1
|
Li Z, Miao X, Li J, Lee J, Li X, Ahn HJ, Wu A, Zhao W, Yun J, Lee SW. Tear-Based Battery Embedded with Prussian Blue Analogues and Silver Nanoparticles for Smart Contact Lenses. ACS NANO 2025; 19:19477-19487. [PMID: 40371918 DOI: 10.1021/acsnano.5c05610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Smart contact lenses coupled with electronic components have vast potential for healthcare applications, as such advanced technology enables continuous and noninvasive monitoring of vital signs and disease diagnosis. However, stringent safety and nontoxicity requirements for ocular devices restrict the applications of flexible batteries fabricated by conventional methods. Here, we design a safe and flexible tear-based aqueous battery composed of Prussian blue analogues and silver nanoparticle films for cathode and anode, respectively. The battery exhibited satisfying cyclic electrochemical performance, with a discharge capacity of 195.37 μAh in a tear-like solution with interferences at 34.5 °C within the voltage ranges from 0.2 to 1.0 V. The power and voltage were sufficient to enable a temperature sensor. In addition, the rate capability, mechanical stability, and biocompatibility of the battery have been demonstrated as well.
Collapse
Affiliation(s)
- Zongkang Li
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Xinwen Miao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore
| | - Jia Li
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Junghyun Lee
- Singapore Center for 3D Printing, Nanyang Technological University, Singapore 639798, Singapore
| | - Xiaoya Li
- Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Hee-Jae Ahn
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Interdisciplinary Graduate School, Nanyang Technological University, Singapore 639798, Singapore
| | - Angyin Wu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Wenting Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore
| | - Jeonghun Yun
- Major of Safety Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Seok Woo Lee
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
2
|
Qian X, Chen Z, Zhang F, Yan Z. Electrochemically Active Materials for Tissue-Interfaced Soft Biochemical Sensing. ACS Sens 2025; 10:3274-3301. [PMID: 40256874 DOI: 10.1021/acssensors.5c00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Tissue-interfaced soft biochemical sensing represents a crucial approach to personalized healthcare by employing electrochemically active materials to monitor biochemical signals at the tissue interface in real time, either noninvasively or through implantation. These soft biochemical sensors can be integrated with various biological tissues, such as neural, gastrointestinal, ocular, cardiac, skin, muscle, and bone, adapting to their unique mechanical and biochemical environments. Sensors employing materials like conductive polymers, composites, metals, metal oxides, and carbon-based nanomaterials have demonstrated capabilities in applications, such as continuous glucose monitoring, neural activity mapping, and real-time metabolite detection, enhancing diagnostics and treatment monitoring across a range of medical fields. Next-generation tissue-interfaced biosensors that enable multimodal and multiplexed measurement of biochemical markers and physiological parameters could be transformative for personalized medicine, allowing for high-resolution, time-resolved historical monitoring of an individual's health status. In this review, we summarize current trends in the field to provide insights into the challenges and future trajectory of tissue-interfaced soft biochemical sensors, highlighting their potential to revolutionize personalized medicine and improve patient outcomes.
Collapse
Affiliation(s)
- Xiaoyan Qian
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Zehua Chen
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Feng Zhang
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Zheng Yan
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, Missouri 65211, United States
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, Missouri 65211, United States
- NextGen Precision Health, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
3
|
Zhou Y, Vasko P, Zhu Y, Wang J, Kalha C, Regoutz A, Hashibon A, Tai Y, Hwang GB, Knapp CE. Low-Temperature Single-Step Inkjet-Printed Metallic Patterns With Self-Regulated Vertical Compositional Gradient. SMALL METHODS 2025:e2401371. [PMID: 40370268 DOI: 10.1002/smtd.202401371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 04/21/2025] [Indexed: 05/16/2025]
Abstract
For the rapidly growing demands and expanding range of applications of printed electronics in medicine lower processing temperatures and simpler steps are preferred to minimize the fabrication processes onto a range of substrates. Various hybrid inks are formulated for fabricating multi-compositional functional patterns with fewer manufacturing processes. However, most hybrid inks can only form patterns with fully-mixed compositional distribution. This study proposes a novel hybrid metal-based ink formulation pathway and develops a particle-free Ag-Cu hybrid metal-organic decomposition (MOD) ink. When sintering under N2 the in situ formed Ag and Cu nano-particulates during the sintering process self-regulate into a unique vertical compositional gradient with Cu dominant on top and the majority of Ag existing beneath. Highly conductive (1.88 ± 0.7 × 106 S m-1) metallic patterns are fabricated by single-step inkjet printing at low temperature (<150 °C) on both rigid and cellulose fiber substrates. When sintered under air a porous CuO layer is generated on the surface with high electrocatalytic activity with glucose (stable for over 2 h of continuous measurement). This work shows the feasibility of fabricating a glucose sensor including electrode layer and functional layer by single-step printing.
Collapse
Affiliation(s)
- Ye Zhou
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Petra Vasko
- Department of Chemistry, University of Helsinki, A. I. Virtasen aukio 1, P.O. Box 55, Helsinki, 00014, Finland
| | - Yujiang Zhu
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Jingyan Wang
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Curran Kalha
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Anna Regoutz
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
- Department of Chemistry, Inorganic Chemistry Laboratory, Oxford, OX1 3QR, UK
| | - Adham Hashibon
- Institute of Material Discovery, UCL East, Marshgate 7 Sidings Street, London, E20 2AE, UK
| | - Yanlong Tai
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Gi Byoung Hwang
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Caroline E Knapp
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| |
Collapse
|
4
|
Wang M, Zheng J, Zhang G, Lu S, Zhou J. Wearable Electrochemical Glucose Sensors for Fluid Monitoring: Advances and Challenges in Non-Invasive and Minimally Invasive Technologies. BIOSENSORS 2025; 15:309. [PMID: 40422047 DOI: 10.3390/bios15050309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 05/02/2025] [Accepted: 05/06/2025] [Indexed: 05/28/2025]
Abstract
This review highlights the latest developments in wearable electrochemical glucose sensors, focusing on their transition from invasive to non-invasive and minimally invasive designs. We discuss the underlying mechanisms, performance metrics, and practical challenges of these technologies, emphasizing their potential to revolutionize diabetes care. Additionally, we explore the motivation behind this review: to provide a comprehensive analysis of emerging sensing platforms, assess their clinical applicability, and identify key research gaps that need addressing to achieve reliable, long-term glucose monitoring. By evaluating electrochemical sensors based on tears, saliva, sweat, urine, and interstitial fluid, this work aims to guide future innovations toward more accessible, accurate, and user-friendly solutions for diabetic patients, ultimately improving their quality of life and disease management outcomes.
Collapse
Affiliation(s)
- Ming Wang
- School of Chemical and Printing-Dyeing Engineering, Henan University of Engineering, Zhengzhou 450007, China
| | - Junjie Zheng
- College of Intelligent Textile and Fabric Electronics, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Ge Zhang
- College of Intelligent Textile and Fabric Electronics, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Shiyan Lu
- College of Intelligent Textile and Fabric Electronics, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Jinli Zhou
- College of Intelligent Textile and Fabric Electronics, Zhongyuan University of Technology, Zhengzhou 450007, China
| |
Collapse
|
5
|
Coskun A, Savas IN, Can O, Lippi G. From population-based to personalized laboratory medicine: continuous monitoring of individual laboratory data with wearable biosensors. Crit Rev Clin Lab Sci 2025; 62:198-227. [PMID: 39893518 DOI: 10.1080/10408363.2025.2453152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/28/2024] [Accepted: 01/09/2025] [Indexed: 02/04/2025]
Abstract
Monitoring individuals' laboratory data is essential for assessing their health status, evaluating the effectiveness of treatments, predicting disease prognosis and detecting subclinical conditions. Currently, monitoring is performed intermittently, measuring serum, plasma, whole blood, urine and occasionally other body fluids at predefined time intervals. The ideal monitoring approach entails continuous measurement of concentration and activity of biomolecules in all body fluids, including solid tissues. This can be achieved through the use of biosensors strategically placed at various locations on the human body where measurements are required for monitoring. High-tech wearable biosensors provide an ideal, noninvasive, and esthetically pleasing solution for monitoring individuals' laboratory data. However, despite significant advances in wearable biosensor technology, the measurement capacities and the number of different analytes that are continuously monitored in patients are not yet at the desired level. In this review, we conducted a literature search and examined: (i) an overview of the background of monitoring for personalized laboratory medicine, (ii) the body fluids and analytes used for monitoring individuals, (iii) the different types of biosensors and methods used for measuring the concentration and activity of biomolecules, and (iv) the statistical algorithms used for personalized data analysis and interpretation in monitoring and evaluation.
Collapse
Affiliation(s)
- Abdurrahman Coskun
- Department of Medical Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Irem Nur Savas
- Department of Medical Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Ozge Can
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Giuseppe Lippi
- Section of Clinical Biochemistry and School of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
6
|
Madhvapathy SR, Cho S, Gessaroli E, Forte E, Xiong Y, Gallon L, Rogers JA. Implantable bioelectronics and wearable sensors for kidney health and disease. Nat Rev Nephrol 2025:10.1038/s41581-025-00961-2. [PMID: 40301646 DOI: 10.1038/s41581-025-00961-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2025] [Indexed: 05/01/2025]
Abstract
Established clinical practices for monitoring kidney health and disease - including biopsy and serum biomarker analysis - suffer from practical limitations in monitoring frequency and lack adequate sensitivity for early disease detection. Engineering advances in biosensors have led to the development of wearable and implantable systems for monitoring of kidney health. Non-invasive microfluidic systems have demonstrated utility in the detection of kidney-relevant biomarkers, such as creatinine, urea and electrolytes in peripheral body fluids such as sweat, interstitial fluid, tears and saliva. Implantable systems may aid the identification of early transplant rejection through analysis of organ temperature and perfusion, and enable real-time assessment of inflammation through the use of thermal sensors. These technologies enable continuous, real-time monitoring of kidney health, offering complementary information to standard clinical procedures to alert physicians of changes in kidney health for early intervention. In this Review, we explore devices for monitoring renal biomarkers in peripheral biofluids and discuss developments in implantable sensors for the direct measurement of the local, biophysical properties of kidney tissue. We also describe potential clinical applications, including monitoring of chronic kidney disease, acute kidney injury and allograft health.
Collapse
Affiliation(s)
- Surabhi R Madhvapathy
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Soongwon Cho
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Elisa Gessaroli
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum - University of Bologna, Bologna, Italy
- Department of Medicine, Division of Nephrology, University of Illinois College of Medicine, Chicago, IL, USA
| | - Eleonora Forte
- Department of Medicine, Division of Nephrology, University of Illinois College of Medicine, Chicago, IL, USA
| | - Yirui Xiong
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Lorenzo Gallon
- Department of Medicine, Division of Nephrology, University of Illinois College of Medicine, Chicago, IL, USA.
| | - John A Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA.
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
7
|
Roostaei N, Hamidi SM. Plasmonic smart contact lens based on etalon nanostructure for tear glucose sensing. Sci Rep 2025; 15:14948. [PMID: 40301506 PMCID: PMC12041482 DOI: 10.1038/s41598-025-99624-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 04/22/2025] [Indexed: 05/01/2025] Open
Abstract
Smart contact lenses, one of the most advanced wearable platforms, offer a combination of optical and electronic technologies that provide exceptional capabilities in various fields. These lenses are equipped with biosensors, microchips, and sometimes even miniature displays that enable the collection and analysis of biological and environmental data. Smart contact lenses represent a big leap in wearable technology and biosensors, potentially providing a new future for human interaction with the digital world, improving personal health, and promising a hopeful future in vision and wearable technologies. In this study, smart contact lenses based on plasmonic etalon nanostructure have been proposed and fabricated for tear glucose sensing. A cost-effective and simple technique of soft nanolithography has been proposed to fabricate a plasmonic sensor chip on a contact lens, enabling the detection of glucose solutions at different concentrations of 0.15, 1.5, 5, and 10 mM in a phosphate-buffered saline (PBS) solution. The proposed plasmonic etalon-based smart contact lens as a wearable platform exhibits the capacity to sense tear glucose (even at low concentration values) and offers relatively high sensitivity for non-invasive tear glucose sensing applications. The biocompatibility, cost-effectiveness, stability, and simple production of these contact lenses may provide new perspectives on wearable biosensors.
Collapse
Affiliation(s)
- N Roostaei
- Magneto-Plasmonic Lab, Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
- Department of Atomic and Molecular Physics, Faculty of Physics, Alzahra University, Tehran, Iran
| | - S M Hamidi
- Magneto-Plasmonic Lab, Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
8
|
Fardoost A, Karimi K, Singh J, Patel H, Javanmard M. Enhancing glaucoma care with smart contact lenses: An overview of recent developments. Biomed Microdevices 2025; 27:18. [PMID: 40257617 PMCID: PMC12011977 DOI: 10.1007/s10544-025-00740-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2025] [Indexed: 04/22/2025]
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide, affecting millions of individuals due to its progressive damage to the optic nerve, often caused by elevated intraocular pressure (IOP). Conventional methods of IOP monitoring, such as tonometry, provide sporadic and often inaccurate readings due to fluctuations throughout the day, leaving significant gaps in diagnosis and treatment. This review explores the transformative potential of smart contact lenses equipped with continuous IOP monitoring and therapeutic capabilities. These lenses integrate advanced materials such as graphene, nanogels, and magnetic oxide nanosheets alongside sophisticated biosensing and wireless communication systems. By offering continuous, real-time data, these lenses can detect subtle IOP fluctuations and provide immediate feedback to patients and clinicians. Moreover, drug-eluting capabilities embedded in these lenses present a groundbreaking approach to glaucoma therapy by improving medication adherence and providing controlled drug release directly to the eye. Beyond IOP management, these innovations also pave the way for monitoring biochemical markers and other ocular diseases. Challenges such as biocompatibility, long-term wearability, and affordability remain, but the integration of cutting-edge technologies in smart contact lenses signifies a paradigm shift in glaucoma care. These developments hold immense promise for advancing personalized medicine, improving patient outcomes, and mitigating the global burden of blindness.
Collapse
Affiliation(s)
- Ali Fardoost
- Department of Electrical Engineering, Rutgers University, 08854, Piscataway, NJ, USA
| | - Koosha Karimi
- Department of Electrical Engineering, Rutgers University, 08854, Piscataway, NJ, USA
| | - Jaydeep Singh
- Department of Electrical Engineering, Rutgers University, 08854, Piscataway, NJ, USA
| | - Heneil Patel
- Department of Electrical Engineering, Rutgers University, 08854, Piscataway, NJ, USA
| | - Mehdi Javanmard
- Department of Electrical Engineering, Rutgers University, 08854, Piscataway, NJ, USA.
| |
Collapse
|
9
|
Lopes V, Abreu T, Abrantes M, Nemala SS, De Boni F, Prato M, Alpuim P, Capasso A. Graphene-Based Glucose Sensors with an Attomolar Limit of Detection. J Am Chem Soc 2025; 147:13059-13070. [PMID: 40179421 DOI: 10.1021/jacs.5c03552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Diabetes mellitus, a prevalent metabolic disorder affecting hundreds of millions of people worldwide, demands continuous glucose monitoring for effective management. Current blood glucose monitoring methods, such as commercial glucometers, are accurate but are often perceived as uncomfortable. Motivated by the need for noninvasive, ultrasensitive alternatives, our study presents electrolyte-gated graphene field-effect transistors functionalized with glucose oxidase. We developed an optimized fabrication process that integrates a 32-transistor matrix within a miniaturized 1000 μm2 footprint, ensuring high device uniformity while enabling detection in 40 μL analyte volume. A comprehensive suite of techniques─including Raman spectroscopy, X-ray photoelectron spectroscopy, and water contact angle measurements─reveals the stepwise evolution of graphene chemistry and surface properties leading to the controlled immobilization of glucose oxidase. Our findings demonstrate p-type doping and tensile strain in the graphene channel across the nanomolar-millimolar glucose concentration range. The enzyme-catalyzed oxidation of glucose produces hydrogen peroxide in close proximity to the graphene channel, inducing a systematic shift in the Dirac point voltage toward more positive values. Under these conditions, the biosensor achieves an attomolar limit of detection and a sensitivity of 10.6 mV/decade, outperforming previously reported glucose sensors. Selectivity tests against common interferents such as lactate and ascorbic acid, as well as validation in artificial and human tears, demonstrate its robustness for real-world applications. Altogether, these findings position the electrolyte-gated graphene field-effect transistor as a transformative, noninvasive glucose-sensing platform, paving the way for next-generation continuous monitoring devices, including wearable formats for real-time, user-friendly diabetes management.
Collapse
Affiliation(s)
- Vicente Lopes
- International Iberian Nanotechnology Laboratory, Braga 4715-330, Portugal
| | - Tiago Abreu
- International Iberian Nanotechnology Laboratory, Braga 4715-330, Portugal
- Center of Physics of the Universities of Minho and Porto, University of Minho, Braga 4710-057, Portugal
| | - Mafalda Abrantes
- International Iberian Nanotechnology Laboratory, Braga 4715-330, Portugal
- Center of Physics of the Universities of Minho and Porto, University of Minho, Braga 4710-057, Portugal
| | - Siva Sankar Nemala
- International Iberian Nanotechnology Laboratory, Braga 4715-330, Portugal
| | - Francesco De Boni
- Materials Characterization Facility, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Mirko Prato
- Materials Characterization Facility, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Pedro Alpuim
- International Iberian Nanotechnology Laboratory, Braga 4715-330, Portugal
- Center of Physics of the Universities of Minho and Porto, University of Minho, Braga 4710-057, Portugal
| | - Andrea Capasso
- International Iberian Nanotechnology Laboratory, Braga 4715-330, Portugal
| |
Collapse
|
10
|
Kim M, Park H, Kim E, Chung M, Oh JH. Photo-crosslinkable organic materials for flexible and stretchable electronics. MATERIALS HORIZONS 2025. [PMID: 40202255 DOI: 10.1039/d4mh01757a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
As technology advances to enhance human perceptual experiences of the surrounding environment, significant research on stretchable electronics is actively progressing, spanning from the synthesis of materials to their applications in fully integrated devices. A critical challenge lies in developing materials that can maintain their electrical properties under substantial stretching. Photo-crosslinkable organic materials have emerged as a promising solution due to their ability to be precisely modified with light to achieve desired properties, such as enhanced durability, stable conductivity, and micropatterning. This review examines recent research on photo-crosslinkable organic materials, focusing on their components and integration within stretchable electronic devices. We explore the essential characteristics required for each device component (insulators, semiconductors, and conductors) and explain how photo-crosslinking technology addresses these needs through its principles and implementation. Additionally, we discuss the integration and utilization of these components in real-world applications, including physical sensors, organic field-effect transistors (OFETs), and organic solar cells (OSCs). Finally, we offer a concise perspective on the future directions and potential challenges in ongoing research on photo-crosslinkable organic materials.
Collapse
Affiliation(s)
- Minsung Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Hayeong Park
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Eunjin Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Minji Chung
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Joon Hak Oh
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
11
|
M A, Saxena A, Mishra D, Singh K, George SD. Microfluidic contact lens: fabrication approaches and applications. MICROSYSTEMS & NANOENGINEERING 2025; 11:59. [PMID: 40180901 PMCID: PMC11968888 DOI: 10.1038/s41378-025-00909-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 02/07/2025] [Accepted: 03/04/2025] [Indexed: 04/05/2025]
Abstract
Microfluidic contact lenses integrate microscale features that can efficiently and precisely manipulate, interact, and analyze the small volumes of tears available in the limited accessible space for the lens in the eye. The microfluidic network on contact lenses allows the miniaturization of biochemical operations on the wealth of physiological information available in the eye. Sensors integrated into channels enable real-time monitoring of ocular parameters, including glucose, pH, electrolytes, or other biomarkers. Additionally, microchannel-integrated contact lenses have demonstrated potential as power-free, continuous intraocular pressure monitoring platforms for the effective management of glaucoma. Furthermore, the controlled release of medications directly onto the eye from microfluidic contact lenses enhances therapeutic efficacy by increasing bioavailability. Despite current challenges such as scalable fabrication techniques, microfluidic contact lenses hold immense promise for ocular health, bridging the gap between diagnostics and treatment. This review summarizes the progress made in the design and fabrication of microfluidic contact lenses, with a special emphasis on the methods adopted to fabricate microfluidic contact lenses. Furthermore, the various applications of microfluidic contact lenses, ocular disease diagnosis, and drug delivery in particular are discussed in detail. Aside from outlining the state-of-the-art research activities in this area, challenges and future directions are discussed here.
Collapse
Affiliation(s)
- Aravind M
- Manipal Institute of Applied Physics, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Ankur Saxena
- Department of Mechanical Engineering, Manipal University Jaipur, Jaipur, 303007, India
| | - Dhaneshwar Mishra
- Department of Mechanical Engineering, Manipal University Jaipur, Jaipur, 303007, India
| | - Kulwant Singh
- Skill Faculty of Engineering & Technology, Shri Vishwakarma Skill University, Palwal, 121102, India
| | - Sajan D George
- Manipal Institute of Applied Physics, Manipal Academy of Higher Education, Manipal, 576104, India.
- Centre for Applied Nanosciences (CAN), Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|
12
|
Muralee Gopi CVV, Alzahmi S, Narayanaswamy V, Raghavendra KVG, Issa B, Obaidat IM. A review on electrode materials of supercapacitors used in wearable bioelectronics and implantable biomedical applications. MATERIALS HORIZONS 2025. [PMID: 40145396 DOI: 10.1039/d4mh01707b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Supercapacitors, a class of electrochemical energy storage devices, offer a promising solution for powering wearable bioelectronics and implantable biomedical devices. Their high-power density, rapid charge-discharge capabilities, and long cycle life make them ideal for applications requiring quick bursts of energy and extended operation. To address the challenges of energy density, self-discharge, miniaturization, integration, and power consumption, researchers are exploring various strategies, including developing novel electrode materials, optimizing device architectures, and integrating advanced fabrication techniques. Metal oxides, carbon-based materials, MXenes, and their composites have emerged as promising electrode materials due to their high specific surface area, excellent conductivity, and biocompatibility. For wearable bioelectronics, supercapacitors can power a wide range of devices, including wearable sensors, smart textiles, and other devices that require intermittent or pulsed energy. In implantable biomedical devices, supercapacitors offer a reliable and safe power source for applications such as pacemakers, neural implants, and drug delivery systems. By addressing the challenges and capitalizing on emerging technologies, supercapacitors have the potential to revolutionize the field of bioelectronics and biomedical engineering, enabling the development of innovative devices that improve healthcare and quality of life.
Collapse
Affiliation(s)
- Chandu V V Muralee Gopi
- Department of Electrical Engineering, University of Sharjah, Sharjah, P. O. Box 27272, United Arab Emirates
| | - Salem Alzahmi
- Department of Chemical & Petroleum Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Venkatesha Narayanaswamy
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates.
| | - K V G Raghavendra
- Department of Electrical Engineering, Pusan National University, Busan, Republic of South Korea
| | - Bashar Issa
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates.
- Department of Medical Diagnostic Imaging, College of Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34010, Turkey
| | - Ihab M Obaidat
- Department of Applied Physics and Astronomy, University of Sharjah, P.O. Box 27272, United Arab Emirates.
| |
Collapse
|
13
|
Xue P, Zhou S, Li G, Wen D. Functional design of metal aerogels for wearable electrochemical biosensing devices. Chem Commun (Camb) 2025; 61:4774-4783. [PMID: 40035707 DOI: 10.1039/d4cc06728b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Metal aerogels (MAs) represent a novel class of aerogels composed entirely of interconnected metal nanoparticles or nanostructures. They integrate the unique physicochemical properties of metals with the high surface area and porosity of traditional aerogels, resulting in high electrochemical activity, efficient mass and electron transport, and considerable mechanical stability. These attributes make MAs particularly appealing for applications in wearable electrochemical biosensing devices. As electrode materials for electrochemical sensors, MAs can serve as carriers for enzymes or as electrocatalysts (with inherent electrocatalytic properties), thereby delivering superior sensing performance. Moreover, their three-dimensional, interconnected network structure imparts inherent flexibility, making them highly suitable for wearable biosensor electrodes. This review highlights recent advancements in the functional design of MAs for wearable electrochemical sensors and evaluates their performance in human biomarker monitoring. It also explores the challenges and future potential of MAs in such wearable devices. With ongoing progress in materials science, MA-based wearable biosensors hold significant promise for advancing disease diagnosis and health management.
Collapse
Affiliation(s)
- Pengxin Xue
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Shanghai 200050, China
| | - Shaokun Zhou
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Guanglei Li
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Shanghai 200050, China
| | - Dan Wen
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
14
|
Kim SJ, Huh J, Hahn SK. Smart theranostic contact lenses. J Control Release 2025; 379:920-926. [PMID: 39884435 DOI: 10.1016/j.jconrel.2025.01.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 02/01/2025]
Abstract
Although smart contact lenses have demonstrated great potential in theranostics, there remain critical challenges and opportunities in their commercial development. In this Perspective, the current status and capability of smart theranostic contact lenses are highlighted, focusing on their application as sensing systems for detecting biomarkers such as glucose, intraocular pressure (IOP), and inflammatory cytokines, and as drug delivery systems (DDS) for precise and controlled therapy. Additionally, key challenges associated with clinical development and commercialization of smart theranostic contact lenses are discussed, to optimize diagnostic and therapeutic interventions. Considering the rapid evolution of the field, we finally also discuss the need for systematic studies on safety, efficacy, and mass-production, and we spark new ideas for advancing smart theranostic contact lenses into versatile platforms for personalized medicine.
Collapse
Affiliation(s)
- Seong-Jong Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jin Huh
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea.
| |
Collapse
|
15
|
Linh VTN, Han S, Koh E, Kim S, Jung HS, Koo J. Advances in wearable electronics for monitoring human organs: Bridging external and internal health assessments. Biomaterials 2025; 314:122865. [PMID: 39357153 DOI: 10.1016/j.biomaterials.2024.122865] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 09/06/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
Devices used for diagnosing disease are often large, expensive, and require operation by trained professionals, which can result in delayed diagnosis and missed opportunities for timely treatment. However, wearable devices are being recognized as a new approach to overcoming these difficulties, as they are small, affordable, and easy to use. Recent advancements in wearable technology have made monitoring information possible from the surface of organs like the skin and eyes, enabling accurate diagnosis of the user's internal status. In this review, we categorize the body's organs into external (e.g., eyes, oral cavity, neck, and skin) and internal (e.g., heart, brain, lung, stomach, and bladder) organ systems and introduce recent developments in the materials and designs of wearable electronics, including electrochemical and electrophysiological sensors applied to each organ system. Further, we explore recent innovations in wearable electronics for monitoring of deep internal organs, such as the heart, brain, and nervous system, using ultrasound, electrical impedance tomography, and temporal interference stimulation. The review also addresses the current challenges in wearable technology and explores future directions to enhance the effectiveness and applicability of these devices in medical diagnostics. This paper establishes a framework for correlating the design and functionality of wearable electronics with the physiological characteristics and requirements of various organ systems.
Collapse
Affiliation(s)
- Vo Thi Nhat Linh
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science (KIMS), Changwon, 51508, South Korea
| | - Seunghun Han
- School of Biomedical Engineering, College of Health Science, Korea University, Seoul, 02841, South Korea; Interdisciplinary Program in Precision Public Health, Korea University, Seoul, 02841, South Korea
| | - Eunhye Koh
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science (KIMS), Changwon, 51508, South Korea
| | - Sumin Kim
- School of Biomedical Engineering, College of Health Science, Korea University, Seoul, 02841, South Korea; Interdisciplinary Program in Precision Public Health, Korea University, Seoul, 02841, South Korea
| | - Ho Sang Jung
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science (KIMS), Changwon, 51508, South Korea; Advanced Materials Engineering, University of Science and Technology (UST), Daejeon, 34113, South Korea; School of Convergence Science and Technology, Medical Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea.
| | - Jahyun Koo
- School of Biomedical Engineering, College of Health Science, Korea University, Seoul, 02841, South Korea; Interdisciplinary Program in Precision Public Health, Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
16
|
Khonina SN, Kazanskiy NL. Trends and Advances in Wearable Plasmonic Sensors Utilizing Surface-Enhanced Raman Spectroscopy (SERS): A Comprehensive Review. SENSORS (BASEL, SWITZERLAND) 2025; 25:1367. [PMID: 40096150 PMCID: PMC11902420 DOI: 10.3390/s25051367] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/21/2025] [Accepted: 02/22/2025] [Indexed: 03/19/2025]
Abstract
Wearable sensors have appeared as a promising solution for real-time, non-invasive monitoring in diverse fields, including healthcare, environmental sensing, and wearable electronics. Surface-enhanced Raman spectroscopy (SERS)-based sensors leverage the unique properties of SERS, such as plasmonic signal enhancement, high molecular specificity, and the potential for single-molecule detection, to detect and identify a wide range of analytes with ultra-high sensitivity and molecular selectivity. However, it is important to note that wearable sensors utilize various sensing mechanisms, and not all rely on SERS technology, as their design depends on the specific application. This comprehensive review highlights the recent trends and advancements in wearable plasmonic sensing technologies, focusing on their design, fabrication, and integration into practical wearable devices. Key innovations in material selection, such as the use of nanomaterials and flexible substrates, have significantly enhanced sensor performance and wearability. Moreover, we discuss challenges such as miniaturization, power consumption, and long-term stability, along with potential solutions to address these issues. Finally, the outlook for wearable plasmonic sensing technologies is presented, emphasizing the need for interdisciplinary research to drive the next generation of smart wearables capable of real-time health diagnostics, environmental monitoring, and beyond.
Collapse
Affiliation(s)
- Svetlana N. Khonina
- Samara National Research University, 34 Moskovskoye Shosse, Samara 443086, Russia;
- Image Processing Systems Institute, NRC “Kurchatov Institute”, 151 Molodogvardeyskaya, Samara 443001, Russia
| | - Nikolay L. Kazanskiy
- Samara National Research University, 34 Moskovskoye Shosse, Samara 443086, Russia;
- Image Processing Systems Institute, NRC “Kurchatov Institute”, 151 Molodogvardeyskaya, Samara 443001, Russia
| |
Collapse
|
17
|
Belay AN, Guo R, Ahmadian Koudakan P, Pan S. Biointerface engineering of flexible and wearable electronics. Chem Commun (Camb) 2025; 61:2858-2877. [PMID: 39838849 DOI: 10.1039/d4cc06078d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Biointerface sensing is a cutting-edge interdisciplinary field that merges conceptual and practical aspects. Wearable bioelectronics enable efficient interaction and close contact with biological components such as tissues and organs, paving the way for a wide range of medical applications, including personal health monitoring and medical intervention. To be applicable in real-world settings, the patches must be stable and adhere to the skin without causing discomfort or allergies in both wet and dry conditions, as well as other desirable features such as being ultra-soft, thin, flexible, and stretchable. Biosensors have emerged as promising tools primarily used to directly detect biological and electrophysiological signals, enhancing the efficacy of personalized medical treatments and enabling accurate tracking of human well-being. This review highlights the engineering of skin-tissue surfaces/interfaces and their interactions with wearable patches, aiming for both a broad and in-depth understanding of the mechanical and physicochemical properties required for the advancement of flexible and wearable skin patches. Specifically, the advantages of flexible bioelectronics and sensors with optimized surface geometry for long-term diagnosis are discussed. This insight aims to guide the future development of functional materials that can interact with human tissue in a controlled manner. Finally, we provide perspectives on the challenges and potential applications of biointerface engineering in wearable devices.
Collapse
Affiliation(s)
- Alebel Nibret Belay
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
- Department of Chemistry, College of Science, Bahir Dar University, P.O. Box 79, Bahir Dar, Ethiopia
| | - Rui Guo
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | | | - Shuaijun Pan
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
- Department of Chemical Engineering, University of Melbourne, Parkville 3010, Australia
| |
Collapse
|
18
|
Park T, Leem JW, Kim YL, Lee CH. Photonic Nanomaterials for Wearable Health Solutions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2418705. [PMID: 39901482 DOI: 10.1002/adma.202418705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/13/2025] [Indexed: 02/05/2025]
Abstract
This review underscores the transformative potential of photonic nanomaterials in wearable health technologies, driven by increasing demands for personalized health monitoring. Their unique optical and physical properties enable rapid, precise, and sensitive real-time monitoring, outperforming conventional electrical-based sensors. Integrated into ultra-thin, flexible, and stretchable formats, these materials enhance compatibility with the human body, enabling prolonged wear, improved efficiency, and reduced power consumption. A comprehensive exploration is provided of the integration of photonic nanomaterials into wearable devices, addressing material selection, light-matter interaction principles, and device assembly strategies. The review highlights critical elements such as device form factors, sensing modalities, and power and data communication, with representative examples in skin patches and contact lenses. These devices enable precise monitoring and management of biomarkers of diseases or biological responses. Furthermore, advancements in materials and integration approaches have paved the way for continuum of care systems combining multifunctional sensors with therapeutic drug delivery mechanisms. To overcome existing barriers, this review outlines strategies of material design, device engineering, system integration, and machine learning to inspire innovation and accelerate the adoption of photonic nanomaterials for next-generation of wearable health, showcasing their versatility and transformative potential for digital health applications.
Collapse
Affiliation(s)
- Taewoong Park
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Jung Woo Leem
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Young L Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Cancer Research, Regenstrief Center for Healthcare Engineering, Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, IN, 47907, USA
| | - Chi Hwan Lee
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- School of Mechanical Engineering, School of Materials Engineering, Elmore Family School of Electrical and Computer Engineering, Center for Implantable Devices, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
19
|
Lee H, Song S, Yea J, Ha J, Oh S, Jekal J, Hong MS, Won C, Jung HH, Keum H, Han S, Cho JH, Lee T, Jang KI. Vialess heterogeneous skin patch for multimodal monitoring and stimulation. Nat Commun 2025; 16:650. [PMID: 39809752 PMCID: PMC11733152 DOI: 10.1038/s41467-025-55951-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Abstract
System-level wearable electronics require to be flexible to ensure conformal contact with the skin, but they also need to integrate rigid and bulky functional components to achieve system-level functionality. As one of integration methods, folding integration offers simplified processing and enhanced functionality through rigid-soft region separation, but so far, it has mainly been applied to modality of electrical sensing and stimulation. This paper introduces a vialess heterogeneous skin patch with multi modalities that separates the soft region and strain-robust region through folded structure. Our system includes electrical and optical modalities for hemodynamic and cardiovascular monitoring, and a force-electrically driven micropump for drug delivery. Each modality is demonstrated through on-demand drug delivery, flexible waveguide-based PPG monitoring, and ECG and body movement monitoring. Wireless data transmission and real-time measurement validate the feedback operation for multi-modalities. This engineered closed-loop platform offers the possibility for broad applications, including cardiovascular monitoring and chronic disease management.
Collapse
Affiliation(s)
- Hyeokjun Lee
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Soojeong Song
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Junwoo Yea
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Jeongdae Ha
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Saehyuck Oh
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Janghwan Jekal
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | | | - Chihyeong Won
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Han Hee Jung
- Department of Information and Communication Engineering, Hannam University, Daejeon, Republic of Korea
| | - Hohyun Keum
- Industrial Transformation Technology Department, Korea Institute of Industrial Technology (KITECH), Cheonan, Republic of Korea
| | - Sangyoon Han
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Jeong Ho Cho
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea
| | - Taeyoon Lee
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Kyung-In Jang
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea.
| |
Collapse
|
20
|
Zhang F, Xu W, Deng Z, Huang J. A bibliometric and visualization analysis of electrochemical biosensors for early diagnosis of eye diseases. Front Med (Lausanne) 2025; 11:1487981. [PMID: 39867928 PMCID: PMC11757256 DOI: 10.3389/fmed.2024.1487981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/27/2024] [Indexed: 01/28/2025] Open
Abstract
Electrochemical biosensors can provide an economical, accurate and rapid method for early screening of disease biomarkers in clinical medicine due to their high sensitivity, selectivity, portability, low cost and easy manufacturing, and multiplexing capability. Tear, a fluid naturally secreted by the human body, is not only easily accessible but also contains a great deal of biological information. However, no bibliometric studies focus on applying electrochemical sensors in tear/eye diseases. Therefore, we utilized VOSviewer and CiteSpace, to perform a detailed bibliometric analysis of 114 papers in the field of research on the application of tear in electrochemical biosensors screened from Web of Science with the combination of Scimago Graphica and Microsoft Excel for visualization to show the current research hotspots and future trends. The results show that the research in this field started in 2008 and experienced an emerging period in recent years. Researchers from China and the United States mainly contributed to the thriving research areas, with 41 and 29 articles published, respectively. Joseph Wang from the University of California San Diego is the most influential author in the field, and Biosensors & Bioelectronics is the journal with the most published research and the most cited journal. The highest appearance keywords were "biosensor" and "tear glucose," while the most recent booming keywords "diagnosis" and "in-vivo" were. In conclusion, this study elucidates current trends, hotspots, and emerging frontiers, and provides future biomarkers of ocular and systemic diseases by electrochemical sensors in tear with new ideas and opinions.
Collapse
Affiliation(s)
- Fushen Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Weiye Xu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Zejun Deng
- School of Materials Science and Engineering, State Key Laboratory of Powder Metallurgy, Central South University, Changsha, China
| | - Jufang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| |
Collapse
|
21
|
Yue W, Guo Y, Lee JC, Ganbold E, Wu JK, Li Y, Wang C, Kim HS, Shin YK, Liang JG, Kim ES, Kim NY. Advancements in Passive Wireless Sensing Systems in Monitoring Harsh Environment and Healthcare Applications. NANO-MICRO LETTERS 2025; 17:106. [PMID: 39779609 PMCID: PMC11712043 DOI: 10.1007/s40820-024-01599-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025]
Abstract
Recent advancements in passive wireless sensor technology have significantly extended the application scope of sensing, particularly in challenging environments for monitoring industry and healthcare applications. These systems are equipped with battery-free operation, wireless connectivity, and are designed to be both miniaturized and lightweight. Such features enable the safe, real-time monitoring of industrial environments and support high-precision physiological measurements in confined internal body spaces and on wearable epidermal devices. Despite the exploration into diverse application environments, the development of a systematic and comprehensive research framework for system architecture remains elusive, which hampers further optimization of these systems. This review, therefore, begins with an examination of application scenarios, progresses to evaluate current system architectures, and discusses the function of each component-specifically, the passive sensor module, the wireless communication model, and the readout module-within the context of key implementations in target sensing systems. Furthermore, we present case studies that demonstrate the feasibility of proposed classified components for sensing scenarios, derived from this systematic approach. By outlining a research trajectory for the application of passive wireless systems in sensing technologies, this paper aims to establish a foundation for more advanced, user-friendly applications.
Collapse
Affiliation(s)
- Wei Yue
- RFIC Bio Centre, Kwangwoon University, Seoul, 01897, South Korea
- Department of Electronics Engineering, Kwangwoon University, Seoul, 01897, South Korea
| | - Yunjian Guo
- RFIC Bio Centre, Kwangwoon University, Seoul, 01897, South Korea
- Department of Electronic Convergence Engineering, Kwangwoon University, Seoul, 01897, South Korea
| | - Jong-Chul Lee
- RFIC Bio Centre, Kwangwoon University, Seoul, 01897, South Korea
- Department of Electronic Convergence Engineering, Kwangwoon University, Seoul, 01897, South Korea
| | - Enkhzaya Ganbold
- RFIC Bio Centre, Kwangwoon University, Seoul, 01897, South Korea
- Department of Electronics Engineering, Kwangwoon University, Seoul, 01897, South Korea
| | - Jia-Kang Wu
- RFIC Bio Centre, Kwangwoon University, Seoul, 01897, South Korea
- Department of Electronic Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Yang Li
- RFIC Bio Centre, Kwangwoon University, Seoul, 01897, South Korea
- School of Microelectronics, Shandong University, Jinan, 250101, People's Republic of China
| | - Cong Wang
- RFIC Bio Centre, Kwangwoon University, Seoul, 01897, South Korea
- School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Hyun Soo Kim
- RFIC Bio Centre, Kwangwoon University, Seoul, 01897, South Korea
- Department of Electronics Engineering, Kwangwoon University, Seoul, 01897, South Korea
| | - Young-Kee Shin
- RFIC Bio Centre, Kwangwoon University, Seoul, 01897, South Korea.
- Laboratory of Molecular Pathology and Cancer Genomics, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, South Korea.
| | - Jun-Ge Liang
- RFIC Bio Centre, Kwangwoon University, Seoul, 01897, South Korea.
- Department of Electronic Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China.
| | - Eun-Seong Kim
- RFIC Bio Centre, Kwangwoon University, Seoul, 01897, South Korea.
| | - Nam-Young Kim
- RFIC Bio Centre, Kwangwoon University, Seoul, 01897, South Korea.
- Department of Electronics Engineering, Kwangwoon University, Seoul, 01897, South Korea.
- Laboratory of Molecular Pathology and Cancer Genomics, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
22
|
Yang C, Wang Q, Chen S, Li J. Ultrathin, Lightweight Materials Enabled Wireless Data and Power Transmission in Chip-Less Flexible Electronics. ACS MATERIALS AU 2025; 5:45-56. [PMID: 39802153 PMCID: PMC11718531 DOI: 10.1021/acsmaterialsau.4c00106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 01/16/2025]
Abstract
The surge of flexible, biointegrated electronics has inspired continued research efforts in designing and developing chip-less and wireless devices as soft and mechanically compliant interfaces to the living systems. In recent years, innovations in materials, devices, and systems have been reported to address challenges surrounding this topic to empower their reliable operation for monitoring physiological signals. This perspective provides a brief overview of recent works reporting various chip-less electronics for sensing and actuation in diverse application scenarios. We summarize wireless signal/data/power transmission strategies, key considerations in materials design and selection, as well as successful demonstrations of sensors and actuators in wearable and implantable forms. The final section provides an outlook to the future direction down the road for performance improvement and optimization. These versatile, inexpensive, and low-power device concepts can serve as alternative strategies to existing digital wireless electronics, which will find broad applications as bidirectional biointerfaces in basic biomedical research and clinical practices.
Collapse
Affiliation(s)
- Chunyu Yang
- Department
of Materials Science and Engineering, The
Ohio State University, Columbus, Ohio 43210, United States
| | - Qi Wang
- Department
of Materials Science and Engineering, The
Ohio State University, Columbus, Ohio 43210, United States
| | - Shulin Chen
- Department
of Materials Science and Engineering, The
Ohio State University, Columbus, Ohio 43210, United States
| | - Jinghua Li
- Department
of Materials Science and Engineering, The
Ohio State University, Columbus, Ohio 43210, United States
- Chronic
Brain Injury Program, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
23
|
Duan H, Peng S, He S, Tang S, Goda K, Wang CH, Li M. Wearable Electrochemical Biosensors for Advanced Healthcare Monitoring. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411433. [PMID: 39588557 PMCID: PMC11727287 DOI: 10.1002/advs.202411433] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/13/2024] [Indexed: 11/27/2024]
Abstract
Recent advancements in wearable electrochemical biosensors have opened new avenues for on-body and continuous detection of biomarkers, enabling personalized, real-time, and preventive healthcare. While glucose monitoring has set a precedent for wearable biosensors, the field is rapidly expanding to include a wider range of analytes crucial for disease diagnosis, treatment, and management. In this review, recent key innovations are examined in the design and manufacturing underpinning these biosensing platforms including biorecognition elements, signal transduction methods, electrode and substrate materials, and fabrication techniques. The applications of these biosensors are then highlighted in detecting a variety of biochemical markers, such as small molecules, hormones, drugs, and macromolecules, in biofluids including interstitial fluid, sweat, wound exudate, saliva, and tears. Additionally, the review also covers recent advances in wearable electrochemical biosensing platforms, such as multi-sensory integration, closed-loop control, and power supply. Furthermore, the challenges associated with critical issues are discussed, such as biocompatibility, biofouling, and sensor degradation, and the opportunities in materials science, nanotechnology, and artificial intelligence to overcome these limitations.
Collapse
Affiliation(s)
- Haowei Duan
- School of Mechanical and Manufacturing EngineeringThe University of New South WalesSydneyNSW2052Australia
| | - Shuhua Peng
- School of Mechanical and Manufacturing EngineeringThe University of New South WalesSydneyNSW2052Australia
| | - Shuai He
- School of Mechanical and Manufacturing EngineeringThe University of New South WalesSydneyNSW2052Australia
| | - Shi‐Yang Tang
- School of Mechanical and Manufacturing EngineeringThe University of New South WalesSydneyNSW2052Australia
| | - Keisuke Goda
- Department of ChemistryThe University of TokyoTokyo113‐0033Japan
- Department of BioengineeringUniversity of CaliforniaLos AngelesCalifornia90095USA
- Institute of Technological SciencesWuhan UniversityHubei430072China
| | - Chun H. Wang
- School of Mechanical and Manufacturing EngineeringThe University of New South WalesSydneyNSW2052Australia
| | - Ming Li
- School of Mechanical and Manufacturing EngineeringThe University of New South WalesSydneyNSW2052Australia
| |
Collapse
|
24
|
Chen W, Lin J, Ye Z, Wang X, Shen J, Wang B. Customized surface adhesive and wettability properties of conformal electronic devices. MATERIALS HORIZONS 2024; 11:6289-6325. [PMID: 39315507 DOI: 10.1039/d4mh00753k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Conformal and body-adaptive electronics have revolutionized the way we interact with technology, ushering in a new era of wearable devices that can seamlessly integrate with our daily lives. However, the inherent mismatch between artificially synthesized materials and biological tissues (caused by irregular skin fold, skin hair, sweat, and skin grease) needs to be addressed, which can be realized using body-adaptive electronics by rational design of their surface adhesive and wettability properties. Over the past few decades, various approaches have been developed to enhance the conformability and adaptability of bioelectronics by (i) increasing flexibility and reducing device thickness, (ii) improving the adhesion and wettability between bioelectronics and biological interfaces, and (iii) refining the integration process with biological systems. Successful development of a conformal and body-adaptive electronic device requires comprehensive consideration of all three aspects. This review starts with the design strategies of conformal electronics with different surface adhesive and wettability properties. A series of conformal and body-adaptive electronics used in the human body under both dry and wet conditions are systematically discussed. Finally, the current challenges and critical perspectives are summarized, focusing on promising directions such as telemedicine, mobile health, point-of-care diagnostics, and human-machine interface applications.
Collapse
Affiliation(s)
- Wenfu Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China.
| | - Junzhu Lin
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China.
| | - Zhicheng Ye
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China.
| | - Xiangyu Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China.
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P. R. China
| | - Jie Shen
- Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, P. R. China
| | - Ben Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China.
| |
Collapse
|
25
|
Chang H, Sun Y, Lu S, Lin D. Application of non-dominated sorting genetic algorithm (NSGA-III) and radial basis function (RBF) interpolation for mitigating node displacement in smart contact lenses. Sci Rep 2024; 14:29348. [PMID: 39592673 PMCID: PMC11599712 DOI: 10.1038/s41598-024-79640-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
With the rapid development of wearable technology, smart contact lenses (SCL) are gradually gaining attention as a breakthrough innovation. The emergence of these products suggests that smart glasses, which incorporate electronic components and visual aids, are expected to become the mainstream of human-computer interaction in the future. However, realizing this vision requires not only advanced electronics but also highly sophisticated manufacturing processes. Therefore, this paper provides an in-depth discussion on the process of manufacturing smart contact lenses using in-mold electronic decoration technology and focuses on the multi-objective problem of optimizing injection parameters such as melt temperature and holding pressure to achieve on micro-molecular displacements as well as residual stresses. First, the background and technical requirements of smart contact lenses are described in detail, emphasizing the prospect of SCL for a wide range of applications in augmented reality, healthcare, and smart assistance. Subsequently, the key role of IME technology in SCL manufacturing is discussed. Focusing on the optimization of melting temperature, holding pressure and holding time, the effects of these three key parameters on eyewear were systematically analyzed with the goal of improving the overall performance and biocompatibility of SCL. The multi-objective optimization of melting temperature and holding pressure was achieved by NSGA-III. Radial basis function interpolation was used as an auxiliary method to provide finer optimization results for NSGA-III. During the multi-objective optimization process, efforts were made to achieve uniform flow of melt temperature and optimal adjustment of holding pressure to maximize the transparency, stability and comfort of SCL. The final results obtained achieved an optimization rate of 95.60% and 93.47% for nodal displacement and residual stress, respectively, compared with the initially recommended process parameters.
Collapse
Affiliation(s)
- Hanjui Chang
- Department of Mechanical Engineering, College of Engineering, Shantou University, Shantou, 515063, China.
- Intelligent Manufacturing Key Laboratory of Ministry of Education, Shantou University, Shantou, 515063, China.
| | - Yue Sun
- Department of Mechanical Engineering, College of Engineering, Shantou University, Shantou, 515063, China
- Intelligent Manufacturing Key Laboratory of Ministry of Education, Shantou University, Shantou, 515063, China
| | - Shuzhou Lu
- Department of Mechanical Engineering, College of Engineering, Shantou University, Shantou, 515063, China
- Intelligent Manufacturing Key Laboratory of Ministry of Education, Shantou University, Shantou, 515063, China
| | - Daiyao Lin
- Department of Mechanical Engineering, College of Engineering, Shantou University, Shantou, 515063, China
- Intelligent Manufacturing Key Laboratory of Ministry of Education, Shantou University, Shantou, 515063, China
| |
Collapse
|
26
|
Pradhan R, Chimene D, Ko BS, Goncharov A, Ozcan A, McShane MJ. Insertable Biomaterial-Based Multianalyte Barcode Sensor toward Continuous Monitoring of Glucose and Oxygen. ACS Sens 2024; 9:6060-6070. [PMID: 39494514 PMCID: PMC11590103 DOI: 10.1021/acssensors.4c01926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024]
Abstract
Chronic diseases, including diabetes, cardiovascular diseases, and microvascular complications, contribute significantly to global morbidity and mortality. Current monitoring tools such as glucometers and continuous glucose monitors only measure one analyte; multiplexing technologies offer a promising approach for monitoring multiple biomarkers, enabling the management of comorbidities and providing more comprehensive disease insights. In this work, we describe a miniaturized optical "barcode" sensor with high biocompatibility for the continuous monitoring of glucose and oxygen. This enzymatic sensor relies on oxygen consumption in proportion to local glucose levels and the phosphorescence reporting of tissue oxygen with a lifetime-based probe. The sensor was specifically designed to operate in a tissue environment with low levels of dissolved oxygen. The barcode sensor consists of a poly(ethylene glycol) diacrylate (PEGDA) hydrogel with four discrete compartments separately filled with glucose- or oxygen-sensing phosphorescent microparticles. We evaluated the response of the barcode hydrogels to fluctuating glucose levels over the physiological range under low oxygen conditions, demonstrating the controlled tuning of dynamic range and sensitivity. Moreover, the barcode sensor exhibited remarkable storage stability over 12 weeks, along with full reversibility and excellent reproducibility (∼6% variability in the phosphorescence lifetime) over nearly 50 devices. Electron beam sterilization had a negligible effect on the glucose response of the barcode sensors. Furthermore, our investigation revealed minimal phosphorescence lifetime changes in oxygen compartments while exhibiting increased lifetime in glucose-responsive compartments when subjected to alternating glucose concentrations (0 and 200 mg/dL), showcasing the sensor's multianalyte sensing capabilities without crosstalk between compartments. Additionally, the evaluation of chronic tissue response to sensors inserted in pigs revealed the appropriate biocompatibility of the barcodes as well as excellent material stability over many months. These findings support further development of similar technologies for introducing optical assays for multiple biomarkers that can provide continuous or on-demand feedback to individuals to manage chronic conditions.
Collapse
Affiliation(s)
- Ridhi Pradhan
- Department
of Biomedical Engineering, Texas A&M
University, College Station, Texas 77843, United States
| | - David Chimene
- Department
of Biomedical Engineering, Texas A&M
University, College Station, Texas 77843, United States
| | - Brian S. Ko
- Department
of Biomedical Engineering, Texas A&M
University, College Station, Texas 77843, United States
| | - Artem Goncharov
- Electrical
& Computer Engineering Department, University
of California, Los Angeles, California 90095, United States
- Bioengineering
Department, University of California, Los Angeles, California 90095, United States
- California
NanoSystems Institute (CNSI), University of California, Los Angeles, California 90095, United States
| | - Aydogan Ozcan
- Electrical
& Computer Engineering Department, University
of California, Los Angeles, California 90095, United States
- Bioengineering
Department, University of California, Los Angeles, California 90095, United States
- California
NanoSystems Institute (CNSI), University of California, Los Angeles, California 90095, United States
- Department
of Surgery, University of California, Los Angeles, California 90095, United States
| | - Michael J. McShane
- Department
of Biomedical Engineering, Texas A&M
University, College Station, Texas 77843, United States
- Department
of Materials Science and Engineering, Texas
A&M University, College Station, Texas 77843, United States
| |
Collapse
|
27
|
Shahzad S, Iftikhar FJ, Shah A, Rehman HA, Iwuoha E. Novel interfaces for internet of wearable electrochemical sensors. RSC Adv 2024; 14:36713-36732. [PMID: 39559568 PMCID: PMC11570917 DOI: 10.1039/d4ra07165d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 10/21/2024] [Indexed: 11/20/2024] Open
Abstract
The integration of wearable devices, the Internet of Things (IoT), and advanced sensing platforms implies a significant paradigm shift in technological innovations and human interactions. The IoT technology allows continuous monitoring in real time. Thus, Internet of Wearables has made remarkable strides, especially in the field of medical monitoring. IoT-enabled wearable systems assist in early disease detection that facilitates personalized interventions and proactive healthcare management, thereby empowering individuals to take charge of their wellbeing. Until now, physical sensors have been successfully integrated into wearable devices for physical activity monitoring. However, obtaining biochemical information poses challenges in the contexts of fabrication compatibility and shorter operation lifetimes. IoT-based electrochemical wearable sensors allow real-time acquisition of data and interpretation of biomolecular information corresponding to biomarkers, viruses, bacteria and metabolites, extending the diagnostic capabilities beyond physical activity tracking. Thus, critical heath parameters such as glucose levels, blood pressure and cardiac rhythm may be monitored by these devices regardless of location and time. This work presents versatile electrochemical sensing devices across different disciplines, including but not limited to sports, safety and wellbeing by using IoT. It also discusses the detection principles for biomarkers and biofluid monitoring, and their integration into devices and advancements in sensing interfaces.
Collapse
Affiliation(s)
- Suniya Shahzad
- National University of Technology (NUTECH) Islamabad 44000 Pakistan
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | | | - Afzal Shah
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | | | - Emmanuel Iwuoha
- Sensorlab, Department of Chemistry, University of the Western Cape Private Bag X17 Bellville 7535 South Africa
| |
Collapse
|
28
|
Park SH, Pak JJ. LIG-Based High-Sensitivity Multiplexed Sensing System for Simultaneous Monitoring of Metabolites and Electrolytes. SENSORS (BASEL, SWITZERLAND) 2024; 24:6945. [PMID: 39517842 PMCID: PMC11548767 DOI: 10.3390/s24216945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
With improvements in medical environments and the widespread use of smartphones, interest in wearable biosensors for continuous body monitoring is growing. We developed a wearable multiplexed bio-sensing system that non-invasively monitors body fluids and integrates with a smartphone application. The system includes sensors, readout circuits, and a microcontroller unit (MCU) for signal processing and wireless communication. Potentiometric and amperometric measurement methods were used, with calibration capabilities added to ensure accurate readings of analyte concentrations and temperature. Laser-induced graphene (LIG)-based sensors for glucose, lactate, Na+, K+, and temperature were developed for fast, cost-effective production. The LIG electrode's 3D porous structure provided an active surface area 16 times larger than its apparent area, resulting in enhanced sensor performance. The glucose and lactate sensors exhibited high sensitivity (168.15 and 872.08 μAmM-1cm-2, respectively) and low detection limits (0.191 and 0.167 μM, respectively). The Na+ and K+ sensors demonstrated sensitivities of 65.26 and 62.19 mVdec-1, respectively, in a concentration range of 0.01-100 mM. Temperature sensors showed an average rate of resistance change per °C of 0.25%/°C, within a temperature range of 20-40 °C, providing accurate body temperature monitoring.
Collapse
Affiliation(s)
| | - James Jungho Pak
- School of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea;
| |
Collapse
|
29
|
Rajan A, Vishnu J, Shankar B. Tear-Based Ocular Wearable Biosensors for Human Health Monitoring. BIOSENSORS 2024; 14:483. [PMID: 39451696 PMCID: PMC11506517 DOI: 10.3390/bios14100483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 09/30/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024]
Abstract
Wearable tear-based biosensors have garnered substantial interest for real time monitoring with an emphasis on personalized health care. These biosensors utilize major tear biomarkers such as proteins, lipids, metabolites, and electrolytes for the detection and recording of stable biological signals in a non-invasive manner. The present comprehensive review delves deep into the tear composition along with potential biomarkers that can identify, monitor, and predict certain ocular diseases such as dry eye disease, conjunctivitis, eye-related infections, as well as diabetes mellitus. Recent technologies in tear-based wearable point-of-care medical devices, specifically the state-of-the-art and prospects of glucose, pH, lactate, protein, lipid, and electrolyte sensing from tear are discussed. Finally, the review addresses the existing challenges associated with the widespread application of tear-based sensors, which will pave the way for advanced scientific research and development of such non-invasive health monitoring devices.
Collapse
Affiliation(s)
- Arunima Rajan
- Centre for Flexible Electronics and Advanced Materials, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India or (A.R.); or (J.V.)
| | - Jithin Vishnu
- Centre for Flexible Electronics and Advanced Materials, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India or (A.R.); or (J.V.)
- Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India
| | - Balakrishnan Shankar
- Centre for Flexible Electronics and Advanced Materials, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India or (A.R.); or (J.V.)
- Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India
| |
Collapse
|
30
|
Ko J, Kim G, Kim I, Hwang SH, Jeon S, Ahn J, Jeong Y, Ha J, Heo H, Jeong J, Park I, Rho J. Metasurface-Embedded Contact Lenses for Holographic Light Projection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407045. [PMID: 39120024 PMCID: PMC11481215 DOI: 10.1002/advs.202407045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Indexed: 08/10/2024]
Abstract
Contact lenses have been instrumental in vision correction and are expected to be utilized in augmented reality (AR) displays through the integration of electronic and optical components. In optics, metasurfaces, an array of sub-wavelength nanostructures, have offered optical multifunctionality in an ultra-compact form factor, facilitating integration into various imaging, and display systems. However, transferring metasurfaces onto contact lenses remains challenging due to the non-biocompatible materials of extant imprinting methods and the structural instability caused by the swelling and shrinking of the wetted surface. Here, a biocompatible method is presented to transfer metasurfaces onto contact lenses using hyaluronic acid (HA) as a soft mold and to allow for holographic light projection. A high-efficiency metahologram is obtained with an all-metallic 3D meta-atom enhanced by the anisotropy of a rectangular structure, and a reflective background metal layer. A corrugated metal layer on the HA mold is supported with a SiO2 capping layer, to avoid unwanted wrinkles and to ensure structural stability when transferred to the surface of pliable and wettable contact lenses. Biocompatible method of transferring metasurfaces onto contact lenses promises the integration of diverse optical components, including holograms, lenses, gratings and more, to advance the visual experience for AR displays and human-computer interfaces.
Collapse
Affiliation(s)
- Jiwoo Ko
- Department of Mechanical EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141South Korea
- Department of Nano Manufacturing TechnologyKorea Institute of Machinery and Materials (KIMM)Daejeon34103South Korea
| | - Gyeongtae Kim
- Department of Mechanical EngineeringPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
| | - Inki Kim
- Department of Mechanical EngineeringPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
- Department of BiophysicsInstitute of Quantum BiophysicsSungkyunkwan UniversitySuwon16419Republic of Korea
- Department of Intelligent Precision Healthcare ConvergenceSungkyunkwan UniversitySuwon16419Republic of Korea
| | - Soon Hyoung Hwang
- Department of Nano Manufacturing TechnologyKorea Institute of Machinery and Materials (KIMM)Daejeon34103South Korea
| | - Sohee Jeon
- Department of Nano Manufacturing TechnologyKorea Institute of Machinery and Materials (KIMM)Daejeon34103South Korea
| | - Junseong Ahn
- Department of Electro‐Mechanical Systems EngineeringKorea UniversitySejong30019Republic of Korea
| | - Yongrok Jeong
- Radioisotope Research DivisionKorea Atomic Energy Research InstituteDaejeon34057Republic of Korea
| | - Ji‐Hwan Ha
- Department of Mechanical EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141South Korea
- Department of Nano Manufacturing TechnologyKorea Institute of Machinery and Materials (KIMM)Daejeon34103South Korea
| | - Hyeonsu Heo
- Department of Mechanical EngineeringPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
| | - Jun‐Ho Jeong
- Department of Nano Manufacturing TechnologyKorea Institute of Machinery and Materials (KIMM)Daejeon34103South Korea
| | - Inkyu Park
- Department of Mechanical EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141South Korea
| | - Junsuk Rho
- Department of Mechanical EngineeringPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
- Department of Chemical EngineeringPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
- Department of Electrical EngineeringPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
- POSCO‐POSTECH‐RIST Convergence Research Center for Flat Optics and MetaphotonicsPohang37673Republic of Korea
- National Institute of Nanomaterials Technology (NINT)Pohang37673Republic of Korea
| |
Collapse
|
31
|
Kim TY, De R, Choi I, Kim H, Hahn SK. Multifunctional nanomaterials for smart wearable diabetic healthcare devices. Biomaterials 2024; 310:122630. [PMID: 38815456 DOI: 10.1016/j.biomaterials.2024.122630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/19/2024] [Indexed: 06/01/2024]
Abstract
Wearable diabetic healthcare devices have attracted great attention for real-time continuous glucose monitoring (CGM) using biofluids such as tears, sweat, saliva, and interstitial fluid via noninvasive ways. In response to the escalating global demand for CGM, these devices enable proactive management and intervention of diabetic patients with incorporated drug delivery systems (DDSs). In this context, multifunctional nanomaterials can trigger the development of innovative sensing and management platforms to facilitate real-time selective glucose monitoring with remarkable sensitivity, on-demand drug delivery, and wireless power and data transmission. The seamless integration into wearable devices ensures patient's compliance. This comprehensive review evaluates the multifaceted roles of these materials in wearable diabetic healthcare devices, comparing their glucose sensing capabilities with conventionally available glucometers and CGM devices, and finally outlines the merits, limitations, and prospects of these devices. This review would serve as a valuable resource, elucidating the intricate functions of nanomaterials for the successful development of advanced wearable devices in diabetes management.
Collapse
Affiliation(s)
- Tae Yeon Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Ranjit De
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Inhoo Choi
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Hyemin Kim
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea.
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea.
| |
Collapse
|
32
|
Chen Y, Zhang L, Wu X, Sun X, Sundah NR, Wong CY, Natalia A, Tam JKC, Lim DWT, Chowbay B, Ang BT, Tang C, Loh TP, Shao H. Magnetic augmentation through multi-gradient coupling enables direct and programmable profiling of circulating biomarkers. Nat Commun 2024; 15:8410. [PMID: 39333499 PMCID: PMC11437193 DOI: 10.1038/s41467-024-52754-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/19/2024] [Indexed: 09/29/2024] Open
Abstract
Conventional magnetic biosensing technologies have reduced analytical capacity for magnetic field dimensionality and require extensive sample processing. To address these challenges, we spatially engineer 3D magnetic response gradients for direct and programmable molecular detection in native biofluids. Named magnetic augmentation through triple-gradient coupling for high-performance detection (MATCH), the technology comprises gradient-distributed magnetic nanoparticles encapsulated within responsive hydrogel pillars and suspended above a magnetic sensor array. This configuration enables multi-gradient matching to achieve optimal magnetic activation, response and transduction, respectively. Through focused activation by target biomarkers, the platform preferentially releases sensor-proximal nanoparticles, generating response gradients that complement the sensor's intrinsic detection capability. By implementing an upstream module that recognizes different biomarkers and releases universal activation molecules, the technology achieves programmable detection of various circulating biomarkers in native plasma. It bypasses conventional magnetic labeling, completes in <60 minutes and achieves sensitive detection (down to 10 RNA and 1000 protein copies). We apply the MATCH to measure RNAs and proteins directly in patient plasma, achieving accurate cancer classification.
Collapse
Affiliation(s)
- Yuan Chen
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Li Zhang
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Xingjie Wu
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
| | - Xuecheng Sun
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
| | - Noah R Sundah
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Chi Yan Wong
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Auginia Natalia
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - John K C Tam
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Darren Wan-Teck Lim
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- Centre for Clinician-Scientist Development, Duke-NUS Medical School, Singapore, Singapore
| | - Balram Chowbay
- Centre for Clinician-Scientist Development, Duke-NUS Medical School, Singapore, Singapore
- Clinical Pharmacology Laboratory, National Cancer Centre Singapore, Singapore, Singapore
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Beng Ti Ang
- National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Carol Tang
- National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- SG Enable, Innovation, Singapore, Singapore
| | - Tze Ping Loh
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
- Department of Laboratory Medicine, National University Hospital, Singapore, Singapore
| | - Huilin Shao
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore.
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore.
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.
| |
Collapse
|
33
|
Hu J, Jing MJ, Huang YT, Kou BH, Li Z, Xu YT, Yu SY, Zeng X, Jiang J, Lin P, Zhao WW. A Photoelectrochemical Retinomorphic Synapse. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405887. [PMID: 39054924 DOI: 10.1002/adma.202405887] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/28/2024] [Indexed: 07/27/2024]
Abstract
Reproducing human visual functions with artificial devices is a long-standing goal of the neuromorphic domain. However, emulating the chemical language communication of the visual system in fluids remains a grand challenge. Here, a "multi-color" hydrogel-based photoelectrochemical retinomorphic synapse is reported with unique chemical-ionic-electrical signaling in an aqueous electrolyte that enables, e.g., color perception and biomolecule-mediated synaptic plasticity. Based on the specific enzyme-catalyzed chromogenic reactions, three multifunctional colored hydrogels are developed, which can not only synergize with the Bi2S3 photogate to recognize the primary colors but also synergize with a given polymeric channel to promote the long-term memory of the system. A synaptic array is further constructed for sensing color images and biomolecule-coded information communication. Taking advantage of the versatile biochemistry, the biochemical-driven reversible photoelectric response of the cone cell is further mimicked. This work introduces rich chemical designs into retinomorphic devices, providing a perspective for replicating the human visual system in fluids.
Collapse
Affiliation(s)
- Jin Hu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- State Key Laboratory of Solidification Processing, Carbon/Carbon Composites Research Center, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Ming-Jian Jing
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yu-Ting Huang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Bo-Han Kou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Zheng Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yi-Tong Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Si-Yuan Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Xierong Zeng
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Jie Jiang
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, 932 South Lushan Road, Changsha, Hunan, 410083, P. R. China
| | - Peng Lin
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
34
|
Mariello M, Eş I, Proctor CM. Soft and Flexible Bioelectronic Micro-Systems for Electronically Controlled Drug Delivery. Adv Healthc Mater 2024; 13:e2302969. [PMID: 37924224 DOI: 10.1002/adhm.202302969] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/20/2023] [Indexed: 11/06/2023]
Abstract
The concept of targeted and controlled drug delivery, which directs treatment to precise anatomical sites, offers benefits such as fewer side effects, reduced toxicity, optimized dosages, and quicker responses. However, challenges remain to engineer dependable systems and materials that can modulate host tissue interactions and overcome biological barriers. To stay aligned with advancements in healthcare and precision medicine, novel approaches and materials are imperative to improve effectiveness, biocompatibility, and tissue compliance. Electronically controlled drug delivery (ECDD) has recently emerged as a promising approach to calibrated drug delivery with spatial and temporal precision. This article covers recent breakthroughs in soft, flexible, and adaptable bioelectronic micro-systems designed for ECDD. It overviews the most widely reported operational modes, materials engineering strategies, electronic interfaces, and characterization techniques associated with ECDD systems. Further, it delves into the pivotal applications of ECDD in wearable, ingestible, and implantable medical devices. Finally, the discourse extends to future prospects and challenges for ECDD.
Collapse
Affiliation(s)
- Massimo Mariello
- Department of Engineering Science, Institute of Biomedical Engineering (IBME), University of Oxford, Oxford, OX3 7DQ, UK
| | - Ismail Eş
- Department of Engineering Science, Institute of Biomedical Engineering (IBME), University of Oxford, Oxford, OX3 7DQ, UK
| | - Christopher M Proctor
- Department of Engineering Science, Institute of Biomedical Engineering (IBME), University of Oxford, Oxford, OX3 7DQ, UK
| |
Collapse
|
35
|
Castillo-Valdez PF, Rodriguez-Salvador M, Ho YS. Scientific Production Dynamics in mHealth for Diabetes: Scientometric Analysis. JMIR Diabetes 2024; 9:e52196. [PMID: 39172508 PMCID: PMC11377915 DOI: 10.2196/52196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 03/23/2024] [Accepted: 06/04/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND The widespread use of mobile technologies in health care (mobile health; mHealth) has facilitated disease management, especially for chronic illnesses such as diabetes. mHealth for diabetes is an attractive alternative to reduce costs and overcome geographical and temporal barriers to improve patients' conditions. OBJECTIVE This study aims to reveal the dynamics of scientific publications on mHealth for diabetes to gain insights into who are the most prominent authors, countries, institutions, and journals and what are the most cited documents and current hot spots. METHODS A scientometric analysis based on a competitive technology intelligence methodology was conducted. An innovative 8-step methodology supported by experts was executed considering scientific documents published between 1998 and 2021 in the Science Citation Index Expanded database. Publication language, publication output characteristics, journals, countries and institutions, authors, and most cited and most impactful articles were identified. RESULTS The insights obtained show that a total of 1574 scientific articles were published by 7922 authors from 90 countries, with an average of 15 (SD 38) citations and 6.5 (SD 4.4) authors per article. These documents were published in 491 journals and 92 Web of Science categories. The most productive country was the United States, followed by the United Kingdom, China, Australia, and South Korea, and the top 3 most productive institutions came from the United States, whereas the top 3 most cited articles were published in 2016, 2009, and 2017 and the top 3 most impactful articles were published in 2016 and 2017. CONCLUSIONS This approach provides a comprehensive knowledge panorama of research productivity in mHealth for diabetes, identifying new insights and opportunities for research and development and innovation, including collaboration with other entities, new areas of specialization, and human resource development. The findings obtained are useful for decision-making in policy planning, resource allocation, and identification of research opportunities, benefiting researchers, health professionals, and decision makers in their efforts to make significant contributions to the advancement of diabetes science.
Collapse
|
36
|
Pourshaban E, Karkhanis MU, Deshpande A, Banerjee A, Hasan MR, Nikeghbal A, Ghosh C, Kim H, Mastrangelo CH. Power Scavenging Microsystem for Smart Contact Lenses. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401068. [PMID: 38477701 DOI: 10.1002/smll.202401068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/02/2024] [Indexed: 03/14/2024]
Abstract
On-the-eye microsystems such as smart contacts for vision correction, health monitoring, drug delivery, and displaying information represent a new emerging class of low-profile (≤ 1 mm) wireless microsystems that conform to the curvature of the eyeball surface. The implementation of suitable low-profile power sources for eye-based microsystems on curved substrates is a major technical challenge addressed in this paper. The fabrication and characterization of a hybrid energy generation unit composed of a flexible silicon solar cell and eye-blinking activated Mg-O2 metal-air harvester capable of sustainably supplying electrical power to smart ocular devices are reported. The encapsulated photovoltaic device provides a DC output with a power density of 42.4 µW cm-2 and 2.5 mW cm-2 under indoor and outdoor lighting conditions, respectively. The eye-blinking activated Mg-air harvester delivers pulsed power output with a maximum power density of 1.3 mW cm-2. A power management circuit with an integrated 11 mF supercapacitor is used to convert the harvesters' pulsed voltages to DC, boost up the voltages, and continuously deliver ≈150 µW at a stable 3.3 V DC output. Uniquely, in contrast to wireless power transfer, the power pack continuously generates electric power and does not require any type of external accessories for operation.
Collapse
Affiliation(s)
- Erfan Pourshaban
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Mohit U Karkhanis
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Adwait Deshpande
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Aishwaryadev Banerjee
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Md Rabiul Hasan
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Amirali Nikeghbal
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Chayanjit Ghosh
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Hanseup Kim
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Carlos H Mastrangelo
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| |
Collapse
|
37
|
Zhou Y, Li L, Tong J, Chen X, Deng W, Chen Z, Xiao X, Yin Y, Zhou Q, Gao Y, Hu X, Wang Y. Advanced nanomaterials for electrochemical sensors: application in wearable tear glucose sensing technology. J Mater Chem B 2024; 12:6774-6804. [PMID: 38920094 DOI: 10.1039/d4tb00790e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
In the last few decades, tear-based biosensors for continuous glucose monitoring (CGM) have provided new avenues for the diagnosis of diabetes. The tear CGMs constructed from nanomaterials have been extensively demonstrated by various research activities in this field and are gradually witnessing their most prosperous period. A timely and comprehensive review of the development of tear CGMs in a compartmentalized manner from a nanomaterials perspective would greatly broaden this area of research. However, to our knowledge, there is a lack of specialized reviews and comprehensive cohesive reports in this area. First, this paper describes the principles and development of electrochemical glucose sensors. Then, a comprehensive summary of various advanced nanomaterials recently reported for potential applications and construction strategies in tear CGMs is presented in a compartmentalized manner, focusing on sensing properties. Finally, the challenges, strategies, and perspectives used to design tear CGM materials are emphasized, providing valuable insights and guidance for the construction of tear CGMs from nanomaterials in the future.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Emergency Medicine, West China Hospital, Sichuan University, West China School of Nursing, Sichuan University, Disaster Medical Center, Sichuan University & Nursing Key Laboratory of Sichuan Province, No. 37 Guoxue Alley, Chengdu, Sichuan, 610041, China.
| | - Lei Li
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Jiale Tong
- Department of Emergency Medicine, West China Hospital, Sichuan University, West China School of Nursing, Sichuan University, Disaster Medical Center, Sichuan University & Nursing Key Laboratory of Sichuan Province, No. 37 Guoxue Alley, Chengdu, Sichuan, 610041, China.
| | - Xiaoli Chen
- Department of Emergency Medicine, West China Hospital, Sichuan University, West China School of Nursing, Sichuan University, Disaster Medical Center, Sichuan University & Nursing Key Laboratory of Sichuan Province, No. 37 Guoxue Alley, Chengdu, Sichuan, 610041, China.
| | - Wei Deng
- Department of Orthopedics Pidu District People's Hospital, The Third Affiliated Hospital of Chengdu Medical College Chengdu, Sichuan, 611730, China
| | - Zhiyu Chen
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Xuanyu Xiao
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Yong Yin
- Department of Orthopedics Pidu District People's Hospital, The Third Affiliated Hospital of Chengdu Medical College Chengdu, Sichuan, 611730, China
| | - Qingsong Zhou
- Department of Orthopedics Pidu District People's Hospital, The Third Affiliated Hospital of Chengdu Medical College Chengdu, Sichuan, 611730, China
| | - Yongli Gao
- Department of Emergency Medicine, West China Hospital, Sichuan University, West China School of Nursing, Sichuan University, Disaster Medical Center, Sichuan University & Nursing Key Laboratory of Sichuan Province, No. 37 Guoxue Alley, Chengdu, Sichuan, 610041, China.
| | - Xuefeng Hu
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 3-16 Renmin South Road, Chengdu, Sichuan, 610041, China.
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| |
Collapse
|
38
|
Mladenovic T, Zivic F, Petrovic N, Njezic S, Pavic J, Kotorcevic N, Milenkovic S, Grujovic N. Application of Silicone in Ophthalmology: A Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3454. [PMID: 39063747 PMCID: PMC11278226 DOI: 10.3390/ma17143454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
This paper reviews the latest trends and applications of silicone in ophthalmology, especially related to intraocular lenses (IOLs). Silicone, or siloxane elastomer, as a synthetic polymer, has excellent biocompatibility, high chemical inertness, and hydrophobicity, enabling wide biomedical applications. The physicochemical properties of silicone are reviewed. A review of methods for mechanical and in vivo characterization of IOLs is presented as a prospective research area, since there are only a few available technologies, even though these properties are vital to ensure medical safety and suitability for clinical use, especially if long-term function is considered. IOLs represent permanent implants to replace the natural lens or for correcting vision, with the first commercial foldable lens made of silicone. Biological aspects of posterior capsular opacification have been reviewed, including the effects of the implanted silicone IOL. However, certain issues with silicone IOLs are still challenging and some conditions can prevent its application in all patients. The latest trends in nanotechnology solutions have been reviewed. Surface modifications of silicone IOLs are an efficient approach to further improve biocompatibility or to enable drug-eluting function. Different surface modifications, including coatings, can provide long-term treatments for various medical conditions or medical diagnoses through the incorporation of sensory functions. It is essential that IOL optical characteristics remain unchanged in case of drug incorporation and the application of nanoparticles can enable it. However, clinical trials related to these advanced technologies are still missing, thus preventing their clinical applications at this moment.
Collapse
Affiliation(s)
- Tamara Mladenovic
- Faculty of Engineering, University of Kragujevac, Sestre Janjic 6, 34000 Kragujevac, Serbia; (T.M.); (J.P.); (N.K.); (S.M.); (N.G.)
- Institute for Information Technologies Kragujevac, University of Kragujevac, Jovana Cvijica bb, 34000 Kragujevac, Serbia
| | - Fatima Zivic
- Faculty of Engineering, University of Kragujevac, Sestre Janjic 6, 34000 Kragujevac, Serbia; (T.M.); (J.P.); (N.K.); (S.M.); (N.G.)
| | - Nenad Petrovic
- Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia;
| | - Sasa Njezic
- Faculty of Medicine, University of Banja Luka, Save Mrkalja 14, 78000 Banja Luka, Bosnia and Herzegovina;
| | - Jelena Pavic
- Faculty of Engineering, University of Kragujevac, Sestre Janjic 6, 34000 Kragujevac, Serbia; (T.M.); (J.P.); (N.K.); (S.M.); (N.G.)
- Institute for Information Technologies Kragujevac, University of Kragujevac, Jovana Cvijica bb, 34000 Kragujevac, Serbia
| | - Nikola Kotorcevic
- Faculty of Engineering, University of Kragujevac, Sestre Janjic 6, 34000 Kragujevac, Serbia; (T.M.); (J.P.); (N.K.); (S.M.); (N.G.)
| | - Strahinja Milenkovic
- Faculty of Engineering, University of Kragujevac, Sestre Janjic 6, 34000 Kragujevac, Serbia; (T.M.); (J.P.); (N.K.); (S.M.); (N.G.)
| | - Nenad Grujovic
- Faculty of Engineering, University of Kragujevac, Sestre Janjic 6, 34000 Kragujevac, Serbia; (T.M.); (J.P.); (N.K.); (S.M.); (N.G.)
| |
Collapse
|
39
|
Bian Y, Shi H, Yuan Q, Zhu Y, Lin Z, Zhuang L, Han X, Wang P, Chen M, Wang X. Patterning Techniques Based on Metallized Electrospun Nanofibers for Advanced Stretchable Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309735. [PMID: 38687841 PMCID: PMC11234419 DOI: 10.1002/advs.202309735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/14/2024] [Indexed: 05/02/2024]
Abstract
Stretchable electronics have experienced remarkable progress, especially in sensors and wireless communication systems, attributed to their ability to conformably contact with rough or uneven surfaces. However, the development of complex, multifunctional, and high-precision stretchable electronics faces substantial challenges, including instability at rigid-soft interfaces and incompatibility with traditional high-precision patterning technologies. Metallized electrospun nanofibers emerge as a promising conductive filler, offering exceptional stretchability, electrical conductivity, transparency, and compatibility with existing patterning technologies. Here, this review focuses on the fundamental properties, preparation processes, patterning technologies, and application scenarios of conductive stretchable composites based on metallized nanofibers. Initially, it introduces the fabrication processes of metallized electrospun nanofibers and their advantages over alternative materials. It then highlights recent progress in patterning technologies, including collector collection, vapor deposition with masks, and lithography, emphasizing their role in enhancing precision and integration. Furthermore, the review shows the broad applicability and potential influence of metallized electrospun nanofibers in various fields through their use in sensors, wireless systems, semiconductor devices, and intelligent healthcare solutions. Ultimately, this review seeks to spark further innovation and address the prevailing challenges in stretchable electronics, paving the way for future breakthroughs in this dynamic field.
Collapse
Affiliation(s)
- Yuhan Bian
- Department of Biomedical Engineering, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Haozhou Shi
- Department of Biomedical Engineering, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Qunchen Yuan
- Department of Biomedical Engineering, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yuxuan Zhu
- Department of Biomedical Engineering, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Zhengzi Lin
- Department of Biomedical Engineering, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Liujing Zhuang
- Department of Biomedical Engineering, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Xun Han
- ZJU-Hangzhou Global Scientific and Technological Innovation Center School of Micro-Nano Electronics, Zhejiang University, Hangzhou, 311200, P. R. China
| | - Ping Wang
- Department of Biomedical Engineering, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Mengxiao Chen
- Department of Biomedical Engineering, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, P. R. China
- Research Center for Humanoid Sensing, Zhejiang Lab, Hangzhou, 311121, P. R. China
| | - Xiandi Wang
- Department of Biomedical Engineering, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
40
|
Hisham M, Butt H. Vat photopolymerization printing of functionalized hydrogels on commercial contact lenses. Sci Rep 2024; 14:13860. [PMID: 38879685 PMCID: PMC11180191 DOI: 10.1038/s41598-024-63846-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/03/2024] [Indexed: 06/19/2024] Open
Abstract
Contact lenses are widely used for vision correction and cosmetic purposes. Smart contact lenses offer further opportunities as functionalized non-invasive devices capable of simultaneous vision correction, real-time health monitoring and patient specific drug delivery. Herein, a low-cost vat photopolymerization technique is developed for directly 3D printing functionalized structures on commercially available contact lenses. The process enables controlled deposition of functionalized hydrogels, in customizable patterns, on the commercial contact lens surface with negligible optical losses. Multi-functional contact lenses can also be 3D printed with multiple materials deposited at different regions of the contact lens. Herein, the functionalities of colour blindness correction and real-time UV monitoring are demonstrated, by employing three suitable dyes incorporated into 2-hydroxyethyl methacrylate (HEMA) hydrogel structures printed on contact lenses. The results suggest that 3D printing can pave the way towards simple production of low-cost patient specific smart contact lenses.
Collapse
Affiliation(s)
- Muhammed Hisham
- Department of Mechanical and Nuclear Engineering, Khalifa University of Science and Technology, Abu Dhabi, 127788, UAE.
| | - Haider Butt
- Department of Mechanical and Nuclear Engineering, Khalifa University of Science and Technology, Abu Dhabi, 127788, UAE.
| |
Collapse
|
41
|
Lim JH, Han WB, Jang TM, Ko GJ, Shin JW, Han S, Kang H, Eom CH, Choi SJ, Rajaram K, Bandodkar AJ, Yeo WH, Hwang SW. Synthesis of shape-programmable elastomer for a bioresorbable, wireless nerve stimulator. Biosens Bioelectron 2024; 254:116222. [PMID: 38518560 DOI: 10.1016/j.bios.2024.116222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/01/2024] [Accepted: 03/11/2024] [Indexed: 03/24/2024]
Abstract
Materials that have the ability to manipulate shapes in response to stimuli such as heat, light, humidity and magnetism offer a means for versatile, sophisticated functions in soft robotics or biomedical implants, while such a reactive transformation has certain drawbacks including high operating temperatures, inherent rigidity and biological hazard. Herein, we introduce biodegradable, self-adhesive, shape-transformable poly (L-lactide-co-ε-caprolactone) (BSS-PLCL) that can be triggered via thermal stimulation near physiological temperature (∼38 °C). Chemical inspections confirm the fundamental properties of the synthetic materials in diverse aspects, and study on mechanical and biochemical characteristics validates exceptional stretchability up to 800 % and tunable dissolution behaviors under biological conditions. The integration of the functional polymer with a bioresorbable electronic system highlights potential for a wide range of biomedical applications.
Collapse
Affiliation(s)
- Jun Hyeon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Won Bae Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA; IEN Center for Wearable Intelligent Systems and Healthcare, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Tae-Min Jang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Gwan-Jin Ko
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Jeong-Woong Shin
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Sungkeun Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Heeseok Kang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea; Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Chan-Hwi Eom
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - So Jeong Choi
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Kaveti Rajaram
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea; Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, 27606, USA; Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC, 27606, USA
| | - Amay J Bandodkar
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, 27606, USA; Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC, 27606, USA
| | - Woon-Hong Yeo
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA; IEN Center for Wearable Intelligent Systems and Healthcare, Georgia Institute of Technology, Atlanta, GA, 30332, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory University School of Medicine, Atlanta, GA, 30332, USA; Parker H. Petit Institute for Bioengineering and Biosciences, Institute for Materials, Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Suk-Won Hwang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea; Department of Integrative Energy Engineering, Korea University, Seoul, 02841, Republic of Korea; Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
| |
Collapse
|
42
|
Zhu H, Yang H, Xu S, Ma Y, Zhu S, Mao Z, Chen W, Hu Z, Pan R, Xu Y, Xiong Y, Chen Y, Lu Y, Ning X, Jiang D, Yuan S, Xu F. Frequency-encoded eye tracking smart contact lens for human-machine interaction. Nat Commun 2024; 15:3588. [PMID: 38678013 PMCID: PMC11055864 DOI: 10.1038/s41467-024-47851-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 04/09/2024] [Indexed: 04/29/2024] Open
Abstract
Eye tracking techniques enable high-efficient, natural, and effortless human-machine interaction by detecting users' eye movements and decoding their attention and intentions. Here, a miniature, imperceptible, and biocompatible smart contact lens is proposed for in situ eye tracking and wireless eye-machine interaction. Employing the frequency encoding strategy, the chip-free and battery-free lens successes in detecting eye movement and closure. Using a time-sequential eye tracking algorithm, the lens has a great angular accuracy of <0.5°, which is even less than the vision range of central fovea. Multiple eye-machine interaction applications, such as eye-drawing, Gluttonous Snake game, web interaction, pan-tilt-zoom camera control, and robot vehicle control, are demonstrated on the eye movement model and in vivo rabbit. Furthermore, comprehensive biocompatibility tests are implemented, demonstrating low cytotoxicity and low eye irritation. Thus, the contact lens is expected to enrich approaches of eye tracking techniques and promote the development of human-machine interaction technology.
Collapse
Affiliation(s)
- Hengtian Zhu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Huan Yang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Siqi Xu
- Department of Ophthalmology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210094, China
| | - Yuanyuan Ma
- The State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Shugeng Zhu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Zhengyi Mao
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Weiwei Chen
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
- Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210093, China
| | - Zizhong Hu
- Department of Ophthalmology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210094, China
| | - Rongrong Pan
- The State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Yurui Xu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
- Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210093, China
| | - Yifeng Xiong
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Ye Chen
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China.
- College of Physics, MIIT Key Laboratory of Aerospace Information Materials and Physics, State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China.
| | - Yanqing Lu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China.
| | - Xinghai Ning
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
- Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210093, China
| | - Dechen Jiang
- The State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210093, China
| | - Songtao Yuan
- Department of Ophthalmology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210094, China.
| | - Fei Xu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China.
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
43
|
Fan L, Jiang Y, Deng R, Zhu H, Dai X, Liang H, Li N, Qian Z. Mechanical Robustness Enhanced Flexible Antennas Using Ti 3C 2 MXene and Nanocellulose Composites for Noninvasive Glucose Sensing. ACS Sens 2024; 9:1866-1876. [PMID: 38499997 DOI: 10.1021/acssensors.3c02474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Electromagnetic sensors with flexible antennas as sensing elements have attracted increasing attention in noninvasive continuous glucose monitoring for diabetic patients. The significant radiation performance loss of flexible antennas during mechanical deformation impairs the reliability of glucose monitoring. Here, we present flexible ultrawideband monopole antennas composed of Ti3C2 MXene and cellulose nanofibril (CNF) composite films for continuous glucose monitoring. The flexible MXene/CNF antenna with 20% CNF content can obtain a gain of up to 3.33 dBi and a radiation efficiency of up to 65.40% at a frequency range from 2.3 to 6.0 GHz. Compared with the pure MXene antenna, this antenna offers a comparable radiation performance and a lower performance loss in mechanical bending deformation. Moreover, the MXene/CNF antenna shows a stable response to fetal bovine serum/glucose, with a correlation of >0.9 at the reference glucose levels, and responds sensitively to the variations in blood glucose levels during human trials. The proposed strategy enhancing the mechanical robustness of MXene-based flexible antennas makes metallic two-dimensional nanomaterials more promising in wearable electromagnetic sensors.
Collapse
Affiliation(s)
- Lin Fan
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yue Jiang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ruihua Deng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Hua Zhu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiangyu Dai
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Hao Liang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ning Li
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (Shenzhen), Shenzhen University, Shenzhen 518132, China
| | - Zhengfang Qian
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
44
|
Taha BA, Addie AJ, Kadhim AC, Azzahran AS, Haider AJ, Chaudhary V, Arsad N. Photonics-powered augmented reality skin electronics for proactive healthcare: multifaceted opportunities. Mikrochim Acta 2024; 191:250. [PMID: 38587660 DOI: 10.1007/s00604-024-06314-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/18/2024] [Indexed: 04/09/2024]
Abstract
Rapid technological advancements have created opportunities for new solutions in various industries, including healthcare. One exciting new direction in this field of innovation is the combination of skin-based technologies and augmented reality (AR). These dermatological devices allow for the continuous and non-invasive measurement of vital signs and biomarkers, enabling the real-time diagnosis of anomalies, which have applications in telemedicine, oncology, dermatology, and early diagnostics. Despite its many potential benefits, there is a substantial information vacuum regarding using flexible photonics in conjunction with augmented reality for medical purposes. This review explores the current state of dermal augmented reality and flexible optics in skin-conforming sensing platforms by examining the obstacles faced thus far, including technical hurdles, demanding clinical validation standards, and problems with user acceptance. Our main areas of interest are skills, chiroptical properties, and health platform applications, such as optogenetic pixels, spectroscopic imagers, and optical biosensors. My skin-enhanced spherical dichroism and powerful spherically polarized light enable thorough physical inspection with these augmented reality devices: diabetic tracking, skin cancer diagnosis, and cardiovascular illness: preventative medicine, namely blood pressure screening. We demonstrate how to accomplish early prevention using case studies and emergency detection. Finally, it addresses real-world obstacles that hinder fully realizing these materials' extraordinary potential in advancing proactive and preventative personalized medicine, including technical constraints, clinical validation gaps, and barriers to widespread adoption.
Collapse
Affiliation(s)
- Bakr Ahmed Taha
- Photonics Technology Lab, Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Malaysia.
| | - Ali J Addie
- Center of Advanced Materials/Directorate of Materials Research/Ministry of Science and Technology, Baghdad, Iraq
| | - Ahmed C Kadhim
- Communication Engineering Department, University of Technology, Baghdad, Iraq
| | - Ahmad S Azzahran
- Electrical Engineering Department, Northern Border University, Arar, Kingdom of Saudi Arabia.
| | - Adawiya J Haider
- Applied Sciences Department/Laser Science and Technology Branch, University of Technology, Baghdad, Iraq
| | - Vishal Chaudhary
- Research Cell &, Department of Physics, Bhagini Nivedita College, University of Delhi, New Delhi, 110045, India
| | - Norhana Arsad
- Photonics Technology Lab, Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Malaysia.
| |
Collapse
|
45
|
Huang X, Yao C, Huang S, Zheng S, Liu Z, Liu J, Wang J, Chen HJ, Xie X. Technological Advances of Wearable Device for Continuous Monitoring of In Vivo Glucose. ACS Sens 2024; 9:1065-1088. [PMID: 38427378 DOI: 10.1021/acssensors.3c01947] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Managing diabetes is a chronic challenge today, requiring monitoring and timely insulin injections to maintain stable blood glucose levels. Traditional clinical testing relies on fingertip or venous blood collection, which has facilitated the emergence of continuous glucose monitoring (CGM) technology to address data limitations. Continuous glucose monitoring technology is recognized for tracking long-term blood glucose fluctuations, and its development, particularly in wearable devices, has given rise to compact and portable continuous glucose monitoring devices, which facilitates the measurement of blood glucose and adjustment of medication. This review introduces the development of wearable CGM-based technologies, including noninvasive methods using body fluids and invasive methods using implantable electrodes. The advantages and disadvantages of these approaches are discussed as well as the use of microneedle arrays in minimally invasive CGM. Microneedle arrays allow for painless transdermal puncture and are expected to facilitate the development of wearable CGM devices. Finally, we discuss the challenges and opportunities and look forward to the biomedical applications and future directions of wearable CGM-based technologies in biological research.
Collapse
Affiliation(s)
- Xinshuo Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Chuanjie Yao
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Shuang Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Shantao Zheng
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Zhengjie Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Jing Liu
- The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Ji Wang
- The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Hui-Jiuan Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
- The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
46
|
Bhatia A, Hanna J, Stuart T, Kasper KA, Clausen DM, Gutruf P. Wireless Battery-free and Fully Implantable Organ Interfaces. Chem Rev 2024; 124:2205-2280. [PMID: 38382030 DOI: 10.1021/acs.chemrev.3c00425] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Advances in soft materials, miniaturized electronics, sensors, stimulators, radios, and battery-free power supplies are resulting in a new generation of fully implantable organ interfaces that leverage volumetric reduction and soft mechanics by eliminating electrochemical power storage. This device class offers the ability to provide high-fidelity readouts of physiological processes, enables stimulation, and allows control over organs to realize new therapeutic and diagnostic paradigms. Driven by seamless integration with connected infrastructure, these devices enable personalized digital medicine. Key to advances are carefully designed material, electrophysical, electrochemical, and electromagnetic systems that form implantables with mechanical properties closely matched to the target organ to deliver functionality that supports high-fidelity sensors and stimulators. The elimination of electrochemical power supplies enables control over device operation, anywhere from acute, to lifetimes matching the target subject with physical dimensions that supports imperceptible operation. This review provides a comprehensive overview of the basic building blocks of battery-free organ interfaces and related topics such as implantation, delivery, sterilization, and user acceptance. State of the art examples categorized by organ system and an outlook of interconnection and advanced strategies for computation leveraging the consistent power influx to elevate functionality of this device class over current battery-powered strategies is highlighted.
Collapse
Affiliation(s)
- Aman Bhatia
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - Jessica Hanna
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - Tucker Stuart
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - Kevin Albert Kasper
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - David Marshall Clausen
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - Philipp Gutruf
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
- Department of Electrical and Computer Engineering, The University of Arizona, Tucson, Arizona 85721, United States
- Bio5 Institute, The University of Arizona, Tucson, Arizona 85721, United States
- Neuroscience Graduate Interdisciplinary Program (GIDP), The University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
47
|
Butscher JF, Hillebrandt S, Mischok A, Popczyk A, Booth JHH, Gather MC. Wireless magnetoelectrically powered organic light-emitting diodes. SCIENCE ADVANCES 2024; 10:eadm7613. [PMID: 38446883 PMCID: PMC10917343 DOI: 10.1126/sciadv.adm7613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/31/2024] [Indexed: 03/08/2024]
Abstract
Compact wireless light sources are a fundamental building block for applications ranging from wireless displays to optical implants. However, their realization remains challenging because of constraints in miniaturization and the integration of power harvesting and light-emission technologies. Here, we introduce a strategy for a compact wirelessly powered light-source that consists of a magnetoelectric transducer serving as power source and substrate and an antiparallel pair of custom-designed organic light-emitting diodes. The devices operate at low-frequency ac magnetic fields (~100 kHz), which has the added benefit of allowing operation multiple centimeters deep inside watery environments. By tuning the device resonance frequency, it is possible to separately address multiple devices, e.g., to produce light of distinct colors, to address individual display pixels, or for clustered operation. By simultaneously offering small size, individual addressing, and compatibility with challenging environments, our devices pave the way for a multitude of applications in wireless displays, deep tissue treatment, sensing, and imaging.
Collapse
Affiliation(s)
- Julian F. Butscher
- Centre of Biophotonics, SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, UK
- Humboldt Centre for Nano- and Biophotonics, Department of Chemistry, University of Cologne, Cologne, Germany
| | - Sabina Hillebrandt
- Humboldt Centre for Nano- and Biophotonics, Department of Chemistry, University of Cologne, Cologne, Germany
| | - Andreas Mischok
- Humboldt Centre for Nano- and Biophotonics, Department of Chemistry, University of Cologne, Cologne, Germany
| | - Anna Popczyk
- Humboldt Centre for Nano- and Biophotonics, Department of Chemistry, University of Cologne, Cologne, Germany
| | - Jonathan H. H. Booth
- Centre of Biophotonics, SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, UK
- Humboldt Centre for Nano- and Biophotonics, Department of Chemistry, University of Cologne, Cologne, Germany
| | - Malte C. Gather
- Centre of Biophotonics, SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, UK
- Humboldt Centre for Nano- and Biophotonics, Department of Chemistry, University of Cologne, Cologne, Germany
| |
Collapse
|
48
|
Liu X, Ye Y, Ge Y, Qu J, Liedberg B, Zhang Q, Wang Y. Smart Contact Lenses for Healthcare Monitoring and Therapy. ACS NANO 2024; 18:6817-6844. [PMID: 38407063 DOI: 10.1021/acsnano.3c12072] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The eye contains a wealth of physiological information and offers a suitable environment for noninvasive monitoring of diseases via smart contact lens sensors. Although extensive research efforts recently have been undertaken to develop smart contact lens sensors, they are still in an early stage of being utilized as an intelligent wearable sensing platform for monitoring various biophysical/chemical conditions. In this review, we provide a general introduction to smart contact lenses that have been developed for disease monitoring and therapy. First, different disease biomarkers available from the ocular environment are summarized, including both physical and chemical biomarkers, followed by the commonly used materials, manufacturing processes, and characteristics of contact lenses. Smart contact lenses for eye-drug delivery with advancing technologies to achieve more efficient treatments are then introduced as well as the latest developments for disease diagnosis. Finally, sensor communication technologies and smart contact lenses for antimicrobial and other emerging bioapplications are also discussed as well as the challenges and prospects of the future development of smart contact lenses.
Collapse
Affiliation(s)
- Xiaohu Liu
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325001, China
| | - Ying Ye
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325001, China
| | - Yuancai Ge
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325001, China
| | - Jia Qu
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325001, China
| | - Bo Liedberg
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Qingwen Zhang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325001, China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Yi Wang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325001, China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| |
Collapse
|
49
|
Sakata T. Signal transduction interfaces for field-effect transistor-based biosensors. Commun Chem 2024; 7:35. [PMID: 38374200 PMCID: PMC10876964 DOI: 10.1038/s42004-024-01121-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 02/06/2024] [Indexed: 02/21/2024] Open
Abstract
Biosensors based on field-effect transistors (FETs) are suitable for use in miniaturized and cost-effective healthcare devices. Various semiconductive materials can be applied as FET channels for biosensing, including one- and two-dimensional materials. The signal transduction interface between the biosample and the channel of FETs plays a key role in translating electrochemical reactions into output signals, thereby capturing target ions or biomolecules. In this Review, distinctive signal transduction interfaces for FET biosensors are introduced, categorized as chemically synthesized, physically structured, and biologically induced interfaces. The Review highlights that these signal transduction interfaces are key in controlling biosensing parameters, such as specificity, selectivity, binding constant, limit of detection, signal-to-noise ratio, and biocompatibility.
Collapse
Affiliation(s)
- Toshiya Sakata
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| |
Collapse
|
50
|
Chang S, Koo JH, Yoo J, Kim MS, Choi MK, Kim DH, Song YM. Flexible and Stretchable Light-Emitting Diodes and Photodetectors for Human-Centric Optoelectronics. Chem Rev 2024; 124:768-859. [PMID: 38241488 DOI: 10.1021/acs.chemrev.3c00548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Optoelectronic devices with unconventional form factors, such as flexible and stretchable light-emitting or photoresponsive devices, are core elements for the next-generation human-centric optoelectronics. For instance, these deformable devices can be utilized as closely fitted wearable sensors to acquire precise biosignals that are subsequently uploaded to the cloud for immediate examination and diagnosis, and also can be used for vision systems for human-interactive robotics. Their inception was propelled by breakthroughs in novel optoelectronic material technologies and device blueprinting methodologies, endowing flexibility and mechanical resilience to conventional rigid optoelectronic devices. This paper reviews the advancements in such soft optoelectronic device technologies, honing in on various materials, manufacturing techniques, and device design strategies. We will first highlight the general approaches for flexible and stretchable device fabrication, including the appropriate material selection for the substrate, electrodes, and insulation layers. We will then focus on the materials for flexible and stretchable light-emitting diodes, their device integration strategies, and representative application examples. Next, we will move on to the materials for flexible and stretchable photodetectors, highlighting the state-of-the-art materials and device fabrication methods, followed by their representative application examples. At the end, a brief summary will be given, and the potential challenges for further development of functional devices will be discussed as a conclusion.
Collapse
Affiliation(s)
- Sehui Chang
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Ja Hoon Koo
- Department of Semiconductor Systems Engineering, Sejong University, Seoul 05006, Republic of Korea
- Institute of Semiconductor and System IC, Sejong University, Seoul 05006, Republic of Korea
| | - Jisu Yoo
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Min Seok Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Moon Kee Choi
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Graduate School of Semiconductor Materials and Devices Engineering, Center for Future Semiconductor Technology (FUST), UNIST, Ulsan 44919, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University (SNU), Seoul 08826, Republic of Korea
- Department of Materials Science and Engineering, SNU, Seoul 08826, Republic of Korea
- Interdisciplinary Program for Bioengineering, SNU, Seoul 08826, Republic of Korea
| | - Young Min Song
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Artificial Intelligence (AI) Graduate School, GIST, Gwangju 61005, Republic of Korea
| |
Collapse
|