1
|
Sadikov A, Choi HL, Cai LT, Mukherjee P. Estimating Brain Similarity Networks with Diffusion MRI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.29.646134. [PMID: 40236104 PMCID: PMC11996355 DOI: 10.1101/2025.03.29.646134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Structural similarity has emerged as a promising tool in mapping the network organization of an individual, living human brain. Here, we propose diffusion similarity networks (DSNs), which employ rotationally invariant spherical harmonic features derived from diffusion magnetic resonance imaging (dMRI), to map gray matter structural organization. Compared to prior approaches, DSNs showed clearer laminar, cytoarchitectural, and micro-architectural organization; greater sensitivity to age, cognition, and sex; higher heritability in a large dataset of healthy young adults; and straightforward extension to non-cortical regions. We show DSNs are correlated with functional, structural, and gene expression connectomes and their gradients align with the sensory-fugal and sensorimotor-association axes of the cerebral cortex, including neuronal oscillatory dynamics, metabolism, immunity, and dopaminergic and glutaminergic receptor densities. DSNs can be easily integrated into conventional dMRI analysis, adding information complementary to structural white matter connectivity, and could prove useful in investigating a wide array of neurological and psychiatric conditions.
Collapse
|
2
|
Sebenius I, Dorfschmidt L, Seidlitz J, Alexander-Bloch A, Morgan SE, Bullmore E. Structural MRI of brain similarity networks. Nat Rev Neurosci 2025; 26:42-59. [PMID: 39609622 DOI: 10.1038/s41583-024-00882-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2024] [Indexed: 11/30/2024]
Abstract
Recent advances in structural MRI analytics now allow the network organization of individual brains to be comprehensively mapped through the use of the biologically principled metric of anatomical similarity. In this Review, we offer an overview of the measurement and meaning of structural MRI similarity, especially in relation to two key assumptions that often underlie its interpretation: (i) that MRI similarity can be representative of architectonic similarity between cortical areas and (ii) that similar areas are more likely to be axonally connected, as predicted by the homophily principle. We first introduce the historical roots and technical foundations of MRI similarity analysis and compare it with the distinct MRI techniques of structural covariance and tractography analysis. We contextualize this empirical work with two generative models of homophilic networks: an economic model of cost-constrained connectional homophily and a heterochronic model of ontogenetically phased cortical maturation. We then review (i) studies of the genetic and transcriptional architecture of MRI similarity in population-averaged and disorder-specific contexts and (ii) developmental studies of normative cohorts and clinical studies of neurodevelopmental and neurodegenerative disorders. Finally, we prioritize knowledge gaps that must be addressed to consolidate structural MRI similarity as an accessible, valid marker of the architecture and connectivity of an individual brain network.
Collapse
Affiliation(s)
- Isaac Sebenius
- Department of Psychiatry, University of Cambridge, Cambridge, UK.
- Department of Computer Science and Technology, University of Cambridge, Cambridge, UK.
| | - Lena Dorfschmidt
- Lifespan Brain Institute, The Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA.
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA.
| | - Jakob Seidlitz
- Lifespan Brain Institute, The Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Aaron Alexander-Bloch
- Lifespan Brain Institute, The Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarah E Morgan
- Department of Computer Science and Technology, University of Cambridge, Cambridge, UK
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Edward Bullmore
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Cambridgeshire & Peterborough NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
3
|
Zhang XJ, Moore JM, Gao TT, Zhang X, Yan G. Brain-inspired wiring economics for artificial neural networks. PNAS NEXUS 2025; 4:pgae580. [PMID: 39822577 PMCID: PMC11736432 DOI: 10.1093/pnasnexus/pgae580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 12/19/2024] [Indexed: 01/19/2025]
Abstract
Wiring patterns of brain networks embody a trade-off between information transmission, geometric constraints, and metabolic cost, all of which must be balanced to meet functional needs. Geometry and wiring economy are crucial in the development of brains, but their impact on artificial neural networks (ANNs) remains little understood. Here, we adopt a wiring cost-controlled training framework that simultaneously optimizes wiring efficiency and task performance during structural evolution of sparse ANNs whose nodes are located at arbitrary but fixed positions. We show that wiring cost control improves performance across a wide range of tasks, ANN architectures and training methods, and can promote task-specific structural modules. An optimal wiring cost range provides both enhanced predictive performance and high values of topological properties, such as modularity and clustering, which are observed in real brain networks and known to improve robustness, interpretability, and performance of ANNs. In addition, ANNs trained using wiring cost can emulate the connection distance distribution observed in the brains of real organisms (such as Ciona intestinalis and Caenorhabditis elegans), especially when achieving high task performance, offering insights into biological organizing principles. Our results shed light on the relationship between topology and task specialization of ANNs trained within biophysical constraints, and their geometric resemblance to real neuronal-level brain maps.
Collapse
Affiliation(s)
- Xin-Jie Zhang
- School of Physical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
- National Key Laboratory of Autonomous Intelligent Unmanned Systems, MOE Frontiers Science Center for Intelligent Autonomous Systems, Tongji University, Shanghai 200092, P. R. China
| | - Jack Murdoch Moore
- School of Physical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
- National Key Laboratory of Autonomous Intelligent Unmanned Systems, MOE Frontiers Science Center for Intelligent Autonomous Systems, Tongji University, Shanghai 200092, P. R. China
| | - Ting-Ting Gao
- School of Physical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
- National Key Laboratory of Autonomous Intelligent Unmanned Systems, MOE Frontiers Science Center for Intelligent Autonomous Systems, Tongji University, Shanghai 200092, P. R. China
| | - Xiaozhu Zhang
- School of Physical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
- National Key Laboratory of Autonomous Intelligent Unmanned Systems, MOE Frontiers Science Center for Intelligent Autonomous Systems, Tongji University, Shanghai 200092, P. R. China
- Chair for Network Dynamics, Center for Advancing Electronics Dresden (cfaed) and Institute for Theoretical Physics, Technical University of Dresden, Dresden 01062, Germany
| | - Gang Yan
- School of Physical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
- National Key Laboratory of Autonomous Intelligent Unmanned Systems, MOE Frontiers Science Center for Intelligent Autonomous Systems, Tongji University, Shanghai 200092, P. R. China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, P. R. China
| |
Collapse
|
4
|
Chini M, Hnida M, Kostka JK, Chen YN, Hanganu-Opatz IL. Preconfigured architecture of the developing mouse brain. Cell Rep 2024; 43:114267. [PMID: 38795344 DOI: 10.1016/j.celrep.2024.114267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/13/2024] [Accepted: 05/08/2024] [Indexed: 05/27/2024] Open
Abstract
In the adult brain, structural and functional parameters, such as synaptic sizes and neuronal firing rates, follow right-skewed and heavy-tailed distributions. While this organization is thought to have significant implications, its development is still largely unknown. Here, we address this knowledge gap by investigating a large-scale dataset recorded from the prefrontal cortex and the olfactory bulb of mice aged 4-60 postnatal days. We show that firing rates and spike train interactions have a largely stable distribution shape throughout the first 60 postnatal days and that the prefrontal cortex displays a functional small-world architecture. Moreover, early brain activity exhibits an oligarchical organization, where high-firing neurons have hub-like properties. In a neural network model, we show that analogously right-skewed and heavy-tailed synaptic parameters are instrumental to consistently recapitulate the experimental data. Thus, functional and structural parameters in the developing brain are already extremely distributed, suggesting that this organization is preconfigured and not experience dependent.
Collapse
Affiliation(s)
- Mattia Chini
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Marilena Hnida
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johanna K Kostka
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yu-Nan Chen
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ileana L Hanganu-Opatz
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
5
|
Bazinet V, Hansen JY, Misic B. Towards a biologically annotated brain connectome. Nat Rev Neurosci 2023; 24:747-760. [PMID: 37848663 DOI: 10.1038/s41583-023-00752-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 10/19/2023]
Abstract
The brain is a network of interleaved neural circuits. In modern connectomics, brain connectivity is typically encoded as a network of nodes and edges, abstracting away the rich biological detail of local neuronal populations. Yet biological annotations for network nodes - such as gene expression, cytoarchitecture, neurotransmitter receptors or intrinsic dynamics - can be readily measured and overlaid on network models. Here we review how connectomes can be represented and analysed as annotated networks. Annotated connectomes allow us to reconceptualize architectural features of networks and to relate the connection patterns of brain regions to their underlying biology. Emerging work demonstrates that annotated connectomes help to make more veridical models of brain network formation, neural dynamics and disease propagation. Finally, annotations can be used to infer entirely new inter-regional relationships and to construct new types of network that complement existing connectome representations. In summary, biologically annotated connectomes offer a compelling way to study neural wiring in concert with local biological features.
Collapse
Affiliation(s)
- Vincent Bazinet
- Montréal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Justine Y Hansen
- Montréal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Bratislav Misic
- Montréal Neurological Institute, McGill University, Montréal, Quebec, Canada.
| |
Collapse
|
6
|
Bagonis M, Cornea E, Girault JB, Stephens RL, Kim S, Prieto JC, Styner M, Gilmore JH. Early Childhood Development of Node Centrality in the White Matter Connectome and Its Relationship to IQ at Age 6 Years. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:1024-1032. [PMID: 36162754 PMCID: PMC10033460 DOI: 10.1016/j.bpsc.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND The white matter (WM) connectome is important for cognitive development and intelligence and is altered in neuropsychiatric illnesses. Little is known about how the WM connectome develops or its relationship to IQ in early childhood. METHODS The development of node centrality in the WM connectome was studied in a longitudinal cohort of 226 (123 female) children from the University of North Carolina Early Brain Development Study. Structural and diffusion-weighted images were acquired after birth and at 1, 2, 4, and 6 years, and IQ was assessed at 6 years. Eigenvector centrality, betweenness centrality, and the global graph metrics of global efficiency, small worldness, and modularity were determined at each age. RESULTS The greatest developmental change in eigenvector centrality and betweenness centrality occurred during the first year of life, with relative stability between ages 1 and 6 years. Most of the high-centrality hubs at age 6 were also high-centrality hubs at 1 year, and many were already high-centrality hubs at birth. There were generally small but significant changes in global efficiency and modularity from birth to 6 years, while small worldness increased between 2 and 4 years. Individual node centrality was not significantly correlated with IQ at 6 years. CONCLUSIONS Node centrality in the WM connectome is established very early in childhood and is relatively stable from age 1 to 6 years. Many high-centrality hubs are established before birth, and most are present by age 1.
Collapse
Affiliation(s)
- Maria Bagonis
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Emil Cornea
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jessica B Girault
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Rebecca L Stephens
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - SunHyung Kim
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Juan Carlos Prieto
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Martin Styner
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - John H Gilmore
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| |
Collapse
|
7
|
Milisav F, Bazinet V, Iturria-Medina Y, Misic B. Resolving inter-regional communication capacity in the human connectome. Netw Neurosci 2023; 7:1051-1079. [PMID: 37781139 PMCID: PMC10473316 DOI: 10.1162/netn_a_00318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/03/2023] [Indexed: 10/03/2023] Open
Abstract
Applications of graph theory to the connectome have inspired several models of how neural signaling unfolds atop its structure. Analytic measures derived from these communication models have mainly been used to extract global characteristics of brain networks, obscuring potentially informative inter-regional relationships. Here we develop a simple standardization method to investigate polysynaptic communication pathways between pairs of cortical regions. This procedure allows us to determine which pairs of nodes are topologically closer and which are further than expected on the basis of their degree. We find that communication pathways delineate canonical functional systems. Relating nodal communication capacity to meta-analytic probabilistic patterns of functional specialization, we also show that areas that are most closely integrated within the network are associated with higher order cognitive functions. We find that these regions' proclivity towards functional integration could naturally arise from the brain's anatomical configuration through evenly distributed connections among multiple specialized communities. Throughout, we consider two increasingly constrained null models to disentangle the effects of the network's topology from those passively endowed by spatial embedding. Altogether, the present findings uncover relationships between polysynaptic communication pathways and the brain's functional organization across multiple topological levels of analysis and demonstrate that network integration facilitates cognitive integration.
Collapse
Affiliation(s)
- Filip Milisav
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Vincent Bazinet
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Yasser Iturria-Medina
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| |
Collapse
|
8
|
Astle DE, Johnson MH, Akarca D. Toward computational neuroconstructivism: a framework for developmental systems neuroscience. Trends Cogn Sci 2023; 27:726-744. [PMID: 37263856 DOI: 10.1016/j.tics.2023.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 01/05/2023] [Accepted: 04/19/2023] [Indexed: 06/03/2023]
Abstract
Brain development is underpinned by complex interactions between neural assemblies, driving structural and functional change. This neuroconstructivism (the notion that neural functions are shaped by these interactions) is core to some developmental theories. However, due to their complexity, understanding underlying developmental mechanisms is challenging. Elsewhere in neurobiology, a computational revolution has shown that mathematical models of hidden biological mechanisms can bridge observations with theory building. Can we build a similar computational framework yielding mechanistic insights for brain development? Here, we outline the conceptual and technical challenges of addressing this theory gap, and demonstrate that there is great potential in specifying brain development as mathematically defined processes operating within physical constraints. We provide examples, alongside broader ingredients needed, as the field explores computational explanations of system-wide development.
Collapse
Affiliation(s)
- Duncan E Astle
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 2QQ, UK; MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, UK.
| | - Mark H Johnson
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK; Centre for Brain and Cognitive Development, Birkbeck, University of London, London, WC1E 7JL, UK
| | - Danyal Akarca
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, UK
| |
Collapse
|
9
|
Jeon I, Kim T. Distinctive properties of biological neural networks and recent advances in bottom-up approaches toward a better biologically plausible neural network. Front Comput Neurosci 2023; 17:1092185. [PMID: 37449083 PMCID: PMC10336230 DOI: 10.3389/fncom.2023.1092185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Although it may appear infeasible and impractical, building artificial intelligence (AI) using a bottom-up approach based on the understanding of neuroscience is straightforward. The lack of a generalized governing principle for biological neural networks (BNNs) forces us to address this problem by converting piecemeal information on the diverse features of neurons, synapses, and neural circuits into AI. In this review, we described recent attempts to build a biologically plausible neural network by following neuroscientifically similar strategies of neural network optimization or by implanting the outcome of the optimization, such as the properties of single computational units and the characteristics of the network architecture. In addition, we proposed a formalism of the relationship between the set of objectives that neural networks attempt to achieve, and neural network classes categorized by how closely their architectural features resemble those of BNN. This formalism is expected to define the potential roles of top-down and bottom-up approaches for building a biologically plausible neural network and offer a map helping the navigation of the gap between neuroscience and AI engineering.
Collapse
Affiliation(s)
| | - Taegon Kim
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| |
Collapse
|
10
|
Bazinet V, Hansen JY, Vos de Wael R, Bernhardt BC, van den Heuvel MP, Misic B. Assortative mixing in micro-architecturally annotated brain connectomes. Nat Commun 2023; 14:2850. [PMID: 37202416 DOI: 10.1038/s41467-023-38585-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 05/08/2023] [Indexed: 05/20/2023] Open
Abstract
The wiring of the brain connects micro-architecturally diverse neuronal populations, but the conventional graph model, which encodes macroscale brain connectivity as a network of nodes and edges, abstracts away the rich biological detail of each regional node. Here, we annotate connectomes with multiple biological attributes and formally study assortative mixing in annotated connectomes. Namely, we quantify the tendency for regions to be connected based on the similarity of their micro-architectural attributes. We perform all experiments using four cortico-cortical connectome datasets from three different species, and consider a range of molecular, cellular, and laminar annotations. We show that mixing between micro-architecturally diverse neuronal populations is supported by long-distance connections and find that the arrangement of connections with respect to biological annotations is associated to patterns of regional functional specialization. By bridging scales of cortical organization, from microscale attributes to macroscale connectivity, this work lays the foundation for next-generation annotated connectomics.
Collapse
Affiliation(s)
- Vincent Bazinet
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Justine Y Hansen
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Reinder Vos de Wael
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Boris C Bernhardt
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Martijn P van den Heuvel
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada.
| |
Collapse
|
11
|
Vértes PE. Computational Models of Typical and Atypical Brain Network Development. Biol Psychiatry 2023; 93:464-470. [PMID: 36593135 DOI: 10.1016/j.biopsych.2022.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/29/2022] [Accepted: 11/16/2022] [Indexed: 11/26/2022]
Abstract
Over the last decade, the organization of brain networks at both micro- and macroscales has become a key focus of neuroscientific inquiry. This has revealed fundamental features of brain network organization-small-worldness, modularity, heavy-tailed degree distributions-and has highlighted how these structural features support brain function. However, the driving forces that shape brain networks over the course of development have begun to be explored only recently. Here, we review recent efforts to gain insights into the mechanisms of brain development through generative modeling of both macroscale human brain networks and microscale cellular connectomes in Caenorhabditis elegans and other organisms. We show how these mathematical models can begin to shed light on the biological processes that drive and constrain the development of brain networks. Finally, we show how generative network models can translate genetic and environmental differences into variability in developmental trajectories, leading to diverse cognitive and mental health outcomes in children and young people.
Collapse
Affiliation(s)
- Petra E Vértes
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
12
|
Pathak A, Menon SN, Sinha S. Mesoscopic architecture enhances communication across the macaque connectome revealing structure-function correspondence in the brain. Phys Rev E 2022; 106:054304. [PMID: 36559437 DOI: 10.1103/physreve.106.054304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/13/2022] [Indexed: 06/17/2023]
Abstract
Analyzing the brain in terms of organizational structures at intermediate scales provides an approach to unravel the complexity arising from interactions between its large number of components. Focusing on a wiring diagram that spans the cortex, basal ganglia, and thalamus of the macaque brain, we identify robust modules in the network that provide a mesoscopic-level description of its topological architecture. Surprisingly, we find that the modular architecture facilitates rapid communication across the network, instead of localizing activity as is typically expected in networks having community organization. By considering processes of diffusive spreading and coordination, we demonstrate that the specific pattern of inter- and intramodular connectivity in the network allows propagation to be even faster than equivalent randomized networks with or without modular structure. This pattern of connectivity is seen at different scales and is conserved across principal cortical divisions, as well as subcortical structures. Furthermore, we find that the physical proximity between areas is insufficient to explain the modular organization, as similar mesoscopic structures can be obtained even after factoring out the effect of distance constraints on the connectivity. By supplementing the topological information about the macaque connectome with physical locations, volumes, and functions of the constituent areas and analyzing this augmented dataset, we reveal a counterintuitive role played by the modular architecture of the brain in promoting global coordination of its activity. It suggests a possible explanation for the ubiquity of modularity in brain networks.
Collapse
Affiliation(s)
- Anand Pathak
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| | - Shakti N Menon
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India
| | - Sitabhra Sinha
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| |
Collapse
|
13
|
Damicelli F, Hilgetag CC, Goulas A. Brain connectivity meets reservoir computing. PLoS Comput Biol 2022; 18:e1010639. [PMID: 36383563 PMCID: PMC9710781 DOI: 10.1371/journal.pcbi.1010639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 11/30/2022] [Accepted: 10/05/2022] [Indexed: 11/17/2022] Open
Abstract
The connectivity of Artificial Neural Networks (ANNs) is different from the one observed in Biological Neural Networks (BNNs). Can the wiring of actual brains help improve ANNs architectures? Can we learn from ANNs about what network features support computation in the brain when solving a task? At a meso/macro-scale level of the connectivity, ANNs' architectures are carefully engineered and such those design decisions have crucial importance in many recent performance improvements. On the other hand, BNNs exhibit complex emergent connectivity patterns at all scales. At the individual level, BNNs connectivity results from brain development and plasticity processes, while at the species level, adaptive reconfigurations during evolution also play a major role shaping connectivity. Ubiquitous features of brain connectivity have been identified in recent years, but their role in the brain's ability to perform concrete computations remains poorly understood. Computational neuroscience studies reveal the influence of specific brain connectivity features only on abstract dynamical properties, although the implications of real brain networks topologies on machine learning or cognitive tasks have been barely explored. Here we present a cross-species study with a hybrid approach integrating real brain connectomes and Bio-Echo State Networks, which we use to solve concrete memory tasks, allowing us to probe the potential computational implications of real brain connectivity patterns on task solving. We find results consistent across species and tasks, showing that biologically inspired networks perform as well as classical echo state networks, provided a minimum level of randomness and diversity of connections is allowed. We also present a framework, bio2art, to map and scale up real connectomes that can be integrated into recurrent ANNs. This approach also allows us to show the crucial importance of the diversity of interareal connectivity patterns, stressing the importance of stochastic processes determining neural networks connectivity in general.
Collapse
Affiliation(s)
- Fabrizio Damicelli
- Institute of Computational Neuroscience, University Medical Center Hamburg Eppendorf, Hamburg University, Hamburg, Germany
| | - Claus C. Hilgetag
- Institute of Computational Neuroscience, University Medical Center Hamburg Eppendorf, Hamburg University, Hamburg, Germany
- Department of Health Sciences, Boston University, Boston, Massachusetts, United States of America
| | - Alexandros Goulas
- Institute of Computational Neuroscience, University Medical Center Hamburg Eppendorf, Hamburg University, Hamburg, Germany
| |
Collapse
|
14
|
Connectivity concepts in neuronal network modeling. PLoS Comput Biol 2022; 18:e1010086. [PMID: 36074778 PMCID: PMC9455883 DOI: 10.1371/journal.pcbi.1010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 04/07/2022] [Indexed: 11/19/2022] Open
Abstract
Sustainable research on computational models of neuronal networks requires published models to be understandable, reproducible, and extendable. Missing details or ambiguities about mathematical concepts and assumptions, algorithmic implementations, or parameterizations hinder progress. Such flaws are unfortunately frequent and one reason is a lack of readily applicable standards and tools for model description. Our work aims to advance complete and concise descriptions of network connectivity but also to guide the implementation of connection routines in simulation software and neuromorphic hardware systems. We first review models made available by the computational neuroscience community in the repositories ModelDB and Open Source Brain, and investigate the corresponding connectivity structures and their descriptions in both manuscript and code. The review comprises the connectivity of networks with diverse levels of neuroanatomical detail and exposes how connectivity is abstracted in existing description languages and simulator interfaces. We find that a substantial proportion of the published descriptions of connectivity is ambiguous. Based on this review, we derive a set of connectivity concepts for deterministically and probabilistically connected networks and also address networks embedded in metric space. Beside these mathematical and textual guidelines, we propose a unified graphical notation for network diagrams to facilitate an intuitive understanding of network properties. Examples of representative network models demonstrate the practical use of the ideas. We hope that the proposed standardizations will contribute to unambiguous descriptions and reproducible implementations of neuronal network connectivity in computational neuroscience.
Collapse
|
15
|
Oldham S, Fulcher BD, Aquino K, Arnatkevičiūtė A, Paquola C, Shishegar R, Fornito A. Modeling spatial, developmental, physiological, and topological constraints on human brain connectivity. SCIENCE ADVANCES 2022; 8:eabm6127. [PMID: 35658036 PMCID: PMC9166341 DOI: 10.1126/sciadv.abm6127] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 04/14/2022] [Indexed: 05/10/2023]
Abstract
The complex connectivity of nervous systems is thought to have been shaped by competitive selection pressures to minimize wiring costs and support adaptive function. Accordingly, recent modeling work indicates that stochastic processes, shaped by putative trade-offs between the cost and value of each connection, can successfully reproduce many topological properties of macroscale human connectomes measured with diffusion magnetic resonance imaging. Here, we derive a new formalism that more accurately captures the competing pressures of wiring cost minimization and topological complexity. We further show that model performance can be improved by accounting for developmental changes in brain geometry and associated wiring costs, and by using interregional transcriptional or microstructural similarity rather than topological wiring rules. However, all models struggled to capture topographical (i.e., spatial) network properties. Our findings highlight an important role for genetics in shaping macroscale brain connectivity and indicate that stochastic models offer an incomplete account of connectome organization.
Collapse
Affiliation(s)
- Stuart Oldham
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Melbourne, VIC, Australia
- Murdoch Children’s Research Institute, Melbourne, VIC, Australia
| | - Ben D. Fulcher
- School of Physics, The University of Sydney, Sydney, NSW, Australia
| | - Kevin Aquino
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Melbourne, VIC, Australia
- School of Physics, The University of Sydney, Sydney, NSW, Australia
| | - Aurina Arnatkevičiūtė
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Melbourne, VIC, Australia
| | - Casey Paquola
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich, Jülich, Germany
| | - Rosita Shishegar
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Melbourne, VIC, Australia
- The Australian e-Health Research Centre, CSIRO, Melbourne, VIC, Australia
| | - Alex Fornito
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
16
|
Abstract
Recent advances in imaging and tracing technology provide increasingly detailed reconstructions of brain connectomes. Concomitant analytic advances enable rigorous identification and quantification of functionally important features of brain network architecture. Null models are a flexible tool to statistically benchmark the presence or magnitude of features of interest, by selectively preserving specific architectural properties of brain networks while systematically randomizing others. Here we describe the logic, implementation and interpretation of null models of connectomes. We introduce randomization and generative approaches to constructing null networks, and outline a taxonomy of network methods for statistical inference. We highlight the spectrum of null models - from liberal models that control few network properties, to conservative models that recapitulate multiple properties of empirical networks - that allow us to operationalize and test detailed hypotheses about the structure and function of brain networks. We review emerging scenarios for the application of null models in network neuroscience, including for spatially embedded networks, annotated networks and correlation-derived networks. Finally, we consider the limits of null models, as well as outstanding questions for the field.
Collapse
|
17
|
Bernhardt BC, Smallwood J, Keilholz S, Margulies DS. Gradients in Brain Organization. Neuroimage 2022; 251:118987. [PMID: 35151850 DOI: 10.1016/j.neuroimage.2022.118987] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 12/14/2022] Open
Affiliation(s)
- Boris C Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| | | | - Shella Keilholz
- Biomedical Engineering, Emory University / Georgia Institute of Technology, Atlanta, Georgia
| | - Daniel S Margulies
- Integrative Neuroscience and Cognition Center, Centre National de la Recherche Scientifique (CNRS) and Université de Paris, Paris, France
| |
Collapse
|
18
|
van Albada SJ, Morales-Gregorio A, Dickscheid T, Goulas A, Bakker R, Bludau S, Palm G, Hilgetag CC, Diesmann M. Bringing Anatomical Information into Neuronal Network Models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1359:201-234. [DOI: 10.1007/978-3-030-89439-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Chen LZ, Holmes AJ, Zuo XN, Dong Q. Neuroimaging brain growth charts: A road to mental health. PSYCHORADIOLOGY 2021; 1:272-286. [PMID: 35028568 PMCID: PMC8739332 DOI: 10.1093/psyrad/kkab022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/03/2021] [Accepted: 12/17/2021] [Indexed: 12/30/2022]
Abstract
Mental disorders are common health concerns and contribute to a heavy global burden on our modern society. It is challenging to identify and treat them timely. Neuroimaging evidence suggests the incidence of various psychiatric and behavioral disorders is closely related to the atypical development of brain structure and function. The identification and understanding of atypical brain development provide chances for clinicians to detect mental disorders earlier, perhaps even prior to onset, and treat them more precisely. An invaluable and necessary method in identifying and monitoring atypical brain development are growth charts of typically developing individuals in the population. The brain growth charts can offer a series of standard references on typical neurodevelopment, representing an important resource for the scientific and medical communities. In the present paper, we review the relationship between mental disorders and atypical brain development from a perspective of normative brain development by surveying the recent progress in the development of brain growth charts, including four aspects on growth chart utility: 1) cohorts, 2) measures, 3) mechanisms, and 4) clinical translations. In doing so, we seek to clarify the challenges and opportunities in charting brain growth, and to promote the application of brain growth charts in clinical practice.
Collapse
Affiliation(s)
- Li-Zhen Chen
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Avram J Holmes
- Department of Psychology, Yale University, New Haven, CT 06511, USA
- Department of Psychiatry, Yale University, New Haven, CT 06511, USA
| | - Xi-Nian Zuo
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
- National Basic Science Data Center, Beijing 100190, China
- Developmental Population Neuroscience Research Center, International Data Group/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
- Research Center for Lifespan Development of Mind and Brain, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qi Dong
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
20
|
Markello RD, Arnatkeviciute A, Poline JB, Fulcher BD, Fornito A, Misic B. Standardizing workflows in imaging transcriptomics with the abagen toolbox. eLife 2021; 10:e72129. [PMID: 34783653 PMCID: PMC8660024 DOI: 10.7554/elife.72129] [Citation(s) in RCA: 198] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
Gene expression fundamentally shapes the structural and functional architecture of the human brain. Open-access transcriptomic datasets like the Allen Human Brain Atlas provide an unprecedented ability to examine these mechanisms in vivo; however, a lack of standardization across research groups has given rise to myriad processing pipelines for using these data. Here, we develop the abagen toolbox, an open-access software package for working with transcriptomic data, and use it to examine how methodological variability influences the outcomes of research using the Allen Human Brain Atlas. Applying three prototypical analyses to the outputs of 750,000 unique processing pipelines, we find that choice of pipeline has a large impact on research findings, with parameters commonly varied in the literature influencing correlations between derived gene expression and other imaging phenotypes by as much as ρ ≥ 1.0. Our results further reveal an ordering of parameter importance, with processing steps that influence gene normalization yielding the greatest impact on downstream statistical inferences and conclusions. The presented work and the development of the abagen toolbox lay the foundation for more standardized and systematic research in imaging transcriptomics, and will help to advance future understanding of the influence of gene expression in the human brain.
Collapse
Affiliation(s)
- Ross D Markello
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill UniversityMontrealCanada
| | - Aurina Arnatkeviciute
- School of Psychological Sciences & Monash Biomedical Imaging, Monash UniversityClaytonAustralia
| | - Jean-Baptiste Poline
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill UniversityMontrealCanada
| | - Ben D Fulcher
- School of Physics, University of SydneySydneyAustralia
| | - Alex Fornito
- School of Psychological Sciences & Monash Biomedical Imaging, Monash UniversityClaytonAustralia
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill UniversityMontrealCanada
| |
Collapse
|
21
|
Oldham S, Ball G, Fornito A. Early and late development of hub connectivity in the human brain. Curr Opin Psychol 2021; 44:321-329. [PMID: 34896927 DOI: 10.1016/j.copsyc.2021.10.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/14/2021] [Accepted: 10/28/2021] [Indexed: 12/28/2022]
Abstract
Human brain networks undergo pronounced changes during development. The emergence of highly connected hub regions that can support integrated brain function is central to this maturational process, with these areas undergoing a particularly protracted period of development that extends into adulthood. The location of cortical network hubs emerges early but connections to and from hubs continue to strengthen throughout childhood and adolescence. Patterns of functional coupling in cortical association hubs are immature and incomplete at birth, but gradually strengthen during development. Early establishment of hub connectivity may provide a stable substrate that is refined by changes in tissue organization and microstructure, resulting in the emergence of complex functional dynamics by adulthood.
Collapse
Affiliation(s)
- Stuart Oldham
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Victoria, Australia; Developmental Imaging, Murdoch Children's Research Institute, Victoria, Australia.
| | - Gareth Ball
- Developmental Imaging, Murdoch Children's Research Institute, Victoria, Australia; Department of Paediatrics, University of Melbourne, Victoria, Australia
| | - Alex Fornito
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Victoria, Australia
| |
Collapse
|
22
|
Lam MTY, Duttke SH, Odish MF, Le HD, Hansen EA, Nguyen CT, Trescott S, Kim R, Deota S, Chang MW, Patel A, Hepokoski M, Alotaibi M, Rolfsen M, Perofsky K, Warden AS, Foley J, Ramirez SI, Dan JM, Abbott RK, Crotty S, Crotty Alexander LE, Malhotra A, Panda S, Benner CW, Coufal NG. Profiling Transcription Initiation in Peripheral Leukocytes Reveals Severity-Associated Cis-Regulatory Elements in Critical COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.08.24.457187. [PMID: 34462742 DOI: 10.1101/2021.10.28.466336] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The contribution of transcription factors (TFs) and gene regulatory programs in the immune response to COVID-19 and their relationship to disease outcome is not fully understood. Analysis of genome-wide changes in transcription at both promoter-proximal and distal cis-regulatory DNA elements, collectively termed the 'active cistrome,' offers an unbiased assessment of TF activity identifying key pathways regulated in homeostasis or disease. Here, we profiled the active cistrome from peripheral leukocytes of critically ill COVID-19 patients to identify major regulatory programs and their dynamics during SARS-CoV-2 associated acute respiratory distress syndrome (ARDS). We identified TF motifs that track the severity of COVID- 19 lung injury, disease resolution, and outcome. We used unbiased clustering to reveal distinct cistrome subsets delineating the regulation of pathways, cell types, and the combinatorial activity of TFs. We found critical roles for regulatory networks driven by stimulus and lineage determining TFs, showing that STAT and E2F/MYB regulatory programs targeting myeloid cells are activated in patients with poor disease outcomes and associated with single nucleotide genetic variants implicated in COVID-19 susceptibility. Integration with single-cell RNA-seq found that STAT and E2F/MYB activation converged in specific neutrophils subset found in patients with severe disease. Collectively we demonstrate that cistrome analysis facilitates insight into disease mechanisms and provides an unbiased approach to evaluate global changes in transcription factor activity and stratify patient disease severity.
Collapse
Affiliation(s)
- Michael Tun Yin Lam
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, CA USA
- Laboratory of Regulatory Biology, Salk Institute of Biological Studies, La Jolla, CA, USA
| | - Sascha H Duttke
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, CA, USA
| | - Mazen F Odish
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, CA USA
| | - Hiep D Le
- Laboratory of Regulatory Biology, Salk Institute of Biological Studies, La Jolla, CA, USA
| | - Emily A Hansen
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
- Department of Pediatrics, University of California, San Diego, CA, USA
| | - Celina T Nguyen
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
| | - Samantha Trescott
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
- Department of Pediatrics, University of California, San Diego, CA, USA
| | - Roy Kim
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
- Department of Pediatrics, University of California, San Diego, CA, USA
| | - Shaunak Deota
- Laboratory of Regulatory Biology, Salk Institute of Biological Studies, La Jolla, CA, USA
| | - Max W Chang
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, CA, USA
| | - Arjun Patel
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, CA USA
| | - Mark Hepokoski
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, CA USA
| | - Mona Alotaibi
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, CA USA
| | - Mark Rolfsen
- Internal Medicine Residency Program, Department of Medicine, UC San Diego, CA, USA
| | - Katherine Perofsky
- Department of Pediatrics, University of California, San Diego, CA, USA
- Rady Children's Hospital, San Diego, CA
| | - Anna S Warden
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, CA, USA
| | | | - Sydney I Ramirez
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego
- Center for Infectious Diseases and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA
| | - Jennifer M Dan
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego
- Center for Infectious Diseases and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA
| | - Robert K Abbott
- Center for Infectious Diseases and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA
- Consortium for HIV/AIDS Vaccine Development (CHVAD), The Scripps Research Institute, La Jolla, CA, USA
| | - Shane Crotty
- Center for Infectious Diseases and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA
| | - Laura E Crotty Alexander
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, CA USA
| | - Atul Malhotra
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, CA USA
| | - Satchidananda Panda
- Laboratory of Regulatory Biology, Salk Institute of Biological Studies, La Jolla, CA, USA
| | - Christopher W Benner
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, CA, USA
| | - Nicole G Coufal
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
- Department of Pediatrics, University of California, San Diego, CA, USA
- Rady Children's Hospital, San Diego, CA
| |
Collapse
|
23
|
Goulas A, Damicelli F, Hilgetag CC. Bio-instantiated recurrent neural networks: Integrating neurobiology-based network topology in artificial networks. Neural Netw 2021; 142:608-618. [PMID: 34391175 DOI: 10.1016/j.neunet.2021.07.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/21/2021] [Accepted: 07/08/2021] [Indexed: 11/19/2022]
Abstract
Biological neuronal networks (BNNs) are a source of inspiration and analogy making for researchers that focus on artificial neuronal networks (ANNs). Moreover, neuroscientists increasingly use ANNs as a model for the brain. Despite certain similarities between these two types of networks, important differences can be discerned. First, biological neural networks are sculpted by evolution and the constraints that it entails, whereas artificial neural networks are engineered to solve particular tasks. Second, the network topology of these systems, apart from some analogies that can be drawn, exhibits pronounced differences. Here, we examine strategies to construct recurrent neural networks (RNNs) that instantiate the network topology of brains of different species. We refer to such RNNs as bio-instantiated. We investigate the performance of bio-instantiated RNNs in terms of: (i) the prediction performance itself, that is, the capacity of the network to minimize the cost function at hand in test data, and (ii) speed of training, that is, how fast during training the network reaches its optimal performance. We examine bio-instantiated RNNs in working memory tasks where task-relevant information must be tracked as a sequence of events unfolds in time. We highlight the strategies that can be used to construct RNNs with the network topology found in BNNs, without sacrificing performance. Despite that we observe no enhancement of performance when compared to randomly wired RNNs, our approach demonstrates how empirical neural network data can be used for constructing RNNs, thus, facilitating further experimentation with biologically realistic network topologies, in contexts where such aspect is desired.
Collapse
Affiliation(s)
- Alexandros Goulas
- Institute of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg University, Martinistr 52, 20246 Hamburg, Germany.
| | - Fabrizio Damicelli
- Institute of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg University, Martinistr 52, 20246 Hamburg, Germany
| | - Claus C Hilgetag
- Institute of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg University, Martinistr 52, 20246 Hamburg, Germany; Health Sciences Department, Boston University, Boston, MA 02215, USA
| |
Collapse
|
24
|
Arnatkeviciute A, Fulcher BD, Oldham S, Tiego J, Paquola C, Gerring Z, Aquino K, Hawi Z, Johnson B, Ball G, Klein M, Deco G, Franke B, Bellgrove MA, Fornito A. Genetic influences on hub connectivity of the human connectome. Nat Commun 2021; 12:4237. [PMID: 34244483 PMCID: PMC8271018 DOI: 10.1038/s41467-021-24306-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
Brain network hubs are both highly connected and highly inter-connected, forming a critical communication backbone for coherent neural dynamics. The mechanisms driving this organization are poorly understood. Using diffusion-weighted magnetic resonance imaging in twins, we identify a major role for genes, showing that they preferentially influence connectivity strength between network hubs of the human connectome. Using transcriptomic atlas data, we show that connected hubs demonstrate tight coupling of transcriptional activity related to metabolic and cytoarchitectonic similarity. Finally, comparing over thirteen generative models of network growth, we show that purely stochastic processes cannot explain the precise wiring patterns of hubs, and that model performance can be improved by incorporating genetic constraints. Our findings indicate that genes play a strong and preferential role in shaping the functionally valuable, metabolically costly connections between connectome hubs.
Collapse
Affiliation(s)
- Aurina Arnatkeviciute
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Melbourne, VIC, Australia.
| | - Ben D Fulcher
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Melbourne, VIC, Australia
- School of Physics, The University of Sydney, Camperdown, NSW, Australia
| | - Stuart Oldham
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Melbourne, VIC, Australia
| | - Jeggan Tiego
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Melbourne, VIC, Australia
| | - Casey Paquola
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich, Jülich, Germany
| | - Zachary Gerring
- Translational Neurogenomics Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Kevin Aquino
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Melbourne, VIC, Australia
- School of Physics, The University of Sydney, Camperdown, NSW, Australia
| | - Ziarih Hawi
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Melbourne, VIC, Australia
| | - Beth Johnson
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Melbourne, VIC, Australia
| | - Gareth Ball
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Marieke Klein
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Gustavo Deco
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Melbourne, VIC, Australia
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Barbara Franke
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
- Department of Psychiatry, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Mark A Bellgrove
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Melbourne, VIC, Australia
| | - Alex Fornito
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
25
|
Akarca D, Vértes PE, Bullmore ET, Astle DE. A generative network model of neurodevelopmental diversity in structural brain organization. Nat Commun 2021; 12:4216. [PMID: 34244490 PMCID: PMC8270998 DOI: 10.1038/s41467-021-24430-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 05/27/2021] [Indexed: 02/07/2023] Open
Abstract
The formation of large-scale brain networks, and their continual refinement, represent crucial developmental processes that can drive individual differences in cognition and which are associated with multiple neurodevelopmental conditions. But how does this organization arise, and what mechanisms drive diversity in organization? We use generative network modeling to provide a computational framework for understanding neurodevelopmental diversity. Within this framework macroscopic brain organization, complete with spatial embedding of its organization, is an emergent property of a generative wiring equation that optimizes its connectivity by renegotiating its biological costs and topological values continuously over time. The rules that govern these iterative wiring properties are controlled by a set of tightly framed parameters, with subtle differences in these parameters steering network growth towards different neurodiverse outcomes. Regional expression of genes associated with the simulations converge on biological processes and cellular components predominantly involved in synaptic signaling, neuronal projection, catabolic intracellular processes and protein transport. Together, this provides a unifying computational framework for conceptualizing the mechanisms and diversity in neurodevelopment, capable of integrating different levels of analysis-from genes to cognition.
Collapse
Affiliation(s)
- Danyal Akarca
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK.
| | - Petra E Vértes
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- The Alan Turing Institute, London, UK
| | - Edward T Bullmore
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
| | - Duncan E Astle
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
26
|
Song Y, Zhou D, Li S. Maximum Entropy Principle Underlies Wiring Length Distribution in Brain Networks. Cereb Cortex 2021; 31:4628-4641. [PMID: 33999124 DOI: 10.1093/cercor/bhab110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 11/14/2022] Open
Abstract
A brain network comprises a substantial amount of short-range connections with an admixture of long-range connections. The portion of long-range connections in brain networks is observed to be quantitatively dissimilar across species. It is hypothesized that the length of connections is constrained by the spatial embedding of brain networks, yet fundamental principles that underlie the wiring length distribution remain unclear. By quantifying the structural diversity of a brain network using Shannon's entropy, here we show that the wiring length distribution across multiple species-including Drosophila, mouse, macaque, human, and C. elegans-follows the maximum entropy principle (MAP) under the constraints of limited wiring material and the spatial locations of brain areas or neurons. In addition, by considering stochastic axonal growth, we propose a network formation process capable of reproducing wiring length distributions of the 5 species, thereby implementing MAP in a biologically plausible manner. We further develop a generative model incorporating MAP, and show that, for the 5 species, the generated network exhibits high similarity to the real network. Our work indicates that the brain connectivity evolves to be structurally diversified by maximizing entropy to support efficient interareal communication, providing a potential organizational principle of brain networks.
Collapse
Affiliation(s)
- Yuru Song
- Neuroscience Graduate Program, University of California, San Diego, CA, USA
| | - Douglas Zhou
- School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China.,Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China.,Ministry of Education Key Laboratory of Scientific and Engineering Computing, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Songting Li
- School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China.,Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China.,Ministry of Education Key Laboratory of Scientific and Engineering Computing, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
27
|
Changeux JP, Goulas A, Hilgetag CC. A Connectomic Hypothesis for the Hominization of the Brain. Cereb Cortex 2021; 31:2425-2449. [PMID: 33367521 PMCID: PMC8023825 DOI: 10.1093/cercor/bhaa365] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023] Open
Abstract
Cognitive abilities of the human brain, including language, have expanded dramatically in the course of our recent evolution from nonhuman primates, despite only minor apparent changes at the gene level. The hypothesis we propose for this paradox relies upon fundamental features of human brain connectivity, which contribute to a characteristic anatomical, functional, and computational neural phenotype, offering a parsimonious framework for connectomic changes taking place upon the human-specific evolution of the genome. Many human connectomic features might be accounted for by substantially increased brain size within the global neural architecture of the primate brain, resulting in a larger number of neurons and areas and the sparsification, increased modularity, and laminar differentiation of cortical connections. The combination of these features with the developmental expansion of upper cortical layers, prolonged postnatal brain development, and multiplied nongenetic interactions with the physical, social, and cultural environment gives rise to categorically human-specific cognitive abilities including the recursivity of language. Thus, a small set of genetic regulatory events affecting quantitative gene expression may plausibly account for the origins of human brain connectivity and cognition.
Collapse
Affiliation(s)
- Jean-Pierre Changeux
- CNRS UMR 3571, Institut Pasteur, 75724 Paris, France
- Communications Cellulaires, Collège de France, 75005 Paris, France
| | - Alexandros Goulas
- Institute of Computational Neuroscience, University Medical Center Eppendorf, Hamburg University, 20246 Hamburg, Germany
| | - Claus C Hilgetag
- Institute of Computational Neuroscience, University Medical Center Eppendorf, Hamburg University, 20246 Hamburg, Germany
- Department of Health Sciences, Boston University, Boston, MA 02115, USA
| |
Collapse
|
28
|
Friedrich P, Forkel SJ, Amiez C, Balsters JH, Coulon O, Fan L, Goulas A, Hadj-Bouziane F, Hecht EE, Heuer K, Jiang T, Latzman RD, Liu X, Loh KK, Patil KR, Lopez-Persem A, Procyk E, Sallet J, Toro R, Vickery S, Weis S, Wilson CRE, Xu T, Zerbi V, Eickoff SB, Margulies DS, Mars RB, Thiebaut de Schotten M. Imaging evolution of the primate brain: the next frontier? Neuroimage 2021; 228:117685. [PMID: 33359344 PMCID: PMC7116589 DOI: 10.1016/j.neuroimage.2020.117685] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 11/22/2022] Open
Abstract
Evolution, as we currently understand it, strikes a delicate balance between animals' ancestral history and adaptations to their current niche. Similarities between species are generally considered inherited from a common ancestor whereas observed differences are considered as more recent evolution. Hence comparing species can provide insights into the evolutionary history. Comparative neuroimaging has recently emerged as a novel subdiscipline, which uses magnetic resonance imaging (MRI) to identify similarities and differences in brain structure and function across species. Whereas invasive histological and molecular techniques are superior in spatial resolution, they are laborious, post-mortem, and oftentimes limited to specific species. Neuroimaging, by comparison, has the advantages of being applicable across species and allows for fast, whole-brain, repeatable, and multi-modal measurements of the structure and function in living brains and post-mortem tissue. In this review, we summarise the current state of the art in comparative anatomy and function of the brain and gather together the main scientific questions to be explored in the future of the fascinating new field of brain evolution derived from comparative neuroimaging.
Collapse
Affiliation(s)
- Patrick Friedrich
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France; Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA, University of Bordeaux, Bordeaux, France; Institute of Neuroscience and Medicine (Brain & Behaviour, INM-7), Research Center Jülich, Germany.
| | - Stephanie J Forkel
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France; Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA, University of Bordeaux, Bordeaux, France; Centre for Neuroimaging Sciences, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Céline Amiez
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute, U1208 Bron, France
| | - Joshua H Balsters
- Department of Psychology, Royal Holloway University of London, United Kingdom
| | - Olivier Coulon
- Institut de Neurosciences de la Timone, Aix Marseille Univ, CNRS, UMR 7289, Marseille, France; Institute for Language, Communication, and the Brain, Aix-Marseille University, Marseille, France
| | - Lingzhong Fan
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Alexandros Goulas
- Institute of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg University, Hamburg, Germany
| | - Fadila Hadj-Bouziane
- Lyon Neuroscience Research Center, ImpAct Team, INSERM U1028, CNRS UMR5292, Université Lyon 1, Bron, France
| | - Erin E Hecht
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, United States
| | - Katja Heuer
- Center for Research and Interdisciplinarity (CRI), Université de Paris, Inserm, Paris 75004, France; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Tianzi Jiang
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; The Queensland Brain Institute, University of Queensland, Brisbane QLD 4072, Australia
| | - Robert D Latzman
- Department of Psychology, Georgia State University, Atlanta, United States
| | - Xiaojin Liu
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany; Institute of Neuroscience and Medicine (Brain & Behaviour, INM-7), Research Center Jülich, Germany
| | - Kep Kee Loh
- Institut de Neurosciences de la Timone, Aix Marseille Univ, CNRS, UMR 7289, Marseille, France; Institute for Language, Communication, and the Brain, Aix-Marseille University, Marseille, France
| | - Kaustubh R Patil
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany; Institute of Neuroscience and Medicine (Brain & Behaviour, INM-7), Research Center Jülich, Germany
| | - Alizée Lopez-Persem
- Frontlab, Institut du Cerveau et de la Moelle épinière (ICM), UPMC UMRS 1127, Inserm U 1127, CNRS UMR 7225, Paris, France; Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Emmanuel Procyk
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute, U1208 Bron, France
| | - Jerome Sallet
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute, U1208 Bron, France; Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Roberto Toro
- Center for Research and Interdisciplinarity (CRI), Université de Paris, Inserm, Paris 75004, France; Neuroscience department, Institut Pasteur, UMR 3571, CNRS, Université de Paris, Paris 75015, France
| | - Sam Vickery
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany; Institute of Neuroscience and Medicine (Brain & Behaviour, INM-7), Research Center Jülich, Germany
| | - Susanne Weis
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany; Institute of Neuroscience and Medicine (Brain & Behaviour, INM-7), Research Center Jülich, Germany
| | - Charles R E Wilson
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute, U1208 Bron, France
| | - Ting Xu
- Child Mind Institute, New York, United States
| | - Valerio Zerbi
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Simon B Eickoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany; Institute of Neuroscience and Medicine (Brain & Behaviour, INM-7), Research Center Jülich, Germany
| | - Daniel S Margulies
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France; Integrative Neuroscience and Cognition Center (UMR 8002), Centre National de la Recherche Scientifique (CNRS) and Université de Paris, 75006, Paris, France
| | - Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom; Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Michel Thiebaut de Schotten
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France; Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA, University of Bordeaux, Bordeaux, France.
| |
Collapse
|
29
|
Beul SF, Goulas A, Hilgetag CC. An architectonic type principle in the development of laminar patterns of cortico-cortical connections. Brain Struct Funct 2021; 226:979-987. [PMID: 33559742 PMCID: PMC8036174 DOI: 10.1007/s00429-021-02219-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/12/2021] [Indexed: 12/21/2022]
Abstract
Structural connections between cortical areas form an intricate network with a high degree of specificity. Many aspects of this complex network organization in the adult mammalian cortex are captured by an architectonic type principle, which relates structural connections to the architectonic differentiation of brain regions. In particular, the laminar patterns of projection origins are a prominent feature of structural connections that varies in a graded manner with the relative architectonic differentiation of connected areas in the adult brain. Here we show that the architectonic type principle is already apparent for the laminar origins of cortico-cortical projections in the immature cortex of the macaque monkey. We find that prenatal and neonatal laminar patterns correlate with cortical architectonic differentiation, and that the relation of laminar patterns to architectonic differences between connected areas is not substantially altered by the complete loss of visual input. Moreover, we find that the degree of change in laminar patterns that projections undergo during development varies in proportion to the relative architectonic differentiation of the connected areas. Hence, it appears that initial biases in laminar projection patterns become progressively strengthened by later developmental processes. These findings suggest that early neurogenetic processes during the formation of the brain are sufficient to establish the characteristic laminar projection patterns. This conclusion is in line with previously suggested mechanistic explanations underlying the emergence of the architectonic type principle and provides further constraints for exploring the fundamental factors that shape structural connectivity in the mammalian brain.
Collapse
Affiliation(s)
- Sarah F Beul
- University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Alexandros Goulas
- University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Claus C Hilgetag
- University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany. .,Department of Health Sciences, Boston University, 635 Commonwealth Avenue, Boston, MA, 02215, USA.
| |
Collapse
|
30
|
Basu A, Ash PEA, Wolozin B, Emili A. Protein Interaction Network Biology in Neuroscience. Proteomics 2021; 21:e1900311. [PMID: 33314619 PMCID: PMC7900949 DOI: 10.1002/pmic.201900311] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/27/2020] [Indexed: 01/04/2023]
Abstract
Mapping the intricate networks of cellular proteins in the human brain has the potential to address unsolved questions in molecular neuroscience, including the molecular basis of cognition, synaptic plasticity, long-term potentiation, learning, and memory. Perturbations to the protein-protein interaction networks (PPIN) present in neurons, glia, and other cell-types have been linked to multifactorial neurological disorders. Yet while knowledge of brain PPINs is steadily improving, the complexity and dynamic nature of the heterogeneous central nervous system in normal and disease contexts poses a formidable experimental challenge. In this review, the recent applications of functional proteomics and systems biology approaches to study PPINs central to normal neuronal function, during neurodevelopment, and in neurodegenerative disorders are summarized. How systematic PPIN analysis offers a unique mechanistic framework to explore intra- and inter-cellular functional modules governing neuronal activity and brain function is also discussed. Finally, future technological advancements needed to address outstanding questions facing neuroscience are outlined.
Collapse
Affiliation(s)
- Avik Basu
- Center for Network Systems BiologyBoston UniversityBostonMA02118USA
- Department of BiochemistryBoston University School of MedicineBostonMA02118USA
| | - Peter EA Ash
- Department of Pharmacology and Experimental TherapeuticsBoston University School of MedicineBostonMA02118USA
| | - Benjamin Wolozin
- Department of Pharmacology and Experimental TherapeuticsBoston University School of MedicineBostonMA02118USA
| | - Andrew Emili
- Center for Network Systems BiologyBoston UniversityBostonMA02118USA
- Department of BiochemistryBoston University School of MedicineBostonMA02118USA
- Department of BiologyBoston UniversityBostonMA02215USA
| |
Collapse
|
31
|
Beul SF, Hilgetag CC. Systematic modelling of the development of laminar projection origins in the cerebral cortex: Interactions of spatio-temporal patterns of neurogenesis and cellular heterogeneity. PLoS Comput Biol 2020; 16:e1007991. [PMID: 33048930 PMCID: PMC7553356 DOI: 10.1371/journal.pcbi.1007991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 05/27/2020] [Indexed: 11/18/2022] Open
Abstract
The architectonic type principle conceptualizes structural connections between brain areas in terms of the relative architectonic differentiation of connected areas. It has previously been shown that spatio-temporal interactions between the time and place of neurogenesis could underlie multiple features of empirical mammalian connectomes, such as projection existence and the distribution of projection strengths. However, so far no mechanistic explanation for the emergence of typically observed laminar patterns of projection origins and terminations has been tested. Here, we expand an in silico model of the developing cortical sheet to explore which factors could potentially constrain the development of laminar projection patterns. We show that manipulations which rely solely on spatio-temporal interactions, namely the relative density of laminar compartments, a delay in the neurogenesis of infragranular layers relative to layer 1, and a delay in the neurogenesis of supragranular layers relative to infragranular layers, do not result in the striking correlation between supragranular contribution to projections and the relative differentiation of areas that is typically observed in the mammalian cortex. In contrast, we find that if we introduce systematic variation in cell-intrinsic properties, coupling them with architectonic differentiation, the resulting laminar projection patterns closely mirror the empirically observed patterns. We also find that the spatio-temporal interactions posited to occur during neurogenesis are necessary for the formation of the characteristic laminar patterns. Hence, our results indicate that the specification of the laminar patterns of projection origins may result from systematic variation in a number of cell-intrinsic properties, superimposed on the previously identified spatio-temporal interactions which are sufficient for the emergence of the architectonic type principle on the level of inter-areal connectivity in silico.
Collapse
Affiliation(s)
- Sarah F Beul
- Institute of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claus C Hilgetag
- Institute of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, Massachusetts, United States of America
| |
Collapse
|
32
|
Hilgetag CC, Beul SF, van Albada SJ, Goulas A. An architectonic type principle integrates macroscopic cortico-cortical connections with intrinsic cortical circuits of the primate brain. Netw Neurosci 2019; 3:905-923. [PMID: 31637331 PMCID: PMC6777964 DOI: 10.1162/netn_a_00100] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 06/07/2019] [Indexed: 12/31/2022] Open
Abstract
The connections linking neurons within and between cerebral cortical areas form a multiscale network for communication. We review recent work relating essential features of cortico-cortical connections, such as their existence and laminar origins and terminations, to fundamental structural parameters of cortical areas, such as their distance, similarity in cytoarchitecture, defined by lamination or neuronal density, and other macroscopic and microscopic structural features. These analyses demonstrate the presence of an architectonic type principle. Across species and cortices, the essential features of cortico-cortical connections vary consistently and strongly with the cytoarchitectonic similarity of cortical areas. By contrast, in multivariate analyses such relations were not found consistently for distance, similarity of cortical thickness, or cellular morphology. Gradients of laminar cortical differentiation, as reflected in overall neuronal density, also correspond to regional variations of cellular features, forming a spatially ordered natural axis of concerted architectonic and connectional changes across the cortical sheet. The robustness of findings across mammalian brains allows cross-species predictions of the existence and laminar patterns of projections, including estimates for the human brain that are not yet available experimentally. The architectonic type principle integrates cortical connectivity and architecture across scales, with implications for computational explorations of cortical physiology and developmental mechanisms.
Collapse
Affiliation(s)
- Claus C Hilgetag
- Institute of Computational Neuroscience, University Medical Center Eppendorf, Hamburg University, Germany
| | - Sarah F Beul
- Institute of Computational Neuroscience, University Medical Center Eppendorf, Hamburg University, Germany
| | - Sacha J van Albada
- Institute of Neuroscience and Medicine (INM-6), Institute for Advanced Simulation (IAS-6), and JARA-Institute of Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Germany
| | - Alexandros Goulas
- Institute of Computational Neuroscience, University Medical Center Eppendorf, Hamburg University, Germany
| |
Collapse
|
33
|
Kaiser M. Computational models and fundamental constraints can inform the design of synthetic connectomes: Comment on "What would a synthetic connectome look like?" by Ithai Rabinowitch. Phys Life Rev 2019; 33:16-18. [PMID: 31416703 DOI: 10.1016/j.plrev.2019.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 10/26/2022]
Affiliation(s)
- Marcus Kaiser
- Interdisciplinary Computing and Complex BioSystems (ICOS) research group, School of Computing, Newcastle University, Newcastle upon Tyne, NE4 5TG, United Kingdom; Department of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China.
| |
Collapse
|