1
|
Mazzarini M, Cherone J, Nguyen T, Martelli F, Varricchio L, Funnell APW, Papayannopoulou T, Migliaccio AR. The glucocorticoid receptor elicited proliferative response in human erythropoiesis is BCL11A-dependent. Stem Cells 2024; 42:1006-1022. [PMID: 39110040 DOI: 10.1093/stmcls/sxae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/16/2024] [Indexed: 11/08/2024]
Abstract
Prior evidence indicates that the erythroid cellular response to glucocorticoids (GC) has developmental specificity, namely, that developmentally more advanced cells that are undergoing or have undergone fetal to adult globin switching are more responsive to GC-induced expansion. To investigate the molecular underpinnings of this, we focused on the major developmental globin regulator BCL11A. We compared: (1) levels of expression and nuclear content of BCL11A in adult erythroid cells upon GC stimulation; (2) response to GC of CD34+ cells from patients with BCL11A microdeletions and reduced BCL11A expression, and; (3) response to GC of 2 cellular models (HUDEP-2 and adult CD34+ cells) before and after reduction of BCL11A expression by shRNA. We observed that: (1) GC-expanded erythroid cells from a large cohort of blood donors displayed amplified expression and nuclear accumulation of BCL11A; (2) CD34 + cells from BCL11A microdeletion patients generated fewer erythroid cells when cultured with GC compared to their parents, while the erythroid expansion of the patients was similar to that of their parents in cultures without GC, and; (3) adult CD34+ cells and HUDEP-2 cells with shRNA-depleted expression of BCL11A exhibit reduced expansion in response to GC. In addition, RNA-seq profiling of shRNA-BCL11A CD34+ cells cultured with and without GC was similar (very few differentially expressed genes), while GC-specific responses (differential expression of GILZ and of numerous additional genes) were observed only in control cells with unperturbed BCL11A expression. These data indicate that BCL11A is an important participant in certain aspects of the stress pathway sustained by GC.
Collapse
Affiliation(s)
- Maria Mazzarini
- Department of Biomedical and Neuromotorial Sciences, Alma Mater University, 40126 Bologna, Italy
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, United States
| | - Jennifer Cherone
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, United States
| | - Truong Nguyen
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, United States
| | - Fabrizio Martelli
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Lilian Varricchio
- Division of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | | | - Thalia Papayannopoulou
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA 98185, United States
| | - Anna Rita Migliaccio
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, United States
- Institute of Nanotechnology, National Research Council (Cnr-NANOTEC), c/o Campus Ecotekne, 73100 Lecce, Italy
| |
Collapse
|
2
|
Olivier E, Zhang S, Yan Z, Bouhassira EE. Stem cell factor and erythropoietin-independent production of cultured reticulocytes. Haematologica 2024; 109:3705-3720. [PMID: 38618684 PMCID: PMC11532706 DOI: 10.3324/haematol.2023.284427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/05/2024] [Indexed: 04/16/2024] Open
Abstract
Cultured reticulocytes can supplement transfusion needs and offer promise for drug delivery and immune tolerization. They can be produced from induced pluripotent stem cells (iPSC), but the 45-day culture time and cytokine costs make largescale production prohibitive. To overcome these limitations, we have generated iPSC that express constitutive stem cell factor (SCF) receptor and jak2 adaptor alleles. We show that iPSC lines carrying these alleles can differentiate into self-renewing erythroblasts that can proliferate for up to 70 cell-doubling in a cost-effective, chemically-defined, albumin- and cytokine-free medium. These kitjak2 self-renewing erythroblasts retain the ability to enucleate at a high rate up to senescence. Kitjak2-derived cultured reticulocytes should be safe for transfusion because they can be irradiated to eliminate residual nucleated cells. The kitjak2 cells express blood group 0 and test negative for RhD and other clinically significant red blood cell antigens and have sufficient proliferation capacity to meet global red blood cell needs.
Collapse
Affiliation(s)
- Emmanuel Olivier
- Department of Cell Biology, Albert Einstein College of Medicine Bronx, New York, 10461
| | - Shouping Zhang
- Department of Cell Biology, Albert Einstein College of Medicine Bronx, New York, 10461
| | - Zi Yan
- Department of Cell Biology, Albert Einstein College of Medicine Bronx, New York, 10461
| | - Eric E Bouhassira
- Department of Cell Biology, Albert Einstein College of Medicine Bronx, New York.
| |
Collapse
|
3
|
Dinakaran S, Qutaina S, Zhao H, Tang Y, Wang Z, Ruiz S, Nomura-Kitabayashi A, Metz CN, Arthur HM, Meadows SM, Blanc L, Faughnan ME, Marambaud P. CDK6-mediated endothelial cell cycle acceleration drives arteriovenous malformations in hereditary hemorrhagic telangiectasia. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1301-1317. [PMID: 39487364 DOI: 10.1038/s44161-024-00550-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 09/17/2024] [Indexed: 11/04/2024]
Abstract
Increased endothelial cell proliferation is a hallmark of arteriovenous malformations (AVMs) in hereditary hemorrhagic telangiectasia (HHT). Here, we report a cyclin-dependent kinase 6 (CDK6)-driven mechanism of cell cycle deregulation involved in endothelial cell proliferation and HHT pathology. Specifically, endothelial cells from the livers of HHT mice bypassed the G1/S checkpoint and progressed through the cell cycle at an accelerated pace. Phosphorylated retinoblastoma (pRB1)-a marker of G1/S transition through the restriction point-accumulated in endothelial cells from retinal AVMs of HHT mice and endothelial cells from skin telangiectasia samples from HHT patients. Mechanistically, inhibition of activin receptor-like kinase 1 signaling increased key restriction point mediators, and treatment with the CDK4/6 inhibitors palbociclib or ribociclib blocked increases in pRB1 and retinal AVMs in HHT mice. Palbociclib also improved vascular pathology in the brain and liver, and slowed cell cycle progression in endothelial cells and endothelial cell proliferation. Endothelial cell-specific deletion of CDK6 was sufficient to protect HHT mice from AVM pathology. Thus, clinically approved CDK4/6 inhibitors might have the potential to be repurposed for HHT.
Collapse
Affiliation(s)
- Sajeth Dinakaran
- Litwin-Zucker Alzheimer's Research Center, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Sima Qutaina
- Litwin-Zucker Alzheimer's Research Center, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Haitian Zhao
- Litwin-Zucker Alzheimer's Research Center, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Yuefeng Tang
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Zhimin Wang
- Litwin-Zucker Alzheimer's Research Center, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Santiago Ruiz
- Litwin-Zucker Alzheimer's Research Center, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Laboratory of Metabolic Diseases and Aging, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Aya Nomura-Kitabayashi
- Litwin-Zucker Alzheimer's Research Center, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Christine N Metz
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Helen M Arthur
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Stryder M Meadows
- Cell and Molecular Biology Department, Tulane University, New Orleans, LA, USA
| | - Lionel Blanc
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Division of Pediatric Hematology/Oncology, Cohen Children's Medical Center, New Hyde Park, NY, USA
| | - Marie E Faughnan
- Toronto HHT Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
- Division of Respirology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Philippe Marambaud
- Litwin-Zucker Alzheimer's Research Center, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA.
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA.
| |
Collapse
|
4
|
Wang J, Zhang Y, Liu J, Wu J, Liang Y, Xu C, Ma J, Liang J, Zhao Y, Zhang X, Li Y, Wang D, Zheng L, Wang D, Jin X, Song H, Zhu X, Cheng Q, Lin L, Gao J, Tong J, Shi L. TMEM56 deficiency impairs the haem metabolism and cell cycle progression during human erythropoiesis. Br J Haematol 2024; 205:2008-2021. [PMID: 39344568 DOI: 10.1111/bjh.19801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
TMEM56, a gene coding a transmembrane protein, is abundantly expressed in erythroid cells. Despite this, its role in erythropoiesis has not been well characterized. In this study, we sought to clarify the function of TMEM56 in erythroid development, focusing specifically on its involvement in haem biosynthesis and cell cycle progression. To do this, we used CD34+ haematopoietic stem cells derived from umbilical cord blood and differentiated them into erythroid cells in an ex vivo model. Our results indicate that the loss of TMEM56 disrupts haem biosynthesis and impairs erythroid differentiation. Furthermore, deletion of Tmem56 in the erythroid lineage in murine models using erythropoietin receptor (EpoR)-Cre revealed defects in erythroid progenitors within the bone marrow under both normal conditions and during haemolytic anaemia. These observations underscore the regulatory role of TMEM56 in maintaining erythroid lineage homeostasis. Taken together, our results unveil a previously unrecognized function of TMEM56 in erythroid differentiation and suggest its potential as an unfounded target for therapeutic strategies in the treatment of erythropoietic disorders.
Collapse
Affiliation(s)
- Jingwei Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yingnan Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jinhua Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jing Wu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yipeng Liang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Changlu Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jinfa Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jing Liang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yanhong Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiaoru Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yue Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Di Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Lingyue Zheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Ding Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xu Jin
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Haoze Song
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xu Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Qimei Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Lexuan Lin
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jie Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jingyuan Tong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Lihong Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| |
Collapse
|
5
|
Lin X, Gupta D, Vaitsiankova A, Bhandari SK, Leung KSK, Menolfi D, Lee BJ, Russell HR, Gershik S, Huang X, Gu W, McKinnon PJ, Dantzer F, Rothenberg E, Tomkinson AE, Zha S. Inactive Parp2 causes Tp53-dependent lethal anemia by blocking replication-associated nick ligation in erythroblasts. Mol Cell 2024; 84:3916-3931.e7. [PMID: 39383878 PMCID: PMC11615737 DOI: 10.1016/j.molcel.2024.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/22/2024] [Accepted: 09/16/2024] [Indexed: 10/11/2024]
Abstract
Poly (ADP-ribose) polymerase (PARP) 1 and 2 enzymatic inhibitors (PARPi) are promising cancer treatments. But recently, their use has been hindered by unexplained severe anemia and treatment-related leukemia. In addition to enzymatic inhibition, PARPi also trap PARP1 and 2 at DNA lesions. Here we report that, unlike Parp2-/- mice, which develop normally, mice expressing catalytically inactive Parp2 (E534A and Parp2EA/EA) succumb to Tp53- and Chk2-dependent erythropoietic failure in utero, mirroring Lig1-/- mice. While DNA damage mainly activates PARP1, we demonstrate that DNA replication activates PARP2 robustly. PARP2 is selectively recruited and activated by 5'-phosphorylated nicks (5'p-nicks), including those between Okazaki fragments, resolved by ligase 1 (Lig1) and Lig3. Inactive PARP2, but not its active form or absence, impedes Lig1- and Lig3-mediated ligation, causing dose-dependent replication fork collapse, which is detrimental to erythroblasts with ultra-fast forks. This PARylation-dependent structural function of PARP2 at 5'p-nicks explains the detrimental effects of PARP2 inactivation on erythropoiesis, shedding light on PARPi-induced anemia and the selection for TP53/CHK2 loss.
Collapse
Affiliation(s)
- Xiaohui Lin
- Institute for Cancer Genetics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Dipika Gupta
- New York University School of Medicine, New York, NY 10016, USA
| | - Alina Vaitsiankova
- Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, UK
| | - Seema Khattri Bhandari
- Cancer Research Facility, Departments of Internal Medicine and Molecular Genetics & Microbiology, University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, 915 Camino de Salud, 1 University of New Mexico, Albuquerque, NM 87131, USA
| | | | - Demis Menolfi
- Institute for Cancer Genetics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Brian J Lee
- Institute for Cancer Genetics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Helen R Russell
- Center for Pediatric Neurological Disease Research, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Steven Gershik
- Institute for Cancer Genetics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Xiaoyu Huang
- Institute for Cancer Genetics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Wei Gu
- Institute for Cancer Genetics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA; Department of Pathology & Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Peter J McKinnon
- Center for Pediatric Neurological Disease Research, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Françoise Dantzer
- Poly(ADP-ribosyl)ation and Genome Integrity, Strasbourg drug discovery and development Institute (IMS), UMR7242, Centre Nationale de la Recherche Scientifique/Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg, 300 bld. S. Brant, CS10413, 67412 Illkirch, France
| | - Eli Rothenberg
- New York University School of Medicine, New York, NY 10016, USA
| | - Alan E Tomkinson
- Cancer Research Facility, Departments of Internal Medicine and Molecular Genetics & Microbiology, University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, 915 Camino de Salud, 1 University of New Mexico, Albuquerque, NM 87131, USA
| | - Shan Zha
- Institute for Cancer Genetics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA; Department of Pathology & Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA; Department of Pediatrics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA; Department of Immunology & Microbiology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
6
|
Bhandari SK, Wiest N, Sallmyr A, Du R, Tomkinson A. Redundant but essential functions of PARP1 and PARP2 in DNA ligase I-independent DNA replication. Nucleic Acids Res 2024; 52:10341-10354. [PMID: 39106163 PMCID: PMC11417376 DOI: 10.1093/nar/gkae672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/09/2024] Open
Abstract
While DNA ligase I (LigI) joins most Okazaki fragments, a backup pathway involving poly(ADP-ribose) synthesis, XRCC1 and DNA ligase IIIα (LigIIIα) functions along with the LigI-dependent pathway and is also capable of supporting DNA replication in the absence of LigI. Here we have addressed for the first time the roles of PARP1 and PARP2 in this pathway using isogenic null derivatives of mouse CH12F3 cells. While single and double null mutants of the parental cell line and single mutants of LIG1 null cells were viable, loss of both PARP1 and PARP2 was synthetically lethal with LigI deficiency. Thus, PARP1 and PARP2 have a redundant essential role in LigI-deficient cells. Interestingly, higher levels of PARP2 but not PARP1 associated with newly synthesized DNA in the LIG1 null cells and there was a much higher increase in PARP2 chromatin retention in LIG1 null cells incubated with the PARP inhibitor olaparib with this effect occurring independently of PARP1. Together our results suggest that PARP2 plays a major role in specific cell types that are more dependent upon the backup pathway to complete DNA replication and that PARP2 retention at unligated Okazaki fragments likely contributes to the side effects of current clinical PARP inhibitors.
Collapse
Affiliation(s)
- Seema Khattri Bhandari
- Cancer Research Facility, Departments of Internal Medicine and Molecular Genetics & Microbiology, University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, 915 Camino de Salud, 1 University of New Mexico, Albuquerque, NM 87131, USA
| | - Nathaniel Wiest
- Cancer Research Facility, Departments of Internal Medicine and Molecular Genetics & Microbiology, University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, 915 Camino de Salud, 1 University of New Mexico, Albuquerque, NM 87131, USA
| | - Annahita Sallmyr
- Cancer Research Facility, Departments of Internal Medicine and Molecular Genetics & Microbiology, University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, 915 Camino de Salud, 1 University of New Mexico, Albuquerque, NM 87131, USA
| | - Ruofei Du
- Cancer Research Facility, Departments of Internal Medicine and Molecular Genetics & Microbiology, University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, 915 Camino de Salud, 1 University of New Mexico, Albuquerque, NM 87131, USA
| | - Alan E Tomkinson
- Cancer Research Facility, Departments of Internal Medicine and Molecular Genetics & Microbiology, University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, 915 Camino de Salud, 1 University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
7
|
Do BT, Hsu PP, Vermeulen SY, Wang Z, Hirz T, Abbott KL, Aziz N, Replogle JM, Bjelosevic S, Paolino J, Nelson SA, Block S, Darnell AM, Ferreira R, Zhang H, Milosevic J, Schmidt DR, Chidley C, Harris IS, Weissman JS, Pikman Y, Stegmaier K, Cheloufi S, Su XA, Sykes DB, Vander Heiden MG. Nucleotide depletion promotes cell fate transitions by inducing DNA replication stress. Dev Cell 2024; 59:2203-2221.e15. [PMID: 38823395 PMCID: PMC11444020 DOI: 10.1016/j.devcel.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/14/2024] [Accepted: 05/09/2024] [Indexed: 06/03/2024]
Abstract
Control of cellular identity requires coordination of developmental programs with environmental factors such as nutrient availability, suggesting that perturbing metabolism can alter cell state. Here, we find that nucleotide depletion and DNA replication stress drive differentiation in human and murine normal and transformed hematopoietic systems, including patient-derived acute myeloid leukemia (AML) xenografts. These cell state transitions begin during S phase and are independent of ATR/ATM checkpoint signaling, double-stranded DNA break formation, and changes in cell cycle length. In systems where differentiation is blocked by oncogenic transcription factor expression, replication stress activates primed regulatory loci and induces lineage-appropriate maturation genes despite the persistence of progenitor programs. Altering the baseline cell state by manipulating transcription factor expression causes replication stress to induce genes specific for alternative lineages. The ability of replication stress to selectively activate primed maturation programs across different contexts suggests a general mechanism by which changes in metabolism can promote lineage-appropriate cell state transitions.
Collapse
Affiliation(s)
- Brian T Do
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Harvard-MIT Health Sciences and Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Peggy P Hsu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Dana-Farber Cancer Institute, Boston, MA 02115, USA; Massachusetts General Hospital Cancer Center, Boston, MA 02113, USA; Rogel Cancer Center and Division of Hematology and Oncology, Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Sidney Y Vermeulen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Zhishan Wang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Taghreed Hirz
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02113, USA; Harvard Stem Cell Institute, Cambridge, MA 02139, USA
| | - Keene L Abbott
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Najihah Aziz
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02113, USA; Harvard Stem Cell Institute, Cambridge, MA 02139, USA
| | - Joseph M Replogle
- Whitehead Institute for Biomedical Research, Cambridge, MA 02139, USA; Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Stefan Bjelosevic
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA 02115, USA; Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jonathan Paolino
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA 02115, USA; Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Samantha A Nelson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Samuel Block
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alicia M Darnell
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Raphael Ferreira
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Hanyu Zhang
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02113, USA; Harvard Stem Cell Institute, Cambridge, MA 02139, USA
| | - Jelena Milosevic
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02113, USA; Harvard Stem Cell Institute, Cambridge, MA 02139, USA
| | - Daniel R Schmidt
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Christopher Chidley
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Isaac S Harris
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jonathan S Weissman
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Whitehead Institute for Biomedical Research, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Cambridge, MA 02139, USA
| | - Yana Pikman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA 02115, USA; Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kimberly Stegmaier
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA 02115, USA; Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sihem Cheloufi
- Department of Biochemistry, University of California, Riverside, Riverside, CA 92521, USA; Stem Cell Center, University of California, Riverside, Riverside, CA 92521, USA; Center for RNA Biology and Medicine, Riverside, CA 92521, USA
| | - Xiaofeng A Su
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David B Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02113, USA; Harvard Stem Cell Institute, Cambridge, MA 02139, USA
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Dana-Farber Cancer Institute, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW Recent work reveals that cell cycle duration and structure are remodeled in lock-step with distinct stages of erythroid differentiation. These cell cycle features have regulatory roles in differentiation, beyond the generic function of increasing cell number. RECENT FINDINGS Developmental progression through the early erythroid progenitor stage (known as colony-forming-erythroid, or 'CFU-e') is characterized by gradual shortening of G1 phase of the cycle. This process culminates in a key transcriptional switch to erythroid terminal differentiation (ETD) that is synchronized with, and dependent on, S phase progression. Further, the CFU-e/ETD switch takes place during an unusually short S phase, part of an exceptionally short cell cycle that is characterized by globally fast replication fork speeds. Cell cycle and S phase speed can alter developmental events during erythroid differentiation, through pathways that are targeted by glucocorticoid and erythropoietin signaling during the erythroid stress response. SUMMARY There is close inter-dependence between cell cycle structure and duration, S phase and replication fork speeds, and erythroid differentiation stage. Further, modulation of cell cycle structure and speed cycle impacts developmental progression and cell fate decisions during erythroid differentiation. These pathways may offer novel mechanistic insights and potential therapeutic targets.
Collapse
Affiliation(s)
- Merav Socolovsky
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
9
|
Koury MJ, Hausrath DJ. Macrocytic anemias. Curr Opin Hematol 2024; 31:82-88. [PMID: 38334746 DOI: 10.1097/moh.0000000000000804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
PURPOSE OF REVIEW Over the last century, the diseases associated with macrocytic anemia have been changing with more patients currently having hematological diseases including malignancies and myelodysplastic syndrome. The intracellular mechanisms underlying the development of anemia with macrocytosis can help in understanding normal erythropoiesis. Adaptations to these diseases involving erythroid progenitor and precursor cells lead to production of fewer but larger red blood cells, and understanding these mechanisms can provide information for possible treatments. RECENT FINDINGS Both inherited and acquired bone marrow diseases involving primarily impaired or delayed erythroid cell division or secondary adaptions to basic erythroid cellular deficits that results in prolonged cell division frequently present with macrocytic anemia. SUMMARY OF FINDINGS In marrow failure diseases, large accumulations of iron and heme in early stages of erythroid differentiation make cells in those stages especially susceptible to death, but the erythroid cells that can survive the early stages of terminal differentiation yield fewer but larger erythrocytes that are recognized clinically as macrocytic anemia. Other disorders that limit deoxynucleosides required for DNA synthesis affect a broader range of erythropoietic cells, but they also lead to macrocytic anemia. The source of macrocytosis in other diseases remains uncertain.
Collapse
Affiliation(s)
- Mark J Koury
- Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, Tennessee, USA and Medical Service, Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | | |
Collapse
|
10
|
Lin X, Gupta D, Vaitsiankova A, Bhandari SK, Leung KSK, Menolfi D, Lee BJ, Russell HR, Gershik S, Gu W, McKinnon PJ, Dantzer F, Rothenberg E, Tomkinson AE, Zha S. Inactive Parp2 causes Tp53-dependent lethal anemia by blocking replication-associated nick ligation in erythroblasts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584665. [PMID: 38559022 PMCID: PMC10980059 DOI: 10.1101/2024.03.12.584665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
PARP1&2 enzymatic inhibitors (PARPi) are promising cancer treatments. But recently, their use has been hindered by unexplained severe anemia and treatment-related leukemia. In addition to enzymatic inhibition, PARPi also trap PARP1&2 at DNA lesions. Here, we report that unlike Parp2 -/- mice, which develop normally, mice expressing catalytically-inactive Parp2 (E534A, Parp2 EA/EA ) succumb to Tp53- and Chk2 -dependent erythropoietic failure in utero , mirroring Lig1 -/- mice. While DNA damage mainly activates PARP1, we demonstrate that DNA replication activates PARP2 robustly. PARP2 is selectively recruited and activated by 5'-phosphorylated nicks (5'p-nicks) between Okazaki fragments, typically resolved by Lig1. Inactive PARP2, but not its active form or absence, impedes Lig1- and Lig3-mediated ligation, causing dose-dependent replication fork collapse, particularly harmful to erythroblasts with ultra-fast forks. This PARylation-dependent structural function of PARP2 at 5'p-nicks explains the detrimental effects of PARP2 inhibition on erythropoiesis, revealing the mechanism behind the PARPi-induced anemia and leukemia, especially those with TP53/CHK2 loss. Significance This work shows that the hematological toxicities associated with PARP inhibitors stem not from impaired PARP1 or PARP2 enzymatic activity but rather from the presence of inactive PARP2 protein. Mechanistically, these toxicities reflect a unique role of PARP2 at 5'-phosphorylated DNA nicks during DNA replication in erythroblasts.
Collapse
|
11
|
Papoin J, Yan H, Leduc M, Gall ML, Narla A, Palis J, Steiner LA, Gallagher PG, Hillyer CD, Gautier EF, Mohandas N, Blanc L. Phenotypic and proteomic characterization of the human erythroid progenitor continuum reveal dynamic changes in cell cycle and in metabolic pathways. Am J Hematol 2024; 99:99-112. [PMID: 37929634 PMCID: PMC10877306 DOI: 10.1002/ajh.27145] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/03/2023] [Accepted: 10/13/2023] [Indexed: 11/07/2023]
Abstract
Human erythropoiesis is a complex process leading to the production of 2.5 million red blood cells per second. Following commitment of hematopoietic stem cells to the erythroid lineage, this process can be divided into three distinct stages: erythroid progenitor differentiation, terminal erythropoiesis, and reticulocyte maturation. We recently resolved the heterogeneity of erythroid progenitors into four different subpopulations termed EP1-EP4. Here, we characterized the growth factor(s) responsiveness of these four progenitor populations in terms of proliferation and differentiation. Using mass spectrometry-based proteomics on sorted erythroid progenitors, we quantified the absolute expression of ~5500 proteins from EP1 to EP4. Further functional analyses highlighted dynamic changes in cell cycle in these populations with an acceleration of the cell cycle during erythroid progenitor differentiation. The finding that E2F4 expression was increased from EP1 to EP4 is consistent with the noted changes in cell cycle. Finally, our proteomic data suggest that the protein machinery necessary for both oxidative phosphorylation and glycolysis is present in these progenitor cells. Together, our data provide comprehensive insights into growth factor-dependence of erythroid progenitor proliferation and the proteome of four distinct populations of human erythroid progenitors which will be a useful framework for the study of erythroid disorders.
Collapse
Affiliation(s)
- Julien Papoin
- Institute of Molecular Medicine, Feinstein Institutes for
Medical Research, Manhasset, NY 11030 USA
- Université Jules Verne
| | - Hongxia Yan
- Red Cell Physiology Laboratory, Lindsey F. Kimball
Research Institute, New York Blood Center, New York, NY 10065 USA
| | - Marjorie Leduc
- Proteom’IC facility, Université Paris
Cité, CNRS, INSERM, Institut Cochin, F-75014 Paris, France
| | - Morgane Le Gall
- Proteom’IC facility, Université Paris
Cité, CNRS, INSERM, Institut Cochin, F-75014 Paris, France
| | - Anupama Narla
- Division of Hematology-Oncology, Department of Pediatrics,
Stanford University School of Medicine, Palo Alto, CA 94305 USA
| | - James Palis
- Center for Child Health Research, University of Rochester,
Rochester, NY 14642 USA
| | - Laurie A. Steiner
- Center for Child Health Research, University of Rochester,
Rochester, NY 14642 USA
| | - Patrick G. Gallagher
- Department of Pediatrics, Yale University, New Haven, CT
06520 USA
- Nationwide Children’s Hospital, Ohio State
University, Columbus, OH 43205 USA
| | - Christopher D. Hillyer
- Red Cell Physiology Laboratory, Lindsey F. Kimball
Research Institute, New York Blood Center, New York, NY 10065 USA
| | - Emilie-Fleur Gautier
- Proteom’IC facility, Université Paris
Cité, CNRS, INSERM, Institut Cochin, F-75014 Paris, France
| | - Narla Mohandas
- Red Cell Physiology Laboratory, Lindsey F. Kimball
Research Institute, New York Blood Center, New York, NY 10065 USA
| | - Lionel Blanc
- Institute of Molecular Medicine, Feinstein Institutes for
Medical Research, Manhasset, NY 11030 USA
- Division of Pediatrics Hematology/Oncology, Cohen
Children’s Medical Center, New Hyde Park NY 11040 USA
- Department of Molecular Medicine and Pediatrics, Zucker
School of Medicine at Hofstra/Northwell, Hempstead NY 11549 USA
| |
Collapse
|
12
|
Martell DJ, Merens HE, Caulier A, Fiorini C, Ulirsch JC, Ietswaart R, Choquet K, Graziadei G, Brancaleoni V, Cappellini MD, Scott C, Roberts N, Proven M, Roy NBA, Babbs C, Higgs DR, Sankaran VG, Churchman LS. RNA polymerase II pausing temporally coordinates cell cycle progression and erythroid differentiation. Dev Cell 2023; 58:2112-2127.e4. [PMID: 37586368 PMCID: PMC10615711 DOI: 10.1016/j.devcel.2023.07.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/23/2023] [Accepted: 07/25/2023] [Indexed: 08/18/2023]
Abstract
Controlled release of promoter-proximal paused RNA polymerase II (RNA Pol II) is crucial for gene regulation. However, studying RNA Pol II pausing is challenging, as pause-release factors are almost all essential. In this study, we identified heterozygous loss-of-function mutations in SUPT5H, which encodes SPT5, in individuals with β-thalassemia. During erythropoiesis in healthy human cells, cell cycle genes were highly paused as cells transition from progenitors to precursors. When the pathogenic mutations were recapitulated by SUPT5H editing, RNA Pol II pause release was globally disrupted, and as cells began transitioning from progenitors to precursors, differentiation was delayed, accompanied by a transient lag in erythroid-specific gene expression and cell cycle kinetics. Despite this delay, cells terminally differentiate, and cell cycle phase distributions normalize. Therefore, hindering pause release perturbs proliferation and differentiation dynamics at a key transition during erythropoiesis, identifying a role for RNA Pol II pausing in temporally coordinating the cell cycle and erythroid differentiation.
Collapse
Affiliation(s)
- Danya J Martell
- Department of Genetics, Harvard University, Boston, MA, USA; Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hope E Merens
- Department of Genetics, Harvard University, Boston, MA, USA
| | - Alexis Caulier
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Claudia Fiorini
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jacob C Ulirsch
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Karine Choquet
- Department of Genetics, Harvard University, Boston, MA, USA
| | - Giovanna Graziadei
- Department of Clinical Sciences and Community, University of Milan, IRCCS Ca'Granda Foundation Maggiore Policlinico Hospital, Milan, Italy
| | - Valentina Brancaleoni
- Department of Clinical Sciences and Community, University of Milan, IRCCS Ca'Granda Foundation Maggiore Policlinico Hospital, Milan, Italy
| | - Maria Domenica Cappellini
- Department of Clinical Sciences and Community, University of Milan, IRCCS Ca'Granda Foundation Maggiore Policlinico Hospital, Milan, Italy
| | - Caroline Scott
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Nigel Roberts
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Melanie Proven
- Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Noémi B A Roy
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre and BRC/NHS Translational Molecular Diagnostics Centre, John Radcliffe Hospital, Oxford, UK; Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Christian Babbs
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Douglas R Higgs
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Vijay G Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | | |
Collapse
|
13
|
Dinakaran S, Zhao H, Tang Y, Wang Z, Ruiz S, Nomura-Kitabayashi A, Blanc L, Faughnan ME, Marambaud P. CDK6-mediated endothelial cell cycle acceleration drives arteriovenous malformations in hereditary hemorrhagic telangiectasia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.15.554413. [PMID: 37745444 PMCID: PMC10515892 DOI: 10.1101/2023.09.15.554413] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Increased endothelial cell (EC) proliferation is a hallmark of arteriovenous malformations (AVMs) in hereditary hemorrhagic telangiectasia (HHT). The underlying mechanism and disease relevance of this abnormal cell proliferative state of the ECs remain unknown. Here, we report the identification of a CDK6-driven mechanism of cell cycle progression deregulation directly involved in EC proliferation and HHT vascular pathology. Specifically, HHT mouse liver ECs exhibited defects in their cell cycle control characterized by a G1/S checkpoint bypass and acceleration of cell cycle speed. Phosphorylated retinoblastoma (p-RB1)-a marker of G1/S transition through the restriction point-significantly accumulated in ECs of HHT mouse retinal AVMs and HHT patient skin telangiectasias. Mechanistically, ALK1 loss of function increased the expression of key restriction point mediators, and treatment with palbociclib or ribociclib, two CDK4/6 inhibitors, blocked p-RB1 increase and retinal AVMs in HHT mice. Palbociclib also improved vascular pathology in the brain and slowed down endothelial cell cycle speed and EC proliferation. Specific deletion of Cdk6 in ECs was sufficient to protect HHT mice from AVM pathology. Thus, CDK6-mediated endothelial cell cycle acceleration controls EC proliferation in AVMs and is a central determinant of HHT pathogenesis. We propose that clinically approved CDK4/6 inhibitors have repurposing potential in HHT.
Collapse
Affiliation(s)
- Sajeth Dinakaran
- Litwin-Zucker Alzheimer’s Research Center, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Haitian Zhao
- Litwin-Zucker Alzheimer’s Research Center, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Yuefeng Tang
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Zhimin Wang
- Litwin-Zucker Alzheimer’s Research Center, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Santiago Ruiz
- Litwin-Zucker Alzheimer’s Research Center, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Aya Nomura-Kitabayashi
- Litwin-Zucker Alzheimer’s Research Center, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Lionel Blanc
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
- Division of Pediatrics Hematology/Oncology, Cohen Children’s Medical Center, New Hyde Park, New York, USA
| | - Marie E. Faughnan
- Toronto HHT Centre, St. Michael’s Hospital and Li Ka Shing Knowledge Institute, Toronto, Canada
- Division of Respirology, Department of Medicine, University of Toronto, Toronto, Canada
| | - Philippe Marambaud
- Litwin-Zucker Alzheimer’s Research Center, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
| |
Collapse
|
14
|
Treichel S, Filippi MD. Linking cell cycle to hematopoietic stem cell fate decisions. Front Cell Dev Biol 2023; 11:1231735. [PMID: 37645247 PMCID: PMC10461445 DOI: 10.3389/fcell.2023.1231735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/26/2023] [Indexed: 08/31/2023] Open
Abstract
Hematopoietic stem cells (HSCs) have the properties to self-renew and/or differentiate into any blood cell lineages. In order to balance the maintenance of the stem cell pool with supporting mature blood cell production, the fate decisions to self-renew or to commit to differentiation must be tightly controlled, as dysregulation of this process can lead to bone marrow failure or leukemogenesis. The contribution of the cell cycle to cell fate decisions has been well established in numerous types of stem cells, including pluripotent stem cells. Cell cycle length is an integral component of hematopoietic stem cell fate. Hematopoietic stem cells must remain quiescent to prevent premature replicative exhaustion. Yet, hematopoietic stem cells must be activated into cycle in order to produce daughter cells that will either retain stem cell properties or commit to differentiation. How the cell cycle contributes to hematopoietic stem cell fate decisions is emerging from recent studies. Hematopoietic stem cell functions can be stratified based on cell cycle kinetics and divisional history, suggesting a link between Hematopoietic stem cells activity and cell cycle length. Hematopoietic stem cell fate decisions are also regulated by asymmetric cell divisions and recent studies have implicated metabolic and organelle activity in regulating hematopoietic stem cell fate. In this review, we discuss the current understanding of the mechanisms underlying hematopoietic stem cell fate decisions and how they are linked to the cell cycle.
Collapse
Affiliation(s)
- Sydney Treichel
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children’s Hospital Research Foundation, Cincinnati, OH, United States
- University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Molecular and Development Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Marie-Dominique Filippi
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children’s Hospital Research Foundation, Cincinnati, OH, United States
- University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
15
|
Martí-Clúa J. Methods for Inferring Cell Cycle Parameters Using Thymidine Analogues. BIOLOGY 2023; 12:885. [PMID: 37372169 DOI: 10.3390/biology12060885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/12/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023]
Abstract
Tritiated thymidine autoradiography, 5-bromo-2'-deoxyuridine (BrdU) 5-chloro-2'-deoxyuridine (CldU), 5-iodo-2'-deoxyuridine (IdU), and 5-ethynyl-2'-deoxyiridine (EdU) labeling have been used for identifying the fraction of cells undergoing the S-phase of the cell cycle and to follow the fate of these cells during the embryonic, perinatal, and adult life in several species of vertebrate. In this current review, I will discuss the dosage and times of exposition to the aforementioned thymidine analogues to label most of the cells undergoing the S-phase of the cell cycle. I will also show how to infer, in an asynchronous cell population, the duration of the G1, S, and G2 phases, as well as the growth fraction and the span of the whole cell cycle on the base of some labeling schemes involving a single administration, continuous nucleotide analogue delivery, and double labeling with two thymidine analogues. In this context, the choice of the optimal dose of BrdU, CldU, IdU, and EdU to label S-phase cells is a pivotal aspect to produce neither cytotoxic effects nor alter cell cycle progression. I hope that the information presented in this review can be of use as a reference for researchers involved in the genesis of tissues and organs.
Collapse
Affiliation(s)
- Joaquín Martí-Clúa
- Unidad de Citología e Histología, Departament de Biologia Cel·lular, de Fisiologia i d'Immunologia, Facultad de Biociencias, Institut de Neurociències, Universidad Autónoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
16
|
Martell DJ, Merens HE, Fiorini C, Caulier A, Ulirsch JC, Ietswaart R, Choquet K, Graziadei G, Brancaleoni V, Cappellini MD, Scott C, Roberts N, Proven M, Roy NB, Babbs C, Higgs DR, Sankaran VG, Churchman LS. RNA Polymerase II pausing temporally coordinates cell cycle progression and erythroid differentiation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.03.23286760. [PMID: 36945604 PMCID: PMC10029049 DOI: 10.1101/2023.03.03.23286760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The controlled release of promoter-proximal paused RNA polymerase II (Pol II) into productive elongation is a major step in gene regulation. However, functional analysis of Pol II pausing is difficult because factors that regulate pause release are almost all essential. In this study, we identified heterozygous loss-of-function mutations in SUPT5H , which encodes SPT5, in individuals with β-thalassemia unlinked to HBB mutations. During erythropoiesis in healthy human cells, cell cycle genes were highly paused at the transition from progenitors to precursors. When the pathogenic mutations were recapitulated by SUPT5H editing, Pol II pause release was globally disrupted, and the transition from progenitors to precursors was delayed, marked by a transient lag in erythroid-specific gene expression and cell cycle kinetics. Despite this delay, cells terminally differentiate, and cell cycle phase distributions normalize. Therefore, hindering pause release perturbs proliferation and differentiation dynamics at a key transition during erythropoiesis, revealing a role for Pol II pausing in the temporal coordination between the cell cycle and differentiation.
Collapse
Affiliation(s)
- Danya J Martell
- Harvard University, Department of Genetics, Boston, MA
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
| | - Hope E Merens
- Harvard University, Department of Genetics, Boston, MA
| | - Claudia Fiorini
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
| | - Alexis Caulier
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
| | - Jacob C Ulirsch
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
| | | | | | - Giovanna Graziadei
- Department of Clinical Sciences and Community, University of Milan, IRCCS Ca'Granda Foundation Maggiore Policlinico Hospital, Milan, Italy
| | - Valentina Brancaleoni
- Department of Clinical Sciences and Community, University of Milan, IRCCS Ca'Granda Foundation Maggiore Policlinico Hospital, Milan, Italy
| | - Maria Domenica Cappellini
- Department of Clinical Sciences and Community, University of Milan, IRCCS Ca'Granda Foundation Maggiore Policlinico Hospital, Milan, Italy
| | - Caroline Scott
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Nigel Roberts
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Melanie Proven
- Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Noémi Ba Roy
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre and BRC/NHS Translational Molecular Diagnostics Centre, John Radcliffe Hospital, Oxford, UK
- Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Christian Babbs
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Douglas R Higgs
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Vijay G Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
| | | |
Collapse
|
17
|
Ligasová A, Frydrych I, Koberna K. Basic Methods of Cell Cycle Analysis. Int J Mol Sci 2023; 24:ijms24043674. [PMID: 36835083 PMCID: PMC9963451 DOI: 10.3390/ijms24043674] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Cellular growth and the preparation of cells for division between two successive cell divisions is called the cell cycle. The cell cycle is divided into several phases; the length of these particular cell cycle phases is an important characteristic of cell life. The progression of cells through these phases is a highly orchestrated process governed by endogenous and exogenous factors. For the elucidation of the role of these factors, including pathological aspects, various methods have been developed. Among these methods, those focused on the analysis of the duration of distinct cell cycle phases play important role. The main aim of this review is to guide the readers through the basic methods of the determination of cell cycle phases and estimation of their length, with a focus on the effectiveness and reproducibility of the described methods.
Collapse
|
18
|
Crucianelli C, Jaiswal J, Vijayakumar Maya A, Nogay L, Cosolo A, Grass I, Classen AK. Distinct signaling signatures drive compensatory proliferation via S-phase acceleration. PLoS Genet 2022; 18:e1010516. [PMID: 36520882 PMCID: PMC9799308 DOI: 10.1371/journal.pgen.1010516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 12/29/2022] [Accepted: 11/08/2022] [Indexed: 12/23/2022] Open
Abstract
Regeneration relies on cell proliferation to restore damaged tissues. Multiple signaling pathways activated by local or paracrine cues have been identified to promote regenerative proliferation. How different types of tissue damage may activate distinct signaling pathways and how these differences converge on regenerative proliferation is less well defined. To better understand how tissue damage and proliferative signals are integrated during regeneration, we investigate models of compensatory proliferation in Drosophila imaginal discs. We find that compensatory proliferation is associated with a unique cell cycle profile, which is characterized by short G1 and G2 phases and, surprisingly, by acceleration of the S-phase. S-phase acceleration can be induced by two distinct signaling signatures, aligning with inflammatory and non-inflammatory tissue damage. Specifically, non-autonomous activation of JAK/STAT and Myc in response to inflammatory damage, or local activation of Ras/ERK and Hippo/Yki in response to elevated cell death, promote accelerated nucleotide incorporation during S-phase. This previously unappreciated convergence of different damaging insults on the same regenerative cell cycle program reconciles previous conflicting observations on proliferative signaling in different tissue regeneration and tumor models.
Collapse
Affiliation(s)
- Carlo Crucianelli
- Hilde-Mangold-Haus, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Janhvi Jaiswal
- Hilde-Mangold-Haus, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Ananthakrishnan Vijayakumar Maya
- Hilde-Mangold-Haus, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- International Max Planck Research School for Immunobiology, Epigenetics, and Metabolism, Freiburg, Germany
| | - Liyne Nogay
- Hilde-Mangold-Haus, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- International Max Planck Research School for Immunobiology, Epigenetics, and Metabolism, Freiburg, Germany
| | - Andrea Cosolo
- Hilde-Mangold-Haus, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Isabelle Grass
- Hilde-Mangold-Haus, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Anne-Kathrin Classen
- Hilde-Mangold-Haus, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
19
|
Socolovsky M. The role of specialized cell cycles during erythroid lineage development: insights from single-cell RNA sequencing. Int J Hematol 2022; 116:163-173. [PMID: 35759181 DOI: 10.1007/s12185-022-03406-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/05/2022] [Accepted: 06/07/2022] [Indexed: 11/24/2022]
Abstract
Early erythroid progenitors known as CFU-e undergo multiple self-renewal cell cycles. The CFU-e developmental stage ends with the onset of erythroid terminal differentiation (ETD). The transition from CFU-e to ETD is a critical cell fate decision that determines erythropoietic rate. Here we review recent insights into the regulation of this transition, garnered from flow cytometric and single-cell RNA sequencing studies. We find that the CFU-e/ETD transition is a rapid S phase-dependent transcriptional switch. It takes place during an S phase that is much shorter than in preceding or subsequent cycles, as a result of globally faster replication forks. Furthermore, it is preceded by cycles in which G1 becomes gradually shorter. These dramatic cell cycle and S phase remodeling events are directly linked to regulation of the CFU-e/ETD switch. Moreover, regulators of erythropoietic rate exert their effects by modulating cell cycle duration and S phase speed. Glucocorticoids increase erythropoietic rate by inducing the CDK inhibitor p57KIP2, which slows replication forks, inhibiting the CFU-e/ETD switch. Conversely, erythropoietin promotes induction of ETD by shortening the cycle. S phase shortening was reported during cell fate decisions in non-erythroid lineages, suggesting a fundamentally new developmental role for cell cycle speed.
Collapse
Affiliation(s)
- Merav Socolovsky
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
20
|
The path from stem cells to red blood cells. Int J Hematol 2022; 116:160-162. [PMID: 35841459 DOI: 10.1007/s12185-022-03413-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 10/17/2022]
Abstract
As oxygen is essential for energy production in mitochondria, a sufficient amount of oxygen should be continuously delivered to the tissues to maintain life. Therefore, the number of red blood cells which carry the oxygen is considerable, at up to 25 trillion in the body, and 2 million new red blood cells are generated per second.
Collapse
|
21
|
Gillespie PJ, Blow JJ. DDK: The Outsourced Kinase of Chromosome Maintenance. BIOLOGY 2022; 11:biology11060877. [PMID: 35741398 PMCID: PMC9220011 DOI: 10.3390/biology11060877] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022]
Abstract
The maintenance of genomic stability during the mitotic cell-cycle not only demands that the DNA is duplicated and repaired with high fidelity, but that following DNA replication the chromatin composition is perpetuated and that the duplicated chromatids remain tethered until their anaphase segregation. The coordination of these processes during S phase is achieved by both cyclin-dependent kinase, CDK, and Dbf4-dependent kinase, DDK. CDK orchestrates the activation of DDK at the G1-to-S transition, acting as the ‘global’ regulator of S phase and cell-cycle progression, whilst ‘local’ control of the initiation of DNA replication and repair and their coordination with the re-formation of local chromatin environments and the establishment of chromatid cohesion are delegated to DDK. Here, we discuss the regulation and the multiple roles of DDK in ensuring chromosome maintenance. Regulation of replication initiation by DDK has long been known to involve phosphorylation of MCM2-7 subunits, but more recent results have indicated that Treslin:MTBP might also be important substrates. Molecular mechanisms by which DDK regulates replisome stability and replicated chromatid cohesion are less well understood, though important new insights have been reported recently. We discuss how the ‘outsourcing’ of activities required for chromosome maintenance to DDK allows CDK to maintain outright control of S phase progression and the cell-cycle phase transitions whilst permitting ongoing chromatin replication and cohesion establishment to be completed and achieved faithfully.
Collapse
|
22
|
Wang B, Wang C, Wan Y, Gao J, Ma Y, Zhang Y, Tong J, Zhang Y, Liu J, Chang L, Xu C, Shen B, Chen Y, Jiang E, Kurita R, Nakamura Y, Lim KC, Engel JD, Zhou J, Cheng T, Zhu X, Zhu P, Shi L. Decoding the pathogenesis of Diamond-Blackfan anemia using single-cell RNA-seq. Cell Discov 2022; 8:41. [PMID: 35534476 PMCID: PMC9085895 DOI: 10.1038/s41421-022-00389-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/21/2022] [Indexed: 11/09/2022] Open
Abstract
Ribosomal protein dysfunction causes diverse human diseases, including Diamond-Blackfan anemia (DBA). Despite the universal need for ribosomes in all cell types, the mechanisms underlying ribosomopathies, which are characterized by tissue-specific defects, are still poorly understood. In the present study, we analyzed the transcriptomes of single purified erythroid progenitors isolated from the bone marrow of DBA patients. These patients were categorized into untreated, glucocorticoid (GC)-responsive and GC-non-responsive groups. We found that erythroid progenitors from untreated DBA patients entered S-phase of the cell cycle under considerable duress, resulting in replication stress and the activation of P53 signaling. In contrast, cell cycle progression was inhibited through induction of the type 1 interferon pathway in treated, GC-responsive patients, but not in GC-non-responsive patients. Notably, a low dose of interferon alpha treatment stimulated the production of erythrocytes derived from DBA patients. By linking the innately shorter cell cycle of erythroid progenitors to DBA pathogenesis, we demonstrated that interferon-mediated cell cycle control underlies the clinical efficacy of glucocorticoids. Our study suggests that interferon administration may constitute a new alternative therapeutic strategy for the treatment of DBA. The trial was registered at www.chictr.org.cn as ChiCTR2000038510.
Collapse
Affiliation(s)
- Bingrui Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Chenchen Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Yang Wan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jie Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yige Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yingnan Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jingyuan Tong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yingchi Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jinhua Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Lixian Chang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Changlu Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Biao Shen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Division of Transplantation Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yumei Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Division of Transplantation Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Ryo Kurita
- Department of Research and Development, Central Blood Institute, Japanese Red Cross Society, Tokyo, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Ibaraki, Japan
| | - Kim-Chew Lim
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - James Douglas Engel
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jiaxi Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China. .,Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin, China. .,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China.
| | - Xiaofan Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China. .,Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
| | - Ping Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China. .,Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin, China. .,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China.
| | - Lihong Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China. .,Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin, China.
| |
Collapse
|
23
|
Ren K, Li E, Ji P. Proteome remodeling and organelle clearance in mammalian terminal erythropoiesis. Curr Opin Hematol 2022; 29:137-143. [PMID: 35441599 DOI: 10.1097/moh.0000000000000707] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The differentiation from colony forming unit-erythroid (CFU-E) cells to mature enucleated red blood cells is named terminal erythropoiesis in mammals. Apart from enucleation, several unique features during these developmental stages include proteome remodeling and organelle clearance that are important to achieve hemoglobin enrichment. Here, we review the recent advances in the understanding of novel regulatory mechanisms in these processes, focusing on the master regulators that link these major events during terminal erythropoiesis. RECENT FINDINGS Comprehensive proteomic studies revealed a mismatch of protein abundance to their corresponding transcript abundance, which indicates that the proteome remodeling is regulated in a complex way from transcriptional control to posttranslational modifications. Key regulators in organelle clearance were also found to play critical roles in proteome remodeling. SUMMARY These studies demonstrate that the complexity of terminal erythropoiesis is beyond the conventional transcriptomic centric perspective. Posttranslational modifications such as ubiquitination are critical in terminal erythroid proteome remodeling that is also closely coupled with organelle clearance.
Collapse
Affiliation(s)
- Kehan Ren
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | | |
Collapse
|
24
|
Caulier AL, Sankaran VG. Molecular and cellular mechanisms that regulate human erythropoiesis. Blood 2022; 139:2450-2459. [PMID: 34936695 PMCID: PMC9029096 DOI: 10.1182/blood.2021011044] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/15/2021] [Indexed: 12/03/2022] Open
Abstract
To enable effective oxygen transport, ∼200 billion red blood cells (RBCs) need to be produced every day in the bone marrow through the fine-tuned process of erythropoiesis. Erythropoiesis is regulated at multiple levels to ensure that defective RBC maturation or overproduction can be avoided. Here, we provide an overview of different layers of this control, ranging from cytokine signaling mechanisms that enable extrinsic regulation of RBC production to intrinsic transcriptional pathways necessary for effective erythropoiesis. Recent studies have also elucidated the importance of posttranscriptional regulation and highlighted additional gatekeeping mechanisms necessary for effective erythropoiesis. We additionally discuss the insights gained by studying human genetic variation affecting erythropoiesis and highlight the discovery of BCL11A as a regulator of hemoglobin switching through genetic studies. Finally, we provide an outlook of how our ability to measure multiple facets of this process at single-cell resolution, while accounting for the impact of human variation, will continue to refine our knowledge of erythropoiesis and how this process is perturbed in disease. As we learn more about this intricate and important process, additional opportunities to modulate erythropoiesis for therapeutic purposes will undoubtedly emerge.
Collapse
Affiliation(s)
- Alexis L Caulier
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA; and
- Broad Institute of MIT and Harvard, Cambridge, MA
| | - Vijay G Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA; and
- Broad Institute of MIT and Harvard, Cambridge, MA
| |
Collapse
|
25
|
Bacteriophage self-counting in the presence of viral replication. Proc Natl Acad Sci U S A 2021; 118:2104163118. [PMID: 34916284 DOI: 10.1073/pnas.2104163118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2021] [Indexed: 11/18/2022] Open
Abstract
When host cells are in low abundance, temperate bacteriophages opt for dormant (lysogenic) infection. Phage lambda implements this strategy by increasing the frequency of lysogeny at higher multiplicity of infection (MOI). However, it remains unclear how the phage reliably counts infecting viral genomes even as their intracellular number increases because of replication. By combining theoretical modeling with single-cell measurements of viral copy number and gene expression, we find that instead of hindering lambda's decision, replication facilitates it. In a nonreplicating mutant, viral gene expression simply scales with MOI rather than diverging into lytic (virulent) and lysogenic trajectories. A similar pattern is followed during early infection by wild-type phage. However, later in the infection, the modulation of viral replication by the decision genes amplifies the initially modest gene expression differences into divergent trajectories. Replication thus ensures the optimal decision-lysis upon single-phage infection and lysogeny at higher MOI.
Collapse
|
26
|
Hidalgo D, Bejder J, Pop R, Gellatly K, Hwang Y, Maxwell Scalf S, Eastman AE, Chen JJ, Zhu LJ, Heuberger JAAC, Guo S, Koury MJ, Nordsborg NB, Socolovsky M. EpoR stimulates rapid cycling and larger red cells during mouse and human erythropoiesis. Nat Commun 2021; 12:7334. [PMID: 34921133 PMCID: PMC8683474 DOI: 10.1038/s41467-021-27562-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 11/19/2021] [Indexed: 11/08/2022] Open
Abstract
The erythroid terminal differentiation program couples sequential cell divisions with progressive reductions in cell size. The erythropoietin receptor (EpoR) is essential for erythroblast survival, but its other functions are not well characterized. Here we use Epor-/- mouse erythroblasts endowed with survival signaling to identify novel non-redundant EpoR functions. We find that, paradoxically, EpoR signaling increases red cell size while also increasing the number and speed of erythroblast cell cycles. EpoR-regulation of cell size is independent of established red cell size regulation by iron. High erythropoietin (Epo) increases red cell size in wild-type mice and in human volunteers. The increase in mean corpuscular volume (MCV) outlasts the duration of Epo treatment and is not the result of increased reticulocyte number. Our work shows that EpoR signaling alters the relationship between cycling and cell size. Further, diagnostic interpretations of increased MCV should now include high Epo levels and hypoxic stress.
Collapse
Affiliation(s)
- Daniel Hidalgo
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jacob Bejder
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Ramona Pop
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Harvard Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Kyle Gellatly
- Program in Bioinformatics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Yung Hwang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - S Maxwell Scalf
- Department of Cell Biology and Yale Stem Cell Center, Yale University, New Haven, CT, USA
| | - Anna E Eastman
- Department of Cell Biology and Yale Stem Cell Center, Yale University, New Haven, CT, USA
| | - Jane-Jane Chen
- Institute for Medical Engineering & Science, MIT, Cambridge, MA, USA
| | - Lihua Julie Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Program in Bioinformatics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | - Shangqin Guo
- Department of Cell Biology and Yale Stem Cell Center, Yale University, New Haven, CT, USA
| | - Mark J Koury
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Merav Socolovsky
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
27
|
Jeffery NN, Davidson C, Peslak SA, Kingsley PD, Nakamura Y, Palis J, Bulger M. Histone H2A.X phosphorylation and Caspase-Initiated Chromatin Condensation in late-stage erythropoiesis. Epigenetics Chromatin 2021; 14:37. [PMID: 34330317 PMCID: PMC8325214 DOI: 10.1186/s13072-021-00408-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/02/2021] [Indexed: 12/14/2022] Open
Abstract
Background Condensation of chromatin prior to enucleation is an essential component of terminal erythroid maturation, and defects in this process are associated with inefficient erythropoiesis and anemia. However, the mechanisms involved in this phenomenon are not well understood. Here, we describe a potential role for the histone variant H2A.X in erythropoiesis. Results We find in multiple model systems that this histone is essential for normal maturation, and that the loss of H2A.X in erythroid cells results in dysregulation in expression of erythroid-specific genes as well as a nuclear condensation defect. In addition, we demonstrate that erythroid maturation is characterized by phosphorylation at both S139 and Y142 on the C-terminal tail of H2A.X during late-stage erythropoiesis. Knockout of the kinase BAZ1B/WSTF results in loss of Y142 phosphorylation and a defect in nuclear condensation, but does not replicate extensive transcriptional changes to erythroid-specific genes observed in the absence of H2A.X. Conclusions We relate these findings to Caspase-Initiated Chromatin Condensation (CICC) in terminal erythroid maturation, where aspects of the apoptotic pathway are invoked while apoptosis is specifically suppressed. Supplementary Information The online version contains supplementary material available at 10.1186/s13072-021-00408-5.
Collapse
Affiliation(s)
- Nazish N Jeffery
- Center for Pediatric Biomedical Research, Department of Pediatrics, University of Rochester, Rochester, NY, USA
| | - Christina Davidson
- Wilmot Cancer Institute, Department of Biomedical Genetics, University of Rochester, Rochester, NY, USA
| | - Scott A Peslak
- Department of Medicine, Division of Hematology/Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.,Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Paul D Kingsley
- Center for Pediatric Biomedical Research, Department of Pediatrics, University of Rochester, Rochester, NY, USA
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | - James Palis
- Center for Pediatric Biomedical Research, Department of Pediatrics, University of Rochester, Rochester, NY, USA
| | - Michael Bulger
- Center for Pediatric Biomedical Research, Department of Pediatrics, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
28
|
Raz AA, Wurtzel O, Reddien PW. Planarian stem cells specify fate yet retain potency during the cell cycle. Cell Stem Cell 2021; 28:1307-1322.e5. [PMID: 33882291 DOI: 10.1016/j.stem.2021.03.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 01/08/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
Planarian whole-body regeneration is enabled by stem cells called neoblasts. At least some neoblasts are individually pluripotent. Neoblasts are also heterogeneous, with subpopulations of specialized neoblasts having different specified fates. Fate specification in neoblasts is regulated by fate-specific transcription factor (FSTF) expression. Here, we find that FSTF expression is common in neoblast S/G2/M cell-cycle phases but less common in G1. We find that specialized neoblasts can divide to produce progeny with asymmetric cell fates, suggesting that they could retain pluripotency. Furthermore, no known neoblast class was present in all neoblast colonies, suggesting that pluripotency is not the exclusive property of any known class. We tested this possibility with single-cell transplantations, which indicate that at least some specialized neoblasts are likely clonogenic. On the basis of these findings, we propose a model for neoblast pluripotency in which neoblasts can undergo specialization during the cell cycle without loss of potency.
Collapse
Affiliation(s)
- Amelie A Raz
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Omri Wurtzel
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Peter W Reddien
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
29
|
Abstract
The thymidine analogues BrdU (5-bromo-2´-deoxyuridine) and EdU (5-ethynyl-2´-deoxyuridine) are routinely used for determination of the cells synthesizing DNA in the S-phase of the cell cycle. Availability of the anti-BrdU antibody clone MoBu-1 detecting only BrdU allowed to develop a method for the sequential DNA labelling by these two thymidine analogues for determining the cell cycle kinetic parameters.In the current step-by-step protocol, we present` two approaches optimized for in vivo study of the cell cycle and the limitations that such approaches imply: (1) determination of the cell flow rate into the G2-phase by dual EdU/BrdU DNA-labelling method and (2) determination of the outflow of DNA-labelled cells arising from the mitosis.
Collapse
|
30
|
Brindley EC, Papoin J, Kennedy L, Robledo RF, Ciciotte SL, Kalfa TA, Peters LL, Blanc L. Rasa3 regulates stage-specific cell cycle progression in murine erythropoiesis. Blood Cells Mol Dis 2021; 87:102524. [PMID: 33341069 PMCID: PMC7856249 DOI: 10.1016/j.bcmd.2020.102524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 11/25/2020] [Indexed: 10/22/2022]
Abstract
Inherited bone marrow failure syndromes (IBMFS) are heterogeneous disorders characterized by dysregulated hematopoiesis in various lineages, developmental anomalies, and predisposition to malignancy. The scat (severe combined anemia and thrombocytopenia) mouse model is a model of IBMFS with a phenotype of pancytopenia cycling through crises and remission. Scat carries an autosomal recessive missense mutation in Rasa3 that results in RASA3 mislocalization and loss of function. RASA3 functions as a Ras-GTPase activating protein (GAP), and its loss of function in scat results in increased erythroid RAS activity and reactive oxygen species (ROS) and altered erythroid cell cycle progression, culminating in delayed terminal erythroid differentiation. Here we sought to further resolve the erythroid cell cycle defect in scat through ex vivo flow cytometric analyses. These studies revealed a specific G0/G1 accumulation in scat bone marrow (BM) polychromatophilic erythroblasts and scat BM Ter119-/c-KIT+/CD71lo/med progenitors, with no changes evident in equivalent scat spleen populations. Systematic analyses of RNAseq data from megakaryocyte-erythroid progenitors (MEPs) in scat crisis vs. scat partial remission reveal altered expression of genes involved in the G1-S checkpoint. Together, these data indicate a precise, biphasic role for RASA3 in regulating the cell cycle during erythropoiesis with relevance to hematopoietic disease progression.
Collapse
Affiliation(s)
- Elena C Brindley
- Department of Molecular Medicine and Pediatrics, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA; Laboratory of Developmental Erythropoiesis, Les Nelkin Memorial Laboratory of Pediatric Oncology, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Julien Papoin
- Laboratory of Developmental Erythropoiesis, Les Nelkin Memorial Laboratory of Pediatric Oncology, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Lauren Kennedy
- Laboratory of Developmental Erythropoiesis, Les Nelkin Memorial Laboratory of Pediatric Oncology, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | | | | | - Theodosia A Kalfa
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 05229, USA
| | | | - Lionel Blanc
- Department of Molecular Medicine and Pediatrics, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA; Laboratory of Developmental Erythropoiesis, Les Nelkin Memorial Laboratory of Pediatric Oncology, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA.
| |
Collapse
|
31
|
Xu P, Scott DC, Xu B, Yao Y, Feng R, Cheng L, Mayberry K, Wang YD, Bi W, Palmer LE, King MT, Wang H, Li Y, Fan Y, Alpi AF, Li C, Peng J, Papizan J, Pruett-Miller SM, Spallek R, Bassermann F, Cheng Y, Schulman BA, Weiss MJ. FBXO11-mediated proteolysis of BAHD1 relieves PRC2-dependent transcriptional repression in erythropoiesis. Blood 2021; 137:155-167. [PMID: 33156908 PMCID: PMC7820877 DOI: 10.1182/blood.2020007809] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/15/2020] [Indexed: 12/15/2022] Open
Abstract
The histone mark H3K27me3 and its reader/writer polycomb repressive complex 2 (PRC2) mediate widespread transcriptional repression in stem and progenitor cells. Mechanisms that regulate this activity are critical for hematopoietic development but are poorly understood. Here we show that the E3 ubiquitin ligase F-box only protein 11 (FBXO11) relieves PRC2-mediated repression during erythroid maturation by targeting its newly identified substrate bromo adjacent homology domain-containing 1 (BAHD1), an H3K27me3 reader that recruits transcriptional corepressors. Erythroblasts lacking FBXO11 are developmentally delayed, with reduced expression of maturation-associated genes, most of which harbor bivalent histone marks at their promoters. In FBXO11-/- erythroblasts, these gene promoters bind BAHD1 and fail to recruit the erythroid transcription factor GATA1. The BAHD1 complex interacts physically with PRC2, and depletion of either component restores FBXO11-deficient erythroid gene expression. Our studies identify BAHD1 as a novel effector of PRC2-mediated repression and reveal how a single E3 ubiquitin ligase eliminates PRC2 repression at many developmentally poised bivalent genes during erythropoiesis.
Collapse
Affiliation(s)
| | | | - Beisi Xu
- Department of Computational Biology
| | | | | | | | | | | | | | | | | | - Hong Wang
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN
| | - Yuxin Li
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN
| | | | - Arno F Alpi
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | - Junmin Peng
- Department of Structural Biology
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN
- Department of Development Neurobiology
| | | | - Shondra M Pruett-Miller
- Center for Advanced Genome Engineering, and
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN; and
| | - Ria Spallek
- Department of Medicine III and
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Florian Bassermann
- Department of Medicine III and
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Yong Cheng
- Department of Hematology
- Department of Computational Biology
| | - Brenda A Schulman
- Department of Structural Biology
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | | |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW In hematopoiesis, rapid cell fate decisions are necessary for timely responses to environmental stimuli resulting in the production of diverse types of blood cells. Early studies have led to a hierarchical, tree-like view of hematopoiesis with hematopoietic stem cells residing at the apex and serially branching out to give rise to bipotential progenitors with increasingly restricted lineage potential. Recent single-cell studies have challenged some aspects of the classical model of hematopoiesis. Here, we review the latest articles on cell fate decision in hematopoietic progenitors, highlighting single-cell studies that have questioned previously established concepts and those that have reaffirmed them. RECENT FINDINGS The hierarchical organization of hematopoiesis and the importance of transcription factors have been largely validated at the single-cell level. In contrast, single-cell studies have shown that lineage commitment is progressive rather than switch-like as originally proposed. Furthermore, the reconstruction of cell fate paths suggested the existence of a gradient of hematopoietic progenitors that are in a continuum of changing fate probabilities rather than in a static bipotential state, leading us to reconsider the notion of bipotential progenitors. SUMMARY Single-cell transcriptomic and proteomic studies have transformed our view of lineage commitment and offer a drastically different perspective on hematopoiesis.
Collapse
|
33
|
Ashley RJ, Yan H, Wang N, Hale J, Dulmovits BM, Papoin J, Olive ME, Udeshi ND, Carr SA, Vlachos A, Lipton JM, Da Costa L, Hillyer C, Kinet S, Taylor N, Mohandas N, Narla A, Blanc L. Steroid resistance in Diamond Blackfan anemia associates with p57Kip2 dysregulation in erythroid progenitors. J Clin Invest 2020; 130:2097-2110. [PMID: 31961825 DOI: 10.1172/jci132284] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 01/14/2020] [Indexed: 12/14/2022] Open
Abstract
Despite the effective clinical use of steroids for the treatment of Diamond Blackfan anemia (DBA), the mechanisms through which glucocorticoids regulate human erythropoiesis remain poorly understood. We report that the sensitivity of erythroid differentiation to dexamethasone is dependent on the developmental origin of human CD34+ progenitor cells, specifically increasing the expansion of CD34+ progenitors from peripheral blood (PB) but not cord blood (CB). Dexamethasone treatment of erythroid-differentiated PB, but not CB, CD34+ progenitors resulted in the expansion of a newly defined CD34+CD36+CD71hiCD105med immature colony-forming unit-erythroid (CFU-E) population. Furthermore, proteomics analyses revealed the induction of distinct proteins in dexamethasone-treated PB and CB erythroid progenitors. Dexamethasone treatment of PB progenitors resulted in the specific upregulation of p57Kip2, a Cip/Kip cyclin-dependent kinase inhibitor, and we identified this induction as critical; shRNA-mediated downregulation of p57Kip2, but not the related p27Kip1, significantly attenuated the impact of dexamethasone on erythroid differentiation and inhibited the expansion of the immature CFU-E subset. Notably, in the context of DBA, we found that steroid resistance was associated with dysregulated p57Kip2 expression. Altogether, these data identify a unique glucocorticoid-responsive human erythroid progenitor and provide new insights into glucocorticoid-based therapeutic strategies for the treatment of patients with DBA.
Collapse
Affiliation(s)
- Ryan J Ashley
- Department of Molecular Medicine and Pediatrics, Donald and Barbara Zucker School of Medicine, Hofstra/Northwell, Hempstead, New York, USA.,Center for Autoimmunity, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Hongxia Yan
- Red Cell Physiology Laboratory, New York Blood Center, New York, New York, USA.,Institut de Génétique Moléculaire de Montpellier, University of Montpellier, Montpellier, France
| | - Nan Wang
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - John Hale
- Red Cell Physiology Laboratory, New York Blood Center, New York, New York, USA
| | - Brian M Dulmovits
- Department of Molecular Medicine and Pediatrics, Donald and Barbara Zucker School of Medicine, Hofstra/Northwell, Hempstead, New York, USA.,Center for Autoimmunity, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Julien Papoin
- Center for Autoimmunity, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Meagan E Olive
- Proteomics Platform, Broad Institute, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
| | - Namrata D Udeshi
- Proteomics Platform, Broad Institute, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
| | - Steven A Carr
- Proteomics Platform, Broad Institute, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
| | - Adrianna Vlachos
- Department of Molecular Medicine and Pediatrics, Donald and Barbara Zucker School of Medicine, Hofstra/Northwell, Hempstead, New York, USA.,Center for Autoimmunity, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, New York, USA.,Pediatric Hematology/Oncology, Cohen Children's Medical Center, New Hyde Park, New York, USA
| | - Jeffrey M Lipton
- Department of Molecular Medicine and Pediatrics, Donald and Barbara Zucker School of Medicine, Hofstra/Northwell, Hempstead, New York, USA.,Center for Autoimmunity, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, New York, USA.,Pediatric Hematology/Oncology, Cohen Children's Medical Center, New Hyde Park, New York, USA
| | | | - Christopher Hillyer
- Red Cell Physiology Laboratory, New York Blood Center, New York, New York, USA
| | - Sandrina Kinet
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, Montpellier, France
| | - Naomi Taylor
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, Montpellier, France.,Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Narla Mohandas
- Red Cell Physiology Laboratory, New York Blood Center, New York, New York, USA
| | - Anupama Narla
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Lionel Blanc
- Department of Molecular Medicine and Pediatrics, Donald and Barbara Zucker School of Medicine, Hofstra/Northwell, Hempstead, New York, USA.,Center for Autoimmunity, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, New York, USA.,Pediatric Hematology/Oncology, Cohen Children's Medical Center, New Hyde Park, New York, USA
| |
Collapse
|
34
|
Hwang Y, Hidalgo D, Socolovsky M. The shifting shape and functional specializations of the cell cycle during lineage development. WIREs Mech Dis 2020; 13:e1504. [PMID: 32916032 DOI: 10.1002/wsbm.1504] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 06/29/2020] [Accepted: 07/08/2020] [Indexed: 12/12/2022]
Abstract
Essentially all cell cycling in multicellular organisms in vivo takes place in the context of lineage differentiation. This notwithstanding, the regulation of the cell cycle is often assumed to be generic, independent of tissue or developmental stage. Here we review developmental-stage-specific cell cycle adaptations that may influence developmental decisions, in mammalian erythropoiesis and in other lineages. The length of the cell cycle influences the balance between self-renewal and differentiation in multiple tissues, and may determine lineage fate. Shorter cycles contribute to the efficiency of reprogramming somatic cells into induced pluripotency stem cells and help maintain the pluripotent state. While the plasticity of G1 length is well established, the speed of S phase is emerging as a novel regulated parameter that may influence cell fate transitions in the erythroid lineage, in neural tissue and in embryonic stem cells. A slow S phase may stabilize the self-renewal state, whereas S phase shortening may favor a cell fate change. In the erythroid lineage, functional approaches and single-cell RNA-sequencing show that a key transcriptional switch, at the transition from self-renewal to differentiation, is synchronized with and dependent on S phase. This specific S phase is shorter, as a result of a genome-wide increase in the speed of replication forks. Furthermore, there is progressive shortening in G1 in the period preceding this switch. Together these studies suggest an integrated regulatory landscape of the cycle and differentiation programs, where cell cycle adaptations are controlled by, and in turn feed back on, the propagation of developmental trajectories. This article is categorized under: Biological Mechanisms > Cell Fates Developmental Biology > Stem Cell Biology and Regeneration Developmental Biology > Lineages.
Collapse
Affiliation(s)
- Yung Hwang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Daniel Hidalgo
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Merav Socolovsky
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
35
|
Identification and Functional Analysis of EPOR + Tumor-Associated Macrophages in Human Osteosarcoma Lung Metastasis. J Immunol Res 2020; 2020:9374240. [PMID: 32908942 PMCID: PMC7450330 DOI: 10.1155/2020/9374240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/25/2020] [Accepted: 04/09/2020] [Indexed: 12/14/2022] Open
Abstract
Background Tissue-resident macrophages can be educated to tumor-associated macrophages (TAMs) by the tumor microenvironment and many types of macrophages express erythropoietic receptor (EPOR); However, little is known about the expression of EPOR on TAMs and the identity of EPOR+ TAMs in osteosarcoma lung metastasis has thus far remained elusive. Methods EPOR-eGFPcre mice were used to determine the expression of EPOR on lung tissue-resident macrophages. Flow cytometry, RT-PCR, and Western blot were examined to define the identity of EPOR+ TAMs in 106 osteosarcoma lung metastasis specimens. Moreover, the clinicopathologic factors and prognosis of patients with CD163+EPOR+ macrophages were compared. Results We found that a subpopulation of mouse lung tissue-resident macrophages express EPOR and EPO enhances the proliferation of EPOR+ macrophages in mouse lung. A subpopulation of CD163+ macrophages expresses EPOR in human osteosarcoma lung metastasis specimens. CD163+EPOR+TAMs increase 2.5 times in human osteosarcoma lung metastasis tissues; CD206, CD163, and PD1, which are known to have a significant role in TAM function had high expression in CD163+EPOR+ TAMs compared with CD163+EPOR- TAMs. Furthermore, CD163+EPOR+ TAMs had higher M2 marker and cytokine expression in osteosarcoma tissues compared with para-osteosarcoma tissues. EPO enhanced the expression of M2 cytokines in primary CD163+EPOR+ TAMs. Importantly, the percentage of CD163+EPOR+ TAMs had a positive linear association with malignant phenotypes as well as poor disease-free survival and overall survival time. Conclusions We have characterized TAMs expressing EPOR and CD163+EPOR+ macrophages as TAMs in osteosarcoma lung metastasis patients, which are highly associated with tumor aggressiveness.
Collapse
|
36
|
Eastman AE, Chen X, Hu X, Hartman AA, Pearlman Morales AM, Yang C, Lu J, Kueh HY, Guo S. Resolving Cell Cycle Speed in One Snapshot with a Live-Cell Fluorescent Reporter. Cell Rep 2020; 31:107804. [PMID: 32579930 PMCID: PMC7418154 DOI: 10.1016/j.celrep.2020.107804] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 03/29/2020] [Accepted: 06/02/2020] [Indexed: 12/18/2022] Open
Abstract
Cell proliferation changes concomitantly with fate transitions during reprogramming, differentiation, regeneration, and oncogenesis. Methods to resolve cell cycle length heterogeneity in real time are currently lacking. Here, we describe a genetically encoded fluorescent reporter that captures live-cell cycle speed using a single measurement. This reporter is based on the color-changing fluorescent timer (FT) protein, which emits blue fluorescence when newly synthesized before maturing into a red fluorescent protein. We generated a mouse strain expressing an H2B-FT fusion reporter from a universally active locus and demonstrate that faster cycling cells can be distinguished from slower cycling ones on the basis of the intracellular fluorescence ratio between the FT's blue and red states. Using this reporter, we reveal the native cell cycle speed distributions of fresh hematopoietic cells and demonstrate its utility in analyzing cell proliferation in solid tissues. This system is broadly applicable for dissecting functional heterogeneity associated with cell cycle dynamics in complex tissues.
Collapse
Affiliation(s)
- Anna E Eastman
- Department of Cell Biology, Yale University, New Haven, CT 06520, USA; Yale Stem Cell Center, Yale University, New Haven, CT 06520, USA
| | - Xinyue Chen
- Department of Cell Biology, Yale University, New Haven, CT 06520, USA; Yale Stem Cell Center, Yale University, New Haven, CT 06520, USA
| | - Xiao Hu
- Department of Cell Biology, Yale University, New Haven, CT 06520, USA; Yale Stem Cell Center, Yale University, New Haven, CT 06520, USA
| | - Amaleah A Hartman
- Department of Cell Biology, Yale University, New Haven, CT 06520, USA; Yale Stem Cell Center, Yale University, New Haven, CT 06520, USA
| | | | - Cindy Yang
- Department of Cell Biology, Yale University, New Haven, CT 06520, USA
| | - Jun Lu
- Yale Stem Cell Center, Yale University, New Haven, CT 06520, USA; Department of Genetics, Yale University, New Haven, CT 06520, USA
| | - Hao Yuan Kueh
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Shangqin Guo
- Department of Cell Biology, Yale University, New Haven, CT 06520, USA; Yale Stem Cell Center, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
37
|
Eastman AE, Guo S. The palette of techniques for cell cycle analysis. FEBS Lett 2020; 594:10.1002/1873-3468.13842. [PMID: 32441778 PMCID: PMC9261528 DOI: 10.1002/1873-3468.13842] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/20/2020] [Accepted: 05/08/2020] [Indexed: 12/13/2022]
Abstract
The cell division cycle is the generational period of cellular growth and propagation. Cell cycle progression needs to be highly regulated to preserve genomic fidelity while increasing cell number. In multicellular organisms, the cell cycle must also coordinate with cell fate specification during development and tissue homeostasis. Altered cell cycle dynamics play a central role also in a number of pathophysiological processes. Thus, extensive effort has been made to define the biochemical machineries that execute the cell cycle and their regulation, as well as implementing more sensitive and accurate cell cycle measurements. Here, we review the available techniques for cell cycle analysis, revisiting the assumptions behind conventional population-based measurements and discussing new tools to better address cell cycle heterogeneity in the single-cell era. We weigh the strengths, weaknesses, and trade-offs of methods designed to measure temporal aspects of the cell cycle. Finally, we discuss emerging techniques for capturing cell cycle speed at single-cell resolution in live animals.
Collapse
Affiliation(s)
- Anna E Eastman
- Department of Cell Biology and Yale Stem Cell Center, Yale University, New Haven, CT, USA
| | - Shangqin Guo
- Department of Cell Biology and Yale Stem Cell Center, Yale University, New Haven, CT, USA
| |
Collapse
|
38
|
Lu YC, Sanada C, Xavier-Ferrucio J, Wang L, Zhang PX, Grimes HL, Venkatasubramanian M, Chetal K, Aronow B, Salomonis N, Krause DS. The Molecular Signature of Megakaryocyte-Erythroid Progenitors Reveals a Role for the Cell Cycle in Fate Specification. Cell Rep 2019; 25:2083-2093.e4. [PMID: 30463007 PMCID: PMC6336197 DOI: 10.1016/j.celrep.2018.10.084] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/14/2018] [Accepted: 10/24/2018] [Indexed: 12/25/2022] Open
Abstract
Megakaryocytic-erythroid progenitors (MEPs) give rise to the cells that produce red blood cells and platelets. Although the mechanisms underlying megakaryocytic (MK) and erythroid (E) maturation have been described, those controlling their specification from MEPs are unknown. Single-cell RNA sequencing of primary human MEPs, common myeloid progenitors (CMPs), megakaryocyte progenitors, and E progenitors revealed a distinct transitional MEP signature. Inferred regulatory transcription factors (TFs) were associated with differential expression of cell cycle regulators. Genetic manipulation of selected TFs validated their role in lineage specification and demonstrated coincident modulation of the cell cycle. Genetic and pharmacologic modulation demonstrated that cell cycle activation is sufficient to promote E versus MK specification. These findings, obtained from healthy human cells, lay a foundation to study the mechanisms underlying benign and malignant disease states of the megakaryocytic and E lineages. Bipotent megakaryocytic-erythroid progenitors (MEPs) produce megakaryocytic and erythroid cells. Using single-cell RNA sequencing of primary human MEPs and their upstream and downstream progenitors, Lu et al. show that MEPs are a unique transitional population. Functional and molecular studies show that MEP lineage fate is toggled by cell cycle speed.
Collapse
Affiliation(s)
- Yi-Chien Lu
- Department of Laboratory Medicine and Yale Stem Cell Center, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA.
| | - Chad Sanada
- Department of Laboratory Medicine and Yale Stem Cell Center, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | - Juliana Xavier-Ferrucio
- Department of Laboratory Medicine and Yale Stem Cell Center, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | - Lin Wang
- Department of Laboratory Medicine and Yale Stem Cell Center, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | - Ping-Xia Zhang
- Department of Laboratory Medicine and Yale Stem Cell Center, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | - H Leighton Grimes
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA
| | - Meenakshi Venkatasubramanian
- Division of Biomedical Informatics, Cincinnati Children's Hospital, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Kashish Chetal
- Division of Biomedical Informatics, Cincinnati Children's Hospital, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Bruce Aronow
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA; Division of Biomedical Informatics, Cincinnati Children's Hospital, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Nathan Salomonis
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA; Division of Biomedical Informatics, Cincinnati Children's Hospital, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Diane S Krause
- Department of Laboratory Medicine and Yale Stem Cell Center, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| |
Collapse
|
39
|
Hu X, Eastman AE, Guo S. Cell cycle dynamics in the reprogramming of cellular identity. FEBS Lett 2019; 593:2840-2852. [PMID: 31562821 DOI: 10.1002/1873-3468.13625] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 12/13/2022]
Abstract
Reprogramming of cellular identity is fundamentally at odds with replication of the genome: cell fate reprogramming requires complex multidimensional epigenomic changes, whereas genome replication demands fidelity. In this review, we discuss how the pace of the genome's replication and cell cycle influences the way daughter cells take on their identity. We highlight several biochemical processes that are pertinent to cell fate control, whose propagation into the daughter cells should be governed by more complex mechanisms than simple templated replication. With this mindset, we summarize multiple scenarios where rapid cell cycle could interfere with cell fate copying and promote cell fate reprogramming. Prominent examples of cell fate regulation by specific cell cycle phases are also discussed. Overall, there is much to be learned regarding the relationship between cell fate reprogramming and cell cycle control. Harnessing cell cycle dynamics could greatly facilitate the derivation of desired cell types.
Collapse
Affiliation(s)
- Xiao Hu
- Department of Cell Biology, Yale University, New Haven, CT, USA.,Yale Stem Cell Center, Yale University, New Haven, CT, USA
| | - Anna E Eastman
- Department of Cell Biology, Yale University, New Haven, CT, USA.,Yale Stem Cell Center, Yale University, New Haven, CT, USA
| | - Shangqin Guo
- Department of Cell Biology, Yale University, New Haven, CT, USA.,Yale Stem Cell Center, Yale University, New Haven, CT, USA
| |
Collapse
|
40
|
Kimmey SC, Borges L, Baskar R, Bendall SC. Parallel analysis of tri-molecular biosynthesis with cell identity and function in single cells. Nat Commun 2019; 10:1185. [PMID: 30862852 PMCID: PMC6414513 DOI: 10.1038/s41467-019-09128-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 02/05/2019] [Indexed: 12/02/2022] Open
Abstract
Cellular products derived from the activity of DNA, RNA, and protein synthesis collectively control cell identity and function. Yet there is little information on how these three biosynthesis activities are coordinated during transient and sparse cellular processes, such as activation and differentiation. Here, we describe Simultaneous Overview of tri-Molecule Biosynthesis (SOM3B), a molecular labeling and simultaneous detection strategy to quantify DNA, RNA, and protein synthesis in individual cells. Comprehensive interrogation of biosynthesis activities during transient cell states, such as progression through cell cycle or cellular differentiation, is achieved by partnering SOM3B with parallel quantification of select biomolecules with conjugated antibody reagents. Here, we investigate differential de novo DNA, RNA, and protein synthesis dynamics in transformed human cell lines, primary activated human immune cells, and across the healthy human hematopoietic continuum, all at a single-cell resolution.
Collapse
Affiliation(s)
- Samuel C Kimmey
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Luciene Borges
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Reema Baskar
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Cancer Biology PhD Program, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Sean C Bendall
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
41
|
Activation of the vitamin D receptor transcription factor stimulates the growth of definitive erythroid progenitors. Blood Adv 2019; 2:1207-1219. [PMID: 29844206 DOI: 10.1182/bloodadvances.2018017533] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/15/2018] [Indexed: 12/30/2022] Open
Abstract
The pathways that regulate the growth of erythroid progenitors are incompletely understood. In a computational analysis of gene expression changes during erythroid ontogeny, the vitamin D receptor (Vdr) nuclear hormone receptor transcription factor gene was identified in fetal and adult stages, but not at the embryonic stage of development. Vdr was expressed in definitive erythroid (EryD) progenitors and was downregulated during their maturation. Activation of Vdr signaling by the vitamin D3 agonist calcitriol increased the outgrowth of EryD colonies from fetal liver and adult bone marrow, maintained progenitor potential, and delayed erythroid maturation, as revealed by clonogenic assays, suspension culture, cell surface phenotype, and gene expression analyses. The early (cKit+CD71lo/neg), but not the late (cKit+CD71hi), EryD progenitor subset of LinnegcKit+ cells was responsive to calcitriol. Culture of cKit+CD71lo/neg progenitors in the presence of both vitamin D3 and glucocorticoid receptor ligands resulted in an increase in proliferation that was at least additive compared with either ligand alone. Lentivirus shRNA-mediated knockdown of Vdr expression abrogated the stimulation of early erythroid progenitor growth by calcitriol. These findings suggest that Vdr has a cell-intrinsic function in early erythroid progenitors. Targeting of downstream components of the Vdr signaling pathway may lead to new approaches for the expansion of erythroid progenitors ex vivo.
Collapse
|
42
|
SOX6 blocks the proliferation of BCR-ABL1 + and JAK2V617F + leukemic cells. Sci Rep 2019; 9:3388. [PMID: 30833651 PMCID: PMC6399316 DOI: 10.1038/s41598-019-39926-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 02/01/2019] [Indexed: 12/23/2022] Open
Abstract
SOX6 is a HMG-box transcription factor expressed in a wide range of tissues. Recent data show that SOX6 expression is altered in different cancers, in the majority of cases being downregulated. To date, no data are available about SOX6 role in hematological malignancies. Here we demonstrate that SOX6 overexpressing BCR-ABL1+ B-ALL cells are unable to promote leukemia in a mouse model. Starting from this observation, we extended our study to a panel of human leukemic cells carrying genetic lesions distinctive of different types of leukemias and myeloproliferative disorders (the BCR-ABL1 translocation and the JAK2V617F amino acid substitution) to dissect the cellular events induced by SOX6. The inhibition of proliferation is the invariant outcome of SOX6 overexpression but it is achieved via two different cellular responses: terminal differentiation in erythroid-biased cells, irrespectively of their mutation, and apoptosis in megakaryocytic-primed and lymphoid cells. Within this context, cells carrying the highest copy number of the JAK2V617F allele better counteract the SOX6-imposed growth arrest. The interrogation of the GEPIA (Gene Expression Profiling Interactive Analysis) human dataset reveals that SOX6 is downregulated in a cohort of AML patients, uncovering a wide anti-proliferative role of SOX6 in a variety of mutant backgrounds.
Collapse
|
43
|
Li H, Natarajan A, Ezike J, Barrasa MI, Le Y, Feder ZA, Yang H, Ma C, Markoulaki S, Lodish HF. Rate of Progression through a Continuum of Transit-Amplifying Progenitor Cell States Regulates Blood Cell Production. Dev Cell 2019; 49:118-129.e7. [PMID: 30827895 DOI: 10.1016/j.devcel.2019.01.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 12/03/2018] [Accepted: 01/30/2019] [Indexed: 01/04/2023]
Abstract
The nature of cell-state transitions during the transit-amplifying phases of many developmental processes-hematopoiesis in particular-is unclear. Here, we use single-cell RNA sequencing to demonstrate a continuum of transcriptomic states in committed transit-amplifying erythropoietic progenitors, which correlates with a continuum of proliferative potentials in these cells. We show that glucocorticoids enhance erythrocyte production by slowing the rate of progression through this developmental continuum of transit-amplifying progenitors, permitting more cell divisions prior to terminal erythroid differentiation. Mechanistically, glucocorticoids prolong expression of genes that antagonize and slow induction of genes that drive terminal erythroid differentiation. Erythroid progenitor daughter cell pairs have similar transcriptomes with or without glucocorticoid stimulation, indicating largely symmetric cell division. Thus, the rate of progression along a developmental continuum dictates the absolute number of erythroid cells generated from each transit-amplifying progenitor, suggesting a paradigm for regulating the total output of differentiated cells in numerous other developmental processes.
Collapse
Affiliation(s)
- Hojun Li
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Dana-Farber/Boston Children's Hospital Cancer and Blood Disorders Center, Boston, MA 02215, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Anirudh Natarajan
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Jideofor Ezike
- Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | | | - Yenthanh Le
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Zoë A Feder
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Huan Yang
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Clement Ma
- Dana-Farber/Boston Children's Hospital Cancer and Blood Disorders Center, Boston, MA 02215, USA
| | | | - Harvey F Lodish
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Departments of Biology and Bioengineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
44
|
Barbarani G, Fugazza C, Strouboulis J, Ronchi AE. The Pleiotropic Effects of GATA1 and KLF1 in Physiological Erythropoiesis and in Dyserythropoietic Disorders. Front Physiol 2019; 10:91. [PMID: 30809156 PMCID: PMC6379452 DOI: 10.3389/fphys.2019.00091] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/25/2019] [Indexed: 01/19/2023] Open
Abstract
In the last few years, the advent of new technological approaches has led to a better knowledge of the ontogeny of erythropoiesis during development and of the journey leading from hematopoietic stem cells (HSCs) to mature red blood cells (RBCs). Our view of a well-defined hierarchical model of hematopoiesis with a near-homogeneous HSC population residing at the apex has been progressively challenged in favor of a landscape where HSCs themselves are highly heterogeneous and lineages separate earlier than previously thought. The coordination of these events is orchestrated by transcription factors (TFs) that work in a combinatorial manner to activate and/or repress their target genes. The development of next generation sequencing (NGS) has facilitated the identification of pathological mutations involving TFs underlying hematological defects. The examples of GATA1 and KLF1 presented in this review suggest that in the next few years the number of TF mutations associated with dyserythropoietic disorders will further increase.
Collapse
Affiliation(s)
- Gloria Barbarani
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi Milano-Bicocca, Milan, Italy
| | - Cristina Fugazza
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi Milano-Bicocca, Milan, Italy
| | - John Strouboulis
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Antonella E Ronchi
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi Milano-Bicocca, Milan, Italy
| |
Collapse
|
45
|
Páral P, Faltusová K, Molík M, Renešová N, Šefc L, Nečas E. Cell cycle and differentiation of Sca-1 + and Sca-1 - hematopoietic stem and progenitor cells. Cell Cycle 2018; 17:1979-1991. [PMID: 30084312 DOI: 10.1080/15384101.2018.1502573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hematopoietic stem and progenitor cells (HSPCs) are crucial for lifelong blood cell production. We analyzed the cell cycle and cell production rate in HSPCs in murine hematopoiesis. The labeling of DNA-synthesizing cells by two thymidine analogues, optimized for in-vivo use, enabled determination of the cell cycle flow rate into G2-phase, the duration of S-phase and the average cell cycle time in Sca-1+ and Sca-1- HSPCs. Determination of cells with 2n DNA content labeled in preceding S-phase was then used to establish the cell flow rates in G1-phase. Our measurements revealed a significant difference in how Sca-1+ and Sca-1- myeloid progenitors self-renew and differentiate. Division of the Sca-1+ progenitors led to loss of the Sca-1 marker in about half of newly produced cells, corresponding to asymmetric cell division. Sca-1- cells arising from cell division entered a new round of the cell cycle, corresponding to symmetric self-renewing cell division. The novel data also enabled the estimation of the cell production rates in Sca-1+ and in three subtypes of Sca-1- HSPCs and revealed Sca-1 negative cells as the major amplification stage in the blood cell development.
Collapse
Affiliation(s)
- Petr Páral
- a First Faculty of Medicine , Institute of Pathological Physiology, Charles University , Prague , Czech Republic
| | - Kateřina Faltusová
- a First Faculty of Medicine , Institute of Pathological Physiology, Charles University , Prague , Czech Republic
| | - Martin Molík
- a First Faculty of Medicine , Institute of Pathological Physiology, Charles University , Prague , Czech Republic
| | - Nicol Renešová
- a First Faculty of Medicine , Institute of Pathological Physiology, Charles University , Prague , Czech Republic.,b BIOCEV, Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec, Institute of Pathological Physiology, Charles University , Czech Republic
| | - Luděk Šefc
- c Center for Advanced Preclinical Imaging , First Faculty of Medicine, Charles University , Prague , Czech Republic
| | - Emanuel Nečas
- a First Faculty of Medicine , Institute of Pathological Physiology, Charles University , Prague , Czech Republic.,b BIOCEV, Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec, Institute of Pathological Physiology, Charles University , Czech Republic
| |
Collapse
|
46
|
Tusi BK, Wolock SL, Weinreb C, Hwang Y, Hidalgo D, Zilionis R, Waisman A, Huh JR, Klein AM, Socolovsky M. Population snapshots predict early haematopoietic and erythroid hierarchies. Nature 2018; 555:54-60. [PMID: 29466336 PMCID: PMC5899604 DOI: 10.1038/nature25741] [Citation(s) in RCA: 258] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/11/2018] [Indexed: 12/18/2022]
Abstract
The formation of red blood cells begins with the differentiation of multipotent haematopoietic progenitors. Reconstructing the steps of this differentiation represents a general challenge in stem-cell biology. Here we used single-cell transcriptomics, fate assays and a theory that allows the prediction of cell fates from population snapshots to demonstrate that mouse haematopoietic progenitors differentiate through a continuous, hierarchical structure into seven blood lineages. We uncovered coupling between the erythroid and the basophil or mast cell fates, a global haematopoietic response to erythroid stress and novel growth factor receptors that regulate erythropoiesis. We defined a flow cytometry sorting strategy to purify early stages of erythroid differentiation, completely isolating classically defined burst-forming and colony-forming progenitors. We also found that the cell cycle is progressively remodelled during erythroid development and during a sharp transcriptional switch that ends the colony-forming progenitor stage and activates terminal differentiation. Our work showcases the utility of linking transcriptomic data to predictive fate models, and provides insights into lineage development in vivo.
Collapse
Affiliation(s)
- Betsabeh Khoramian Tusi
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA
| | - Samuel L. Wolock
- Department of Systems Biology, Harvard Medical School, Boston, MA
| | - Caleb Weinreb
- Department of Systems Biology, Harvard Medical School, Boston, MA
| | - Yung Hwang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA
| | - Daniel Hidalgo
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA
| | - Rapolas Zilionis
- Department of Systems Biology, Harvard Medical School, Boston, MA
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Jun R. Huh
- Division of Immunology, Department of Microbiology and Immunobiology and Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, Massachusetts 02115, USA
| | - Allon M. Klein
- Department of Systems Biology, Harvard Medical School, Boston, MA
| | - Merav Socolovsky
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA
| |
Collapse
|