1
|
Liao TY, Liu YL, Chen CY, Wu BT, Liu ES, Hong ST, Huang BC, Cheng YA, Chen M, Chuang KH, Lin WW, Chuang CH, Chen FM, Ho KW, Cheng TL. Development of a tumor-region-selective activation monoclonal antibody targeting the 4-1BB receptor for enhanced therapeutic efficacy and safety. Int J Biol Macromol 2025; 305:141003. [PMID: 39978521 DOI: 10.1016/j.ijbiomac.2025.141003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/22/2025]
Abstract
4-1BB is a co-stimulatory immune checkpoint receptor that triggers CD8+ T cell activation, leading to robust anti-tumor responses. Although antibodies targeting 4-1BB show promise in preclinical studies, systemic 4-1BB over-activation can cause severe hepatotoxicity, limiting their clinical use. In this study, we developed Pro-Urelumab, an engineered version of the clinical anti-4-1BB antibody (Urelumab), utilizing an autologous hinge as a spatial hindrance-based antibody lock, linked the antibody and antibody lock with a matrix metalloproteinase-2/9 (MMP-2/9) substrate. This design selectively reactivates Pro-Urelumab within the tumor microenvironment, reducing systemic toxicity. Our results demonstrated that Pro-Urelumab exhibited a 389-fold reduction in binding ability toward the 4-1BB receptor compared to Urelumab, effectively preventing pro-inflammatory cytokine secretion from T cells. After MMP-2/9 cleavage, its agonist activity was fully restored. In a human T-cell-transfer mouse model, Pro-Urelumab avoided the 4-1BB antigen sink effect without causing organ damage. Mice treated with Pro-Urelumab exhibited 100 % survival over 14 days, while all Urelumab-treated mice succumbed to treatment-related toxicity. Additionally, Pro-Urelumab achieved 77 % tumor growth inhibition (TGI), compared to 45 % with Urelumab, and significantly increased T cell activation within the tumor. This study underscores the potential of tumor-selective 4-1BB activation for enhancing both the efficacy and safety of immuno-oncology therapies.
Collapse
Affiliation(s)
- Tzu-Yi Liao
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yen-Ling Liu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chiao-Yun Chen
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Imaging, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | - En-Shuo Liu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shih-Ting Hong
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Bo-Cheng Huang
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Surgery Faculty of Medicine College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-An Cheng
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Precisemab Biotech Co. Ltd., Taipei, Taiwan
| | - Michael Chen
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
| | - Kuo-Hsiang Chuang
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
| | - Wen-Wei Lin
- Department of Laboratory Medicine, Post Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Hung Chuang
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Fang-Ming Chen
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Breast Oncology & Surgery, Department of Surgery, Kaohsiung Medical University Chung-Ho Memorial Hospital, Kaohsiung, Taiwan; Department of Surgery, Faculty & College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kai-Wen Ho
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Tian-Lu Cheng
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
2
|
Boixareu C, Taha T, Venkadakrishnan VB, de Bono J, Beltran H. Targeting the tumour cell surface in advanced prostate cancer. Nat Rev Urol 2025:10.1038/s41585-025-01014-w. [PMID: 40169837 DOI: 10.1038/s41585-025-01014-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2025] [Indexed: 04/03/2025]
Abstract
Prostate cancer remains a substantial health challenge, with >375,000 annual deaths amongst men worldwide. Most prostate cancer-related deaths are attributable to the development of resistance to standard-of-care treatments. Characterization of the diverse and complex surfaceome of treatment-resistant prostate cancer, combined with advances in drug development that leverage cell-surface proteins to enhance drug delivery or activate the immune system, have provided novel therapeutic opportunities to target advanced prostate cancer. The prostate cancer surfaceome, including proteins such as prostate-specific membrane antigen (PSMA), B7-H3, six transmembrane epithelial antigen of the prostate 1 (STEAP1), delta-like ligand 3 (DLL3), trophoblastic cell-surface antigen 2 (TROP2), prostate stem cell antigen (PSCA), HER3, CD46 and CD36, can be exploited as therapeutic targets, as regulatory mechanisms might contribute to the heterogeneity of expression of these proteins and subsequently affect treatment response and resistance. Specific treatment strategies targeting the surfaceome are in clinical development, including radionuclides, antibody-drug conjugates, T cell engagers and chimeric antigen receptor (CAR) T cells. Ultimately, biomarker development and clinical implementation of these agents will be informed and refined by further understanding of the biology of various targets; the target specificity and sensitivity of different agents; and off-target and toxic effects associated with these agents. Understanding the dynamic nature of cell-surface targets and non-overlapping expression patterns might also lead to future combinational strategies.
Collapse
Affiliation(s)
- Cristina Boixareu
- The Institute of Cancer Research, The Royal Marsden Hospital, London, UK
| | - Tarek Taha
- The Institute of Cancer Research, The Royal Marsden Hospital, London, UK
| | | | - Johann de Bono
- The Institute of Cancer Research, The Royal Marsden Hospital, London, UK.
| | - Himisha Beltran
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Lee KY, Mei Y, Liu H, Schwarz H. CD137-expressing regulatory T cells in cancer and autoimmune diseases. Mol Ther 2025; 33:51-70. [PMID: 39668561 PMCID: PMC11764688 DOI: 10.1016/j.ymthe.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/25/2024] [Accepted: 12/06/2024] [Indexed: 12/14/2024] Open
Abstract
Regulatory T cells (Tregs) are essential for maintaining immune homeostasis, with critical roles in preventing aberrant immune responses that occur in autoimmune diseases and chronic inflammation. Conversely, the abundance of Tregs in cancer is associated with impaired anti-tumor immunity, and tumor immune evasion. Recent work demonstrates that CD137, a well-known costimulatory molecule for T cells, is highly expressed on Tregs in pathological conditions, while its expression is minimal or negligible on peripheral Tregs. The expression of CD137 marks Tregs with potent immunosuppressive phenotype that foster cancer progression and are protective against certain autoimmune diseases. Hence CD137 has emerged as a marker for Tregs. However, several important questions still remain regarding the expression and function of CD137 in Tregs. Here, we provide an overview of our current knowledge of Treg mechanisms of action, with a focus on the role of CD137 in modulating Treg activity. We also explore the implications of CD137+ Tregs in both cancer and autoimmune diseases, emphasizing the significance of targeting these cells for therapeutic intervention in these conditions.
Collapse
Affiliation(s)
- Kang Yi Lee
- NUS Immunology Programme, Life Sciences Institute, Department of Microbiology and Immunology, National University of Singapore, Singapore 117545, Singapore; NUSMED Immunology Translational Research Programme, National University of Singapore, Singapore 117456, Singapore
| | - Yu Mei
- NUS Immunology Programme, Life Sciences Institute, Department of Microbiology and Immunology, National University of Singapore, Singapore 117545, Singapore; NUSMED Immunology Translational Research Programme, National University of Singapore, Singapore 117456, Singapore
| | - Haiyan Liu
- NUS Immunology Programme, Life Sciences Institute, Department of Microbiology and Immunology, National University of Singapore, Singapore 117545, Singapore; NUSMED Immunology Translational Research Programme, National University of Singapore, Singapore 117456, Singapore.
| | - Herbert Schwarz
- NUS Immunology Programme, Life Sciences Institute, Department of Microbiology and Immunology, National University of Singapore, Singapore 117545, Singapore; NUSMED Immunology Translational Research Programme, National University of Singapore, Singapore 117456, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore.
| |
Collapse
|
4
|
Jeon SH, You G, Park J, Chung Y, Park K, Kim H, Jeon J, Kim Y, Son WC, Jeong DS, Shin EC, Lee JY, Han DH, Jung J, Park SH. Anti-4-1BB×PDL1 Bispecific Antibody Reinvigorates Tumor-Specific Exhausted CD8+ T Cells and Enhances the Efficacy of Anti-PD1 Blockade. Clin Cancer Res 2024; 30:4155-4166. [PMID: 38743752 DOI: 10.1158/1078-0432.ccr-23-2864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 04/02/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
PURPOSE To overcome the limited efficacy of immune checkpoint blockade, there is a need to find novel cancer immunotherapeutic strategies for the optimal treatment of cancer. The novel anti-4-1BB×PDL1 bispecific antibody-ABL503 (also known as TJ-L14B)-was designed to simultaneously target PDL1 and 4-1BB and demonstrated strong antitumor T-cell responses without considerable toxicity. In this study, we investigated the mechanisms by which the combination of ABL503 and anti-PD1 blockade affected the reinvigoration of exhausted tumor-infiltrating CD8+ T cells (CD8+ TIL) and antitumor efficacy. EXPERIMENTAL DESIGN Single-cell suspensions of hepatocellular carcinoma and ovarian cancer tissues from treatment-naïve patients were used for immunophenotyping of CD8+ TILs and in vitro functional assays. Humanized hPD1/hPDL1/h4-1BB triple-knock-in mice were used to evaluate the effects of ABL503 and anti-PD1 blockade in vivo. RESULTS We observed that ABL503 successfully restored the functions of 4-1BB+ exhausted CD8+ TILs, which were enriched for tumor-specific T cells but unresponsive to anti-PD1 blockade. Importantly, compared with anti-PD1 blockade alone, the combination of ABL503 and anti-PD1 blockade further enhanced the functional restoration of human CD8+ TILs in vitro. Consistently, the combination of ABL503 with anti-PD1 in vivo significantly alleviated tumor growth and induced enhanced infiltration and activation of CD8+ TILs. CONCLUSIONS ABL503, a PDL1 and 4-1BB dual-targeting bispecific antibody, elicits pronounced additive tumor growth inhibition, with increased infiltration and functionality of exhausted CD8+ T cells, which in turn enhances the anticancer effects of anti-PD1 blockade. These promising findings suggest that ABL503 (TJ-L14B) in combination with PD1 inhibitors will likely further enhance therapeutic benefit in clinical trials. See related commentary by Molero-Glez et al., p. 3971.
Collapse
MESH Headings
- Antibodies, Bispecific/pharmacology
- Antibodies, Bispecific/therapeutic use
- CD8-Positive T-Lymphocytes/immunology
- Animals
- Humans
- Mice
- Female
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- Programmed Cell Death 1 Receptor/immunology
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/drug effects
- Tumor Necrosis Factor Receptor Superfamily, Member 9/antagonists & inhibitors
- Tumor Necrosis Factor Receptor Superfamily, Member 9/immunology
- Immune Checkpoint Inhibitors/pharmacology
- Immune Checkpoint Inhibitors/therapeutic use
- B7-H1 Antigen/antagonists & inhibitors
- B7-H1 Antigen/immunology
- Xenograft Model Antitumor Assays
- Cell Line, Tumor
- Ovarian Neoplasms/immunology
- Ovarian Neoplasms/drug therapy
- Ovarian Neoplasms/pathology
- Ovarian Neoplasms/therapy
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/therapy
- Liver Neoplasms/immunology
- Liver Neoplasms/drug therapy
- Liver Neoplasms/pathology
Collapse
Affiliation(s)
- Seung Hyuck Jeon
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Department of Radiation Oncology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Gihoon You
- ABL Bio Inc., Seongnam, Republic of Korea
| | - Junsik Park
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Youseung Chung
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | | | | | | | | | - Woo-Chan Son
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Da Som Jeong
- Department of Medical Science, AMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jung-Yun Lee
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Dai Hoon Han
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jaeho Jung
- ABL Bio Inc., Seongnam, Republic of Korea
| | - Su-Hyung Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| |
Collapse
|
5
|
Cao Z, Wichmann CW, Burvenich IJG, Osellame LD, Guo N, Rigopoulos A, O'Keefe GJ, Scott FE, Lorensuhewa N, Lynch KP, Scott AM. Radiolabelling and preclinical characterisation of [ 89Zr]Zr-Df-ATG-101 bispecific to PD-L1/4-1BB. Eur J Nucl Med Mol Imaging 2024; 51:3202-3214. [PMID: 38730087 PMCID: PMC11368977 DOI: 10.1007/s00259-024-06742-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/26/2024] [Indexed: 05/12/2024]
Abstract
PURPOSE ATG-101, a bispecific antibody that simultaneously targets the immune checkpoint PD-L1 and the costimulatory receptor 4-1BB, activates exhausted T cells upon PD-L1 crosslinking. Previous studies demonstrated promising anti-tumour efficacy of ATG-101 in preclinical models. Here, we labelled ATG-101 with 89Zr to confirm its tumour targeting effect and tissue biodistribution in a preclinical model. We also evaluated the use of immuno-PET to study tumour uptake of ATG-101 in vivo. METHODS ATG-101, anti-PD-L1, and an isotype control were conjugated with p-SCN-Deferoxamine (Df). The Df-conjugated antibodies were radiolabelled with 89Zr, and their radiochemical purity, immunoreactivity, and serum stability were assessed. We conducted PET/MRI and biodistribution studies on [89Zr]Zr-Df-ATG-101 in BALB/c nude mice bearing PD-L1-expressing MDA-MB-231 breast cancer xenografts for up to 10 days after intravenous administration of [89Zr]Zr-labelled antibodies. The specificity of [89Zr]Zr-Df-ATG-101 was evaluated through a competition study with unlabelled ATG-101 and anti-PD-L1 antibodies. RESULTS The Df-conjugation and [89Zr]Zr -radiolabelling did not affect the target binding of ATG-101. Biodistribution and imaging studies demonstrated biological similarity of [89Zr]Zr-Df-ATG-101 and [89Zr]Zr-Df-anti-PD-L1. Tumour uptake of [89Zr]Zr-Df-ATG-101 was clearly visualised using small-animal PET imaging up to 7 days post-injection. Competition studies confirmed the specificity of PD-L1 targeting in vivo. CONCLUSION [89Zr]Zr-Df-ATG-101 in vivo distribution is dependent on PD-L1 expression in the MDA-MB-231 xenograft model. Immuno-PET with [89Zr]Zr-Df-ATG-101 provides real-time information about ATG-101 distribution and tumour uptake in vivo. Our data support the use of [89Zr]Zr-Df-ATG-101 to assess tumour and tissue uptake of ATG-101.
Collapse
Affiliation(s)
- Zhipeng Cao
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Australia
| | - Christian Werner Wichmann
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Australia
- School of Chemistry - Bio21 Institute, University of Melbourne, Melbourne, Australia
| | - Ingrid Julienne Georgette Burvenich
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Laura Danielle Osellame
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Nancy Guo
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, Australia
| | - Angela Rigopoulos
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, Australia
| | - Graeme Joseph O'Keefe
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Australia
- Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Fiona Elizabeth Scott
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | | | | | - Andrew Mark Scott
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, Australia.
- School of Cancer Medicine, La Trobe University, Melbourne, Australia.
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Australia.
- Department of Medicine, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
6
|
Ma Z, Chen G, Li H, Yang S, Xu Y, Pan B, Lai W, Chen G, Liao W, Zhang X. B7-H3 promotes nasopharyngeal carcinoma progression by regulating CD8+ T cell exhaustion. Immun Inflamm Dis 2024; 12:e70005. [PMID: 39267471 PMCID: PMC11393430 DOI: 10.1002/iid3.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 06/26/2024] [Accepted: 08/10/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND B7-H3 protein is an important regulator of the adaptive immune response in human tumorigenesis. 4-1BB is a co-stimulatory receptor expressed on activated CD8+ T cells, and regulates T cell immunity. Here, we investigated the role of B7-H3 in the growth and invasion of nasopharyngeal carcinoma (NPC) and the effect of its interaction with 4-1BB on tumor immunity. METHODS Short hairpin (sh) RNA was designed to knock down B7-H3 expression in NPC cells. NPC cells with stable knockdown of B7-H3 were established and injected into nude mice. The effects of B7-H3 on cell proliferation, apoptosis, and epithelial-to-mesenchymal transition (EMT) were detected by the CCK8 assay, flow cytometry, TUNEL assay, and western blot analysis. The migration and invasion abilities were determined using the Transwell assay and scratch assay. Co-immunoprecipitation (Co-IP) assays were performed to study the interaction between B7-H3 and 4-1BB. Anti-4-1BB antibody was used in a co-culture system and xenograft mice to study the effect of 4-1BB on NPC development. RESULTS NPC cells transfected with sh-B7-H3 showed a higher rate of apoptosis, slower growth rate, impaired migration, and less EMT in vitro. Xenograft mice with stable knockout of B7-H3 had lower tumor burdens, and the stripped tumors had lower rates of cell proliferation, higher rates of apoptosis, and less EMT in vivo. Additionally, decreased B7-H3 expression was positively correlated with interferon-γ, tumor necrosis factor-α, and 4-1BB+CD8+ tumor-infiltrating lymphocytes. Co-IP studies showed that B7-H3 interacts with 4-1BB. Also, the inhibitory effects of sh-B7-H3 on NPC tumor growth, invasion, and tumor immunity could be alleviated by the anti-4-1BB antibody both in vivo and in vitro. CONCLUSION Our findings suggest that B7-H3 may accelerate tumor growth, tumor cell invasion, and EMT, and interact with 4-1BB to produce CD8+ T cell exhaustion that inhibits tumor immunity. B7-H3 might serve as a novel target for treating NPC.
Collapse
Affiliation(s)
- Zhaoen Ma
- The First Affiliated Hospital of Jinan UniversityGuangzhouChina
- Department of OtolaryngologyThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Gui Chen
- Department of Otolaryngology, Head and Neck SurgeryThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Hao Li
- Department of Otolaryngology, Head and Neck SurgeryThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Saixuan Yang
- Department of Otolaryngology, Head and Neck SurgeryThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Yali Xu
- Department of OtolaryngologyThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Bolin Pan
- Guangzhou Medical UniversityGuangzhouChina
| | - Wuping Lai
- Guangzhou Medical UniversityGuangzhouChina
| | - Guangui Chen
- Department of OtolaryngologyThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Wenjing Liao
- Department of Otolaryngology, Head and Neck SurgeryThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Xiaowen Zhang
- The First Affiliated Hospital of Jinan UniversityGuangzhouChina
- Department of Otolaryngology, Head and Neck SurgeryThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
7
|
Perovic D, Dusanovic Pjevic M, Perovic V, Grk M, Rasic M, Milickovic M, Mijovic T, Rasic P. B7 homolog 3 in pancreatic cancer. World J Gastroenterol 2024; 30:3654-3667. [PMID: 39193002 PMCID: PMC11346158 DOI: 10.3748/wjg.v30.i31.3654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/24/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024] Open
Abstract
Despite advances in cancer treatment, pancreatic cancer (PC) remains a disease with high mortality rates and poor survival outcomes. The B7 homolog 3 (B7-H3) checkpoint molecule is overexpressed among many malignant tumors, including PC, with low or absent expression in healthy tissues. By modulating various immunological and nonimmunological molecular mechanisms, B7-H3 may influence the progression of PC. However, the impact of B7-H3 on the survival of patients with PC remains a subject of debate. Still, most available scientific data recognize this molecule as a suppressive factor to antitumor immunity in PC. Furthermore, it has been demonstrated that B7-H3 stimulates the migration, invasion, and metastasis of PC cells, and enhances resistance to chemotherapy. In preclinical models of PC, B7-H3-targeting monoclonal antibodies have exerted profound antitumor effects by increasing natural killer cell-mediated antibody-dependent cellular cytotoxicity and delivering radioisotopes and cytotoxic drugs to the tumor site. Finally, PC treatment with B7-H3-targeting antibody-drug conjugates and chimeric antigen receptor T cells is being tested in clinical studies. This review provides a comprehensive analysis of all PC-related studies in the context of B7-H3 and points to deficiencies in the current data that should be overcome by future research.
Collapse
Affiliation(s)
- Dijana Perovic
- Institute of Human Genetics, Faculty of Medicine, University of Belgrade, Belgrade 11000, Serbia
| | - Marija Dusanovic Pjevic
- Institute of Human Genetics, Faculty of Medicine, University of Belgrade, Belgrade 11000, Serbia
| | - Vladimir Perovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade 11000, Serbia
| | - Milka Grk
- Institute of Human Genetics, Faculty of Medicine, University of Belgrade, Belgrade 11000, Serbia
| | - Milica Rasic
- Institute of Human Genetics, Faculty of Medicine, University of Belgrade, Belgrade 11000, Serbia
| | - Maja Milickovic
- Department of Abdominal Surgery, Mother and Child Health Care Institute of Serbia “Dr. Vukan Cupic”, Belgrade 11000, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade 11000, Serbia
| | - Tanja Mijovic
- Department of Abdominal Surgery, Mother and Child Health Care Institute of Serbia “Dr. Vukan Cupic”, Belgrade 11000, Serbia
| | - Petar Rasic
- Department of Abdominal Surgery, Mother and Child Health Care Institute of Serbia “Dr. Vukan Cupic”, Belgrade 11000, Serbia
| |
Collapse
|
8
|
Shen J, Qian N, Xu G, Dou X, An Y, Yang C, Liu Y, Liu Y, Pan X, Wang J, Bai G, Chen H, Zhu X, Gao X, Zhou G, Xu Q. IMT030122, A novel engineered EpCAM/CD3/4-1BB tri-specific antibody, enhances T-cell recruitment and demonstrates anti-tumor activity in mouse models of colorectal cancer. Int Immunopharmacol 2024; 137:112424. [PMID: 38878486 DOI: 10.1016/j.intimp.2024.112424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/24/2024] [Accepted: 06/04/2024] [Indexed: 07/11/2024]
Abstract
Colorectal cancer is a major global health burden, with limited efficacy of traditional treatment modalities in improving survival rates. However, recently advances in immunotherapy has improved treatment outcomes for patients with this cancer. To address the continuing need for improved treatment efficacy, this study introduced a novel tri-specific antibody, IMT030122, that targets EpCAM, 4-1BB, and CD3. We evaluated the pharmacological efficacy and mechanism of action of IMT030122 in vitro and in vivo. In in vitro studies, IMT030122 exhibited differential binding to antigens and cells expressing EpCAM, 4-1BB, and CD3. Moreover, IMT030122 relied on EpCAM-targeted activation of intracellular CD3 and 4-1BB signaling and mediated T cell cytotoxicity specific to HCT116 colorectal cancer cells. In vivo, IMT030122 demonstrated potent anti-tumor activity, significantly inhibiting the growth of colon cancer HCT116 and MC38-hEpCAM subcutaneous grafts. Further pharmacological analysis revealed that IMT030122 recruited lymphocytes from peripheral blood into colorectal cancer tissue and exerted durable anti-tumor activity, predominantly by promoting the activation, proliferation, and differentiation of CD8T cells. Notably, IMT030122 still exhibited anti-tumor efficacy even in the presence of significantly depleted lymphocytes in colorectal cancer tissue. The potent pharmacological activity and anti-tumor effects of IMT030122 suggest it may enhance treatment efficacy and substantially extend the survival of patients with colorectal cancer in the future.
Collapse
Affiliation(s)
- Jianbo Shen
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, Jiangsu, China
| | - Niliang Qian
- Beijing Immunoah Pharma Tech Co., Ltd., Beijing 100141, China
| | - Guili Xu
- Beijing Immunoah Pharma Tech Co., Ltd., Beijing 100141, China
| | - Xiaoqian Dou
- Beijing Immunoah Pharma Tech Co., Ltd., Beijing 100141, China
| | - Ying An
- Department of Preventive Treatment of Disease, Chengde Traditional Medicine Hospital, Hebei 067000, China
| | - Cuima Yang
- Beijing Immunoah Pharma Tech Co., Ltd., Beijing 100141, China
| | - Yujie Liu
- Beijing Immunoah Pharma Tech Co., Ltd., Beijing 100141, China
| | - Yunhui Liu
- Beijing Immunoah Pharma Tech Co., Ltd., Beijing 100141, China
| | - Xiujie Pan
- Beijing Immunoah Pharma Tech Co., Ltd., Beijing 100141, China
| | - Jingjing Wang
- Beijing Immunoah Pharma Tech Co., Ltd., Beijing 100141, China
| | - Guijun Bai
- Beijing Immunoah Pharma Tech Co., Ltd., Beijing 100141, China
| | - Hao Chen
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Xiaolin Zhu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Xin Gao
- Beijing Immunoah Pharma Tech Co., Ltd., Beijing 100141, China
| | - Guoxiong Zhou
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China.
| | - Qinzhi Xu
- Beijing Immunoah Pharma Tech Co., Ltd., Beijing 100141, China.
| |
Collapse
|
9
|
Pathania AS, Chava H, Chaturvedi NK, Chava S, Byrareddy SN, Coulter DW, Challagundla KB. The miR-29 family facilitates the activation of NK-cell immune responses by targeting the B7-H3 immune checkpoint in neuroblastoma. Cell Death Dis 2024; 15:428. [PMID: 38890285 PMCID: PMC11189583 DOI: 10.1038/s41419-024-06791-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 06/20/2024]
Abstract
Neuroblastoma (NB) is a highly aggressive pediatric cancer that originates from immature nerve cells, presenting significant treatment challenges due to therapy resistance. Despite intensive treatment, approximately 50% of high-risk NB cases exhibit therapy resistance or experience relapse, resulting in poor outcomes often associated with tumor immune evasion. B7-H3 is an immune checkpoint protein known to inhibit immune responses. MicroRNAs (miRNAs) are small non-coding RNAs involved in post-transcriptional gene regulation. Our study aims to explore the impact of miRNAs on B7-H3 regulation, the anti-tumor immune response, and tumorigenicity in NB. Analysis of NB patients and patient-derived xenograft tumors revealed a correlation between higher B7-H3 expression and poorer patient survival. Notably, deceased patients exhibited a depletion of miR-29 family members (miR-29a, miR-29b, and miR-29c), which displayed an inverse association with B7-H3 expression in NB patients. Overexpression and knockdown experiments demonstrated that these miRNAs degrade B7-H3 mRNA, resulting in enhanced NK cell activation and cytotoxicity. In vivo, experiments provided further evidence that miR-29 family members reduce tumorigenicity, macrophage infiltration, and microvessel density, promote infiltration and activation of NK cells, and induce tumor cell apoptosis. These findings offer a rationale for developing more effective combination treatments that leverage miRNAs to target B7-H3 in NB patients.
Collapse
Affiliation(s)
- Anup S Pathania
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Haritha Chava
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Nagendra K Chaturvedi
- Department of Pediatrics, Division of Hematology/Oncology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Srinivas Chava
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Don W Coulter
- Department of Pediatrics, Division of Hematology/Oncology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Kishore B Challagundla
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- The Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
10
|
Yuwen H, Wang H, Li T, Ren Y, Zhang YK, Chen P, Sun A, Bian G, Li B, Flowers D, Presler M, Subramanian K, Xue J, Wang J, Lynch K, Mei J, He X, Shan B, Hou B. ATG-101 Is a Tetravalent PD-L1×4-1BB Bispecific Antibody That Stimulates Antitumor Immunity through PD-L1 Blockade and PD-L1-Directed 4-1BB Activation. Cancer Res 2024; 84:1680-1698. [PMID: 38501978 PMCID: PMC11094422 DOI: 10.1158/0008-5472.can-23-2701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/05/2024] [Accepted: 03/12/2024] [Indexed: 03/20/2024]
Abstract
Immune checkpoint inhibitors (ICI) have transformed cancer treatment. However, only a minority of patients achieve a profound response. Many patients are innately resistant while others acquire resistance to ICIs. Furthermore, hepatotoxicity and suboptimal efficacy have hampered the clinical development of agonists of 4-1BB, a promising immune-stimulating target. To effectively target 4-1BB and treat diseases resistant to ICIs, we engineered ATG-101, a tetravalent "2+2″ PD-L1×4-1BB bispecific antibody. ATG-101 bound PD-L1 and 4-1BB concurrently, with a greater affinity for PD-L1, and potently activated 4-1BB+ T cells when cross-linked with PD-L1-positive cells. ATG-101 activated exhausted T cells upon PD-L1 binding, indicating a possible role in reversing T-cell dysfunction. ATG-101 displayed potent antitumor activity in numerous in vivo tumor models, including those resistant or refractory to ICIs. ATG-101 greatly increased the proliferation of CD8+ T cells, the infiltration of effector memory T cells, and the ratio of CD8+ T/regulatory T cells in the tumor microenvironment (TME), rendering an immunologically "cold" tumor "hot." Comprehensive characterization of the TME after ATG-101 treatment using single-cell RNA sequencing further revealed an altered immune landscape that reflected increased antitumor immunity. ATG-101 was well tolerated and did not induce hepatotoxicity in non-human primates. According to computational semimechanistic pharmacology modeling, 4-1BB/ATG-101/PD-L1 trimer formation and PD-L1 receptor occupancy were both maximized at around 2 mg/kg of ATG-101, providing guidance regarding the optimal biological dose for clinical trials. In summary, by localizing to PD-L1-rich microenvironments and activating 4-1BB+ immune cells in a PD-L1 cross-linking-dependent manner, ATG-101 safely inhibits growth of ICI resistant and refractory tumors. SIGNIFICANCE The tetravalent PD-L1×4-1BB bispecific antibody ATG-101 activates 4-1BB+ T cells in a PD-L1 cross-linking-dependent manner, minimizing the hepatotoxicity of existing 4-1BB agonists and suppressing growth of ICI-resistant tumors. See related commentary by Ha et al., p. 1546.
Collapse
Affiliation(s)
- Hui Yuwen
- Shanghai Antengene Corporation Limited, Shanghai, P.R. China
| | - Huajing Wang
- Oricell Therapeutics Co., Ltd, Shanghai, P.R. China
| | - Tengteng Li
- Shanghai Antengene Corporation Limited, Shanghai, P.R. China
| | - Yijing Ren
- Shanghai Antengene Corporation Limited, Shanghai, P.R. China
| | | | - Peng Chen
- Shanghai Antengene Corporation Limited, Shanghai, P.R. China
| | - Ao Sun
- Shanghai Antengene Corporation Limited, Shanghai, P.R. China
| | - Gang Bian
- Shanghai Antengene Corporation Limited, Shanghai, P.R. China
| | - Bohua Li
- Oricell Therapeutics Co., Ltd, Shanghai, P.R. China
| | | | | | | | - Jia Xue
- Crown Bioscience Inc., Taicang, P.R. China
| | | | | | - Jay Mei
- Antengene Corporation Co., Ltd, Shaoxing, P.R. China
| | - Xiaowen He
- Oricell Therapeutics Co., Ltd, Shanghai, P.R. China
| | - Bo Shan
- Antengene Corporation Co., Ltd, Shaoxing, P.R. China
| | - Bing Hou
- Antengene Corporation Co., Ltd, Shaoxing, P.R. China
| |
Collapse
|
11
|
Li J, Zhou B, Wang S, Ouyang J, Jiang X, Wang C, Zhou T, Zheng KW, Wang J, Wang J. Development of a Human B7-H3-Specific Antibody with Activity against Colorectal Cancer Cells through a Synthetic Nanobody Library. Bioengineering (Basel) 2024; 11:381. [PMID: 38671802 PMCID: PMC11047927 DOI: 10.3390/bioengineering11040381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Nanobodies have emerged as promising tools in biomedicine due to their single-chain structure and inherent stability. They generally have convex paratopes, which potentially prefer different epitope sites in an antigen compared to traditional antibodies. In this study, a synthetic phage display nanobody library was constructed and used to identify nanobodies targeting a tumor-associated antigen, the human B7-H3 protein. Combining next-generation sequencing and single-clone validation, two nanobodies were identified to specifically bind B7-H3 with medium nanomolar affinities. Further characterization revealed that these two clones targeted a different epitope compared to known B7-H3-specific antibodies, which have been explored in clinical trials. Furthermore, one of the clones, dubbed as A6, exhibited potent antibody-dependent cell-mediated cytotoxicity (ADCC) against a colorectal cancer cell line with an EC50 of 0.67 nM, upon conversion to an Fc-enhanced IgG format. These findings underscore a cost-effective strategy that bypasses the lengthy immunization process, offering potential rapid access to nanobodies targeting unexplored antigenic sites.
Collapse
Affiliation(s)
- Jingxian Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (J.L.); (B.Z.); (S.W.); (J.O.); (X.J.); (J.W.)
| | - Bingjie Zhou
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (J.L.); (B.Z.); (S.W.); (J.O.); (X.J.); (J.W.)
| | - Shiting Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (J.L.); (B.Z.); (S.W.); (J.O.); (X.J.); (J.W.)
| | - Jiayi Ouyang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (J.L.); (B.Z.); (S.W.); (J.O.); (X.J.); (J.W.)
| | - Xinyi Jiang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (J.L.); (B.Z.); (S.W.); (J.O.); (X.J.); (J.W.)
| | - Chenglin Wang
- Shenzhen Qiyu Biotechnology Co., Ltd., Shenzhen 518107, China;
| | - Teng Zhou
- School of Cyberspace Security, Hainan University, Haikou 570228, China;
| | - Ke-wei Zheng
- School of Biomedical Sciences, Hunan University, Changsha 410082, China;
| | - Junqing Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (J.L.); (B.Z.); (S.W.); (J.O.); (X.J.); (J.W.)
| | - Jiaqi Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (J.L.); (B.Z.); (S.W.); (J.O.); (X.J.); (J.W.)
| |
Collapse
|
12
|
Singh R, Kim YH, Lee SJ, Eom HS, Choi BK. 4-1BB immunotherapy: advances and hurdles. Exp Mol Med 2024; 56:32-39. [PMID: 38172595 PMCID: PMC10834507 DOI: 10.1038/s12276-023-01136-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/22/2023] [Accepted: 10/09/2023] [Indexed: 01/05/2024] Open
Abstract
Since its initial description 35 years ago as an inducible molecule expressed in cytotoxic and helper T cells, 4-1BB has emerged as a crucial receptor in T-cell-mediated immune functions. Numerous studies have demonstrated the involvement of 4-1BB in infection and tumor immunity. However, the clinical development of 4-1BB agonist antibodies has been impeded by the occurrence of strong adverse events, notably hepatotoxicity, even though these antibodies have exhibited tremendous promise in in vivo tumor models. Efforts are currently underway to develop a new generation of agonist antibodies and recombinant proteins with modified effector functions that can harness the potent T-cell modulation properties of 4-1BB while mitigating adverse effects. In this review, we briefly examine the role of 4-1BB in T-cell biology, explore its clinical applications, and discuss future prospects in the field of 4-1BB agonist immunotherapy.
Collapse
Affiliation(s)
- Rohit Singh
- Immuno-oncology Branch, Division of Rare and Refractory Cancer, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Young-Ho Kim
- Diagnostics and Therapeutics Technology Branch, Division of Technology Convergence, Research Institute, National Cancer Center, Goyang, 10408, Republic of Korea.
| | - Sang-Jin Lee
- Immuno-oncology Branch, Division of Rare and Refractory Cancer, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Hyeon-Seok Eom
- Hematological Malignancy Center, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Beom K Choi
- Immuno-oncology Branch, Division of Rare and Refractory Cancer, National Cancer Center, Goyang, 10408, Republic of Korea.
- Innobationbio, Co., Ltd., Mapo-gu, Seoul, 03929, Republic of Korea.
| |
Collapse
|
13
|
Lutz MS, Wang K, Jung G, Salih H, Hagelstein I. An Fc-modified monoclonal antibody as novel treatment option for pancreatic cancer. Front Immunol 2024; 15:1343929. [PMID: 38322253 PMCID: PMC10845339 DOI: 10.3389/fimmu.2024.1343929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/08/2024] [Indexed: 02/08/2024] Open
Abstract
Pancreatic cancer is a highly lethal disease with limited treatment options. Hence, there is a considerable medical need for novel treatment strategies. Monoclonal antibodies (mAbs) have significantly improved cancer therapy, primarily due to their ability to stimulate antibody-dependent cellular cytotoxicity (ADCC), which plays a crucial role in their therapeutic efficacy. As a result, significant effort has been focused on improving this critical function by engineering mAbs with Fc regions that have increased affinity for the Fc receptor CD16 expressed on natural killer (NK) cells, the major cell population that mediates ADCC in humans. Here we report on the preclinical characterization of a mAb directed to the target antigen B7-H3 (CD276) containing an Fc part with the amino acid substitutions S239D/I332E to increase affinity for CD16 (B7-H3-SDIE) for the treatment of pancreatic cancer. B7-H3 (CD276) is highly expressed in many tumor entities, whereas expression on healthy tissues is more limited. Our findings confirm high expression of B7-H3 on pancreatic cancer cells. Furthermore, our study shows that B7-H3-SDIE effectively activates NK cells against pancreatic cancer cells in an antigen-dependent manner, as demonstrated by the analysis of NK cell activation, degranulation and cytokine release. The activation of NK cells resulted in significant tumor cell lysis in both short-term and long-term cytotoxicity assays. In conclusion, B7-H3-SDIE constitutes a promising agent for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Martina S. Lutz
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, Tuebingen, Germany
| | - Kevin Wang
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tuebingen, Tuebingen, Germany
| | - Gundram Jung
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, Tuebingen, Germany
- Department of Immunology, Eberhard Karls Universität Tübingen, Tuebingen, Germany
| | - Helmut R. Salih
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, Tuebingen, Germany
| | - Ilona Hagelstein
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
14
|
Nammor T, Frizzell J, Lavoie RR, Lucien F. The anti-B7-H3 blocking antibody MJ18 does not recognize B7-H3 in murine tumor models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.15.567261. [PMID: 38014341 PMCID: PMC10680724 DOI: 10.1101/2023.11.15.567261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The immune checkpoint molecule B7-H3 is regarded as one of the most promising therapeutic targets for the treatment of human cancers. B7-H3 is highly expressed in many cancers and its expression has been associated to impaired antitumor immunity and poor patient prognosis. In immunocompetent mouse tumor models, genetic deletion of B7-H3 in tumor cells enhances antitumor immune response leading to tumor shrinkage. The underlying mechanisms of B7-H3 inhibitory function remain largely uncharacterized and the identity of potential cognate(s) receptor(s) of B7-H3 is still to be defined. To better understand B7-H3 function in vivo, several studies have employed MJ18, a monoclonal antibody reported to bind murine B7-H3 and blocks its immune-inhibitory function. In this brief research report, we show that 1) MJ18 does not bind B7-H3, 2) MJ18 binds the Fc receptor FcγRIIB on surface of murine splenocytes, and 3) MJ18 does not induce tumor regression in a mouse model responsive to B7-H3 knockout. Given the high profile of B7-H3 as therapeutic target for human cancers, our work emphasizes that murine B7-H3 studies using the MJ18 antibody should be interpreted with caution. Finally, we hope that our study will motivate the scientific community to establish much-needed validated research tools to study B7-H3 biology in mouse models.
Collapse
Affiliation(s)
- Talah Nammor
- Department of Urology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Fabrice Lucien
- Department of Urology, Mayo Clinic, Rochester, MN, USA
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
15
|
Batalha S, Gomes CM, Brito C. Immune microenvironment dynamics of HER2 overexpressing breast cancer under dual anti-HER2 blockade. Front Immunol 2023; 14:1267621. [PMID: 38022643 PMCID: PMC10643871 DOI: 10.3389/fimmu.2023.1267621] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction The clinical prognosis of the HER2-overexpressing (HER2-OE) subtype of breast cancer (BC) is influenced by the immune infiltrate of the tumor. Specifically, monocytic cells, which are promoters of pro-tumoral immunosuppression, and NK cells, whose basal cytotoxic function may be enhanced with therapeutic antibodies. One of the standards of care for HER2+ BC patients includes the combination of the anti-HER2 antibodies trastuzumab and pertuzumab. This dual combination was a breakthrough against trastuzumab resistance; however, this regimen does not yield complete clinical benefit for a large fraction of patients. Further therapy refinement is still hampered by the lack of knowledge on the immune mechanism of action of this antibody-based dual HER2 blockade. Methods To explore how the dual antibody challenge influences the phenotype and function of immune cells infiltrating the HER2-OE BC microenvironment, we developed in vitro 3D heterotypic cell models of this subtype. The models comprised aggregates of HER2+ BC cell lines and human peripheral blood mononuclear cells. Cells were co-encapsulated in a chemically inert alginate hydrogel and maintained in agitation-based culture system for up to 7 days. Results The 3D models of the HER2-OE immune microenvironment retained original BC molecular features; the preservation of the NK cell compartment was achieved upon optimization of culture time and cytokine supplementation. Challenging the models with the standard-of-care combination of trastuzumab and pertuzumab resulted in enhanced immune cytotoxicity compared with trastuzumab alone. Features of the response to therapy within the immune tumor microenvironment were recapitulated, including induction of an immune effector state with NK cell activation, enhanced cell apoptosis and decline of immunosuppressive PD-L1+ immune cells. Conclusions This work presents a unique human 3D model for the study of immune effects of anti-HER2 biologicals, which can be used to test novel therapy regimens and improve anti-tumor immune function.
Collapse
Affiliation(s)
- Sofia Batalha
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Catarina Monteiro Gomes
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Catarina Brito
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
16
|
Battin C, De Sousa Linhares A, Leitner J, Grossmann A, Lupinek D, Izadi S, Castilho A, Waidhofer-Söllner P, Grabmeier-Pfistershammer K, Stritzker J, Steinberger P. Engineered soluble, trimerized 4-1BBL variants as potent immunomodulatory agents. Cancer Immunol Immunother 2023; 72:3029-3043. [PMID: 37310433 PMCID: PMC10412504 DOI: 10.1007/s00262-023-03474-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 05/22/2023] [Indexed: 06/14/2023]
Abstract
Targeting co-stimulatory receptors promotes the activation and effector functions of anti-tumor lymphocytes. 4-1BB (CD137/TNFSF9), a member of the tumor necrosis factor receptor superfamily (TNFR-SF), is a potent co-stimulatory receptor that plays a prominent role in augmenting effector functions of CD8+ T cells, but also CD4+ T cells and NK cells. Agonistic antibodies against 4-1BB have entered clinical trials and shown signs of therapeutic efficacy. Here, we have used a T cell reporter system to evaluate various formats of 4-1BBL regarding their capacity to functionally engage its receptor. We found that a secreted 4-1BBL ectodomain harboring a trimerization domain derived from human collagen (s4-1BBL-TriXVIII) is a strong inducer of 4-1BB co-stimulation. Similar to the 4-1BB agonistic antibody urelumab, s4-1BBL-TriXVIII is very potent in inducing CD8+ and CD4+ T cell proliferation. We provide first evidence that s4-1BBL-TriXVIII can be used as an effective immunomodulatory payload in therapeutic viral vectors. Oncolytic measles viruses encoding s4-1BBL-TriXVIII significantly reduced tumor burden in a CD34+ humanized mouse model, whereas measles viruses lacking s4-1BBL-TriXVIII were not effective. Natural soluble 4-1BB ligand harboring a trimerization domain might have utility in tumor therapy especially when delivered to tumor tissue as systemic administration might induce liver toxicity.
Collapse
Affiliation(s)
- Claire Battin
- Themis Bioscience GmbH, Vienna, Austria; a subsidiary of Merck & Co., Inc., Rahway, NJ, USA
- Loop Lab Bio GmbH, Vienna, Austria
| | - Annika De Sousa Linhares
- Themis Bioscience GmbH, Vienna, Austria; a subsidiary of Merck & Co., Inc., Rahway, NJ, USA
- Loop Lab Bio GmbH, Vienna, Austria
| | - Judith Leitner
- Division of Immune Receptors and T Cell Activation, Center for Pathophysiology, Infectiology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Anna Grossmann
- Themis Bioscience GmbH, Vienna, Austria; a subsidiary of Merck & Co., Inc., Rahway, NJ, USA
- Loop Lab Bio GmbH, Vienna, Austria
| | - Daniela Lupinek
- Themis Bioscience GmbH, Vienna, Austria; a subsidiary of Merck & Co., Inc., Rahway, NJ, USA
- Loop Lab Bio GmbH, Vienna, Austria
| | - Shiva Izadi
- Department of Applied Genetics and Cell Biology, Institute for Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Alexandra Castilho
- Department of Applied Genetics and Cell Biology, Institute for Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Petra Waidhofer-Söllner
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | | | - Jochen Stritzker
- Themis Bioscience GmbH, Vienna, Austria; a subsidiary of Merck & Co., Inc., Rahway, NJ, USA.
- Loop Lab Bio GmbH, Vienna, Austria.
| | - Peter Steinberger
- Division of Immune Receptors and T Cell Activation, Center for Pathophysiology, Infectiology, Institute of Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
17
|
Shen X, Zhang R, Nie X, Yang Y, Hua Y, Lü P. 4-1BB Targeting Immunotherapy: Mechanism, Antibodies, and Chimeric Antigen Receptor T. Cancer Biother Radiopharm 2023; 38:431-444. [PMID: 37433196 DOI: 10.1089/cbr.2023.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023] Open
Abstract
4-1BB (CD137, TNFRSF9) is a type I transmembrane protein which binds its natural ligand, 4-1BBL. This interaction has been exploited to improve cancer immunotherapy. With ligand binding by 4-1BB, the nuclear factor-kappa B signaling pathway is activated, which results in transcription of corresponding genes such as interleukin-2 and interferon-γ, as well as the induction of T cell proliferation and antiapoptotic signals. Moreover, monoclonal antibodies that target-4-1BB, for example, Urelumab and Utomilumab, are widely used in the treatments of B cell non-Hodgkin lymphoma, lung cancer, breast cancer, soft tissue sarcoma, and other solid tumors. Furthermore, 4-1BB as a costimulatory domain, for chimeric antigen receptor T (CAR-T) cells, improves T cell proliferation and survival as well as reduces T cell exhaustion. As such, a deeper understanding of 4-1BB will contribute to improvements in cancer immunotherapy. This review provides a comprehensive analysis of current 4-1BB studies, with a focus on the use of targeting-4-1BB antibodies and 4-1BB activation domains in CAR-T cells for the treatment of cancer.
Collapse
Affiliation(s)
- Xiaoling Shen
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Rusong Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Xiaojuan Nie
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Yanhua Yang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Ye Hua
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Peng Lü
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
18
|
Pulanco MC, Madsen AT, Tanwar A, Corrigan DT, Zang X. Recent advancements in the B7/CD28 immune checkpoint families: new biology and clinical therapeutic strategies. Cell Mol Immunol 2023; 20:694-713. [PMID: 37069229 PMCID: PMC10310771 DOI: 10.1038/s41423-023-01019-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/25/2023] [Indexed: 04/19/2023] Open
Abstract
The B7/CD28 families of immune checkpoints play vital roles in negatively or positively regulating immune cells in homeostasis and various diseases. Recent basic and clinical studies have revealed novel biology of the B7/CD28 families and new therapeutics for cancer therapy. In this review, we discuss the newly discovered KIR3DL3/TMIGD2/HHLA2 pathways, PD-1/PD-L1 and B7-H3 as metabolic regulators, the glycobiology of PD-1/PD-L1, B7x (B7-H4) and B7-H3, and the recently characterized PD-L1/B7-1 cis-interaction. We also cover the tumor-intrinsic and -extrinsic resistance mechanisms to current anti-PD-1/PD-L1 and anti-CTLA-4 immunotherapies in clinical settings. Finally, we review new immunotherapies targeting B7-H3, B7x, PD-1/PD-L1, and CTLA-4 in current clinical trials.
Collapse
Affiliation(s)
- Marc C Pulanco
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, 10461, USA
| | - Anne T Madsen
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, 10461, USA
- Department of Urology, Albert Einstein College of Medicine, New York, NY, 10461, USA
| | - Ankit Tanwar
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, 10461, USA
- Department of Oncology, Albert Einstein College of Medicine, New York, NY, 10461, USA
| | - Devin T Corrigan
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, 10461, USA
| | - Xingxing Zang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, 10461, USA.
- Department of Urology, Albert Einstein College of Medicine, New York, NY, 10461, USA.
- Department of Oncology, Albert Einstein College of Medicine, New York, NY, 10461, USA.
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, 10461, USA.
| |
Collapse
|
19
|
Liu G, Luo P. Targeting CD137 (4-1BB) towards improved safety and efficacy for cancer immunotherapy. Front Immunol 2023; 14:1208788. [PMID: 37334375 PMCID: PMC10272836 DOI: 10.3389/fimmu.2023.1208788] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023] Open
Abstract
T cells play a critical role in antitumor immunity, where T cell activation is regulated by both inhibitory and costimulatory receptor signaling that fine-tune T cell activity during different stages of T cell immune responses. Currently, cancer immunotherapy by targeting inhibitory receptors such as CTLA-4 and PD-1/L1, and their combination by antagonist antibodies, has been well established. However, developing agonist antibodies that target costimulatory receptors such as CD28 and CD137/4-1BB has faced considerable challenges, including highly publicized adverse events. Intracellular costimulatory domains of CD28 and/or CD137/4-1BB are essential for the clinical benefits of FDA-approved chimeric antigen receptor T cell (CAR-T) therapies. The major challenge is how to decouple efficacy from toxicity by systemic immune activation. This review focuses on anti-CD137 agonist monoclonal antibodies with different IgG isotypes in clinical development. It discusses CD137 biology in the context of anti-CD137 agonist drug discovery, including the binding epitope selected for anti-CD137 agonist antibody in competition or not with CD137 ligand (CD137L), the IgG isotype of antibodies selected with an impact on crosslinking by Fc gamma receptors, and the conditional activation of anti-CD137 antibodies for safe and potent engagement with CD137 in the tumor microenvironment (TME). We discuss and compare the potential mechanisms/effects of different CD137 targeting strategies and agents under development and how rational combinations could enhance antitumor activities without amplifying the toxicity of these agonist antibodies.
Collapse
Affiliation(s)
- Guizhong Liu
- Adagene Inc., San Diego, CA, United States
- Adagene (Suzhou) Limited., Suzhou, China
| | - Peter Luo
- Adagene Inc., San Diego, CA, United States
- Adagene (Suzhou) Limited., Suzhou, China
| |
Collapse
|
20
|
Fan R, Chen C, Mu M, Chuan D, Liu H, Hou H, Huang J, Tong A, Guo G, Xu J. Engineering MMP-2 Activated Nanoparticles Carrying B7-H3 Bispecific Antibodies for Ferroptosis-Enhanced Glioblastoma Immunotherapy. ACS NANO 2023; 17:9126-9139. [PMID: 37097811 DOI: 10.1021/acsnano.2c12217] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Administration of bispecific antibodies (biAbs) in tumor therapy is limited by their short half-life and off-target toxicity. Optimized strategies or targets are needed to overcome these barriers. B7-H3 (CD276), a member of the B7 superfamily, is associated with poor survival in glioblastoma (GBM) patients. Moreover, a dimer of EGCG (dEGCG) synthesized in this work enhanced the IFN-γ-induced ferroptosis of tumor cells in vitro and in vivo. Herein, we prepared recombinant anti-B7-H3×CD3 biAbs and constructed MMP-2-sensitive S-biAb/dEGCG@NPs to offer a combination treatment strategy for efficient and systemic GBM elimination. Given their GBM targeted delivery and tumor microenvironment responsiveness, S-biAb/dEGCG@NPs displayed enhanced intracranial accumulation, 4.1-, 9.5-, and 12.3-fold higher than that of biAb/dEGCG@NPs, biAb/dEGCG complexes, and free biAbs, respectively. Furthermore, 50% of GBM-bearing mice in the S-biAb/dEGCG@NP group survived longer than 56 days. Overall, S-biAb/dEGCG@NPs can induce GBM elimination by boosting the ferroptosis effect and enhancing immune checkpoint blockade (ICB) immunotherapy and may be successful antibody nanocarriers for enhanced cancer therapy.
Collapse
Affiliation(s)
- Rangrang Fan
- Department of Neurosurgery and Institute of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Caili Chen
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453000, P. R. China
| | - Min Mu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P. R. China
| | - Di Chuan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P. R. China
| | - Hao Liu
- Department of Neurosurgery and Institute of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Huan Hou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P. R. China
| | - Jianhan Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P. R. China
| | - Aiping Tong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P. R. China
| | - Gang Guo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P. R. China
| | - Jianguo Xu
- Department of Neurosurgery and Institute of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|
21
|
Mortezaee K. B7-H3 immunoregulatory roles in cancer. Biomed Pharmacother 2023; 163:114890. [PMID: 37196544 DOI: 10.1016/j.biopha.2023.114890] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/06/2023] [Accepted: 05/12/2023] [Indexed: 05/19/2023] Open
Abstract
B7 homolog 3 (B7-H3, also called CD276) is a checkpoint of B7 family that is aberrantly and consistently expressed in several human cancers, and its overexpression correlates with weak prognosis. B7-H3 is expressed on a number of cells, and it acts as a driver of immune evasion. This is mediated through hampering T cell infiltration and promoting exhaustion of CD8+ T cells. Increased B7-H3 activity also promotes macrophage polarity toward pro-tumor type 2 (M2) phenotype. In addition, high B7-H3 activity induces aberrant angiogenesis to promote hypoxia, a result of which is resistance to common immune checkpoint inhibitor (ICI) therapy. This is mediated through the impact of hypoxia on dampening CD8+ T cell recruitment into tumor area. The immunosuppressive property of B7-H3 offers insights into targeting this checkpoint as a desired approach in cancer immunotherapy. B7-H3 can be a target in blocking monoclonal antibodies (mAbs), combination therapies, chimeric antigen receptor-modified T (CAR-T) cells and bispecific antibodies.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
22
|
He Y, Gong F, Jin T, Liu Q, Fang H, Chen Y, Wang G, Chu PK, Wu Z, Ostrikov K(K. Dose-Dependent Effects in Plasma Oncotherapy: Critical In Vivo Immune Responses Missed by In Vitro Studies. Biomolecules 2023; 13:707. [PMID: 37189453 PMCID: PMC10136314 DOI: 10.3390/biom13040707] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/21/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Cold atmospheric plasma (CAP) generates abundant reactive oxygen and nitrogen species (ROS and RNS, respectively) which can induce apoptosis, necrosis, and other biological responses in tumor cells. However, the frequently observed different biological responses to in vitro and in vivo CAP treatments remain poorly understood. Here, we reveal and explain plasma-generated ROS/RNS doses and immune system-related responses in a focused case study of the interactions of CAP with colon cancer cells in vitro and with the corresponding tumor in vivo. Plasma controls the biological activities of MC38 murine colon cancer cells and the involved tumor-infiltrating lymphocytes (TILs). In vitro CAP treatment causes necrosis and apoptosis in MC38 cells, which is dependent on the generated doses of intracellular and extracellular ROS/RNS. However, in vivo CAP treatment for 14 days decreases the proportion and number of tumor-infiltrating CD8+T cells while increasing PD-L1 and PD-1 expression in the tumors and the TILs, which promotes tumor growth in the studied C57BL/6 mice. Furthermore, the ROS/RNS levels in the tumor interstitial fluid of the CAP-treated mice are significantly lower than those in the MC38 cell culture supernatant. The results indicate that low doses of ROS/RNS derived from in vivo CAP treatment may activate the PD-1/PD-L1 signaling pathway in the tumor microenvironment and lead to the undesired tumor immune escape. Collectively, these results suggest the crucial role of the effect of doses of plasma-generated ROS and RNS, which are generally different in in vitro and in vivo treatments, and also suggest that appropriate dose adjustments are required upon translation to real-world plasma oncotherapy.
Collapse
Affiliation(s)
- Yuanyuan He
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026, China
- Department of Geriatrics, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, China
| | - Fanwu Gong
- Department of Medical Oncology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, China
| | - Tao Jin
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Qi Liu
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Haopeng Fang
- Department of Medical Oncology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, China
| | - Yan Chen
- Joint Laboratory of Plasma Application Technology, Institute of Advanced Technology, University of Science and Technology of China, Hefei 230026, China
| | - Guomin Wang
- Department of Orthopedics, School of Medicine, Shanghai Tenth People’s Hospital, Tongji University, Shanghai 200072, China
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Paul K. Chu
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Zhengwei Wu
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026, China
- Joint Laboratory of Plasma Application Technology, Institute of Advanced Technology, University of Science and Technology of China, Hefei 230026, China
| | - Kostya (Ken) Ostrikov
- School of Chemistry and Physics and QUT Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| |
Collapse
|
23
|
Melero I, Sanmamed MF, Glez-Vaz J, Luri-Rey C, Wang J, Chen L. CD137 (4-1BB)-Based Cancer Immunotherapy on Its 25th Anniversary. Cancer Discov 2023; 13:552-569. [PMID: 36576322 DOI: 10.1158/2159-8290.cd-22-1029] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/28/2022] [Accepted: 11/21/2022] [Indexed: 12/29/2022]
Abstract
Twenty-five years ago, we reported that agonist anti-CD137 monoclonal antibodies eradicated transplanted mouse tumors because of enhanced CD8+ T-cell antitumor immunity. Mouse models indicated that anti-CD137 agonist antibodies synergized with various other therapies. In the clinic, the agonist antibody urelumab showed evidence for single-agent activity against melanoma and non-Hodgkin lymphoma but caused severe liver inflammation in a fraction of the patients. CD137's signaling domain is included in approved chimeric antigen receptors conferring persistence and efficacy. A new wave of CD137 agonists targeting tumors, mainly based on bispecific constructs, are in early-phase trials and are showing promising safety and clinical activity. SIGNIFICANCE CD137 (4-1BB) is a costimulatory receptor of T and natural killer lymphocytes whose activity can be exploited in cancer immunotherapy strategies as discovered 25 years ago. Following initial attempts that met unacceptable toxicity, new waves of constructs acting agonistically on CD137 are being developed in patients, offering signs of clinical and pharmacodynamic activity with tolerable safety profiles.
Collapse
Affiliation(s)
- Ignacio Melero
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Departments of Immunology-Immunotherapy and Oncology, Clínica Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Miguel F Sanmamed
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Departments of Immunology-Immunotherapy and Oncology, Clínica Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Javier Glez-Vaz
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Carlos Luri-Rey
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Jun Wang
- Department of Pathology, New York University Grossman School of Medicine, New York, New York
| | - Lieping Chen
- Department of Immunobiology, Yale University, New Haven, Connecticut
| |
Collapse
|
24
|
Wei J, Yang Y, Wang G, Liu M. Current landscape and future directions of bispecific antibodies in cancer immunotherapy. Front Immunol 2022; 13:1035276. [PMID: 36389699 PMCID: PMC9650279 DOI: 10.3389/fimmu.2022.1035276] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/14/2022] [Indexed: 07/31/2023] Open
Abstract
Recent advances in cancer immunotherapy using monoclonal antibodies have dramatically revolutionized the therapeutic strategy against advanced malignancies, inspiring the exploration of various types of therapeutic antibodies. Bispecific antibodies (BsAbs) are recombinant molecules containing two different antigens or epitopes identifying binding domains. Bispecific antibody-based tumor immunotherapy has gained broad potential in preclinical and clinical investigations in a variety of tumor types following regulatory approval of newly developed technologies involving bispecific and multispecific antibodies. Meanwhile, a series of challenges such as antibody immunogenicity, tumor heterogeneity, low response rate, treatment resistance, and systemic adverse effects hinder the application of BsAbs. In this review, we provide insights into the various architecture of BsAbs, focus on BsAbs' alternative different mechanisms of action and clinical progression, and discuss relevant approaches to overcome existing challenges in BsAbs clinical application.
Collapse
Affiliation(s)
- Jing Wei
- Gastric Cancer Center/Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yueyao Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Gang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Ming Liu
- Gastric Cancer Center/Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
25
|
Zhao B, Li H, Xia Y, Wang Y, Wang Y, Shi Y, Xing H, Qu T, Wang Y, Ma W. Immune checkpoint of B7-H3 in cancer: from immunology to clinical immunotherapy. J Hematol Oncol 2022; 15:153. [PMID: 36284349 PMCID: PMC9597993 DOI: 10.1186/s13045-022-01364-7] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/30/2022] [Indexed: 11/28/2022] Open
Abstract
Immunotherapy for cancer is a rapidly developing treatment that modifies the immune system and enhances the antitumor immune response. B7-H3 (CD276), a member of the B7 family that plays an immunoregulatory role in the T cell response, has been highlighted as a novel potential target for cancer immunotherapy. B7-H3 has been shown to play an inhibitory role in T cell activation and proliferation, participate in tumor immune evasion and influence both the immune response and tumor behavior through different signaling pathways. B7-H3 expression has been found to be aberrantly upregulated in many different cancer types, and an association between B7-H3 expression and poor prognosis has been established. Immunotherapy targeting B7-H3 through different approaches has been developing rapidly, and many ongoing clinical trials are exploring the safety and efficacy profiles of these therapies in cancer. In this review, we summarize the emerging research on the function and underlying pathways of B7-H3, the expression and roles of B7-H3 in different cancer types, and the advances in B7-H3-targeted therapy. Considering different tumor microenvironment characteristics and results from preclinical models to clinical practice, the research indicates that B7-H3 is a promising target for future immunotherapy, which might eventually contribute to an improvement in cancer immunotherapy that will benefit patients.
Collapse
Affiliation(s)
- Binghao Zhao
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Huanzhang Li
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yu Xia
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yaning Wang
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yuekun Wang
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yixin Shi
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Hao Xing
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Tian Qu
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yu Wang
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Wenbin Ma
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| |
Collapse
|
26
|
Kang J, Sun T, Zhang Y. Immunotherapeutic progress and application of bispecific antibody in cancer. Front Immunol 2022; 13:1020003. [PMID: 36341333 PMCID: PMC9630604 DOI: 10.3389/fimmu.2022.1020003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/05/2022] [Indexed: 08/19/2023] Open
Abstract
Bispecific antibodies (bsAbs) are artificial antibodies with two distinct antigen-binding sites that can bind to different antigens or different epitopes on the same antigen. Based on a variety of technology platforms currently developed, bsAbs can exhibit different formats and mechanisms of action. The upgrading of antibody technology has promoted the development of bsAbs, which has been effectively used in the treatment of tumors. So far, 7 bsAbs have been approved for marketing in the world, and more than 200 bsAbs are in clinical and preclinical research stages. Here, we summarize the development process of bsAbs, application in tumor treatment and look forward to the challenges in future development.
Collapse
Affiliation(s)
- Jingyue Kang
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Tonglin Sun
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Zhang
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
27
|
The Features of Immune Checkpoint Gene Regulation by microRNA in Cancer. Int J Mol Sci 2022; 23:ijms23169324. [PMID: 36012588 PMCID: PMC9409052 DOI: 10.3390/ijms23169324] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 02/06/2023] Open
Abstract
Currently, the search for new promising tools of immunotherapy continues. In this regard, microRNAs (miRNAs) that influence immune checkpoint (IC) gene expression in tumor and T-cells and may be important regulators of immune cells are considered. MiRNAs regulate gene expression by blocking mRNA translation. An important feature of miRNA is its ability to affect the expression of several genes simultaneously, which corresponds to the trend toward the use of combination therapy. The article provides a list of miRNAs acting simultaneously on several ICs and miRNAs that, in addition to IC, can regulate the expression of targeted therapy genes. There is dependence of miRNA interactions with IC genes on the type of cancer. The analysis of the accumulated data demonstrates that only about 14% (95% CI: 9.8–20.1%) of the studied miRNAs regulate the expression of specific IC in more than one type of cancer. That is, there is tumor specificity in the miRNA action on ICs. A number of miRNAs demonstrated high efficiency in vitro and in vivo. This indicates the potential of miRNAs as promising agents for cancer immunotherapy. Additional studies of the miRNA–gene interaction features and the search for an optimal miRNA mimic structure are necessary.
Collapse
|
28
|
Sanborn RE, Schneiders FL, Senan S, Gadgeel SM. Beyond Checkpoint Inhibitors: Enhancing Antitumor Immune Response in Lung Cancer. Am Soc Clin Oncol Educ Book 2022; 42:1-14. [PMID: 35671433 DOI: 10.1200/edbk_350967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The introduction of immune checkpoint inhibitors has dramatically changed the treatment landscape and improved survival for many patients with thoracic malignancies. Although some patients may experience prolonged survival benefit with immune checkpoint inhibitors, a majority do not experience disease control or benefit, supporting the need for research and development of improved approaches for facilitating immune recognition. Additionally, many patients will experience toxicity with the current approaches to immunotherapy, supporting the need for developing treatment strategies with less risk of adverse events. An extensive array of different strategies are currently under investigation, including novel combinations of checkpoint inhibitors or immunotherapies; novel agents beyond checkpoint inhibitors (e.g., bispecific antibodies, vaccine strategies, cytokine therapies); and different approaches for use of radiation to augment systemic immunotherapy agents. With each strategy, researchers are evaluating the potential for augmenting antitumor responses and ensuring more sustained antitumor effects. This article highlights areas of active research, reviewing the rationale for different investigative strategies, as well as currently available clinical data.
Collapse
Affiliation(s)
- Rachel E Sanborn
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR
| | | | - Suresh Senan
- Amsterdam University Medical Centers, Amsterdam, Netherlands
| | | |
Collapse
|
29
|
Reschke R, Olson DJ. Leveraging STING, Batf3 Dendritic Cells, CXCR3 Ligands, and Other Components Related to Innate Immunity to Induce A "Hot" Tumor Microenvironment That Is Responsive to Immunotherapy. Cancers (Basel) 2022; 14:2458. [PMID: 35626062 PMCID: PMC9139434 DOI: 10.3390/cancers14102458] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/07/2022] [Accepted: 05/13/2022] [Indexed: 02/01/2023] Open
Abstract
In a T-cell-inflamed phenotype, tumor eradication works best and is potentiated by immunotherapy such as checkpoint blockade. However, a majority of patients die despite receiving immunotherapy. One reason is insufficient T cell priming and infiltration in the tumor. Nature provides us with innate immune mechanisms in T-cell-inflamed tumors that we can adopt for more personalized immunotherapy strategies. Tumor sensing through innate signaling pathways and efficient antigen-presenting possess a significant role in bridging innate and adaptive immunity and generating a T-cell-inflamed tumor. One approach to strengthen these innate immune mechanisms is to deliver innate immune factors such as STING or activated DCs into the tumor microenvironment, in particular in patients resistant to checkpoint blockade. The low number of DCs in the tumor bed could potentially be increased with the growth factor FMS-like tyrosine kinase 3 ligand (Flt3L). CD103+ DCs are integral for priming and recruiting of effector T cells. The presence of myeloid-cell-derived CXCL9 and CXCL10 in the tumor microenvironment can predict response to immunotherapy. We outline recent preclinical and clinical approaches to deliver these crucial components bridging innate and adaptive immunity into the tumor microenvironment.
Collapse
Affiliation(s)
- Robin Reschke
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Daniel J. Olson
- Department of Medicine, University of Chicago, Comprehensive Cancer Center, Chicago, IL 60637, USA;
| |
Collapse
|
30
|
Chen RP, Shinoda K, Rampuria P, Jin F, Bartholomew T, Zhao C, Yang F, Chaparro-Riggers J. Bispecific antibodies for immune cell retargeting against cancer. Expert Opin Biol Ther 2022; 22:965-982. [PMID: 35485219 DOI: 10.1080/14712598.2022.2072209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Following the approval of the T-cell engaging bispecific antibody blinatumomab, immune cell retargeting with bispecific or multispecific antibodies has emerged as a promising cancer immunotherapy strategy, offering alternative mechanisms compared to immune checkpoint blockade. As we gain more understanding of the complex tumor microenvironment, rules and design principles have started to take shape on how to best harness the immune system to achieve optimal anti-tumor activities. AREAS COVERED In the present review, we aim to summarize the most recent advances and challenges in using bispecific antibodies for immune cell retargeting and to provide insights into various aspects of antibody engineering. Discussed herein are studies that highlight the importance of considering antibody engineering parameters, such as binding epitope, affinity, valency, and geometry to maximize the potency and mitigate the toxicity of T cell engagers. Beyond T cell engaging bispecifics, other bispecifics designed to recruit the innate immune system are also covered. EXPERT OPINION Diverse and innovative molecular designs of bispecific/multispecific antibodies have the potential to enhance the efficacy and safety of immune cell retargeting for the treatment of cancer. Whether or not clinical data support these different hypotheses, especially in solid tumor settings, remains to be seen.
Collapse
Affiliation(s)
- Rebecca P Chen
- Pfizer BioMedicine Design, Pfizer Inc, San Diego, CA, USA
| | - Kenta Shinoda
- Pfizer BioMedicine Design, Pfizer Inc, Cambridge, MA, USA
| | | | - Fang Jin
- Pfizer BioMedicine Design, Pfizer Inc, Cambridge, MA, USA
| | | | - Chunxia Zhao
- Pfizer BioMedicine Design, Pfizer Inc, Cambridge, MA, USA
| | - Fan Yang
- Pfizer BioMedicine Design, Pfizer Inc, San Diego, CA, USA
| | | |
Collapse
|
31
|
Moon D, Tae N, Park Y, Lee SW, Kim DH. Development of Bispecific Antibody for Cancer Immunotherapy: Focus on T Cell Engaging Antibody. Immune Netw 2022; 22:e4. [PMID: 35291652 PMCID: PMC8901699 DOI: 10.4110/in.2022.22.e4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 12/01/2022] Open
Abstract
In the era of immunotherapeutic control of cancers, many advances in biotechnology, especially in Ab engineering, have provided multiple new candidates as therapeutic immuno-oncology modalities. Bispecific Abs (BsAbs) that recognize 2 different antigens in one molecule are promising drug candidates and have inspired an upsurge in research in both academia and the pharmaceutical industry. Among several BsAbs, T cell engaging BsAb (TCEB), a new class of therapeutic agents designed to simultaneously bind to T cells and tumor cells via tumor cell specific antigens in immunotherapy, is the most promising BsAb. Herein, we are providing an overview of the current status of the development of TCEBs. The diverse formats and characteristics of TCEBs, in addition to the functional mechanisms of BsAbs are discussed. Several aspects of a new TCEB-Blinatumomab-are reviewed, including the current clinical data, challenges of patient treatment, drawbacks regarding toxicities, and resistance of TCEB therapy. Development of the next generation of TCEBs is also discussed in addition to the comparison of TCEB with current chimeric antigen receptor-T therapy.
Collapse
Affiliation(s)
- Dain Moon
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Nara Tae
- Global/Gangwon Innovative Biologics Regional Leading Research Center (GIB-RLRC), Kangwon National University, Chuncheon 24341, Korea
| | - Yunji Park
- Pohang University of Science and Technology (POSTECH) Biotech Center, POSTECH, Pohang 37673, Korea
| | - Seung-Woo Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Dae Hee Kim
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
32
|
Li Y, Cai Q, Shen X, Chen X, Guan Z. Overexpression of B7-H3 Is Associated With Poor Prognosis in Laryngeal Cancer. Front Oncol 2021; 11:759528. [PMID: 34938657 PMCID: PMC8685272 DOI: 10.3389/fonc.2021.759528] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/12/2021] [Indexed: 01/01/2023] Open
Abstract
The immune checkpoint molecule, B7-H3, which belongs to the B7 family, has been shown to be overexpressed in various cancers. Its role in tumors is not well defined, and many studies suggest that it is associated with poor clinical outcomes. The effect of B7-H3 on laryngeal cancer has not been reported. This study investigated the expression of B7-H3 in laryngeal squamous cell carcinoma (LSCC), and its relationship with clinicopathological factors and prognosis of LSCC patients. The gene expression quantification data and clinical data of LSCC retrieved from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database were analyzed to determine the diagnostic and prognostic roles of B7-H3. Quantitative real-time polymerase chain reaction (qRT-PCR) was then performed to determine the gene expression level of B7-H3 between LSCC tissues and paired normal adjacent tissues. In addition, TCGA RNA-seq data was analyzed to evaluate the expression level of B7 family genes. Next, the protein expression of B7-H3 and CD8 in LSCC was determined using immunohistochemistry and immunofluorescence. qRT-PCR results showed that the expression level of B7-H3 mRNA was significantly higher in LSCC tissues than in adjacent normal tissues. Similar results were obtained from the TCGA analysis. The expression of B7-H3 was significantly associated with T stage, lymph node metastasis, and pathological tumor node metastasis (TNM) stage, and it was also an independent factor influencing the overall survival time (OS) of patients with LSCC. In addition, B7-H3 was negatively correlated with CD8+T cells. These results show that B7-H3 is upregulated in LSCC. Therefore, B7-H3 may serve as a biomarker of poor prognosis and a promising therapeutic target in LSCC.
Collapse
Affiliation(s)
- Yixuan Li
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qian Cai
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ximing Shen
- Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoting Chen
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhong Guan
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Zhong Guan,
| |
Collapse
|
33
|
Liu C, Zhang G, Xiang K, Kim Y, Lavoie RR, Lucien F, Wen T. Targeting the immune checkpoint B7-H3 for next-generation cancer immunotherapy. Cancer Immunol Immunother 2021; 71:1549-1567. [PMID: 34739560 DOI: 10.1007/s00262-021-03097-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022]
Abstract
Immune checkpoint inhibitors (ICIs) for programmed death-1 (PD-1) and programmed cell death-ligand 1 (PD-L1) have become preferred treatment strategies for several advanced cancers. However, response rates for these treatments are limited, which encourages the search for new ICI candidates. Recent reports have underscored significant roles of B7 homolog 3 protein (B7-H3) in tumor immunity and disease progression. While its multifaceted roles are being elucidated, B7-H3 has already entered clinical trials as a therapeutic target. In this review, we overview the recent results of clinical trials evaluating the antitumor activity and safety of B7-H3 targeting drugs. On this basis, we also discuss the challenges and opportunities arising from the application of these drugs. Finally, we point out current gaps to address in the understanding of B7-H3 function and regulation in order to fully unleash the future clinical utility of B7-H3-based therapies for the treatment of cancer.
Collapse
Affiliation(s)
- Chuan Liu
- Department of Medical Oncology, Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Guangwei Zhang
- Smart Hospital Management Department, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Kanghui Xiang
- Department of Medical Oncology, Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Yohan Kim
- Department of Urology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Ti Wen
- Department of Medical Oncology, Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.
- Liaoning Province Clinical Research Center for Cancer, Shenyang, China.
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China.
- Department of Urology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
34
|
Hurov K, Lahdenranta J, Upadhyaya P, Haines E, Cohen H, Repash E, Kanakia D, Ma J, Kristensson J, You F, Campbell C, Witty D, Kelly M, Blakemore S, Jeffrey P, McDonnell K, Brandish P, Keen N. BT7480, a novel fully synthetic Bicycle tumor-targeted immune cell agonist™ ( Bicycle TICA™) induces tumor localized CD137 agonism. J Immunother Cancer 2021; 9:jitc-2021-002883. [PMID: 34725211 PMCID: PMC8562524 DOI: 10.1136/jitc-2021-002883] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2021] [Indexed: 12/30/2022] Open
Abstract
Background CD137 (4-1BB) is an immune costimulatory receptor with high therapeutic potential in cancer. We are creating tumor target-dependent CD137 agonists using a novel chemical approach based on fully synthetic constrained bicyclic peptide (Bicycle®) technology. Nectin-4 is overexpressed in multiple human cancers that may benefit from CD137 agonism. To this end, we have developed BT7480, a novel, first-in-class, Nectin-4/CD137 Bicycle tumor-targeted immune cell agonist™ (Bicycle TICA™). Methods Nectin-4 and CD137 co-expression analyses in primary human cancer samples was performed. Chemical conjugation of two CD137 Bicycles to a Nectin-4 Bicycle led to BT7480, which was then evaluated using a suite of in vitro and in vivo assays to characterize its pharmacology and mechanism of action. Results Transcriptional profiling revealed that Nectin-4 and CD137 were co-expressed in a variety of human cancers with high unmet need and spatial proteomic imaging found CD137-expressing immune cells were deeply penetrant within the tumor near Nectin-4-expressing cancer cells. BT7480 binds potently, specifically, and simultaneously to Nectin-4 and CD137. In co-cultures of human peripheral blood mononuclear cells and tumor cells, this co-ligation causes robust Nectin-4-dependent CD137 agonism that is more potent than an anti-CD137 antibody agonist. Treatment of immunocompetent mice bearing Nectin-4-expressing tumors with BT7480 elicited a profound reprogramming of the tumor immune microenvironment including an early and rapid myeloid cell activation that precedes T cell infiltration and upregulation of cytotoxicity-related genes. BT7480 induces complete tumor regressions and resistance to tumor re-challenge. Importantly, antitumor activity is not dependent on continuous high drug levels in the plasma since a once weekly dosing cycle provides maximum antitumor activity despite minimal drug remaining in the plasma after day 2. BT7480 appears well tolerated in both rats and non-human primates at doses far greater than those expected to be clinically relevant, including absence of the hepatic toxicity observed with non-targeted CD137 agonists. Conclusion BT7480 is a highly potent Nectin-4-dependent CD137 agonist that produces complete regressions and antitumor immunity with only intermittent drug exposure in syngeneic mouse tumor models and is well tolerated in preclinical safety species. This work supports the clinical investigation of BT7480 for the treatment of cancer in humans.
Collapse
Affiliation(s)
- Kristen Hurov
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts, USA
| | | | - Punit Upadhyaya
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts, USA
| | - Eric Haines
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts, USA
| | - Heather Cohen
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts, USA
| | - Elizabeth Repash
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts, USA
| | - Drasti Kanakia
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts, USA
| | - Jun Ma
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts, USA
| | - Julia Kristensson
- Bicycle Therapeutics, B900 Building, Babraham Research Campus, Cambridge, UK
| | - Fanglei You
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts, USA
| | - Carly Campbell
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts, USA
| | - David Witty
- Bicycle Therapeutics, B900 Building, Babraham Research Campus, Cambridge, UK
| | - Mike Kelly
- Bicycle Therapeutics, B900 Building, Babraham Research Campus, Cambridge, UK
| | - Stephen Blakemore
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts, USA
| | - Phil Jeffrey
- Bicycle Therapeutics, B900 Building, Babraham Research Campus, Cambridge, UK
| | - Kevin McDonnell
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts, USA
| | - Philip Brandish
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts, USA
| | - Nicholas Keen
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts, USA
| |
Collapse
|
35
|
Effective killing of cells expressing CD276 (B7-H3) by a bispecific T cell engager based on a new fully human antibody. Transl Oncol 2021; 14:101232. [PMID: 34601396 PMCID: PMC8493583 DOI: 10.1016/j.tranon.2021.101232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/24/2021] [Indexed: 01/01/2023] Open
Abstract
A new fully human antibody, B11, that specifically targets CD276 was identified. The epitope of B11 is the V1/V2 domain of CD276 and it competes with the antibody 8H9 (Omburtamab). B11-BiTE mediates strong T cell cytotoxicity to 14 different tumor cell lines.
The pancaner molecule CD276 (B7-H3) is an attractive target for antibody based therapy. We identified from a large (1011) phage-displayed single-chain variable fragment (scFv) library, a fully human antibody, B11, which bound with high avidity (KD=0.4 nM) to CD276. B11 specifically bound to the V1/V2 domain of CD276 and competed with the antibody 8H9 (Omburtamab). It was used to design an IgG-format bispecific T cell engager B11-BiTE, which was more effective than 8H9-BiTE in 14 different cancer cell lines. B11-BiTE also exhibited strong ADCC/ADCP. Therefore, the fully human B11-BiTE is a promising candidate for treatment of tumors expressing CD276.
Collapse
|
36
|
You G, Won J, Lee Y, Moon D, Park Y, Lee SH, Lee SW. Bispecific Antibodies: A Smart Arsenal for Cancer Immunotherapies. Vaccines (Basel) 2021; 9:724. [PMID: 34358141 PMCID: PMC8310217 DOI: 10.3390/vaccines9070724] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/05/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022] Open
Abstract
Following the clinical success of cancer immunotherapies such as immune checkpoint inhibitors blocking B7/CTLA-4 or PD-1/PD-L1 signaling and ongoing numerous combination therapies in the clinic,3 bispecific antibodies (BsAbs) are now emerging as a growing class of immunotherapies with the potential to improve clinical efficacy and safety further. Here, we describe four classes of BsAbs: (a) immune effector cell redirectors; (b) tumor-targeted immunomodulators; (c) dual immunomodulators; and (d) dual tumor-targeting BsAbs. This review describes each of these classes of BsAbs and presents examples of BsAbs in development. We reviewed the biological rationales and characteristics of BsAbs and summarized the current status and limitations of clinical development of BsAbs and strategies to overcome limitations. The field of BsAb-based cancer immunotherapy is growing, and more data from clinical trials are accumulating. Thus, BsAbs could be the next generation of new treatment options for cancer patients.
Collapse
Affiliation(s)
- Gihoon You
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea; (G.Y.); (D.M.)
| | - Jonghwa Won
- ABL Bio Inc., Seongnam 13488, Korea; (J.W.); (Y.L.); (S.H.L.)
| | - Yangsoon Lee
- ABL Bio Inc., Seongnam 13488, Korea; (J.W.); (Y.L.); (S.H.L.)
| | - Dain Moon
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea; (G.Y.); (D.M.)
| | - Yunji Park
- Biotechcenter, POSTECH, Pohang 37673, Korea;
| | - Sang Hoon Lee
- ABL Bio Inc., Seongnam 13488, Korea; (J.W.); (Y.L.); (S.H.L.)
| | - Seung-Woo Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea; (G.Y.); (D.M.)
| |
Collapse
|
37
|
Zhai T, Wang C, Xu Y, Huang W, Yuan Z, Wang T, Dai S, Peng S, Pang T, Jiang W, Huang Y, Zou Y, Xu Y, Sun J, Gong X, Zhang J, Tsun A, Li B, Miao X. Generation of a safe and efficacious llama single-domain antibody fragment (vHH) targeting the membrane-proximal region of 4-1BB for engineering therapeutic bispecific antibodies for cancer. J Immunother Cancer 2021; 9:jitc-2020-002131. [PMID: 34172514 PMCID: PMC8237747 DOI: 10.1136/jitc-2020-002131] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2021] [Indexed: 12/16/2022] Open
Abstract
Background The discovery of checkpoint inhibitors towards cytotoxic T-lymphocyte protein 4 (CTLA-4) and programmed cell death protein 1 (PD-1) has been revolutionary for the treatment of cancers. These therapies have only offered an average of 20%–30% response rates across the tumor spectrum and the combination of agonists towards the tumor-necrosis superfamily members, such as 4-1BB and CD40, has shown potent efficacy in preclinical studies; however, these agonists have exhibited high degrees of toxicity with limited efficacy in human trials. In this study, we have generated a single-domain antibody towards a unique epitope of 4-1BB that limits its potential on-target toxicity while maintaining sufficient potency. This 4-1BB binder is ideal for use in the engineering of multispecific antibodies to localize 4-1BB activation within the tumor microenvironment, as shown here by a anti-PD-L1/4-1BB bispecific candidate (PM1003). Methods To determine the functional activity of the 4-1BB- and PD-L1-binding elements of PM1003, in vitro luciferase reporter and primary cell assays were used to test the potency of programmed cell death 1 ligand 1 (PD-L1) blockade and PD-L1-mediated 4-1BB activation via cross-bridging. X-ray crystallography was conducted to resolve the binding epitopes of the respective binding arms, and accurate binding kinetics were determined using standard affinity measurement techniques. Human 4-1BB and/or PD-L1 knock-in mice were used in cancer models for testing the in vivo antitumor efficacy of PM1003, and safety was evaluated further. Results PM1003 shows potent activation of 4-1BB and blockade of PD-L1 in cell-based assays. 4-1BB activation was exerted through the bridging of PD-L1 on target cells and 4-1BB on effector cells. No PD-L1-independent activation of 4-1BB was observed. Through X-ray crystallography, a unique binding epitope in the cysteine-rich domain 4 (CRD4) region was resolved that provides high potency and potentially low on-target toxicity as determined by primary immune cell assays and toxicity evaluation in vivo. Conclusions A unique single-domain antibody was discovered that binds to the CRD4 domain of 4-1BB. When incorporated into a 4-1BB/PD-L1 bispecific (PM1003), we have shown the potent inhibition of PD-L1 activity with 4-1BB agonism upon cross-bridging with PD-L1 in vitro. Antitumor activity with minimal toxicity was found in vivo. Thus, PM1003 is a uniquely differentiating and next generation therapeutic agent for cancer therapy.
Collapse
Affiliation(s)
- Tianhang Zhai
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Wang
- Discovery Biology & Discovery Technology, Biotheus Inc, Zhuhai, China
| | - Yifeng Xu
- Discovery Biology, Biotheus (Suzhou) Co., Ltd, Suzhou, China
| | - Weifeng Huang
- Discovery Biology, Biotheus (Suzhou) Co., Ltd, Suzhou, China
| | - Zhijun Yuan
- Discovery Biology & Discovery Technology, Biotheus Inc, Zhuhai, China
| | - Tao Wang
- Discovery Biology & Discovery Technology, Biotheus Inc, Zhuhai, China
| | - Shuang Dai
- Discovery Biology, Biotheus (Suzhou) Co., Ltd, Suzhou, China
| | - Shaogang Peng
- Discovery Biology, Biotheus (Suzhou) Co., Ltd, Suzhou, China
| | - Tuling Pang
- Discovery Biology & Discovery Technology, Biotheus Inc, Zhuhai, China
| | - Wenchao Jiang
- Discovery Biology & Discovery Technology, Biotheus Inc, Zhuhai, China
| | - Yuhua Huang
- Discovery Biology & Discovery Technology, Biotheus Inc, Zhuhai, China
| | - Yuefeng Zou
- Discovery Biology & Discovery Technology, Biotheus Inc, Zhuhai, China
| | - Yingda Xu
- Discovery Biology & Discovery Technology, Biotheus Inc, Zhuhai, China
| | - Joanne Sun
- Discovery Biology & Discovery Technology, Biotheus Inc, Zhuhai, China
| | - Xinjiang Gong
- Discovery Biology & Discovery Technology, Biotheus Inc, Zhuhai, China
| | - Jinping Zhang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Andy Tsun
- Discovery Biology & Discovery Technology, Biotheus Inc, Zhuhai, China
| | - Bin Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoniu Miao
- Discovery Biology & Discovery Technology, Biotheus Inc, Zhuhai, China .,Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
38
|
Emerging Next-Generation Target for Cancer Immunotherapy Research: The Orphan Nuclear Receptor NR2F6. Cancers (Basel) 2021; 13:cancers13112600. [PMID: 34073258 PMCID: PMC8197903 DOI: 10.3390/cancers13112600] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The most successful strategies for solid cancer immunotherapy have centered on targeting the co-stimulatory and co-inhibitory T cell molecules that regulate T cell activation. Although immunotherapy that targets surface receptors such as CTLA-4 and/or PD-1 with recombinant antibodies has been a game changer for cancer treatment, a sizeable subset of patients still fail to respond to, and even fewer patients are cured by, these therapy regimens. Here, we discuss the unique potential of NR2F6 as an emerging target for cancer immunotherapy to significantly increase response rates of cancer patients and/or to extend treatment to a broader range of cancer types. Abstract Additional therapeutic targets suitable for boosting anti-tumor effector responses have been found inside effector CD4+ and CD8+ T cells. It is likely that future treatment options will combine surface receptor and intracellular protein targets. Utilizing germline gene ablation as well as CRISPR/Cas9-mediated acute gene mutagenesis, the nuclear receptor NR2F6 (nuclear receptor subfamily 2 group F member 6, also called Ear-2) has been firmly characterized as such an intracellular immune checkpoint in effector T cells. Targeting this receptor appears to be a strategy for improving anti-tumor immunotherapy responses, especially in combination with CTLA-4 and PD-1. Current preclinical experimental knowledge firmly validates the immune checkpoint function of NR2F6 in murine tumor models, which provides a promising perspective for immunotherapy regimens in humans in the near future. While the clinical focus remains on the B7/CD28 family members, protein candidate targets such as NR2F6 are now being investigated in laboratories around the world and in R&D companies. Such an alternative therapeutic approach, if demonstrated to be successful, could supplement the existing therapeutic models and significantly increase response rates of cancer patients and/or expand the reach of immune therapy regimens to include a wider range of cancer entities. In this perspective review, the role of NR2F6 as an emerging and druggable target in immuno-oncology research will be discussed, with special emphasis on the unique potential of NR2F6 and its critical and non-redundant role in both immune and tumor cells.
Collapse
|
39
|
Hashimoto K. CD137 as an Attractive T Cell Co-Stimulatory Target in the TNFRSF for Immuno-Oncology Drug Development. Cancers (Basel) 2021; 13:2288. [PMID: 34064598 PMCID: PMC8150789 DOI: 10.3390/cancers13102288] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 12/24/2022] Open
Abstract
Immune checkpoint inhibitors have altered the treatment landscape significantly in several cancers, yet not enough for many cancer patients. T cell costimulatory receptors have been pursued as targets for the next generation of cancer immunotherapies, however, sufficient clinical efficacy has not yet been achieved. CD137 (TNFRSF9, 4-1BB) provides co-stimulatory signals and activates cytotoxic effects of CD8+ T cells and helps to form memory T cells. In addition, CD137 signalling can activate NK cells and dendritic cells which further supports cytotoxic T cell activation. An agonistic monoclonal antibody to CD137, urelumab, provided promising clinical efficacy signals but the responses were achieved above the maximum tolerated dose. Utomilumab is another CD137 monoclonal antibody to CD137 but is not as potent as urelumab. Recent advances in antibody engineering technologies have enabled mitigation of the hepato-toxicity that hampered clinical application of urelumab and have enabled to maintain similar potency to urelumab. Next generation CD137 targeting molecules currently in clinical trials support T cell and NK cell expansion in patient samples. CD137 targeting molecules in combination with checkpoint inhibitors or ADCC-enhancing monoclonal antibodies have been sought to improve both clinical safety and efficacy. Further investigation on patient samples will be required to provide insights to understand compensating pathways for future combination strategies involving CD137 targeting agents to optimize and maintain the T cell activation status in tumors.
Collapse
Affiliation(s)
- Kenji Hashimoto
- Crescendo Biologics, Ltd., Meditrina Building 260, Babraham Research Campus, Cambridge CB22 3AT, UK
| |
Collapse
|
40
|
Zhang W, Qiu Y, Xie X, Fu Y, Wang L, Cai Z. B7 Family Members in Lymphoma: Promising Novel Targets for Tumor Immunotherapy? Front Oncol 2021; 11:647526. [PMID: 33869045 PMCID: PMC8044412 DOI: 10.3389/fonc.2021.647526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
T cells play a vital role in the immune responses against tumors. Costimulatory or coinhibitory molecules regulate T cell activation. Immune checkpoint inhibitors, such as programmed cell death protein 1 (PD-1) and programmed death ligand 1 (PD-L1) have shown remarkable benefits in patients with various tumor, but few patients have displayed significant immune responses against tumors after PD-1/PD-L1 immunotherapy and many have been completely unresponsive. Thus, researchers must explore novel immune checkpoints that trigger durable antitumor responses and improve clinical outcomes. In this regard, other B7 family checkpoint molecules have been identified, namely PD-L2, B7-H2, B7-H3, B7-H4 and B7-H6. The aim of the present article was to address the expression, clinical significance and roles of B7 family molecules in lymphoma, as well as in T and NK cell-mediated tumor immunity. B7 family checkpoints may offer novel and immunotherapeutic strategies for patients with lymphoma.
Collapse
Affiliation(s)
- Wei Zhang
- School of Clinical Medicine, Binzhou Medical University, Yantai, China.,Central Laboratory, Linyi People's Hospital, Linyi, China
| | - Yu Qiu
- School of Clinical Medicine, Binzhou Medical University, Yantai, China.,Central Laboratory, Linyi People's Hospital, Linyi, China
| | - Xiaoli Xie
- Central Laboratory, Linyi People's Hospital, Linyi, China
| | - Yao Fu
- Central Laboratory, Linyi People's Hospital, Linyi, China
| | - Lijuan Wang
- School of Clinical Medicine, Binzhou Medical University, Yantai, China.,Central Laboratory, Linyi People's Hospital, Linyi, China
| | - Zhen Cai
- Bone Marrow Transplantation Center, Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|