1
|
Smith JG, Fujii JA, Gaddam R, Konrad L, Lyon S, Nicholson TE, Raimondi PT, Ridlon AD, Staedler M, Tomoleoni JA, Yee JL, Tinker MT. Keystone interdependence: Sea otter responses to a prey surplus following the collapse of a rocky intertidal predator. SCIENCE ADVANCES 2025; 11:eadu1028. [PMID: 40305605 PMCID: PMC12042895 DOI: 10.1126/sciadv.adu1028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 03/26/2025] [Indexed: 05/02/2025]
Abstract
The sea star Pisaster ochraceus and sea otters (Enhydra lutris) are two predators capable of shaping rocky intertidal and kelp forest community structure and functioning. In 2013, a sea star wasting event decimated populations of Pisaster along the west coast of North America. The collapse of this species in the rocky intertidal revealed an unexpected relationship between two keystone predators. In this study, we show how the loss of Pisaster along the Monterey Peninsula, CA, USA led to an increase in mussel (Mytilus californianus) size and expansion into lower tidal zones. Before the sea star wasting event, the local sea otter population fluctuated around a near equilibrium. However, in the absence of Pisaster, sea otters increased their dietary intake on mussels, which contributed in part to a local population-level rise. These results demonstrate how the loss of a keystone predator in one ecosystem may impart population-level changes to another.
Collapse
Affiliation(s)
- Joshua G. Smith
- Conservation and Science Division, Monterey Bay Aquarium, Monterey, CA, USA
| | - Jessica A. Fujii
- Conservation and Science Division, Monterey Bay Aquarium, Monterey, CA, USA
| | - Rani Gaddam
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Leilani Konrad
- Conservation and Science Division, Monterey Bay Aquarium, Monterey, CA, USA
| | - Sophia Lyon
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
- U.S. Geological Survey, Western Ecological Research Center, Santa Cruz, CA, USA
| | - Teri E. Nicholson
- Conservation and Science Division, Monterey Bay Aquarium, Monterey, CA, USA
| | - Peter T. Raimondi
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - April D. Ridlon
- Conservation and Science Division, Monterey Bay Aquarium, Monterey, CA, USA
| | - Michelle Staedler
- Conservation and Science Division, Monterey Bay Aquarium, Monterey, CA, USA
| | - Joseph A. Tomoleoni
- U.S. Geological Survey, Western Ecological Research Center, Santa Cruz, CA, USA
| | - Julie L. Yee
- U.S. Geological Survey, Western Ecological Research Center, Santa Cruz, CA, USA
| | - M. Tim Tinker
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
- Nhydra Ecological Consulting, Head of St Margarets Bay, Nova Scotia, Canada
| |
Collapse
|
2
|
Gehman ALM, Pontier O, Froese T, VanMaanen D, Blaine T, Sadlier-Brown G, Olson AM, Monteith ZL, Bachen K, Prentice C, Hessing-Lewis M, Jackson JM. Fjord oceanographic dynamics provide refuge for critically endangered Pycnopodia helianthoides. Proc Biol Sci 2025; 292:20242770. [PMID: 40169020 PMCID: PMC11961252 DOI: 10.1098/rspb.2024.2770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/02/2025] [Accepted: 03/03/2025] [Indexed: 04/03/2025] Open
Abstract
Disease outbreaks as a driver of wildlife mass mortality events have increased in magnitude and frequency since the 1940s. Remnant populations, composed of individuals that survived mass mortality events, could provide insight into disease dynamics and species recovery. The sea star wasting disease (SSWD) epidemic led to the rapid >90% decline of the sunflower star Pycnopodia helianthoides. We surveyed the biomass density of P. helianthoides on the central British Columbia coast before, during and after the arrival of SSWD by conducting expert diver surveys in shallow subtidal habitats from 2013 to 2023. We found a rapid decline in biomass density following the onset of SSWD in 2015. Despite consistent recruitment post-outbreak to sites associated with outer islands, we found repeated loss of large adult individuals over multiple years. Within nearby fjord habitats, we found remnant populations composed of large adult P. helianthoides. The interaction of temperature and salinity with the biomass density of P. helianthoides varied by location, with high biomass density associated with higher temperatures in the outer islands and with lower temperatures and higher salinity in the fjords. These patterns suggest that fjords provide refuge from consequences of SSWD and protecting these populations could be imperative for the species.
Collapse
Affiliation(s)
- Alyssa-Lois Madden Gehman
- Hakai Institute, Calvert Island, British Columbia, Canada
- Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Ondine Pontier
- Hakai Institute, Calvert Island, British Columbia, Canada
| | - Tyrel Froese
- Hakai Institute, Calvert Island, British Columbia, Canada
| | | | - Tristan Blaine
- Central Coast Indigenous Resource Alliance, Campbell River, British Columbia, Canada
| | | | | | | | - Krystal Bachen
- Hakai Institute, Calvert Island, British Columbia, Canada
| | | | - Margot Hessing-Lewis
- Hakai Institute, Calvert Island, British Columbia, Canada
- Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jennifer M. Jackson
- Fisheries and Oceans Canada, Institute of Ocean Sciences, Sidney, British Columbia, Canada
| |
Collapse
|
3
|
Tissot AG, Granek EF, Curliss F, Kalytiak-Davis A, Hodin J, Hladik ML. The effects of imidacloprid and polyester microfibers on the larval development of the endangered sunflower star. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:1107-1119. [PMID: 39909535 DOI: 10.1093/etojnl/vgaf039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/08/2025] [Accepted: 01/22/2025] [Indexed: 02/07/2025]
Abstract
Sea star wasting syndrome has affected numerous species of sea star, with populations of Pycnopodia helianthoides (Brandt, 1835) left most at risk. As their populations are struggling to recover, it is important to gain a better understanding of the impacts that the multiple stressors in their habitats can have on their populations. Contaminant stressors in particular are of increasing importance, because aquatic organisms can be exposed to a dynamic range of contaminants from nearby anthropogenic activity that may affect their future recovery efforts. This study is the first to quantify the effects of contaminant stressors on the larvae of P. helianthoides. We exposed P. helianthoides larvae to the neonicotinoid insecticide imidacloprid and polyester microfibers, both individually and in combination, at environmentally relevant concentrations (10 ng/L and 25 fibers/L, respectively) to measure the effects of these contaminants on their early life stages. Imidacloprid exposure resulted in stomach malformation in 10% of larvae and increased mortality during early development (p < 0.001), and all treatments resulted in increased larval lengths relative to controls (p < 0.001). During settlement, imidacloprid resulted in more rapid settlement responses than in the controls (p < 0.01). These findings highlight the need for further research investigating the effects of contaminant stressors to endangered organisms during reintroduction as well as a more comprehensive understanding of the effects of pesticides to nontarget organisms.
Collapse
Affiliation(s)
- Alexandra G Tissot
- Department of Environmental Science and Management, Portland State University, Portland, OR, United States
| | - Elise F Granek
- Department of Environmental Science and Management, Portland State University, Portland, OR, United States
| | - Fiona Curliss
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, United States
| | | | - Jason Hodin
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, United States
| | - Michelle L Hladik
- California Water Science Center, U.S. Geological Survey, Sacramento, CA, United States
| |
Collapse
|
4
|
Schenck FR, Baum JK, Boyer KE, Duffy JE, Fodrie FJ, Gaeckle J, Hanley TC, Hereu CM, Hovel KA, Jorgensen P, Martin DL, O’Connor NE, Peterson BJ, Stachowicz JJ, Hughes AR. Host traits and temperature predict biogeographical variation in seagrass disease prevalence. Proc Biol Sci 2025; 292:20243055. [PMID: 39933582 PMCID: PMC11813588 DOI: 10.1098/rspb.2024.3055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 02/13/2025] Open
Abstract
Diseases are ubiquitous in natural systems, with broad effects across populations, communities and ecosystems. However, the drivers of many diseases remain poorly understood, particularly in marine environments, inhibiting effective conservation and management measures. We examined biogeographical patterns of infection in the foundational seagrass Zostera marina by the parasitic protist Labyrinthula zosterae, the causative agent of seagrass wasting disease, across >20° of latitude in two ocean basins. We then identified and characterized relationships among wasting disease prevalence and a suite of host traits and environmental variables. Host characteristics and transmission dynamics explained most of the variance in prevalence across our survey, yet the particular host traits underlying these relationships varied between oceans, with host size and nitrogen content important in the Pacific and host size and density most important in the Atlantic. Temperature was also a key predictor of prevalence, particularly in the Pacific Ocean. The strength and shape of the relationships between prevalence and some predictors differed in our large-scale survey versus previous experimental and site-specific work. These results show that both host characteristics and environment influence host-parasite interactions, and that some such effects scale up predictably, whereas others appear to depend on regional or local context.
Collapse
Affiliation(s)
- F. R. Schenck
- Massachusetts Division of Marine Fisheries, 30 Emerson Avenue, Gloucester, MA, USA
| | - J. K. Baum
- Department of Biology, University of Victoria, PO Box 1700 STN CSC, Victoria, British Columbia, Canada
| | - K. E. Boyer
- Estuary and Ocean Science Center, San Franscisco State University, 3150 Paradise Drive, Tiburon, CA, USA
| | - J. E. Duffy
- MarineGEO Program, Smithsonian Environmental Research Center, 647 Contees Wharf Road, Edgewater, MD, USA
| | - F. J. Fodrie
- Institute of Marine Science, University of North Carolina at Chapel Hill, 3431 Arendell Street, Morehead City, NC, USA
| | - J. Gaeckle
- Nearshore Habitat Program, Washington State Department of Natural Resources, Aquatic Resources Division, 1111 Washington Street SE, Olympia, WA, USA
| | - T. C. Hanley
- Department of Biology, Sacred Heart University, 5151 Park Avenue, Fairfield, CT, USA
| | - C. M. Hereu
- Facultad de Ciencias Marinas, Universidad Autonoma de Baja California, Carretera Tijuana-Ensenada 3917, Ensenada, Baja California, Mexico
| | - K. A. Hovel
- Department of Biology, Coastal and Marine Institute, San Diego State University, 550024 Campanile Drive, San Diego, CA, USA
| | - P. Jorgensen
- Instituto de Investigaciones Marinas y Costeras (IIMyC-UNMdP-CONICET), Juan B. Justo 2550, Mar del Plata, Buenos Aires, Argentina
| | - D. L. Martin
- Department of Biology, University of North Florida, 1 UNF Drive, Jacksonville, FL, USA
| | - N. E. O’Connor
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, College Green, Dublin, Ireland
| | - B. J. Peterson
- School of Marine and Atmospheric Sciences, Stony Brook University, 239 Montauk Highway, Southampton, NY, USA
| | - J. J. Stachowicz
- Department of Evolution and Ecology, University of California Davis, 1 Shields Avenue, Davis, CA, USA
| | - A. R. Hughes
- Coastal Sustainability Institute, Northeastern University, 430 Nahant Road, Nahant, MA, USA
| |
Collapse
|
5
|
Starko S, Allchurch A, Neufeld C. Asynchronous shifts in the demographics of two wave-swept kelp species (Laminariales) after nearly four decades. JOURNAL OF PHYCOLOGY 2025; 61:250-254. [PMID: 39854093 PMCID: PMC11914948 DOI: 10.1111/jpy.13544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 01/26/2025]
Abstract
Kelp forests are among the most abundant and productive marine ecosystems but are under threat from climate change and other anthropogenic stressors. Although knowledge is growing about how the abundance and distribution of kelp forests are changing, much less is known about the "non-lethal" effects that global change is having on the performance and health of kelp populations in areas where they persist. Here we assessed the age distribution of two common stipitate kelp species, Laminaria setchelli and Pterygophora californica, at Wizard Islet in Barkley Sound, British Columbia, Canada, and compared these data to historical demographic data collected by De Wreede (1984) and Klinger and DeWreede (1988) from the same site between 1981 and 1983. We observed that L. setchelli populations in 2020 were younger and less evenly aged than the same populations sampled nearly four decades prior, while the P. californica population was composed of older individuals on average than at the historical time point. Although the drivers of these demographic changes remain unclear, Barkley Sound has experienced substantial changes in the physical and biological environment over the past decade that could be responsible for these patterns. Given that the size of an individual and its probability of reproduction increases with age, shifting demographics may impact the reproductive output of each population, potentially altering the competitive relationships between co-occurring species. Changes in size distribution may also influence ecosystem-level processes such as habitat complexity or productivity.
Collapse
Affiliation(s)
- Samuel Starko
- UWA Oceans Institute & School of Biological SciencesUniversity of Western AustraliaCrawleyWestern AustraliaAustralia
- Bamfield Marine Sciences CentreBamfieldBritish ColumbiaCanada
| | - Alyssa Allchurch
- Bamfield Marine Sciences CentreBamfieldBritish ColumbiaCanada
- School of Resource and Environmental ManagementSimon Fraser UniversityBurnabyBritish ColumbiaCanada
| | - Christopher Neufeld
- Bamfield Marine Sciences CentreBamfieldBritish ColumbiaCanada
- Department of BiologyUniversity of British Columbia OkanaganKelownaBritish ColumbiaCanada
| |
Collapse
|
6
|
Stillman JH, Amri AB, Holdreith JM, Hooper A, Leon RV, Pruett LR, Bukaty BM. Ecophysiological responses to heat waves in the marine intertidal zone. J Exp Biol 2025; 228:JEB246503. [PMID: 39817480 PMCID: PMC11832128 DOI: 10.1242/jeb.246503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
One notable consequence of climate change is an increase in the frequency, scale and severity of heat waves. Heat waves in terrestrial habitats (atmospheric heat waves, AHW) and marine habitats (marine heat waves, MHW) have received considerable attention as environmental forces that impact organisms, populations and whole ecosystems. Only one ecosystem, the intertidal zone, experiences both MHWs and AHWs. In this Review, we outline the range of responses that intertidal zone organisms exhibit in response to heat waves. We begin by examining the drivers of thermal maxima in intertidal zone ecosystems. We develop a simple model of intertidal zone daily maximum temperatures based on publicly available tide and solar radiation models, and compare it with logged, under-rock temperature data at an intertidal site. We then summarize experimental and ecological studies of how intertidal zone ecosystems and organisms respond to heat waves across dimensions of biotic response. Additional attention is paid to the impacts of extreme heat on cellular physiology, including oxidative stress responses to thermally induced mitochondrial overdrive and dysfunction. We examine the energetic consequences of these mechanisms and how they shift organismal traits, including growth, reproduction and immune function. We conclude by considering important future directions for improving studies of the impacts of heat waves on intertidal zone organisms.
Collapse
Affiliation(s)
- Jonathon H. Stillman
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94709, USA
| | - Adrienne B. Amri
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| | - Joe M. Holdreith
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| | - Alexis Hooper
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| | - Rafael V. Leon
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| | - Liliana R. Pruett
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| | - Buck M. Bukaty
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| |
Collapse
|
7
|
Kumagai JA, Goodman MC, Villaseñor‐Derbez JC, Schoeman DS, Cavanuagh KC, Bell TW, Micheli F, De Leo G, Arafeh‐Dalmau N. Marine Protected Areas That Preserve Trophic Cascades Promote Resilience of Kelp Forests to Marine Heatwaves. GLOBAL CHANGE BIOLOGY 2024; 30:e17620. [PMID: 39663647 PMCID: PMC11635138 DOI: 10.1111/gcb.17620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 11/12/2024] [Accepted: 11/17/2024] [Indexed: 12/13/2024]
Abstract
Under accelerating threats from climate-change impacts, marine protected areas (MPAs) have been proposed as climate-adaptation tools to enhance the resilience of marine ecosystems. Yet, debate persists as to whether and how MPAs may promote resilience to climate shocks. Here, we use 38 years of satellite-derived kelp cover to empirically test whether a network of 58 temperate coastal MPAs in Central and Southern California enhances the resistance of kelp forest ecosystems to, and their recovery from, the unprecedented 2014-2016 marine heatwave regime that occurred in the region. We also leverage a 22-year time series of subtidal community surveys to mechanistically understand whether trophic cascades explain emergent patterns in kelp forest resilience within MPAs. We find that fully protected MPAs significantly enhance kelp forests' resistance to and recovery from marine heatwaves in Southern California, but not in Central California. Differences in regional responses to the heatwaves are partly explained by three-level trophic interactions comprising kelp, urchins, and predators of urchins. Urchin densities in Southern California MPAs are lower within fully protected MPAs during and after the heatwave, while the abundances of their main predators-lobster and sheephead-are higher. In Central California, a region without lobster or sheephead, there is no significant difference in urchin or kelp densities within MPAs as the current urchin predator, the sea otter, is protected statewide. Our analyses show that fully protected MPAs can be effective climate-adaptation tools, but their ability to enhance resilience to extreme climate events depends upon region-specific environmental and trophic interactions. As nations progress to protect 30% of the oceans by 2030, scientists and managers should consider whether protection will increase resilience to climate-change impacts given their local ecological contexts, and what additional measures may be needed.
Collapse
Affiliation(s)
- Joy A. Kumagai
- Hopkins Marine Station and Oceans DepartmentStanford UniversityPacific GroveCaliforniaUSA
| | - Maurice C. Goodman
- Hopkins Marine Station and Oceans DepartmentStanford UniversityPacific GroveCaliforniaUSA
| | - Juan Carlos Villaseñor‐Derbez
- Hopkins Marine Station and Oceans DepartmentStanford UniversityPacific GroveCaliforniaUSA
- Rosenstiel School of Marine, Atmospheric, and Earth ScienceUniversity of MiamiCoral GablesFloridaUSA
- Frost Institute for Data Science & ComputingUniversity of MiamiCoral GablesFloridaUSA
| | - David S. Schoeman
- Ocean Futures Research Cluster, School of Science, Technology, and EngineeringUniversity of the Sunshine CoastMaroochydoreQueenslandAustralia
- Centre for African Conservation Ecology, Department of ZoologyNelson Mandela UniversityGqeberhaSouth Africa
| | - Kyle C. Cavanuagh
- Department of GeographyUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Tom W. Bell
- Department of Applied Ocean Physics & EngineeringWoods Hole Oceanographic InstitutionWoods HoleMassachusettsUSA
| | - Fiorenza Micheli
- Hopkins Marine Station and Oceans DepartmentStanford UniversityPacific GroveCaliforniaUSA
- Stanford Center for Ocean SolutionsStanford UniversityPacific GroveCaliforniaUSA
- Woods Institute for the EnvironmentStanford UniversityStanfordCaliforniaUSA
| | - Giulio De Leo
- Hopkins Marine Station and Oceans DepartmentStanford UniversityPacific GroveCaliforniaUSA
- Woods Institute for the EnvironmentStanford UniversityStanfordCaliforniaUSA
| | - Nur Arafeh‐Dalmau
- Hopkins Marine Station and Oceans DepartmentStanford UniversityPacific GroveCaliforniaUSA
- Department of GeographyUniversity of CaliforniaLos AngelesCaliforniaUSA
- Centre for Biodiversity Conservation, School of the EnvironmentUniversity of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
8
|
Diaz de Villegas SC, Borbee EM, Abdelbaki PY, Fuess LE. Prior heat stress increases pathogen susceptibility in the model cnidarian Exaiptasia diaphana. Commun Biol 2024; 7:1328. [PMID: 39406834 PMCID: PMC11480339 DOI: 10.1038/s42003-024-07005-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
Anthropogenic climate change has significantly altered terrestrial and marine ecosystems globally, often in the form of climate-related events such as thermal anomalies and disease outbreaks. Although the isolated effects of these stressors have been well documented, a growing body of literature suggests that stressors often interact, resulting in complex effects on ecosystems. This includes coral reefs where sequential associations between heat stress and disease have had profound impacts. Here we used the model cnidarian Exaiptasia diaphana to investigate mechanisms linking prior heat stress to increased disease susceptibility. We examined anemone pathogen susceptibility and physiology (symbiosis, immunity, and energetics) following recovery from heat stress. We observed significantly increased pathogen susceptibility in anemones previously exposed to heat stress. Notably, prior heat stress reduced anemone energetic reserves (carbohydrate concentration), and activity of multiple immune components. Minimal effects of prior heat stress on symbiont density were observed. Together, results suggest changes in energetic availability might have the strongest effect on pathogen susceptibility and immunity following heat stress. The results presented here provide critical insight regarding the interplay between heat stress recovery and pathogen susceptibility in cnidarians and are an important first step towards understanding temporal associations between these stressors.
Collapse
|
9
|
Graham OJ, Harvell D, Christiaen B, Gaeckle J, Aoki LR, Ratliff B, Vinton A, Rappazzo BH, Whitman T. Taking the Pulse of Resilience in Conserving Seagrass Meadows. Integr Comp Biol 2024; 64:816-826. [PMID: 39066484 DOI: 10.1093/icb/icae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/09/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Foundational habitats such as seagrasses and coral reefs are at severe risk globally from climate warming. Infectious disease associated with warming events is both a cause of decline and an indicator of stress in both habitats. Since new approaches are needed to detect refugia and design climate-smart networks of marine protected areas, we test the hypothesis that the health of eelgrass (Zostera marina) in temperate ecosystems can serve as a proxy indicative of higher resilience and help pinpoint refugia. Eelgrass meadows worldwide are at risk from environmental stressors, including climate warming and disease. Disease outbreaks of Labyrinthula zosterae are associated with recent, widespread declines in eelgrass meadows throughout the San Juan Islands, Washington, USA. Machine language learning, drone surveys, and molecular diagnostics reveal climate impacts on seagrass wasting disease prevalence (proportion of infected individuals) and severity (proportion of infected leaf area) from San Diego, California, to Alaska. Given that warmer temperatures favor many pathogens such as L. zosterae, we hypothesize that absent or low disease severity in meadows could indicate eelgrass resilience to climate and pathogenic stressors. Regional surveys showed the San Juan Islands as a hotspot for both high disease prevalence and severity, and surveys throughout the Northeast Pacific indicated higher prevalence and severity in intertidal, rather than subtidal, meadows. Further, among sites with eelgrass declines, losses were more pronounced at sites with shallower eelgrass meadows. We suggest that deeper meadows with the lowest disease severity will be refuges from future warming and pathogenic stressors in the Northeast Pacific. Disease monitoring may be a useful conservation approach for marine foundation species, as low or absent disease severity can pinpoint resilient refugia that should be prioritized for future conservation efforts. Even in declining or at-risk habitats, disease surveys can help identify meadows that may contain especially resilient individuals for future restoration efforts. Our approach of using disease as a pulse point for eelgrass resilience to multiple stressors could be applied to other habitats such as coral reefs to inform conservation and management decisions.
Collapse
Affiliation(s)
- Olivia J Graham
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Drew Harvell
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Bart Christiaen
- Washington State Department of Natural Resources, Olympia, WA 47027, USA
| | - Jeff Gaeckle
- Washington State Department of Natural Resources, Olympia, WA 47027, USA
| | - Lillian R Aoki
- Department of Environmental Studies, University of Oregon, Eugene, OR 97403-1245, USA
| | - Baylen Ratliff
- College of the Environment, University of Washington, Seattle, WA 98105, USA
| | - Audrey Vinton
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Brendan H Rappazzo
- Department of Computer Science, Cornell University, Ithaca, NY 14853, USA
| | - Tina Whitman
- Department of Computer Science, Cornell University, Ithaca, NY 14853, USA
- Friends of the San Juans, Friday Harbor, WA 98250, USA
| |
Collapse
|
10
|
Thorne KM, MacDonald GM, Chavez FP, Ambrose RF, Barnard PL. Significant challenges to the sustainability of the California coast considering climate change. Proc Natl Acad Sci U S A 2024; 121:e2310077121. [PMID: 39074269 PMCID: PMC11317555 DOI: 10.1073/pnas.2310077121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024] Open
Abstract
Climate change is an existential threat to the environmental and socioeconomic sustainability of the coastal zone and impacts will be complex and widespread. Evidence from California and across the United States shows that climate change is impacting coastal communities and challenging managers with a plethora of stressors already present. Widespread action could be taken that would sustain California's coastal ecosystems and communities. In this perspective, we highlight the main threat to coastal sustainability: the compound effects of episodic events amplified with ongoing climate change, which will present unprecedented challenges to the state. We present two key challenges for California's sustainability in the coastal zone: 1) accelerating sea-level rise combined with storm impacts, and 2) continued warming of the oceans and marine heatwaves. Cascading effects from these types of compounding events will occur within the context of an already stressed system that has experienced extensive alterations due to intensive development, resource extraction and harvesting, spatial containment, and other human use pressures. There are critical components that could be used to address these immediate concerns, including comanagement strategies that include diverse groups and organizations, strategic planning integrated across large areas, rapid implementation of solutions, and a cohesive and policy relevant research agenda for the California coast. Much of this has been started in the state, but the scale could be increased, and timelines accelerated. The ideas and information presented here are intended to help expand discussions to sharpen the focus on how to encourage sustainability of California's iconic coastal region.
Collapse
Affiliation(s)
- Karen M. Thorne
- U.S. Geological Survey, Western Ecological Research Center, Davis, CA95618
| | - Glen M. MacDonald
- Department of Geography, University of California, Los Angeles, CA90095-1524
| | | | - Richard F. Ambrose
- Department of Environmental Health Sciences, University of California, Los Angeles, CA90095-1772
| | - Patrick L. Barnard
- U.S. Geological Survey, Pacific Coastal and Marine Science Center, Santa Cruz, CA95060
| |
Collapse
|
11
|
Starko S, van der Mheen M, Pessarrodona A, Wood GV, Filbee-Dexter K, Neufeld CJ, Montie S, Coleman MA, Wernberg T. Impacts of marine heatwaves in coastal ecosystems depend on local environmental conditions. GLOBAL CHANGE BIOLOGY 2024; 30:e17469. [PMID: 39155748 DOI: 10.1111/gcb.17469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024]
Abstract
Marine heatwaves (MHWs), increasing in duration and intensity because of climate change, are now a major threat to marine life and can have lasting effects on the structure and function of ecosystems. However, the responses of marine taxa and ecosystems to MHWs can be highly variable, making predicting and interpreting biological outcomes a challenge. Here, we review how biological responses to MHWs, from individuals to ecosystems, are mediated by fine-scale spatial variability in the coastal marine environment (hereafter, local gradients). Viewing observed responses through a lens of ecological theory, we present a simple framework of three 'resilience processes' (RPs) by which local gradients can influence the responses of marine taxa to MHWs. Local gradients (1) influence the amount of stress directly experienced by individuals, (2) facilitate local adaptation and acclimatization of individuals and populations, and (3) shape community composition which then influences responses to MHWs. We then synthesize known examples of fine-scale gradients that have affected responses of benthic foundation species to MHWs, including kelp forests, coral reefs, and seagrass meadows and link these varying responses to the RPs. We present a series of case studies from various marine ecosystems to illustrate the differential impacts of MHWs mediated by gradients in both temperature and other co-occurring drivers. In many cases, these gradients had large effect sizes with several examples of local gradients causing a 10-fold difference in impacts or more (e.g., survival, coverage). This review highlights the need for high-resolution environmental data to accurately predict and manage the consequences of MHWs in the context of ongoing climate change. While current tools may capture some of these gradients already, we advocate for enhanced monitoring and finer scale integration of local environmental heterogeneity into climate models. This will be essential for developing effective conservation strategies and mitigating future marine biodiversity loss.
Collapse
Affiliation(s)
- Samuel Starko
- UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Mirjam van der Mheen
- UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Albert Pessarrodona
- UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Georgina V Wood
- UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Karen Filbee-Dexter
- UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia
- Institute of Marine Research, Flødevigen Research Station, His, Norway
| | | | - Shinae Montie
- UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Melinda A Coleman
- Department of Primary Industries New South Wales, National Marine Sciences Centre, Coffs Harbour, New South Wales, Australia
| | - Thomas Wernberg
- UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia
- Institute of Marine Research, Flødevigen Research Station, His, Norway
| |
Collapse
|
12
|
Calvo-Monge J, Arroyo-Esquivel J, Gehman A, Sanchez F. Source-Sink Dynamics in a Two-Patch SI Epidemic Model with Life Stages and No Recovery from Infection. Bull Math Biol 2024; 86:102. [PMID: 38976154 DOI: 10.1007/s11538-024-01328-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024]
Abstract
This study presents a comprehensive analysis of a two-patch, two-life stage SI model without recovery from infection, focusing on the dynamics of disease spread and host population viability in natural populations. The model, inspired by real-world ecological crises like the decline of amphibian populations due to chytridiomycosis and sea star populations due to Sea Star Wasting Disease, aims to understand the conditions under which a sink host population can present ecological rescue from a healthier, source population. Mathematical and numerical analyses reveal the critical roles of the basic reproductive numbers of the source and sink populations, the maturation rate, and the dispersal rate of juveniles in determining population outcomes. The study identifies basic reproduction numbers R 0 for each of the patches, and conditions for the basic reproduction numbers to produce a receiving patch under which its population. These findings provide insights into managing natural populations affected by disease, with implications for conservation strategies, such as the importance of maintaining reproductively viable refuge populations and considering the effects of dispersal and maturation rates on population recovery. The research underscores the complexity of host-pathogen dynamics in spatially structured environments and highlights the need for multi-faceted approaches to biodiversity conservation in the face of emerging diseases.
Collapse
Affiliation(s)
- Jimmy Calvo-Monge
- Escuela de Matemática, Universidad de Costa Rica, San Pedro, San José, 11501, Costa Rica
| | - Jorge Arroyo-Esquivel
- Department of Global Ecology, Carnegie Institution for Science, Washington, DC, 20015, USA.
| | | | - Fabio Sanchez
- Escuela de Matemática, Universidad de Costa Rica, San Pedro, San José, 11501, Costa Rica
- Centro de Investigación en Matemática Pura y Aplicada, Universidad de Costa Rica, San Pedro, San José, 11501, Costa Rica
| |
Collapse
|
13
|
Meunier ZD, Hacker SD, Menge BA. Regime shifts in rocky intertidal communities associated with a marine heatwave and disease outbreak. Nat Ecol Evol 2024; 8:1285-1297. [PMID: 38831017 DOI: 10.1038/s41559-024-02425-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/17/2024] [Indexed: 06/05/2024]
Abstract
Long-term, large-scale experimental studies provide critical information about how global change influences communities. When environmental changes are severe, they can trigger abrupt transitions from one community type to another leading to a regime shift. From 2014 to 2016, rocky intertidal habitats in the northeast Pacific Ocean experienced extreme temperatures during a multi-year marine heatwave (MHW) and sharp population declines of the keystone predator Pisaster ochraceus due to sea star wasting disease (SSWD). Here we measured the community structure before, during and after the MHW onset and SSWD outbreak in a 15-year succession experiment conducted in a rocky intertidal meta-ecosystem spanning 13 sites on four capes in Oregon and northern California, United States. Kelp abundance declined during the MHW due to extreme temperatures, while gooseneck barnacle and mussel abundances increased due to reduced predation pressure after the loss of Pisaster from SSWD. Using several methods, we detected regime shifts from substrate- or algae-dominated to invertebrate-dominated alternative states at two capes. After water temperatures cooled and Pisaster population densities recovered, community structure differed from pre-disturbance conditions, suggesting low resilience. Consequently, thermal stress and predator loss can result in regime shifts that fundamentally alter community structure even after restoration of baseline conditions.
Collapse
Affiliation(s)
- Zechariah D Meunier
- Department of Integrative Biology, Oregon State University, Corvallis, OR, USA.
| | - Sally D Hacker
- Department of Integrative Biology, Oregon State University, Corvallis, OR, USA
| | - Bruce A Menge
- Department of Integrative Biology, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
14
|
Gravem SA, Poirson BN, Robinson JW, Menge BA. Resistance of rocky intertidal communities to oceanic climate fluctuations. PLoS One 2024; 19:e0297697. [PMID: 38809830 PMCID: PMC11135789 DOI: 10.1371/journal.pone.0297697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 01/11/2024] [Indexed: 05/31/2024] Open
Abstract
A powerful way to predict how ecological communities will respond to future climate change is to test how they have responded to the climate of the past. We used climate oscillations including the Pacific Decadal Oscillation (PDO), North Pacific Gyre Oscillation, and El Niño Southern Oscillation (ENSO) and variation in upwelling, air temperature, and sea temperatures to test the sensitivity of nearshore rocky intertidal communities to climate variability. Prior research shows that multiple ecological processes of key taxa (growth, recruitment, and physiology) were sensitive to environmental variation during this time frame. We also investigated the effect of the concurrent sea star wasting disease outbreak in 2013-2014. We surveyed nearly 150 taxa from 11 rocky intertidal sites in Oregon and northern California annually for up to 14-years (2006-2020) to test if community structure (i.e., the abundance of functional groups) and diversity were sensitive to past environmental variation. We found little to no evidence that these communities were sensitive to annual variation in any of the environmental measures, and that each metric was associated with < 8.6% of yearly variation in community structure. Only the years elapsed since the outbreak of sea star wasting disease had a substantial effect on community structure, but in the mid-zone only where spatially dominant mussels are a main prey of the keystone predator sea star, Pisaster ochraceus. We conclude that the established sensitivity of multiple ecological processes to annual fluctuations in climate has not yet scaled up to influence community structure. Hence, the rocky intertidal system along this coastline appears resistant to the range of oceanic climate fluctuations that occurred during the study. However, given ongoing intensification of climate change and increasing frequencies of extreme events, future responses to climate change seem likely.
Collapse
Affiliation(s)
- Sarah A. Gravem
- Department of Integrative Biology, Partnership for Interdisciplinary Studies of Coastal Oceans (PISCO), Oregon State University, Corvallis, Oregon, United States of America
| | - Brittany N. Poirson
- Department of Integrative Biology, Partnership for Interdisciplinary Studies of Coastal Oceans (PISCO), Oregon State University, Corvallis, Oregon, United States of America
| | - Jonathan W. Robinson
- Department of Integrative Biology, Partnership for Interdisciplinary Studies of Coastal Oceans (PISCO), Oregon State University, Corvallis, Oregon, United States of America
| | - Bruce A. Menge
- Department of Integrative Biology, Partnership for Interdisciplinary Studies of Coastal Oceans (PISCO), Oregon State University, Corvallis, Oregon, United States of America
| |
Collapse
|
15
|
Hildebrand L, Derville S, Hildebrand I, Torres LG. Exploring indirect effects of a classic trophic cascade between urchins and kelp on zooplankton and whales. Sci Rep 2024; 14:9815. [PMID: 38684814 PMCID: PMC11059377 DOI: 10.1038/s41598-024-59964-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 04/17/2024] [Indexed: 05/02/2024] Open
Abstract
Kelp forest trophic cascades have been extensively researched, yet indirect effects to the zooplankton prey base and gray whales have not been explored. We investigate the correlative patterns of a trophic cascade between bull kelp and purple sea urchins on gray whales and zooplankton in Oregon, USA. Using generalized additive models (GAMs), we assess (1) temporal dynamics of the four species across 8 years, and (2) possible trophic paths from urchins to kelp, kelp as habitat to zooplankton, and kelp and zooplankton to gray whales. Temporal GAMs revealed an increase in urchin coverage, with simultaneous decline in kelp condition, zooplankton abundance and gray whale foraging time. Trophic path GAMs, which tested for correlations between species, demonstrated that urchins and kelp were negatively correlated, while kelp and zooplankton were positively correlated. Gray whales showed nuanced and site-specific correlations with zooplankton in one site, and positive correlations with kelp condition in both sites. The negative correlation between the kelp-urchin trophic cascade and zooplankton resulted in a reduced prey base for gray whales. This research provides a new perspective on the vital role kelp forests may play across multiple trophic levels and interspecies linkages.
Collapse
Affiliation(s)
- Lisa Hildebrand
- Geospatial Ecology of Marine Megafauna Laboratory, Department of Fisheries, Wildlife & Conservation Sciences, Marine Mammal Institute, Oregon State University, Newport, OR, USA.
| | - Solène Derville
- Geospatial Ecology of Marine Megafauna Laboratory, Department of Fisheries, Wildlife & Conservation Sciences, Marine Mammal Institute, Oregon State University, Newport, OR, USA
- UMR ENTROPIE (IRD-Université de La Réunion-CNRS-Laboratoire d'excellence LabEx-CORAIL), Nouméa, New Caledonia
| | - Ines Hildebrand
- Geospatial Ecology of Marine Megafauna Laboratory, Department of Fisheries, Wildlife & Conservation Sciences, Marine Mammal Institute, Oregon State University, Newport, OR, USA
| | - Leigh G Torres
- Geospatial Ecology of Marine Megafauna Laboratory, Department of Fisheries, Wildlife & Conservation Sciences, Marine Mammal Institute, Oregon State University, Newport, OR, USA
| |
Collapse
|
16
|
Schiebelhut LM, DeBiasse MB, Gabriel L, Hoff KJ, Dawson MN. A reference genome for ecological restoration of the sunflower sea star, Pycnopodia helianthoides. J Hered 2024; 115:86-93. [PMID: 37738158 PMCID: PMC10838127 DOI: 10.1093/jhered/esad054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/29/2023] [Accepted: 09/29/2023] [Indexed: 09/24/2023] Open
Abstract
Wildlife diseases, such as the sea star wasting (SSW) epizootic that outbroke in the mid-2010s, appear to be associated with acute and/or chronic abiotic environmental change; dissociating the effects of different drivers can be difficult. The sunflower sea star, Pycnopodia helianthoides, was the species most severely impacted during the SSW outbreak, which overlapped with periods of anomalous atmospheric and oceanographic conditions, and there is not yet a consensus on the cause(s). Genomic data may reveal underlying molecular signatures that implicate a subset of factors and, thus, clarify past events while also setting the scene for effective restoration efforts. To advance this goal, we used Pacific Biosciences HiFi long sequencing reads and Dovetail Omni-C proximity reads to generate a highly contiguous genome assembly that was then annotated using RNA-seq-informed gene prediction. The genome assembly is 484 Mb long, with contig N50 of 1.9 Mb, scaffold N50 of 21.8 Mb, BUSCO completeness score of 96.1%, and 22 major scaffolds consistent with prior evidence that sea star genomes comprise 22 autosomes. These statistics generally fall between those of other recently assembled chromosome-scale assemblies for two species in the distantly related asteroid genus Pisaster. These novel genomic resources for P. helianthoides will underwrite population genomic, comparative genomic, and phylogenomic analyses-as well as their integration across scales-of SSW and environmental stressors.
Collapse
Affiliation(s)
- Lauren M Schiebelhut
- Life & Environmental Sciences, University of California, Merced, CA, United States
| | - Melissa B DeBiasse
- Life & Environmental Sciences, University of California, Merced, CA, United States
- Department of Biology, Radford University, Radford, VA, United States
| | - Lars Gabriel
- Institute for Mathematics and Computer Science & Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Katharina J Hoff
- Institute for Mathematics and Computer Science & Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Michael N Dawson
- Life & Environmental Sciences, University of California, Merced, CA, United States
| |
Collapse
|
17
|
Matsumoto H, Azuma N, Chiba S. Effects of heatwave events on the seagrass-dwelling crustacean Pandalus latirostris in a subarctic lagoon. MARINE ENVIRONMENTAL RESEARCH 2023; 192:106226. [PMID: 37866199 DOI: 10.1016/j.marenvres.2023.106226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/24/2023]
Abstract
Heatwaves often cause mass mortality of organisms in seagrass areas, and they eventually alter some ecological functions of seagrass ecosystems. In subarctic regions, however, the effects of heatwaves on seagrass areas are still unclear. In a subarctic lagoon of northern Japan, we examined the effects of heatwaves on the Hokkai shrimp, Pandalus latirostris, a commercially exploited species distributed in seagrass areas of northern Japan and eastern Russia. A long-term survey of the surface water temperature in the lagoon clarified a gradual increase in the frequency and intensity of heatwave events since 1999. Surveys of the water temperature at a seagrass area in the lagoon during summer have also demonstrated that the maximum water temperature had been exceeding 25 °C, unusually high for this location, regardless of water depth. These results indicate that the effects of heatwaves in seagrass areas in a subarctic region had become as severe as those in tropical and temperate regions. We also experimentally evaluated the effects of this unusually high water temperature (25 °C) on the survival of P. latirostris by changing the length of exposure time. Some individuals suffered damage to their intestinal mucosal structure after exposure for 12 h or longer, and all individuals died after exposure for 120 h. Our results suggest that heatwaves possibly cause mass mortality in P. latirostris in the following sequence: heat stress, damage to the intestinal epithelial mucosal structure, degradation of nutrient absorption and immunological function of the intestine, energy deficiency and disease infection, and finally mortality. This study, conducted in subarctic closed waters, concludes that it is essential to become familiar with not only trends in heatwaves but also the intermittent occurrence of unusually high water temperature in seagrass areas in order to better understand the process of mortality of organisms that inhabit these ecosystems.
Collapse
Affiliation(s)
- Hiroyuki Matsumoto
- Graduate School of Ocean and Fisheries Sciences, Tokyo University of Agriculture, 196 Yasaka, Abashiri, Hokkaido, 099-2493, Japan.
| | - Noriko Azuma
- Department of Ocean and Fisheries Sciences, Tokyo University of Agriculture, 196 Yasaka, Abashiri, Hokkaido, 099-2493, Japan
| | - Susumu Chiba
- Graduate School of Ocean and Fisheries Sciences, Tokyo University of Agriculture, 196 Yasaka, Abashiri, Hokkaido, 099-2493, Japan; Department of Ocean and Fisheries Sciences, Tokyo University of Agriculture, 196 Yasaka, Abashiri, Hokkaido, 099-2493, Japan
| |
Collapse
|
18
|
Smith JG, Free CM, Lopazanski C, Brun J, Anderson CR, Carr MH, Claudet J, Dugan JE, Eurich JG, Francis TB, Hamilton SL, Mouillot D, Raimondi PT, Starr RM, Ziegler SL, Nickols KJ, Caselle JE. A marine protected area network does not confer community structure resilience to a marine heatwave across coastal ecosystems. GLOBAL CHANGE BIOLOGY 2023; 29:5634-5651. [PMID: 37439293 DOI: 10.1111/gcb.16862] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/14/2023]
Abstract
Marine protected areas (MPAs) have gained attention as a conservation tool for enhancing ecosystem resilience to climate change. However, empirical evidence explicitly linking MPAs to enhanced ecological resilience is limited and mixed. To better understand whether MPAs can buffer climate impacts, we tested the resistance and recovery of marine communities to the 2014-2016 Northeast Pacific heatwave in the largest scientifically designed MPA network in the world off the coast of California, United States. The network consists of 124 MPAs (48 no-take state marine reserves, and 76 partial-take or special regulation conservation areas) implemented at different times, with full implementation completed in 2012. We compared fish, benthic invertebrate, and macroalgal community structure inside and outside of 13 no-take MPAs across rocky intertidal, kelp forest, shallow reef, and deep reef nearshore habitats in California's Central Coast region from 2007 to 2020. We also explored whether MPA features, including age, size, depth, proportion rock, historic fishing pressure, habitat diversity and richness, connectivity, and fish biomass response ratios (proxy for ecological performance), conferred climate resilience for kelp forest and rocky intertidal habitats spanning 28 MPAs across the full network. Ecological communities dramatically shifted due to the marine heatwave across all four nearshore habitats, and MPAs did not facilitate habitat-wide resistance or recovery. Only in protected rocky intertidal habitats did community structure significantly resist marine heatwave impacts. Community shifts were associated with a pronounced decline in the relative proportion of cold water species and an increase in warm water species. MPA features did not explain resistance or recovery to the marine heatwave. Collectively, our findings suggest that MPAs have limited ability to mitigate the impacts of marine heatwaves on community structure. Given that mechanisms of resilience to climate perturbations are complex, there is a clear need to expand assessments of ecosystem-wide consequences resulting from acute climate-driven perturbations, and the potential role of regulatory protection in mitigating community structure changes.
Collapse
Affiliation(s)
- Joshua G Smith
- National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, Santa Barbara, California, USA
- Conservation and Science Division, Monterey Bay Aquarium, Monterey, California, USA
| | - Christopher M Free
- Bren School of Environmental Science and Management, University of California, Santa Barbara, Santa Barbara, California, USA
- Marine Science Institute, University of California, Santa Barbara, Santa Barbara, California, USA
| | - Cori Lopazanski
- National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, Santa Barbara, California, USA
- Bren School of Environmental Science and Management, University of California, Santa Barbara, Santa Barbara, California, USA
| | - Julien Brun
- National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, Santa Barbara, California, USA
| | - Clarissa R Anderson
- Scripps Institution of Oceanography/Southern California Coastal Ocean Observing System, University of California, San Diego, La Jolla, California, USA
| | - Mark H Carr
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, California, USA
| | - Joachim Claudet
- National Center for Scientific Research, PSL Université Paris, CRIOBE, CNRS-EPHE-UPVD, Paris, France
| | - Jenifer E Dugan
- Marine Science Institute, University of California, Santa Barbara, Santa Barbara, California, USA
| | - Jacob G Eurich
- National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, Santa Barbara, California, USA
- Environmental Defense Fund, Santa Barbara, California, USA
| | - Tessa B Francis
- Puget Sound Institute, University of Washington, Tacoma, Washington, USA
| | - Scott L Hamilton
- Moss Landing Marine Laboratories, San Jose State University, Moss Landing, California, USA
| | - David Mouillot
- MARBEC, University of Montpellier, CNRS, IFREMER, IRD, Montpellier, France
- Institut Universitaire de France (IUF), Paris, France
| | - Peter T Raimondi
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, California, USA
| | - Richard M Starr
- Moss Landing Marine Laboratories, San Jose State University, Moss Landing, California, USA
| | - Shelby L Ziegler
- Odum School of Ecology, University of Georgia, Athens, Georgia, USA
| | - Kerry J Nickols
- Department of Biology, California State University Northridge, Northridge, California, USA
| | - Jennifer E Caselle
- Marine Science Institute, University of California, Santa Barbara, Santa Barbara, California, USA
| |
Collapse
|
19
|
Hobday AJ, Burrows MT, Filbee-Dexter K, Holbrook NJ, Sen Gupta A, Smale DA, Smith KE, Thomsen MS, Wernberg T. With the arrival of El Niño, prepare for stronger marine heatwaves. Nature 2023; 621:38-41. [PMID: 37673984 DOI: 10.1038/d41586-023-02730-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
|
20
|
Leach TS, Hofmann GE. Marine heatwave temperatures enhance larval performance but are meditated by paternal thermal history and inter-individual differences in the purple sea urchin, Strongylocentrotus purpuratus. Front Physiol 2023; 14:1230590. [PMID: 37601631 PMCID: PMC10436589 DOI: 10.3389/fphys.2023.1230590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/25/2023] [Indexed: 08/22/2023] Open
Abstract
Marine heatwave (MHW) events, characterized by periods of anomalous temperatures, are an increasingly prevalent threat to coastal marine ecosystems. Given the seasonal phenology of MHWs, the full extent of their biological consequences may depend on how these thermal stress events align with an organism's reproductive cycle. In organisms with more complex life cycles (e.g., many marine invertebrate species) the alignment of adult and larval environments may be an important factor determining offspring success, setting the stage for MHW events to influence reproduction and development in situ. Here, the influence of MHW-like temperatures on the early development of the California purple sea urchin, Strongylocentrotus purpuratus, were explored within the context of paternal thermal history. Based on temperature data collected during MHW events seen in Southern California from 2014-2020, adult urchins were acclimated to either MHW or non-MHW temperatures for 28 days before their sperm was used to produce embryos that were subsequently raised under varying thermal conditions. Once offspring reached an early larval stage, the impact of paternal and offspring environments were assessed on two aspects of offspring performance: larval size and thermal tolerance. Exposure to elevated temperatures during early development resulted in larger, more thermally tolerant larvae, with further influences of paternal identity and thermal history, respectively. The alignment of paternal and offspring exposure to MHW temperatures had additional positive benefits on larval thermal tolerance, but this tolerance significantly decreased when their thermal experience mismatched. As the highest recorded temperatures within past MHW events have occurred during the gametogenesis of many kelp forest benthic marine invertebrate species, such as the purple sea urchin, such parental mediated impacts may represent important drivers of future recruitment and population composition for these species.
Collapse
|
21
|
Moran AL, McLachlan RH, Thurber AR. Sea star wasting syndrome reaches the high Antarctic: Two recent outbreaks in McMurdo Sound. PLoS One 2023; 18:e0282550. [PMID: 37498849 PMCID: PMC10374074 DOI: 10.1371/journal.pone.0282550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/03/2023] [Indexed: 07/29/2023] Open
Abstract
Sea star wasting syndrome (SSWS) can cause widespread mortality in starfish populations as well as long-lasting changes to benthic community structure and dynamics. SSWS symptoms have been documented in numerous species and locations around the world, but to date there is only one record of SSWS from the Antarctic and this outbreak was associated with volcanically-driven high temperature anomalies. Here we report outbreaks of SSWS-like symptoms that affected ~30% of individuals of Odontaster validus at two different sites in McMurdo Sound, Antarctica in 2019 and 2022. Unlike many SSWS events in other parts of the world, these outbreaks were not associated with anomalously warm temperatures. Instead, we suggest they may have been triggered by high nutrient input events on a local scale. Although the exact cause of these outbreaks is not known, these findings are of great concern because of the keystone role of O. validus and the slow recovery rate of Antarctic benthic ecosystems to environmental stressors.
Collapse
Affiliation(s)
- Amy L Moran
- School of Life Sciences, University of Hawai'i at Mānoa, Mānoa, Hawaii, United States of America
| | - Rowan H McLachlan
- Department of Microbiology, College of Science, Oregon State University, Corvallis, Oregon, United States of America
| | - Andrew R Thurber
- Department of Microbiology, College of Science, Oregon State University, Corvallis, Oregon, United States of America
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, United States of America
| |
Collapse
|
22
|
Scanes E, Siboni N, Rees B, Seymour JR. Acclimation in intertidal animals reduces potential pathogen load and increases survival following a heatwave. iScience 2023; 26:106813. [PMID: 37213223 PMCID: PMC10199257 DOI: 10.1016/j.isci.2023.106813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/16/2023] [Accepted: 05/01/2023] [Indexed: 05/23/2023] Open
Abstract
Intertidal animals can experience intense heat during a heatwave, leading to mortality. The causes of death for intertidal animals following heatwaves have often been attributed to a breakdown in physiological processes. This, however, contrasts with research in other animals where heatwave mortality is attributed to existing or opportunistic diseases. We acclimated intertidal oysters to four treatment levels, including an antibiotic treatment, and then exposed all treatments to a 50°C heatwave for 2 h, replicating what can be experienced on Australian shorelines. We found that both acclimation and antibiotics increased survival and reduced the presence of potential pathogens. Non-acclimated oysters had a significant shift in their microbiome, with increasing abundances of bacteria from the Vibrio genera, including known potential pathogens. Our results demonstrate that bacterial infection plays a pivotal role in post-heatwave mortality. We anticipate these findings to inform the management of aquaculture and intertidal habitats as climate change intensifies.
Collapse
Affiliation(s)
- Elliot Scanes
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Sydney Institute of Marine Science, Mosman, NSW 2088, Australia
- Corresponding author
| | - Nachshon Siboni
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Brendon Rees
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Justin R. Seymour
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
23
|
Casendino HR, McElroy KN, Sorel MH, Quinn TP, Wood CL. Two decades of change in sea star abundance at a subtidal site in Puget Sound, Washington. PLoS One 2023; 18:e0286384. [PMID: 37294819 PMCID: PMC10256211 DOI: 10.1371/journal.pone.0286384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 05/15/2023] [Indexed: 06/11/2023] Open
Abstract
Long-term datasets can reveal otherwise undetectable ecological trends, illuminating the historical context of contemporary ecosystem states. We used two decades (1997-2019) of scientific trawling data from a subtidal, benthic site in Puget Sound, Washington, USA to test for gradual trends and sudden shifts in total sea star abundance across 11 species. We specifically assessed whether this community responded to the sea star wasting disease (SSWD) epizootic, which began in 2013. We sampled at depths of 10, 25, 50 and 70 m near Port Madison, WA, and obtained long-term water temperature data. To account for species-level differences in SSWD susceptibility, we divided our sea star abundance data into two categories, depending on the extent to which the species is susceptible to SSWD, then conducted parallel analyses for high-susceptibility and moderate-susceptibility species. The abundance of high-susceptibility sea stars declined in 2014 across depths. In contrast, the abundance of moderate-susceptibility species trended downward throughout the years at the deepest depths- 50 and 70 m-and suddenly declined in 2006 across depths. Water temperature was positively correlated with the abundance of moderate-susceptibility species, and uncorrelated with high-susceptibility sea star abundance. The reported emergence of SSWD in Washington State in the summer of 2014 provides a plausible explanation for the subsequent decline in abundance of high-susceptibility species. However, no long-term stressors or mortality events affecting sea stars were reported in Washington State prior to these years, leaving the declines we observed in moderate-susceptibility species preceding the 2013-2015 SSWD epizootic unexplained. These results suggest that the subtidal sea star community in Port Madison is dynamic, and emphasizes the value of long-term datasets for evaluating patterns of change.
Collapse
Affiliation(s)
- Helen R. Casendino
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, United States of America
| | - Katherine N. McElroy
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, United States of America
| | - Mark H. Sorel
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, United States of America
| | - Thomas P. Quinn
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, United States of America
| | - Chelsea L. Wood
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
24
|
Arroyo-Esquivel J, Baskett ML, McPherson M, Hastings A. How far to build it before they come? Analyzing the use of the Field of Dreams hypothesis in bull kelp restoration. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2850. [PMID: 36942610 DOI: 10.1002/eap.2850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/03/2023] [Accepted: 03/10/2023] [Indexed: 05/19/2023]
Abstract
In restoration ecology, the Field of Dreams hypothesis posits that restoration efforts that create a suitable environment could lead to the eventual recovery of the remaining aspects of the ecosystem through natural processes. Natural processes following partial restoration has led to ecosystem recovery in both terrestrial and aquatic systems. However, understanding the efficacy of a "Field of Dreams" approach requires a comparison of different approaches to partial restoration in terms of spatial, temporal, and ecological scale with what would happen given more comprehensive restoration efforts. We explore the relative effect of partial restoration and ongoing recovery on restoration efficacy with a dynamical model based on temperate rocky reefs in Northern California. We analyze our model for both the ability and rate of bull kelp forest recovery under different restoration strategies. We compare the efficacy of a partial restoration approach with a more comprehensive restoration effort by exploring how kelp recovery likelihood and rate change with varying intensities of urchin removal and kelp outplanting over different time periods and spatial scales. We find that, in the case of bull kelp forests, setting more favorable initial conditions for kelp recovery by implementing both urchin harvesting and kelp outplanting at the start of the restoration project has a bigger impact on the kelp recovery rate than applying restoration efforts through a longer period of time. Therefore, partial restoration efforts, in terms of spatial and temporal scale, can be significantly more effective when applied across multiple ecological scales in terms of both the capacity and rate for achieving the target outcomes.
Collapse
Affiliation(s)
| | - Marissa L Baskett
- Department of Environmental Science and Policy, University of California, Davis, California, USA
| | - Meredith McPherson
- Department of Ocean Sciences, University of California, Santa Cruz, California, USA
| | - Alan Hastings
- Department of Environmental Science and Policy, University of California, Davis, California, USA
- Santa Fe Institute, Santa Fe, New Mexico, USA
| |
Collapse
|
25
|
Whalen MA, Starko S, Lindstrom SC, Martone PT. Heatwave restructures marine intertidal communities across a stress gradient. Ecology 2023; 104:e4027. [PMID: 36897574 DOI: 10.1002/ecy.4027] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/11/2023] [Accepted: 02/13/2023] [Indexed: 03/11/2023]
Abstract
Significant questions remain about how ecosystems that are structured by abiotic stress will be affected by climate change. Warmer temperatures are hypothesized to shift species along abiotic gradients such that distributions track changing environments where physical conditions allow. However, community-scale impacts of extreme warming in heterogeneous landscapes are likely to be more complex. We investigated the impacts of a multiyear marine heatwave on intertidal community dynamics and zonation on a wave-swept rocky coastline along the Central Coast of British Columbia, Canada. Leveraging an 8-year time series with high seaweed taxonomic resolution (116 taxa) that was established 3 years prior to the heatwave, we document major shifts in zonation and abundance of populations that led to substantial reorganization at the community level. The heatwave was associated with shifts in primary production away from upper elevations through declines in seaweed cover and partial replacement by invertebrates. At low elevations, seaweed cover remained stable or recovered rapidly following decline, being balanced by increases in some species and decreases in others. These results illustrate that, rather than shifting community zonation uniformly along abiotic stress gradients, intense and lasting warming events may restructure patterns of ecological dominance and reduce total habitability of ecosystems, especially at extreme ends of pre-existing abiotic gradients.
Collapse
Affiliation(s)
- Matthew A Whalen
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Hakai Institute, End of Kwakshua Channel, Calvert Island, BC, Canada
| | - Samuel Starko
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- UWA Ocean Institute and School of Biological Sciences, University of Western Australia, 35 Stirling Hwy, Crawley, WA, 6009, Australia
| | - Sandra C Lindstrom
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Hakai Institute, End of Kwakshua Channel, Calvert Island, BC, Canada
| | - Patrick T Martone
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Hakai Institute, End of Kwakshua Channel, Calvert Island, BC, Canada
| |
Collapse
|
26
|
Vega Thurber R, Hay M. Mystery solved: Disease detectives identify the cause of a mass die-off in the sea. SCIENCE ADVANCES 2023; 9:eadh5478. [PMID: 37075120 PMCID: PMC10115403 DOI: 10.1126/sciadv.adh5478] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A mass sea urchin die-off in the Caribbean Sea in the 1980s resulted from a single-cell protist called a scuticociliate.
Collapse
Affiliation(s)
| | - Mark Hay
- School of Biological Sciences and Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA
| |
Collapse
|
27
|
Graham OJ, Stephens T, Rappazzo B, Klohmann C, Dayal S, Adamczyk EM, Olson A, Hessing-Lewis M, Eisenlord M, Yang B, Burge C, Gomes CP, Harvell D. Deeper habitats and cooler temperatures moderate a climate-driven seagrass disease. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220016. [PMID: 36744566 PMCID: PMC9900705 DOI: 10.1098/rstb.2022.0016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/25/2022] [Indexed: 02/07/2023] Open
Abstract
Eelgrass creates critical coastal habitats worldwide and fulfills essential ecosystem functions as a foundation seagrass. Climate warming and disease threaten eelgrass, causing mass mortalities and cascading ecological impacts. Subtidal meadows are deeper than intertidal and may also provide refuge from the temperature-sensitive seagrass wasting disease. From cross-boundary surveys of 5761 eelgrass leaves from Alaska to Washington and assisted with a machine-language algorithm, we measured outbreak conditions. Across summers 2017 and 2018, disease prevalence was 16% lower for subtidal than intertidal leaves; in both tidal zones, disease risk was lower for plants in cooler conditions. Even in subtidal meadows, which are more environmentally stable and sheltered from temperature and other stressors common for intertidal eelgrass, we observed high disease levels, with half of the sites exceeding 50% prevalence. Models predicted reduced disease prevalence and severity under cooler conditions, confirming a strong interaction between disease and temperature. At both tidal zones, prevalence was lower in more dense eelgrass meadows, suggesting disease is suppressed in healthy, higher density meadows. These results underscore the value of subtidal eelgrass and meadows in cooler locations as refugia, indicate that cooling can suppress disease, and have implications for eelgrass conservation and management under future climate change scenarios. This article is part of the theme issue 'Infectious disease ecology and evolution in a changing world'.
Collapse
Affiliation(s)
- Olivia J. Graham
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853-0001, USA
| | | | - Brendan Rappazzo
- Department of Computer Science, Cornell University, Ithaca, NY 14850, USA
| | - Corinne Klohmann
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853-0001, USA
| | - Sukanya Dayal
- Department of Natural Resources, Cornell University, Ithaca, NY 14853, USA
- Department of Biology and Marine Biology, University of North Carolina, Wilmington, NC 28403-5915, USA
| | - Emily M. Adamczyk
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Unceded xməθkəy̓əm (Musqueam) Territory, Vancouver, British Columbia, Canada V6T 1Z4
| | - Angeleen Olson
- Hakai Institute, Calvert Island, P.O. Box 25039, Campbell River, British Columbia, Canada V9W 0B7
| | - Margot Hessing-Lewis
- Hakai Institute, Calvert Island, P.O. Box 25039, Campbell River, British Columbia, Canada V9W 0B7
| | - Morgan Eisenlord
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853-0001, USA
| | - Bo Yang
- Department of Urban and Regional Planning, San Jose State University, San Jose, CA 95112, USA
| | - Colleen Burge
- Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD 21202, USA
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD 21201, USA
| | - Carla P. Gomes
- Department of Computer Science, Cornell University, Ithaca, NY 14850, USA
| | - Drew Harvell
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853-0001, USA
| |
Collapse
|
28
|
Bell TW, Cavanaugh KC, Saccomanno VR, Cavanaugh KC, Houskeeper HF, Eddy N, Schuetzenmeister F, Rindlaub N, Gleason M. Kelpwatch: A new visualization and analysis tool to explore kelp canopy dynamics reveals variable response to and recovery from marine heatwaves. PLoS One 2023; 18:e0271477. [PMID: 36952444 PMCID: PMC10035835 DOI: 10.1371/journal.pone.0271477] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 03/03/2023] [Indexed: 03/25/2023] Open
Abstract
Giant kelp and bull kelp forests are increasingly at risk from marine heatwave events, herbivore outbreaks, and the loss or alterations in the behavior of key herbivore predators. The dynamic floating canopy of these kelps is well-suited to study via satellite imagery, which provides high temporal and spatial resolution data of floating kelp canopy across the western United States and Mexico. However, the size and complexity of the satellite image dataset has made ecological analysis difficult for scientists and managers. To increase accessibility of this rich dataset, we created Kelpwatch, a web-based visualization and analysis tool. This tool allows researchers and managers to quantify kelp forest change in response to disturbances, assess historical trends, and allow for effective and actionable kelp forest management. Here, we demonstrate how Kelpwatch can be used to analyze long-term trends in kelp canopy across regions, quantify spatial variability in the response to and recovery from the 2014 to 2016 marine heatwave events, and provide a local analysis of kelp canopy status around the Monterey Peninsula, California. We found that 18.6% of regional sites displayed a significant trend in kelp canopy area over the past 38 years and that there was a latitudinal response to heatwave events for each kelp species. The recovery from heatwave events was more variable across space, with some local areas like Bahía Tortugas in Baja California Sur showing high recovery while kelp canopies around the Monterey Peninsula continued a slow decline and patchy recovery compared to the rest of the Central California region. Kelpwatch provides near real time spatial data and analysis support and makes complex earth observation data actionable for scientists and managers, which can help identify areas for research, monitoring, and management efforts.
Collapse
Affiliation(s)
- Tom W. Bell
- Department of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
| | - Kyle C. Cavanaugh
- Department of Geography, University of California Los Angeles, Los Angeles, California, United States of America
| | | | - Katherine C. Cavanaugh
- Department of Geography, University of California Los Angeles, Los Angeles, California, United States of America
| | - Henry F. Houskeeper
- Department of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
- Department of Geography, University of California Los Angeles, Los Angeles, California, United States of America
| | - Norah Eddy
- The Nature Conservancy, Sacramento, California, United States of America
| | | | - Nathaniel Rindlaub
- The Nature Conservancy, Sacramento, California, United States of America
| | - Mary Gleason
- The Nature Conservancy, Sacramento, California, United States of America
| |
Collapse
|
29
|
Pruvot M, Denstedt E, Latinne A, Porco A, Montecino-Latorre D, Khammavong K, Milavong P, Phouangsouvanh S, Sisavanh M, Nga NTT, Ngoc PTB, Thanh VD, Chea S, Sours S, Phommachanh P, Theppangna W, Phiphakhavong S, Vanna C, Masphal K, Sothyra T, San S, Chamnan H, Long PT, Diep NT, Duoc VT, Zimmer P, Brown K, Olson SH, Fine AE. WildHealthNet: Supporting the development of sustainable wildlife health surveillance networks in Southeast Asia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160748. [PMID: 36513230 DOI: 10.1016/j.scitotenv.2022.160748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Wildlife and wildlife interfaces with people and livestock are essential surveillance targets to monitor emergent or endemic pathogens or new threats affecting wildlife, livestock, and human health. However, limitations of previous investments in scope and duration have resulted in a neglect of wildlife health surveillance (WHS) systems at national and global scales, particularly in lower and middle income countries (LMICs). Building on decades of wildlife health activities in LMICs, we demonstrate the implementation of a locally-driven multi-pronged One Health approach to establishing WHS in Cambodia, Lao PDR and Viet Nam under the WildHealthNet initiative. WildHealthNet utilizes existing local capacity in the animal, public health, and environmental sectors for event based or targeted surveillance and disease detection. To scale up surveillance systems to the national level, WildHealthNet relies on iterative field implementation and policy development, capacity bridging, improving data collection and management systems, and implementing context specific responses to wildlife health intelligence. National WHS systems piloted in Cambodia, Lao PDR, and Viet Nam engaged protected area rangers, wildlife rescue centers, community members, and livestock and human health sector staff and laboratories. Surveillance activities detected outbreaks of H5N1 highly pathogenic avian influenza in wild birds, African swine fever in wild boar (Sus scrofa), Lumpy skin disease in banteng (Bos javanicus), and other endemic zoonotic pathogens identified as surveillance priorities by local stakeholders. In Cambodia and Lao PDR, national plans for wildlife disease surveillance are being signed into legislation. Cross-sectoral and trans-disciplinary approaches are needed to implement effective WHS systems. Long-term commitment, and paralleled implementation and policy development are key to sustainable WHS networks. WildHealthNet offers a roadmap to aid in the development of locally-relevant and locally-led WHS systems that support the global objectives of the World Organization for Animal Health's Wildlife Health Framework and other international agendas.
Collapse
Affiliation(s)
- Mathieu Pruvot
- Wildlife Conservation Society, Health Program, Bronx, NY, USA; University of Calgary, Faculty of Veterinary Medicine, Calgary, AB, Canada.
| | - Emily Denstedt
- Wildlife Conservation Society, Lao PDR Country Program, Vientiane, Laos
| | - Alice Latinne
- Wildlife Conservation Society, Viet Nam Country Program, Hanoi, Viet Nam
| | - Alice Porco
- Wildlife Conservation Society, Cambodia Country Program, Phnom Penh, Cambodia
| | | | - Kongsy Khammavong
- Wildlife Conservation Society, Lao PDR Country Program, Vientiane, Laos
| | | | | | - Manoly Sisavanh
- Wildlife Conservation Society, Lao PDR Country Program, Vientiane, Laos
| | | | - Pham Thi Bich Ngoc
- Wildlife Conservation Society, Viet Nam Country Program, Hanoi, Viet Nam
| | - Vo Duy Thanh
- Wildlife Conservation Society, Viet Nam Country Program, Hanoi, Viet Nam
| | - Sokha Chea
- Wildlife Conservation Society, Cambodia Country Program, Phnom Penh, Cambodia
| | - Sreyem Sours
- Wildlife Conservation Society, Cambodia Country Program, Phnom Penh, Cambodia
| | - Phouvong Phommachanh
- National Animal Health Laboratory, Department of Livestock and Fisheries, Vientiane, Laos
| | - Watthana Theppangna
- National Animal Health Laboratory, Department of Livestock and Fisheries, Vientiane, Laos
| | - Sithong Phiphakhavong
- National Animal Health Laboratory, Department of Livestock and Fisheries, Vientiane, Laos
| | - Chhuon Vanna
- Department of Wildlife and Biodiversity, Forestry Administration, Phnom Penh, Cambodia
| | - Kry Masphal
- Department of Wildlife and Biodiversity, Forestry Administration, Phnom Penh, Cambodia
| | - Tum Sothyra
- National Animal Health and Production Research Institute, Phnom Penh, Cambodia
| | - Sorn San
- General Directorate of Animal Health and Production, Phnom Penh, Cambodia
| | - Hong Chamnan
- General Directorate of Natural Protected Areas, Phnom Penh, Cambodia
| | - Pham Thanh Long
- Department of Animal Health, Ministry of Agriculture and Rural Development, Hanoi, Viet Nam
| | - Nguyen Thi Diep
- Department of Animal Health, Ministry of Agriculture and Rural Development, Hanoi, Viet Nam
| | - Vu Trong Duoc
- National Institute of Hygiene and Epidemiology, Hanoi, Viet Nam
| | - Patrick Zimmer
- Canadian Wildlife Health Cooperative, Saskatoon, SK, Canada
| | - Kevin Brown
- Canadian Wildlife Health Cooperative, Saskatoon, SK, Canada
| | - Sarah H Olson
- Wildlife Conservation Society, Health Program, Bronx, NY, USA
| | - Amanda E Fine
- Wildlife Conservation Society, Health Program, Bronx, NY, USA
| |
Collapse
|
30
|
Uricchio LH, Bruns EL, Hood M, Boots M, Antonovics J. Multimodal pathogen transmission as a limiting factor in host distribution. Ecology 2023; 104:e3956. [PMID: 36511901 PMCID: PMC9992245 DOI: 10.1002/ecy.3956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 12/14/2022]
Abstract
Theoretical models suggest that infectious diseases could play a substantial role in determining the spatial extent of host species, but few studies have collected the empirical data required to test this hypothesis. Pathogens that sterilize their hosts or spread through frequency-dependent transmission could have especially strong effects on the limits of species' distributions because diseased hosts that are sterilized but not killed may continue to produce infectious stages and frequency-dependent transmission mechanisms are effective even at very low population densities. We collected spatial pathogen prevalence data and population abundance data for alpine carnations infected by the sterilizing pathogen Microbotryum dianthorum, a parasite that is spread through both frequency-dependent (vector-borne) and density-dependent (aerial spore transmission) mechanisms. Our 13-year study reveals rapid declines in population abundance without a compensatory decrease in pathogen prevalence. We apply a stochastic, spatial model of parasite spread that accommodates spatial habitat heterogeneity to investigate how the population dynamics depend on multimodal (frequency-dependent and density-dependent) transmission. We found that the observed rate of population decline could plausibly be explained by multimodal transmission, but is unlikely to be explained by either frequency-dependent or density-dependent mechanisms alone. Multimodal pathogen transmission rates high enough to explain the observed decline predicted that eventual local extinction of the host species is highly likely. Our results add to a growing body of literature showing how multimodal transmission can constrain species distributions in nature.
Collapse
Affiliation(s)
- Lawrence H. Uricchio
- Department of Biology, Tufts University, Medford, MA 02155
- Department of Integrative Biology, University of California, Berkeley, CA 94720
| | - Emily L. Bruns
- Department of Biology, University of Maryland, College Park, MD 20742
| | - Michael Hood
- Biology Department, Amherst College, Amherst, MA 01002
| | - Mike Boots
- Department of Integrative Biology, University of California, Berkeley, CA 94720
- Biosciences, University of Exeter, Penryn, UK, TR109FE
| | - Janis Antonovics
- Department of Biology, University of Virginia, Charlottesville, VA 22904
| |
Collapse
|
31
|
Galloway AWE, Gravem SA, Kobelt JN, Heady WN, Okamoto DK, Sivitilli DM, Saccomanno VR, Hodin J, Whippo R. Sunflower sea star predation on urchins can facilitate kelp forest recovery. Proc Biol Sci 2023; 290:20221897. [PMID: 36809801 PMCID: PMC9943640 DOI: 10.1098/rspb.2022.1897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/25/2023] [Indexed: 02/23/2023] Open
Abstract
The recent collapse of predatory sunflower sea stars (Pycnopodia helianthoides) owing to sea star wasting disease (SSWD) is hypothesized to have contributed to proliferation of sea urchin barrens and losses of kelp forests on the North American west coast. We used experiments and a model to test whether restored Pycnopodia populations may help recover kelp forests through their consumption of nutritionally poor purple sea urchins (Strongylocentrotus purpuratus) typical of barrens. Pycnopodia consumed 0.68 S. purpuratus d-1, and our model and sensitivity analysis shows that the magnitude of recent Pycnopodia declines is consistent with urchin proliferation after modest sea urchin recruitment, and even small Pycnopodia recoveries could generally lead to lower densities of sea urchins that are consistent with kelp-urchin coexistence. Pycnopodia seem unable to chemically distinguish starved from fed urchins and indeed have higher predation rates on starved urchins owing to shorter handling times. These results highlight the importance of Pycnopodia in regulating purple sea urchin populations and maintaining healthy kelp forests through top-down control. The recovery of this important predator to densities commonly found prior to SSWD, whether through natural means or human-assisted reintroductions, may therefore be a key step in kelp forest restoration at ecologically significant scales.
Collapse
Affiliation(s)
- A. W. E. Galloway
- Oregon Institute of Marine Biology, Department of Biology, University of Oregon, 63466 Boat Basin Road, Charleston OR 97420, USA
| | - S. A. Gravem
- Department of Integrative Biology and Partnership for Interdisciplinary Studies of Coastal Oceans, Oregon State University, 3029 Cordley Hall, Corvallis, OR 97331, USA
| | - J. N. Kobelt
- School of Aquatic and Fishery Sciences, University of Washington, 98195, Seattle WA, USA
| | - W. N. Heady
- The Nature Conservancy, Sacramento CA, 95811, USA
| | - D. K. Okamoto
- Department of Biological Science, Florida State University, Tallahassee, 32306 FL, USA
| | - D. M. Sivitilli
- Astrobiology Program, University of Washington, 98195, Seattle WA, USA
- Department of Psychology, University of Washington, 98195, Seattle WA, USA
| | | | - J. Hodin
- Friday Harbor Laboratories, University of Washington, 98195, Seattle WA, USA
| | - R. Whippo
- Oregon Institute of Marine Biology, Department of Biology, University of Oregon, 63466 Boat Basin Road, Charleston OR 97420, USA
| |
Collapse
|
32
|
Dawson Taylor D, Farr JJ, Lim EG, Fleet JL, Smith Wuitchik SJ, Wuitchik DM. Heat stress does not induce wasting symptoms in the giant California sea cucumber ( Apostichopus californicus). PeerJ 2023; 11:e14548. [PMID: 36778149 PMCID: PMC9912942 DOI: 10.7717/peerj.14548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 11/20/2022] [Indexed: 02/10/2023] Open
Abstract
Oceanic heatwaves have significant impacts on disease dynamics in marine ecosystems. Following an extreme heatwave in Nanoose Bay, British Columbia, Canada, a severe sea cucumber wasting event occurred that resulted in the mass mortality of Apostichopus californicus. Here, we sought to determine if heat stress in isolation could trigger wasting symptoms in A. californicus. We exposed sea cucumbers to (i) a simulated marine heatwave (22 °C), (ii) an elevated temperature treatment (17 °C), or (iii) control conditions (12 °C). We measured the presence of skin lesions, mortality, posture maintenance, antipredator defences, spawning, and organ evisceration during the 79-hour thermal exposure, as well as 7-days post-exposure. Both the 22 °C and 17 °C treatments elicited stress responses where individuals exhibited a reduced ability to maintain posture and an increase in stress spawning. The 22 °C heatwave was particularly stressful, as it was the only treatment where mortality was observed. However, none of the treatments induced wasting symptoms as observed in the Nanoose Bay event. This study provides evidence that sea cucumber wasting may not be triggered by heat stress in isolation, leaving the cause of the mass mortality event observed in Nanoose unknown.
Collapse
Affiliation(s)
- Declan Dawson Taylor
- Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, British Columbia, Canada,Bamfield Marine Sciences Center, Bamfield, British Columbia, Canada
| | - Jonathan J. Farr
- Bamfield Marine Sciences Center, Bamfield, British Columbia, Canada,Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Em G. Lim
- Biological Sciences, Simon Fraser University, Vancouver, British Columbia, Canada
| | - Jenna L. Fleet
- Bamfield Marine Sciences Center, Bamfield, British Columbia, Canada,Biological Sciences, University of Winnipeg, Winnipeg, MB, Canada
| | - Sara J. Smith Wuitchik
- Bamfield Marine Sciences Center, Bamfield, British Columbia, Canada,Biological Sciences, Boston University, Boston, MA, United States of America,Informatics Group, Harvard University, Cambridge, MA, United States of America,Biology, Mount Royal University, Calgary, Alberta, Canada
| | - Daniel M. Wuitchik
- Bamfield Marine Sciences Center, Bamfield, British Columbia, Canada,Biological Sciences, Boston University, Boston, MA, United States of America
| |
Collapse
|
33
|
Smith KE, Burrows MT, Hobday AJ, King NG, Moore PJ, Sen Gupta A, Thomsen MS, Wernberg T, Smale DA. Biological Impacts of Marine Heatwaves. ANNUAL REVIEW OF MARINE SCIENCE 2023; 15:119-145. [PMID: 35977411 DOI: 10.1146/annurev-marine-032122-121437] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Climatic extremes are becoming increasingly common against a background trend of global warming. In the oceans, marine heatwaves (MHWs)-discrete periods of anomalously warm water-have intensified and become more frequent over the past century, impacting the integrity of marine ecosystems globally. We review and synthesize current understanding of MHW impacts at the individual, population, and community levels. We then examine how these impacts affect broader ecosystem services and discuss the current state of research on biological impacts of MHWs. Finally, we explore current and emergent approaches to predicting the occurrence andimpacts of future events, along with adaptation and management approaches. With further increases in intensity and frequency projected for coming decades, MHWs are emerging as pervasive stressors to marine ecosystems globally. A deeper mechanistic understanding of their biological impacts is needed to better predict and adapt to increased MHW activity in the Anthropocene.
Collapse
Affiliation(s)
- Kathryn E Smith
- Marine Biological Association of the United Kingdom, Plymouth, United Kingdom; , ,
| | | | | | - Nathan G King
- Marine Biological Association of the United Kingdom, Plymouth, United Kingdom; , ,
| | - Pippa J Moore
- Dove Marine Laboratory, School of Natural and Environmental Sciences, Newcastle University, Newcastle-Upon-Tyne, United Kingdom;
| | - Alex Sen Gupta
- Climate Change Research Centre, University of New South Wales, Sydney, New South Wales, Australia;
| | - Mads S Thomsen
- Marine Ecology Research Group, Centre of Integrative Ecology, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand;
- Department of Bioscience, Aarhus University, Roskilde, Denmark
| | - Thomas Wernberg
- Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia;
- Institute of Marine Research, His, Norway
| | - Dan A Smale
- Marine Biological Association of the United Kingdom, Plymouth, United Kingdom; , ,
| |
Collapse
|
34
|
Adaptive Evolution of the OAS Gene Family Provides New Insights into the Antiviral Ability of Laurasiatherian Mammals. Animals (Basel) 2023; 13:ani13020209. [PMID: 36670749 PMCID: PMC9854896 DOI: 10.3390/ani13020209] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Many mammals risk damage from virus invasion due to frequent environmental changes. The oligoadenylate synthesis (OAS) gene family, which is an important component of the immune system, provides an essential response to the antiviral activities of interferons by regulating immune signal pathways. However, little is known about the evolutionary characteristics of OASs in Laurasiatherian mammals. Here, we examined the evolution of the OAS genes in 64 mammals to explore the accompanying molecular mechanisms of the antiviral ability of Laurasiatherian mammals living in different environments. We found that OAS2 and OAS3 were found to be pseudogenes in Odontoceti species. This may be related to the fact that they live in water. Some Antilopinae, Caprinae, and Cervidae species lacked the OASL gene, which may be related to their habitats being at higher altitudes. The OASs had a high number of positive selection sites in Cetartiodactyla, which drove the expression of strong antiviral ability. The OAS gene family evolved in Laurasiatherian mammals at different rates and was highly correlated with the species' antiviral ability. The gene evolution rate in Cetartiodactyla was significantly higher than that in the other orders. Compared to other species of the Carnivora family, the higher selection pressure on the OAS gene and the absence of positive selection sites in Canidae may be responsible for its weak resistance to rabies virus. The OAS gene family was relatively conserved during evolution. Conserved genes are able to provide better maintenance of gene function. The rate of gene evolution and the number of positively selected sites combine to influence the resistance of a species to viruses. The positive selection sites demonstrate the adaptive evolution of the OAS gene family to the environment. Adaptive evolution combined with conserved gene function improves resistance to viruses. Our findings offer insights into the molecular and functional evolution of the antiviral ability of Laurasian mammals.
Collapse
|
35
|
Delisle L, Rolton A, Vignier J. Inactivated ostreid herpesvirus-1 induces an innate immune response in the Pacific oyster, Crassostrea gigas, hemocytes. Front Immunol 2023; 14:1161145. [PMID: 37187746 PMCID: PMC10175643 DOI: 10.3389/fimmu.2023.1161145] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Infectious diseases are a major constraint to the expansion of shellfish production worldwide. Pacific oyster mortality syndrome (POMS), a polymicrobial disease triggered by the Ostreid herpesvirus-1 (OsHV-1), has devastated the global Pacific oyster (Crassostrea gigas) aquaculture industry. Recent ground-breaking research revealed that C. gigas possess an immune memory, capable of adaption, which improves the immune response upon a second exposure to a pathogen. This paradigm shift opens the door for developing 'vaccines' to improve shellfish survival during disease outbreaks. In the present study, we developed an in-vitro assay using hemocytes - the main effectors of the C. gigas immune system - collected from juvenile oysters susceptible to OsHV-1. The potency of multiple antigen preparations (e.g., chemically and physically inactivated OsHV-1, viral DNA, and protein extracts) to stimulate an immune response in hemocytes was evaluated using flow cytometry and droplet digital PCR to measure immune-related subcellular functions and gene expression, respectively. The immune response to the different antigens was benchmarked against that of hemocytes treated with Poly (I:C). We identified 10 antigen preparations capable of inducing immune stimulation in hemocytes (ROS production and positively expressed immune- related genes) after 1 h of exposure, without causing cytotoxicity. These findings are significant, as they evidence the potential for priming the innate immunity of oysters using viral antigens, which may enable cost-effective therapeutic treatment to mitigate OsHV-1/POMS. Further testing of these antigen preparations using an in-vivo infection model is essential to validate promising candidate pseudo-vaccines.
Collapse
Affiliation(s)
- Lizenn Delisle
- Biosecurity Group, Cawthron Institute, Nelson, New Zealand
- *Correspondence: Lizenn Delisle, ; Anne Rolton,
| | - Anne Rolton
- Biosecurity Group, Cawthron Institute, Nelson, New Zealand
- *Correspondence: Lizenn Delisle, ; Anne Rolton,
| | - Julien Vignier
- Aquaculture Group, Cawthron Institute, Nelson, New Zealand
| |
Collapse
|
36
|
Roopnarine PD, Banker RMW, Sampson SD. Impact of the extinct megaherbivore Steller's sea cow (Hydrodamalis gigas) on kelp forest resilience. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.983558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Giant kelp forests off the west coast of North America are maintained primarily by sea otter (Enhydra lutris) and sunflower sea star (Pycnopodia helianthoides) predation of sea urchins. Human hunting of sea otters in historical times, together with a marine heat wave and sea star wasting disease epidemic in the past decade, devastated these predators, leading to widespread occurrences of urchin barrens. Since the late Neogene, species of the megaherbivorous sirenian Hydrodamalis ranged throughout North Pacific giant kelp forests. The last species, H. gigas, was driven to extinction by human hunting in the mid-eighteen century. H. gigas was an obligate kelp canopy browser, and its body size implies that it would have had a significant impact on the system. Here, we hypothesize that sea cow browsing may have enhanced forest resilience. We tested this hypothesis with a mathematical model, comparing historical and modern community responses to marine heat waves and sea star wasting disease. Results indicate that forest communities were highly resistant to marine heat waves, yet susceptible to sea star wasting disease, and to disease in combination with warming. Resistance was greatest among systems with both sea cows and sea otters present. The model additionally predicts that historical communities may have exhibited delayed transitions after perturbation and faster recovery times. Sea cow browsing may therefore have enhanced resilience against modern perturbations. We propose that operationalizing these findings by mimicking sea cow herbivory could enhance kelp forest resilience.
Collapse
|
37
|
Tao W, Ou J, Wu D, Zhang Q, Han X, Xie L, Li S, Zhang Y. Heat wave induces oxidative damage in the Chinese pond turtle (Mauremys reevesii) from low latitudes. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1053260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
IntroductionGlobal warming has led to frequent heat waves, causing global organisms to face severe survival challenges. However, the way in which heat waves threaten the fitness and survival of animals remains largely unclear. Oxidative damage and immunity are widely considered the link between heat waves and threats to animals.MethodsTo evaluate the oxidative damage caused by heat waves and to reveal the physiological resistance to heat waves by the antioxidant defense of animals from different latitudes, we exposed both high-latitude (Zhejiang) and low-latitude (Hainan) populations of Chinese pond turtle (Mauremys reevesii) to simulate heat waves and a moderate thermal environment for 1 week, respectively. Next, we compared the oxidative damage by malondialdehyde (MDA) and antioxidant capacity by superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and total antioxidant capacity (T-AOC) in the liver tissues and evaluated the innate immunity by serum complement protein levels (C3, C4) and lysozyme activity in plasma of turtles.Results and discussionWe found that heat waves significantly increased the content of MDA and the activity of CAT, whereas it decreased the activity of SOD, T-AOC, and GSH/GSSG in turtles from low latitudes. Furthermore, heat waves increased CAT activity but decreased GSH/GSSG in turtles from high latitudes. Although the turtles from high latitudes had higher levels of innate immunity, the heat waves did not affect the innate immunity of C3, C4, or lysozyme in either population. These results indicate that the low-latitude population suffered higher oxidative damage with lower antioxidant capacities. Therefore, we predict that Chinese pond turtles from low latitudes may be more vulnerable to heat waves caused by climate warming. This study reveals the physiological and biochemical resistance to heat waves in Chinese pond turtles from different latitudes and highlights the importance of integrative determination of fitness-related responses in evaluating the vulnerability of ectotherms from different latitudes to climate warming.
Collapse
|
38
|
Starko S, Neufeld CJ, Gendall L, Timmer B, Campbell L, Yakimishyn J, Druehl L, Baum JK. Microclimate predicts kelp forest extinction in the face of direct and indirect marine heatwave effects. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2673. [PMID: 35584048 DOI: 10.1002/eap.2673] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/22/2022] [Accepted: 03/29/2022] [Indexed: 06/15/2023]
Abstract
Marine heatwaves threaten the persistence of kelp forests globally. However, the observed responses of kelp forests to these events have been highly variable on local scales. Here, we synthesize distribution data from an environmentally diverse region to examine spatial patterns of canopy kelp persistence through an unprecedented marine heatwave. We show that, although often overlooked, temperature variation occurring at fine spatial scales (i.e., a few kilometers or less) can be a critical driver of kelp forest persistence during these events. Specifically, though kelp forests nearly all persisted toward the cool outer coast, inshore areas were >3°C warmer at the surface and experienced extensive kelp loss. Although temperatures remained cool at depths below the thermocline, kelp persistence in these thermal refugia was strongly constrained by biotic interactions, specifically urchin populations that increased during the heatwave and drove transitions to urchin barrens in deeper rocky habitat. Urchins were, however, largely absent from mixed sand and cobble benthos, leading to an unexpected association between bottom substrate and kelp forest persistence at inshore sites with warm surface waters. Our findings demonstrate both that warm microclimates increase the risk of habitat loss during marine heatwaves and that biotic interactions modified by these events will modulate the capacity of cool microclimates to serve as thermal refugia.
Collapse
Affiliation(s)
- Samuel Starko
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
- Bamfield Marine Sciences Centre, Bamfield, British Columbia, Canada
| | - Christopher J Neufeld
- Bamfield Marine Sciences Centre, Bamfield, British Columbia, Canada
- Department of Biology, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Lianna Gendall
- Department of Geography, University of Victoria, Victoria, British Columbia, Canada
| | - Brian Timmer
- Department of Geography, University of Victoria, Victoria, British Columbia, Canada
| | - Lily Campbell
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
- Bamfield Marine Sciences Centre, Bamfield, British Columbia, Canada
| | - Jennifer Yakimishyn
- Pacific Rim National Park Reserve of Canada, Ucluelet, British Columbia, Canada
| | - Louis Druehl
- Bamfield Marine Sciences Centre, Bamfield, British Columbia, Canada
- Canadian Kelp Resources, Bamfield, British Columbia, Canada
| | - Julia K Baum
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
39
|
Kirk D, O’Connor MI, Mordecai EA. Scaling effects of temperature on parasitism from individuals to populations. J Anim Ecol 2022; 91:2087-2102. [PMID: 35900837 PMCID: PMC9532350 DOI: 10.1111/1365-2656.13786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/15/2022] [Indexed: 11/27/2022]
Abstract
Parasitism is expected to change in a warmer future, but whether warming leads to substantial increases in parasitism remains unclear. Understanding how warming effects on parasitism in individual hosts (e.g. parasite load) translate to effects on population-level parasitism (e.g. prevalence, R0 ) remains a major knowledge gap. We conducted a literature review and identified 24 host-parasite systems that had information on the temperature dependence of parasitism at both individual host and host population levels: 13 vector-borne systems and 11 environmentally transmitted systems. We found a strong positive correlation between the thermal optima of individual- and population-level parasitism, although several of the environmentally transmitted systems exhibited thermal optima >5°C apart between individual and population levels. Parasitism thermal optima were close to vector performance thermal optima in vector-borne systems but not hosts in environmentally transmitted systems, suggesting these thermal mismatches may be more common in certain types of host-parasite systems. We also adapted and simulated simple models for both types of transmission modes and found the same pattern across the two modes: thermal optima were more strongly correlated across scales when there were more traits linking individual- to population-level processes. Generally, our results suggest that information on the temperature dependence, and specifically the thermal optimum, at either the individual or population level should provide a useful-although not quantitatively exact-baseline for predicting temperature dependence at the other level, especially in vector-borne parasite systems. Environmentally transmitted parasitism may operate by a different set of rules, in which temperature dependence is decoupled in some systems, requiring the need for trait-based studies of temperature dependence at individual and population levels.
Collapse
Affiliation(s)
- Devin Kirk
- Department of Biology, Stanford University, Stanford, USA
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Mary I. O’Connor
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
40
|
MacKnight NJ, Dimos BA, Beavers KM, Muller EM, Brandt ME, Mydlarz LD. Disease resistance in coral is mediated by distinct adaptive and plastic gene expression profiles. SCIENCE ADVANCES 2022; 8:eabo6153. [PMID: 36179017 PMCID: PMC9524840 DOI: 10.1126/sciadv.abo6153] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Infectious diseases are an increasing threat to coral reefs, resulting in altered community structure and hindering the functional contributions of disease-susceptible species. We exposed seven reef-building coral species from the Caribbean to white plague disease and determined processes involved in (i) lesion progression, (ii) within-species gene expression plasticity, and (iii) expression-level adaptation among species that lead to differences in disease risk. Gene expression networks enriched in immune genes and cytoskeletal arrangement processes were correlated to lesion progression rates. Whether or not a coral developed a lesion was mediated by plasticity in genes involved in extracellular matrix maintenance, autophagy, and apoptosis, while resistant coral species had constitutively higher expression of intracellular protein trafficking. This study offers insight into the process involved in lesion progression and within- and between-species dynamics that lead to differences in disease risk that is evident on current Caribbean reefs.
Collapse
Affiliation(s)
- Nicholas J. MacKnight
- University of Texas at Arlington, 337 Life Science Building, Arlington, TX 76019, USA
| | - Bradford A. Dimos
- University of Texas at Arlington, 337 Life Science Building, Arlington, TX 76019, USA
| | - Kelsey M. Beavers
- University of Texas at Arlington, 337 Life Science Building, Arlington, TX 76019, USA
| | - Erinn M. Muller
- Mote Marine Laboratory, 1600 Ken Thompson Pkwy, Sarasota, FL 34236, USA
| | - Marilyn E. Brandt
- University of the Virgin Islands, 2 John Brewers Bay, St. Thomas, VI 00802, USA
| | - Laura D. Mydlarz
- University of Texas at Arlington, 337 Life Science Building, Arlington, TX 76019, USA
- Corresponding author.
| |
Collapse
|
41
|
Barela Hudgell MA, Grayfer L, Smith LC. Coelomocyte populations in the sea urchin, Strongylocentrotus purpuratus, undergo dynamic changes in response to immune challenge. Front Immunol 2022; 13:940852. [PMID: 36119116 PMCID: PMC9471872 DOI: 10.3389/fimmu.2022.940852] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
The sea urchin, Strongylocentrotus purpuratus has seven described populations of distinct coelomocytes in the coelomic fluid that are defined by morphology, size, and for some types, by known functions. Of these subtypes, the large phagocytes are thought to be key to the sea urchin cellular innate immune response. The concentration of total coelomocytes in the coelomic fluid increases in response to pathogen challenge. However, there is no quantitative analysis of how the respective coelomocyte populations change over time in response to immune challenge. Accordingly, coelomocytes collected from immunoquiescent, healthy sea urchins were evaluated by flow cytometry for responses to injury and to challenge with either heat-killed Vibrio diazotrophicus, zymosan A, or artificial coelomic fluid, which served as the vehicle control. Responses to the initial injury of coelomic fluid collection or to injection of V. diazotrophicus show significant increases in the concentration of large phagocytes, small phagocytes, and red spherule cells after one day. Responses to zymosan A show decreases in the concentration of large phagocytes and increases in the concentration of small phagocytes. In contrast, responses to injections of vehicle result in decreased concentration of large phagocytes. When these changes in coelomocytes are evaluated based on proportions rather than concentration, the respective coelomocyte proportions are generally maintained in response to injection with V. diazotrophicus and vehicle. However, this is not observed in response to zymosan A and this lack of correspondence between proportions and concentrations may be an outcome of clearing these large particles by the large phagocytes. Variations in coelomocyte populations are also noted for individual sea urchins evaluated at different times for their responses to immune challenge compared to the vehicle. Together, these results demonstrate that the cell populations in sea urchin immune cell populations undergo dynamic changes in vivo in response to distinct immune stimuli and to injury and that these changes are driven by the responses of the large phagocyte populations.
Collapse
Affiliation(s)
| | | | - L. Courtney Smith
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| |
Collapse
|
42
|
Smith JG, Tinker MT. Alternations in the foraging behaviour of a primary consumer drive patch transition dynamics in a temperate rocky reef ecosystem. Ecol Lett 2022; 25:1827-1838. [PMID: 35767228 PMCID: PMC9546210 DOI: 10.1111/ele.14064] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/07/2022] [Accepted: 05/25/2022] [Indexed: 11/26/2022]
Abstract
Understanding the role of animal behaviour in linking individuals to ecosystems is central to advancing knowledge surrounding community structure, stability and transition dynamics. Using 22 years of long-term subtidal monitoring, we show that an abrupt outbreak of purple sea urchins (Strongylocentrotus purpuratus), which occurred in 2014 in southern Monterey Bay, California, USA, was primarily driven by a behavioural shift, not by a demographic response (i.e. survival or recruitment). We then tracked the foraging behaviour of sea urchins for 3 years following the 2014 outbreak and found that behaviour is strongly associated with patch state (forest or barren) transition dynamics. Finally, in 2019, we observed a remarkable recovery of kelp forests at a deep rocky reef. We show that this recovery was associated with sea urchin movement from the deep reef to shallow water. These results demonstrate how changes in grazer behaviour can facilitate patch dynamics and dramatically restructure communities and ecosystems.
Collapse
Affiliation(s)
- Joshua G. Smith
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaSanta CruzCaliforniaUSA
- National Center for Ecological Analysis and SynthesisUniversity of CaliforniaSanta BarbaraCaliforniaUSA
| | - M. Tim Tinker
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaSanta CruzCaliforniaUSA
| |
Collapse
|
43
|
Emergent effects of global change on consumption depend on consumers and their resources in marine systems. Proc Natl Acad Sci U S A 2022; 119:e2108878119. [PMID: 35446691 PMCID: PMC9173678 DOI: 10.1073/pnas.2108878119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Understanding the effects of global change on species interactions is important for predicting emergent ecosystem changes. Although environmental change can have direct effects on consumers, it is unclear if consumption will change in any generalizable way when both the consumer and resource(s) are exposed to future conditions. Using meta-analysis, we show high variability in consumption rates in response to ocean acidification and warming, indicating conclusions that suggest consumption will generally increase or decrease in a future ocean are premature. We also demonstrate how the interpretation is dependent on whether only the consumer or both the consumer and its resource(s) are exposed to future conditions. Based on these findings, we provide a road map for future research in this area. A better understanding of how environmental change will affect species interactions would significantly aid efforts to scale up predictions of near-future responses to global change from individuals to ecosystems. To address this need, we used meta-analysis to quantify the individual and combined effects of ocean acidification (OA) and warming on consumption rates of predators and herbivores in marine ecosystems. Although the primary studies demonstrated that these environmental variables can have direct effects on consumers, our analyses highlight high variability in consumption rates in response to OA and warming. This variability likely reflects differences in local adaptation among species, as well as important methodological differences. For example, our results suggest that exposure of consumers to OA reduces consumption rates on average, yet consumption rates actually increase when both consumers and their resource(s) are concurrently exposed to the same conditions. We hypothesize that this disparity is due to increased vulnerability of prey or resource(s) in conditions of OA that offset declines in consumption. This hypothesis is supported by an analysis demonstrating clear declines in prey survival in studies that exposed only prey to future OA conditions. Our results illustrate how simultaneous OA and warming produce complex outcomes when species interact. Researchers should further explore other potential sources of variation in response, as well as the prey-driven component of any changes in consumption and the potential for interactive effects of OA and warming.
Collapse
|
44
|
Ashley EA, Pattengill-Semmens CV, Orr JW, Nichols JD, Gaydos JK. Documenting fishes in an inland sea with citizen scientist diver surveys: using taxonomic expertise to inform the observation potential of fish species. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:227. [PMID: 35218441 PMCID: PMC8882091 DOI: 10.1007/s10661-022-09857-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 02/05/2022] [Indexed: 05/19/2023]
Abstract
Long-term monitoring enables scientists and managers to track changes in the temporal and spatial distributions of fishes. Given the anthropogenic stressors affecting marine ecosystem health, there is a critical need for robust, comprehensive fish monitoring programs. Citizen science can serve as a meaningful, cost-effective strategy to survey fish communities. We compared data from 13,000 surveys collected over 21 years (1998-2019) by Reef Environmental Education Foundation (REEF) volunteer divers to a published compilation of Salish Sea ichthyofauna collected using an assortment of methods. Volunteer divers observed 138 of 261 recognized species in the Salish Sea, expanded the range of 18 species into additional Salish Sea sub-basins, and identified one species novel to the Salish Sea (Gibbonsia metzi - Striped Kelpfish). To identify Salish Sea fish species that are most suitable to be monitored by underwater visual census and to evaluate confidence in in situ identification, we developed a categorization system based on the likelihood of recreational divers and snorkelers encountering a given species, and on whether identification required a specimen in hand or could be classified to species visually (with or without a high-quality photograph). REEF divers encountered 62% (138 of 223) of the visually detectable species occurring in the region and 85% (102 of 120) of species most likely to be observed by recreational divers. Our findings show that citizen scientists provide valuable monitoring data for over half of the 261 marine and anadromous fish species known to occupy the Salish Sea, many of which are not routinely monitored otherwise.
Collapse
Affiliation(s)
- Elizabeth A Ashley
- Karen C. Drayer Wildlife Health Center - Orcas Island Office, SeaDoc Society, 942 Deer Harbor Rd, Eastsound, WA, 98245, USA.
| | | | - James W Orr
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, 98105, USA
| | - Janna D Nichols
- Reef Environmental Education Foundation (REEF), Key Largo, PO Box 370246, FL, 33037, USA
| | - Joseph K Gaydos
- Karen C. Drayer Wildlife Health Center - Orcas Island Office, SeaDoc Society, 942 Deer Harbor Rd, Eastsound, WA, 98245, USA
| |
Collapse
|
45
|
Kunze C, Luijckx P, Jackson AL, Donohue I. Alternate patterns of temperature variation bring about very different disease outcomes at different mean temperatures. eLife 2022; 11:e72861. [PMID: 35164901 PMCID: PMC8846586 DOI: 10.7554/elife.72861] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/05/2022] [Indexed: 02/01/2023] Open
Abstract
The dynamics of host-parasite interactions are highly temperature-dependent and may be modified by increasing frequency and intensity of climate-driven heat events. Here, we show that altered patterns of temperature variance lead to an almost order-of-magnitude shift in thermal performance of host and pathogen life-history traits over and above the effects of mean temperature and, moreover, that different temperature regimes affect these traits differently. We found that diurnal fluctuations of ±3°C lowered infection rates and reduced spore burden compared to constant temperatures in our focal host Daphnia magna exposed to the microsporidium parasite Ordospora colligata. In contrast, a 3-day heatwave (+6°C) did not affect infection rates, but increased spore burden (relative to constant temperatures with the same mean) at 16°C, while reducing burden at higher temperatures. We conclude that changing patterns of climate variation, superimposed on shifts in mean temperatures due to global warming, may have profound and unanticipated effects on disease dynamics.
Collapse
Affiliation(s)
- Charlotte Kunze
- Institute for Chemistry and Biology of the Marine Environment [ICBM], Carl von Ossietzky University of OldenburgOldenburgGermany
- Department of Zoology, School of Natural Sciences, Trinity College DublinDublinIreland
| | - Pepijn Luijckx
- Department of Zoology, School of Natural Sciences, Trinity College DublinDublinIreland
| | - Andrew L Jackson
- Department of Zoology, School of Natural Sciences, Trinity College DublinDublinIreland
| | - Ian Donohue
- Department of Zoology, School of Natural Sciences, Trinity College DublinDublinIreland
| |
Collapse
|
46
|
Bennion M, Lane H, McDonald IR, Ross P. Histopathology of a threatened surf clam, toheroa (Paphies ventricosa) from Aotearoa New Zealand. J Invertebr Pathol 2022; 188:107716. [PMID: 35031296 DOI: 10.1016/j.jip.2022.107716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 11/18/2021] [Accepted: 01/04/2022] [Indexed: 11/29/2022]
Abstract
The toheroa (Paphies ventricosa) is endemic to Aotearoa (New Zealand). Following decades of overfishing in the 1900 s, commercial and recreational fishing of toheroa is now prohibited. For unknown reasons, protective measures in place for over 40 years have not ensured the recovery of toheroa populations. For the first time, a systematic pathology survey was undertaken to provide a baseline of toheroa health in remaining major populations. Using histopathology, parasites and pathologies in a range of tissues are assessed and quantified spatio-temporally. Particular focus is placed on intracellular microcolonies of bacteria (IMCs). Bayesian ordinal logistic regression is used to model IMC infection and several facets of toheroa health. Model outputs show condition to be the most important predictor of IMC intensity in toheroa tissues. The precarious state of many toheroa populations around Aotearoa should warrant greater attention from scientists, conservationists, and regulators. It is hoped that this study will provide some insight into the current health status of a treasured and iconic constituent of several expansive surf beaches in Aotearoa.
Collapse
Affiliation(s)
- Matthew Bennion
- Environmental Research Institute, University of Waikato, Tauranga 3110, New Zealand.
| | - Henry Lane
- National Institute of Water and Atmospheric Research Ltd., Christchurch, New Zealand
| | - Ian R McDonald
- School of Science - Te Aka Matuatua, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand
| | - Phil Ross
- Environmental Research Institute, University of Waikato, Tauranga 3110, New Zealand
| |
Collapse
|
47
|
Samhouri JF, Feist BE, Fisher MC, Liu O, Woodman SM, Abrahms B, Forney KA, Hazen EL, Lawson D, Redfern J, Saez LE. Marine heatwave challenges solutions to human-wildlife conflict. Proc Biol Sci 2021; 288:20211607. [PMID: 34847764 PMCID: PMC8634617 DOI: 10.1098/rspb.2021.1607] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/28/2021] [Indexed: 11/12/2022] Open
Abstract
Despite the increasing frequency and magnitude of extreme climate events, little is known about how their impacts flow through social and ecological systems or whether management actions can dampen deleterious effects. We examined how the record 2014-2016 Northeast Pacific marine heatwave influenced trade-offs in managing conflict between conservation goals and human activities using a case study on large whale entanglements in the U.S. west coast's most lucrative fishery (the Dungeness crab fishery). We showed that this extreme climate event diminished the power of multiple management strategies to resolve trade-offs between entanglement risk and fishery revenue, transforming near win-win to clear win-lose outcomes (for whales and fishers, respectively). While some actions were more cost-effective than others, there was no silver-bullet strategy to reduce the severity of these trade-offs. Our study highlights how extreme climate events can exacerbate human-wildlife conflict, and emphasizes the need for innovative management and policy interventions that provide ecologically and socially sustainable solutions in an era of rapid environmental change.
Collapse
Affiliation(s)
- Jameal F. Samhouri
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - Blake E. Feist
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - Mary C. Fisher
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA, USA
| | - Owen Liu
- NRC Research Associateship Program, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - Samuel M. Woodman
- Ocean Associates, Inc., under contract to Marine Mammal and Turtle Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA, USA
| | - Briana Abrahms
- Environmental Research Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Monterey, CA, USA
- Department of Biology, Center for Ecosystem Sentinels, University of Washington, Seattle, WA, USA
| | - Karin A. Forney
- Marine Mammal and Turtle Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Moss Landing, CA, USA
- Moss Landing Marine Laboratories, San Jose State University, Moss Landing, CA, USA
| | - Elliott L. Hazen
- Environmental Research Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Monterey, CA, USA
| | - Dan Lawson
- Protected Resources Division, West Coast Regional Office, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Long Beach, CA, USA
| | - Jessica Redfern
- Marine Mammal and Turtle Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Moss Landing, CA, USA
- Anderson Cabot Center for Ocean Life, New England Aquarium, Boston, MA, USA
| | - Lauren E. Saez
- Ocean Associates, Inc., under contract to Protected Resources Division, West Coast Regional Office, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Long Beach, CA, USA
| |
Collapse
|
48
|
Smith KE, Burrows MT, Hobday AJ, Sen Gupta A, Moore PJ, Thomsen M, Wernberg T, Smale DA. Socioeconomic impacts of marine heatwaves: Global issues and opportunities. Science 2021; 374:eabj3593. [PMID: 34672757 DOI: 10.1126/science.abj3593] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Kathryn E Smith
- Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK
| | | | | | - Alex Sen Gupta
- Climate Change Research Centre, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Pippa J Moore
- School of Natural and Environmental Sciences, Newcastle University, Newcastle-Upon-Tyne NE1 7RU, UK
| | - Mads Thomsen
- The Marine Ecology Research Group, Centre of Integrative Ecology, School of Biological Sciences, University of Canterbury, 8041 Christchurch, New Zealand.,Department of Bioscience, Aarhus University, 4000 Roskilde, Denmark
| | - Thomas Wernberg
- University of Western Australia, Oceans Institute and School of Biological Sciences, Crawley, Western Australia 6009, Australia.,Institute of Marine Research, Floedevigen, 4817 His, Norway
| | - Dan A Smale
- Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK
| |
Collapse
|
49
|
Burton AR, Gravem SA, Barreto FS. Little evidence for genetic variation associated with susceptibility to sea star wasting syndrome in the keystone species Pisaster ochraceus. Mol Ecol 2021; 31:197-205. [PMID: 34626020 DOI: 10.1111/mec.16212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/23/2021] [Accepted: 10/04/2021] [Indexed: 11/29/2022]
Abstract
The keystone species Pisaster ochraceus suffered mass mortalities along the northeast Pacific Ocean from Sea Star Wasting Syndrome (SSWS) outbreaks in 2013-2016. SSWS causation remains of debate, leading to concerns as to whether outbreaks will continue to impact this species. Considering the apparent link between ocean temperature and SSWS, the future of this species and intertidal communities remains uncertain. Surveys of co-occurring apparently normal and wasting P. ochraceus along the central Oregon coast in 2016 allowed us to address whether variation in disease status showed genetic variation that may be associated with differences in susceptibility to SSWS. We performed restriction site-associated DNA sequencing (2bRAD-seq) to genotype ~72,000 single nucleotide polymorphism (SNP) loci across apparently normal and wasting sea stars. Locus-specific analyses of differentiation (FST ) between disease-status groups revealed no signal of genetic differences separating the two groups. Using a multivariate approach, we observed weak separation between the groups, but identified 18 SNP loci showing highest discriminatory power between the groups and scanned the genome annotation for linked genes. A total of 34 protein-coding genes were found to be located within 15 kb (measured by linkage disequilibrium decay) of at least one of the 18 SNPs, and 30 of these genes had homologies to annotated protein databases. Our results suggest that the likelihood of developing SSWS symptoms does not have a strong genetic basis. The few genomic regions highlighted had only modest levels of differentiation, but the genes associated with these regions may form the basis for functional studies aiming to understand disease progression.
Collapse
Affiliation(s)
- Andrea R Burton
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, USA
| | - Sarah A Gravem
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, USA
| | - Felipe S Barreto
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
50
|
Minuti JJ, Byrne M, Hemraj DA, Russell BD. Capacity of an ecologically key urchin to recover from extreme events: Physiological impacts of heatwaves and the road to recovery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 785:147281. [PMID: 33933766 DOI: 10.1016/j.scitotenv.2021.147281] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
Heatwaves are increasing in frequency and intensity, with substantial impacts on ecosystems and species which maintain their function. Whether or not species are harmed by heatwave conditions by being pushed beyond their physiological bounds can depend on whether energy replacement is sufficient to enable recovery from acute stress. We exposed an ecologically important sea urchin, Heliocidaris erythrogramma, to experimental marine heatwave scenarios in context with recent summer heat anomalies in moderate (25 °C), and strong heatwave (26 °C) conditions for 10 days, followed by a 10-day recovery period at normal summer temperature (23 °C). Greater heatwave intensity drove higher metabolic rates which were not matched with a concurrent increase in food consumption or faecal production. However, food consumption increased during the post-heatwave recovery period, likely to replenish an energy deficit. Despite this, mortality increased into the recovery period and seemed to be caused by latent effects, manifesting as a decline in health index as individuals progressed from spine and pedicellariae loss, through to loss of tube foot rigor, bald patch disease, culminating in mortality. We show for the first time that the acute thermal stress of heatwaves can have latent physiological effects that cause mortality even when conditions return to normal. Our results show that the negative effects of heatwaves can manifest after relief from stressful conditions and highlight the importance of understanding the latent effects on physiology and health. This understanding will offer insights into the long-term potential for stress recovery following seemingly sublethal effects and whether the restoration of ambient conditions post-heatwave is sufficient to ensure population stability.
Collapse
Affiliation(s)
- Jay J Minuti
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Maria Byrne
- School of Medical Sciences, The University of Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Deevesh A Hemraj
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Bayden D Russell
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China.
| |
Collapse
|