1
|
Wu W, Zhang P, Li D, He K. Multi-Transcriptomic Analysis Reveals GSC-Driven MES-Like Differentiation via EMT in GBM Cell-Cell Communication. Biomedicines 2025; 13:1304. [PMID: 40564022 PMCID: PMC12189402 DOI: 10.3390/biomedicines13061304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 05/23/2025] [Accepted: 05/24/2025] [Indexed: 06/28/2025] Open
Abstract
Background: Glioblastoma (GBM) is the most malignant brain tumor, with a cellular hierarchy dominated by glioma stem cells (GSCs). Understanding global communications among GSCs and other cells helps us identify potential new therapeutic targets. In this study, multi-transcriptomic analysis was utilized to explore the communication pattern of GSCs in GBM. Methods: CellChat was used to quantitatively infer and analyze intercellular communication networks from GBM single-cell RNA-sequencing (scRNA-seq) data. Gene set enrichment analysis (GSEA) was conducted to identify specific biological pathways (epithelial-mesenchymal transition, EMT) involved in the communication pattern of GSCs. Spatial transcriptomic database was used to support the relationship between EMT and GSC proliferation. Single-sample GSEA (ssGSEA) was employed to assess which GSC state exhibited the strongest association with the EMT signature. Results: The cell communication pattern of GSCs is mostly related to EMT. Multiple EMT-related genes are highly expressed in GBM, particularly in GSCs, which are associated with poor prognosis. In addition, EMT-related genes are most enriched in mesenchymal-like (MES-like) GSCs. Tumor patients with MES-like GSC-enriched signatures demonstrate the most unfavorable prognosis compared to those harboring proneural-like (PN-like) or classical-like (CL-like) GSCs. Conclusions: This study suggests that GSCs facilitate GBM progression through intercellular communication in the pattern of EMT. EMT-associated genes may drive the differentiation of GSCs toward a MES-like phenotype, thereby leading to poorer clinical outcomes. Consequently, targeting EMT-related pathways could represent a novel therapeutic strategy for GBM treatment.
Collapse
Affiliation(s)
- Weichi Wu
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China;
| | - Po Zhang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
| | - Dongsheng Li
- Department of Emergency Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University (The First Hospital of Changsha), Changsha 410013, China;
| | - Kejun He
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China;
| |
Collapse
|
2
|
Zhang T, Sang J, Hoang PH, Zhao W, Rosenbaum J, Johnson KE, Klimczak LJ, McElderry J, Klein A, Wirth C, Bergstrom EN, Díaz-Gay M, Vangara R, Colon-Matos F, Hutchinson A, Lawrence SM, Cole N, Zhu B, Przytycka TM, Shi J, Caporaso NE, Homer R, Pesatori AC, Consonni D, Imielinski M, Chanock SJ, Wedge DC, Gordenin DA, Alexandrov LB, Harris RS, Landi MT. APOBEC affects tumor evolution and age at onset of lung cancer in smokers. Nat Commun 2025; 16:4711. [PMID: 40394004 PMCID: PMC12092836 DOI: 10.1038/s41467-025-59923-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 05/02/2025] [Indexed: 05/22/2025] Open
Abstract
Most solid tumors harbor somatic mutations attributed to off-target activities of APOBEC3A (A3A) and/or APOBEC3B (A3B). However, how APOBEC3A/B enzymes affect tumor evolution in the presence of exogenous mutagenic processes is largely unknown. Here, multi-omics profiling of 309 lung cancers from smokers identifies two subtypes defined by low (LAS) and high (HAS) APOBEC mutagenesis. LAS are enriched for A3B-like mutagenesis and KRAS mutations; HAS for A3A-like mutagenesis and TP53 mutations. Compared to LAS, HAS have older age at onset and high proportions of newly generated progenitor-like cells likely due to the combined tobacco smoking- and APOBEC3A-associated DNA damage and apoptosis. Consistently, HAS exhibit high expression of pulmonary healing signaling pathway, stemness markers, distal cell-of-origin, more neoantigens, slower clonal expansion, but no smoking-associated genomic/epigenomic changes. With validation in 184 lung tumor samples, these findings show how heterogeneity in mutational burden across co-occurring mutational processes and cell types contributes to tumor development.
Collapse
Affiliation(s)
- Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jian Sang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Phuc H Hoang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Wei Zhao
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | | | | | - Leszek J Klimczak
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - John McElderry
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Alyssa Klein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Christopher Wirth
- Manchester Cancer Research Centre, The University of Manchester, Manchester, UK
| | - Erik N Bergstrom
- Department of Cellular and Molecular Medicine and Department of Bioengineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Marcos Díaz-Gay
- Department of Cellular and Molecular Medicine and Department of Bioengineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Raviteja Vangara
- Department of Cellular and Molecular Medicine and Department of Bioengineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Frank Colon-Matos
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Amy Hutchinson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Scott M Lawrence
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Nathan Cole
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Bin Zhu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Teresa M Przytycka
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Jianxin Shi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Neil E Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Robert Homer
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Angela C Pesatori
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Dario Consonni
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - David C Wedge
- Manchester Cancer Research Centre, The University of Manchester, Manchester, UK
| | - Dmitry A Gordenin
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine and Department of Bioengineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Reuben S Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
3
|
Chung H, Rahmani W, Sinha S, Imanzadeh A, Pun A, Arora R, Jaffer A, Biernaskie J, Chun J. Nephron progenitor fate is modulated by angiotensin type 1 receptor signaling in human kidney organoids. Stem Cells 2025; 43:sxaf012. [PMID: 40111092 PMCID: PMC12080355 DOI: 10.1093/stmcls/sxaf012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 03/03/2025] [Indexed: 03/22/2025]
Abstract
The renin-angiotensin system (RAS) is essential for normal kidney development. Dysregulation of the RAS during embryogenesis can result in kidney abnormalities. To explore how angiotensin type 1 receptor (AT1R) signaling modulates nephron progenitor (NP) fate specification, we used induced pluripotent stem cell (iPSC) derived human kidney organoids treated with angiotensin II (Ang II) or the AT1R blocker losartan during differentiation. Ang II promoted NP proliferation and differentiation preferentially toward a podocyte fate, depleted the podocyte precursor population, and accelerated glomerular maturation. By contrast, losartan expanded the podocyte precursor population, delayed podocyte differentiation, and regressed the transcriptional signature to a more immature fetal state. Overall, using various in silico approaches with validation by RNAscope, we identified a role for AT1R signaling in regulating NP fate during nephrogenesis in kidney organoids. Our work supports the use of RAS modulators to improve organoid maturation and suggests that RAS may be a determinant of nephron endowment in vivo.
Collapse
Affiliation(s)
- Hyunjae Chung
- Department of Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Waleed Rahmani
- Department of Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Sarthak Sinha
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Aysa Imanzadeh
- Department of Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Alexander Pun
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Rohit Arora
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Arzina Jaffer
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Jeff Biernaskie
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada T2N 4N1
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Justin Chun
- Department of Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
| |
Collapse
|
4
|
Ushakumary MG, Feng S, Bandyopadhyay G, Olson H, Weitz KK, Huyck HL, Poole C, Purkerson JM, Bhattacharya S, Ljungberg MC, Mariani TJ, Deutsch GH, Misra RS, Carson JP, Adkins JN, Pryhuber GS, Clair G. Cell Population-resolved Multiomics Atlas of the Developing Lung. Am J Respir Cell Mol Biol 2025; 72:484-495. [PMID: 39447176 PMCID: PMC12051933 DOI: 10.1165/rcmb.2024-0105oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 10/24/2024] [Indexed: 10/26/2024] Open
Abstract
The lung is a vital organ that undergoes extensive morphological and functional changes during postnatal development. To disambiguate how different cell populations contribute to organ development, we performed proteomic and transcriptomic analyses of four sorted cell populations from the lung of human subjects 0-8 years of age with a focus on early life. The cell populations analyzed included epithelial, endothelial, mesenchymal, and immune cells. Our results revealed distinct molecular signatures for each of the sorted cell populations that enable the description of molecular shifts occurring in these populations during postnatal development. We confirmed that the proteome of the different cell populations was distinct regardless of age and identified functions specific to each population. We identified a series of cell population protein markers, including those located at the cell surface, that show differential expression and distribution on RNA in situ hybridization and immunofluorescence imaging. We validated the spatial distribution of alveolar type 1 and endothelial cell surface markers. Temporal analyses of the proteomes of the four populations revealed processes modulated during postnatal development and clarified the findings obtained from whole-tissue proteome studies. Finally, the proteome was compared with a transcriptomics survey performed on the same lung samples to evaluate processes under post-transcriptional control.
Collapse
Affiliation(s)
- Mereena G. Ushakumary
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| | - Song Feng
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| | - Gautam Bandyopadhyay
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Heather Olson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| | - Karl K. Weitz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| | - Heidi L. Huyck
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Cory Poole
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Jeffrey M. Purkerson
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Soumyaroop Bhattacharya
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - M. Cecilia Ljungberg
- Department of Pediatrics, College of Medicine, Baylor University, Houston, Texas
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas
| | - Thomas J. Mariani
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Gail H. Deutsch
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Ravi S. Misra
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - James P. Carson
- Texas Advanced Computing Center, University of Texas at Austin, Austin, Texas; and
| | - Joshua N. Adkins
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon
| | - Gloria S. Pryhuber
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Geremy Clair
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| |
Collapse
|
5
|
Madrid DMDC, Gu W, Karim SJI, Lowke MT, Kelleher AM, Warren WC, Driver JP. Single-cell analysis of pig lung leukocytes and their response to influenza infection and oseltamivir therapy. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf032. [PMID: 40235089 DOI: 10.1093/jimmun/vkaf032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 01/24/2025] [Indexed: 04/17/2025]
Abstract
Despite pigs being an important species in influenza A virus (IAV) epidemiology and a reliable preclinical model for human IAV infections, many aspects of the porcine pulmonary immune system remain poorly understood. Here, we characterized the single-cell landscape of lung leukocytes of healthy pigs and then compared them to pigs infected with 2009 pandemic H1N1 IAV with or without oseltamivir antiviral therapy. Our data show conserved features as well as species-specific differences in cell types and cell states compared with human and mouse lung lymphocytes. IAV infection induced a robust antiviral transcriptional response in multiple lymphoid and myeloid cell types, as well as distinct patterns of cell-cell crosstalk. Oseltamivir treatment substantially reduced these responses. Together, our findings describe key events in the pulmonary anti-IAV response of pigs that open new avenues to develop IAV vaccines and therapies. They should also enable the better use of pigs as a model for human IAV infection and immunity.
Collapse
Affiliation(s)
- Darling Melany De Carvalho Madrid
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Weihong Gu
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Shah Jungy Ibna Karim
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Makenzie T Lowke
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| | - Andrew M Kelleher
- Department of Obstetrics, Gynecology, and Women's Health, University of Missouri, Columbia, MO, United States
| | - Wesley C Warren
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - John P Driver
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| |
Collapse
|
6
|
Yan X, Liu Q, Adams T, Schupp J, Li S, Huang S, Grant N, Wilson G, Gomez J, Cohn L, Kaminski N, Weiss ST, Tantisira K, Chupp GL. Single-cell RNA Sequencing Analysis of Sputum Cell Transcriptomes Reveals Pathways and Communication Networks That Contribute to the Pathogenesis of Asthma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.31.646405. [PMID: 40236103 PMCID: PMC11996526 DOI: 10.1101/2025.03.31.646405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Background Asthma is driven by complex interactions amongst structural airway cells, cells of the immune system, and the environmental. While sputum cell characterization has been instrumental in studying asthma pathogenesis and refining treatment strategies, the nuances of cellular transcriptomes and intercellular communication in asthmatic sputum remain poorly understood. Methods We employed single-cell RNA sequencing to analyze cells isolated form the sputum from 16 asthma patients and 8 non-asthmatic controls. Cell identities were established using curated marker genes and SingleR annotation. We compared cell-specific gene expression and communication networks between asthmatic and control groups, correlating findings with distinct pathways that were dysregulated in asthma. Findings 37,565 cellular transcriptomes were captured and analyzed. 15 distinct cell populations were identified, including various macrophages, monocytes, dendritic cells, and lymphocytes, along with rare cell types such as mast cells, innate lymphoid cells, bronchial epithelial cells, and eosinophils. Intercellular communication analysis indicated heightened signaling activity in asthma compared to controls, particularly in CD4+ T cells and dendritic cells which exhibited the most significant increases in RNA expression of outgoing signaling molecules. Notably, the ADAM12-SDC4 and CCL22-CCR4 ligand-receptor pathways demonstrated the strongest shifts between asthma and control subjects, particularly between dendritic cells and CD4 lymphocytes. Interpretation SC RNA seq profiling the asthma cellular transcriptome analysis of sputum highlights both innate and adaptive immune mechanisms that are significantly amplified in asthma. The elevated expression of ADAM12-SCD4 and CCL22-CC4 point to their critical role in asthma pathogenesis, suggesting potential avenues for targeted therapies and improved management of this chronic condition. Research in context Evidence Before This Study: Asthma is a chronic inflammatory disease of the airways driven by intricate interactions between airway structural and immune cells. Previous transcriptomic studies have focused on bulk RNA samples from the airway, leaving significant gaps in our understanding of the cellular dynamics that characterize the disease.Added Value of This Study: This study pioneers the use of single-cell RNA sequencing on sputum samples from patients with asthma, revealing a detailed landscape of cell phenotypes and dynamic communication patterns that distinguish asthmatic individuals from those without the disease. Notably, heightened intercellular communication was observed in asthma, particularly between CD4+ T cells and dendritic cells, confirming that there is a robust network of interactions between immune and structural cells. The notable increase of ADAM12-CCR4 communication from dendritic cells to other cell populations further emphasizes the dysregulation present in asthma.Implications of All Available Evidence: Our transcriptomic profiling illuminates distinct and amplified communication pathways involving CD4+ T cells and dendritic cells, aligning with established paradigms of both adaptive and innate immune responses in asthma pathogenesis. The identification of ADAM12 and CCR4 pathway dysregulation adds a critical layer to our understanding of the molecular mechanisms underpinning asthma, paving the way for potential therapeutic targets and personalized treatment strategies. Single cell profiling of the sputum has the capacity to characterize the breadth of cellular phenotypes, their functional status, and the communication in the airway at a level not previously attainable.
Collapse
|
7
|
Li Y, Hu M, Zhang Z, Wu B, Zheng J, Zhang F, Hao J, Xue T, Li Z, Zhu C, Liu Y, Zhao L, Xu W, Xin P, Feng C, Wang W, Zhao Y, Qiu Q, Wang K. Origin and stepwise evolution of vertebrate lungs. Nat Ecol Evol 2025; 9:672-691. [PMID: 39953253 DOI: 10.1038/s41559-025-02642-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/15/2025] [Indexed: 02/17/2025]
Abstract
Lungs are essential respiratory organs in terrestrial vertebrates, present in most bony fishes but absent in cartilaginous fishes, making them an ideal model for studying organ evolution. Here we analysed single-cell RNA sequencing data from adult and developing lungs across vertebrate species, revealing significant similarities in cell composition, developmental trajectories and gene expression patterns. Surprisingly, a large proportion of lung-related genes, coexpression patterns and many lung enhancers are present in cartilaginous fishes despite their lack of lungs, suggesting that a substantial genetic foundation for lung development existed in the last common ancestor of jawed vertebrates. In addition, the 1,040 enhancers that emerged since the last common ancestor of bony fishes probably contain lung-specific elements that led to the development of lungs. We further identified alveolar type 1 cells as a mammal-specific alveolar cell type, along with several mammal-specific genes, including ager and sfta2, that are highly expressed in lungs. Functional validation showed that deletion of sfta2 in mice leads to severe respiratory defects, highlighting its critical role in mammalian lung features. Our study provides comprehensive insights into the evolution of vertebrate lungs, demonstrating how both regulatory network modifications and the emergence of new genes have shaped lung development and specialization across species.
Collapse
Affiliation(s)
- Ye Li
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Mingliang Hu
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Zhigang Zhang
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Baosheng Wu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jiangmin Zheng
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Fenghua Zhang
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Jiaqi Hao
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Tingfeng Xue
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Zhaohong Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Chenglong Zhu
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Yuxuan Liu
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Lei Zhao
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Wenjie Xu
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Peidong Xin
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Chenguang Feng
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China.
| | - Wen Wang
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China.
- New Cornerstone Science Laboratory, Xi'an, China.
| | - Yilin Zhao
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China.
| | - Qiang Qiu
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China.
| | - Kun Wang
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China.
| |
Collapse
|
8
|
Green AP, Klimm F, Marshall AS, Leetmaa R, Aryaman J, Gómez-Durán A, Chinnery PF, Jones NS. Cryptic mitochondrial DNA mutations coincide with mid-late life and are pathophysiologically informative in single cells across tissues and species. Nat Commun 2025; 16:2250. [PMID: 40050638 PMCID: PMC11885543 DOI: 10.1038/s41467-025-57286-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 02/18/2025] [Indexed: 03/09/2025] Open
Abstract
Ageing is associated with a range of chronic diseases and has diverse hallmarks. Mitochondrial dysfunction is implicated in ageing, and mouse-models with artificially enhanced mitochondrial DNA mutation rates show accelerated ageing. A scarcely studied aspect of ageing, because it is invisible in aggregate analyses, is the accumulation of somatic mitochondrial DNA mutations which are unique to single cells (cryptic mutations). We find evidence of cryptic mitochondrial DNA mutations from diverse single-cell datasets, from three species, and discover: cryptic mutations constitute the vast majority of mitochondrial DNA mutations in aged post-mitotic tissues, that they can avoid selection, that their accumulation is consonant with theory we develop, hitting high levels coinciding with species specific mid-late life, and that their presence covaries with a majority of the hallmarks of ageing including protein misfolding and endoplasmic reticulum stress. We identify mechanistic links to endoplasmic reticulum stress experimentally and further give an indication that aged brain cells with high levels of cryptic mutations show markers of neurodegeneration and that calorie restriction slows the accumulation of cryptic mutations.
Collapse
Affiliation(s)
- Alistair P Green
- Department of Mathematics & Centre for the Mathematics of Precision Healthcare, Imperial College London, South Kensington, London, UK
| | - Florian Klimm
- Department of Mathematics & Centre for the Mathematics of Precision Healthcare, Imperial College London, South Kensington, London, UK
- Department of Clinical Neuroscience & Medical Research Council Mitochondrial Biology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Aidan S Marshall
- Department of Mathematics & Centre for the Mathematics of Precision Healthcare, Imperial College London, South Kensington, London, UK
| | - Rein Leetmaa
- Department of Mathematics & Centre for the Mathematics of Precision Healthcare, Imperial College London, South Kensington, London, UK
| | - Juvid Aryaman
- Department of Mathematics & Centre for the Mathematics of Precision Healthcare, Imperial College London, South Kensington, London, UK
- Department of Clinical Neuroscience & Medical Research Council Mitochondrial Biology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Aurora Gómez-Durán
- Department of Clinical Neuroscience & Medical Research Council Mitochondrial Biology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- MitoPhenomics Lab, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), Universidade de Santiago de Compostela, Campus Vida Avenida Barcelona, A Coruña, Spain
| | - Patrick F Chinnery
- Department of Clinical Neuroscience & Medical Research Council Mitochondrial Biology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Nick S Jones
- Department of Mathematics & Centre for the Mathematics of Precision Healthcare, Imperial College London, South Kensington, London, UK.
- I-X Centre for AI in Science, Imperial White City Campus, London, UK.
| |
Collapse
|
9
|
Chen J, Chen X. Human Single-Cell RNA-Sequencing Data Supports the Hypothesis of X Chromosome Insensitivity but Is Ineffective in Testing the Dosage Compensation Model. Mol Biol Evol 2025; 42:msaf004. [PMID: 39932018 PMCID: PMC11811734 DOI: 10.1093/molbev/msaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 12/16/2024] [Accepted: 01/09/2025] [Indexed: 02/14/2025] Open
Abstract
A controversy in evolutionary genetics is whether active dosage compensation is necessary to resolve the gene dosage imbalance between the X chromosome and autosomes. ScRNA-seq data could provide insight into this issue. However, it's crucial to carefully evaluate whether inherent characteristics of scRNA-seq, such as the sparsity of detected genes, might bias the X:AA expression ratio in mammals. This study evaluated two common strategies for selecting genes in the calculation of X:AA, namely, filter-by-expression and filter-by-fraction, with simulated scRNA-seq and bulk RNA-seq datasets. We found that both strategies produce an inflated X:AA, thus artifactually supporting dosage compensation. Analyzing empirical human Smart-seq2 data, results from the filter-by-expression strategy suggested that X-linked genes were more highly expressed than autosomal genes, a pattern that is neither predicted by dosage compensation nor explained by genes escaping X chromosome inactivation. However, the results of the filter-by-fraction strategy are consistent with the simulation. Furthermore, despite biasing for mean expression levels, we found that scRNA-seq data could be used to detect X-to-autosome expression noise differences as small as 10%, which enabled investigation into the distribution of genes that are more likely insensitive to gene dosage changes. Analysis of the empirical Smart-seq2 data revealed a 10% to 15% increase in expression noise for X chromosomes compared with autosomes and a significant depletion of dosage-sensitive genes on X chromosomes. Overall, these results highlight the need to be cautious when interpreting scRNA-seq data, particularly when comparing the expression of different genes, and provide additional evidence for the hypothesis of X chromosome insensitivity.
Collapse
Affiliation(s)
- Jiabi Chen
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Xiaoshu Chen
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
10
|
Yoshida M, Arzili R, Nikolić MZ. Immune-epithelial cell interactions in lung development, homeostasis and disease. Int J Biochem Cell Biol 2025; 178:106703. [PMID: 39592067 DOI: 10.1016/j.biocel.2024.106703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/25/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
The importance of the crosstalk between lung epithelial and immune cells, which emerges from early development and lasts throughout life, is corroborated by a growing body of scientific evidence. This communication not only has a role in driving lung morphogenesis during development, but it is also required in adulthood for the maintenance of homeostasis and repair following infection or injury. Disruption of the intricate immune-epithelial crosstalk can lead to diseases such as COPD and IPF. In this review we summarise the current knowledge regarding the communication between various immune and epithelial cells in development, homeostasis, regeneration and disease, while identifying the current gaps in our knowledge required to facilitate the development of more effective therapies.
Collapse
Affiliation(s)
- Masahiro Yoshida
- UCL Respiratory, Division of Medicine, University College London, London, UK; Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Romina Arzili
- UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Marko Z Nikolić
- UCL Respiratory, Division of Medicine, University College London, London, UK; University College London Hospitals NHS Foundation Trust, London, UK.
| |
Collapse
|
11
|
Huang Y, Wu G, Bi G, Cheng L, Liang J, Li M, Zhang H, Shan G, Hu Z, Chen Z, Lin Z, Jiang W, Wang Q, Xi J, Yin S, Zhan C. Unveiling chemotherapy-induced immune landscape remodeling and metabolic reprogramming in lung adenocarcinoma by scRNA-sequencing. eLife 2024; 13:RP95988. [PMID: 39729352 DOI: 10.7554/elife.95988] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024] Open
Abstract
Chemotherapy is widely used to treat lung adenocarcinoma (LUAD) patients comprehensively. Considering the limitations of chemotherapy due to drug resistance and other issues, it is crucial to explore the impact of chemotherapy and immunotherapy on these aspects. In this study, tumor samples from nine LUAD patients, of which four only received surgery and five received neoadjuvant chemotherapy, were subjected to scRNA-seq analysis. In vitro and in vivo assays, including flow cytometry, immunofluorescence, Seahorse assay, and tumor xenograft models, were carried out to validate our findings. A total of 83,622 cells were enrolled for subsequent analyses. The composition of cell types exhibited high heterogeneity across different groups. Functional enrichment analysis revealed that chemotherapy drove significant metabolic reprogramming in tumor cells and macrophages. We identified two subtypes of macrophages: Anti-mac cells (CD45+CD11b+CD86+) and Pro-mac cells (CD45+CD11b+ARG +) and sorted them by flow cytometry. The proportion of Pro-mac cells in LUAD tissues increased significantly after neoadjuvant chemotherapy. Pro-mac cells promote tumor growth and angiogenesis and also suppress tumor immunity. Moreover, by analyzing the remodeling of T and B cells induced by neoadjuvant therapy, we noted that chemotherapy ignited a relatively more robust immune cytotoxic response toward tumor cells. Our study demonstrates that chemotherapy induces metabolic reprogramming within the tumor microenvironment of LUAD, particularly affecting the function and composition of immune cells such as macrophages and T cells. We believe our findings will offer insight into the mechanisms of drug resistance and provide novel therapeutic targets for LUAD in the future.
Collapse
Affiliation(s)
- Yiwei Huang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Gujie Wu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guoshu Bi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lin Cheng
- Department of Pathology, Albert Einstein College of Medicine, Bronx, United States
| | - Jiaqi Liang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ming Li
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Huan Zhang
- Department of Thoracic Surgery, Sichuan Cancer Hospital, University of Electronic Science and Technology of China, Sichuan, China
| | - Guangyao Shan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhengyang Hu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhencong Chen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zongwu Lin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Jiang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qun Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Junjie Xi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shanye Yin
- Department of Pathology, Albert Einstein College of Medicine, Bronx, United States
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Baysoy A, Tian X, Zhang F, Renauer P, Bai Z, Shi H, Li H, Tao B, Yang M, Enninful A, Gao F, Wang G, Zhang W, Tran T, Patterson NH, Bao S, Dong C, Xin S, Zhong M, Rankin S, Guy C, Wang Y, Connelly JP, Pruett-Miller SM, Chi H, Chen S, Fan R. Spatially Resolved in vivo CRISPR Screen Sequencing via Perturb-DBiT. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.18.624106. [PMID: 39605490 PMCID: PMC11601513 DOI: 10.1101/2024.11.18.624106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Perturb-seq enabled the profiling of transcriptional effects of genetic perturbations in single cells but lacks the ability to examine the impact on tissue environments. We present Perturb-DBiT for simultaneous co-sequencing of spatial transcriptome and guide RNAs (gRNAs) on the same tissue section for in vivo CRISPR screen with genome-scale gRNA libraries, offering a comprehensive understanding of how genetic modifications affect cellular behavior and tissue architecture. This platform supports a variety of delivery vectors, gRNA library sizes, and tissue preparations, along with two distinct gRNA capture methods, making it adaptable to a wide range of experimental setups. In applying Perturb-DBiT, we conducted un-biased knockouts of tens of genes or at genome-wide scale across three cancer models. We mapped all gRNAs in individual colonies and corresponding transcriptomes in a human cancer metastatic colonization model, revealing clonal dynamics and cooperation. We also examined the effect of genetic perturbation on the tumor immune microenvironment in an immune-competent syngeneic model, uncovering differential and synergistic perturbations in promoting immune infiltration or suppression in tumors. Perturb-DBiT allows for simultaneously evaluating the impact of each knockout on tumor initiation, development, metastasis, histopathology, and immune landscape. Ultimately, it not only broadens the scope of genetic inquiry, but also lays the groundwork for developing targeted therapeutic strategies.
Collapse
Affiliation(s)
- Alev Baysoy
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- These authors contributed equally
| | - Xiaolong Tian
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- These authors contributed equally
| | - Feifei Zhang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- These authors contributed equally
| | - Paul Renauer
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- These authors contributed equally
| | - Zhiliang Bai
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Hao Shi
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Haikuo Li
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Bo Tao
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Mingyu Yang
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Archibald Enninful
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Fu Gao
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Guangchuan Wang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | - Shuozhen Bao
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Chuanpeng Dong
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Shan Xin
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Mei Zhong
- Department of Cell Biology, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Sherri Rankin
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Cliff Guy
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Yan Wang
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Jon P. Connelly
- Center for Advanced Genome Engineering, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | | | - Hongbo Chi
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Sidi Chen
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Systems Biology Institute, Integrated Science & Technology Center, West Haven, CT, USA
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
- Yale Stem Cell Center and Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06520, USA
- Human and Translational Immunology, Yale University School of Medicine, New Haven, CT 06520, USA
- Lead contact
| |
Collapse
|
13
|
Bai Z, Zhang D, Gao Y, Tao B, Zhang D, Bao S, Enninful A, Wang Y, Li H, Su G, Tian X, Zhang N, Xiao Y, Liu Y, Gerstein M, Li M, Xing Y, Lu J, Xu ML, Fan R. Spatially exploring RNA biology in archival formalin-fixed paraffin-embedded tissues. Cell 2024; 187:6760-6779.e24. [PMID: 39353436 PMCID: PMC11568911 DOI: 10.1016/j.cell.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/29/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024]
Abstract
The capability to spatially explore RNA biology in formalin-fixed paraffin-embedded (FFPE) tissues holds transformative potential for histopathology research. Here, we present pathology-compatible deterministic barcoding in tissue (Patho-DBiT) by combining in situ polyadenylation and computational innovation for spatial whole transcriptome sequencing, tailored to probe the diverse RNA species in clinically archived FFPE samples. It permits spatial co-profiling of gene expression and RNA processing, unveiling region-specific splicing isoforms, and high-sensitivity transcriptomic mapping of clinical tumor FFPE tissues stored for 5 years. Furthermore, genome-wide single-nucleotide RNA variants can be captured to distinguish malignant subclones from non-malignant cells in human lymphomas. Patho-DBiT also maps microRNA regulatory networks and RNA splicing dynamics, decoding their roles in spatial tumorigenesis. Single-cell level Patho-DBiT dissects the spatiotemporal cellular dynamics driving tumor clonal architecture and progression. Patho-DBiT stands poised as a valuable platform to unravel rich RNA biology in FFPE tissues to aid in clinical pathology evaluation.
Collapse
Affiliation(s)
- Zhiliang Bai
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA.
| | - Dingyao Zhang
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA; Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
| | - Yan Gao
- Center for Computational and Genomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Bo Tao
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Daiwei Zhang
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shuozhen Bao
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Archibald Enninful
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Yadong Wang
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Haikuo Li
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Graham Su
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Xiaolong Tian
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Ningning Zhang
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yang Xiao
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Yang Liu
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Mark Gerstein
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
| | - Mingyao Li
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Yi Xing
- Center for Computational and Genomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Jun Lu
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Stem Cell Center and Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Mina L Xu
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA; Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Stem Cell Center and Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06520, USA; Human and Translational Immunology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
14
|
Hong J, Medzikovic L, Sun W, Wong B, Ruffenach G, Rhodes CJ, Brownstein A, Liang LL, Aryan L, Li M, Vadgama A, Kurt Z, Schwantes-An TH, Mickler EA, Gräf S, Eyries M, Lutz KA, Pauciulo MW, Trembath RC, Perros F, Montani D, Morrell NW, Soubrier F, Wilkins MR, Nichols WC, Aldred MA, Desai AA, Trégouët DA, Umar S, Saggar R, Channick R, Tuder RM, Geraci MW, Stearman RS, Yang X, Eghbali M. Integrative Multiomics in the Lung Reveals a Protective Role of Asporin in Pulmonary Arterial Hypertension. Circulation 2024; 150:1268-1287. [PMID: 39167456 PMCID: PMC11473243 DOI: 10.1161/circulationaha.124.069864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/19/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Integrative multiomics can elucidate pulmonary arterial hypertension (PAH) pathobiology, but procuring human PAH lung samples is rare. METHODS We leveraged transcriptomic profiling and deep phenotyping of the largest multicenter PAH lung biobank to date (96 disease and 52 control) by integration with clinicopathologic data, genome-wide association studies, Bayesian regulatory networks, single-cell transcriptomics, and pharmacotranscriptomics. RESULTS We identified 2 potentially protective gene network modules associated with vascular cells, and we validated ASPN, coding for asporin, as a key hub gene that is upregulated as a compensatory response to counteract PAH. We found that asporin is upregulated in lungs and plasma of multiple independent PAH cohorts and correlates with reduced PAH severity. We show that asporin inhibits proliferation and transforming growth factor-β/phosphorylated SMAD2/3 signaling in pulmonary artery smooth muscle cells from PAH lungs. We demonstrate in Sugen-hypoxia rats that ASPN knockdown exacerbated PAH and recombinant asporin attenuated PAH. CONCLUSIONS Our integrative systems biology approach to dissect the PAH lung transcriptome uncovered asporin as a novel protective target with therapeutic potential in PAH.
Collapse
Affiliation(s)
- Jason Hong
- Division of Pulmonary and Critical Care Medicine (J.H., B.W., A.B., L.L.L., A.V., R.S., R.C.), University of California, Los Angeles
| | - Lejla Medzikovic
- Departments of Anesthesiology & Perioperative Medicine (L.M., W.S., G.R., L.A., M.L., S.U., M. Eghbali), University of California, Los Angeles
| | - Wasila Sun
- Departments of Anesthesiology & Perioperative Medicine (L.M., W.S., G.R., L.A., M.L., S.U., M. Eghbali), University of California, Los Angeles
| | - Brenda Wong
- Division of Pulmonary and Critical Care Medicine (J.H., B.W., A.B., L.L.L., A.V., R.S., R.C.), University of California, Los Angeles
| | - Grégoire Ruffenach
- Departments of Anesthesiology & Perioperative Medicine (L.M., W.S., G.R., L.A., M.L., S.U., M. Eghbali), University of California, Los Angeles
| | | | - Adam Brownstein
- Division of Pulmonary and Critical Care Medicine (J.H., B.W., A.B., L.L.L., A.V., R.S., R.C.), University of California, Los Angeles
| | - Lloyd L Liang
- Division of Pulmonary and Critical Care Medicine (J.H., B.W., A.B., L.L.L., A.V., R.S., R.C.), University of California, Los Angeles
| | - Laila Aryan
- Departments of Anesthesiology & Perioperative Medicine (L.M., W.S., G.R., L.A., M.L., S.U., M. Eghbali), University of California, Los Angeles
| | - Min Li
- Departments of Anesthesiology & Perioperative Medicine (L.M., W.S., G.R., L.A., M.L., S.U., M. Eghbali), University of California, Los Angeles
| | - Arjun Vadgama
- Division of Pulmonary and Critical Care Medicine (J.H., B.W., A.B., L.L.L., A.V., R.S., R.C.), University of California, Los Angeles
| | - Zeyneb Kurt
- Northumbria University, Newcastle Upon Tyne, UK (Z.K.)
| | - Tae-Hwi Schwantes-An
- Department of Medicine, Indiana University, Indianapolis (T.-H.S.-A., E.A.M., M.A.A., A.A.D., R.S.S.)
| | - Elizabeth A Mickler
- Department of Medicine, Indiana University, Indianapolis (T.-H.S.-A., E.A.M., M.A.A., A.A.D., R.S.S.)
| | - Stefan Gräf
- Department of Medicine, Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, UK (S.G., N.W.M.)
| | - Mélanie Eyries
- Hôpital Pitié-Salpêtrière, AP-HP, Département de Génétique, Paris, France (M. Eyries)
| | - Katie A Lutz
- Department of Pediatrics, Division of Human Genetics, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, OH (K.A.L., M.W.P., W.C.N.)
| | - Michael W Pauciulo
- Department of Pediatrics, Division of Human Genetics, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, OH (K.A.L., M.W.P., W.C.N.)
| | - Richard C Trembath
- Department of Medical & Molecular Genetics, Faculty of Life Sciences & Medicine, King's College London, UK (R.C.T.)
| | - Frédéric Perros
- CarMeN Laboratory, INSERM U1060, INRAE U1397, Université Claude Bernard Lyon 1, Pierre-Bénite, France (F.P.)
| | - David Montani
- AP-HP, Service de Pneumologie, Hôpital Bicêtre, Le Kremlin Bicêtre, France (D.M.)
- Université Paris-Saclay, Le Kremlin Bicêtre, France (D.M.)
- UMR_S 999, Université Paris-Saclay, INSERM, Groupe Hospitalier Marie-Lannelongue-Saint Joseph, Le Plessis-Robinson, France (D.M.)
| | - Nicholas W Morrell
- Department of Medicine, Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, UK (S.G., N.W.M.)
| | | | - Martin R Wilkins
- National Heart and Lung Institute, Imperial College London, UK (C.J.R., M.R.W.)
| | - William C Nichols
- Department of Pediatrics, Division of Human Genetics, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, OH (K.A.L., M.W.P., W.C.N.)
| | - Micheala A Aldred
- Department of Medicine, Indiana University, Indianapolis (T.-H.S.-A., E.A.M., M.A.A., A.A.D., R.S.S.)
| | - Ankit A Desai
- Department of Medicine, Indiana University, Indianapolis (T.-H.S.-A., E.A.M., M.A.A., A.A.D., R.S.S.)
| | | | - Soban Umar
- Departments of Anesthesiology & Perioperative Medicine (L.M., W.S., G.R., L.A., M.L., S.U., M. Eghbali), University of California, Los Angeles
| | - Rajan Saggar
- Division of Pulmonary and Critical Care Medicine (J.H., B.W., A.B., L.L.L., A.V., R.S., R.C.), University of California, Los Angeles
| | - Richard Channick
- Division of Pulmonary and Critical Care Medicine (J.H., B.W., A.B., L.L.L., A.V., R.S., R.C.), University of California, Los Angeles
| | - Rubin M Tuder
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora (R.M.T.)
| | - Mark W Geraci
- Department of Medicine, University of Pittsburgh, PA (M.W.G.)
| | - Robert S Stearman
- Department of Medicine, Indiana University, Indianapolis (T.-H.S.-A., E.A.M., M.A.A., A.A.D., R.S.S.)
| | - Xia Yang
- Integrative Biology and Physiology (X.Y.), University of California, Los Angeles
| | - Mansoureh Eghbali
- Departments of Anesthesiology & Perioperative Medicine (L.M., W.S., G.R., L.A., M.L., S.U., M. Eghbali), University of California, Los Angeles
| |
Collapse
|
15
|
Brownstein AJ, Mura M, Ruffenach G, Channick RN, Saggar R, Kim A, Umar S, Eghbali M, Yang X, Hong J. Dissecting the lung transcriptome of pulmonary fibrosis-associated pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2024; 327:L520-L534. [PMID: 39137526 PMCID: PMC11482468 DOI: 10.1152/ajplung.00166.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/15/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024] Open
Abstract
Integrative multiomics can help elucidate the pathophysiology of pulmonary fibrosis (PF)-associated pulmonary hypertension (PH) (PF-PH). Weighted gene coexpression network analysis (WGCNA) was performed on a transcriptomic dataset of explanted lung tissue from 116 patients with PF. Patients were stratified by pulmonary vascular resistance (PVR), and differential gene expression analysis was conducted. Gene modules were correlated with hemodynamics at the time of transplantation and tested for enrichment in the lung transcriptomics signature of an independent pulmonary arterial hypertension (PAH) cohort. We found 1,250 differentially expressed genes between high and low PVR groups. WGCNA identified that black and yellowgreen modules negatively correlated with PVR, whereas the tan and darkgrey modules are positively correlated with PVR in PF-PH. In addition, the tan module showed the strongest enrichment for an independent PAH gene signature, suggesting shared gene expression patterns between PAH and PF-PH. Pharmacotranscriptomic analysis using the Connectivity Map implicated the tan and darkgrey modules as potentially pathogenic in PF-PH, given their combined module signature demonstrated a high negative connectivity score for treprostinil, a medication used in the treatment of PF-PH, and a high positive connectivity score for bone morphogenetic protein (BMP) loss of function. Pathway enrichment analysis revealed that inflammatory pathways and oxidative phosphorylation were downregulated, whereas epithelial-mesenchymal transition was upregulated in modules associated with increased PVR. Our integrative systems biology approach to the lung transcriptome of PF with and without PH identified several PH-associated coexpression modules and gene targets with shared molecular features with PAH warranting further investigation to uncover potential new therapies for PF-PH.NEW & NOTEWORTHY An integrative systems biology approach that included transcriptomic analysis of explanted lung tissue from patients with pulmonary fibrosis (PF) with and without pulmonary hypertension (PH) undergoing lung transplantation, combined with hemodynamic correlation and pharmacotranscriptomics, identified modules of genes associated with pulmonary vascular disease severity. Comparison with an independent pulmonary arterial hypertension (PAH) dataset identified shared gene expression patterns between PAH and PF-PH.
Collapse
Grants
- R01HL147586,R01HL159865 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- K08169982 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- K08 HL141995 NHLBI NIH HHS
- UL1TR001881 HHS | NIH | National Center for Advancing Translational Sciences (NCATS)
- K08 HL169982 NHLBI NIH HHS
- R01 HL159507 NHLBI NIH HHS
- R01HL16038,K08HL141995 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL161038 NHLBI NIH HHS
- R01 HL159865 NHLBI NIH HHS
- R01 NS117148 NINDS NIH HHS
- R01NS117148,R01NS111378 HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
- UL1 TR001881 NCATS NIH HHS
- R01HL159507 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
Collapse
Affiliation(s)
- Adam J Brownstein
- Division of Pulmonary and Critical Care Medicine, University of California, Los Angeles, California, United States
| | - Marco Mura
- Division of Respirology, Western University, London, Ontario, Canada
| | - Gregoire Ruffenach
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine, University of California, Los Angeles, California, United States
| | - Richard N Channick
- Division of Pulmonary and Critical Care Medicine, University of California, Los Angeles, California, United States
| | - Rajan Saggar
- Division of Pulmonary and Critical Care Medicine, University of California, Los Angeles, California, United States
| | - Airie Kim
- Division of Pulmonary and Critical Care Medicine, University of California, Los Angeles, California, United States
| | - Soban Umar
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine, University of California, Los Angeles, California, United States
| | - Mansoureh Eghbali
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine, University of California, Los Angeles, California, United States
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, United States
| | - Jason Hong
- Division of Pulmonary and Critical Care Medicine, University of California, Los Angeles, California, United States
| |
Collapse
|
16
|
Bai Z, Feng B, McClory SE, de Oliveira BC, Diorio C, Gregoire C, Tao B, Yang L, Zhao Z, Peng L, Sferruzza G, Zhou L, Zhou X, Kerr J, Baysoy A, Su G, Yang M, Camara PG, Chen S, Tang L, June CH, Melenhorst JJ, Grupp SA, Fan R. Single-cell CAR T atlas reveals type 2 function in 8-year leukaemia remission. Nature 2024; 634:702-711. [PMID: 39322664 PMCID: PMC11485231 DOI: 10.1038/s41586-024-07762-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 06/27/2024] [Indexed: 09/27/2024]
Abstract
Despite a high response rate in chimeric antigen receptor (CAR) T cell therapy for acute lymphocytic leukaemia (ALL)1-3, approximately 50% of patients relapse within the first year4-6, representing an urgent question to address in the next stage of cellular immunotherapy. Here, to investigate the molecular determinants of ultralong CAR T cell persistence, we obtained a single-cell multi-omics atlas from 695,819 pre-infusion CAR T cells at the basal level or after CAR-specific stimulation from 82 paediatric patients with ALL enrolled in the first two CAR T ALL clinical trials and 6 healthy donors. We identified that elevated type 2 functionality in CAR T infusion products is significantly associated with patients maintaining a median B cell aplasia duration of 8.4 years. Analysis of ligand-receptor interactions revealed that type 2 cells regulate a dysfunctional subset to maintain whole-population homeostasis, and the addition of IL-4 during antigen-specific activation alleviates CAR T cell dysfunction while enhancing fitness at both transcriptomic and epigenomic levels. Serial proteomic profiling of sera after treatment revealed a higher level of circulating type 2 cytokines in 5-year or 8-year relapse-free responders. In a leukaemic mouse model, type 2high CAR T cell products demonstrated superior expansion and antitumour activity, particularly after leukaemia rechallenge. Restoring antitumour efficacy in type 2low CAR T cells was attainable by enhancing their type 2 functionality, either through incorporating IL-4 into the manufacturing process or by priming manufactured CAR T products with IL-4 before infusion. Our findings provide insights into the mediators of durable CAR T therapy response and suggest potential therapeutic strategies to sustain long-term remission by boosting type 2 functionality in CAR T cells.
Collapse
Affiliation(s)
- Zhiliang Bai
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Bing Feng
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Materials Science & Engineering, EPFL, Lausanne, Switzerland
| | - Susan E McClory
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Caroline Diorio
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Céline Gregoire
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Bo Tao
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Luojia Yang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Ziran Zhao
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Lei Peng
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Giacomo Sferruzza
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Liqun Zhou
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Xiaolei Zhou
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Materials Science & Engineering, EPFL, Lausanne, Switzerland
| | - Jessica Kerr
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Alev Baysoy
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Graham Su
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Mingyu Yang
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Pablo G Camara
- Department of Genetics and Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Sidi Chen
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Li Tang
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Institute of Materials Science & Engineering, EPFL, Lausanne, Switzerland.
| | - Carl H June
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA.
| | | | - Stephan A Grupp
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA.
- Human and Translational Immunology, Yale University School of Medicine, New Haven, CT, USA.
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
17
|
Rafikov R, de Jesus Perez V, Dekan A, Kudryashova TV, Rafikova O. Deciphering the Complexities of Pulmonary Hypertension: The Emergent Role of Single-Cell Omics. Am J Respir Cell Mol Biol 2024; 72:32-40. [PMID: 39141563 PMCID: PMC11707669 DOI: 10.1165/rcmb.2024-0145ps] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/14/2024] [Indexed: 08/16/2024] Open
Abstract
Expanding upon the critical advancements brought forth by single-cell omics in pulmonary hypertension (PH) research, this review delves deep into how these technologies have been piloted in a new era of understanding this complex disease. By leveraging the power of single cell transcriptomics (scRNA-seq), researchers can now dissect the complicated cellular ecosystem of the lungs, examining the key players such as endothelial cells, smooth muscle cells, pericytes, and immune cells, and their unique roles in the pathogenesis of PH. This more granular view is beyond the limitations of traditional bulk analysis, allowing for the identification of novel therapeutic targets previously obscured in the aggregated data. Connectome analysis based on single-cell omics of the cells involved in pathological changes can reveal a clearer picture of the cellular interactions and transitions in the cellular subtypes. Furthermore, the review acknowledges the challenges that lie ahead, including the need for enhancing the resolution of scRNA-seq to capture even finer details of cellular changes, overcoming logistical barriers in processing human tissue samples, and the necessity of integrating diverse omics approaches to fully comprehend the molecular underpinnings of PH. The promise of these single-cell technologies is immense, offering the potential for targeted drug development and the discovery of biomarkers for early diagnosis and disease monitoring. Through these advancements, the field moves closer to realizing the goal of precision medicine for patients with PH.
Collapse
Affiliation(s)
- Ruslan Rafikov
- Indiana University School of Medicine, Indianapolis, Indiana, United States;
| | | | - Aleksandr Dekan
- Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Tatiana V Kudryashova
- University of Pittsburgh Department of Medicine, Pittsburgh, Pennsylvania, United States
| | - Olga Rafikova
- Indiana University Purdue University at Indianapolis, Indianapolis, Indiana, United States
| |
Collapse
|
18
|
Sivaraj KK, Majev PG, Dharmalingam B, Schröder S, Banjanin B, Stehling M, Zeuschner D, Nordheim A, Schneider RK, Adams RH. Endothelial LATS2 is a suppressor of bone marrow fibrosis. NATURE CARDIOVASCULAR RESEARCH 2024; 3:951-969. [PMID: 39155965 PMCID: PMC11324521 DOI: 10.1038/s44161-024-00508-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/13/2024] [Indexed: 08/20/2024]
Abstract
Myelofibrosis and osteosclerosis are fibrotic diseases disrupting bone marrow function that occur in various leukemias but also in response to non-malignant alterations in hematopoietic cells. Here we show that endothelial cell-specific inactivation of the Lats2 gene, encoding Hippo kinase large tumor suppressor kinase 2, or overexpression of the downstream effector YAP1 induce myofibroblast formation and lead to extensive fibrosis and osteosclerosis, which impair bone marrow function and cause extramedullary hematopoiesis in the spleen. Mechanistically, loss of LATS2 induces endothelial-to-mesenchymal transition, resulting in increased expression of extracellular matrix and secreted signaling molecules. Changes in endothelial cells involve increased expression of serum response factor target genes, and, strikingly, major aspects of the LATS2 mutant phenotype are rescued by inactivation of the Srf gene. These findings identify the endothelium as a driver of bone marrow fibrosis, which improves understanding of myelofibrotic and osteosclerotic diseases, for which drug therapies are currently lacking.
Collapse
Affiliation(s)
- Kishor K. Sivaraj
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Paul-Georg Majev
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | | | - Silke Schröder
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Bella Banjanin
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Martin Stehling
- Flow Cytometry Unit, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Dagmar Zeuschner
- Electron Microscopy Unit, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Alfred Nordheim
- Department of Molecular Biology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| | - Rebekka K. Schneider
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Oncode Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
- Institute for Cell and Tumor Biology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Ralf H. Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| |
Collapse
|
19
|
Sciarretta F, Ninni A, Zaccaria F, Chiurchiù V, Bertola A, Karlinsey K, Jia W, Ceci V, Di Biagio C, Xu Z, Gaudioso F, Tortolici F, Tiberi M, Zhang J, Carotti S, Boudina S, Grumati P, Zhou B, Brestoff JR, Ivanov S, Aquilano K, Lettieri-Barbato D. Lipid-associated macrophages reshape BAT cell identity in obesity. Cell Rep 2024; 43:114447. [PMID: 38963761 PMCID: PMC11693933 DOI: 10.1016/j.celrep.2024.114447] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/04/2024] [Accepted: 06/20/2024] [Indexed: 07/06/2024] Open
Abstract
Obesity and type 2 diabetes cause a loss in brown adipose tissue (BAT) activity, but the molecular mechanisms that drive BAT cell remodeling remain largely unexplored. Using a multilayered approach, we comprehensively mapped a reorganization in BAT cells. We uncovered a subset of macrophages as lipid-associated macrophages (LAMs), which were massively increased in genetic and dietary model of BAT expansion. LAMs participate in this scenario by capturing extracellular vesicles carrying damaged lipids and mitochondria released from metabolically stressed brown adipocytes. CD36 scavenger receptor drove LAM phenotype, and CD36-deficient LAMs were able to increase brown fat genes in adipocytes. LAMs released transforming growth factor β1 (TGF-β1), which promoted the loss of brown adipocyte identity through aldehyde dehydrogenase 1 family member A1 (Aldh1a1) induction. These findings unfold cell dynamic changes in BAT during obesity and identify LAMs as key responders to tissue metabolic stress and drivers of loss of brown adipocyte identity.
Collapse
Affiliation(s)
| | - Andrea Ninni
- Department of Biology, University of Rome Tor Vergata, Rome, Italy; PhD Program in Evolutionary Biology and Ecology, Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Fabio Zaccaria
- Department of Biology, University of Rome Tor Vergata, Rome, Italy; PhD Program in Evolutionary Biology and Ecology, Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Valerio Chiurchiù
- Laboratory of Resolution of Neuroinflammation, IRCCS Santa Lucia Foundation, Rome, Italy; Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | | | - Keaton Karlinsey
- Department of Immunology, School of Medicine, University of Connecticut, Farmington, CT, USA
| | - Wentong Jia
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Veronica Ceci
- Department of Biology, University of Rome Tor Vergata, Rome, Italy; PhD Program in Evolutionary Biology and Ecology, Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | | | - Ziyan Xu
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Francesco Gaudioso
- IRCCS Santa Lucia Foundation, Rome, Italy; Department of Biology, University of Rome Tor Vergata, Rome, Italy; PhD Program in Evolutionary Biology and Ecology, Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Flavia Tortolici
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Marta Tiberi
- Laboratory of Resolution of Neuroinflammation, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Jiabi Zhang
- Department of Nutrition & Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Simone Carotti
- Integrated Research Center (PRAAB), Campus Biomedico University of Rome, Rome, Italy
| | - Sihem Boudina
- Department of Nutrition & Integrative Physiology, University of Utah, Salt Lake City, UT, USA; Molecular Medicine Program (U2M2), University of Utah, Salt Lake City, UT, USA
| | - Paolo Grumati
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy; Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy
| | - Beiyan Zhou
- Department of Immunology, School of Medicine, University of Connecticut, Farmington, CT, USA; Institute for Systems Genomics, University of Connecticut, Farmington, CT, USA
| | - Jonathan R Brestoff
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | | | - Katia Aquilano
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Daniele Lettieri-Barbato
- Department of Biology, University of Rome Tor Vergata, Rome, Italy; IRCCS Fondazione Bietti, Rome, Italy.
| |
Collapse
|
20
|
Castaldi PJ, Sauler M. Molecular Characterization of the Distal Lung: Novel Insights from Chronic Obstructive Pulmonary Disease Omics. Am J Respir Crit Care Med 2024; 210:147-154. [PMID: 38701385 PMCID: PMC11273319 DOI: 10.1164/rccm.202310-1972pp] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/02/2024] [Indexed: 05/05/2024] Open
Affiliation(s)
- Peter J. Castaldi
- Channing Division of Network Medicine and
- Division of General Internal Medicine and Primary Care, Brigham and Women’s Hospital, Boston, Massachusetts; and
| | - Maor Sauler
- Division of Pulmonary, Critical Care, and Sleep Medicine, School of Medicine, Yale University, New Haven, Connecticut
| |
Collapse
|
21
|
Kim GD, Shin SI, Jung SW, An H, Choi SY, Eun M, Jun CD, Lee S, Park J. Cell Type- and Age-Specific Expression of lncRNAs across Kidney Cell Types. J Am Soc Nephrol 2024; 35:870-885. [PMID: 38621182 PMCID: PMC11230714 DOI: 10.1681/asn.0000000000000354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/08/2024] [Indexed: 04/17/2024] Open
Abstract
Key Points
We constructed a single-cell long noncoding RNA atlas of various tissues, including normal and aged kidneys.We identified age- and cell type–specific expression changes of long noncoding RNAs in kidney cells.
Background
Accumulated evidence demonstrates that long noncoding RNAs (lncRNAs) regulate cell differentiation and homeostasis, influencing kidney aging and disease. Despite their versatility, the function of lncRNA remains poorly understood because of the lack of a reference map of lncRNA transcriptome in various cell types.
Methods
In this study, we used a targeted single-cell RNA sequencing method to enrich and characterize lncRNAs in individual cells. We applied this method to various mouse tissues, including normal and aged kidneys.
Results
Through tissue-specific clustering analysis, we identified cell type–specific lncRNAs that showed a high correlation with known cell-type marker genes. Furthermore, we constructed gene regulatory networks to explore the functional roles of differentially expressed lncRNAs in each cell type. In the kidney, we observed dynamic expression changes of lncRNAs during aging, with specific changes in glomerular cells. These cell type– and age-specific expression patterns of lncRNAs suggest that lncRNAs may have a potential role in regulating cellular processes, such as immune response and energy metabolism, during kidney aging.
Conclusions
Our study sheds light on the comprehensive landscape of lncRNA expression and function and provides a valuable resource for future analysis of lncRNAs (https://gist-fgl.github.io/sc-lncrna-atlas/).
Collapse
Affiliation(s)
- Gyeong Dae Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - So-I Shin
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Su Woong Jung
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyunsu An
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Sin Young Choi
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Minho Eun
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Chang-Duk Jun
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Sangho Lee
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jihwan Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| |
Collapse
|
22
|
Palumbo F, Gunjak M, Lee PJ, Günther S, Hilgendorff A, Vadász I, Herold S, Seeger W, Mühlfeld C, Morty RE. Impact of different tissue dissociation protocols on endothelial cell recovery from developing mouse lungs. Cytometry A 2024; 105:521-535. [PMID: 38668123 DOI: 10.1002/cyto.a.24843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/11/2024] [Accepted: 04/08/2024] [Indexed: 07/19/2024]
Abstract
Flow cytometry and fluorescence-activated cell sorting are widely used to study endothelial cells, for which the generation of viable single-cell suspensions is an essential first step. Two enzymatic approaches, collagenase A and dispase, are widely employed for endothelial cell isolation. In this study, the utility of both enzymatic approaches, alone and in combination, for endothelial cell isolation from juvenile and adult mouse lungs was assessed, considering the number, viability, and subtype composition of recovered endothelial cell pools. Collagenase A yielded an 8-12-fold superior recovery of viable endothelial cells from lung tissue from developing mouse pups, compared to dispase, although dispase proved superior in efficiency for epithelial cell recovery. Single-cell RNA-Seq revealed that the collagenase A approach yielded a diverse endothelial cell subtype composition of recovered endothelial cell pools, with broad representation of arterial, capillary, venous, and lymphatic lung endothelial cells; while the dispase approach yielded a recovered endothelial cell pool highly enriched for one subset of general capillary endothelial cells, but poor representation of other endothelial cells subtypes. These data indicate that tissue dissociation markedly influences the recovery of endothelial cells, and the endothelial subtype composition of recovered endothelial cell pools, as assessed by single-cell RNA-Seq.
Collapse
Affiliation(s)
- Francesco Palumbo
- Flow Cytometry Core Facility, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
| | - Miša Gunjak
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
- Department of Translational Pulmonology and the Translational Lung Research Center Heidelberg (TLRC), Heidelberg University Hospital, member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Patty J Lee
- Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Stefan Günther
- Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
| | - Anne Hilgendorff
- Institute for Lung Health and Immunity and Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München, member of the German Center for Lung Research (DZL), Munich, Germany
- Center for Comprehensive Developmental Care (CDeCLMU) at the Social Pediatric Center, Dr. von Hauner Children's Hospital, Ludwig-Maximilian-University, Munich, Germany
| | - István Vadász
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
- Institute for Lung Health, Justus Liebig University Giessen, Giessen, Germany
- Cardio-Pulmonary Institute, Justus Liebig University Giessen, Giessen, Germany
| | - Susanne Herold
- Institute for Lung Health, Justus Liebig University Giessen, Giessen, Germany
- Cardio-Pulmonary Institute, Justus Liebig University Giessen, Giessen, Germany
- Department of Internal Medicine (Infectious Disease and Hospital Hygiene), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
| | - Werner Seeger
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
- Institute for Lung Health, Justus Liebig University Giessen, Giessen, Germany
- Cardio-Pulmonary Institute, Justus Liebig University Giessen, Giessen, Germany
| | - Christian Mühlfeld
- Institute of Functional and Applied Anatomy and Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover Medical School, member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Rory E Morty
- Department of Translational Pulmonology and the Translational Lung Research Center Heidelberg (TLRC), Heidelberg University Hospital, member of the German Center for Lung Research (DZL), Heidelberg, Germany
| |
Collapse
|
23
|
Wu Y, Gou Y, Wang T, Li P, Li Y, Lu X, Li W, Liu Z. Exportin XPO6 upregulation activates the TLR2/MyD88/NF-κB signaling by facilitating TLR2 mRNA nuclear export in COPD pulmonary monocytes. Int Immunopharmacol 2024; 135:112310. [PMID: 38788453 DOI: 10.1016/j.intimp.2024.112310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/01/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) poses a significant health threat characterized by lung inflammation primarily triggered by pulmonary monocytes. Despite the centrality of inflammation in COPD, the regulatory mechanisms governing this response remain elusive, presenting a challenge for anti-inflammatory interventions. In this study, we assessed the expression of exportins in COPD mouse models, revealing a notable upregulation of XPO6 in the mouse lung (P = 0.0011). Intriguingly, we observed a consistent upregulation of XPO6 in pulmonary monocytes from both human and mouse COPD subjects (P < 0.0001). Furthermore, in human lung tissue, XPO6 expression exhibited a positive correlation with TLR2 expression (P = 0). In vitro investigations demonstrated that XPO6 enhances TLR2 expression, activating the MyD88/NF-κB inflammatory signaling pathway. This activation, in turn, promotes the secretion of pro-inflammatory cytokines such as TNFα, IL-6, and IL-1β in monocytes. Mechanistically, XPO6 facilitates the nuclear export of TLR2 mRNA, ensuring its stability and subsequent protein expression in monocytes. In conclusion, our findings unveil that the upregulation of XPO6 in COPD pulmonary monocytes activates the MyD88/NF-κB inflammatory signaling pathway by facilitating the nuclear export of TLR2 mRNA, thereby identifying XPO6 as a promising therapeutic target for anti-inflammatory interventions in COPD.
Collapse
Affiliation(s)
- Yuting Wu
- Department of Respiratory and Critical Care Medicine, General Hospital of Southern Theater Command of PLA, Guangzhou 510010, Guangdong, China; Graduate School, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China.
| | - Yanni Gou
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China
| | - Tao Wang
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China
| | - Ping Li
- Department of Respiratory and Critical Care Medicine, General Hospital of Southern Theater Command of PLA, Guangzhou 510010, Guangdong, China
| | - Yongqiang Li
- Department of Respiratory and Critical Care Medicine, General Hospital of Southern Theater Command of PLA, Guangzhou 510010, Guangdong, China
| | - Xing Lu
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China
| | - Weifeng Li
- Department of Respiratory and Critical Care Medicine, General Hospital of Southern Theater Command of PLA, Guangzhou 510010, Guangdong, China.
| | - Zhifeng Liu
- Department of Medicine Intensive Care Unit, General Hospital of Southern Theatre Command of PLA, Guangzhou 510010, Guangdong, China; Guangdong Branch Center, National Clinical Research Center for Geriatric Diseases (Chinese PLA General Hospital), Guangzhou 510010, Guangdong, China.
| |
Collapse
|
24
|
Wu S, Peng H, Li S, Huang L, Wang X, Li Y, Liu Y, Xiong P, Yang Q, Tian K, Wu W, Pu R, Lu X, Xiao Z, Yang J, Zhong Z, Gao Y, Deng Y, Deng Y. The ω-3 Polyunsaturated Fatty Acid Docosahexaenoic Acid Enhances NK-Cell Antitumor Effector Functions. Cancer Immunol Res 2024; 12:744-758. [PMID: 38526128 PMCID: PMC11148550 DOI: 10.1158/2326-6066.cir-23-0359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 01/16/2024] [Accepted: 03/22/2024] [Indexed: 03/26/2024]
Abstract
ω-3 polyunsaturated fatty acids (PUFA) are known to directly repress tumor development and progression. In this study, we explored whether docosahexaenoic acid (DHA), a type of ω-3 PUFA, had an immunomodulatory role in inhibiting tumor growth in immunocompetent mice. The number of natural killer (NK) cells but not the number of T or B cells was decreased by DHA supplementation in various tissues under physiologic conditions. Although the frequency and number of NK cells were comparable, IFNγ production by NK cells in both the spleen and lung was increased in DHA-supplemented mice in the mouse B16F10 melanoma tumor model. Single-cell RNA sequencing revealed that DHA promoted effector function and oxidative phosphorylation in NK cells but had no obvious effects on other immune cells. Using Rag2-/- mice and NK-cell depletion by PK136 antibody injection, we demonstrated that the suppression of B16F10 melanoma tumor growth in the lung by DHA supplementation was dependent mainly on NK cells. In vitro experiments showed that DHA directly enhanced IFNγ production, CD107a expression, and mitochondrial oxidative phosphorylation (OXPHOS) activity and slightly increased proliferator-activated receptor gamma coactivator-1α (PGC-1α) protein expression in NK cells. The PGC-1α inhibitor SR-18292 in vitro and NK cell-specific knockout of PGC-1α in mice reversed the antitumor effects of DHA. In summary, our findings broaden the current knowledge on how DHA supplementation protects against cancer growth from the perspective of immunomodulation by upregulating PGC-1α signaling-mediated mitochondrial OXPHOS activity in NK cells.
Collapse
Affiliation(s)
- Shuting Wu
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, China
- The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Hongyan Peng
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, China
- The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Songyang Li
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, China
- The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Lanlan Huang
- The School of Pediatrics, Hengyang Medical School, University of South China, Changsha, China
| | - Xiangyu Wang
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, China
- The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yana Li
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, China
- The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yongjie Liu
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, China
- The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Peiwen Xiong
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, China
- The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Qinglan Yang
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, China
- The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Kunpeng Tian
- Department of Clinical Hematology, College of Pharmacy and Laboratory Medicine Science, Army Medical University, Chongqing, China
| | - Weiru Wu
- Department of Clinical Hematology, College of Pharmacy and Laboratory Medicine Science, Army Medical University, Chongqing, China
| | - Rongxi Pu
- Department of Clinical Hematology, College of Pharmacy and Laboratory Medicine Science, Army Medical University, Chongqing, China
| | - Xiulan Lu
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, China
- The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhenghui Xiao
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, China
- The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Jian Yang
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhaoyang Zhong
- The Fifth People's Hospital of Chongqing, Chongqing, China
| | - Yuan Gao
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, China
| | - Yafei Deng
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, China
- The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- The School of Pediatrics, Hengyang Medical School, University of South China, Changsha, China
| | - Youcai Deng
- Department of Clinical Hematology, College of Pharmacy and Laboratory Medicine Science, Army Medical University, Chongqing, China
| |
Collapse
|
25
|
Xie T, Liang J, Stripp B, Noble PW. Cell-cell interactions and communication dynamics in lung fibrosis. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2024; 2:63-71. [PMID: 39169931 PMCID: PMC11332853 DOI: 10.1016/j.pccm.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Indexed: 08/23/2024]
Abstract
Cell-cell interactions are essential components of coordinated cell function in lung homeostasis. Lung diseases involve altered cell-cell interactions and communication between different cell types, as well as between subsets of cells of the same type. The identification and understanding of intercellular signaling in lung fibrosis offer insights into the molecular mechanisms underlying these interactions and their implications in the development and progression of lung fibrosis. A comprehensive cell atlas of the human lung, established with the facilitation of single-cell RNA transcriptomic analysis, has enabled the inference of intercellular communications using ligand-receptor databases. In this review, we provide a comprehensive overview of the modified cell-cell communications in lung fibrosis. We highlight the intricate interactions among the major cell types within the lung and their contributions to fibrogenesis. The insights presented in this review will contribute to a better understanding of the molecular mechanisms underlying lung fibrosis and may guide future research efforts in developing targeted therapies for this debilitating disease.
Collapse
Affiliation(s)
- Ting Xie
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jiurong Liang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Barry Stripp
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Paul W. Noble
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
26
|
Chang L, Chen Q, Wang B, Liu J, Zhang M, Zhu W, Jiang J. Single cell RNA analysis uncovers the cell differentiation and functionalization for air breathing of frog lung. Commun Biol 2024; 7:665. [PMID: 38816547 PMCID: PMC11139932 DOI: 10.1038/s42003-024-06369-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 05/21/2024] [Indexed: 06/01/2024] Open
Abstract
The evolution and development of vertebrate lungs have been widely studied due to their significance in terrestrial adaptation. Amphibians possess the most primitive lungs among tetrapods, underscoring their evolutionary importance in bridging the transition from aquatic to terrestrial life. However, the intricate process of cell differentiation during amphibian lung development remains poorly understood. Using single-cell RNA sequencing, we identify 13 cell types in the developing lungs of a land-dwelling frog (Microhyla fissipes). We elucidate the differentiation trajectories and mechanisms of mesenchymal cells, identifying five cell fates and their respective driver genes. Using temporal dynamics analyses, we reveal the gene expression switches of epithelial cells, which facilitate air breathing during metamorphosis. Furthermore, by integrating the published data from another amphibian and two terrestrial mammals, we illuminate both conserved and divergent cellular repertoires during the evolution of tetrapod lungs. These findings uncover the frog lung cell differentiation trajectories and functionalization for breathing in air and provide valuable insights into the cell-type evolution of vertebrate lungs.
Collapse
Affiliation(s)
- Liming Chang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiheng Chen
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Wang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China
| | - Jiongyu Liu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China
| | - Meihua Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China
| | - Wei Zhu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jianping Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
27
|
Liu B, Azfar M, Legchenko E, West JA, Martin S, Van den Haute C, Baekelandt V, Wharton J, Howard L, Wilkins MR, Vangheluwe P, Morrell NW, Upton PD. ATP13A3 variants promote pulmonary arterial hypertension by disrupting polyamine transport. Cardiovasc Res 2024; 120:756-768. [PMID: 38626311 PMCID: PMC11135649 DOI: 10.1093/cvr/cvae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/23/2024] [Accepted: 02/25/2024] [Indexed: 04/18/2024] Open
Abstract
AIMS Potential loss-of-function variants of ATP13A3, the gene encoding a P5B-type transport ATPase of undefined function, were recently identified in patients with pulmonary arterial hypertension (PAH). ATP13A3 is implicated in polyamine transport but its function has not been fully elucidated. In this study, we sought to determine the biological function of ATP13A3 in vascular endothelial cells (ECs) and how PAH-associated variants may contribute to disease pathogenesis. METHODS AND RESULTS We studied the impact of ATP13A3 deficiency and overexpression in EC models [human pulmonary ECs, blood outgrowth ECs (BOECs), and human microvascular EC 1], including a PAH patient-derived BOEC line harbouring an ATP13A3 variant (LK726X). We also generated mice harbouring an Atp13a3 variant analogous to a human disease-associated variant to establish whether these mice develop PAH. ATP13A3 localized to the recycling endosomes of human ECs. Knockdown of ATP13A3 in ECs generally reduced the basal polyamine content and altered the expression of enzymes involved in polyamine metabolism. Conversely, overexpression of wild-type ATP13A3 increased polyamine uptake. Functionally, loss of ATP13A3 was associated with reduced EC proliferation, increased apoptosis in serum starvation, and increased monolayer permeability to thrombin. The assessment of five PAH-associated missense ATP13A3 variants (L675V, M850I, V855M, R858H, and L956P) confirmed loss-of-function phenotypes represented by impaired polyamine transport and dysregulated EC function. Furthermore, mice carrying a heterozygous germline Atp13a3 frameshift variant representing a human variant spontaneously developed a PAH phenotype, with increased pulmonary pressures, right ventricular remodelling, and muscularization of pulmonary vessels. CONCLUSION We identify ATP13A3 as a polyamine transporter controlling polyamine homeostasis in ECs, a deficiency of which leads to EC dysfunction and predisposes to PAH. This suggests a need for targeted therapies to alleviate the imbalances in polyamine homeostasis and EC dysfunction in PAH.
Collapse
Affiliation(s)
- Bin Liu
- Section of Cardio and Respiratory Medicine, Department of Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, Papworth Road, Cambridge CB2 0BB, UK
| | - Mujahid Azfar
- Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, Box 802, 3000 Leuven, Belgium
| | - Ekaterina Legchenko
- Section of Cardio and Respiratory Medicine, Department of Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, Papworth Road, Cambridge CB2 0BB, UK
| | - James A West
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
- Division of Gastroenterology and Hepatology, Department of Medicine, Hills Road, Cambridge CB2 0QQ, UK
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | - Shaun Martin
- Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, Box 802, 3000 Leuven, Belgium
| | - Chris Van den Haute
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Herestraat 49, Box 1023, 3000 Leuven, Belgium
- Leuven Viral Vector Core, KU Leuven, Herestraat 49, Box 1023, 3000 Leuven, Belgium
| | - Veerle Baekelandt
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Herestraat 49, Box 1023, 3000 Leuven, Belgium
| | - John Wharton
- Faculty of Medicine, National Heart and Lung Institute, ICTEM Building, Imperial College, Du Cane Road, London W12 0NN, UK
| | - Luke Howard
- Faculty of Medicine, National Heart and Lung Institute, ICTEM Building, Imperial College, Du Cane Road, London W12 0NN, UK
| | - Martin R Wilkins
- Faculty of Medicine, National Heart and Lung Institute, ICTEM Building, Imperial College, Du Cane Road, London W12 0NN, UK
| | - Peter Vangheluwe
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | - Nicholas W Morrell
- Section of Cardio and Respiratory Medicine, Department of Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, Papworth Road, Cambridge CB2 0BB, UK
| | - Paul D Upton
- Section of Cardio and Respiratory Medicine, Department of Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, Papworth Road, Cambridge CB2 0BB, UK
| |
Collapse
|
28
|
Pavlicev M, Wagner GP. Reading the palimpsest of cell interactions: What questions may we ask of the data? iScience 2024; 27:109670. [PMID: 38665209 PMCID: PMC11043885 DOI: 10.1016/j.isci.2024.109670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024] Open
Abstract
Biological function depends on the composition and structure of the organism, the latter describing the organization of interactions between parts. While cells in multicellular organisms are capable of a remarkable degree of autonomy, most functions do require cell communication: the coordination of functions (growth, differentiation, and apoptosis), the compartmentalization of cellular processes, and the integration of cells into higher levels of structural organization. A wealth of data on putative cell interactions has become available, yet its biological interpretation depends on our expectations about the structure of interaction networks. Here, we attempt to formulate basic questions to ask when interpreting cell interaction data. We build on the understanding that cells fulfill two general functions: the integrity-maintaining and the organismal service function. We derive the expected patterns of cell interactions considering two intertwined aspects: the functional and the evolutionary. Based on these, we propose guidelines for analysis and interpretation of transcriptional cell-interactome data.
Collapse
Affiliation(s)
- Mihaela Pavlicev
- Unit for Theoretical Biology, Department for Evolutionary Biology, University of Vienna, Vienna 1030, Austria
- Complexity Science Hub, Vienna 1090, Austria
| | - Günter P. Wagner
- Unit for Theoretical Biology, Department for Evolutionary Biology, University of Vienna, Vienna 1030, Austria
- Yale University, New Haven, CT 06520, USA
- Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
29
|
Werder RB, Zhou X, Cho MH, Wilson AA. Breathing new life into the study of COPD with genes identified from genome-wide association studies. Eur Respir Rev 2024; 33:240019. [PMID: 38811034 PMCID: PMC11134200 DOI: 10.1183/16000617.0019-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/23/2024] [Indexed: 05/31/2024] Open
Abstract
COPD is a major cause of morbidity and mortality globally. While the significance of environmental exposures in disease pathogenesis is well established, the functional contribution of genetic factors has only in recent years drawn attention. Notably, many genes associated with COPD risk are also linked with lung function. Because reduced lung function precedes COPD onset, this association is consistent with the possibility that derangements leading to COPD could arise during lung development. In this review, we summarise the role of leading genes (HHIP, FAM13A, DSP, AGER and TGFB2) identified by genome-wide association studies in lung development and COPD. Because many COPD genome-wide association study genes are enriched in lung epithelial cells, we focus on the role of these genes in the lung epithelium in development, homeostasis and injury.
Collapse
Affiliation(s)
- Rhiannon B Werder
- Murdoch Children's Research Institute, Melbourne, Australia
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael H Cho
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrew A Wilson
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
30
|
Zhang T, Sang J, Hoang PH, Zhao W, Rosenbaum J, Johnson KE, Klimczak LJ, McElderry J, Klein A, Wirth C, Bergstrom EN, Díaz-Gay M, Vangara R, Colon-Matos F, Hutchinson A, Lawrence SM, Cole N, Zhu B, Przytycka TM, Shi J, Caporaso NE, Homer R, Pesatori AC, Consonni D, Imielinski M, Chanock SJ, Wedge DC, Gordenin DA, Alexandrov LB, Harris RS, Landi MT. APOBEC shapes tumor evolution and age at onset of lung cancer in smokers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.02.587805. [PMID: 38617360 PMCID: PMC11014539 DOI: 10.1101/2024.04.02.587805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
APOBEC enzymes are part of the innate immunity and are responsible for restricting viruses and retroelements by deaminating cytosine residues1,2. Most solid tumors harbor different levels of somatic mutations attributed to the off-target activities of APOBEC3A (A3A) and/or APOBEC3B (A3B)3-6. However, how APOBEC3A/B enzymes shape the tumor evolution in the presence of exogenous mutagenic processes is largely unknown. Here, by combining deep whole-genome sequencing with multi-omics profiling of 309 lung cancers from smokers with detailed tobacco smoking information, we identify two subtypes defined by low (LAS) and high (HAS) APOBEC mutagenesis. LAS are enriched for A3B-like mutagenesis and KRAS mutations, whereas HAS for A3A-like mutagenesis and TP53 mutations. Unlike APOBEC3A, APOBEC3B expression is strongly associated with an upregulation of the base excision repair pathway. Hypermutation by unrepaired A3A and tobacco smoking mutagenesis combined with TP53-induced genomic instability can trigger senescence7, apoptosis8, and cell regeneration9, as indicated by high expression of pulmonary healing signaling pathway, stemness markers and distal cell-of-origin in HAS. The expected association of tobacco smoking variables (e.g., time to first cigarette) with genomic/epigenomic changes are not observed in HAS, a plausible consequence of frequent cell senescence or apoptosis. HAS have more neoantigens, slower clonal expansion, and older age at onset compared to LAS, particularly in heavy smokers, consistent with high proportions of newly generated, unmutated cells and frequent immuno-editing. These findings show how heterogeneity in mutational burden across co-occurring mutational processes and cell types contributes to tumor development, with important clinical implications.
Collapse
Affiliation(s)
- Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jian Sang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Phuc H. Hoang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Wei Zhao
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | | | | | - Leszek J. Klimczak
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - John McElderry
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Alyssa Klein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Christopher Wirth
- Manchester Cancer Research Centre, The University of Manchester, Manchester, UK
| | - Erik N. Bergstrom
- Department of Cellular and Molecular Medicine and Department of Bioengineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Marcos Díaz-Gay
- Department of Cellular and Molecular Medicine and Department of Bioengineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Raviteja Vangara
- Department of Cellular and Molecular Medicine and Department of Bioengineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Frank Colon-Matos
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Amy Hutchinson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Scott M. Lawrence
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Nathan Cole
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Bin Zhu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Teresa M. Przytycka
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Jianxin Shi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Neil E. Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Robert Homer
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Angela C. Pesatori
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Dario Consonni
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Stephen J. Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - David C. Wedge
- Manchester Cancer Research Centre, The University of Manchester, Manchester, UK
| | - Dmitry A. Gordenin
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Ludmil B. Alexandrov
- Department of Cellular and Molecular Medicine and Department of Bioengineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Reuben S. Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
31
|
Balczon R, Lin MT, Voth S, Nelson AR, Schupp JC, Wagener BM, Pittet JF, Stevens T. Lung endothelium, tau, and amyloids in health and disease. Physiol Rev 2024; 104:533-587. [PMID: 37561137 PMCID: PMC11281824 DOI: 10.1152/physrev.00006.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/26/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023] Open
Abstract
Lung endothelia in the arteries, capillaries, and veins are heterogeneous in structure and function. Lung capillaries in particular represent a unique vascular niche, with a thin yet highly restrictive alveolar-capillary barrier that optimizes gas exchange. Capillary endothelium surveys the blood while simultaneously interpreting cues initiated within the alveolus and communicated via immediately adjacent type I and type II epithelial cells, fibroblasts, and pericytes. This cell-cell communication is necessary to coordinate the immune response to lower respiratory tract infection. Recent discoveries identify an important role for the microtubule-associated protein tau that is expressed in lung capillary endothelia in the host-pathogen interaction. This endothelial tau stabilizes microtubules necessary for barrier integrity, yet infection drives production of cytotoxic tau variants that are released into the airways and circulation, where they contribute to end-organ dysfunction. Similarly, beta-amyloid is produced during infection. Beta-amyloid has antimicrobial activity, but during infection it can acquire cytotoxic activity that is deleterious to the host. The production and function of these cytotoxic tau and amyloid variants are the subject of this review. Lung-derived cytotoxic tau and amyloid variants are a recently discovered mechanism of end-organ dysfunction, including neurocognitive dysfunction, during and in the aftermath of infection.
Collapse
Affiliation(s)
- Ron Balczon
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Mike T Lin
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Sarah Voth
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine, Monroe, Louisiana, United States
| | - Amy R Nelson
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Jonas C Schupp
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yale University, New Haven, Connecticut, United States
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Hannover, Germany
| | - Brant M Wagener
- Department of Anesthesiology and Perioperative Medicine, University of Alabama-Birmingham, Birmingham, Alabama, United States
| | - Jean-Francois Pittet
- Department of Anesthesiology and Perioperative Medicine, University of Alabama-Birmingham, Birmingham, Alabama, United States
| | - Troy Stevens
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Department of Internal Medicine, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| |
Collapse
|
32
|
Liu S, Zhang Y, Peng J, Shang X. An improved hierarchical variational autoencoder for cell-cell communication estimation using single-cell RNA-seq data. Brief Funct Genomics 2024; 23:118-127. [PMID: 36752035 DOI: 10.1093/bfgp/elac056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 02/09/2023] Open
Abstract
Analysis of cell-cell communication (CCC) in the tumor micro-environment helps decipher the underlying mechanism of cancer progression and drug tolerance. Currently, single-cell RNA-Seq data are available on a large scale, providing an unprecedented opportunity to predict cellular communications. There have been many achievements and applications in inferring cell-cell communication based on the known interactions between molecules, such as ligands, receptors and extracellular matrix. However, the prior information is not quite adequate and only involves a fraction of cellular communications, producing many false-positive or false-negative results. To this end, we propose an improved hierarchical variational autoencoder (HiVAE) based model to fully use single-cell RNA-seq data for automatically estimating CCC. Specifically, the HiVAE model is used to learn the potential representation of cells on known ligand-receptor genes and all genes in single-cell RNA-seq data, respectively, which are then utilized for cascade integration. Subsequently, transfer entropy is employed to measure the transmission of information flow between two cells based on the learned representations, which are regarded as directed communication relationships. Experiments are conducted on single-cell RNA-seq data of the human skin disease dataset and the melanoma dataset, respectively. Results show that the HiVAE model is effective in learning cell representations, and transfer entropy could be used to estimate the communication scores between cell types.
Collapse
Affiliation(s)
- Shuhui Liu
- School of Computer Science, Northwestern Polytechnical University, Xi'an 710129, Shaanxi, China
| | - Yupei Zhang
- School of Computer Science, Northwestern Polytechnical University, Xi'an 710129, Shaanxi, China
- Key Laboratory of Big Data Storage and Management, MIIT, Ministry of Industry and Information Technology, Xi'an 710129, Shaanxi, China
| | - Jiajie Peng
- School of Computer Science, Northwestern Polytechnical University, Xi'an 710129, Shaanxi, China
- Key Laboratory of Big Data Storage and Management, MIIT, Ministry of Industry and Information Technology, Xi'an 710129, Shaanxi, China
| | - Xuequn Shang
- School of Computer Science, Northwestern Polytechnical University, Xi'an 710129, Shaanxi, China
- Key Laboratory of Big Data Storage and Management, MIIT, Ministry of Industry and Information Technology, Xi'an 710129, Shaanxi, China
| |
Collapse
|
33
|
Wilk AJ, Shalek AK, Holmes S, Blish CA. Comparative analysis of cell-cell communication at single-cell resolution. Nat Biotechnol 2024; 42:470-483. [PMID: 37169965 PMCID: PMC10638471 DOI: 10.1038/s41587-023-01782-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/05/2023] [Indexed: 05/13/2023]
Abstract
Inference of cell-cell communication from single-cell RNA sequencing data is a powerful technique to uncover intercellular communication pathways, yet existing methods perform this analysis at the level of the cell type or cluster, discarding single-cell-level information. Here we present Scriabin, a flexible and scalable framework for comparative analysis of cell-cell communication at single-cell resolution that is performed without cell aggregation or downsampling. We use multiple published atlas-scale datasets, genetic perturbation screens and direct experimental validation to show that Scriabin accurately recovers expected cell-cell communication edges and identifies communication networks that can be obscured by agglomerative methods. Additionally, we use spatial transcriptomic data to show that Scriabin can uncover spatial features of interaction from dissociated data alone. Finally, we demonstrate applications to longitudinal datasets to follow communication pathways operating between timepoints. Our approach represents a broadly applicable strategy to reveal the full structure of niche-phenotype relationships in health and disease.
Collapse
Affiliation(s)
- Aaron J Wilk
- Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, USA.
| | - Alex K Shalek
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Susan Holmes
- Department of Statistics, Stanford University, Stanford, CA, USA
| | - Catherine A Blish
- Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
34
|
Bhattacharya S, Myers JA, Baker C, Guo M, Danopoulos S, Myers JR, Bandyopadhyay G, Romas ST, Huyck HL, Misra RS, Dutra J, Holden-Wiltse J, McDavid AN, Ashton JM, Al Alam D, Potter SS, Whitsett JA, Xu Y, Pryhuber GS, Mariani TJ. Single-Cell Transcriptomic Profiling Identifies Molecular Phenotypes of Newborn Human Lung Cells. Genes (Basel) 2024; 15:298. [PMID: 38540357 PMCID: PMC10970229 DOI: 10.3390/genes15030298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 05/01/2024] Open
Abstract
While animal model studies have extensively defined the mechanisms controlling cell diversity in the developing mammalian lung, there exists a significant knowledge gap with regards to late-stage human lung development. The NHLBI Molecular Atlas of Lung Development Program (LungMAP) seeks to fill this gap by creating a structural, cellular and molecular atlas of the human and mouse lung. Transcriptomic profiling at the single-cell level created a cellular atlas of newborn human lungs. Frozen single-cell isolates obtained from two newborn human lungs from the LungMAP Human Tissue Core Biorepository, were captured, and library preparation was completed on the Chromium 10X system. Data was analyzed in Seurat, and cellular annotation was performed using the ToppGene functional analysis tool. Transcriptional interrogation of 5500 newborn human lung cells identified distinct clusters representing multiple populations of epithelial, endothelial, fibroblasts, pericytes, smooth muscle, immune cells and their gene signatures. Computational integration of data from newborn human cells and with 32,000 cells from postnatal days 1 through 10 mouse lungs generated by the LungMAP Cincinnati Research Center facilitated the identification of distinct cellular lineages among all the major cell types. Integration of the newborn human and mouse cellular transcriptomes also demonstrated cell type-specific differences in maturation states of newborn human lung cells. Specifically, newborn human lung matrix fibroblasts could be separated into those representative of younger cells (n = 393), or older cells (n = 158). Cells with each molecular profile were spatially resolved within newborn human lung tissue. This is the first comprehensive molecular map of the cellular landscape of neonatal human lung, including biomarkers for cells at distinct states of maturity.
Collapse
Affiliation(s)
- Soumyaroop Bhattacharya
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA; (G.B.); (S.T.R.); (H.L.H.); (R.S.M.); (G.S.P.); (T.J.M.)
| | - Jacquelyn A. Myers
- Genomic Research Center, University of Rochester Medical Center, Rochester, NY 14642, USA; (J.A.M.); (C.B.); (J.R.M.); (J.M.A.)
| | - Cameron Baker
- Genomic Research Center, University of Rochester Medical Center, Rochester, NY 14642, USA; (J.A.M.); (C.B.); (J.R.M.); (J.M.A.)
| | - Minzhe Guo
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45219, USA; (M.G.); (S.S.P.); (J.A.W.); (Y.X.)
| | - Soula Danopoulos
- Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, University of California Los Angeles, Los Angeles, CA 90024, USA; (S.D.)
| | - Jason R. Myers
- Genomic Research Center, University of Rochester Medical Center, Rochester, NY 14642, USA; (J.A.M.); (C.B.); (J.R.M.); (J.M.A.)
| | - Gautam Bandyopadhyay
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA; (G.B.); (S.T.R.); (H.L.H.); (R.S.M.); (G.S.P.); (T.J.M.)
| | - Stephen T. Romas
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA; (G.B.); (S.T.R.); (H.L.H.); (R.S.M.); (G.S.P.); (T.J.M.)
| | - Heidie L. Huyck
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA; (G.B.); (S.T.R.); (H.L.H.); (R.S.M.); (G.S.P.); (T.J.M.)
| | - Ravi S. Misra
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA; (G.B.); (S.T.R.); (H.L.H.); (R.S.M.); (G.S.P.); (T.J.M.)
| | - Jennifer Dutra
- Clinical & Translational Science Institute, University of Rochester, Rochester, NY 14642, USA; (J.D.); (J.H.-W.)
| | - Jeanne Holden-Wiltse
- Clinical & Translational Science Institute, University of Rochester, Rochester, NY 14642, USA; (J.D.); (J.H.-W.)
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Andrew N. McDavid
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - John M. Ashton
- Genomic Research Center, University of Rochester Medical Center, Rochester, NY 14642, USA; (J.A.M.); (C.B.); (J.R.M.); (J.M.A.)
| | - Denise Al Alam
- Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, University of California Los Angeles, Los Angeles, CA 90024, USA; (S.D.)
| | - S. Steven Potter
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45219, USA; (M.G.); (S.S.P.); (J.A.W.); (Y.X.)
| | - Jeffrey A. Whitsett
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45219, USA; (M.G.); (S.S.P.); (J.A.W.); (Y.X.)
| | - Yan Xu
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45219, USA; (M.G.); (S.S.P.); (J.A.W.); (Y.X.)
| | - Gloria S. Pryhuber
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA; (G.B.); (S.T.R.); (H.L.H.); (R.S.M.); (G.S.P.); (T.J.M.)
| | - Thomas J. Mariani
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA; (G.B.); (S.T.R.); (H.L.H.); (R.S.M.); (G.S.P.); (T.J.M.)
| |
Collapse
|
35
|
Bai Z, Zhang D, Gao Y, Tao B, Bao S, Enninful A, Zhang D, Su G, Tian X, Zhang N, Xiao Y, Liu Y, Gerstein M, Li M, Xing Y, Lu J, Xu ML, Fan R. Spatially Exploring RNA Biology in Archival Formalin-Fixed Paraffin-Embedded Tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579143. [PMID: 38370833 PMCID: PMC10871202 DOI: 10.1101/2024.02.06.579143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Spatial transcriptomics has emerged as a powerful tool for dissecting spatial cellular heterogeneity but as of today is largely limited to gene expression analysis. Yet, the life of RNA molecules is multifaceted and dynamic, requiring spatial profiling of different RNA species throughout the life cycle to delve into the intricate RNA biology in complex tissues. Human disease-relevant tissues are commonly preserved as formalin-fixed and paraffin-embedded (FFPE) blocks, representing an important resource for human tissue specimens. The capability to spatially explore RNA biology in FFPE tissues holds transformative potential for human biology research and clinical histopathology. Here, we present Patho-DBiT combining in situ polyadenylation and deterministic barcoding for spatial full coverage transcriptome sequencing, tailored for probing the diverse landscape of RNA species even in clinically archived FFPE samples. It permits spatial co-profiling of gene expression and RNA processing, unveiling region-specific splicing isoforms, and high-sensitivity transcriptomic mapping of clinical tumor FFPE tissues stored for five years. Furthermore, genome-wide single nucleotide RNA variants can be captured to distinguish different malignant clones from non-malignant cells in human lymphomas. Patho-DBiT also maps microRNA-mRNA regulatory networks and RNA splicing dynamics, decoding their roles in spatial tumorigenesis trajectory. High resolution Patho-DBiT at the cellular level reveals a spatial neighborhood and traces the spatiotemporal kinetics driving tumor progression. Patho-DBiT stands poised as a valuable platform to unravel rich RNA biology in FFPE tissues to study human tissue biology and aid in clinical pathology evaluation.
Collapse
Affiliation(s)
- Zhiliang Bai
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Dingyao Zhang
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yan Gao
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Bo Tao
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Shuozhen Bao
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Archibald Enninful
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Daiwei Zhang
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Graham Su
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Xiaolong Tian
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Ningning Zhang
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yang Xiao
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Yang Liu
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Mark Gerstein
- Section on Biomedical Informatics and Data Science, Yale University, New Haven, CT 06520, USA
| | - Mingyao Li
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yi Xing
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jun Lu
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
- Yale Stem Cell Center and Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Mina L. Xu
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
- Yale Stem Cell Center and Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06520, USA
- Human and Translational Immunology, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
36
|
Lin X, Chen T. A Review of in vivo Toxicity of Quantum Dots in Animal Models. Int J Nanomedicine 2023; 18:8143-8168. [PMID: 38170122 PMCID: PMC10759915 DOI: 10.2147/ijn.s434842] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024] Open
Abstract
Tremendous research efforts have been devoted to nanoparticles for applications in optoelectronics and biomedicine. Over the past decade, quantum dots (QDs) have become one of the fastest growing areas of research in nanotechnology because of outstanding photophysical properties, including narrow and symmetrical emission spectrum, broad fluorescence excitation spectrum, the tenability of the emission wavelength with the particle size and composition, anti-photobleaching ability and stable fluorescence. These characteristics are suitable for optical imaging, drug delivery and other biomedical applications. Research on QDs toxicology has demonstrated QDs affect or damage the biological system to some extent, and this situation is generally caused by the metal ions and some special properties in QDs, which hinders the further application of QDs in the biomedical field. The toxicological mechanism mainly stems from the release of heavy metal ions and generation of reactive oxygen species (ROS). At the same time, the contact reaction with QDs also cause disorders in organelles and changes in gene expression profiles. In this review, we try to present an overview of the toxicity and related toxicity mechanisms of QDs in different target organs. It is believed that the evaluation of toxicity and the synthesis of environmentally friendly QDs are the primary issues to be addressed for future widespread applications. However, considering the many different types and potential modifications, this review on the potential toxicity of QDs is still not clearly elucidated, and further research is needed on this meaningful topic.
Collapse
Affiliation(s)
- Xiaotan Lin
- School of Basic Medicine, Guangdong Medical University, DongGuan, People’s Republic of China
- Department of Family Planning, Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, People’s Republic of China
| | - Tingting Chen
- School of Basic Medicine, Guangdong Medical University, DongGuan, People’s Republic of China
| |
Collapse
|
37
|
Norman O, Koivunen J, Kaarteenaho R, Salo AM, Mäki JM, Myllyharju J, Pihlajaniemi T, Heikkinen A. Contribution of collagen XIII to lung function and development of pulmonary fibrosis. BMJ Open Respir Res 2023; 10:e001850. [PMID: 38568728 PMCID: PMC10729248 DOI: 10.1136/bmjresp-2023-001850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/30/2023] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Collagen XIII is a transmembrane collagen associated with neuromuscular junction development, and in humans its deficiency results in congenital myasthenic syndrome type 19 (CMS19), which leads to breathing difficulties. CMS19 patients usually have restricted lung capacity and one patient developed chronic lung disease. In single-cell RNA sequencing studies, collagen XIII has been identified as a marker for pulmonary lipofibroblasts, which have been implicated in the resolution of pulmonary fibrosis. METHODS We investigated the location and function of collagen XIII in the lung to understand the origin of pulmonary symptoms in human CMS19 patients. Additionally, we performed immunostainings on idiopathic pulmonary fibrosis (IPF) samples (N=5) and both normal and fibrotic mouse lung. To study whether the lack of collagen XIII predisposes to restrictive lung disease, we exposed Col13a1-modified mice to bleomycin-induced pulmonary fibrosis. RESULTS Apparently normal alveolar septum sections of IPF patients' lungs stained faintly for collagen XIII, and its expression was pinpointed to the septal fibroblasts in the mouse lung. Lung capacity was increased in mice lacking collagen XIII by over 10%. In IPF samples, collagen XIII was expressed by basal epithelial cells, hyperplastic alveolar epithelial cells and stromal cells in fibrotic areas, but the development of pulmonary fibrosis was unaffected in collagen XIII-deficient mice. CONCLUSIONS Changes in mouse lung function appear to represent a myasthenic manifestation of collagen XIII deficiency. We suggest that respiratory muscle myasthenia is the primary cause of the breathing problems suffered by CMS19 patients in addition to skeletal deformities. Induction of collagen XIII expression in the IPF patients' lungs warrants further studies to reveal collagen XIII-dependent disease mechanisms.
Collapse
Affiliation(s)
- Oula Norman
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Jarkko Koivunen
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Riitta Kaarteenaho
- Research Unit of Biomedicine and Internal Medicine and Medical Research Center Oulu, University of Oulu, Oulu, Finland
- Center for Internal Medicine and Respiratory Medicine, Oulu University Hospital, Oulu, Finland
| | - Antti M Salo
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Joni M Mäki
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Johanna Myllyharju
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Taina Pihlajaniemi
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Anne Heikkinen
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
38
|
Werder RB, Berthiaume KA, Merritt C, Gallagher M, Villacorta-Martin C, Wang F, Bawa P, Malik V, Lyons SM, Basil MC, Morrisey EE, Kotton DN, Zhou X, Cho MH, Wilson AA. The COPD GWAS gene ADGRG6 instructs function and injury response in human iPSC-derived type II alveolar epithelial cells. Am J Hum Genet 2023; 110:1735-1749. [PMID: 37734371 PMCID: PMC10577075 DOI: 10.1016/j.ajhg.2023.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/23/2023] Open
Abstract
Emphysema and chronic obstructive pulmonary disease (COPD) most commonly result from the effects of environmental exposures in genetically susceptible individuals. Genome-wide association studies have implicated ADGRG6 in COPD and reduced lung function, and a limited number of studies have examined the role of ADGRG6 in cells representative of the airway. However, the ADGRG6 locus is also associated with DLCO/VA, an indicator of gas exchange efficiency and alveolar function. Here, we sought to evaluate the mechanistic contributions of ADGRG6 to homeostatic function and disease in type 2 alveolar epithelial cells. We applied an inducible CRISPR interference (CRISPRi) human induced pluripotent stem cell (iPSC) platform to explore ADGRG6 function in iPSC-derived AT2s (iAT2s). We demonstrate that ADGRG6 exerts pleiotropic effects on iAT2s including regulation of focal adhesions, cytoskeleton, tight junctions, and proliferation. Moreover, we find that ADGRG6 knockdown in cigarette smoke-exposed iAT2s alters cellular responses to injury, downregulating apical complexes in favor of proliferation. Our work functionally characterizes the COPD GWAS gene ADGRG6 in human alveolar epithelium.
Collapse
Affiliation(s)
- Rhiannon B Werder
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - Kayleigh A Berthiaume
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Carly Merritt
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Marissa Gallagher
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Carlos Villacorta-Martin
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Feiya Wang
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Pushpinder Bawa
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Vidhi Malik
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Shawn M Lyons
- Biochemistry Department, Boston University School of Medicine, Boston, MA 02118, USA
| | - Maria C Basil
- School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward E Morrisey
- School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Darrell N Kotton
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Michael H Cho
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew A Wilson
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
39
|
Du J, Gu XR, Yu XX, Cao YJ, Hou J. Essential procedures of single-cell RNA sequencing in multiple myeloma and its translational value. BLOOD SCIENCE 2023; 5:221-236. [PMID: 37941914 PMCID: PMC10629747 DOI: 10.1097/bs9.0000000000000172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/18/2023] [Indexed: 11/10/2023] Open
Abstract
Multiple myeloma (MM) is a malignant neoplasm characterized by clonal proliferation of abnormal plasma cells. In many countries, it ranks as the second most prevalent malignant neoplasm of the hematopoietic system. Although treatment methods for MM have been continuously improved and the survival of patients has been dramatically prolonged, MM remains an incurable disease with a high probability of recurrence. As such, there are still many challenges to be addressed. One promising approach is single-cell RNA sequencing (scRNA-seq), which can elucidate the transcriptome heterogeneity of individual cells and reveal previously unknown cell types or states in complex tissues. In this review, we outlined the experimental workflow of scRNA-seq in MM, listed some commonly used scRNA-seq platforms and analytical tools. In addition, with the advent of scRNA-seq, many studies have made new progress in the key molecular mechanisms during MM clonal evolution, cell interactions and molecular regulation in the microenvironment, and drug resistance mechanisms in target therapy. We summarized the main findings and sequencing platforms for applying scRNA-seq to MM research and proposed broad directions for targeted therapies based on these findings.
Collapse
Affiliation(s)
- Jun Du
- Department of Hematology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiao-Ran Gu
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Xiao-Xiao Yu
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Yang-Jia Cao
- Department of Hematology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shanxi 710000, China
| | - Jian Hou
- Department of Hematology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
40
|
De Silva NS, Siewiera J, Alkhoury C, Nader GPF, Nadalin F, de Azevedo K, Couty M, Izquierdo HM, Bhargava A, Conrad C, Maurin M, Antoniadou K, Fouillade C, Londono-Vallejo A, Behrendt R, Bertotti K, Serdjebi C, Lanthiez F, Gallwitz L, Saftig P, Herrero-Fernández B, Saez A, González-Granado JM, van Niel G, Boissonnas A, Piel M, Manel N. Nuclear envelope disruption triggers hallmarks of aging in lung alveolar macrophages. NATURE AGING 2023; 3:1251-1268. [PMID: 37723209 DOI: 10.1038/s43587-023-00488-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/16/2023] [Indexed: 09/20/2023]
Abstract
Aging is characterized by gradual immune dysfunction and increased disease risk. Genomic instability is considered central to the aging process, but the underlying mechanisms of DNA damage are insufficiently defined. Cells in confined environments experience forces applied to their nucleus, leading to transient nuclear envelope rupture (NER) and DNA damage. Here, we show that Lamin A/C protects lung alveolar macrophages (AMs) from NER and hallmarks of aging. AMs move within constricted spaces in the lung. Immune-specific ablation of lamin A/C results in selective depletion of AMs and heightened susceptibility to influenza virus-induced pathogenesis and lung cancer growth. Lamin A/C-deficient AMs that persist display constitutive NER marks, DNA damage and p53-dependent senescence. AMs from aged wild-type and from lamin A/C-deficient mice share a lysosomal signature comprising CD63. CD63 is required to limit damaged DNA in macrophages. We propose that NER-induced genomic instability represents a mechanism of aging in AMs.
Collapse
Affiliation(s)
| | - Johan Siewiera
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Chantal Alkhoury
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | | | | | - Kevin de Azevedo
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Mickaël Couty
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team van Niel, Paris, France
| | | | - Anvita Bhargava
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Cécile Conrad
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Mathieu Maurin
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | | | - Charles Fouillade
- Institut Curie, PSL Research University, Université Paris-Saclay, CNRS, INSERM, UMR3347, U1021, Orsay, France
| | | | - Rayk Behrendt
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | | | | | - François Lanthiez
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Paris, France
| | - Lisa Gallwitz
- Biochemical Institute, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Paul Saftig
- Biochemical Institute, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Beatriz Herrero-Fernández
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Angela Saez
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcón, Spain
| | - José María González-Granado
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12). Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid. CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Guillaume van Niel
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team van Niel, Paris, France
| | - Alexandre Boissonnas
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Paris, France
| | - Matthieu Piel
- Institut Curie, PSL Research University, CNRS UMR144, Paris, France
| | - Nicolas Manel
- Institut Curie, PSL Research University, INSERM U932, Paris, France.
| |
Collapse
|
41
|
Zhao AY, Unterman A, Abu Hussein N, Sharma P, Flint J, Yan X, Adams TS, Justet A, Sumida TS, Zhao J, Schupp JC, Raredon MSB, Ahangari F, Zhang Y, Buendia-Roldan I, Adegunsoye A, Sperling AI, Prasse A, Ryu C, Herzog E, Selman M, Pardo A, Kaminski N. Peripheral Blood Single-Cell Sequencing Uncovers Common and Specific Immune Aberrations in Fibrotic Lung Diseases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.20.558301. [PMID: 37786685 PMCID: PMC10541583 DOI: 10.1101/2023.09.20.558301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Rationale and Objectives The extent and commonality of peripheral blood immune aberrations in fibrotic interstitial lung diseases are not well characterized. In this study, we aimed to identify common and distinct immune aberrations in patients with idiopathic pulmonary fibrosis (IPF) and fibrotic hypersensitivity pneumonitis (FHP) using cutting-edge single-cell profiling technologies. Methods Single-cell RNA sequencing was performed on patients and healthy controls' peripheral blood and bronchoalveolar lavage samples using 10X Genomics 5' gene expression and V(D)J profiling. Cell type composition, transcriptional profiles, cellular trajectories and signaling, and T and B cell receptor repertoires were studied. The standard Seurat R pipeline was followed for cell type composition and differential gene expression analyses. Transcription factor activity was imputed using the DoRothEA-VIPER algorithm. Pseudotime analyses were conducted using Monocle3, while RNA velocity analyses were performed with Velocyto, scVelo, and CellRank. Cell-cell connectomics were assessed using the Connectome R package. V(D)J analyses were conducted using CellRanger and Immcantation frameworks. Across all analyses, disease group differences were assessed using the Wilcoxon rank-sum test. Measurements and Main Results 327,990 cells from 83 samples were profiled. Overall, changes in monocytes were common to IPF and FHP, whereas lymphocytes exhibited disease-specific aberrations. Both diseases displayed enrichment of CCL3 hi /CCL4 hi CD14+ monocytes (p<2.2e-16) and S100A hi CD14+ monocytes (p<2.2e-16) versus controls. Trajectory and RNA velocity analysis suggested that pro-fibrotic macrophages observed in BAL originated from peripheral blood monocytes. Lymphocytes exhibited disease-specific aberrations, with CD8+ GZMK hi T cells and activated B cells primarily enriched in FHP patients. V(D)J analyses revealed unique T and B cell receptor complementarity-determining region 3 (CDR3) amino acid compositions (p<0.05) in FHP and significant IgA enrichment in IPF (p<5.2e-7). Conclusions We identified common and disease-specific immune mechanisms in IPF and FHP; S100A hi monocytes and SPP1 hi macrophages are common to IPF and FHP, whereas GMZK hi T lymphocytes and T and B cell receptor repertoires were unique in FHP. Our findings open novel strategies for the diagnosis and treatment of IPF and FHP.
Collapse
|
42
|
Schupp JC, Kaminski N. When Development of the Alveolar Gas Exchange Unit Fails: Universal Single-Cell Lessons from Rare Monogenic Disorders. Am J Respir Crit Care Med 2023; 208:652-654. [PMID: 37555730 PMCID: PMC10515565 DOI: 10.1164/rccm.202307-1271ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/08/2023] [Indexed: 08/10/2023] Open
Affiliation(s)
- Jonas C Schupp
- Pulmonary, Critical Care and Sleep Medicine Yale School of Medicine New Haven, Connecticut
- Respiratory Medicine Hannover Medical School Hannover, Germany
- German Center for Lung Research Biomedical Research in Endstage and Obstructive Lung Disease Hannover Hannover, Germany
| | - Naftali Kaminski
- Pulmonary, Critical Care and Sleep Medicine Yale School of Medicine New Haven, Connecticut
| |
Collapse
|
43
|
Zhang R, Liu Q, Pan S, Zhang Y, Qin Y, Du X, Yuan Z, Lu Y, Song Y, Zhang M, Zhang N, Ma J, Zhang Z, Jia X, Wang K, He S, Liu S, Ni M, Liu X, Xu X, Yang H, Wang J, Seim I, Fan G. A single-cell atlas of West African lungfish respiratory system reveals evolutionary adaptations to terrestrialization. Nat Commun 2023; 14:5630. [PMID: 37699889 PMCID: PMC10497629 DOI: 10.1038/s41467-023-41309-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 08/30/2023] [Indexed: 09/14/2023] Open
Abstract
The six species of lungfish possess both lungs and gills and are the closest extant relatives of tetrapods. Here, we report a single-cell transcriptome atlas of the West African lungfish (Protopterus annectens). This species manifests the most extreme form of terrestrialization, a life history strategy to survive dry periods that can last for years, characterized by dormancy and reversible adaptive changes of the gills and lungs. Our atlas highlights the cell type diversity of the West African lungfish, including gene expression consistent with phenotype changes of terrestrialization. Comparison with terrestrial tetrapods and ray-finned fishes reveals broad homology between the swim bladder and lung cell types as well as shared and idiosyncratic changes of the external gills of the West African lungfish and the internal gills of Atlantic salmon. The single-cell atlas presented here provides a valuable resource for further exploration of the respiratory system evolution in vertebrates and the diversity of lungfish terrestrialization.
Collapse
Affiliation(s)
- Ruihua Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
- BGI Research, 266555, Qingdao, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, China
| | - Qun Liu
- BGI Research, 266555, Qingdao, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, China
- Department of Biology, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Shanshan Pan
- BGI Research, 266555, Qingdao, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, China
| | - Yingying Zhang
- BGI Research, 266555, Qingdao, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, China
| | - Yating Qin
- BGI Research, 266555, Qingdao, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, China
| | - Xiao Du
- BGI Research, 266555, Qingdao, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, China
- BGI Research, 518083, Shenzhen, China
| | - Zengbao Yuan
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
- BGI Research, 266555, Qingdao, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, China
| | - Yongrui Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 430072, Wuhan, China
| | - Yue Song
- BGI Research, 266555, Qingdao, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, China
| | | | - Nannan Zhang
- BGI Research, 266555, Qingdao, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, China
| | - Jie Ma
- BGI Research, 266555, Qingdao, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, China
| | | | - Xiaodong Jia
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, 252000, Liaocheng, Shandong, P.R. China
| | - Kun Wang
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, 710072, Xi'an, China
| | - Shunping He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 430072, Wuhan, China
| | - Shanshan Liu
- BGI Research, 518083, Shenzhen, China
- MGI Tech, 518083, Shenzhen, China
| | - Ming Ni
- BGI Research, 518083, Shenzhen, China
- MGI Tech, 518083, Shenzhen, China
| | - Xin Liu
- BGI Research, 518083, Shenzhen, China
| | - Xun Xu
- BGI Research, 518083, Shenzhen, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI Research, 518083, Shenzhen, China
| | | | - Jian Wang
- BGI Research, 518083, Shenzhen, China
| | - Inge Seim
- Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing, China.
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, 4000, Australia.
| | - Guangyi Fan
- BGI Research, 266555, Qingdao, China.
- Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, China.
- BGI Research, 518083, Shenzhen, China.
| |
Collapse
|
44
|
Ghonim MA, Boyd DF, Flerlage T, Thomas PG. Pulmonary inflammation and fibroblast immunoregulation: from bench to bedside. J Clin Invest 2023; 133:e170499. [PMID: 37655660 PMCID: PMC10471178 DOI: 10.1172/jci170499] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
In recent years, there has been an explosion of interest in how fibroblasts initiate, sustain, and resolve inflammation across disease states. Fibroblasts contain heterogeneous subsets with diverse functionality. The phenotypes of these populations vary depending on their spatial distribution within the tissue and the immunopathologic cues contributing to disease progression. In addition to their roles in structurally supporting organs and remodeling tissue, fibroblasts mediate critical interactions with diverse immune cells. These interactions have important implications for defining mechanisms of disease and identifying potential therapeutic targets. Fibroblasts in the respiratory tract, in particular, determine the severity and outcome of numerous acute and chronic lung diseases, including asthma, chronic obstructive pulmonary disease, acute respiratory distress syndrome, and idiopathic pulmonary fibrosis. Here, we review recent studies defining the spatiotemporal identity of the lung-derived fibroblasts and the mechanisms by which these subsets regulate immune responses to insult exposures and highlight past, current, and future therapeutic targets with relevance to fibroblast biology in the context of acute and chronic human respiratory diseases. This perspective highlights the importance of tissue context in defining fibroblast-immune crosstalk and paves the way for identifying therapeutic approaches to benefit patients with acute and chronic pulmonary disorders.
Collapse
Affiliation(s)
- Mohamed A. Ghonim
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al Azhar University, Cairo, Egypt
| | - David F. Boyd
- Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, USA
| | - Tim Flerlage
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Paul G. Thomas
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
45
|
Cheng C, Chen W, Jin H, Chen X. A Review of Single-Cell RNA-Seq Annotation, Integration, and Cell-Cell Communication. Cells 2023; 12:1970. [PMID: 37566049 PMCID: PMC10417635 DOI: 10.3390/cells12151970] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/10/2023] [Accepted: 07/21/2023] [Indexed: 08/12/2023] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) has emerged as a powerful tool for investigating cellular biology at an unprecedented resolution, enabling the characterization of cellular heterogeneity, identification of rare but significant cell types, and exploration of cell-cell communications and interactions. Its broad applications span both basic and clinical research domains. In this comprehensive review, we survey the current landscape of scRNA-seq analysis methods and tools, focusing on count modeling, cell-type annotation, data integration, including spatial transcriptomics, and the inference of cell-cell communication. We review the challenges encountered in scRNA-seq analysis, including issues of sparsity or low expression, reliability of cell annotation, and assumptions in data integration, and discuss the potential impact of suboptimal clustering and differential expression analysis tools on downstream analyses, particularly in identifying cell subpopulations. Finally, we discuss recent advancements and future directions for enhancing scRNA-seq analysis. Specifically, we highlight the development of novel tools for annotating single-cell data, integrating and interpreting multimodal datasets covering transcriptomics, epigenomics, and proteomics, and inferring cellular communication networks. By elucidating the latest progress and innovation, we provide a comprehensive overview of the rapidly advancing field of scRNA-seq analysis.
Collapse
Affiliation(s)
- Changde Cheng
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
| | - Wenan Chen
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (W.C.); (H.J.)
| | - Hongjian Jin
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (W.C.); (H.J.)
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
| |
Collapse
|
46
|
Mukherjee A, Epperly MW, Fisher R, Hou W, Shields D, Saiful Huq M, Pifer PM, Mulherkar R, Wilhite TJ, Wang H, Wipf P, Greenberger JS. Inhibition of tyrosine kinase Fgr prevents radiation-induced pulmonary fibrosis (RIPF). Cell Death Discov 2023; 9:252. [PMID: 37460469 PMCID: PMC10352363 DOI: 10.1038/s41420-023-01538-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/20/2023] [Accepted: 06/29/2023] [Indexed: 07/20/2023] Open
Abstract
Cellular senescence is involved in the development of pulmonary fibrosis as well as in lung tissue repair and regeneration. Therefore, a strategy of removal of senescent cells by senolytic drugs may not produce the desired therapeutic result. Previously we reported that tyrosine kinase Fgr is upregulated in ionizing irradiation-induced senescent cells. Inhibition of Fgr reduces the production of profibrotic proteins by radiation-induced senescent cells in vitro; however, a mechanistic relationship between senescent cells and radiation-induced pulmonary fibrosis (RIPF) has not been established. We now report that senescent cells from the lungs of mice with RIPF, release profibrotic proteins for target cells and secrete chemotactic proteins for marrow cells. The Fgr inhibitor TL02-59, reduces this release of profibrotic chemokines from the lungs of RIPF mice, without reducing numbers of senescent cells. In vitro studies demonstrated that TL02-59 abrogates the upregulation of profibrotic genes in target cells in transwell cultures. Also, protein arrays using lung fibroblasts demonstrated that TL02-59 inhibits the production of chemokines involved in the migration of macrophages to the lung. In thoracic-irradiated mice, TL02-59 prevents RIPF, significantly reduces levels of expression of fibrotic gene products, and significantly reduces the recruitment of CD11b+ macrophages to the lungs. Bronchoalveolar lavage (BAL) cells from RIPF mice show increased Fgr and other senescent cell markers including p16. In human idiopathic pulmonary fibrosis (IPF) and in RIPF, Fgr, and other senescent cell biomarkers are increased. In both mouse and human RIPF, there is an accumulation of Fgr-positive proinflammatory CD11b+ macrophages in the lungs. Thus, elevated levels of Fgr in lung senescent cells upregulate profibrotic gene products, and chemokines that might be responsible for macrophage infiltration into lungs. The detection of Fgr in senescent cells that are obtained from BAL during the development of RIPF may help predict the onset and facilitate the delivery of medical countermeasures.
Collapse
Affiliation(s)
- Amitava Mukherjee
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, 15232, USA
| | - Michael W Epperly
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, 15232, USA
| | - Renee Fisher
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, 15232, USA
| | - Wen Hou
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, 15232, USA
| | - Donna Shields
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, 15232, USA
| | - M Saiful Huq
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, 15232, USA
| | - Phillip M Pifer
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, 15232, USA
| | - Ria Mulherkar
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, 15232, USA
| | - Tyler J Wilhite
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, 15232, USA
| | - Hong Wang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Joel S Greenberger
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, 15232, USA.
| |
Collapse
|
47
|
Frommer ML, Langridge BJ, Awad L, Jasionowska S, Denton CP, Abraham DJ, Abu-Hanna J, Butler PEM. Single-Cell Analysis of ADSC Interactions with Fibroblasts and Endothelial Cells in Scleroderma Skin. Cells 2023; 12:1784. [PMID: 37443817 PMCID: PMC10341100 DOI: 10.3390/cells12131784] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Adipose-derived stem cells (ADSCs) as part of autologous fat grafting have anti-fibrotic and anti-inflammatory effects, but the exact mechanisms of action remain unknown. By simulating the interaction of ADSCs with fibroblasts and endothelial cells (EC) from scleroderma (SSc) skin in silico, we aim to unravel these mechanisms. Publicly available single-cell RNA sequencing data from the stromal vascular fraction of 3 lean patients and biopsies from the skin of 10 control and 12 patients with SSc were obtained from the GEO and analysed using R and Seurat. Differentially expressed genes were used to compare the fibroblast and EC transcriptome between controls and SSc. GO and KEGG functional enrichment was performed. Ligand-receptor interactions of ADSCs with fibroblasts and ECs were explored with LIANA. Pro-inflammatory and extracellular matrix (ECM) interacting fibroblasts were identified in SSc. Arterial, capillary, venous and lymphatic ECs showed a pro-fibrotic and pro-inflammatory transcriptome. Most interactions with both cell types were based on ECM proteins. Differential interactions identified included NTN1, VEGFD, MMP2, FGF2, and FNDC5. The ADSC secretome may disrupt vascular and perivascular inflammation hubs in scleroderma by promoting angiogenesis and especially lymphangiogenesis. Key phenomena observed after fat grafting remain unexplained, including modulation of fibroblast behaviour.
Collapse
Affiliation(s)
- Marvin L. Frommer
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London NW3 2QG, UK; (B.J.L.); (J.A.-H.); (P.E.M.B.)
- Department of Surgical Biotechnology, Division of Surgery & Interventional Science, University College London, London NW3 2QG, UK
- Department of Plastic Surgery, Royal Free Hospital, London NW3 2QG, UK
| | - Benjamin J. Langridge
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London NW3 2QG, UK; (B.J.L.); (J.A.-H.); (P.E.M.B.)
- Department of Surgical Biotechnology, Division of Surgery & Interventional Science, University College London, London NW3 2QG, UK
- Department of Plastic Surgery, Royal Free Hospital, London NW3 2QG, UK
| | - Laura Awad
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London NW3 2QG, UK; (B.J.L.); (J.A.-H.); (P.E.M.B.)
- Department of Plastic Surgery, Royal Free Hospital, London NW3 2QG, UK
| | - Sara Jasionowska
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London NW3 2QG, UK; (B.J.L.); (J.A.-H.); (P.E.M.B.)
- Department of Plastic Surgery, Royal Free Hospital, London NW3 2QG, UK
| | - Christopher P. Denton
- Centre for Rheumatology, Department of Inflammation, Division of Medicine, University College London, London NW3 2QG, UK
| | - David J. Abraham
- Centre for Rheumatology, Department of Inflammation, Division of Medicine, University College London, London NW3 2QG, UK
| | - Jeries Abu-Hanna
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London NW3 2QG, UK; (B.J.L.); (J.A.-H.); (P.E.M.B.)
- Division of Medical Sciences, University of Oxford, Oxford OX3 9DU, UK
| | - Peter E. M. Butler
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London NW3 2QG, UK; (B.J.L.); (J.A.-H.); (P.E.M.B.)
- Department of Surgical Biotechnology, Division of Surgery & Interventional Science, University College London, London NW3 2QG, UK
- Department of Plastic Surgery, Royal Free Hospital, London NW3 2QG, UK
| |
Collapse
|
48
|
Alisjahbana A, Mohammad I, Gao Y, Evren E, Willinger T. Single-cell RNA sequencing of human lung innate lymphoid cells in the vascular and tissue niche reveals molecular features of tissue adaptation. DISCOVERY IMMUNOLOGY 2023; 2:kyad007. [PMID: 38650756 PMCID: PMC11034571 DOI: 10.1093/discim/kyad007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/06/2023] [Accepted: 06/23/2023] [Indexed: 04/25/2024]
Abstract
Innate lymphoid cells (ILCs) are sentinels of healthy organ function, yet it is unknown how ILCs adapt to distinct anatomical niches within tissues. Here, we used a unique humanized mouse model, MISTRG mice transplanted with human hematopoietic stem and progenitor cells (HSPCs), to define the gene signatures of human ILCs in the vascular versus the tissue (extravascular) compartment of the lung. Single-cell RNA sequencing in combination with intravascular cell labeling demonstrated that heterogeneous populations of human ILCs and natural killer (NK) cells occupied the vascular and tissue niches in the lung of HSPC-engrafted MISTRG mice. Moreover, we discovered that niche-specific cues shape the molecular programs of human ILCs in the distinct sub-anatomical compartments of the lung. Specifically, extravasation of ILCs into the lung tissue was associated with the upregulation of genes involved in the acquisition of tissue residency, cell positioning within the lung, sensing of tissue-derived signals, cellular stress responses, nutrient uptake, and interaction with other tissue-resident immune cells. We also defined a core tissue signature shared between human ILCs and NK cells in the extravascular space of the lung, consistent with imprinting by signals from the local microenvironment. The molecular characterization of human ILCs and NK cells in the vascular and tissue niches of the lung provides new knowledge on the mechanisms of ILC tissue adaptation and represents a resource for further studies.
Collapse
Affiliation(s)
- Arlisa Alisjahbana
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Imran Mohammad
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Department of Otolaryngology-Head and Neck Surgery, Stanford Cancer Institute, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Yu Gao
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Elza Evren
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Comprehensive Pneumology Center (CPC) with the CPC-M bioArchive/Institute of Lung Health and Immunity (LHI), Helmholtz Zentrum München; Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Tim Willinger
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
49
|
Scavuzzo MA, Letai KC, Maeno-Hikichi Y, Wulftange WJ, Shah IK, Rameshbabu JS, Tomar A, Shick HE, Shah AK, Xiong Y, Cohn EF, Allan KC, Tesar PJ. Enteric glial hub cells coordinate intestinal motility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.544052. [PMID: 37333182 PMCID: PMC10274798 DOI: 10.1101/2023.06.07.544052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Enteric glia are the predominant cell type in the enteric nervous system yet their identities and roles in gastrointestinal function are not well classified. Using our optimized single nucleus RNA-sequencing method, we identified distinct molecular classes of enteric glia and defined their morphological and spatial diversity. Our findings revealed a functionally specialized biosensor subtype of enteric glia that we call "hub cells." Deletion of the mechanosensory ion channel PIEZO2 from adult enteric glial hub cells, but not other subtypes of enteric glia, led to defects in intestinal motility and gastric emptying in mice. These results provide insight into the multifaceted functions of different enteric glial cell subtypes in gut health and emphasize that therapies targeting enteric glia could advance the treatment of gastrointestinal diseases.
Collapse
Affiliation(s)
- Marissa A. Scavuzzo
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Katherine C. Letai
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Yuka Maeno-Hikichi
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - William J. Wulftange
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Isha K. Shah
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Jeyashri S. Rameshbabu
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Alka Tomar
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - H. Elizabeth Shick
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Aakash K. Shah
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Ying Xiong
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Erin F. Cohn
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Kevin C. Allan
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Paul J. Tesar
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| |
Collapse
|
50
|
Gao L, Sun Y, Zhang X, Ma D, Xie A, Wang E, Cheng L, Liu S. Wnt3a-Loaded Extracellular Vesicles Promote Alveolar Epithelial Regeneration after Lung Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206606. [PMID: 37072558 PMCID: PMC10288279 DOI: 10.1002/advs.202206606] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/16/2023] [Indexed: 05/03/2023]
Abstract
Compromised regeneration resulting from the deactivation of Wnt/β-catenin signaling contributes to the progression of chronic obstructive pulmonary disease (COPD) with limited therapeutic options. Extracellular cytokine-induced Wnt-based signaling provides an alternative option for COPD treatment. However, the hydrophobic nature of Wnt proteins limits their purification and use. This study devises a strategy to deliver the membrane-bound wingless-type MMTV integration site family, member 3A (Wnt3a) over a long distance by anchoring it to the surface of extracellular vesicles (EVs). The newly engineered Wnt3aWG EVs are generated by co-expressing Wnt3a with two genes encoding the membrane protein, WLS, and an engineered glypican, GPC6ΔGPI -C1C2. The bioactivity of Wnt3aWG EVs is validated using a TOPFlash assay and a mesoderm differentiation model of human pluripotent stem cells. Wnt3aWG EVs activate Wnt signaling and promote cell growth following human alveolar epithelial cell injury. In an elastase-induced emphysema model, impaired pulmonary function and enlarged airspace are greatly restored by the intravenous delivery of Wnt3aWG EVs. Single-cell RNA sequencing-based analyses further highlight that Wnt3aWG EV-activated regenerative programs are responsible for its beneficial effects. These findings suggest that EV-based Wnt3a delivery represents a novel therapeutic strategy for lung repair and regeneration after injury.
Collapse
Affiliation(s)
- Lei Gao
- Department of HematologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027China
- Blood and Cell Therapy InstituteAnhui Provincial Key Laboratory of Blood Research and ApplicationsUniversity of Science and Technology of ChinaHefeiAnhui230027China
- School of Basic Medical SciencesDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Yongping Sun
- School of Basic Medical SciencesDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Xinye Zhang
- School of Basic Medical SciencesDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Ding Ma
- Department of HematologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027China
- Blood and Cell Therapy InstituteAnhui Provincial Key Laboratory of Blood Research and ApplicationsUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - An Xie
- Blood and Cell Therapy InstituteAnhui Provincial Key Laboratory of Blood Research and ApplicationsUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Enyu Wang
- Blood and Cell Therapy InstituteAnhui Provincial Key Laboratory of Blood Research and ApplicationsUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Linzhao Cheng
- Department of HematologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027China
- Blood and Cell Therapy InstituteAnhui Provincial Key Laboratory of Blood Research and ApplicationsUniversity of Science and Technology of ChinaHefeiAnhui230027China
- School of Basic Medical SciencesDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Senquan Liu
- Department of HematologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027China
- Blood and Cell Therapy InstituteAnhui Provincial Key Laboratory of Blood Research and ApplicationsUniversity of Science and Technology of ChinaHefeiAnhui230027China
- School of Basic Medical SciencesDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027China
| |
Collapse
|