses a risk of eutrophication in coastal areas, exacerbates the greenhouse effect and has adverse effects on global climate change.
Collapse
Affiliation(s)
- Pengfei Sun
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China; (P.S.); (J.L.); (Y.T.)
- College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
- Guangxi Beibu Gulf Key Laboratory of Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
| | - Jie Bai
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China;
| | - Jie Lian
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China; (P.S.); (J.L.); (Y.T.)
- Guangxi Beibu Gulf Key Laboratory of Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
| | - Yongyu Tan
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China; (P.S.); (J.L.); (Y.T.)
- Guangxi Beibu Gulf Key Laboratory of Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
| | - Xi Chen
- College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
9
|
He Y, Liu Y, Li X, Guo H, Zhu T, Liu Y. Polyvinyl Chloride Microplastics Facilitate Nitrous Oxide Production in Partial Nitritation Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1954-1965. [PMID: 38239129 DOI: 10.1021/acs.est.3c09280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Partial nitritation (PN) is an important partner with anammox in the sidestream line treating high-strength wastewater and primarily contributes to nitrous oxide (N2O) emissions in such a hybrid system, which also suffers from ubiquitous microplastics because of the growing usage and disposal levels of plastics. In this study, the influences of polyvinyl chloride microplastics (PVC-MPs) on N2O-contributing pathways were experimentally revealed to fill the knowledge gap on N2O emission from the PN system under microplastics stress. The long-term results showed that the overall PN performance was hardly affected by the low-dose PVC-MPs (0.5 mg/L) while obviously deteriorated by the high dose (5 mg/L). According to the batch tests, PVC-MPs reduced biomass-specific ammonia oxidation rates (AORs) by 5.78-21.94% and stimulated aerobic N2O production by 9.22-88.36%. Further, upon increasing dissolved oxygen concentrations from 0.3 to 0.9 mg O2/L, the degree of AOR inhibition increased but that of N2O stimulation was lightened. Site preference analysis in combination with metabolic inhibitors demonstrated that the contributions of hydroxylamine oxidation and heterotrophic denitrification to N2O production at 0.3 mg O2/L were enhanced by 18.84 and 10.34%, respectively, accompanied by a corresponding decreased contribution of nitrifier denitrification. Finally, the underlying mechanisms proposed for negative influences of PVC-MPs were bisphenol A leaching and reactive oxygen species production, which led to more cell death, altered sludge properties, and reshaped microbial communities, further resulting in enhanced N2O emission. Overall, this work implied that the ubiquitous microplastics are a hidden danger that cannot be ignored in the PN system.
Collapse
Affiliation(s)
- Yanying He
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Yingrui Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Xuecheng Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Haixiao Guo
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Tingting Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
10
|
AlFaleh FA, Ismael SS, Aguilar-Marcelino L, Silva FEM, Ashraf T, Abbas RZ, Qamar W. Use of nanoparticles, a modern means of drug delivery, against cryptosporidiosis. J Adv Vet Anim Res 2023; 10:704-719. [PMID: 38370897 PMCID: PMC10868694 DOI: 10.5455/javar.2023.j726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/19/2023] [Accepted: 10/20/2023] [Indexed: 02/20/2024] Open
Abstract
Cryptosporidium is a primary cause of waterborne epidemics, despite being previously considered only an opportunistic pathogen. The disease is associated with significant economic losses in humans and animals that are brought on by diarrhea, which frequently causes dehydration. Contact with diseased people or animals, as well as polluted water, is the major cause of infection. Different drugs are used to control the parasites. Nitazoxanide (NTZ), which is an anti-protozoan and anti-viral drug, can be used to control helminths, viruses, and protozoan parasites as a broad-spectrum antibiotic and has been approved by the food and drug authority (FDA). However, the problem is the development of resistance over a period of time in these parasites. Nanoparticles have received significant attention as possible anti-parasitic agents in recent years. By directing medications to specific cellular locations, targeted drug delivery minimizes the side effects of medications. Nanoparticles have demonstrated effectiveness against different Cryptosporidium species. Nanoparticles loaded with NTZ are found to be an effective remedy for C. parvum in young ones and decrease the oocyst count shed in the stools. Additionally, silver nanoparticles have proven to be effective against C. parvum by releasing silver ions that breach the cell wall of the oocyst, causing the escape of intracellular contents and the destruction of sporozoites within the oocyst. Implementing tiny particles for the purification of consuming water from Cryptosporidium is an economical and environmentally sustainable process. However, the use of nanoparticles in medicine requires more research.
Collapse
Affiliation(s)
- Faleh A. AlFaleh
- Department of Biology, College of Science in Zulfi, Majmaah University, Majmaah, Saudi Arabia
| | - Shameeran Salman Ismael
- Medical Laboratory Sciences Department, College of Health Sciences, University of Duhok, Duhok, Iraq
| | | | | | - Tayyaba Ashraf
- Department of Parasitology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| | - Rao Zahid Abbas
- Department of Parasitology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| | - Warda Qamar
- Department of Parasitology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
11
|
He G, Yang Y, Liu G, Zhang Q, Liu W. Global analysis of the perturbation effects of metal-based nanoparticles on soil nitrogen cycling. GLOBAL CHANGE BIOLOGY 2023; 29:4001-4017. [PMID: 37082828 DOI: 10.1111/gcb.16735] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/01/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Although studies have investigated the effects of metal-based nanoparticles (MNPs) on soil biogeochemical processes, the results obtained thus far are highly variable. Moreover, we do not yet understand how the impact of MNPs is affected by experimental design and environmental conditions. Herein, we conducted a global analysis to synthesize the effects of MNPs on 17 variables associated with soil nitrogen (N) cycling from 62 studies. Our results showed that MNPs generally exerted inhibitory effects on N-cycling process rates, N-related enzyme activities, and microbial variables. The response of soil N cycling varied with MNP type, and exposure dose was the most decisive factor for the variations in the responses of N-cycling process rates and enzyme activities. Notably, Ag/Ag2 S and CuO had dose-dependent inhibitory effects on ammonia oxidation rates, while CuO and Zn/ZnO showed hormetic effects on nitrification and denitrification rates, respectively. Other experimental design factors (e.g., MNP size and exposure duration) also regulated the effect of MNPs on soil N cycling, and specific MNPs, such as Ag/Ag2 S, exerted stronger effects during long-term (>28 days) exposure. Environmental conditions, including soil pH, organic carbon, texture, and presence/absence of plants, significantly influenced MNP toxicity. For instance, the effects of Ag/Ag2 S on the ammonia oxidation rate and the activity of leucine aminopeptidase were more potent in acid (pH <6), organic matter-limited (organic carbon content ≤10 g kg-1 ), and coarser soils. Overall, these results provide new insights into the general mechanisms by which MNPs alter soil N processes in different environments and underscore the urgent need to perform multivariate and long-term in situ trials in simulated natural environments.
Collapse
Affiliation(s)
- Gang He
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuyi Yang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Guihua Liu
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Quanfa Zhang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Wenzhi Liu
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
12
|
Lyu C, Li X, Yu H, Song Y, Gao H, Yuan P. Insight into the microbial nitrogen cycle in riparian soils in an agricultural region. ENVIRONMENTAL RESEARCH 2023; 231:116100. [PMID: 37172685 DOI: 10.1016/j.envres.2023.116100] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/03/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
Riparian zones are considered as an effective measure on preventing agricultural non-point source nitrogen (N) pollution. However, the mechanism underlying microbial N removal and the characteristics of N-cycle in riparian soils remain elusive. In this study, we systematically monitored the soil potential nitrification rate (PNR), denitrification potential (DP), as well as net N2O production rate, and further used metagenomic sequencing to elucidate the mechanism underlying microbial N removal. As a whole, the riparian soil had a very strong denitrification, with the DP 3.17 times higher than the PNR and 13.82 times higher than the net N2O production rate. This was closely related to the high soil NO3--N content. In different profiles, due to the influence of extensive agricultural activities, the soil DP, PNR, and net N2O production rate near the farmland edge were relatively low. In terms of N-cycling microbial community composition, the taxa of denitrification, dissimilatory nitrate reduction, and assimilatory nitrate reduction accounted for a large proportion, all related to NO3--N reduction. The N-cycling microbial community in waterside zone showed obvious differences to the landside zone. The abundances of N-fixation and anammox genes were significantly higher in the waterside zone, while the abundances of nitrification (amoA&B&C) and urease genes were significantly higher in the landside zone. Furthermore, the groundwater table was an important biogeochemical hotspot in the waterside zone, the abundance of N-cycle genes near the groundwater table was at a relative higher level. In addition, compared to different soil depths, greater variation in N-cycling microbial community composition was observed between different profiles. These results reveal some characteristics of the soil microbial N-cycle in the riparian zone in an agricultural region and are helpful for restoration and management of the riparian zone.
Collapse
Affiliation(s)
- Chunjian Lyu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 10012, China
| | - Xiaojie Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 10012, China
| | - Huibin Yu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 10012, China
| | - Yonghui Song
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 10012, China; College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Hongjie Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 10012, China; College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Peng Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 10012, China
| |
Collapse
|
13
|
Yu Y, Wu C, Li X, Wu L, Yang Q, Petropoulos E, Feng Y. The impact of Ag nanoparticles on methane emission in two typical paddy soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121215. [PMID: 36740168 DOI: 10.1016/j.envpol.2023.121215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/10/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Numerous applications of Ag nanoparticles (AgNPs) have increased the likelihood of their release and accumulation in agroecosystem. Thus far, few studies have evaluated the impacts of AgNPs to soil methane emissions and the microbial dynamics. In this study, microcosmic experiments were conducted to investigate the responses of methanogenic processes from two paddy soils (Cambisols and Ultisols) subjected to four AgNPs doses (0.1, 1, 10 and 50 mg/kg). The results showed that 0.1 and 1 mg/kg AgNPs had no significant effects on CH4 emissions, but 50 mg/kg AgNPs increased soil CH4 emissions in both paddy soils. The aggravation effect of AgNPs on CH4 emissions was more apparent in Ultisols compared to Cambisols paddy soils. Real-time PCR suggested that 50 mg/kg AgNPs significantly increased the ratio of methanogenic to bacterial gene for both paddy soils. Amplicon sequencing indicated that methanogenic community was clustered into a separate group after 50 mg/kg AgNPs exposure. Structural equation model illustrated that Methanosarcinales was both significantly responded to AgNPs in Cambisols and Ultisols soils; however, Methanocellales significantly responded to AgNPs only in Cambisols soils. Subsequently, uncontrolled use of AgNPs may account as an environmental risk due to the potentially increased soil CH4 emissions in paddy ecosystems.
Collapse
Affiliation(s)
- Yongjie Yu
- Key Laboratory of Agrometeorology of Jiangsu Province, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Chen Wu
- Key Laboratory of Agrometeorology of Jiangsu Province, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xin Li
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lingyu Wu
- Key Laboratory of Agrometeorology of Jiangsu Province, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Qinyu Yang
- Key Laboratory of Agrometeorology of Jiangsu Province, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | | | - Youzhi Feng
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China.
| |
Collapse
|
14
|
Zhou J, Zheng Y, Hou L, An Z, Chen F, Liu B, Wu L, Qi L, Dong H, Han P, Yin G, Liang X, Yang Y, Li X, Gao D, Li Y, Liu Z, Bellerby R, Liu M. Effects of acidification on nitrification and associated nitrous oxide emission in estuarine and coastal waters. Nat Commun 2023; 14:1380. [PMID: 36914644 PMCID: PMC10011576 DOI: 10.1038/s41467-023-37104-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Abstract
In the context of an increasing atmospheric carbon dioxide (CO2) level, acidification of estuarine and coastal waters is greatly exacerbated by land-derived nutrient inputs, coastal upwelling, and complex biogeochemical processes. A deeper understanding of how nitrifiers respond to intensifying acidification is thus crucial to predict the response of estuarine and coastal ecosystems and their contribution to global climate change. Here, we show that acidification can significantly decrease nitrification rate but stimulate generation of byproduct nitrous oxide (N2O) in estuarine and coastal waters. By varying CO2 concentration and pH independently, an expected beneficial effect of elevated CO2 on activity of nitrifiers ("CO2-fertilization" effect) is excluded under acidification. Metatranscriptome data further demonstrate that nitrifiers could significantly up-regulate gene expressions associated with intracellular pH homeostasis to cope with acidification stress. This study highlights the molecular underpinnings of acidification effects on nitrification and associated greenhouse gas N2O emission, and helps predict the response and evolution of estuarine and coastal ecosystems under climate change and human activities.
Collapse
Affiliation(s)
- Jie Zhou
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, East China Normal University, Shanghai, 200241, China
| | - Yanling Zheng
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, East China Normal University, Shanghai, 200241, China. .,School of Geographic Sciences, East China Normal University, Shanghai, 200241, China. .,Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China. .,Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai, 200241, China.
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, East China Normal University, Shanghai, 200241, China.
| | - Zhirui An
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, East China Normal University, Shanghai, 200241, China
| | - Feiyang Chen
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, East China Normal University, Shanghai, 200241, China
| | - Bolin Liu
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, East China Normal University, Shanghai, 200241, China
| | - Li Wu
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, China.,Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China
| | - Lin Qi
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, China.,Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China
| | - Hongpo Dong
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, East China Normal University, Shanghai, 200241, China
| | - Ping Han
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, China.,Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China.,Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai, 200241, China
| | - Guoyu Yin
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, China.,Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China.,Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai, 200241, China
| | - Xia Liang
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, East China Normal University, Shanghai, 200241, China
| | - Yi Yang
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, China.,Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China.,Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai, 200241, China
| | - Xiaofei Li
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, East China Normal University, Shanghai, 200241, China
| | - Dengzhou Gao
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, East China Normal University, Shanghai, 200241, China
| | - Ye Li
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, China.,Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China.,Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai, 200241, China
| | - Zhanfei Liu
- The University of Texas at Austin Marine Science Institute, Port Aransas, TX, 78373, USA
| | - Richard Bellerby
- Norwegian Institute for Water Research, Thormøhlensgt 53D, 5006, Bergen, Norway
| | - Min Liu
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, China. .,Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China. .,Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai, 200241, China.
| |
Collapse
|
15
|
Ramzan M, Naz G, Shah AA, Parveen M, Jamil M, Gill S, Sharif HMA. Synthesis of phytostabilized zinc oxide nanoparticles and their effects on physiological and anti-oxidative responses of Zea mays (L.) under chromium stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:130-138. [PMID: 36706692 DOI: 10.1016/j.plaphy.2023.01.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/15/2022] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
Chromium (Cr) is a hazardous metal that has a significant risk of transfer from soil to edible parts of food crops, including shoot tissues. Reduction of Cr accumulation is required to lower the risk of Cr-exposed in humans and animals feeding on metal-contaminated parts of such plant. Zea mays is a global staple crop irrigated intensively with Cr-contaminated water. Consequently, the objective of this study was to investigate that FI-stabilized ZnO NPs could be used as an eco-friendly and efficient amendment to reduced Cr uptake and toxicity in Zea mays. To investigate the growth parameters, physiological, oxidative stress and biochemical parameters under different Cr-VI concentrations (10.0, 15.0, and 20.0 ppm). Cr exposed Z. mays plants exhibited substantially reduced plant biomass, chlorophyll contents, and altered antioxidant enzyme activity compared to untreated control. The results revealed that foliar application of Fagonia-ZnO-NPs helps eliminate the harmful effects of Cr (VI), which can enter plants through soil pollution. Increased levels of proline, soluble sugars and various antioxidant enzymes reflected this. Mean comparisons showed that Cr stress led to a 33-50% reduction in fresh shoot weight, 73-170% in fresh root weight, 16-34% shoot length, 9.5-129% root length, Chlorophyll contents 20-33% (Chl a), 18-27% (Chl b) and 17-27% (car), 14-33% total soluble sugars, 54-170% proline content, 7-7.5% POD, 0.66-75% CAT and 32-77% APX enzyme activities compared to untreated plants. Application of FI-stabilized ZnO NPs led to an increase 21-77% in fresh shoot weight, 22-45%, fresh root weight, 3-35% shoot length, 24-154% root length, Chlorophyll contents 39-60% (Chl a), 15-79% (Chl b) and 28-82% (car), 19-52% total soluble sugars, 21-55% proline content, 14-43% POD, 34-95% CAT and 130-186% APX enzyme activities under 10, 15 and 20 ppm Cr stress respectively, compared to Cr-treated plants. However, the principal component analysis revealed that chlorophyll contents, carotenoid, CAT, APX and length were in the same group and showed a positive correlation. These data collectively suggest that phytostabilized zinc oxide NPs may be an eco-friendly solution to mitigate Cr toxicity in agricultural soils and crop plants.
Collapse
Affiliation(s)
- Musarrat Ramzan
- Department of Botany, Faculty of Chemical and Biological Sciences, The Islamia University of Bahawalpur, Pakistan
| | - Gul Naz
- Institute of Physics, Faculty of Physical & Mathematical Sciences, The Islamia University of Bahawalpur, Pakistan
| | - Anis Ali Shah
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Misbah Parveen
- Department of Botany, Faculty of Chemical and Biological Sciences, The Islamia University of Bahawalpur, Pakistan
| | - Muhammad Jamil
- Department of Botany, Faculty of Chemical and Biological Sciences, The Islamia University of Bahawalpur, Pakistan
| | - Sidra Gill
- Department of Botany, Faculty of Chemical and Biological Sciences, The Islamia University of Bahawalpur, Pakistan
| | - Hafiz M Adeel Sharif
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China.
| |
Collapse
|
16
|
Wang C, Ju J, Zhang H, Liu P, Song Z, Hu X, Zheng Q. Exploring the variation of bacterial community and nitrogen transformation functional genes under the pressure of heavy metals in different coastal mariculture patterns. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116365. [PMID: 36202038 DOI: 10.1016/j.jenvman.2022.116365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/08/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Equilibrium in microbial dynamics and nitrogen transformation in the sediment is critical for maintaining healthy mariculture environment. However, our understanding about the impact of heavy metals on the bacterial community and nitrogen transformation functional genes in different mariculture patterns is still limited. Here, we analyzed 30 sediment samples in the vertical distribution from three different mariculture patterns mainly include open mariculture zone (K), closed mariculture pond (F) and pristine marine area (Q). Illumina MiSeq Sequencing was applied to investigate the bacterial community and structure in the sediment. Quantitative polymerase chain reaction (qPCR) was used to determine the effect of heavy metals on nitrogen transformation functional genes. Results showed that bacterial community and structure varied greatly in different mariculture patterns. Chloroflexi, Proteobacteria and Desulfobacterota were predominant phyla in the coastal mariculture area. High concentrations of heavy metals mainly enriched in the up layer (5-40 cm) of the sediment in the mariculture zone. The abundance of functional genes in the closed mariculture pond was much higher than the open mariculture zone and pristine marine area. And the high abundance of nitrification and denitrification functional genes mainly accumulated at the depth from 5 cm to 40 cm. Heavy metals content such as Fe, Cr, Mn, Ni, As, Cd, Pb and nutrient content NH4+-N, NO3--N and NO2--N were highly associated with bacterial community and nitrogen transformation functional genes. This study comprehensively elaborated the effect of heavy metals on the bacterial community and nitrogen transformation functional genes in different coastal mariculture patterns, indicating the possible role of closed mariculture pond in reducing nitrogen transformation efficiency, which will provide useful information for preventing pollution risk in the mariculture area.
Collapse
Affiliation(s)
- Caixia Wang
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Jiujun Ju
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Haikun Zhang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264403, China
| | - Pengyuan Liu
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264403, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zenglei Song
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264403, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoke Hu
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264403, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266237, China.
| | - Qiusheng Zheng
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
17
|
Ye J, Gao H, Wu J, Zhan M, Yang G, Yu R. Transient disturbance of CeO2 nanoparticles enhances N2O emissions during biological wastewater treatment. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Ye J, Gao H, Wu J, Yang G, Duan L, Yu R. Long-term exposure to nano-TiO 2 interferes with microbial metabolism and electron behavior to influence wastewater nitrogen removal and associated N 2O emission. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119930. [PMID: 35970347 DOI: 10.1016/j.envpol.2022.119930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
The extensive use of nano-TiO2 has caused concerns regarding their potential environmental risks. However, the stress responses and self-recovery potential of nitrogen removal and greenhouse gas N2O emissions after long-term nano-TiO2 exposure have seldom been addressed yet. This study explored the long-term effects of nano-TiO2 on biological nitrogen transformations in a sequencing batch reactor at four levels (1, 10, 25, and 50 mg/L), and the reactor's self-recovery potential was assessed. The results showed that nano-TiO2 exhibited a dose-dependent inhibitory effect on the removal efficiencies of ammonia nitrogen and total nitrogen, whereas N2O emissions unexpectedly increased. The promoted N2O emissions were probably due to the inhibition of denitrification processes, including the reduction of the denitrifying-related N2O reductase activity and the abundance of the denitrifying bacteria Flavobacterium. The inhibition of carbon source metabolism, the inefficient electron transfer efficiency, and the electronic competition between the denitrifying enzymes would be in charge of the deterioration of denitrification performance. After the withdrawal of nano-TiO2 from the influent, the nitrogen transformation efficiencies and the N2O emissions of activated sludge recovered entirely within 30 days, possibly attributed to the insensitive bacteria survival and the microbial community diversity. Overall, this study will promote the current understanding of the stress responses and the self-recovery potential of BNR systems to nanoparticle exposure.
Collapse
Affiliation(s)
- Jinyu Ye
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou 310023, China; Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Huan Gao
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Junkang Wu
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu, 210096, China; Department of Water Supply and Drainage Science and Engineering, College of Civil Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Guangping Yang
- Chinair Envir. Sci-Tech Co., Ltd., Nanjing, Jiangsu, 210019, China
| | - Lijie Duan
- Guangdong Institute of Socialism, Guangzhou, Guangdong, 510499, China
| | - Ran Yu
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu, 210096, China.
| |
Collapse
|
19
|
Hong Y, Tu Q, Cheng H, Huangfu X, Chen Z, He Q. Chronic high-dose silver nanoparticle exposure stimulates N 2O emissions by constructing anaerobic micro-environment. WATER RESEARCH 2022; 225:119104. [PMID: 36155009 DOI: 10.1016/j.watres.2022.119104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/05/2022] [Accepted: 09/10/2022] [Indexed: 06/16/2023]
Abstract
Silver nanoparticles (Ag-NPs) were found to be responsible for nitrous oxide (N2O) generation; however, the mechanism of Ag-NP induced N2O production remains controversial and needs to be elucidated. In this study, chronic Ag-NP exposure experiments were conducted in five independent sequencing batch biofilm reactors to systematically assess the effects of Ag-NPs on N2O emission. The results indicated that a low dose of Ag-NPs (< 1 mg/L) slightly suppressed N2O generation by less than 22.99% compared with the no-Ag-NP control method. In contrast, a high dose (5 mg/L) of Ag-NPs stimulated N2O emission by 67.54%. ICP-MS and SEM-EDS together revealed that high Ag-NP content accumulated on the biofilm surface when exposed to 5 mg/L Ag-NPs. N2O and DO microelectrodes, as well as N2O isotopic composition analyses, further demonstrated that the accumulated Ag-NPs construct the anaerobic zone in the biofilm, which is the primary factor for the stimulation of the nitrite reduction pathway to release N2O. A metagenomic analysis further attributed the higher N2O emissions under exposure to a high dose of Ag-NPs to the higher relative abundance of narB and nirK genes (i.e. 1.52- and 1.29-fold higher, respectively). These findings collectively suggest that chronic exposure to high doses of Ag-NPs could enhance N2O emissions by forming anaerobic micro-environments in biofilms.
Collapse
Affiliation(s)
- Yiyihui Hong
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Qianqian Tu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China; China TieGong Investment & Construction Group Co., Ltd, Beijing 101300, China
| | - Hong Cheng
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| | - Xiaoliu Huangfu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Ziwei Chen
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Qiang He
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| |
Collapse
|
20
|
Maity D, Gupta U, Saha S. Biosynthesized metal oxide nanoparticles for sustainable agriculture: next-generation nanotechnology for crop production, protection and management. NANOSCALE 2022; 14:13950-13989. [PMID: 36124943 DOI: 10.1039/d2nr03944c] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The current agricultural sector is not only in its most vulnerable state but is also becoming a threat to our environment due to expanding population and growing food demands along with worsening climatic conditions. In addition, numerous agrochemicals presently being used as fertilizers and pesticides have low efficiency and high toxicity. However, the rapid growth of nanotechnology has shown great promise to tackle these issues replacing conventional agriculture industries. Since the last decade, nanomaterials especially metal oxide nanoparticles (MONPs) have been attractive for improving agricultural outcomes due to their large surface area, higher chemical/thermal stability and tunable unique physicochemical characteristics. Further, to achieve sustainability, researchers have been extensively working on ecological and cost-effective biological approaches to synthesize MONPs. Hereby, we have elaborated on recent successful biosynthesis methods using various plants/microbes. Furthermore, we have elucidated different mechanisms for the interaction of MONPs with plants, including their uptake/translocation/internalization, photosynthesis, antioxidant activity, and gene alteration, which could revolutionize crop productivity/yield through increased nutrient amount, photosynthesis rate, antioxidative enzyme level, and gene upregulations. Besides, we have briefly discussed about functionalization of MONPs and their application in agricultural-waste-management. We have further illuminated recent developments of various MONPs (Fe2O3/ZnO/CuO/Al2O3/TiO2/MnO2) as nanofertilizers, nanopesticides and antimicrobial agents and their implications for enhanced plant growth and pest/disease management. Moreover, the potential use of MONPs as nanobiosensors for detecting nutrients/pathogens/toxins and safeguarding plant/soil health is also illuminated. Overall, this review attempts to provide a clear insight into the latest advances in biosynthesized MONPs for sustainable crop production, protection and management and their scope in the upcoming future of eco-friendly agricultural nanotechnology.
Collapse
Affiliation(s)
- Dipak Maity
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India.
- School of Health Sciences & Technology, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Urvashi Gupta
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India.
| | - Sumit Saha
- Materials Chemistry Department, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar, Odisha 751013, India.
| |
Collapse
|
21
|
Song K, Xue Y, Li L, Deng M, Zhao X. Impact and microbial mechanism of continuous nanoplastics exposure on the urban wastewater treatment process. WATER RESEARCH 2022; 223:119017. [PMID: 36044798 DOI: 10.1016/j.watres.2022.119017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/07/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Contamination by nanoplastics in urban water has aroused increasing concern. The impact of nanoplastic exposure on the wastewater treatment process in the long term is still unclear. This study investigated the effect of continuous nanoplastic exposure (R1:0, R2:10, R3:100, and R4:1000 μg/L) on the nitrification and denitrification processes for over 200 days in a sequencing batch reactor (SBR). The results revealed that nanoplastic exposure does not demonstrate significant inhibition of total nitrogen removal. The ammonia oxidation rate (19.24 ± 0.01 mgN/gMLVSS/h, p < 0.05) and denitrification rate (11.78 ± 0.11 mgN/ gMLVSS/h, p < 0.05) in R4 was significantly lower than the control (R1: 0 μg/L). The maximal reaction velocities of N2O reduction (Vmax) were improved after long-term exposure to nanoplastics in high concentrations. The R3 demonstrated the highest Vmax value-six times higher than R4 and approximately 20 times higher than R1 and R2. The microbial structure largely varied with the exposure to nanoplastics, where the exposure to a high concentration largely suppressed the nitrifier and selectively enriched the denitrifier. The percentage of the top 20 genera of denitrifiers increased from 31.76% to 63.42%, and the nitrifiers decreased from an initial 12.40% to 2.83% for R4. The predominant genera were found to be Thauera, Azoarcus, and Defluviicoccus in R4 and R3 which indicated their tolerance to nanoplastics. The function prediction results indicated that the membrane transport function was significantly enhanced and the lipid metabolism function was significantly reduced in R4 as compared with the control (R1, p<0.05). This may be attributed to the adsorption of nanoplastics on bacteria. Observation under a scan electronic microscope demonstrated that the nanoplastics were firmly attached to the microbe surface and aggregated in activated sludge at high nanoplastics dosed reactor. These results deepen the understanding of the effect of nanoplastics on the urban wastewater treatment process and provide valuable information for the management of nanoplastic contamination in urban wastewater.
Collapse
Affiliation(s)
- Kang Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, No.7 Donghu South Road, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yunpeng Xue
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, No.7 Donghu South Road, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing, China
| | - Lu Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, No.7 Donghu South Road, Wuhan 430072, China.
| | - Min Deng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, No.7 Donghu South Road, Wuhan 430072, China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
22
|
New Insights for Exploring the Risks of Bioaccumulation, Molecular Mechanisms, and Cellular Toxicities of AgNPs in Aquatic Ecosystem. WATER 2022. [DOI: 10.3390/w14142192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Silver nanoparticles (AgNPs) are commonly used in numerous consumer products, including textiles, cosmetics, and health care items. The widespread usage of AgNPs results in their unavoidable discharge into the ecosystem, which pollutes the aquatic, groundwater, sediments, and marine environments. These nanoparticles (NPs) activate the production of free radicals reactive species in aquatic organisms that interrupt the functions of DNA, cause mitochondrial dysfunction, and increase lipid peroxidation, which terminates the development and reproduction both in vivo and in vitro. The life present in the aquatic ecosystem is becoming threatened due to the release and exploitation of AgNPs. Managing the aquatic ecosystem from the AgNP effects in the near future is highly recommended. In this review, we discussed the background of AgNPs, their discharge, and uptake by aquatic organisms, the mechanism of toxicity, different pathways of cytotoxicity, and bioaccumulation, particularly in aquatic organisms. We have also discussed the antimicrobial activities of AgNPs along with acute and chronic toxicity in aquatic groups of organisms.
Collapse
|
23
|
Shahzad Shirazi M, Foroumadi A, Saberikia I, Moridi Farimani M. Very rapid synthesis of highly efficient and biocompatible Ag 2Se QD phytocatalysts using ultrasonic irradiation for aqueous/sustainable reduction of toxic nitroarenes to anilines with excellent yield/selectivity at room temperature. ULTRASONICS SONOCHEMISTRY 2022; 87:106037. [PMID: 35709576 PMCID: PMC9201021 DOI: 10.1016/j.ultsonch.2022.106037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
There are many problems associated with the synthesis of nanocatalysts and catalytic reduction of nitroarenes - e.g., high temperatures, costs, long reaction/synthesis process times, the toxicity of chemicals/solvents, undesirable byproducts, the toxic/harmful wastes, low efficiency/selectivity, etc. This study represents an attempt to overcome these challenges. To this purpose, biocompatible and highly efficient Ag2Se quantum dots (QDs) catalysts with antibacterial activity were synthesized in a very rapid (30 sec, rt), simple, inexpensive, sustainable/green, and one-pot strategy in water using ultrasonic irradiation. Characterization of the QDs was performed using different techniques. UV-Vis absorption and fluorescence spectroscopic studies showed an absorption peak at 480-550 nm and a maximum emission peak around 675 nm, which confirmed the successful synthesis of Ag2Se QDs via the applied biosynthetic method. Subsequently, catalytic reduction of nitroarenes by them was carried out under safe conditions (H2O, rt, air atmosphere) in ∼ 60 min with excellent yield and selectivity (>99%). Their catalytic activity in the reduction of various toxic nitroarenes to aminoarenes under green conditions was investigated. Thus, a rapid and safe ultrasound-based method was employed to prepare stable and green Ag2Se QDs phyto-catalysts with unique properties, including exquisite monodispersity in shape (orthorhombic) and size (∼7 nm), air-stability, and good purity and crystallinity. Importantly, instead of various toxic chemicals, the plant extract obtained by rapid ultrasonic method (10 min, rt) was used as natural reducing, capping, and stabilizing agents. Moreover, antibacterial assays results showed that Ag2Se-QDs catalysts at low concentrations (ppm) have high activity against all tested bacteria, especially E. coli (MIC:31.25 ppm, MBC:125 ppm) which were significantly different from those of Fig extract (MIC = MBC:500 ppm). The data reflect the role of these bio-synthesized Ag2Se-QDs catalysts in the development of versatile and very safe catalysts with biomedical properties.
Collapse
Affiliation(s)
- Maryam Shahzad Shirazi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, Tehran, Iran
| | - Alireza Foroumadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Iraj Saberikia
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Moridi Farimani
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, Tehran, Iran.
| |
Collapse
|
24
|
Zheng D, Yin G, Liu M, Hou L, Yang Y, Liu X, Jiang Y, Chen C, Wu H. Metagenomics highlights the impact of climate and human activities on antibiotic resistance genes in China's estuaries. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 301:119015. [PMID: 35183662 DOI: 10.1016/j.envpol.2022.119015] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/28/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Estuarine environments faced with contaminations from coastal zones and the inland are vital sinks of antibiotic resistance genes (ARGs). However, little is known about the temporal-spatial pattern of ARGs and its predominant constraints in estuarine environments. Here, we leveraged metagenomics to investigate ARG profiles from 16 China's estuaries across 6 climate zones in dry and wet seasons, and disentangled their relationships with environmental constraints. Our results revealed that ARG abundance, richness, and diversity in dry season were higher than those in wet season, and ARG abundance exhibited an increasing trend with latitude. The prevalence of ARGs was significantly driven by human activities, mobile gene elements, microbial communities, antibiotic residuals, physicochemical properties, and climatic variables. Among which, climatic variables and human activities ranked the most important factors, contributing 44% and 36% of the total variance of observed ARGs, respectively. The most important climatic variable shaping ARGs is temperature, where increasing temperature is associated with decreased ARGs. Our results highlight that the prevalence of ARGs in estuarine environments would be co-driven by anthropogenic activities and climate, and suggest the dynamics of ARGs under future changing climate and socioeconomic development.
Collapse
Affiliation(s)
- Dongsheng Zheng
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China; School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| | - Guoyu Yin
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China; School of Geographic Sciences, East China Normal University, Shanghai, 200241, China.
| | - Min Liu
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China; School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| | - Yi Yang
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China; School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| | - Xinran Liu
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China; School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| | - Yinghui Jiang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| | - Cheng Chen
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China; School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| | - Han Wu
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China; School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
25
|
Jiao K, Yang B, Wang H, Xu W, Zhang C, Gao Y, Sun W, Li F, Ji D. The individual and combined effects of polystyrene and silver nanoparticles on nitrogen transformation and bacterial communities in an agricultural soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153358. [PMID: 35077800 DOI: 10.1016/j.scitotenv.2022.153358] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
The effects of emerging contaminants micro/nanoplastics (MPs/NPs) and silver nanoparticles (Ag NPs) on health have attracted universal concern throughout the world. However, it is unclear on the combined effects of MPs/NPs and Ag NPs on the biogeochemistry cycle such as nitrogen transformation and functional microorganism in the soil. In the present study, we conducted a 45-day soil microcosm experiment with polystyrene (PS) MPs/NPs and Ag NPs to investigate their combined impact on nitrogen cycling and the bacterial community. The results showed that MPs or NPs exerted limited effects on nitrogen transformation in the soil. The combined effects of PS MPs/NPs and Ag NPs were mainly caused by the presence of Ag NPs. However, PS NPs alleviated the inhibition of anammox and denitrification induced by Ag NPs via upregulating anammox-related genes and elevating nitrate and nitrite reductase activities. PS MPs + Ag NPs treatment significantly reduced bacterial diversity. PS MPs/NPs + Ag NPs increased the relative abundances of denitrifying Cupriavidus by 0.32% and 0.06% but decreased nitrogen-fixing functional microorganisms of Microvirga (by 2.05% and 2.24%), Bacillus (by 0.16% and 0.22%), and Herbaspirillum (by 0.14% and 0.07%) at the genus level compared with Ag NPs alone. The significant downregulation of nitrogen-fixing genes (K02586, K02588, and K02591) was observed in PS MPs/NPs + Ag NPs treatment compared to Ag NPs in the nitrogen metabolism pathway. Moreover, g-Lysobacter and g-Aquimonas were identified as biomarkers in PS MPs + Ag NPs and PS NPs + Ag NPs by LEfSe analysis. Our study sheds the light that changes of functional microorganism abundances contributed to the alteration of nitrogen transformation. Taking the particle size of plastics into account will be helpful to accurately assess the combined ecological risks of plastics and nanomaterial contaminants.
Collapse
Affiliation(s)
- Keqin Jiao
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China; Shaanxi Key Laboratory of Land Consolidation, Xi'an 710054, China
| | - Baoshan Yang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China; Shaanxi Key Laboratory of Land Consolidation, Xi'an 710054, China
| | - Hui Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China; Shaanxi Key Laboratory of Land Consolidation, Xi'an 710054, China.
| | - Wenxue Xu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China; Shaanxi Key Laboratory of Land Consolidation, Xi'an 710054, China
| | - Chuanfeng Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China; Shaanxi Key Laboratory of Land Consolidation, Xi'an 710054, China
| | - Yongchao Gao
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Applied Microbiology, 28789 East Jingshi Road, Jinan 250103, China
| | - Wen Sun
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China; Shaanxi Key Laboratory of Land Consolidation, Xi'an 710054, China
| | - Feng Li
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China; Shaanxi Key Laboratory of Land Consolidation, Xi'an 710054, China
| | - Dandan Ji
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, China
| |
Collapse
|
26
|
Sushko ES, Vnukova NG, Churilov GN, Kudryasheva NS. Endohedral Gd-Containing Fullerenol: Toxicity, Antioxidant Activity, and Regulation of Reactive Oxygen Species in Cellular and Enzymatic Systems. Int J Mol Sci 2022; 23:ijms23095152. [PMID: 35563539 PMCID: PMC9106034 DOI: 10.3390/ijms23095152] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/30/2022] [Accepted: 04/30/2022] [Indexed: 01/20/2023] Open
Abstract
The Gd-containing metallofullerene derivatives are perspective magnetic resonance imaging contrast agents. We studied the bioeffects of a water-soluble fullerene derivative, gadolinium-endohedral fullerenol, with 40−42 oxygen groups (Gd@Fln). Bioluminescent cellular and enzymatic assays were applied to monitor toxicity and antioxidant activity of Gd@Fln in model solutions; bioluminescence was applied as a signaling physiological parameter. The Gd@Fln inhibited bioluminescence at high concentrations (>2·10−1 gL−1), revealing lower toxicity as compared to the previously studied fullerenols. Efficient activation of bioluminescence (up to almost 100%) and consumption of reactive oxygen species (ROS) in bacterial suspension were observed under low-concentration exposure to Gd@Fln (10−3−2·10−1 gL−1). Antioxidant capability of Gd@Fln was studied under conditions of model oxidative stress (i.e., solutions of model organic and inorganic oxidizers); antioxidant coefficients of Gd@Fln were determined at different concentrations and times of exposure. Contents of ROS were evaluated and correlations with toxicity/antioxidant coefficients were determined. The bioeffects of Gd@Fln were explained by hydrophobic interactions, electron affinity, and disturbing of ROS balance in the bioluminescence systems. The results contribute to understanding the molecular mechanism of “hormetic” cellular responses. Advantages of the bioluminescence assays to compare bioeffects of fullerenols based on their structural characteristics were demonstrated.
Collapse
Affiliation(s)
- Ekaterina S. Sushko
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS, 660036 Krasnoyarsk, Russia;
- Institute of Physics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS, 660036 Krasnoyarsk, Russia; (N.G.V.); (G.N.C.)
- Correspondence: ; Tel.: +7-3912-494-242
| | - Natalia G. Vnukova
- Institute of Physics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS, 660036 Krasnoyarsk, Russia; (N.G.V.); (G.N.C.)
- Siberian Federal University, 660041 Krasnoyarsk, Russia
| | - Grigoriy N. Churilov
- Institute of Physics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS, 660036 Krasnoyarsk, Russia; (N.G.V.); (G.N.C.)
- Siberian Federal University, 660041 Krasnoyarsk, Russia
| | - Nadezhda S. Kudryasheva
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS, 660036 Krasnoyarsk, Russia;
- Siberian Federal University, 660041 Krasnoyarsk, Russia
| |
Collapse
|
27
|
Wu L, An Z, Zhou J, Chen F, Liu B, Qi L, Yin G, Dong H, Liu M, Hou L, Zheng Y. Effects of Aquatic Acidification on Microbially Mediated Nitrogen Removal in Estuarine and Coastal Environments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5939-5949. [PMID: 35465670 DOI: 10.1021/acs.est.2c00692] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Acidification of estuarine and coastal waters is anticipated to influence nitrogen (N) removal processes, which are critical pathways for eliminating excess N from these ecosystems. We found that denitrification rates decreased significantly under acidified conditions (P < 0.05), which reduced by 41-53% in estuarine and coastal sediments under an approximately 0.3 pH reduction of the overlying water. However, the N removal rates through the anaerobic ammonium oxidation (anammox) process were concomitantly promoted under the same acidification conditions (increased by 47-109%, P < 0.05), whereas the total rates of N loss were significantly inhibited by aquatic acidification (P < 0.05), as denitrification remained the dominant N removal pathway. More importantly, the emission of nitrous oxide (N2O) from estuarine and coastal sediments was greatly stimulated by aquatic acidification (P < 0.05). Molecular analyses further demonstrated that aquatic acidification also altered the functional microbial communities in estuarine and coastal sediments; and the abundance of denitrifiers was significantly reduced (P < 0.05), while the abundance of anammox bacteria remained relatively stable. Collectively, this study reveals the effects of acidification on N removal processes and the underlying mechanisms and suggests that the intensifying acidification in estuarine and coastal waters might reduce the N removal function of these ecosystems, exacerbate eutrophication, and accelerate global climate change.
Collapse
Affiliation(s)
- Li Wu
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
| | - Zhirui An
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
| | - Jie Zhou
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| | - Feiyang Chen
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| | - Bolin Liu
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| | - Lin Qi
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
| | - Guoyu Yin
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
| | - Hongpo Dong
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| | - Min Liu
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| | - Yanling Zheng
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| |
Collapse
|
28
|
Niu L, Hu J, Li Y, Wang C, Zhang W, Hu Q, Wang L, Zhang H. Effects of long-term exposure to silver nanoparticles on the structure and function of microplastic biofilms in eutrophic water. ENVIRONMENTAL RESEARCH 2022; 207:112182. [PMID: 34648762 DOI: 10.1016/j.envres.2021.112182] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/02/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Abstract
Microplastics are frequently detected in natural aquatic systems proximate to populated areas, such as urban rivers and lakes, and can be rapidly colonized by microbial communities. Microplastics and silver nanoparticles (AgNPs) share similar pathways into natural waters and tend to form heteroaggregations. However, very little is known about the long-term impacts on the structure and function of microplastic biofilms when chronically exposed to silver nanoparticles. Thus, the present study assessed the accumulation property of AgNPs on polymethyl methacrylate (PMMA) microplastics via adsorption tests and studied the chronic effects of AgNPs on the structure and function of microplastic biofilms via 30-day microcosmic experiments in eutrophic water. The adsorption tests showed that the biofilms-colonized PMMA microplastics presented the highest adsorption of 0.98 mg/g in the 1 mg/L AgNPs microcosms. After the 30-day exposure, lactic dehydrogenase release and reactive oxygen species generation of PMMA biofilms increased by 33.23% and 23.98% compared to the MPs-control group with no-AgNPs, indicating that the number of dead cells colonizing microplastics significantly increased. Network analysis suggested that the stabilization of the bacterial community declined with the long-term exposure to AgNPs through the reduction of the modularity and average path length of the network. Compared to the MPs-control group, long-term exposure to AgNPs caused cumulatively inhibitory effects on the nitrogen removal and the N2O emissions in eutrophic water. The isotopomer analysis revealed that the contribution rate of NO2- reduction to N2O emissions was gradually increasing with the AgNPs exposure. Real-time PCR analysis showed that denitrification genes were less sensitive to AgNPs than the nitrification genes, with gene nosZ performed the most negligible response. Overall, our results revealed that long-term exposure to AgNPs could alter biogeochemical cycling involved by microplastic biofilms and cumulatively reduce the self-recovery of the eutrophic ecosystem.
Collapse
Affiliation(s)
- Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Jiaxin Hu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Chao Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Qing Hu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Longfei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Huanjun Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
29
|
Bao S, Xiang D, Xue L, Xian B, Tang W, Fang T. Pristine and sulfidized ZnO nanoparticles alter microbial community structure and nitrogen cycling in freshwater lakes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 294:118661. [PMID: 34896219 DOI: 10.1016/j.envpol.2021.118661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/23/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) and its sulfidized form (ZnS NPs) are increasingly entering into freshwater systems through multiple pathways. However, their impacts on the composition and function of sedimentary microbial communities are still largely unknown. Here, two kinds of lake-derived microcosms were constructed and incubated with ZnO NPs, or ZnS NPs to investigate the short-term (7 days) and long-term (50 days) impacts on sedimentary microbial communities and nitrogen cycling. After 7 days, both ZnO NPs and ZnS NPs dosed microbial communities experienced distinct alterations as compared to the undosed controls. By day 50, the structural shifts of microbial communities caused by ZnO NPs were significantly enlarged, while the microbial shifts induced by ZnS NPs were largely resolved. Additionally, ZnO NPs and ZnS NPs could significantly alter nitrogen species and nitrogen cycling genes in sediments, revealing their non-negligible impacts on nitrogen cycling processes. Furthermore, our data clearly indicated that the impacts of ZnO NPs and ZnS NPs on nitrogen cycling differed distinctly in different lake-derived microcosms, and the impacts were significantly correlated with microbial community structure. Overall, this research suggests that the entrance of pristine or sulfidized ZnO NPs into freshwater systems may significantly impact the sedimentary microbial community structure and nitrogen cycling.
Collapse
Affiliation(s)
- Shaopan Bao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Dongfang Xiang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lu Xue
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bo Xian
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Tang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Tao Fang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
30
|
He G, Shu S, Liu G, Zhang Q, Liu Y, Jiang Y, Liu W. Aquatic macrophytes mitigate the short-term negative effects of silver nanoparticles on denitrification and greenhouse gas emissions in riparian soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118611. [PMID: 34861336 DOI: 10.1016/j.envpol.2021.118611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/01/2021] [Accepted: 11/29/2021] [Indexed: 06/13/2023]
Abstract
Silver nanoparticles (AgNPs) are increasingly released into the aquatic environments because of their extensive use in consumer products and industrial applications. Some researchers have explored the toxicity of AgNPs to nitrogen (N) and carbon (C) cycles, but little is known about the role of aquatic plants in regulating the impact of AgNPs on these biogeochemical processes and related microorganisms. Here, two 90-day pot experiments were conducted to determine the effect of AgNPs on denitrification rates and greenhouse gas emissions in riparian wetland soils, with or without emergent plants (Typha minima Funck). As a comparison, the toxicity of equal concentration of AgNO3 was also determined. The results showed that AgNPs released a great quantity of free Ag+, most of which was accumulated in soils, while little (less than 2%) was absorbed by plant shoots and roots. Both AgNPs and AgNO3 could increase the soil redox potential and affect the growth and nutrient (N and phosphorus) uptake of plants. In soils with plants, there was no significant difference in denitrification rates and emissions of N2O and CH4 between control and AgNPs or AgNO3 treatments at all tested concentrations (0.5, 1 and 10 mg kg-1). However, low levels of AgNPs (0.5 mg kg-1) significantly enhanced CO2 emission throughout the experiment. Interestingly, in the absence of plants, a high dosage (10 mg kg-1) of AgNPs generally inhibited soil denitrification and stimulated the emissions of CO2, CH4 and N2O in the short-term. Meanwhile, the abundance of key denitrifying genes (nirS and nirK) was significantly increased by exposure to 10 mg kg-1 AgNPs or AgNO3. Our results suggest that emergent plants can alleviate the short-term negative effects of AgNPs on N and C cycling processes in wetland soils through different pathways.
Collapse
Affiliation(s)
- Gang He
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Chinese Academy of Sciences, Wuhan Botanical Garden, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shi Shu
- Wuhan Sino-Sci Ruihua Eco Tech Co., Ltd, Wuhan, 430080, China
| | - Guihua Liu
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Chinese Academy of Sciences, Wuhan Botanical Garden, Wuhan, 430074, China; Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, Chinese Academy of Sciences, Wuhan Botanical Garden, Wuhan, 430074, China
| | - Quanfa Zhang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Chinese Academy of Sciences, Wuhan Botanical Garden, Wuhan, 430074, China; Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, Chinese Academy of Sciences, Wuhan Botanical Garden, Wuhan, 430074, China
| | - Yi Liu
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Chinese Academy of Sciences, Wuhan Botanical Garden, Wuhan, 430074, China; Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, Chinese Academy of Sciences, Wuhan Botanical Garden, Wuhan, 430074, China
| | - Ying Jiang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Chinese Academy of Sciences, Wuhan Botanical Garden, Wuhan, 430074, China; Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, Chinese Academy of Sciences, Wuhan Botanical Garden, Wuhan, 430074, China
| | - Wenzhi Liu
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Chinese Academy of Sciences, Wuhan Botanical Garden, Wuhan, 430074, China; Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, Chinese Academy of Sciences, Wuhan Botanical Garden, Wuhan, 430074, China.
| |
Collapse
|
31
|
Zhang X, Dang D, Zheng L, Wu L, Wu Y, Li H, Yu Y. Effect of Ag Nanoparticles on Denitrification and Microbial Community in a Paddy Soil. Front Microbiol 2022; 12:785439. [PMID: 35003016 PMCID: PMC8727482 DOI: 10.3389/fmicb.2021.785439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/23/2021] [Indexed: 11/30/2022] Open
Abstract
The extensive application of Ag nanoparticles (AgNPs) in industry, agriculture, and food processing areas increases the possibility of its release and accumulation to agroecosystem, but the effects of AgNPs to denitrification and the microbial community in paddy ecosystems are still poorly studied. In this study, microcosmic simulation experiments were established to investigate the response of soil denitrification to different levels of AgNPs (i.e., 0.1, 1, 10, and 50 mg/kg) in a paddy soil. Real-time quantitative PCR and high-throughput sequencing were conducted to reveal the microbial mechanism of the nanometer effect. The results showed that, though 0.1–10 mg/kg AgNPs had no significant effects on denitrification rate and N2O emission rate compared to CK and bulk Ag treatments, 50 mg/kg AgNPs significantly stimulated more than 60% increase of denitrification rate and N2O emission rate on the 3rd day (P < 0.05). Real-time quantitative PCR revealed that 50 mg/kg AgNPs significantly decreased the abundance of 16S bacterial rRNA gene, nirS/nirK, cnorB, and nosZ genes, but it did not change the narG gene abundance. The correlation analysis further revealed that the cumulative N2O emission was positively correlated with the ratio of all the five tested denitrifying genes to bacterial 16S rRNA gene (P < 0.05), indicating that the tolerance of narG gene to AgNPs was the key factor of the increase in denitrification in the studied soil. High-throughput sequencing showed that only the 50-mg/kg-AgNP treatment significantly changed the microbial community composition compared to bulk Ag and CK treatments. The response of microbial phylotypes to AgNPs suggested that the most critical bacteria which drove the stimulation of 50 mg/kg AgNPs on N2O emission were Firmicutes and β-proteobacteria, such as Clotridiales, Burkholderiales, and Anaerolineales. This study revealed the effects of AgNPs to denitrification in a paddy ecosystem and could provide a scientific basis for understanding of the environmental and toxicological effects of Ag nanomaterials.
Collapse
Affiliation(s)
- Xiao Zhang
- Key Laboratory of Agrometeorology of Jiangsu Province, Nanjing University of Information Science and Technology, Nanjing, China
| | - Di Dang
- Key Laboratory of Agrometeorology of Jiangsu Province, Nanjing University of Information Science and Technology, Nanjing, China
| | - Lingsi Zheng
- Key Laboratory of Agrometeorology of Jiangsu Province, Nanjing University of Information Science and Technology, Nanjing, China
| | - Lingyu Wu
- Key Laboratory of Agrometeorology of Jiangsu Province, Nanjing University of Information Science and Technology, Nanjing, China
| | - Yu Wu
- Key Laboratory of Agrometeorology of Jiangsu Province, Nanjing University of Information Science and Technology, Nanjing, China
| | - Haoruo Li
- Key Laboratory of Agrometeorology of Jiangsu Province, Nanjing University of Information Science and Technology, Nanjing, China
| | - Yongjie Yu
- Key Laboratory of Agrometeorology of Jiangsu Province, Nanjing University of Information Science and Technology, Nanjing, China.,Key Laboratory of Karst Dynamics, MNR and Guangxi, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin, China
| |
Collapse
|
32
|
Chen Y, Zhang X, Liu W. Effect of metal and metal oxide engineered nano particles on nitrogen bio-conversion and its mechanism: A review. CHEMOSPHERE 2022; 287:132097. [PMID: 34523458 DOI: 10.1016/j.chemosphere.2021.132097] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 06/13/2023]
Abstract
Metal and metal oxide engineered nano particles (MMO-ENPs) are widely applied in various industries due to their unique properties. Thus, many researches focused on the influence on nitrogen transformation processes by MMO-ENPs. This review focuses on the effect of MMO-ENPs on nitrogen fixation, nitrification, denitrification and Anammox. Firstly, based on most of the researches, it can be concluded MMO-ENPs have negative effect on nitrogen fixation, nitrification and denitrification while the MMO-ENPs have no promotion effect on Anammox. Then, the influence factors are discussed in detail, including MMO-ENPs dosage, MMO-ENPs kind and exposure time. Both the microbial morphology and population structure were altered by MMO-ENPs. Also, the mechanisms of MMO-ENPs affecting the nitrogen transformation are reviewed. The inhibition of key enzymes and functional genes, the promotion of reactive oxygen species (ROS) production, MMO-ENPs themselves and the suppression of electron transfer all contribute to the negative effect. Finally, the key points for future investigation are proposed that more attention should be attached to the effect on Anammox and the further mechanism in the future studies.
Collapse
Affiliation(s)
- Yinguang Chen
- Coll Resource & Environm Sci, Xinjiang Univ, 666 Shengli Rd, Urumqi, PR China; Coll Environm Sci & Engn, Tongji Univ, 1239 Siping Rd, Shanghai, PR China
| | - Xiaoyang Zhang
- Coll Environm Sci & Engn, Tongji Univ, 1239 Siping Rd, Shanghai, PR China.
| | - Weiguo Liu
- Coll Resource & Environm Sci, Xinjiang Univ, 666 Shengli Rd, Urumqi, PR China
| |
Collapse
|
33
|
Xu X, Liu Q, Hui S, Jiang S. Hollow Core-satellite ZIF-8/PDA/AgNPs Nanocomplexs: Fabrication, Structure and Antibacterial Activity. CHEM LETT 2021. [DOI: 10.1246/cl.210619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Xiaoyi Xu
- Institute of Physical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Qiqi Liu
- Institute of Physical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Shuhan Hui
- Institute of Physical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Shan Jiang
- Institute of Physical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
34
|
An Z, Gao D, Chen F, Wu L, Zhou J, Zhang Z, Dong H, Yin G, Han P, Liang X, Liu M, Hou L, Zheng Y. Crab bioturbation alters nitrogen cycling and promotes nitrous oxide emission in intertidal wetlands: Influence and microbial mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149176. [PMID: 34346369 DOI: 10.1016/j.scitotenv.2021.149176] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
Intertidal wetlands provide important ecosystem functions by acting as nitrogen (N) cycling hotspots, which can reduce anthropogenic N loading from land to coastal waters. Benthic bioturbations are thought to play an important role in mediating N cycling in intertidal marshes. However, how the burrowing activity of benthos and their microbial symbionts affect N transformation and greenhouse gas nitrous oxide (N2O) emission remains unclear in these environments. Here, we show that bioturbation of crabs reshaped the structure of intertidal microbial communities and their N cycling function. Molecular analyses suggested that the microbially-driven N cycling might be accelerated by crab bioturbation, as the abundances of most of the N related functional genes were higher on the burrow wall than those in the surrounding bulk sediments, except for genes involved in N fixation, dissimilatory nitrate reduction to ammonium (DNRA), and N2O reduction, which were further confirmed by isotope-tracing experiments. Especially, the potential rates of the main N2O production pathways, nitrification and denitrification, were 2-3 times higher in the burrow wall sediments. However, even higher N2O emission rates (approximately 6 times higher) were observed in this unique microhabitat, which was due to a disproportionate increase in N2O production over N2O consumption driven by burrowing activity. In addition, the sources of N2O were also significantly affected by crab bioturbation, which increased the contribution of hydroxylamine oxidation pathway. This study reveals the mechanism through which benthic bioturbations mediate N cycling and highlights the importance of considering burrowing activity when evaluating the ecological function of intertidal wetlands.
Collapse
Affiliation(s)
- Zhirui An
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
| | - Dengzhou Gao
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Feiyang Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Li Wu
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
| | - Jie Zhou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Zongxiao Zhang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Hongpo Dong
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Guoyu Yin
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
| | - Ping Han
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Xia Liang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Min Liu
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China.
| | - Yanling Zheng
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
35
|
Hajipour MJ, Saei AA, Walker ED, Conley B, Omidi Y, Lee K, Mahmoudi M. Nanotechnology for Targeted Detection and Removal of Bacteria: Opportunities and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100556. [PMID: 34558234 PMCID: PMC8564466 DOI: 10.1002/advs.202100556] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 08/06/2021] [Indexed: 05/04/2023]
Abstract
The emergence of nanotechnology has created unprecedented hopes for addressing several unmet industrial and clinical issues, including the growing threat so-termed "antibiotic resistance" in medicine. Over the last decade, nanotechnologies have demonstrated promising applications in the identification, discrimination, and removal of a wide range of pathogens. Here, recent insights into the field of bacterial nanotechnology are examined that can substantially improve the fundamental understanding of nanoparticle and bacteria interactions. A wide range of developed nanotechnology-based approaches for bacterial detection and removal together with biofilm eradication are summarized. The challenging effects of nanotechnologies on beneficial bacteria in the human body and environment and the mechanisms of bacterial resistance to nanotherapeutics are also reviewed.
Collapse
Affiliation(s)
- Mohammad J. Hajipour
- Department of Radiology and Precision Health ProgramMichigan State UniversityEast LansingMI48824USA
| | - Amir Ata Saei
- Division of Physiological Chemistry IDepartment of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholm171 65Sweden
| | - Edward D. Walker
- Department of EntomologyMichigan State UniversityEast LansingMI48824USA
- Department of Microbiology and Molecular GeneticsMichigan State UniversityEast LansingMI48824USA
| | - Brian Conley
- Department of Chemistry and Chemical BiologyRutgersThe State University of New JerseyPiscatawayNJ08854USA
| | - Yadollah Omidi
- Department of Pharmaceutical SciencesCollege of PharmacyNova Southeastern UniversityFort LauderdaleFL33328USA
| | - Ki‐Bum Lee
- Department of Chemistry and Chemical BiologyRutgersThe State University of New JerseyPiscatawayNJ08854USA
| | - Morteza Mahmoudi
- Department of Radiology and Precision Health ProgramMichigan State UniversityEast LansingMI48824USA
| |
Collapse
|
36
|
Sharma RK, Yadav S, Dutta S, Kale HB, Warkad IR, Zbořil R, Varma RS, Gawande MB. Silver nanomaterials: synthesis and (electro/photo) catalytic applications. Chem Soc Rev 2021; 50:11293-11380. [PMID: 34661205 PMCID: PMC8942099 DOI: 10.1039/d0cs00912a] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In view of their unique characteristics and properties, silver nanomaterials (Ag NMs) have been used not only in the field of nanomedicine but also for diverse advanced catalytic technologies. In this comprehensive review, light is shed on general synthetic approaches encompassing chemical reduction, sonochemical, microwave, and thermal treatment among the preparative methods for the syntheses of Ag-based NMs and their catalytic applications. Additionally, some of the latest innovative approaches such as continuous flow integrated with MW and other benign approaches have been emphasized that ultimately pave the way for sustainability. Moreover, the potential applications of emerging Ag NMs, including sub nanomaterials and single atoms, in the field of liquid-phase catalysis, photocatalysis, and electrocatalysis as well as a positive role of Ag NMs in catalytic reactions are meticulously summarized. The scientific interest in the synthesis and applications of Ag NMs lies in the integrated benefits of their catalytic activity, selectivity, stability, and recovery. Therefore, the rise and journey of Ag NM-based catalysts will inspire a new generation of chemists to tailor and design robust catalysts that can effectively tackle major environmental challenges and help to replace noble metals in advanced catalytic applications. This overview concludes by providing future perspectives on the research into Ag NMs in the arena of electrocatalysis and photocatalysis.
Collapse
Affiliation(s)
- Rakesh Kumar Sharma
- Green Chemistry Network Centre, University of Delhi, New Delhi-110007, India.
| | - Sneha Yadav
- Green Chemistry Network Centre, University of Delhi, New Delhi-110007, India.
| | - Sriparna Dutta
- Green Chemistry Network Centre, University of Delhi, New Delhi-110007, India.
| | - Hanumant B Kale
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Mumbai-Marathwada Campus, Jalna-431213, Maharashtra, India.
| | - Indrajeet R Warkad
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Mumbai-Marathwada Campus, Jalna-431213, Maharashtra, India.
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
- Nanotechnology Centre, CEET, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
- U. S. Environmental Protection Agency, ORD, Center for Environmental Solutions and Emergency Response Water Infrastructure Division/Chemical Methods and Treatment Branch, 26 West Martin Luther King Drive, MS 483 Cincinnati, Ohio 45268, USA.
| | - Manoj B Gawande
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Mumbai-Marathwada Campus, Jalna-431213, Maharashtra, India.
| |
Collapse
|
37
|
Rajendran RK, Lin CC. Stability and Microbial Toxicity of Silver Nanoparticles under Denitrifying Conditions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:46233-46246. [PMID: 34547889 DOI: 10.1021/acsami.1c10662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
While the antibacterial effect of silver nanoparticles (AgNPs) on environmentally beneficial microbes has drawn considerable attention, the stability and microbial toxicity of AgNPs in a system where nitrate reduction is the dominant terminal electron-accepting process remain understudied. Here, we explore the impact of citrate-coated AgNPs (cit-AgNPs) on the growth and metabolism of two metal-sensitive and one nonsensitive bacterial strains under denitrifying conditions. Dose-response analysis revealed that in contrast to the bacteriostatic effect exhibited at 1 ppm, 5 ppm cit-AgNPs were bactericidal to the metal-sensitive strains. It was observed that the growth of the cells initiated Ag(I) formation, and the supplement of chloride (2.7 mM) to the cultures substantially mitigated the bactericidal capacity of cit-AgNPs, indicating that AgNP dissolution to ionic Ag(I) played a key role in AgNP toxicity. Abiotic experiments confirmed that nitrite, not nitrate, had the capacity to oxidize cit-AgNPs. Transcriptomic analysis revealed that (i) the gene encoding for membrane stress was upregulated proportionally to cit-AgNP concentrations; (ii) cit-AgNPs and Ag(I) at higher levels upregulated genes involved in oxidative stress and iron-sulfur clusters, whereas expressions of the genes responsible for electron transport, ATP synthesis, and denitrification were substantially repressed; (iii) the addition of chloride significantly altered the level of transcriptional profiles of all of the genes. These results not only provide evidence of abiotic AgNP oxidation by metabolic intermediate nitrogen species but also suggest that AgNPs and Ag(I) may induce differential toxicity modes to prokaryotes. Our findings reinforce the importance of evaluating the potential ecological toxicity and risks associated with the transformation of nanomaterials.
Collapse
Affiliation(s)
- Ranjith Kumar Rajendran
- Institute of Environmental Engineering, National Central University, Taoyuan City 32001, Taiwan
| | - Chu-Ching Lin
- Institute of Environmental Engineering, National Central University, Taoyuan City 32001, Taiwan
| |
Collapse
|
38
|
Zhao J, Wang X, Hoang SA, Bolan NS, Kirkham MB, Liu J, Xia X, Li Y. Silver nanoparticles in aquatic sediments: Occurrence, chemical transformations, toxicity, and analytical methods. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126368. [PMID: 34329024 DOI: 10.1016/j.jhazmat.2021.126368] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Sediments represent the major sink for released silver nanoparticles (AgNPs) in aquatic environments. It is well known that the environmental behavior and toxicity of AgNPs in sediments are governed by their specific chemical species instead of their total concentration. This review focuses on various chemical transformations of AgNPs in sediments, which have not been well outlined before. We first outline the concentrations of AgNPs in sediments. The predicted concentrations are 1-5 µg kg-1 in most model studies. Once enter sediments, AgNPs are transformed to different species (e.g., Ag2S, Ag-humic substance complexes, AgCl, and Ag+) during multiple chemical transformations, such as oxidative dissolution, sulfidation, chlorination, and complexation. Those chemical behaviors mitigate the toxicity of AgNPs by reducing their availability and decreasing Ag+ release. Benthic invertebrates and microbes are prone to be affected by AgNPs. AgNPs are found to be accumulated in sediment-dwelling organisms and transferred to higher trophic levels along the food web. Besides X-ray absorption spectroscopy, reliable separation procedures coupled with detection techniques, are powerful tools that characterize the speciation of AgNPs in sediments. More research is needed to investigate diverse chemical transformations in various sediments through development of novel techniques and mathematical models.
Collapse
Affiliation(s)
- Jian Zhao
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Xinjie Wang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Son A Hoang
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan, NSW 2308, Australia; Division of Urban Infrastructural Engineering, Mien Trung University of Civil Engineering, Phu Yen 56000, Viet Nam
| | - Nanthi S Bolan
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan, NSW 2308, Australia; School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - M B Kirkham
- Department of Agronomy, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS 66506, United States
| | - Jingnan Liu
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Xinghui Xia
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Yang Li
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, People's Republic of China.
| |
Collapse
|
39
|
Yang J, Huang Y, Dai J, Shi X, Zheng Y. A sandwich structure composite wound dressing with firmly anchored silver nanoparticles for severe burn wound healing in a porcine model. Regen Biomater 2021; 8:rbab037. [PMID: 34350029 PMCID: PMC8329475 DOI: 10.1093/rb/rbab037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/25/2021] [Accepted: 06/11/2021] [Indexed: 12/16/2022] Open
Abstract
Wounds may remain open for a few weeks in severe burns, which provide an entry point for pathogens and microorganisms invading. Thus, wound dressings with long-term antimicrobial activity are crucial for severe burn wound healing. Here, a sandwich structure composite wound dressing anchored with silver nanoparticles (AgNPs) was developed for severe burn wound healing. AgNPs were in situ synthesized on the fibers of chitosan nonwoven fabric (CSNWF) as the interlayer of wound dressing for sustained release of silver ion. The firmly anchored AgNPs could prevent its entry into the body, thereby eliminating the toxicity of nanomaterials. The outer layer was a polyurethane membrane, which has a nanoporous structure that could maintain free transmission of water vapor. Chitosan/collagen sponge was selected as the inner layer because of its excellent biocompatibility and biodegradability. The presence of AgNPs in the CSNWF was fully characterized, and the high antibacterial activity of CSNWF/AgNPs was confirmed by against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. The superior wound healing effect on deep dermal burns of presented composite wound dressing was demonstrated in a porcine model. Our finding suggested that the prepared AgNPs doped sandwich structure composite wound dressing has great potential application in severe wound care.
Collapse
Affiliation(s)
- Jianmin Yang
- Department of Biomedical Engineering, College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China.,Fujian Key Lab of Medical Instrument and Biopharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, 350108, China
| | - Yufeng Huang
- Department of Biomedical Engineering, College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Jiajia Dai
- Department of Biomedical Engineering, College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Xianai Shi
- Department of Biomedical Engineering, College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China.,Fujian Key Lab of Medical Instrument and Biopharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, 350108, China
| | - Yunquan Zheng
- Fujian Key Lab of Medical Instrument and Biopharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, 350108, China.,Institute of Pharmaceutical Biotechnology and Engineering, College of Chemistry, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| |
Collapse
|
40
|
Cao C, Huang J, Yan CN, Zhang XX, Ma YX. Impacts of Ag and Ag 2S nanoparticles on the nitrogen removal within vertical flow constructed wetlands treating secondary effluent. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 777:145171. [PMID: 33676207 DOI: 10.1016/j.scitotenv.2021.145171] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/29/2020] [Accepted: 01/10/2021] [Indexed: 06/12/2023]
Abstract
In this study, the effects of silver (Ag NPs) and sliver sulfide nanoparticles (Ag2S NPs) on nitrogen removal and nitrogen functional microbes in constructed wetlands were investigated. The obtained results demonstrated that inhibition extent on nitrogen removal relied on NPs types and high concentrations NPs showed higher negative effects. 0.5 mg/L Ag NPs had no influence on NH4+-N removal, amoA and nxrA gene copies, whereas Ag2S NPs and Ag+ decreased NH4+-N removal by reducing abundances of nitrifying genes. The concentrations of NO3--N and TN in all 0.5 mg/L obviously increased compared with control, resulting from decreasing functional genes and denitrifying bacteria. And 0.5 mg/L Ag NPs exhibited largest inhibitory effects, with the highest NO3--N effluent concentrations. 2 mg/L Ag NPs decreased NH4+-N removal, but adverse effects gradually vanished with extension of time, whereas both Ag2S NPs and Ag+ at 2 mg/L influenced NH4+-N transformation and decreased the abundance of amoA and nxrA genes and the AOB Nitrosomonas in CWs. Moreover, 2 mg/L of Ag NPs reduced NO3--N removal by decreasing abundance of nirS and key denitrifying bacteria. To sum up, the inhibition mechanisms concluded from current results were possibly in that Ag NPs exhibited nanotoxicity rather than ionic toxicity.
Collapse
Affiliation(s)
- Chong Cao
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Juan Huang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China.
| | - Chun-Ni Yan
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Xin-Xin Zhang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Yi-Xuan Ma
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
41
|
Bao S, Xu J, Tang W, Fang T. Effect and mechanism of silver nanoparticles on nitrogen transformation in water-sediment system of a hypereutrophic lake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:144182. [PMID: 33360547 DOI: 10.1016/j.scitotenv.2020.144182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Industrialization and urbanization are expected to increase the release of silver nanoparticles (AgNPs) into aquatic ecosystems. However, it remains to be determined how AgNPs influence nitrogen transformation and the underlying mechanism in natural water bodies. Here, the impact of AgNPs on nitrogen cycling in water-sediment system of a hypereutrophic lake was studied and the mechanism of nitrogen transformation was investigated in terms of the nitrogen functional enzymes and genes. Following 7 days of water-sediment microcosm experiments, the levels of total nitroten (TN) and organic nitrogen (OrgN) were significantly increased by 50 mg/L Ag+ treatment when compared with the non-Ag control (P < 0.05). In contrast, the levels of TN and Org-N were both slightly decreased by AgNPs treatments (0.5 and 50 mg/L). Additionally, the levels of NO3--N were evidently reduced with the presence of AgNPs (P < 0.05). Further, our data proved that enzymes and those enzyme encoding genes involved in the nitrogen transformation may directly responsible for the alterations of nitrogen transformation. Overall, our work suggested that the short-term exposure to AgNPs might cause hormetic effects on nitrogen-transforming microorganisms in hypereutrophic lakes, and have a potential to result in non-negligible changes in the nitrogen cycling of hypereutrophic lakes.
Collapse
Affiliation(s)
- Shaopan Bao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jian Xu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Tang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Tao Fang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
42
|
Fan D, Wang S, Guo Y, Zhu Y, Agathokleous E, Ahmad S, Han J. Cd induced biphasic response in soil alkaline phosphatase and changed soil bacterial community composition: The role of background Cd contamination and time as additional factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143771. [PMID: 33229081 DOI: 10.1016/j.scitotenv.2020.143771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 06/11/2023]
Abstract
Hormesis is an intriguing phenomenon characterized by low-dose stimulation and high-dose inhibition. The hormetic phenomena have been frequently reported in the past decades, but the researches on the biphasic responses of soil enzymes are still limited. The main objective of this study is to explore dose response of alkaline phosphatase (ALP) to Cd (0, 0.003, 0.03, 0.3, 3.0 and 30 mg/kg) in the presence of different levels of background Cd contamination (bulk soil with no added Cd, BS; low background Cd, LB; medium background Cd, MB; and high background Cd, HB). ALP activity at 0.003-0.3 mg Cd/kg was 13-39% higher than that of the control (0 mg Cd/kg) for HB after 7 d. Similarly, the enzyme activities at 0.003-0.03 mg Cd/kg were 2-25% and 14-17% higher than those of the controls for MB and HB after 60 d. After 90 d, ALP activities at 0.3-3.0 mg Cd/kg increased by 11-17% for LB. The dose-response curves had the shape of an inverted U, showing biphasic responses at days 7 (HB), 60 (MB and HB) and 90 (LB). After 60 days of exposure, total operational taxonomic units (OTU) numbers and unique species exposed to Cd stress displayed hormetic-response curve for MB. The relative abundances of Agrobacterium, Salinimicrobiums, Bacilllus, and Oceanobacillus displayed significantly positive correlations with ALP activity. This suggested that bacterial communities potentially contribute to ALP's hormesis. This study further provides new insights into the ecological mechanisms of pollutant-induced hormesis, and substantially contributes to the ecological risk assessment of Cd pollution.
Collapse
Affiliation(s)
- Diwu Fan
- College of Biological and Environment, Nanjing Forestry University, Nanjing, Jiangsu, China.
| | - Shengyan Wang
- College of Biological and Environment, Nanjing Forestry University, Nanjing, Jiangsu, China.
| | - Yanhui Guo
- College of Biological and Environment, Nanjing Forestry University, Nanjing, Jiangsu, China.
| | - Yongli Zhu
- College of Biological and Environment, Nanjing Forestry University, Nanjing, Jiangsu, China; Co-Innovation Center for the Sustainable Forestry in Southern Jiangsu Province, Nanjing, Jiangsu, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Nanjing, Jiangsu, China.
| | - Evgenios Agathokleous
- Key Laboratory of Agrometeorology of Jiangsu Province, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), Nanjing, Jiangsu 210044, China.
| | - Sajjad Ahmad
- Department of Civil and Environmental Engineering, University of Nevada, Las Vegas, NV 89154-4015, USA.
| | - Jiangang Han
- College of Biological and Environment, Nanjing Forestry University, Nanjing, Jiangsu, China; Co-Innovation Center for the Sustainable Forestry in Southern Jiangsu Province, Nanjing, Jiangsu, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Nanjing, Jiangsu, China.
| |
Collapse
|
43
|
Smith DS, Nasir R, Parker W, Peters A, Merrington G, van Egmond R, Lofts S. Developing understanding of the fate and behaviour of silver in fresh waters and waste waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143648. [PMID: 33316521 DOI: 10.1016/j.scitotenv.2020.143648] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 06/12/2023]
Abstract
The Windermere Humic Aqueous Model (WHAM) is often used for risk assessment of metals; WHAM can be used to estimate the potential bioavailability of dissolved metals, where metals complexed to dissolved organic matter (DOM) are expected to be less toxic than ionic forms. Silver is a potential metal of concern but WHAM has not been rigorously tested against experimental measurements. This study compares WHAM predictions to measured ionic silver during fixed pH (4, 8 or 10) argentometric titrations of DOM from diverse origins. There were almost two orders of magnitude variation in free silver between sources but, within model uncertainty, WHAM captured this variability. This agreement, between measurements and models, suggests that WHAM is an appropriate tool for silver risk assessment in surface receiving waters when DOM is predominantly in the form of humic/fulvic acids. In sewage samples WHAM dramatically underestimated silver binding by approximately 3 orders of magnitude. Simulations with additional specific strong silver binding sulphide-like binding sites could explain Ag binding at low loadings, but not at higher loadings. This suggests the presence of additional intermediate strength binding sites. These additional ligands would represent components of the raw sewage largely absent in natural waters unimpacted by sewage effluents. A revised empirical model was proposed to account for these sewage-specific binding sites. Further, it is suspected that as sewage organic matter is degraded, either by natural attenuation or by engineered treatment, that sewage organic matter will degrade to a form more readily modelled by WHAM; i.e., humic-like substances. These ageing experiments were performed starting from raw sewage, and the material did in fact become more humic-like, but even after 30 days of aerobic incubation still showed greater Ag+ binding than WHAM predictions. In these incubation experiments it was found that silver (up to 1000 μg/L) had minimal impact on ammonia oxidation kinetics.
Collapse
Affiliation(s)
- D Scott Smith
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON, Canada.
| | - R Nasir
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Wayne Parker
- Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, ON, Canada
| | - A Peters
- WCA Environment Ltd., Brunel House, Faringdon, Oxfordshire, United Kingdom
| | - G Merrington
- WCA Environment Ltd., Brunel House, Faringdon, Oxfordshire, United Kingdom
| | - R van Egmond
- Safety and Environmental Assurance Centre, Unilever, Sharnbrook, Bedfordshire, United Kingdom
| | - S Lofts
- Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP, United Kingdom
| |
Collapse
|
44
|
Cao C, Huang J, Yan CN, Ma YX, Xiao J, Zhang XX. Comparative analysis of upward and downward vertical flow constructed wetlands on the nitrogen removal and functional microbes treating wastewater containing Ag nanoparticles. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 278:111573. [PMID: 33137687 DOI: 10.1016/j.jenvman.2020.111573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 06/11/2023]
Abstract
This study investigated impacts of silver nanoparticles (AgNPs) on nitrogen removal within constructed wetlands (CWs) with different flow directions. The obtained results showed that addition of AgNPs at 0.5 and 2 mg/L significantly inhibited NH4+-N removal, resulting from lower abundances of functional genes (amoA and nxrA) within CWs. And higher abundances of amoA and nxrA genes at 0.5 mg/L were observed in downward flow CW, leading to better NH4+-N removal, compared to upward flow CW. Besides, nitrifying genes amoA and nxrA in upward flow CW at 2.0 mg/L exhibited higher than downward flow CW, explaining better NH4+-N removal in upward flow CW. 0.5 mg/L AgNPs significantly declined NO3--N and TN removal, resulted from decreasing abundances of nirK, nirS and nosZ. In contrast, abundances of nirK, nirS and nosZ genes had slightly lower or higher than before adding AgNPs in upward flow CW, leading to lower NO3--N and TN effluent concentrations. High throughput sequencing also indicated the changes of functional bacterial community after exposing to AgNPs.
Collapse
Affiliation(s)
- Chong Cao
- Dept. of Municipal Engineering, School of Civil Engineering, Southeast University, No. 2 Southeast University Road, Nanjing, Jiangsu Province, 211189, China
| | - Juan Huang
- Dept. of Municipal Engineering, School of Civil Engineering, Southeast University, No. 2 Southeast University Road, Nanjing, Jiangsu Province, 211189, China.
| | - Chun-Ni Yan
- Dept. of Municipal Engineering, School of Civil Engineering, Southeast University, No. 2 Southeast University Road, Nanjing, Jiangsu Province, 211189, China
| | - Yi-Xuan Ma
- Dept. of Municipal Engineering, School of Civil Engineering, Southeast University, No. 2 Southeast University Road, Nanjing, Jiangsu Province, 211189, China
| | - Jun Xiao
- Dept. of Municipal Engineering, School of Civil Engineering, Southeast University, No. 2 Southeast University Road, Nanjing, Jiangsu Province, 211189, China
| | - Xin-Xin Zhang
- Dept. of Municipal Engineering, School of Civil Engineering, Southeast University, No. 2 Southeast University Road, Nanjing, Jiangsu Province, 211189, China
| |
Collapse
|
45
|
Lv B, Cui Y, Wei H, Chen Q, Zhang D. Elucidating the role of earthworms in N 2O emission and production pathway during vermicomposting of sewage sludge and rice straw. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123215. [PMID: 32593023 DOI: 10.1016/j.jhazmat.2020.123215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Vermicomposting is a sustainable option for the recycling of biodegradable organic waste. However, it also produces nitrous oxide (N2O), which is a highly potent greenhouse gas. In this study, the N2O stable isotope and functional genes for nitrogen cycling were determined to investigate the sources of N2O during vermicomposting. The results showed that vermicomposting promoted the organic degradation and nitrogen nitrification, and the presence of earthworms increased the emission of N2O during vermicomposting compared to that during the control treatment with no earthworms. The site preference analysis of N2O stable isotope showed that both nitrification and denitrification were present during the early stages of vermicomposting, while nitrification was the dominant contributor to N2O production in the later stages. Moreover, earthworms increased the gene copies of amoA, and stimulated the nitrifying bacteria, and hence, increased the N2O emission via nitrification. In addition, the activity of earthworms reduced the gene number of nosZ during vermicomposting, while the denitrification was the main source of N2O in the earthworm gut, as the conditions inside the gut inhibited nosZ. Overall, nitrification was the major pathway (55.8-88.7 %) for N2O production, which was promoted by the introduction of earthworms through nitrification.
Collapse
Affiliation(s)
- Baoyi Lv
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, East China Normal University, Shanghai 200241, China.
| | - Yuxue Cui
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, East China Normal University, Shanghai 200241, China
| | - Huawei Wei
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, East China Normal University, Shanghai 200241, China
| | - Qihao Chen
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Di Zhang
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China; International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Shanghai Maritime University, Shanghai, 201306, China
| |
Collapse
|
46
|
Agathokleous E, Calabrese EJ. Environmental toxicology and ecotoxicology: How clean is clean? Rethinking dose-response analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 746:138769. [PMID: 32389333 DOI: 10.1016/j.scitotenv.2020.138769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 05/17/2023]
Abstract
Global agendas for sustaining clean environments target remediation of multimedia contaminants, but how clean is clean? Environmental Toxicology and Ecotoxicology focus on issues concerning "clean". However, the models used to assess the effects of environmental multimedia on individual living organisms and communities or populations in Environmental Toxicology and Ecotoxicology may fail to provide reliable estimates for risk assessment and optimize health. Recent developments in low-dose effects research provide a novel means in Environmental Toxicology and Ecotoxicology to improve the quality of hazard and risk assessment.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology (NUIST), Ningliu Rd. 219, Nanjing, Jiangsu 210044, China.
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
47
|
Wu J, Bai Y, Lu B, Li C, Menzies NW, Bertsch PM, Wang Z, Wang P, Kopittke PM. Application of sewage sludge containing environmentally-relevant silver sulfide nanoparticles increases emissions of nitrous oxide in saline soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114807. [PMID: 32512423 DOI: 10.1016/j.envpol.2020.114807] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/24/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
Silver (Ag) is released from a range of products and accumulates in agricultural soils as silver sulfide (Ag2S) through the application of Ag-containing biosolids as a soil amendment. Although Ag2S is comparatively stable, its solubility increases with salinity, potentially altering its impacts on microbial communities due to the anti-microbial properties of Ag. In this study, we investigated the impacts of Ag on the microbially mediated N cycle in saline soils by examining the relationship between the (bio)availability of Ag2S and microbial functioning following the application of Ag2S-containing sludge. Synchrotron-based X-ray absorption spectroscopy (XAS) revealed that the Ag2S was stable within the soil, although extractable Ag concentrations increased up to 18-fold in soils with higher salinity. However, the extractable Ag accounted for <0.05% of the total Ag in all soils and had no impact on plant biomass or soil bacterial biomass. Interestingly, at high soil salinity, Ag2S significantly increased cumulative N2O emissions from 80.9 to 229.2 mg kg-1 dry soil (by 180%) compared to the corresponding control sludge treatment, which was ascribed to the increased abundance of nitrification and denitrification-related genes (amoA, nxrB, narG, napA, nirS, and nosZ) and increased relative abundance of denitrifiers (Rhodanobacter, Salinimicrobium, and Zunongwangia). Together, our findings show that the application of Ag2S-containing sludge to a saline soil can disrupt the N cycle and increase N2O emissions from agroecosystems.
Collapse
Affiliation(s)
- Jingtao Wu
- The University of Queensland, School of Agriculture and Food Sciences, St Lucia, Queensland, 4072, Australia
| | - Yunfei Bai
- Nanjing Agricultural University, College of Resources and Environmental Sciences, Nanjing, 210095, China
| | - Bingkun Lu
- Nanjing Agricultural University, College of Resources and Environmental Sciences, Nanjing, 210095, China
| | - Cui Li
- The University of Queensland, School of Agriculture and Food Sciences, St Lucia, Queensland, 4072, Australia; Northwestern Polytechnical University, Research Centre for Ecology and Environmental Sciences, Xi'an, 710072, China
| | - Neal W Menzies
- The University of Queensland, School of Agriculture and Food Sciences, St Lucia, Queensland, 4072, Australia
| | - Paul M Bertsch
- The University of Queensland, School of Agriculture and Food Sciences, St Lucia, Queensland, 4072, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO), Land and Water, 41 Boggo Road, Ecosciences Precinct, Dutton Park, 4102, Queensland, Australia
| | - Zhanke Wang
- The University of Queensland, School of Chemical Engineering, St Lucia, Queensland, 4072, Australia
| | - Peng Wang
- Nanjing Agricultural University, College of Resources and Environmental Sciences, Nanjing, 210095, China.
| | - Peter M Kopittke
- The University of Queensland, School of Agriculture and Food Sciences, St Lucia, Queensland, 4072, Australia
| |
Collapse
|
48
|
Chen H, Du M, Wang D, Zhou Y, Zeng L, Yang X. Influence of chlortetracycline as an antibiotic residue on nitrous oxide emissions from wastewater treatment. BIORESOURCE TECHNOLOGY 2020; 313:123696. [PMID: 32570074 DOI: 10.1016/j.biortech.2020.123696] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/10/2020] [Accepted: 06/13/2020] [Indexed: 06/11/2023]
Abstract
Strengthening the removal of antibiotics in wastewater treatment plants is a research focus, but whether antibiotics affect nitrous oxide (N2O) emissions from wastewater treatment remains to be determined. In this study, the effect of chlortetracycline (CTC) on N2O emissions in anaerobic/oxic/anoxic sequential batch reactors was investigated. Experimental results show that CTC promotes N2O emissions during biological nutrient removal. The addition of 0.1 mg/L CTC increased the N2O emission factor by 41.4% compared to the control. Mechanism exploration shows that CTC stimulates the release of extracellular polymeric substance (EPS) and binds to it, the generated EPS-CTC conjugates hinder or expand the mass transfer channel, which intensifies the electronic competition between oxidoreductases and the substrate competition between microorganisms, resulting in incomplete denitrification and nitrite accumulation, thereby increasing N2O emissions.
Collapse
Affiliation(s)
- Hongbo Chen
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
| | - Mingyang Du
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Yaoyu Zhou
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Long Zeng
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Xiao Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
49
|
Wu J, Bai Y, Lu B, Zhao W, Forstner C, Menzies NW, Bertsch PM, Wang P, Kopittke PM. Silver Sulfide Nanoparticles Reduce Nitrous Oxide Emissions by Inhibiting Denitrification in the Earthworm Gut. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11146-11154. [PMID: 32790293 DOI: 10.1021/acs.est.0c01241] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The accumulation of Ag2S in agricultural soil via application of Ag-containing sludge potentially affects the functioning of soil microorganisms and earthworms (EWs) due to the strong antimicrobial properties of Ag. This study examined the effects of Ag2S nanoparticles (Ag2S-NPs) on the EW-mediated (Eisenia fetida and Pontoscolex corethrurus) soil N cycle. We used 16S rRNA gene-based sequencing and quantitative polymerase chain reaction to examine the bacterial community and nitrification/denitrification-related gene abundance. The presence of either EWs or Ag significantly increased denitrification and N2O emissions. However, the addition of Ag2S to EW-inhabited soil reduced N2O emissions by 14-33%. Furthermore, Ag2S caused a low-dose stimulation but a high-dose inhibition to N2O flux from the EW gut itself. Accordingly, an increase in Ag in the EW gut caused a decrease in the relative abundance of denitrifiers in both the soil and the gut, especially for the dominant genus Bacillus. Ag2S also decreased the copy numbers of nitrification gene (nxrB) and denitrification genes (napA, nirS, and nosZ) in EW gut, leading to the observed decrease in N2O emissions. Collectively, applying Ag2S-containing sludge disturbs the denitrification function of the EW gut microbiota and the cycling of N in soil-based systems.
Collapse
Affiliation(s)
- Jingtao Wu
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia 4072, Queensland, Australia
| | - Yunfei Bai
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Bingkun Lu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Zhao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Christian Forstner
- School of Earth and Environmental Sciences, The University of Queensland, St Lucia 4072, Queensland, Australia
| | - Neal W Menzies
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia 4072, Queensland, Australia
| | - Paul M Bertsch
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia 4072, Queensland, Australia
- Land and Water Ecosciences Precinct, Commonwealth Scientific and Industrial Research Organisation (CSIRO), 41 Boggo Road, Dutton Park 4102, Queensland, Australia
| | - Peng Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Peter M Kopittke
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia 4072, Queensland, Australia
| |
Collapse
|
50
|
McGee CF. The effects of silver nanoparticles on the microbial nitrogen cycle: a review of the known risks. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:31061-31073. [PMID: 32514926 DOI: 10.1007/s11356-020-09548-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/01/2020] [Indexed: 05/16/2023]
Abstract
The nitrogen cycle is an integral biogeochemical function for maintaining healthy environments. Nitrogen is a key nutrient that must be continuously replenished through recycling mechanisms to sustain ecosystems, disruption to which can result in compromised ecosystem functioning. Certain stages in the microbial conversion of nitrogen compounds are performed by a limited range of micro-organisms making these key functional species in ecosystems. The growing industrial use of silver nanoparticles (AgNPs) potentially poses significant risks for microbial nitrogen cycling species. AgNPs possess potent antimicrobial properties and are expected to reach a range of natural environments through several routes of exposure. Certain functional nitrogen cycling microbes have been shown to be highly susceptible to AgNP toxicity. The current literature indicates that AgNPs can negatively affect certain nitrogen fixing, nitrifying and denitrifying microbes in vitro. In vivo studies investigating the effect of AgNPs on nitrogen cycling microbial communities and nitrogen transformation rates in soil, sediment and sludge environments have also indicated disruption of these functional processes. This review provides a comprehensive description of the current state of knowledge regarding the toxicity of AgNPs to nitrogen cycling communities. The aim of the review is to highlight the most susceptible stages in the nitrogen cycle and the implications for the affected ecosystems.
Collapse
Affiliation(s)
- Conor Francis McGee
- Department of Agriculture, Food and the Marine, Cellbridge, Co. Kildare, Ireland.
| |
Collapse
|