1
|
Johnstone BA, Christie MP, Joseph R, Morton CJ, Brown HG, Hanssen E, Sanford TC, Abrahamsen HL, Tweten RK, Parker MW. Structural basis for the pore-forming activity of a complement-like toxin. SCIENCE ADVANCES 2025; 11:eadt2127. [PMID: 40153490 PMCID: PMC11952106 DOI: 10.1126/sciadv.adt2127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 02/24/2025] [Indexed: 03/30/2025]
Abstract
Pore-forming proteins comprise a highly diverse group of proteins exemplified by the membrane attack complex/perforin (MACPF), cholesterol-dependent cytolysin (CDC), and gasdermin superfamilies, which all form gigantic pores (>150 angstroms). A recently found family of pore-forming toxins, called CDC-like proteins (CDCLs), are wide-spread in gut microbes and are a prevalent means of antibacterial antagonism. However, the structural aspects of how CDCLs assemble a pore remain a mystery. Here, we report the crystal structure of a proteolytically activated CDCL and cryo-electron microscopy structures of a prepore-like intermediate and a transmembrane pore providing detailed snapshots across the entire pore-forming pathway. These studies reveal a sophisticated array of regulatory features to ensure productive pore formation, and, thus, CDCLs straddle the MACPF, CDC, and gasdermin lineages of the giant pore superfamilies.
Collapse
Affiliation(s)
- Bronte A. Johnstone
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Michelle P. Christie
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Riya Joseph
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Craig J. Morton
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Hamish G. Brown
- Ian Holmes Imaging Centre, Bio21 Molecular Science & Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Eric Hanssen
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
- Ian Holmes Imaging Centre, Bio21 Molecular Science & Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Tristan C. Sanford
- Department of Microbiology & Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Hunter L. Abrahamsen
- Department of Microbiology & Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rodney K. Tweten
- Department of Microbiology & Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Michael W. Parker
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
- Australian Cancer Research Foundation Rational Drug Discovery Centre, St Vincent’s Institute of Medical Research, Fitzroy, VIC 3065, Australia
| |
Collapse
|
2
|
Kegawa Y, Male F, Jiménez-Munguía I, Blank PS, Mekhedov E, Ward G, Zimmerberg J. The invasion pore induced by Toxoplasma gondii. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.11.617945. [PMID: 39416144 PMCID: PMC11482919 DOI: 10.1101/2024.10.11.617945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Obligate intracellular parasites invade host cells to survive. Following host cell contact, the apicomplexan Toxoplasma gondii injects proteins required for invasion into the host cell. Here, electrophysiological recordings of host cells acquired at sub-200 ms resolution allowed detection and analysis of a transient increase in host membrane conductance following exposure to Toxoplasma gondii. Transients always preceded invasion but parasites depleted of the moving junction protein RON2 generated transients without invading, ruling out a direct structural role for RON2 in generating the conductance pathway or restricting the diffusion of its components. Time-series analysis developed for transients and applied to the entire transient dataset (910,000 data points) revealed multiple quantal conductance changes in the parasite-induced transient, consistent with a rapid insertion, then slower removal, blocking, or inactivation of pore-like conductance steps. Quantal steps for RH had a principal mode with Gaussian mean of 0.26 nS, similar in step size to the apicomplexan protein translocon EXP2. Without RON2 the quantal mean was significantly different (0.19 nS). Because no invasion occurs without poration, the term 'invasion pore' is proposed.
Collapse
Affiliation(s)
- Y Kegawa
- Section on Integrative Biophysics; Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH)
| | - F Male
- Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, United States
| | - I Jiménez-Munguía
- Section on Integrative Biophysics; Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH)
| | - P S Blank
- Section on Integrative Biophysics; Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH)
| | - E Mekhedov
- Section on Integrative Biophysics; Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH)
| | - G Ward
- Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, United States
| | - J Zimmerberg
- Section on Integrative Biophysics; Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH)
| |
Collapse
|
3
|
Carruthers VB. Apicomplexan Pore-Forming Toxins. Annu Rev Microbiol 2024; 78:277-291. [PMID: 39088861 DOI: 10.1146/annurev-micro-041222-025939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Pore-forming toxins (PFTs) are released by one cell to directly inflict damage on another cell. Hosts use PFTs, including members of the membrane attack complex/perforin protein family, to fight infections and cancer, while bacteria and parasites deploy PFTs to promote infection. Apicomplexan parasites secrete perforin-like proteins as PFTs to egress from infected cells and traverse tissue barriers. Other protozoa, along with helminth parasites, utilize saposin-like PFTs prospectively for nutrient acquisition during infection. This review discusses seminal and more recent advances in understanding how parasite PFTs promote infection and describes how they are regulated and fulfill their roles without causing parasite self-harm. Although exciting progress has been made in defining mechanisms of pore formation by PFTs, many open questions remain to be addressed to gain additional key insights into these remarkable determinants of parasitic infections.
Collapse
Affiliation(s)
- Vern B Carruthers
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA;
| |
Collapse
|
4
|
Nayeri T, Sarvi S, Daryani A. Effective factors in the pathogenesis of Toxoplasmagondii. Heliyon 2024; 10:e31558. [PMID: 38818168 PMCID: PMC11137575 DOI: 10.1016/j.heliyon.2024.e31558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/11/2024] [Accepted: 05/17/2024] [Indexed: 06/01/2024] Open
Abstract
Toxoplasma gondii (T. gondii) is a cosmopolitan protozoan parasite in humans and animals. It infects about 30 % of the human population worldwide and causes potentially fatal diseases in immunocompromised hosts and neonates. For this study, five English-language databases (ScienceDirect, ProQuest, Web of Science, PubMed, and Scopus) and the internet search engine Google Scholar were searched. This review was accomplished to draw a global perspective of what is known about the pathogenesis of T. gondii and various factors affecting it. Virulence and immune responses can influence the mechanisms of parasite pathogenesis and these factors are in turn influenced by other factors. In addition to the host's genetic background, the type of Toxoplasma strain, the routes of transmission of infection, the number of passages, and different phases of parasite life affect virulence. The identification of virulence factors of the parasite could provide promising insights into the pathogenesis of this parasite. The results of this study can be an incentive to conduct more intensive research to design and develop new anti-Toxoplasma agents (drugs and vaccines) to treat or prevent this infection. In addition, further studies are needed to better understand the key agents in the pathogenesis of T. gondii.
Collapse
Affiliation(s)
- Tooran Nayeri
- Infectious and Tropical Diseases Research Center, Dezful University of Medical Sciences, Dezful, Iran
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shahabeddin Sarvi
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahmad Daryani
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
5
|
Diao Y, Yao Y, El-Ashram S, Bian M. Egress Regulatory Factors: How Toxoplasma Exits from Infected Cells? Pathogens 2023; 12:pathogens12050679. [PMID: 37242349 DOI: 10.3390/pathogens12050679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Toxoplasma gondii is an obligatory intracellular protozoan in the family Apicomplexa. It infects almost one-third of the world's population and causes toxoplasmosis, a prevalent disease. The parasite's egress from infected cells is a key step in the pathology caused by T. gondii. Moreover, T. gondii's continuous infection relies heavily on its capacity to migrate from one cell to another. Many pathways are involved in T. gondii egress. Individual routes may be modified to respond to various environmental stimuli, and many paths can converge. Regardless of the stimuli, the relevance of Ca2+ as a second messenger in transducing these signals, and the convergence of various signaling pathways in the control of motility and, ultimately, egress, is well recognized. This review attempts to outline intra- and extra-parasitic regulators that mediate T. gondii egress, and provides insight into potential clinical interventions and research.
Collapse
Affiliation(s)
- Yujie Diao
- Department of Blood Transfusion, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Yong Yao
- College of Life Sciences, Anhui Medical University, Hefei 230032, China
| | - Saeed El-Ashram
- College of Life Science and Engineering, Foshan University, 18 Jiangwan Street, Foshan 528231, China
- Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Maohong Bian
- Department of Blood Transfusion, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| |
Collapse
|
6
|
Yu X, Ni T, Munson G, Zhang P, Gilbert RJC. Cryo-EM structures of perforin-2 in isolation and assembled on a membrane suggest a mechanism for pore formation. EMBO J 2022; 41:e111857. [PMID: 36245269 PMCID: PMC9713709 DOI: 10.15252/embj.2022111857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/29/2022] [Accepted: 09/09/2022] [Indexed: 01/15/2023] Open
Abstract
Perforin-2 (PFN2, MPEG1) is a key pore-forming protein in mammalian innate immunity restricting intracellular bacteria proliferation. It forms a membrane-bound pre-pore complex that converts to a pore-forming structure upon acidification; but its mechanism of conformational transition has been debated. Here we used cryo-electron microscopy, tomography and subtomogram averaging to determine structures of PFN2 in pre-pore and pore conformations in isolation and bound to liposomes. In isolation and upon acidification, the pre-assembled complete pre-pore rings convert to pores in both flat ring and twisted conformations. On membranes, in situ assembled PFN2 pre-pores display various degrees of completeness; whereas PFN2 pores are mainly incomplete arc structures that follow the same subunit packing arrangements as found in isolation. Both assemblies on membranes use their P2 β-hairpin for binding to the lipid membrane surface. Overall, these structural snapshots suggest a molecular mechanism for PFN2 pre-pore to pore transition on a targeted membrane, potentially using the twisted pore as an intermediate or alternative state to the flat conformation, with the capacity to cause bilayer distortion during membrane insertion.
Collapse
Affiliation(s)
- Xiulian Yu
- Division of Structural Biology, Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
- Calleva Research Centre for Evolution and Human Sciences, Magdalen CollegeUniversity of OxfordOxfordUK
| | - Tao Ni
- Division of Structural Biology, Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
- Present address:
School of Biomedical Sciences, LKS Faculty of MedicineThe University of Hong KongPokfulamHong Kong SARChina
| | - George Munson
- Department of Microbiology and ImmunologyUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Peijun Zhang
- Division of Structural Biology, Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
- Diamond Light SourceHarwell Science and Innovation CampusDidcotUK
- Chinese Academy of Medical Sciences Oxford InstituteUniversity of OxfordOxfordUK
| | - Robert J C Gilbert
- Division of Structural Biology, Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
- Calleva Research Centre for Evolution and Human Sciences, Magdalen CollegeUniversity of OxfordOxfordUK
| |
Collapse
|
7
|
Nayeri T, Sarvi S, Fasihi-Ramandi M, Valadan R, Asgarian-Omran H, Ajami A, Khalilian A, Hosseininejad Z, Dodangeh S, Javidnia J, Daryani A. Enhancement of immune responses by vaccine potential of three antigens, including ROP18, MIC4, and SAG1 against acute toxoplasmosis in mice. Exp Parasitol 2022; 244:108427. [PMID: 36379272 DOI: 10.1016/j.exppara.2022.108427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/31/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
Toxoplasma gondii (T. gondii) causes considerable financial losses in the livestock industry and can present serious threats to pregnant women, as well as immunocompromised patients. Therefore, it is required to design and produce an efficient vaccine for controlling toxoplasmosis. The present study aimed to evaluate the protective immunity induced by RMS protein (ROP18, MIC4, and SAG1) with Freund adjuvant, calcium phosphate nanoparticles (CaPNs), and chitosan nanoparticles (CNs) in BALB/c mice. The RMS protein was expressed in Escherichia coli (E. coli) and purified using a HisTrap HP column. Thereafter, cellular and humoral immunity was assessed by injecting RMS protein on days 0, 21, and 35 into four groups [RMS, RMS-chitosan nanoparticles (RMS-CNs), RMS-calcium phosphate nanoparticles (RMS-CaPNs), and RMS-Freund]. Phosphate buffered saline (PBS), CNs, CaPNs, and Freund served as the four control groups. The results displayed that vaccination with RMS protein and adjuvants significantly elicited the levels of specific IgG antibodies and cytokines against toxoplasmosis. There were high levels of total IgG, IgG2a, and IFN-γ in vaccinated mice, compared to those in the control groups, especially in the RMS-Freund, indicating a Th-1 type response. The vaccinated and control mice were challenged intraperitoneally with 1 × 103 tachyzoites of the T. gondii RH strain four weeks after the last injection, and in RMS-Freund and RMS-CaPNs groups, the highest increase in survival time was observed (15 days). The RMS can significantly increase Th1 and Th2 responses; moreover, multi-epitope vaccines with adjuvants can be a promising strategy for the production of a vaccine against toxoplasmosis.
Collapse
Affiliation(s)
- Tooran Nayeri
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Toxoplasmosis Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shahabeddin Sarvi
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Toxoplasmosis Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahdi Fasihi-Ramandi
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Reza Valadan
- Immunology Department, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hossein Asgarian-Omran
- Immunology Department, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abolghasem Ajami
- Immunology Department, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Antimicrobial Resistance Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alireza Khalilian
- Department of Biostatistics and Community Medicine, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Hosseininejad
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Toxoplasmosis Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran; Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Samira Dodangeh
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Javad Javidnia
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran; Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahmad Daryani
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Toxoplasmosis Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
8
|
Williams SI, Yu X, Ni T, Gilbert RJ, Stansfeld PJ. Structural, functional and computational studies of membrane recognition by Plasmodium Perforin-Like Proteins 1 and 2. J Mol Biol 2022; 434:167642. [DOI: 10.1016/j.jmb.2022.167642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/06/2022] [Accepted: 05/13/2022] [Indexed: 11/25/2022]
|
9
|
Paoletta MS, Laughery JM, Arias LSL, Ortiz JMJ, Montenegro VN, Petrigh R, Ueti MW, Suarez CE, Farber MD, Wilkowsky SE. The key to egress? Babesia bovis perforin-like protein 1 (PLP1) with hemolytic capacity is required for blood stage replication and is involved in the exit of the parasite from the host cell. Int J Parasitol 2021; 51:643-658. [PMID: 33753093 DOI: 10.1016/j.ijpara.2020.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 11/27/2020] [Accepted: 12/03/2020] [Indexed: 12/18/2022]
Abstract
Bovine babesiosis is a tick-borne disease caused by apicomplexan parasites of the Babesia genus that represents a major constraint to livestock production worldwide. Currently available vaccines are based on live parasites which have archetypal limitations. Our goal is to identify candidate antigens so that new and effective vaccines against Babesia may be developed. The perforin-like protein (PLP) family has been identified as a key player in cell traversal and egress in related apicomplexans and it was also identified in Babesia, but its function in this parasite remains unknown. The aim of this work was to define the PLP family in Babesia and functionally characterize PLP1, a representative member of the family in Babesia bovis. Bioinformatic analyses demonstrate a variable number of plp genes (four to eight) in the genomes of six different Babesia spp. and conservation of the family members at the secondary and tertiary structure levels. We demonstrate here that Babesia PLPs contain the critical domains present in other apicomplexan PLPs to display the lytic capacity. We then focused on the functional characterization of PLP1 of B. bovis, both in vitro and in vivo. PLP1 is expressed and exposed to the host immune system during infection and has high hemolytic capacity under a wide range of conditions in vitro. A B. bovis plp1 knockout line displayed a decreased growth rate in vitro compared with the wild type strain and a peculiar phenotype consisting of multiple parasites within a single red blood cell, although at low frequency. This phenotype suggests that the lack of PLP1 has a negative impact on the mechanism of egression of the parasite and, therefore, on its capacity to proliferate. It is possible that PLP1 is associated with other proteins in the processes of invasion and egress, which were found to have redundant mechanisms in related apicomplexans. Future work will be focused on unravelling the network of proteins involved in these essential parasite functions.
Collapse
Affiliation(s)
- Martina Soledad Paoletta
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA - CONICET, De Los Reseros y Dr. Nicolás Repetto s/n, P.O. Box 25 (B1712WAA), Castelar, Buenos Aires, Argentina
| | - Jacob Michael Laughery
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA
| | - Ludmila Sol López Arias
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA - CONICET, De Los Reseros y Dr. Nicolás Repetto s/n, P.O. Box 25 (B1712WAA), Castelar, Buenos Aires, Argentina
| | - José Manuel Jaramillo Ortiz
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA - CONICET, De Los Reseros y Dr. Nicolás Repetto s/n, P.O. Box 25 (B1712WAA), Castelar, Buenos Aires, Argentina
| | - Valeria Noely Montenegro
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA - CONICET, De Los Reseros y Dr. Nicolás Repetto s/n, P.O. Box 25 (B1712WAA), Castelar, Buenos Aires, Argentina
| | - Romina Petrigh
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA - CONICET, De Los Reseros y Dr. Nicolás Repetto s/n, P.O. Box 25 (B1712WAA), Castelar, Buenos Aires, Argentina
| | - Massaro W Ueti
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA; Animal Disease Research Unit, USDA-ARS, Washington State University, 3003 ADBF, P.O. Box 646630, Pullman, WA 99164, USA
| | - Carlos Esteban Suarez
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA; Animal Disease Research Unit, USDA-ARS, Washington State University, 3003 ADBF, P.O. Box 646630, Pullman, WA 99164, USA
| | - Marisa Diana Farber
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA - CONICET, De Los Reseros y Dr. Nicolás Repetto s/n, P.O. Box 25 (B1712WAA), Castelar, Buenos Aires, Argentina
| | - Silvina Elizabeth Wilkowsky
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA - CONICET, De Los Reseros y Dr. Nicolás Repetto s/n, P.O. Box 25 (B1712WAA), Castelar, Buenos Aires, Argentina.
| |
Collapse
|
10
|
Gilbert RJC. Electron microscopy as a critical tool in the determination of pore forming mechanisms in proteins. Methods Enzymol 2021; 649:71-102. [PMID: 33712203 DOI: 10.1016/bs.mie.2021.01.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Electron microscopy has consistently played an important role in the description of pore-forming protein systems. The discovery of pore-forming proteins has depended on visualization of the structural pores formed by their oligomeric protein complexes, and as electron microscopy has advanced technologically so has the degree of insight it has been able to give. This review considers a large number of published studies of pore-forming complexes in prepore and pore states determined using single-particle cryo-electron microscopy. Sample isolation and preparation, imaging and image analysis, structure determination and optimization of results are all discussed alongside challenges which pore-forming proteins particularly present. The review also considers the use made of cryo-electron tomography to study pores within their membrane environment and which will prove an increasingly important approach for the future.
Collapse
Affiliation(s)
- Robert J C Gilbert
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
11
|
Desikan R, Behera A, Maiti PK, Ayappa KG. Using multiscale molecular dynamics simulations to obtain insights into pore forming toxin mechanisms. Methods Enzymol 2021; 649:461-502. [PMID: 33712196 DOI: 10.1016/bs.mie.2021.01.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pore forming toxins (PFTs) are virulent proteins released by several species, including many strains of bacteria, to attack and kill host cells. In this article, we focus on the utility of molecular dynamics (MD) simulations and the molecular insights gleaned from these techniques on the pore forming pathways of PFTs. In addition to all-atom simulations which are widely used, coarse-grained MARTINI models and structure-based models have also been used to study PFTs. Here, the emphasis is on methods and techniques involved while setting up, monitoring, and evaluating properties from MD simulations of PFTs in a membrane environment. We draw from several case studies to illustrate how MD simulations have provided molecular insights into protein-protein and protein-lipid interactions, lipid dynamics, conformational transitions and structures of both the oligomeric intermediates and assembled pore structures.
Collapse
Affiliation(s)
- Rajat Desikan
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India
| | - Amit Behera
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India
| | - Prabal K Maiti
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bengaluru, India
| | - K Ganapathy Ayappa
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India; Centre for Biosystems Science and Engineering, Indian Institute of Science, Bengaluru, India.
| |
Collapse
|
12
|
Aden S, Snoj T, Anderluh G. The use of giant unilamellar vesicles to study functional properties of pore-forming toxins. Methods Enzymol 2021; 649:219-251. [PMID: 33712188 DOI: 10.1016/bs.mie.2021.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pore-forming toxins (PFTs) act upon lipid membranes and appropriate model systems are of great importance in researching these proteins. Giant unilamellar vesicles (GUVs) are an excellent model membrane system to study interactions between lipids and proteins. Their main advantage is the size comparable to cells, which means that GUVs can be observed directly under the light microscope. Many PFTs properties can be studied by using GUVs, such as binding specificity, membrane reorganization upon protein binding and oligomerization, pore properties and mechanism of pore formation. GUVs also represent a good model for biotechnological approaches, e.g., in applications in synthetic biology and medicine. Each research area has its own demands for GUVs properties, so several different approaches for GUVs preparations have been developed and will be discussed in this chapter.
Collapse
Affiliation(s)
- Saša Aden
- Department for Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Tina Snoj
- Department for Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Gregor Anderluh
- Department for Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia.
| |
Collapse
|
13
|
Abstract
Pore forming proteins are released as water-soluble monomers that form-mostly oligomeric-pores in target membranes. Our understanding of such pore formation relies in part on the direct visualization of their assemblies on and in the membrane. Here, we discuss the application of atomic force microscopy (AFM) to visualize and understand membrane pore formation, illustrated specifically by studies of proteins of the MACPF/CDC superfamily on supported lipid bilayers. Besides detailed protocols, we also point out common imaging artefacts and strategies to avoid them, and briefly outline how AFM can be effectively used in conjunction with other methods.
Collapse
Affiliation(s)
- Adrian W Hodel
- Killer Cell Biology Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Katharine Hammond
- National Physical Laboratory, Teddington, United Kingdom; London Centre for Nanotechnology, University College London, London, United Kingdom; Department of Physics & Astronomy, University College London, London, United Kingdom
| | - Bart W Hoogenboom
- London Centre for Nanotechnology, University College London, London, United Kingdom; Department of Physics & Astronomy, University College London, London, United Kingdom.
| |
Collapse
|
14
|
Johnstone BA, Christie MP, Morton CJ, Parker MW. X-ray crystallography shines a light on pore-forming toxins. Methods Enzymol 2021; 649:1-46. [PMID: 33712183 DOI: 10.1016/bs.mie.2021.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A common form of cellular attack by pathogenic bacteria is to secrete pore-forming toxins (PFTs). Capable of forming transmembrane pores in various biological membranes, PFTs have also been identified in a diverse range of other organisms such as sea anemones, earthworms and even mushrooms and trees. The mechanism of pore formation by PFTs is associated with substantial conformational changes in going from the water-soluble to transmembrane states of the protein. The determination of the crystal structures for numerous PFTs has shed much light on our understanding of these proteins. Other than elucidating the atomic structural details of PFTs and the conformational changes that must occur for pore formation, crystal structures have revealed structural homology that has led to the discovery of new PFTs and new PFT families. Here we review some key crystallographic results together with complimentary approaches for studying PFTs. We discuss how these studies have impacted our understanding of PFT function and guided research into biotechnical applications.
Collapse
Affiliation(s)
- Bronte A Johnstone
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Michelle P Christie
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Craig J Morton
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Michael W Parker
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia; St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia.
| |
Collapse
|
15
|
Sassmannshausen J, Pradel G, Bennink S. Perforin-Like Proteins of Apicomplexan Parasites. Front Cell Infect Microbiol 2020; 10:578883. [PMID: 33042876 PMCID: PMC7522308 DOI: 10.3389/fcimb.2020.578883] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/13/2020] [Indexed: 11/23/2022] Open
Abstract
Perforins are secreted proteins of eukaryotes, which possess a membrane attack complex/perforin (MACPF) domain enabling them to form pores in the membranes of target cells. In higher eukaryotes, they are assigned to immune defense mechanisms required to kill invading microbes or infected cells. Perforin-like proteins (PLPs) are also found in apicomplexan parasites. Here they play diverse roles during lifecycle progression of the intracellularly replicating protozoans. The apicomplexan PLPs are best studied in Plasmodium and Toxoplasma, the causative agents of malaria and toxoplasmosis, respectively. The PLPs are expressed in the different lifecycle stages of the pathogens and can target and lyse a variety of cell membranes of the invertebrate and mammalian hosts. The PLPs thereby either function in host cell destruction during exit or in overcoming epithelial barriers during tissue passage. In this review, we summarize the various PLPs known for apicomplexan parasites and highlight their roles in Plasmodium and Toxoplasma lifecycle progression.
Collapse
Affiliation(s)
- Juliane Sassmannshausen
- Division of Cellular and Applied Infection Biology, Institute of Zoology, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, Institute of Zoology, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| | - Sandra Bennink
- Division of Cellular and Applied Infection Biology, Institute of Zoology, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| |
Collapse
|
16
|
Dongchao Z, Ning J, Qijun C. Loss of rhoptry protein 9 impeded Toxoplasma gondii infectivity. Acta Trop 2020; 207:105464. [PMID: 32302689 DOI: 10.1016/j.actatropica.2020.105464] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/09/2020] [Accepted: 03/28/2020] [Indexed: 10/24/2022]
Abstract
Toxoplasma gondii is an obligatory intracellular parasite that critically depends on active invasion and egress from infected host cells to complete its propagation cycle. T. gondii rhoptry proteins (TgROPs) are virulent factors associated with host cell invasion, growth. In this study, we analyzed the functions of ROP9 in the process of T. gondii infection. The TgROP9 knockout RH strain (RH△ROP9) and its recovery strain (RH-ReROP9) were constructed using the CRISPR/Cas9 system. The invasion, proliferation, and egress efficiency of the RH△ROP9 strain were evaluated and their pathogenicity to mice was analyzed. Compared with RH wild-type (RH-WT) and RH-ReROP9 strains, the invasion percentage of RH△ROP9 to Vero cells was reduced by about 28.0% (p< 0.01) at 1.5 h, and the relative proliferation percentage was decreased by about 35.0% (p< 0.01) after infection with 102 or 103 parasites. In addition, the RH△ROP9 strain also showed prolonged egress time from host cells. The survival time of the mice (12.6 ± 1.6 or 10.1 ± 1.1 days) were delayed (p < 0.001) after infection with either 200 or 1000 RH△ROP9 parasites. These evidences suggested that ROP9 facilitated T. gondii infection in vitro and in vivo.
Collapse
|
17
|
Garg S, Shivappagowdar A, Hada RS, Ayana R, Bathula C, Sen S, Kalia I, Pati S, Singh AP, Singh S. Plasmodium Perforin-Like Protein Pores on the Host Cell Membrane Contribute in Its Multistage Growth and Erythrocyte Senescence. Front Cell Infect Microbiol 2020; 10:121. [PMID: 32266171 PMCID: PMC7105882 DOI: 10.3389/fcimb.2020.00121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/04/2020] [Indexed: 12/21/2022] Open
Abstract
The pore forming Plasmodium Perforin Like Proteins (PPLP), expressed in all stages of the parasite life cycle are critical for completion of the parasite life cycle. The high sequence similarity in the central Membrane Attack Complex/ Perforin (MACPF) domain among PLPs and their distinct functional overlaps define them as lucrative target for developing multi-stage antimalarial therapeutics. Herein, we evaluated the mechanism of Pan-active MACPF Domain (PMD), a centrally located and highly conserved region of PPLPs, and deciphered the inhibitory potential of specifically designed PMD inhibitors. The E. coli expressed rPMD interacts with erythrocyte membrane and form pores of ~10.5 nm height and ~24.3 nm diameter leading to hemoglobin release and dextran uptake. The treatment with PMD induced erythrocytes senescence which can be hypothesized to account for the physiological effect of disseminated PLPs in loss of circulating erythrocytes inducing malaria anemia. The anti-PMD inhibitors effectively blocked intraerythrocytic growth by suppressing invasion and egress processes and protected erythrocytes against rPMD induced senescence. Moreover, these inhibitors also blocked the hepatic stage and transmission stage parasite development suggesting multi-stage, transmission-blocking potential of these inhibitors. Concievably, our study has introduced a novel set of anti-PMD inhibitors with pan-inhibitory activity against all the PPLPs members which can be developed into potent cross-stage antimalarial therapeutics along with erythrocyte senescence protective potential to occlude PPLPs mediated anemia in severe malaria.
Collapse
Affiliation(s)
- Swati Garg
- Department of Life Science, School of Natural Sciences, Shiv Nadar University, Greater Noida, India
| | - Abhishek Shivappagowdar
- Department of Life Science, School of Natural Sciences, Shiv Nadar University, Greater Noida, India
| | - Rahul S Hada
- Department of Life Science, School of Natural Sciences, Shiv Nadar University, Greater Noida, India
| | - Rajagopal Ayana
- Laboratory of Neuroplasticity and Neuroproteomics, Department of Biology, KU Leuven, Leuven, Belgium
| | - Chandramohan Bathula
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Greater Noida, India
| | - Subhabrata Sen
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Greater Noida, India
| | - Inderjeet Kalia
- Infectious Diseases Laboratory, National Institute of Immunology, New Delhi, India
| | - Soumya Pati
- Department of Life Science, School of Natural Sciences, Shiv Nadar University, Greater Noida, India
| | - Agam P Singh
- Infectious Diseases Laboratory, National Institute of Immunology, New Delhi, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
18
|
Ni T, Jiao F, Yu X, Aden S, Ginger L, Williams SI, Bai F, Pražák V, Karia D, Stansfeld P, Zhang P, Munson G, Anderluh G, Scheuring S, Gilbert RJC. Structure and mechanism of bactericidal mammalian perforin-2, an ancient agent of innate immunity. SCIENCE ADVANCES 2020; 6:eaax8286. [PMID: 32064340 PMCID: PMC6989145 DOI: 10.1126/sciadv.aax8286] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 11/21/2019] [Indexed: 05/21/2023]
Abstract
Perforin-2 (MPEG1) is thought to enable the killing of invading microbes engulfed by macrophages and other phagocytes, forming pores in their membranes. Loss of perforin-2 renders individual phagocytes and whole organisms significantly more susceptible to bacterial pathogens. Here, we reveal the mechanism of perforin-2 activation and activity using atomic structures of pre-pore and pore assemblies, high-speed atomic force microscopy, and functional assays. Perforin-2 forms a pre-pore assembly in which its pore-forming domain points in the opposite direction to its membrane-targeting domain. Acidification then triggers pore formation, via a 180° conformational change. This novel and unexpected mechanism prevents premature bactericidal attack and may have played a key role in the evolution of all perforin family proteins.
Collapse
Affiliation(s)
- Tao Ni
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Fang Jiao
- Department of Anesthesiology, Weill Cornell Medical College, 1300 York Ave., New York, NY 10065, USA
| | - Xiulian Yu
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
- Calleva Research Centre for Evolution and Human Sciences, Magdalen College, University of Oxford, Oxford OX1 4AU, UK
| | - Saša Aden
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Lucy Ginger
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Sophie I. Williams
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Fangfang Bai
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Vojtěch Pražák
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Dimple Karia
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Phillip Stansfeld
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Peijun Zhang
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - George Munson
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Simon Scheuring
- Department of Anesthesiology, Weill Cornell Medical College, 1300 York Ave., New York, NY 10065, USA
- Department of Physiology and Biophysics, Weill Cornell Medical College, 1300 York Ave., New York, NY 10065, USA
- Corresponding author. (S.S.); (R.J.C.G.)
| | - Robert J. C. Gilbert
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
- Calleva Research Centre for Evolution and Human Sciences, Magdalen College, University of Oxford, Oxford OX1 4AU, UK
- Corresponding author. (S.S.); (R.J.C.G.)
| |
Collapse
|
19
|
The cryo-EM structure of the acid activatable pore-forming immune effector Macrophage-expressed gene 1. Nat Commun 2019; 10:4288. [PMID: 31537793 PMCID: PMC6753088 DOI: 10.1038/s41467-019-12279-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 08/28/2019] [Indexed: 11/08/2022] Open
Abstract
Macrophage-expressed gene 1 (MPEG1/Perforin-2) is a perforin-like protein that functions within the phagolysosome to damage engulfed microbes. MPEG1 is thought to form pores in target membranes, however, its mode of action remains unknown. We use cryo-Electron Microscopy (cryo-EM) to determine the 2.4 Å structure of a hexadecameric assembly of MPEG1 that displays the expected features of a soluble prepore complex. We further discover that MPEG1 prepore-like assemblies can be induced to perforate membranes through acidification, such as would occur within maturing phagolysosomes. We next solve the 3.6 Å cryo-EM structure of MPEG1 in complex with liposomes. These data reveal that a multi-vesicular body of 12 kDa (MVB12)-associated β-prism (MABP) domain binds membranes such that the pore-forming machinery of MPEG1 is oriented away from the bound membrane. This unexpected mechanism of membrane interaction suggests that MPEG1 remains bound to the phagolysosome membrane while simultaneously forming pores in engulfed bacterial targets. Macrophage-expressed gene 1 (MPEG1) functions within the phagolysosome to damage engulfed microbes, presumably via forming pores in target membranes. In order to provide insights into the mechanism of MPEG1 function and membrane binding, the authors present structures of hexadecameric MPEG1 prepores both in solution and in complex with liposomes.
Collapse
|
20
|
An Intermolecular π-Stacking Interaction Drives Conformational Changes Necessary to β-Barrel Formation in a Pore-Forming Toxin. mBio 2019; 10:mBio.01017-19. [PMID: 31266869 PMCID: PMC6606804 DOI: 10.1128/mbio.01017-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
A unique feature of the CDC/MACPF/SNTX (cholesterol-dependent cytolysin/membrane attack complex perforin/stonefish toxin) superfamily of pore-forming toxins is that the β-strands that comprise the β-barrel pore are derived from a pair of α-helical bundles. These studies reveal the molecular basis by which the formation of intermolecular interactions within the prepore complex drive the disruption of intramolecular interactions within each monomer of the prepore to trigger the α-helical–to–β-strand transition and formation of the β-barrel pore. The crystal structures of the soluble monomers of the pore-forming cholesterol-dependent cytolysins (CDCs) contain two α-helical bundles that flank a twisted core β-sheet. This protein fold is the hallmark of the CDCs, as well as of the membrane attack complex/perforin immune defense proteins and the stonefish toxins. To form the β-barrel pore, a core β-sheet is flattened to align the membrane-spanning β-hairpins. Concomitantly with this conformational change, the two α-helical bundles that flank the core β-sheet break their restraining contacts and refold into two membrane-spanning β-hairpins of the β-barrel pore. The studies herein show that in the monomer structure of the archetype CDC perfringolysin O (PFO), a conserved Met-Met-Phe triad simultaneously contributes to maintaining the twist in this core β-sheet, as well as restricting the α-helical–to–β-strand transition necessary to form one of two membrane-spanning β-hairpins. A previously identified intermolecular π-stacking interaction is now shown to disrupt the interactions mediated by this conserved triad. This is required to establish the subsequent intermolecular electrostatic interaction, which has previously been shown to drive the final conformational changes necessary to form the β-barrel pore. Hence, these studies show that the intermolecular π-stacking and electrostatic interactions work in tandem to flatten the core β-sheet and initiate the α-helical–to–β-strand transitions to form the β-barrel pore.
Collapse
|
21
|
Zhang D, Jiang N, Chen Q. ROP9, MIC3, and SAG2 are heparin-binding proteins in Toxoplasma gondii and involved in host cell attachment and invasion. Acta Trop 2019; 192:22-29. [PMID: 30664845 DOI: 10.1016/j.actatropica.2019.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/19/2018] [Accepted: 01/02/2019] [Indexed: 12/12/2022]
Abstract
Toxoplasma gondii (T. gondii) is an obligatory intracellular parasite that can infect varieties of warm-blooded animals, including humans and birds. Heparan sulfate (HS) is widely distributed on the eukaryotic cell surface of vertebrates and can inhibit T. gondii invasion. In this study, we investigated the transcription and expression of the level of TgROP9, TgMIC3, and TgSAG2 in T. gondii RH strain, and found that the expression levels of these three proteins in invading parasites were higher compared to those free ranging parasites. The recombinant proteins showed specific binding activity to both heparin and host cell surface. Incubation of these proteins with the host cells could block T. gondiiinvasion. Furthermore, protein-specific antibodies also blocked parasite invasion. Antibodies in the sera of T. gondii infected individuals recognized the recombinant TgROP9, TgMIC3, and TgSAG2, which suggested the exposure of these proteins to human immune system. Mice immunized with the three proteins exhibited protective immunity against lethal challenge. The data collectively suggested that these parasitic proteins may be used as candidate antigens for development of anti-toxoplasmosis vaccine.
Collapse
|
22
|
Zhang D, Jiang N, Chen Q. Vaccination with recombinant adenoviruses expressing Toxoplasma gondii MIC3, ROP9, and SAG2 provide protective immunity against acute toxoplasmosis in mice. Vaccine 2019; 37:1118-1125. [DOI: 10.1016/j.vaccine.2018.12.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/10/2018] [Accepted: 12/16/2018] [Indexed: 12/31/2022]
|
23
|
Guerra AJ, Zhang O, Bahr CME, Huynh MH, DelProposto J, Brown WC, Wawrzak Z, Koropatkin NM, Carruthers VB. Structural basis of Toxoplasma gondii perforin-like protein 1 membrane interaction and activity during egress. PLoS Pathog 2018; 14:e1007476. [PMID: 30513119 PMCID: PMC6294395 DOI: 10.1371/journal.ppat.1007476] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/14/2018] [Accepted: 11/19/2018] [Indexed: 11/19/2022] Open
Abstract
Intracellular pathogens must egress from the host cell to continue their infectious cycle. Apicomplexans are a phylum of intracellular protozoans that have evolved members of the membrane attack complex and perforin (MACPF) family of pore forming proteins to disrupt cellular membranes for traversing cells during tissue migration or egress from a replicative vacuole following intracellular reproduction. Previous work showed that the apicomplexan Toxoplasma gondii secretes a perforin-like protein (TgPLP1) that contains a C-terminal Domain (CTD) which is necessary for efficient parasite egress. However, the structural basis for CTD membrane binding and egress competency remained unknown. Here, we present evidence that TgPLP1 CTD prefers binding lipids that are abundant in the inner leaflet of the lipid bilayer. Additionally, solving the high-resolution crystal structure of the TgPLP1 APCβ domain within the CTD reveals an unusual double-layered β-prism fold that resembles only one other protein of known structure. Three direct repeat sequences comprise subdomains, with each constituting a wall of the β-prism fold. One subdomain features a protruding hydrophobic loop with an exposed tryptophan at its tip. Spectrophotometric measurements of intrinsic tryptophan fluorescence are consistent with insertion of the hydrophobic loop into a target membrane. Using CRISPR/Cas9 gene editing we show that parasite strains bearing mutations in the hydrophobic loop, including alanine substitution of the tip tryptophan, are equally deficient in egress as a strain lacking TgPLP1 altogether. Taken together our findings suggest a crucial role for the hydrophobic loop in anchoring TgPLP1 to the membrane to support its cytolytic activity and egress function. The intracellular parasite Toxoplasma gondii infects many hosts including humans. Infected people with a weak immune system can suffer severe disease when the parasite replicates uncontrolled via repeated cycles of cell invasion, intracellular growth, and exit, resulting in cell death. Previous studies showed that T. gondii encodes a pore-forming protein, TgPLP1, which contains an unusual domain that is crucial for efficient exit from both the parasite containing vacuole and the host cell. However, how TgPLP1 recognizes and binds to the appropriate membrane is unclear. Here we use a combination of biochemistry, structural biology, and parasitology to identify a preference of TgPLP1 for specific lipids and show that a loop within the structure of the membrane-binding domain inserts into the target membrane and is necessary for exit from the parasite containing vacuole. Our study sheds light into the determinants of membrane binding in TgPLP1 and may inform the overall mechanism of pore formation in similar systems.
Collapse
Affiliation(s)
- Alfredo J. Guerra
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United States of America
- * E-mail:
| | - Ou Zhang
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United States of America
| | - Constance M. E. Bahr
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United States of America
| | - My-Hang Huynh
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United States of America
| | - James DelProposto
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States of America
| | - William C. Brown
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States of America
| | - Zdzislaw Wawrzak
- Northwestern Synchrotron Research Center–LS-CAT, Northwestern University, Argonne, IL, United States of America
| | - Nicole M. Koropatkin
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United States of America
| | - Vern B. Carruthers
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United States of America
| |
Collapse
|
24
|
Flieger A, Frischknecht F, Häcker G, Hornef MW, Pradel G. Pathways of host cell exit by intracellular pathogens. MICROBIAL CELL 2018; 5:525-544. [PMID: 30533418 PMCID: PMC6282021 DOI: 10.15698/mic2018.12.659] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Host cell exit is a critical step in the life-cycle of intracellular pathogens, intimately linked to barrier penetration, tissue dissemination, inflammation, and pathogen transmission. Like cell invasion and intracellular survival, host cell exit represents a well-regulated program that has evolved during host-pathogen co-evolution and that relies on the dynamic and intricate interplay between multiple host and microbial factors. Three distinct pathways of host cell exit have been identified that are employed by three different taxa of intracellular pathogens, bacteria, fungi and protozoa, namely (i) the initiation of programmed cell death, (ii) the active breaching of host cellderived membranes, and (iii) the induced membrane-dependent exit without host cell lysis. Strikingly, an increasing number of studies show that the majority of intracellular pathogens utilize more than one of these strategies, dependent on life-cycle stage, environmental factors and/or host cell type. This review summarizes the diverse exit strategies of intracellular-living bacterial, fungal and protozoan pathogens and discusses the convergently evolved commonalities as well as system-specific variations thereof. Key microbial molecules involved in host cell exit are highlighted and discussed as potential targets for future interventional approaches.
Collapse
Affiliation(s)
- Antje Flieger
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | | | - Georg Häcker
- Institute of Medical Microbiology and Hygiene, Medical Center - University of Freiburg, Germany
| | - Mathias W Hornef
- Institute of Medical Microbiology, RWTH Aachen University Hospital, Germany
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, Institute of Biology II, RWTH Aachen University, Germany
| |
Collapse
|