1
|
Cardenas-Benitez B, Hurtado R, Luo X, Lee AP. Three-dimensional isotropic imaging of live suspension cells enabled by droplet microvortices. Proc Natl Acad Sci U S A 2024; 121:e2408567121. [PMID: 39436653 PMCID: PMC11536124 DOI: 10.1073/pnas.2408567121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/24/2024] [Indexed: 10/23/2024] Open
Abstract
Fast, nondestructive three-dimensional (3D) imaging of live suspension cells remains challenging without substrate treatment or fixation, precluding scalable single-cell morphometry with minimal alterations. While optical sectioning techniques achieve 3D live cell imaging, lateral versus depth resolution differences further complicate analysis. We present a scalable microfluidic method capable of 3D fluorescent isotropic imaging of live, nonadherent cells suspended inside picoliter droplets with high-speed single-cell volumetric readout (800 to 1,200 slices in 5 to 8 s) and near-diffraction limit resolution (~216 nm). The platform features a droplet trap array that leverages flow-induced droplet interfacial shear to generate intradroplet microvortices, which rotate single cells on their axis to enable optical projection tomography (OPT)-based imaging. This allows gentle (~1 mPa shear stress) observation of cells encapsulated inside nontoxic isotonic buffer droplets, facilitating scalable OPT acquisition by simultaneous spinning of hundreds of cells. We demonstrate 3D imaging of live myeloid and lymphoid cells in suspension, including K562 cells, as well as naive and activated T cells-small cells prone to movement in their suspended phenotype. Our fully suspended, orientation-independent cell morphometry, driven by isotropic imaging and spherical harmonic analysis, enabled the study of primary T cells across various immunological activation states. This approach unveiled six distinct nuclear content distributions, contrasting with conventional 2D images that typically portray spheroid and bean-like nuclear shapes associated with lymphocytes. Our arrayed-droplet OPT technology is capable of isotropic, single live-cell 3D imaging, with the potential to perform large-scale morphometry of immune cell effector function states while providing compatibility with microfluidic droplet operations.
Collapse
Affiliation(s)
- Braulio Cardenas-Benitez
- Department of Biomedical Engineering, University of California, Irvine, CA92697
- Center for Advanced Design & Manufacturing of Integrated Microfluidics, University of California, Irvine, CA92697
| | - Richard Hurtado
- Department of Biomedical Engineering, University of California, Irvine, CA92697
- Center for Advanced Design & Manufacturing of Integrated Microfluidics, University of California, Irvine, CA92697
| | - Xuhao Luo
- Department of Biomedical Engineering, University of California, Irvine, CA92697
- Center for Advanced Design & Manufacturing of Integrated Microfluidics, University of California, Irvine, CA92697
| | - Abraham P. Lee
- Department of Biomedical Engineering, University of California, Irvine, CA92697
- Center for Advanced Design & Manufacturing of Integrated Microfluidics, University of California, Irvine, CA92697
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA92697
| |
Collapse
|
2
|
Yau JNN, Yempala T, Muthuramalingam RPK, Giustarini G, Teng G, Ang WH, Gibson D, Adriani G, Pastorin G. Fluorescence-Guided Spatial Drug Screening in 3D Colorectal Cancer Spheroids. Adv Healthc Mater 2024; 13:e2400203. [PMID: 38774999 DOI: 10.1002/adhm.202400203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/06/2024] [Indexed: 06/04/2024]
Abstract
The limited recapitulation of critical cancer features in 2D cultures causes poor translatability of preclinical results from in vitro assays to in vivo tumor models. This contributes to slow drug development with a low success rate. 3D cultures better recapitulate the tumor microenvironment, enabling more accurate predictions when screening drug candidates and improving the development of chemotherapeutics. Platinum (Pt) (IV) compounds are promising prodrugs designed to reduce the severe systemic toxicity of widely used Food and Drug Administration (FDA)-approved Pt(II) drugs such as cisplatin. Here, this work presents spatiotemporal evaluations in 3D colorectal cancer (CRC) spheroids of mitochondria-targeting Pt(IV) complexes. CRC spheroids provide a greater pathophysiological recapitulation of in vivo tumors than 2D cultures by a marked upregulation of the ABCG2 chemoresistance marker expression. Furthermore, new 3D-staining protocols are introduced to evaluate the real-time decrease in mitochondria membrane potential (ΔΨ) in CRC spheroids, and a Pt-sensing dye to quantify the Pt mitochondrial accumulation. Finally, this work demonstrates a correlation between in vitro results and the efficacy of the compounds in vivo. Overall, the CRC spheroids represent a fast and cost-effective model to assess the behavior of Pt compounds in vitro and predict their translational potential in CRC treatment.
Collapse
Affiliation(s)
- Jia Ning Nicolette Yau
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, Singapore, 117544, Singapore
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Singapore, 119077, Singapore
| | - Thirumal Yempala
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, Singapore, 117544, Singapore
| | - Ram Pravin Kumar Muthuramalingam
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, Singapore, 117544, Singapore
| | - Giulio Giustarini
- Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore, 138648, Singapore
| | - Germaine Teng
- Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore, 138648, Singapore
| | - Wee Han Ang
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore, 117544, Singapore
| | - Dan Gibson
- Institute for Drug Research, School of Pharmacy, Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Giulia Adriani
- Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore, 138648, Singapore
- Department of Biomedical Engineering, Faculty of Engineerin, National University of Singapore, Singapore, 117578, Singapore
| | - Giorgia Pastorin
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, Singapore, 117544, Singapore
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Singapore, 119077, Singapore
| |
Collapse
|
3
|
Jain S, Belkadi H, Michaut A, Sart S, Gros J, Genet M, Baroud CN. Using a micro-device with a deformable ceiling to probe stiffness heterogeneities within 3D cell aggregates. Biofabrication 2024; 16:035010. [PMID: 38447213 DOI: 10.1088/1758-5090/ad30c7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/06/2024] [Indexed: 03/08/2024]
Abstract
Recent advances in the field of mechanobiology have led to the development of methods to characterise single-cell or monolayer mechanical properties and link them to their functional behaviour. However, there remains a strong need to establish this link for three-dimensional (3D) multicellular aggregates, which better mimic tissue function. Here we present a platform to actuate and observe many such aggregates within one deformable micro-device. The platform consists of a single polydimethylsiloxane piece cast on a 3D-printed mould and bonded to a glass slide or coverslip. It consists of a chamber containing cell spheroids, which is adjacent to air cavities that are fluidically independent. Controlling the air pressure in these air cavities leads to a vertical displacement of the chamber's ceiling. The device can be used in static or dynamic modes over time scales of seconds to hours, with displacement amplitudes from a fewµm to several tens of microns. Further, we show how the compression protocols can be used to obtain measurements of stiffness heterogeneities within individual co-culture spheroids, by comparing image correlations of spheroids at different levels of compression with finite element simulations. The labelling of the cells and their cytoskeleton is combined with image correlation methods to relate the structure of the co-culture spheroid with its mechanical properties at different locations. The device is compatible with various microscopy techniques, including confocal microscopy, which can be used to observe the displacements and rearrangements of single cells and neighbourhoods within the aggregate. The complete experimental and imaging platform can now be used to provide multi-scale measurements that link single-cell behaviour with the global mechanical response of the aggregates.
Collapse
Affiliation(s)
- Shreyansh Jain
- Institut Pasteur, Université Paris Cité, Physical Microfluidics and Bioengineering, 25-28 Rue du Dr Roux, 75015 Paris, France
- Laboratoire d' Hydrodynamique (LadHyX), CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Hiba Belkadi
- Institut Pasteur, Université Paris Cité, Physical Microfluidics and Bioengineering, 25-28 Rue du Dr Roux, 75015 Paris, France
- Laboratoire d' Hydrodynamique (LadHyX), CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Arthur Michaut
- Institut Pasteur, Université Paris Cité, Dynamic Regulation of Morphogenesis, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - Sébastien Sart
- Institut Pasteur, Université Paris Cité, Physical Microfluidics and Bioengineering, 25-28 Rue du Dr Roux, 75015 Paris, France
- Laboratoire d' Hydrodynamique (LadHyX), CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Jérôme Gros
- Institut Pasteur, Université Paris Cité, Dynamic Regulation of Morphogenesis, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - Martin Genet
- Laboratoire de Mécanique des Solides, CNRS, École Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
- Inria, Palaiseau, France
| | - Charles N Baroud
- Institut Pasteur, Université Paris Cité, Physical Microfluidics and Bioengineering, 25-28 Rue du Dr Roux, 75015 Paris, France
- Laboratoire d' Hydrodynamique (LadHyX), CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| |
Collapse
|
4
|
Bonnet V, Maikranz E, Madec M, Vertti-Quintero N, Cuche C, Mastrogiovanni M, Alcover A, Di Bartolo V, Baroud CN. Cancer-on-a-chip model shows that the adenomatous polyposis coli mutation impairs T cell engagement and killing of cancer spheroids. Proc Natl Acad Sci U S A 2024; 121:e2316500121. [PMID: 38442157 PMCID: PMC10945811 DOI: 10.1073/pnas.2316500121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/25/2024] [Indexed: 03/07/2024] Open
Abstract
Evaluating the ability of cytotoxic T lymphocytes (CTLs) to eliminate tumor cells is crucial, for instance, to predict the efficiency of cell therapy in personalized medicine. However, the destruction of a tumor by CTLs involves CTL migration in the extra-tumoral environment, accumulation on the tumor, antigen recognition, and cooperation in killing the cancer cells. Therefore, identifying the limiting steps in this complex process requires spatio-temporal measurements of different cellular events over long periods. Here, we use a cancer-on-a-chip platform to evaluate the impact of adenomatous polyposis coli (APC) mutation on CTL migration and cytotoxicity against 3D tumor spheroids. The APC mutated CTLs are found to have a reduced ability to destroy tumor spheroids compared with control cells, even though APC mutants migrate in the extra-tumoral space and accumulate on the spheroids as efficiently as control cells. Once in contact with the tumor however, mutated CTLs display reduced engagement with the cancer cells, as measured by a metric that distinguishes different modes of CTL migration. Realigning the CTL trajectories around localized killing cascades reveals that all CTLs transition to high engagement in the 2 h preceding the cascades, which confirms that the low engagement is the cause of reduced cytotoxicity. Beyond the study of APC mutations, this platform offers a robust way to compare cytotoxic cell efficiency of even closely related cell types, by relying on a multiscale cytometry approach to disentangle complex interactions and to identify the steps that limit the tumor destruction.
Collapse
Affiliation(s)
- Valentin Bonnet
- Institut Pasteur, Department of Genomes and Genetics, Université Paris Cité, Physical Microfluidics and Bioengineering, ParisF-75015, France
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau91120, France
| | - Erik Maikranz
- Institut Pasteur, Department of Genomes and Genetics, Université Paris Cité, Physical Microfluidics and Bioengineering, ParisF-75015, France
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau91120, France
| | - Marianne Madec
- Unité Biologie Cellulaire des Lymphocytes, Institut Pasteur, Department of immunology, Université Paris Cité, INSERM-U1224, Ligue Nationale Contre le Cancer, Équipe Labellisée Ligue 2018, ParisF-75015, France
- Faculty of Medicine, Department of Pathology and Immunology, University of Geneva, Geneva 4CH-1211, Switzerland
| | - Nadia Vertti-Quintero
- Institut Pasteur, Department of Genomes and Genetics, Université Paris Cité, Physical Microfluidics and Bioengineering, ParisF-75015, France
| | - Céline Cuche
- Unité Biologie Cellulaire des Lymphocytes, Institut Pasteur, Department of immunology, Université Paris Cité, INSERM-U1224, Ligue Nationale Contre le Cancer, Équipe Labellisée Ligue 2018, ParisF-75015, France
| | - Marta Mastrogiovanni
- Unité Biologie Cellulaire des Lymphocytes, Institut Pasteur, Department of immunology, Université Paris Cité, INSERM-U1224, Ligue Nationale Contre le Cancer, Équipe Labellisée Ligue 2018, ParisF-75015, France
- Albert Einstein College of Medicine, Department of Developmental and Molecular Biology, New York, NY10461
| | - Andrés Alcover
- Unité Biologie Cellulaire des Lymphocytes, Institut Pasteur, Department of immunology, Université Paris Cité, INSERM-U1224, Ligue Nationale Contre le Cancer, Équipe Labellisée Ligue 2018, ParisF-75015, France
| | - Vincenzo Di Bartolo
- Unité Biologie Cellulaire des Lymphocytes, Institut Pasteur, Department of immunology, Université Paris Cité, INSERM-U1224, Ligue Nationale Contre le Cancer, Équipe Labellisée Ligue 2018, ParisF-75015, France
| | - Charles N. Baroud
- Institut Pasteur, Department of Genomes and Genetics, Université Paris Cité, Physical Microfluidics and Bioengineering, ParisF-75015, France
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau91120, France
| |
Collapse
|
5
|
Rais N, Ved A, Ahmad R, Parveen A. Research-based Analytical Procedures to Evaluate Diabetic Biomarkers and Related Parameters: In Vitro and In Vivo Methods. Curr Diabetes Rev 2024; 20:e201023222417. [PMID: 37867271 DOI: 10.2174/0115733998252495231011182012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 08/24/2023] [Accepted: 09/08/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND The degenerative tendency of diabetes leads to micro- and macrovascular complications due to abnormal levels of biochemicals, particularly in patients with poor diabetic control. Diabetes is supposed to be treated by reducing blood glucose levels, scavenging free radicals, and maintaining other relevant parameters close to normal ranges. In preclinical studies, numerous in vivo trials on animals as well as in vitro tests are used to assess the antidiabetic and antioxidant effects of the test substances. Since a substance that performs poorly in vitro won't perform better in vivo, the outcomes of in vitro studies can be utilized as a direct indicator of in vivo activities. OBJECTIVE The objective of the present study is to provide research scholars with a comprehensive overview of laboratory methods and procedures for a few selected diabetic biomarkers and related parameters. METHOD The search was conducted on scientific database portals such as ScienceDirect, PubMed, Google Scholar, BASE, DOAJ, etc. Conclusion: The development of new biomarkers is greatly facilitated by modern technology such as cell culture research, lipidomics study, microRNA biomarkers, machine learning techniques, and improved electron microscopies. These biomarkers do, however, have some usage restrictions. There is a critical need to find more accurate and sensitive biomarkers. With a few modifications, these biomarkers can be used with or even replace conventional markers of diabetes.
Collapse
Affiliation(s)
- Nadeem Rais
- Department of Pharmacy, Bhagwant University, Ajmer, Rajasthan 305004, India
| | - Akash Ved
- Goel Institute of Pharmaceutical Sciences, Lucknow, Uttar Pradesh 226028, India
| | - Rizwan Ahmad
- Department of Pharmacy, Vivek College of Technical Education, Bijnor, Uttar Pradesh 246701, India
| | - Aashna Parveen
- Faculty of Applied Science, Bhagwant Global University, Kotdwar, Uttarakhand 246149, India
| |
Collapse
|
6
|
Zhang B, Lu Q, Dai G, Zhou Y, Ye Q, Zhou Y, Tan WS. Enhancing mesenchymal stem cells cultivated on microcarriers in spinner flasks via impeller design optimization for aggregated suspensions. BIORESOUR BIOPROCESS 2023; 10:89. [PMID: 38647954 PMCID: PMC10992254 DOI: 10.1186/s40643-023-00707-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/16/2023] [Indexed: 04/25/2024] Open
Abstract
During the ex vivo expansion of umbilical cord-derived mesenchymal stem cells (hUCMSCs) in a stirred tank bioreactor, the formation of cell-microcarrier aggregates significantly affects cell proliferation and physiological activity, making it difficult to meet the quantity and quality requirements for in vitro research and clinical applications. In this study, computational fluid dynamic (CFD) simulations were used to investigate the effect of an impeller structure in a commercial spinner flask on flow field structure, aggregate formation, and cellular physiological activity. By designing a modified impeller, the aggregate size was reduced, which promoted cell proliferation and stemness maintenance. This study showed that increasing the stirring speed reduced the size of hUCMSC-microcarrier aggregates with the original impeller. However, it also inhibited cell proliferation, decreased activity, and led to spontaneous differentiation. Compared to low stirring speeds, high stirring speeds did not alter the radial flow characteristics and vortex distribution of the flow field, but did generate higher shear rates. The new impeller's design changed the flow field from radial to axial. The use of the novel impeller with an increased axial pumping rate (Qz) at a similar shear rate compared to the original impeller resulted in a 43.7% reduction in aggregate size, a 37.4% increase in cell density, and a better preservation of the expression of stemness markers (SOX2, OCT4 and NANOG). Increasing the Qz was a key factor in promoting aggregate suspension and size reduction. The results of this study have significant implications for the design of reactors, the optimisation of operating parameters, and the regulation of cellular physiological activity during MSC expansion.
Collapse
Affiliation(s)
- Botao Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Qiaohui Lu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Gance Dai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yi Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Qian Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yan Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Wen-Song Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
7
|
Sun S, Xue X, Fu J. Modeling development using microfluidics: bridging gaps to foster fundamental and translational research. Curr Opin Genet Dev 2023; 82:102097. [PMID: 37573835 PMCID: PMC11193336 DOI: 10.1016/j.gde.2023.102097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/01/2023] [Accepted: 07/16/2023] [Indexed: 08/15/2023]
Abstract
In vitro stem cell-derived embryo and organ models, termed embryoids and organoids, respectively, provide promising experimental tools to study physiological and pathological processes in mammalian development and organ formation. Most of current embryoid and organoid systems are developed using conventional three-dimensional cultures that lack controls of spatiotemporal extracellular signals. Microfluidics, an established technology for quantitative controls and quantifications of dynamic chemical and physical environments, has recently been utilized for developing next-generation embryoids and organoids in a controllable and reproducible manner. In this review, we summarize recent progress in constructing microfluidics-based embryoids and organoids. Development of these models demonstrates the successful applications of microfluidics in establishing morphogen gradients, accelerating medium transport, exerting mechanical forces, facilitating tissue coculture studies, and improving assay throughput, thus supporting using microfluidics for building next-generation embryoids and organoids for fundamental and translational research.
Collapse
Affiliation(s)
- Shiyu Sun
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xufeng Xue
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
8
|
Fevre R, Mary G, Vertti-Quintero N, Durand A, Tomasi RFX, Del Nery E, Baroud CN. Combinatorial drug screening on 3D Ewing sarcoma spheroids using droplet-based microfluidics. iScience 2023; 26:106651. [PMID: 37168549 PMCID: PMC10165258 DOI: 10.1016/j.isci.2023.106651] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 02/02/2023] [Accepted: 04/05/2023] [Indexed: 05/13/2023] Open
Abstract
Culturing and screening cells in microfluidics, particularly in three-dimensional formats, has the potential to impact diverse areas from fundamental biology to cancer precision medicine. Here, we use a platform based on anchored droplets for drug screening. The response of spheroids of Ewing sarcoma (EwS) A673 cells to simultaneous or sequential combinations of etoposide and cisplatin was evaluated. This was done by culturing spheroids of EwS cells inside 500 nL droplets then merging them with secondary droplets containing fluorescent-barcoded drugs at different concentrations. Differences in EwS spheroid growth and viability were measured by microscopy. After drug exposure such measurements enabled estimation of their IC50 values, which were in agreement with values obtained in standard multiwell plates. Then, synergistic drug combination was evaluated. Sequential combination treatment of EwS with etoposide applied 24 h before cisplatin resulted in amplified synergistic effect. As such, droplet-based microfluidics offers the modularity required for evaluation of drug combinations.
Collapse
Affiliation(s)
- Romain Fevre
- Laboratoire d’ Hydrodynamique (LadHyX), CNRS, EcolePolytechnique, InstitutPolytechnique de Paris, 91128 Palaiseau, France
- Institut Pasteur, Université Paris Cité, Physical microfluidics and Bioengineering, 25-28 Rue du Dr. Roux, 75015 Paris, France
| | - Gaëtan Mary
- Okomera, iPEPS, the HealthTech Hub, Paris Brain Institute, HôpitalPitiéSalpêtrière, 75013 Paris, France
| | - Nadia Vertti-Quintero
- Institut Pasteur, Université Paris Cité, Physical microfluidics and Bioengineering, 25-28 Rue du Dr. Roux, 75015 Paris, France
| | - Aude Durand
- Institut Pasteur, Université Paris Cité, Physical microfluidics and Bioengineering, 25-28 Rue du Dr. Roux, 75015 Paris, France
| | - Raphaël F.-X. Tomasi
- Laboratoire d’ Hydrodynamique (LadHyX), CNRS, EcolePolytechnique, InstitutPolytechnique de Paris, 91128 Palaiseau, France
- Institut Pasteur, Université Paris Cité, Physical microfluidics and Bioengineering, 25-28 Rue du Dr. Roux, 75015 Paris, France
- Okomera, iPEPS, the HealthTech Hub, Paris Brain Institute, HôpitalPitiéSalpêtrière, 75013 Paris, France
| | - Elaine Del Nery
- Biophenics High-Content Screening Laboratory, Translational Research Department, PICT-IBiSA, Institut Curie, PSL Research University, 75005 Paris, France
- Corresponding author
| | - Charles N. Baroud
- Laboratoire d’ Hydrodynamique (LadHyX), CNRS, EcolePolytechnique, InstitutPolytechnique de Paris, 91128 Palaiseau, France
- Institut Pasteur, Université Paris Cité, Physical microfluidics and Bioengineering, 25-28 Rue du Dr. Roux, 75015 Paris, France
- Corresponding author
| |
Collapse
|
9
|
Cossec JC, Traboulsi T, Sart S, Loe-Mie Y, Guthmann M, Hendriks IA, Theurillat I, Nielsen ML, Torres-Padilla ME, Baroud CN, Dejean A. Transient suppression of SUMOylation in embryonic stem cells generates embryo-like structures. Cell Rep 2023; 42:112380. [PMID: 37061916 PMCID: PMC10157296 DOI: 10.1016/j.celrep.2023.112380] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 02/08/2023] [Accepted: 03/26/2023] [Indexed: 04/17/2023] Open
Abstract
Recent advances in synthetic embryology have opened new avenues for understanding the complex events controlling mammalian peri-implantation development. Here, we show that mouse embryonic stem cells (ESCs) solely exposed to chemical inhibition of SUMOylation generate embryo-like structures comprising anterior neural and trunk-associated regions. HypoSUMOylation-instructed ESCs give rise to spheroids that self-organize into gastrulating structures containing cell types spatially and functionally related to embryonic and extraembryonic compartments. Alternatively, spheroids cultured in a droplet microfluidic device form elongated structures that undergo axial organization reminiscent of natural embryo morphogenesis. Single-cell transcriptomics reveals various cellular lineages, including properly positioned anterior neuronal cell types and paraxial mesoderm segmented into somite-like structures. Transient SUMOylation suppression gradually increases DNA methylation genome wide and repressive mark deposition at Nanog. Interestingly, cell-to-cell variations in SUMOylation levels occur during early embryogenesis. Our approach provides a proof of principle for potentially powerful strategies to explore early embryogenesis by targeting chromatin roadblocks of cell fate change.
Collapse
Affiliation(s)
- Jack-Christophe Cossec
- Nuclear Organization and Oncogenesis Unit, Department of Cell Biology and Infection, Equipe Labellisée Ligue Nationale Contre le Cancer, Institut Pasteur, Université Paris Cité, 75015 Paris, France; INSERM, U993, 75015 Paris, France.
| | - Tatiana Traboulsi
- Nuclear Organization and Oncogenesis Unit, Department of Cell Biology and Infection, Equipe Labellisée Ligue Nationale Contre le Cancer, Institut Pasteur, Université Paris Cité, 75015 Paris, France; INSERM, U993, 75015 Paris, France
| | - Sébastien Sart
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France; Physical Microfluidics and Bioengineering Unit, Department of Genomes and Genetics, Institut Pasteur, 75015 Paris, France
| | - Yann Loe-Mie
- Nuclear Organization and Oncogenesis Unit, Department of Cell Biology and Infection, Equipe Labellisée Ligue Nationale Contre le Cancer, Institut Pasteur, Université Paris Cité, 75015 Paris, France; INSERM, U993, 75015 Paris, France; Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics HUB, 75015 Paris, France
| | - Manuel Guthmann
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, 81377 München, Germany
| | - Ivo A Hendriks
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Ilan Theurillat
- Nuclear Organization and Oncogenesis Unit, Department of Cell Biology and Infection, Equipe Labellisée Ligue Nationale Contre le Cancer, Institut Pasteur, Université Paris Cité, 75015 Paris, France; INSERM, U993, 75015 Paris, France; Sorbonne Université, Collège Doctoral, 75005 Paris, France
| | - Michael L Nielsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Maria-Elena Torres-Padilla
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, 81377 München, Germany; Faculty of Biology, Ludwig-Maximilians-Universität, 81377 München, Germany
| | - Charles N Baroud
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France; Physical Microfluidics and Bioengineering Unit, Department of Genomes and Genetics, Institut Pasteur, 75015 Paris, France
| | - Anne Dejean
- Nuclear Organization and Oncogenesis Unit, Department of Cell Biology and Infection, Equipe Labellisée Ligue Nationale Contre le Cancer, Institut Pasteur, Université Paris Cité, 75015 Paris, France; INSERM, U993, 75015 Paris, France.
| |
Collapse
|
10
|
Wang Y, Liu M, Zhang Y, Liu H, Han L. Recent methods of droplet microfluidics and their applications in spheroids and organoids. LAB ON A CHIP 2023; 23:1080-1096. [PMID: 36628972 DOI: 10.1039/d2lc00493c] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Droplet microfluidic techniques have long been known as a high-throughput approach for cell manipulation. The capacity to compartmentalize cells into picolitre droplets in microfluidic devices has opened up a range of new ways to extract information from cells. Spheroids and organoids are crucial in vitro three-dimensional cell culture models that physiologically mimic natural tissues and organs. With the aid of developments in cell biology and materials science, droplet microfluidics has been applied to construct spheroids and organoids in numerous formats. In this article, we divide droplet microfluidic approaches for managing spheroids and organoids into three categories based on the droplet module format: liquid droplet, microparticle, and microcapsule. We discuss current advances in the use of droplet microfluidics for the generation of tumour spheroids, stem cell spheroids, and organoids, as well as the downstream applications of these methods in high-throughput screening and tissue engineering.
Collapse
Affiliation(s)
- Yihe Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237 P. R. China.
| | - Mengqi Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237 P. R. China.
| | - Yu Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237 P. R. China.
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100 P. R. China.
| | - Lin Han
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237 P. R. China.
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, 250100 P. R. China
| |
Collapse
|
11
|
Johnson A, Reimer S, Childres R, Cupp G, Kohs TCL, McCarty OJT, Kang Y(A. The Applications and Challenges of the Development of In Vitro Tumor Microenvironment Chips. Cell Mol Bioeng 2023; 16:3-21. [PMID: 36660587 PMCID: PMC9842840 DOI: 10.1007/s12195-022-00755-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/07/2022] [Indexed: 12/27/2022] Open
Abstract
The tumor microenvironment (TME) plays a critical, yet mechanistically elusive role in tumor development and progression, as well as drug resistance. To better understand the pathophysiology of the complex TME, a reductionist approach has been employed to create in vitro microfluidic models called "tumor chips". Herein, we review the fabrication processes, applications, and limitations of the tumor chips currently under development for use in cancer research. Tumor chips afford capabilities for real-time observation, precise control of microenvironment factors (e.g. stromal and cellular components), and application of physiologically relevant fluid shear stresses and perturbations. Applications for tumor chips include drug screening and toxicity testing, assessment of drug delivery modalities, and studies of transport and interactions of immune cells and circulating tumor cells with primary tumor sites. The utility of tumor chips is currently limited by the ability to recapitulate the nuances of tumor physiology, including extracellular matrix composition and stiffness, heterogeneity of cellular components, hypoxic gradients, and inclusion of blood cells and the coagulome in the blood microenvironment. Overcoming these challenges and improving the physiological relevance of in vitro tumor models could provide powerful testing platforms in cancer research and decrease the need for animal and clinical studies.
Collapse
Affiliation(s)
- Annika Johnson
- Department of Mechanical, Civil, and Biomedical Engineering, George Fox University, 414 N. Meridian Street, #6088, Newberg, OR 97132 USA
| | - Samuel Reimer
- Department of Mechanical, Civil, and Biomedical Engineering, George Fox University, 414 N. Meridian Street, #6088, Newberg, OR 97132 USA
| | - Ryan Childres
- Department of Mechanical, Civil, and Biomedical Engineering, George Fox University, 414 N. Meridian Street, #6088, Newberg, OR 97132 USA
| | - Grace Cupp
- Department of Mechanical, Civil, and Biomedical Engineering, George Fox University, 414 N. Meridian Street, #6088, Newberg, OR 97132 USA
| | - Tia C. L. Kohs
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239 USA
| | - Owen J. T. McCarty
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239 USA
- Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97201 USA
| | - Youngbok (Abraham) Kang
- Department of Mechanical, Civil, and Biomedical Engineering, George Fox University, 414 N. Meridian Street, #6088, Newberg, OR 97132 USA
| |
Collapse
|
12
|
Automated analysis of mitochondrial dimensions in mesenchymal stem cells: Current methods and future perspectives. Heliyon 2023; 9:e12987. [PMID: 36711314 PMCID: PMC9873686 DOI: 10.1016/j.heliyon.2023.e12987] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/03/2023] [Accepted: 01/11/2023] [Indexed: 01/20/2023] Open
Abstract
As centre of energy production and key regulators of metabolic and cellular signaling pathways, the integrity of mitochondria is essential for mesenchymal stem cell function in tissue regeneration. Alterations in the size, shape and structural organization of mitochondria are correlated with the physiological state of the cell and its environment and could be used as diagnostic biomarkers. Therefore, high-throughput experimental and computational techniques are crucial to ensure adequate correlations between mitochondrial function and disease phenotypes. The emerge of microfluidic technologies can address the shortcomings of traditional methods to determine mitochondrial dimensions for diagnostic and therapeutic use. This review discusses optical detection methods compatible with microfluidics to measure mitochondrial dynamics and their potential for clinical stem cell research targeting mitochondrial dysfunction.
Collapse
|
13
|
Jeske R, Chen X, Mulderrig L, Liu C, Cheng W, Zeng OZ, Zeng C, Guan J, Hallinan D, Yuan X, Li Y. Engineering Human Mesenchymal Bodies in a Novel 3D-Printed Microchannel Bioreactor for Extracellular Vesicle Biogenesis. Bioengineering (Basel) 2022; 9:795. [PMID: 36551001 PMCID: PMC9774207 DOI: 10.3390/bioengineering9120795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Human Mesenchymal Stem Cells (hMSCs) and their derived products hold potential in tissue engineering and as therapeutics in a wide range of diseases. hMSCs possess the ability to aggregate into "spheroids", which has been used as a preconditioning technique to enhance their therapeutic potential by upregulating stemness, immunomodulatory capacity, and anti-inflammatory and pro-angiogenic secretome. Few studies have investigated the impact on hMSC aggregate properties stemming from dynamic and static aggregation techniques. hMSCs' main mechanistic mode of action occur through their secretome, including extracellular vesicles (EVs)/exosomes, which contain therapeutically relevant proteins and nucleic acids. In this study, a 3D printed microchannel bioreactor was developed to dynamically form hMSC spheroids and promote hMSC condensation. In particular, the manner in which dynamic microenvironment conditions alter hMSC properties and EV biogenesis in relation to static cultures was assessed. Dynamic aggregation was found to promote autophagy activity, alter metabolism toward glycolysis, and promote exosome/EV production. This study advances our knowledge on a commonly used preconditioning technique that could be beneficial in wound healing, tissue regeneration, and autoimmune disorders.
Collapse
Affiliation(s)
- Richard Jeske
- Department of Chemical and Biomedical Engineering, Florida A&M University (FAMU)-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - Xingchi Chen
- Department of Chemical and Biomedical Engineering, Florida A&M University (FAMU)-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
- High Performance Materials Institute, Florida State University, Tallahassee, FL 32310, USA
| | - Logan Mulderrig
- Department of Chemical and Biomedical Engineering, Florida A&M University (FAMU)-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
- Aero-Propulsion, Mechatronics and Energy Center, FAMU-FSU College of Engineering, Tallahassee, FL 32310, USA
| | - Chang Liu
- Department of Chemical and Biomedical Engineering, Florida A&M University (FAMU)-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - Wenhao Cheng
- Department of Chemical and Biomedical Engineering, Florida A&M University (FAMU)-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - Olivia Z. Zeng
- Department of Chemical and Biomedical Engineering, Florida A&M University (FAMU)-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - Changchun Zeng
- High Performance Materials Institute, Florida State University, Tallahassee, FL 32310, USA
- Department of Industrial and Manufacturing Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - Jingjiao Guan
- Department of Chemical and Biomedical Engineering, Florida A&M University (FAMU)-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - Daniel Hallinan
- Department of Chemical and Biomedical Engineering, Florida A&M University (FAMU)-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - Xuegang Yuan
- Department of Chemical and Biomedical Engineering, Florida A&M University (FAMU)-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California-Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Yan Li
- Department of Chemical and Biomedical Engineering, Florida A&M University (FAMU)-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| |
Collapse
|
14
|
Trossbach M, de Lucas Sanz M, Seashore-Ludlow B, Joensson HN. A Portable, Negative-Pressure Actuated, Dynamically Tunable Microfluidic Droplet Generator. MICROMACHINES 2022; 13:1823. [PMID: 36363843 PMCID: PMC9697964 DOI: 10.3390/mi13111823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/12/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Droplet microfluidics utilize a monodisperse water-in-oil emulsion, with an expanding toolbox offering a wide variety of operations on a range of droplet sizes at high throughput. However, translation of these capabilities into applications for non-expert laboratories to fully harness the inherent potential of microscale manipulations is woefully trailing behind. One major obstacle is that droplet microfluidic setups often rely on custom fabricated devices, costly liquid actuators, and are not easily set up and operated by non-specialists. This impedes wider adoption of droplet technologies in, e.g., the life sciences. Here, we demonstrate an easy-to-use minimal droplet production setup with a small footprint, built exclusively from inexpensive commercially sourced parts, powered and controlled by a laptop. We characterize the components of the system and demonstrate production of droplets ranging in volume from 3 to 21 nL in a single microfluidic device. Furthermore, we describe the dynamic tuning of droplet composition. Finally, we demonstrate the production of droplet-templated cell spheroids from primary cells, where the mobility and simplicity of the setup enables its use within a biosafety cabinet. Taken together, we believe this minimal droplet setup is ideal to drive broad adoption of droplet microfluidics technology.
Collapse
Affiliation(s)
- Martin Trossbach
- KTH Royal Institute of Technology & Science for Life Laboratory, 17165 Solna, Sweden
| | - Marta de Lucas Sanz
- KTH Royal Institute of Technology & Science for Life Laboratory, 17165 Solna, Sweden
| | | | - Haakan N. Joensson
- KTH Royal Institute of Technology & Science for Life Laboratory, 17165 Solna, Sweden
| |
Collapse
|
15
|
Ronteix G, Aristov A, Bonnet V, Sart S, Sobel J, Esposito E, Baroud CN. Griottes: a generalist tool for network generation from segmented tissue images. BMC Biol 2022; 20:178. [PMID: 35953853 PMCID: PMC9367069 DOI: 10.1186/s12915-022-01376-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 07/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Microscopy techniques and image segmentation algorithms have improved dramatically this decade, leading to an ever increasing amount of biological images and a greater reliance on imaging to investigate biological questions. This has created a need for methods to extract the relevant information on the behaviors of cells and their interactions, while reducing the amount of computing power required to organize this information. RESULTS This task can be performed by using a network representation in which the cells and their properties are encoded in the nodes, while the neighborhood interactions are encoded by the links. Here, we introduce Griottes, an open-source tool to build the "network twin" of 2D and 3D tissues from segmented microscopy images. We show how the library can provide a wide range of biologically relevant metrics on individual cells and their neighborhoods, with the objective of providing multi-scale biological insights. The library's capacities are demonstrated on different image and data types. CONCLUSIONS This library is provided as an open-source tool that can be integrated into common image analysis workflows to increase their capacities.
Collapse
Affiliation(s)
- Gustave Ronteix
- Institut Pasteur, Université Paris Cité, Physical microfluidics and Bioengineering, Paris, F-75015 France
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, 91120 France
| | - Andrey Aristov
- Institut Pasteur, Université Paris Cité, Physical microfluidics and Bioengineering, Paris, F-75015 France
| | - Valentin Bonnet
- Institut Pasteur, Université Paris Cité, Physical microfluidics and Bioengineering, Paris, F-75015 France
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, 91120 France
| | - Sebastien Sart
- Institut Pasteur, Université Paris Cité, Physical microfluidics and Bioengineering, Paris, F-75015 France
| | - Jeremie Sobel
- Institut Pasteur, Université Paris Cité, Physical microfluidics and Bioengineering, Paris, F-75015 France
| | - Elric Esposito
- UTechS PBI, Institut Pasteur, 25-28 Rue du Dr Roux, Paris, 75015 France
| | - Charles N. Baroud
- Institut Pasteur, Université Paris Cité, Physical microfluidics and Bioengineering, Paris, F-75015 France
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, 91120 France
| |
Collapse
|
16
|
High resolution microfluidic assay and probabilistic modeling reveal cooperation between T cells in tumor killing. Nat Commun 2022; 13:3111. [PMID: 35661707 PMCID: PMC9166723 DOI: 10.1038/s41467-022-30575-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/05/2022] [Indexed: 11/28/2022] Open
Abstract
Cytotoxic T cells are important components of natural anti-tumor immunity and are harnessed in tumor immunotherapies. Immune responses to tumors and immune therapy outcomes largely vary among individuals, but very few studies examine the contribution of intrinsic behavior of the T cells to this heterogeneity. Here we show the development of a microfluidic-based in vitro method to track the outcome of antigen-specific T cell activity on many individual cancer spheroids simultaneously at high spatiotemporal resolution, which we call Multiscale Immuno-Oncology on-Chip System (MIOCS). By combining parallel measurements of T cell behaviors and tumor fates with probabilistic modeling, we establish that the first recruited T cells initiate a positive feedback loop to accelerate further recruitment to the spheroid. We also provide evidence that cooperation between T cells on the spheroid during the killing phase facilitates tumor destruction. Thus, we propose that both T cell accumulation and killing function rely on collective behaviors rather than simply reflecting the sum of individual T cell activities, and the possibility to track many replicates of immune cell-tumor interactions with the level of detail our system provides may contribute to our understanding of immune response heterogeneity. Anti-cancer cytotoxic T cell responses largely vary among individuals. Here authors show, by stochastic modeling on high throughput T cell behavior and matched tumor spheroid fate data generated by a microfluidics system, that tumor killing is dependent on T cell cooperativity, which might contribute to the heterogeneity of T cell responses.
Collapse
|
17
|
Aubry G, Milisavljevic M, Lu H. Automated and Dynamic Control of Chemical Content in Droplets for Scalable Screens of Small Animals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200319. [PMID: 35229457 PMCID: PMC9050880 DOI: 10.1002/smll.202200319] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Indexed: 06/14/2023]
Abstract
Screening functional phenotypes in small animals is important for genetics and drug discovery. Multiphase microfluidics has great potential for enhancing throughput but has been hampered by inefficient animal encapsulation and limited control over the animal's environment in droplets. Here, a highly efficient single-animal encapsulation unit, a liquid exchanger system for controlling the droplet chemical environment dynamically, and an automation scheme for the programming and robust execution of complex protocols are demonstrated. By careful use of interfacial forces, the liquid exchanger unit allows for adding and removing chemicals from a droplet and, therefore, generating chemical gradients inaccessible in previous multiphase systems. Using Caenorhabditis elegans as an example, it is demonstrated that these advances can serve to analyze dynamic phenotyping, such as behavior and neuronal activity, perform forward genetic screen, and are scalable to manipulate animals of different sizes. This platform paves the way for large-scale screens of complex dynamic phenotypes in small animals.
Collapse
Affiliation(s)
- Guillaume Aubry
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Marija Milisavljevic
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Hang Lu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
18
|
Abstract
Cell manipulation in droplets has emerged as one of the great successes of microfluidic technologies, with the development of single-cell screening. However, the droplet format has also served to go beyond single-cell studies, namely by considering the interactions between different cells or between cells and their physical or chemical environment. These studies pose specific challenges linked to the need for long-term culture of adherent cells or the diverse types of measurements associated with complex biological phenomena. Here we review the emergence of droplet microfluidic methods for culturing cells and studying their interactions. We begin by characterizing the quantitative aspects that determine the ability to encapsulate cells, transport molecules, and provide sufficient nutrients within the droplets. This is followed by an evaluation of the biological constraints such as the control of the biochemical environment and promoting the anchorage of adherent cells. This first part ends with a description of measurement methods that have been developed. The second part of the manuscript focuses on applications of these technologies for cancer studies, immunology, and stem cells while paying special attention to the biological relevance of the cellular assays and providing guidelines on improving this relevance.
Collapse
Affiliation(s)
- Sébastien Sart
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France.,Physical Microfluidics and Bioengineering, Institut Pasteur, 25-28 Rue du Dr. Roux, 75015 Paris, France
| | - Gustave Ronteix
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France.,Physical Microfluidics and Bioengineering, Institut Pasteur, 25-28 Rue du Dr. Roux, 75015 Paris, France
| | - Shreyansh Jain
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France.,Physical Microfluidics and Bioengineering, Institut Pasteur, 25-28 Rue du Dr. Roux, 75015 Paris, France
| | - Gabriel Amselem
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France.,Physical Microfluidics and Bioengineering, Institut Pasteur, 25-28 Rue du Dr. Roux, 75015 Paris, France
| | - Charles N Baroud
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France.,Physical Microfluidics and Bioengineering, Institut Pasteur, 25-28 Rue du Dr. Roux, 75015 Paris, France
| |
Collapse
|
19
|
Henderson ED, Hua T, Kiran S, Khamis ZI, Li Y, Sang QXA. Long-Term Effects of Nanoscale Magnetite on Human Forebrain-like Tissue Development in Stem-Cell-Derived Cortical Spheroids. ACS Biomater Sci Eng 2022; 8:801-813. [DOI: 10.1021/acsbiomaterials.1c01487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Elizabeth D. Henderson
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Timothy Hua
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Sonia Kiran
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Zahraa I. Khamis
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
- Department of Biochemistry, Faculty of Sciences-I, Lebanese University, Beirut, Beirut Central District 109991, Lebanon
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310, United States
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306, United States
| | - Qing-Xiang Amy Sang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
20
|
Cell3: a new vision for study of the endomembrane system in mammalian cells. Biosci Rep 2021; 41:230388. [PMID: 34874399 PMCID: PMC8655501 DOI: 10.1042/bsr20210850c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 11/17/2022] Open
Abstract
The endomembrane system of mammalian cells provides massive capacity for the segregation of biochemical reactions into discrete locations. The individual organelles of the endomembrane system also require the ability to precisely transport material between these compartments in order to maintain cell homeostasis; this process is termed membrane traffic. For several decades, researchers have been systematically identifying and dissecting the molecular machinery that governs membrane trafficking pathways, with the overwhelming majority of these studies being carried out in cultured cells growing as monolayers. In recent years, a number of methodological innovations have provided the opportunity for cultured cells to be grown as 3-dimensional (3D) assemblies, for example as spheroids and organoids. These structures have the potential to better replicate the cellular environment found in tissues and present an exciting new opportunity for the study of cell function. In this mini-review, we summarize the main methods used to generate 3D cell models and highlight emerging studies that have started to use these models to study basic cellular processes. We also describe a number of pieces of work that potentially provide the basis for adaptation for deeper study of how membrane traffic is coordinated in multicellular assemblies. Finally, we comment on some of the technological challenges that still need to be overcome if 3D cell biology is to become a mainstream tool toward deepening our understanding of the endomembrane system in mammalian cells.
Collapse
|
21
|
Yi SA, Zhang Y, Rathnam C, Pongkulapa T, Lee KB. Bioengineering Approaches for the Advanced Organoid Research. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007949. [PMID: 34561899 PMCID: PMC8682947 DOI: 10.1002/adma.202007949] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 06/09/2021] [Indexed: 05/09/2023]
Abstract
Recent advances in 3D cell culture technology have enabled scientists to generate stem cell derived organoids that recapitulate the structural and functional characteristics of native organs. Current organoid technologies have been striding toward identifying the essential factors for controlling the processes involved in organoid development, including physical cues and biochemical signaling. There is a growing demand for engineering dynamic niches characterized by conditions that resemble in vivo organogenesis to generate reproducible and reliable organoids for various applications. Innovative biomaterial-based and advanced engineering-based approaches have been incorporated into conventional organoid culture methods to facilitate the development of organoid research. The recent advances in organoid engineering, including extracellular matrices and genetic modulation, are comprehensively summarized to pinpoint the parameters critical for organ-specific patterning. Moreover, perspective trends in developing tunable organoids in response to exogenous and endogenous cues are discussed for next-generation developmental studies, disease modeling, and therapeutics.
Collapse
Affiliation(s)
- Sang Ah Yi
- Epigenome Dynamics Control Research Center, School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ, 08854, USA
| | - Yixiao Zhang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ, 08854, USA
| | - Christopher Rathnam
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ, 08854, USA
| | - Thanapat Pongkulapa
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ, 08854, USA
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ, 08854, USA
| |
Collapse
|
22
|
Zhang P, Shao N, Qin L. Recent Advances in Microfluidic Platforms for Programming Cell-Based Living Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005944. [PMID: 34270839 DOI: 10.1002/adma.202005944] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/20/2020] [Indexed: 06/13/2023]
Abstract
Cell-based living materials, including single cells, cell-laden fibers, cell sheets, organoids, and organs, have attracted intensive interests owing to their widespread applications in cancer therapy, regenerative medicine, drug development, and so on. Significant progress in materials, microfabrication, and cell biology have promoted the development of numerous promising microfluidic platforms for programming these cell-based living materials with a high-throughput, scalable, and efficient manner. In this review, the recent progress of novel microfluidic platforms for programming cell-based living materials is presented. First, the unique features, categories, and materials and related fabrication methods of microfluidic platforms are briefly introduced. From the viewpoint of the design principles of the microfluidic platforms, the recent significant advances of programming single cells, cell-laden fibers, cell sheets, organoids, and organs in turns are then highlighted. Last, by providing personal perspectives on challenges and future trends, this review aims to motivate researchers from the fields of materials and engineering to work together with biologists and physicians to promote the development of cell-based living materials for human healthcare-related applications.
Collapse
Affiliation(s)
- Pengchao Zhang
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY, 10065, USA
| | - Ning Shao
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY, 10065, USA
| | - Lidong Qin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY, 10065, USA
| |
Collapse
|
23
|
Sart S, F-X Tomasi R, Barizien A, Amselem G, Cumano A, Baroud CN. Structural and Functional Mapping of Mesenchymal Bodies. Bio Protoc 2021; 11:e4177. [PMID: 34722824 DOI: 10.21769/bioprotoc.4177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 05/23/2021] [Accepted: 06/14/2021] [Indexed: 11/02/2022] Open
Abstract
The formation of spheroids with mesenchymal stem/stromal cells (MSCs), mesenchymal bodies (MBs), is usually performed using bioreactors or conventional well plates. While these methods promote the formation of a large number of spheroids, they provide limited control over their structure or over the regulation of their environment. It has therefore been hard to elucidate the mechanisms orchestrating the structural organization and the induction of the trophic functions of MBs until now. We have recently demonstrated an integrated droplet-based microfluidic platform for the high-density formation and culture of MBs, as well as for the quantitative characterization of the structural and functional organization of cells within them. The protocol starts with a suspension of a few hundred MSCs encapsulated within microfluidic droplets held in capillary traps. After droplet immobilization, MSCs start clustering and form densely packed spherical aggregates that display a tight size distribution. Quantitative imaging is used to provide a robust demonstration that human MSCs self-organize in a hierarchical manner, by taking advantage of the good fit between the microfluidic chip and conventional microscopy techniques. Moreover, the structural organization within the MBs is found to correlate with the induction of osteo-endocrine functions (i.e., COX-2 and VEGF-A expression). Therefore, the present platform provides a unique method to link the structural organization in MBs to their functional properties. Graphic abstract: Droplet microfluidic platform for integrated formation, culture, and characterization of mesenchymal bodies (MBs). The device is equipped with a droplet production area (flow focusing) and a culture chamber that enables the culture of 270 MBs in parallel. A layer-by-layer analysis revealed a hierarchical developmental organization within MBs.
Collapse
Affiliation(s)
- Sébastien Sart
- LadHyX and Department of Mechanics, Ecole Polytechnique CNRS - UMR 7646, Palaiseau, France.,Physical Microfluidics and Bio-Engineering, Department of Genomes and Genetics, Institut Pasteur, Paris, France
| | - Raphaël F-X Tomasi
- LadHyX and Department of Mechanics, Ecole Polytechnique CNRS - UMR 7646, Palaiseau, France.,Physical Microfluidics and Bio-Engineering, Department of Genomes and Genetics, Institut Pasteur, Paris, France
| | - Antoine Barizien
- LadHyX and Department of Mechanics, Ecole Polytechnique CNRS - UMR 7646, Palaiseau, France.,Physical Microfluidics and Bio-Engineering, Department of Genomes and Genetics, Institut Pasteur, Paris, France
| | - Gabriel Amselem
- LadHyX and Department of Mechanics, Ecole Polytechnique CNRS - UMR 7646, Palaiseau, France
| | - Ana Cumano
- Unit for Lymphopoiesis, Deparment of Immunolgy - INSERM U1223, Institut Pasteur, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, 75018, Paris, France
| | - Charles N Baroud
- LadHyX and Department of Mechanics, Ecole Polytechnique CNRS - UMR 7646, Palaiseau, France.,Physical Microfluidics and Bio-Engineering, Department of Genomes and Genetics, Institut Pasteur, Paris, France
| |
Collapse
|
24
|
Kırbaş OK, Bozkurt BT, Taşlı PN, Hayal TB, Özkan İ, Bülbül B, Beyaz S, Şahin F. Effective Scarless Wound Healing Mediated by Erbium Borate Nanoparticles. Biol Trace Elem Res 2021; 199:3262-3271. [PMID: 33159623 DOI: 10.1007/s12011-020-02458-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/21/2020] [Indexed: 12/28/2022]
Abstract
The developments of nanoparticle-based treatments that benefit from novel discoveries have an essential place in the regeneration of acute and chronic wounds. Furthermore, research about the treatment methods which attempt to swiftly and scarless wound recovery has increased over time. In recent years, it has been shown that metallic-based nanoparticles, especially silver and gold derived, have an accelerating effect on chronic and contaminated wound healing. The crucial factors of inducing and completion of regeneration of wound are enhanced epithelialization rate and neovascularization in the tissue. In our study, the main purpose is the investigation of the boosting effects of erbium borate nanoparticles on the wound healing process, especially scarless ones. Newly syntesized erbium borate nanoparticles (ErB-Nps) were characterized by their concentration and particle size using nanoparticle tracking analysis (NTA). In order to examine the effect of ErB-Np on wound closure, scratch assay for dermal epithelial cells and tube formation assay for endothelial cells were performed. In addition, in order to examine the effect of the ErB-Np at a molecular level, the levels of genes related to both wound healing, inflammation, and scarless wound closure were determined with the RT-PCR experiment. Consequently, it has been shown that erbium borate nanoparticles have increased the melioration speed of scar tissue and have given clues about scarless healing potential. The investigation of the regeneration potential of erbium borate nanoparticles was done via MTS assay, quantitative PCR analysis, reactive oxygen species assay, and scratch assay. Our results show that ErB-Np is a proper agent that can be used for scarless wound healing.
Collapse
Affiliation(s)
- Oğuz Kaan Kırbaş
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, 26 Ağustos Campus, Kayisdagi cad., Ataşehir, TR-34755, Istanbul, Turkey
| | - Batuhan Turhan Bozkurt
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, 26 Ağustos Campus, Kayisdagi cad., Ataşehir, TR-34755, Istanbul, Turkey
| | - Pakize Neslihan Taşlı
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, 26 Ağustos Campus, Kayisdagi cad., Ataşehir, TR-34755, Istanbul, Turkey
| | - Taha Bartu Hayal
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, 26 Ağustos Campus, Kayisdagi cad., Ataşehir, TR-34755, Istanbul, Turkey
| | - İrem Özkan
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, 26 Ağustos Campus, Kayisdagi cad., Ataşehir, TR-34755, Istanbul, Turkey
| | - Berna Bülbül
- Department of Chemistry, Faculty of Science and Letters, Balıkesir University, Cagis Campus, 10145, Balıkesir, Turkey
| | - Seda Beyaz
- Department of Chemistry, Faculty of Science and Letters, Balıkesir University, Cagis Campus, 10145, Balıkesir, Turkey
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, 26 Ağustos Campus, Kayisdagi cad., Ataşehir, TR-34755, Istanbul, Turkey.
| |
Collapse
|
25
|
Qu F, Zhao S, Cheng G, Rahman H, Xiao Q, Chan RWY, Ho YP. Double emulsion-pretreated microwell culture for the in vitro production of multicellular spheroids and their in situ analysis. MICROSYSTEMS & NANOENGINEERING 2021; 7:38. [PMID: 34567752 PMCID: PMC8433470 DOI: 10.1038/s41378-021-00267-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 03/03/2021] [Accepted: 03/09/2021] [Indexed: 05/28/2023]
Abstract
Multicellular spheroids have served as a promising preclinical model for drug efficacy testing and disease modeling. Many microfluidic technologies, including those based on water-oil-water double emulsions, have been introduced for the production of spheroids. However, sustained culture and the in situ characterization of the generated spheroids are currently unavailable for the double emulsion-based spheroid model. This study presents a streamlined workflow, termed the double emulsion-pretreated microwell culture (DEPMiC), incorporating the features of (1) effective initiation of uniform-sized multicellular spheroids by the pretreatment of double emulsions produced by microfluidics without the requirement of biomaterial scaffolds; (2) sustained maintenance and culture of the produced spheroids with facile removal of the oil confinement; and (3) in situ characterization of individual spheroids localized in microwells by a built-in analytical station. Characterized by microscopic observations and Raman spectroscopy, the DEPMiC cultivated spheroids accumulated elevated lipid ordering on the apical membrane, similar to that observed in their Matrigel counterparts. Made possible by the proposed technological advancement, this study subsequently examined the drug responses of these in vitro-generated multicellular spheroids. The developed DEPMiC platform is expected to generate health benefits in personalized cancer treatment by offering a pre-animal tool to dissect heterogeneity from individual tumor spheroids.
Collapse
Affiliation(s)
- Fuyang Qu
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Shirui Zhao
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Guangyao Cheng
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Habibur Rahman
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Qinru Xiao
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Renee Wan Yi Chan
- CUHK-UMCU Joint Research Laboratory of Respiratory Virus and Immunobiology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Laboratory for Paediatric Respiratory Research, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yi-Ping Ho
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- The Ministry of Education Key Laboratory of Regeneration Medicine, Shatin, New Territories, Hong Kong SAR, China
- Centre for Novel Biomaterials, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
26
|
Individual Control and Quantification of 3D Spheroids in a High-Density Microfluidic Droplet Array. Cell Rep 2021; 31:107670. [PMID: 32460010 PMCID: PMC7262598 DOI: 10.1016/j.celrep.2020.107670] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 11/20/2019] [Accepted: 04/29/2020] [Indexed: 12/29/2022] Open
Abstract
As three-dimensional cell culture formats gain in popularity, there emerges a need for tools that produce vast amounts of data on individual cells within the spheroids or organoids. Here, we present a microfluidic platform that provides access to such data by parallelizing the manipulation of individual spheroids within anchored droplets. Different conditions can be applied in a single device by triggering the merging of new droplets with the spheroid-containing drops. This allows cell-cell interactions to be initiated for building microtissues, studying stem cells’ self-organization, or observing antagonistic interactions. It also allows the spheroids’ physical or chemical environment to be modulated, as we show by applying a drug over a large range of concentrations in a single parallelized experiment. This convergence of microfluidics and image acquisition leads to a data-driven approach that allows the heterogeneity of 3D culture behavior to be addressed across the scales, bridging single-cell measurements with population measurements. Microfluidic droplet pairs sequentially trapped in capillary anchors before merging 1 spheroid/droplet, with microenvironment modulations driven by droplet merging A wide range of drug concentrations tested on hepatic-like spheroids in a single chip Data-driven approach unravels 3D tissue-level dynamic drug response
Collapse
|
27
|
Chan YH, Lee YC, Hung CY, Yang PJ, Lai PC, Feng SW. Three-dimensional Spheroid Culture Enhances Multipotent Differentiation and Stemness Capacities of Human Dental Pulp-derived Mesenchymal Stem Cells by Modulating MAPK and NF-kB Signaling Pathways. Stem Cell Rev Rep 2021; 17:1810-1826. [PMID: 33893620 DOI: 10.1007/s12015-021-10172-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Three-dimensional (3D) culture of mesenchymal stem cells has become an important research and development topic. However, comprehensive analysis of human dental pulp-derived mesenchymal stem cells (DPSCs) in 3D-spheroid culture remains unexplored. Thus, we evaluated the cellular characteristics, multipotent differentiation, gene expression, and related-signal transduction pathways of DPSCs in 3D-spheroid culture via magnetic levitation (3DM), compared with 2D-monolayer (2D) and 3D-aggregate (3D) cultures. METHODS The gross morphology and cellular ultrastructure were observed in the 2D, 3D, and 3DM experimental groups using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Surface markers and trilineage differentiation were evaluated using flow cytometry and staining analysis. Quantitative reverse transcription-polymerase chain reaction and immunofluorescence staining (IF) were performed to investigate the expression of differentiation and stemness markers. Signaling transduction pathways were evaluated using western blot analysis. RESULTS The morphology of cell aggregates and spheroids was largely influenced by the types of cell culture plates and initial cell seeding density. SEM and TEM experiments confirmed that the solid and firm structure of spheroids was quickly formed in the 3DM-medium without damaging cells. In addition, these three groups all expressed multilineage differentiation capabilities and surface marker expression. The trilineage differentiation capacities of the 3DM-group were significantly superior to the 2D and 3D-groups. The osteogenesis, angiogenesis, adipogenesis, and stemness-related genes were significantly enhanced in the 3D and 3DM-groups. The IF analysis showed that the extracellular matrix expression, osteogenesis, and angiogenesis proteins of the 3DM-group were significantly higher than those in the 2D and 3D-groups. Finally, 3DM-culture significantly activated the MAPK and NF-kB signaling transduction pathways and ameliorated the apoptosis effects of 3D-culture. CONCLUSIONS This study confirmed that 3DM-spheroids efficiently enhanced the therapeutic efficiency of DPSCs.
Collapse
Affiliation(s)
- Ya-Hui Chan
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chieh Lee
- Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chia-Yi Hung
- School of Dentistry, College of Oral Medicine, Taipei Medical University, No. 250, Wuxing St, Taipei, 11031, Taiwan
| | - Pi-Ju Yang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Pin-Chuang Lai
- Department of Diagnosis and Oral Health, School of Dentistry, University of Louisville, Louisville, KY, USA
| | - Sheng-Wei Feng
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan. .,School of Dentistry, College of Oral Medicine, Taipei Medical University, No. 250, Wuxing St, Taipei, 11031, Taiwan. .,Division of Prosthodontics, Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan.
| |
Collapse
|
28
|
Duzagac F, Saorin G, Memeo L, Canzonieri V, Rizzolio F. Microfluidic Organoids-on-a-Chip: Quantum Leap in Cancer Research. Cancers (Basel) 2021; 13:737. [PMID: 33578886 PMCID: PMC7916612 DOI: 10.3390/cancers13040737] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/24/2021] [Accepted: 01/29/2021] [Indexed: 02/06/2023] Open
Abstract
Organ-like cell clusters, so-called organoids, which exhibit self-organized and similar organ functionality as the tissue of origin, have provided a whole new level of bioinspiration for ex vivo systems. Microfluidic organoid or organs-on-a-chip platforms are a new group of micro-engineered promising models that recapitulate 3D tissue structure and physiology and combines several advantages of current in vivo and in vitro models. Microfluidics technology is used in numerous applications since it allows us to control and manipulate fluid flows with a high degree of accuracy. This system is an emerging tool for understanding disease development and progression, especially for personalized therapeutic strategies for cancer treatment, which provide well-grounded, cost-effective, powerful, fast, and reproducible results. In this review, we highlight how the organoid-on-a-chip models have improved the potential of efficiency and reproducibility of organoid cultures. More widely, we discuss current challenges and development on organoid culture systems together with microfluidic approaches and their limitations. Finally, we describe the recent progress and potential utilization in the organs-on-a-chip practice.
Collapse
Affiliation(s)
- Fahriye Duzagac
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, 30123 Venezia, Italy; (F.D.); (G.S.)
| | - Gloria Saorin
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, 30123 Venezia, Italy; (F.D.); (G.S.)
| | - Lorenzo Memeo
- Department of Experimental Oncology, Mediterranean Institute of Oncology (IOM), 95029 Catania, Italy;
| | - Vincenzo Canzonieri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy;
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy
| | - Flavio Rizzolio
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, 30123 Venezia, Italy; (F.D.); (G.S.)
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy;
| |
Collapse
|
29
|
Jeske R, Lewis S, Tsai AC, Sanders K, Liu C, Yuan X, Li Y. Agitation in a Microcarrier-based Spinner Flask Bioreactor Modulates Homeostasis of Human Mesenchymal Stem Cells. Biochem Eng J 2021; 168. [PMID: 33967591 DOI: 10.1016/j.bej.2021.107947] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Human mesenchymal stem cells (hMSCs) are well known in cell therapy due to their secretion of trophic factors, multipotent differentiation potential, and ability for self-renewal. As a result, the number of clinical trials has been steadily increasing over the last decade highlighting the need for in vitro systems capable of producing large quantities of cells to meet growing demands. However, hMSCs are highly sensitive to microenvironment conditions, including shear stress caused by dynamic bioreactor systems, and can lead to alteration of cellular homeostasis. In this study, hMSCs were expanded on microcarriers within a 125 mL spinner flask bioreactor system. Our results demonstrate a three-fold expansion over seven days. Furthermore, our results show that culturing hMSCs in the microcarrier-based suspension bioreactor (compared to static planar culture) results in smaller cell size and higher levels of reactive oxidative species (ROS) and ROS regulator Sirtuin-3, which have implications on the nicotinamide adenine dinucleotide metabolic pathway and metabolic homeostasis. In addition, hMSCs in the bioreactor showed the increased Prostaglandin E2 secretion as well as reduced the Indoleamine-pyrrole 2,3-dioxygenase secretion upon stimulus with interferon gamma. The results of this study provide understanding of potential hMSC physiology alterations impacted by bioreactor microenvironment during scalable production of hMSCs for biomanufacturing and clinical trials.
Collapse
Affiliation(s)
- Richard Jeske
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, United States
| | - Shaquille Lewis
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, United States
| | - Ang-Chen Tsai
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, United States
| | - Kevin Sanders
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, United States
| | - Chang Liu
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, United States
| | - Xuegang Yuan
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, United States.,The National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, United States
| |
Collapse
|
30
|
Saint-Sardos A, Sart S, Lippera K, Brient-Litzler E, Michelin S, Amselem G, Baroud CN. High-Throughput Measurements of Intra-Cellular and Secreted Cytokine from Single Spheroids Using Anchored Microfluidic Droplets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002303. [PMID: 33185938 DOI: 10.1002/smll.202002303] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/18/2020] [Indexed: 06/11/2023]
Abstract
While many single-cell approaches have been developed to measure secretions from anchorage-independent cells, these protocols cannot be applied to adherent cells, especially when these cells require to be cultured in 3D formats. Here, a platform to measure secretions from individual spheroids of human mesenchymal stem cells, cultured within microfluidic droplets is introduced. The platform allows to quantify the secretions from hundreds of individual spheroids in each device, by using a secondary droplet to bring functionalized micro-beads in proximity to each spheroid. Vascular endothelial growth factor (VEGF-A) is measured on and a broad distribution of secretion levels within the population of spheroids is observed. The intra-cellular level of VEGF-A on each spheroid, measured through immuno-staining, correlates well with the extra-cellular measurement, indicating that the heterogeneities observed at the spheroid level result from variations at the intra-cellular level. Further, the molecular accumulation within the droplets is modeled and it is found that physical confinement is crucial for measurements of protein secretions. The model predicts that the time to achieve a measurement scales with droplet volume. These first measurements of secretions from individual spheroids provide several new biological and technological insights.
Collapse
Affiliation(s)
- Adrien Saint-Sardos
- LadHyX & Department of Mechanics, Ecole Polytechnique, CNRS-UMR 7646, Palaiseau, Cedex, 91128, France
- Physical Microfluidics and Bioengineering, Department of Genomes and Genetics, Institut Pasteur, Paris, 75015, France
| | - Sébastien Sart
- Physical Microfluidics and Bioengineering, Department of Genomes and Genetics, Institut Pasteur, Paris, 75015, France
| | - Kevin Lippera
- LadHyX & Department of Mechanics, Ecole Polytechnique, CNRS-UMR 7646, Palaiseau, Cedex, 91128, France
| | | | - Sébastien Michelin
- LadHyX & Department of Mechanics, Ecole Polytechnique, CNRS-UMR 7646, Palaiseau, Cedex, 91128, France
| | - Gabriel Amselem
- LadHyX & Department of Mechanics, Ecole Polytechnique, CNRS-UMR 7646, Palaiseau, Cedex, 91128, France
| | - Charles N Baroud
- LadHyX & Department of Mechanics, Ecole Polytechnique, CNRS-UMR 7646, Palaiseau, Cedex, 91128, France
- Physical Microfluidics and Bioengineering, Department of Genomes and Genetics, Institut Pasteur, Paris, 75015, France
| |
Collapse
|
31
|
Bijonowski BM, Yuan X, Jeske R, Li Y, Grant SC. Cyclical aggregation extends in vitro expansion potential of human mesenchymal stem cells. Sci Rep 2020; 10:20448. [PMID: 33235227 PMCID: PMC7686385 DOI: 10.1038/s41598-020-77288-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cell (MSC)-based therapy has shown great promises in various animal disease models. However, this therapeutic potency has not been well claimed when applied to human clinical trials. This is due to both the availability of MSCs at the time of administration and lack of viable expansion strategies. MSCs are very susceptible to in vitro culture environment and tend to adapt the microenvironment which could lead to cellular senescence and aging. Therefore, extended in vitro expansion induces loss of MSC functionality and its clinical relevance. To combat this effect, this work assessed a novel cyclical aggregation as a means of expanding MSCs to maintain stem cell functionality. The cyclical aggregation consists of an aggregation phase and an expansion phase by replating the dissociated MSC aggregates onto planar tissue culture surfaces. The results indicate that cyclical aggregation maintains proliferative capability, stem cell proteins, and clonogenicity, and prevents the acquisition of senescence. To determine why aggregation was responsible for this phenomenon, the integrated stress response pathway was probed with salubrial and GSK-2606414. Treatment with salubrial had no significant effect, while GSK-2606414 mitigated the effects of aggregation leading to in vitro aging. This method holds the potential to increase the clinical relevance of MSC therapeutic effects from small model systems (such as rats and mice) to humans, and may open the potential of patient-derived MSCs for treatment thereby removing the need for immunosuppression.
Collapse
Affiliation(s)
- Brent M Bijonowski
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer St., Tallahassee, FL, 32310, USA.
- University of Münster, Münster, Germany.
| | - Xuegang Yuan
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer St., Tallahassee, FL, 32310, USA
- The National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
| | - Richard Jeske
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer St., Tallahassee, FL, 32310, USA
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer St., Tallahassee, FL, 32310, USA.
| | - Samuel C Grant
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer St., Tallahassee, FL, 32310, USA
- The National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
32
|
Bijonowski BM, Fu Q, Yuan X, Irianto J, Li Y, Grant SC, Ma T. Aggregation-induced integrated stress response rejuvenates culture-expanded human mesenchymal stem cells. Biotechnol Bioeng 2020; 117:3136-3149. [PMID: 32579299 DOI: 10.1002/bit.27474] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/08/2020] [Accepted: 06/22/2020] [Indexed: 12/15/2022]
Abstract
Protein homeostasis is critical for cellular function, as loss of homeostasis is attributed to aging and the accumulation of unwanted proteins. Human mesenchymal stem cells (MSCs) have shown promising therapeutic potential due to their impressive abilities to secrete inflammatory modulators, angiogenic, and regenerative cytokines. However, there exists the problem of human MSC expansion with compromised therapeutic quality. Duringin vitro expansion, human MSCs are plated on stiff plastics and undergo culture adaptation, which results in aberrant proliferation, shifts in metabolism, and decreased autophagic activity. It has previously been shown that three-dimensional (3D) aggregation can reverse some of these alterations by heightening autophagy and recovering the metabolic state back to a naïve phenotype. To further understand the proteostasis in human MSC culture, this study investigated the effects of 3D aggregation on the human MSC proteome to determine the specific pathways altered by aggregation. The 3D aggregates and 2D cultures of human MSCs derived from bone marrow (bMSC) and adipose tissue (ASC) were analyzed along with differentiated human dermal fibroblasts (FB). The proteomics analysis showed the elevated eukaryotic initiation factor 2 pathway and the upregulated activity of the integrated stress response (ISR) in 3D aggregates. Specific protein quantification further determined that bMSC and ASC responded to ISR, while FB did not. 3D aggregation significantly increased the ischemic survival of bMSCs and ASCs. Perturbation of ISR with small molecules salubrinal and GSK2606414 resulted in differential responses of bMSC, ASC, and FB. This study indicates that aggregation-based preconditioning culture holds the potential for improving the therapeutic efficacy of expanded human MSCs via the establishment of ISR and homeostasis.
Collapse
Affiliation(s)
- Brent M Bijonowski
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida.,University of Münster, Münster, Germany
| | - Qin Fu
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida.,Proteomics Center, Cornell University, Ithaca, New York
| | - Xuegang Yuan
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida.,The National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida
| | - Jerome Irianto
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida
| | - Samuel C Grant
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida.,The National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida
| | - Teng Ma
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida
| |
Collapse
|