1
|
Gomez Martinez AE, Lam T, Herr AE. Paired Analyses of Nuclear Protein Targets and Genomic DNA by Single-Cell Western Blot and Single-Cell PCR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.29.646125. [PMID: 40236107 PMCID: PMC11996381 DOI: 10.1101/2025.03.29.646125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Single-cell multimodal assays measure multiple layers of molecular information. Existing single-cell tools have limited capability to analyze nuclear proteins and genomic DNA from the same originating single cell. To address this gap, we designed and developed a microfluidic single-cell assay (SplitBlot), that pairs measurements of genomic DNA (PCR-based) and nucleo-cytoplasmic proteins (nuclear histone H3 and cytoplasmic beta-actin). To accomplish this paired multiomic measurement, we utilize microfluidic precision to fractionate protein molecules (both nuclear and cytoplasmic) from genomic DNA (nuclear). We create a fractionation axis that prepends a comet-like encapsulation of genomic DNA in an agarose molded microwell to a downstream single-cell western blot in polyacrylamide gel (PAG). For single-cell genomic DNA analysis, the agarose-encapsulated DNA is physically extracted from the microfluidic device for in-tube PCR, after release of genomic DNA from a molten agarose pallet (86% of pallets resulted in amplification of TurboGFP). For protein analysis, nucleo-cytoplasmic proteins are photocaptured to the PAG (via benzophenone) and probed in-situ (15 kDa histone H3 resolved from 42 kDa beta-actin with a separation resolution R s = 0.77, CV = 76%). The SplitBlot reported the amplification of TurboGFP DNA and the separation of nuclear histone H3 and cytoplasmic beta-actin from the same single U251 cells engineered to express TurboGFP. Demonstrated here, Split-Blot offers the capacity for precision genomic DNA vs. protein fractionation for subsequent split workflow consisting of in-tube PCR and on-chip single-cell western blotting, thus providing a tool for pairing genotype to nuclear and cytoplasmic protein expression at the single-cell level. TOC Graphic
Collapse
|
2
|
Zhao Q, Li S, Krall L, Li Q, Sun R, Yin Y, Fu J, Zhang X, Wang Y, Yang M. Deciphering cellular complexity: advances and future directions in single-cell protein analysis. Front Bioeng Biotechnol 2025; 12:1507460. [PMID: 39877263 PMCID: PMC11772399 DOI: 10.3389/fbioe.2024.1507460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/19/2024] [Indexed: 01/31/2025] Open
Abstract
Single-cell protein analysis has emerged as a powerful tool for understanding cellular heterogeneity and deciphering the complex mechanisms governing cellular function and fate. This review provides a comprehensive examination of the latest methodologies, including sophisticated cell isolation techniques (Fluorescence-Activated Cell Sorting (FACS), Magnetic-Activated Cell Sorting (MACS), Laser Capture Microdissection (LCM), manual cell picking, and microfluidics) and advanced approaches for protein profiling and protein-protein interaction analysis. The unique strengths, limitations, and opportunities of each method are discussed, along with their contributions to unraveling gene regulatory networks, cellular states, and disease mechanisms. The importance of data analysis and computational methods in extracting meaningful biological insights from the complex data generated by these technologies is also highlighted. By discussing recent progress, technological innovations, and potential future directions, this review emphasizes the critical role of single-cell protein analysis in advancing life science research and its promising applications in precision medicine, biomarker discovery, and targeted therapeutics. Deciphering cellular complexity at the single-cell level holds immense potential for transforming our understanding of biological processes and ultimately improving human health.
Collapse
Affiliation(s)
- Qirui Zhao
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Yunnan University, Kunming, China
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Shan Li
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Yunnan University, Kunming, China
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Leonard Krall
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Yunnan University, Kunming, China
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Qianyu Li
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Rongyuan Sun
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Yuqi Yin
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Jingyi Fu
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Xu Zhang
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Yunnan University, Kunming, China
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Yonghua Wang
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Yunnan University, Kunming, China
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Mei Yang
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Yunnan University, Kunming, China
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| |
Collapse
|
3
|
Lam T, Su A, Gomez Martinez AE, Fomitcheva-Khartchenko A, Herr AE. Single-cell Organelle Extraction with Cellular Indexing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.23.630180. [PMID: 39763945 PMCID: PMC11703196 DOI: 10.1101/2024.12.23.630180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Bulk methods to fractionate organelles lack the resolution to capture single-cell heterogeneity. While microfluidic approaches attempt to fractionate organelles at the cellular level, they fail to map each organelle back to its cell of origin-crucial for multiomics applications. To address this, we developed VacTrap, a high-throughput microfluidic device for isolating and spatially indexing single nuclei from mammalian cells. VacTrap consists of three aligned layers: (1) a Bis-gel microwells layer with a 'trapdoors' (BAC-gel) base, fabricated atop a through-hole glass slide; (2) a PDMS microwell layer to receive transferred nuclei; and (3) a vacuum manifold. VacTrap operation begins with cell lysis using DDF to release intact nuclei into the Bis-gel microwells, while cytoplasmic proteins are electrophoresed into the Bis-gel. Upon exposure to DTT and vacuum force, the trapdoors open, allowing nuclei to transfer to the PDMS microwells. VacTrap dissolves the trapdoors within 3-5 minutes and achieve synchronized nuclei transfer with 98% efficiency across 80% of trapdoors in a 256-microwell array, surpassing the <1% efficiency of passive transfer without vacuum. Morphology analysis confirmed preservation of organelle integrity throughout VacTrap operation. By enabling spatial indexing of nuclei back to their original cell, VacTrap provides a robust, high-throughput tool for single-cell multiomics applications.
Collapse
Affiliation(s)
- Trinh Lam
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Alison Su
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ana E Gomez Martinez
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | - Amy E Herr
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
4
|
Liu Y, Herr AE. DropBlot: single-cell western blotting of chemically fixed cancer cells. Nat Commun 2024; 15:5888. [PMID: 39003254 PMCID: PMC11246512 DOI: 10.1038/s41467-024-50046-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 06/27/2024] [Indexed: 07/15/2024] Open
Abstract
Archived patient-derived tissue specimens play a central role in understanding disease and developing therapies. To address specificity and sensitivity shortcomings of existing single-cell resolution proteoform analysis tools, we introduce a hybrid microfluidic platform (DropBlot) designed for proteoform analyses in chemically fixed single cells. DropBlot serially integrates droplet-based encapsulation and lysis of single fixed cells, with on-chip microwell-based antigen retrieval, with single-cell western blotting of target antigens. A water-in-oil droplet formulation withstands the harsh chemical (SDS, 6 M urea) and thermal conditions (98 °C, 1-2 hr) required for effective antigen retrieval, and supports analysis of retrieved protein targets by single-cell electrophoresis. We demonstrate protein-target retrieval from unfixed, paraformaldehyde-fixed (PFA), and methanol-fixed cells. Key protein targets (HER2, GAPDH, EpCAM, Vimentin) retrieved from PFA-fixed cells were resolved and immunoreactive. Relevant to biorepositories, DropBlot profiled targets retrieved from human-derived breast tumor specimens archived for six years, offering a workflow for single-cell protein-biomarker analysis of sparing biospecimens.
Collapse
Affiliation(s)
- Yang Liu
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA.
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA, 30602, USA.
| | - Amy E Herr
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA.
| |
Collapse
|
5
|
Lin S, Feng D, Han X, Li L, Lin Y, Gao H. Microfluidic platform for omics analysis on single cells with diverse morphology and size: A review. Anal Chim Acta 2024; 1294:342217. [PMID: 38336406 DOI: 10.1016/j.aca.2024.342217] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Microfluidic techniques have emerged as powerful tools in single-cell research, facilitating the exploration of omics information from individual cells. Cell morphology is crucial for gene expression and physiological processes. However, there is currently a lack of integrated analysis of morphology and single-cell omics information. A critical challenge remains: what platform technologies are the best option to decode omics data of cells that are complex in morphology and size? RESULTS This review highlights achievements in microfluidic-based single-cell omics and isolation of cells based on morphology, along with other cell sorting methods based on physical characteristics. Various microfluidic platforms for single-cell isolation are systematically presented, showcasing their diversity and adaptability. The discussion focuses on microfluidic devices tailored to the distinct single-cell isolation requirements in plants and animals, emphasizing the significance of considering cell morphology and cell size in optimizing single-cell omics strategies. Simultaneously, it explores the application of microfluidic single-cell sorting technologies to single-cell sequencing, aiming to effectively integrate information about cell shape and size. SIGNIFICANCE AND NOVELTY The novelty lies in presenting a comprehensive overview of recent accomplishments in microfluidic-based single-cell omics, emphasizing the integration of different microfluidic platforms and their implications for cell morphology-based isolation. By underscoring the pivotal role of the specialized morphology of different cells in single-cell research, this review provides robust support for delving deeper into the exploration of single-cell omics data.
Collapse
Affiliation(s)
- Shujin Lin
- Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, China; Central Laboratory at the Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, China
| | - Dan Feng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiao Han
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China.
| | - Ling Li
- Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, China; The First Clinical Medical College of Fujian Medical University, Fuzhou, 350004, China; Hepatopancreatobiliary Surgery Department, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, China.
| | - Yao Lin
- Central Laboratory at the Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, China; Collaborative Innovation Center for Rehabilitation Technology, Fujian University of Traditional Chinese Medicine, China.
| | - Haibing Gao
- Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, China.
| |
Collapse
|
6
|
Cui Z, Wei H, Goding C, Cui R. Stem cell heterogeneity, plasticity, and regulation. Life Sci 2023; 334:122240. [PMID: 37925141 DOI: 10.1016/j.lfs.2023.122240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023]
Abstract
As a population of homogeneous cells with both self-renewal and differentiation potential, stem cell pools are highly compartmentalized and contain distinct subsets that exhibit stable but limited heterogeneity during homeostasis. However, their striking plasticity is showcased under natural or artificial stress, such as injury, transplantation, cancer, and aging, leading to changes in their phenotype, constitution, metabolism, and function. The complex and diverse network of cell-extrinsic niches and signaling pathways, together with cell-intrinsic genetic and epigenetic regulators, tightly regulate both the heterogeneity during homeostasis and the plasticity under perturbation. Manipulating these factors offers better control of stem cell behavior and a potential revolution in the current state of regenerative medicine. However, disruptions of normal regulation by genetic mutation or excessive plasticity acquisition may contribute to the formation of tumors. By harnessing innovative techniques that enhance our understanding of stem cell heterogeneity and employing novel approaches to maximize the utilization of stem cell plasticity, stem cell therapy holds immense promise for revolutionizing the future of medicine.
Collapse
Affiliation(s)
- Ziyang Cui
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing 100034, China.
| | - Hope Wei
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, United States of America
| | - Colin Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX37DQ, UK
| | - Rutao Cui
- Skin Disease Research Institute, The 2nd Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
7
|
Hu S, Ye J, Shi S, Yang C, Jin K, Hu C, Wang D, Ma H. Large-Area Electronics-Enabled High-Resolution Digital Microfluidics for Parallel Single-Cell Manipulation. Anal Chem 2023; 95:6905-6914. [PMID: 37071892 DOI: 10.1021/acs.analchem.3c00150] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Large-area electronics as switching elements are an ideal option for electrode-array-based digital microfluidics. With support of highly scalable thin-film semiconductor technology, high-resolution digital droplets (diameter around 100 μm) containing single-cell samples can be manipulated freely on a two-dimensional plane with programmable addressing logic. In addition, single-cell generation and manipulation as foundations for single-cell research demand ease of operation, multifunctionality, and accurate tools. In this work, we reported an active-matrix digital microfluidic platform for single-cell generation and manipulation. The active device contained 26,368 electrodes that could be independently addressed to perform parallel and simultaneous droplet generation and achieved single-cell manipulation. We demonstrate a high-resolution digital droplet generation with a droplet volume limit of 500 pL and show the continuous and stable movement of droplet-contained cells for over 1 h. Furthermore, the success rate of single droplet formation was higher than 98%, generating tens of single cells within 10 s. In addition, a pristine single-cell generation rate of 29% was achieved without further selection procedures, and the droplets containing single cells could then be tested for on-chip cell culturing. After 20 h of culturing, about 12.5% of the single cells showed cell proliferation.
Collapse
Affiliation(s)
- Siyi Hu
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P. R. China
| | - Jingmin Ye
- Guangdong ACXEL Micro & Nano Tech Co., Ltd, Foshan, Guangdong Province 528000, P. R. China
| | - Subao Shi
- Guangdong ACXEL Micro & Nano Tech Co., Ltd, Foshan, Guangdong Province 528000, P. R. China
| | - Chao Yang
- Guangdong ACXEL Micro & Nano Tech Co., Ltd, Foshan, Guangdong Province 528000, P. R. China
| | - Kai Jin
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P. R. China
| | - Chenxuan Hu
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P. R. China
| | - Dongping Wang
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P. R. China
| | - Hanbin Ma
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P. R. China
- Guangdong ACXEL Micro & Nano Tech Co., Ltd, Foshan, Guangdong Province 528000, P. R. China
| |
Collapse
|
8
|
Desire CT, Arrua RD, Strudwick XL, Kopecki Z, Cowin AJ, Hilder EF. The development of microfluidic-based western blotting: Technical advances and future perspectives. J Chromatogr A 2023; 1691:463813. [PMID: 36709548 DOI: 10.1016/j.chroma.2023.463813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
Over the past two decades significant technical advancement in the field of western blotting has been made possible through the utilization of microfluidic technologies. In this review we provide a critical overview of these advancements, highlighting the advantages and disadvantages of each approach. Particular attention is paid to the development of now commercially available systems, including those for single cell analysis. This review also discusses more recent developments, including algorithms for automation and/or improved quantitation, the utilization of different materials/chemistries, use of projection electrophoresis, and the development of triBlots. Finally, the review includes commentary on future advances in the field based on current developments, and the potential of these systems for use as point-of-care devices in healthcare.
Collapse
Affiliation(s)
- Christopher T Desire
- Future Industries Institute, University of South Australia, GPO Box 2471, Adelaide, SA 5001, Australia
| | - R Dario Arrua
- Future Industries Institute, University of South Australia, GPO Box 2471, Adelaide, SA 5001, Australia
| | - Xanthe L Strudwick
- Future Industries Institute, University of South Australia, GPO Box 2471, Adelaide, SA 5001, Australia
| | - Zlatko Kopecki
- Future Industries Institute, University of South Australia, GPO Box 2471, Adelaide, SA 5001, Australia
| | - Allison J Cowin
- Future Industries Institute, University of South Australia, GPO Box 2471, Adelaide, SA 5001, Australia
| | - Emily F Hilder
- Future Industries Institute, University of South Australia, GPO Box 2471, Adelaide, SA 5001, Australia.
| |
Collapse
|
9
|
Burnum-Johnson KE, Conrads TP, Drake RR, Herr AE, Iyengar R, Kelly RT, Lundberg E, MacCoss MJ, Naba A, Nolan GP, Pevzner PA, Rodland KD, Sechi S, Slavov N, Spraggins JM, Van Eyk JE, Vidal M, Vogel C, Walt DR, Kelleher NL. New Views of Old Proteins: Clarifying the Enigmatic Proteome. Mol Cell Proteomics 2022; 21:100254. [PMID: 35654359 PMCID: PMC9256833 DOI: 10.1016/j.mcpro.2022.100254] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/09/2022] [Accepted: 05/27/2022] [Indexed: 11/23/2022] Open
Abstract
All human diseases involve proteins, yet our current tools to characterize and quantify them are limited. To better elucidate proteins across space, time, and molecular composition, we provide a >10 years of projection for technologies to meet the challenges that protein biology presents. With a broad perspective, we discuss grand opportunities to transition the science of proteomics into a more propulsive enterprise. Extrapolating recent trends, we describe a next generation of approaches to define, quantify, and visualize the multiple dimensions of the proteome, thereby transforming our understanding and interactions with human disease in the coming decade.
Collapse
Affiliation(s)
- Kristin E Burnum-Johnson
- The Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA.
| | - Thomas P Conrads
- Inova Women's Service Line, Inova Health System, Falls Church, Virginia, USA
| | - Richard R Drake
- Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Amy E Herr
- Department of Bioengineering, University of California, Berkeley, California, USA
| | - Ravi Iyengar
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ryan T Kelly
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| | - Emma Lundberg
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Garry P Nolan
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Pavel A Pevzner
- Department of Computer Science and Engineering, University of California at San Diego, San Diego, California, USA
| | - Karin D Rodland
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Salvatore Sechi
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Nikolai Slavov
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA
| | - Jeffrey M Spraggins
- Department of Cell and Developmental Biology, Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee, USA
| | - Jennifer E Van Eyk
- Advanced Clinical Biosystems Institute in the Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Marc Vidal
- Department of Genetics, Harvard University, Cambridge, Massachusetts, USA
| | - Christine Vogel
- New York University Center for Genomics and Systems Biology, New York University, New York, New York, USA
| | - David R Walt
- Department of Pathology, Harvard Medical School, Brigham and Women's Hospital, Wyss Institute at Harvard University, Boston, Massachusetts, USA
| | - Neil L Kelleher
- Department of Chemistry, Northwestern University, Evanston, Illinois, USA.
| |
Collapse
|
10
|
Nosrati R. Lab on a chip devices for fertility: from proof-of-concept to clinical impact. LAB ON A CHIP 2022; 22:1680-1689. [PMID: 35417508 DOI: 10.1039/d1lc01144h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Microfluidics offers tremendous opportunities to understand the underlying biology of fertilization at the single-cell level and improve infertility management, however, its true clinical impact is yet to be realized. Lab-on-a-chip devices have generally failed to diffuse into clinical practice due to issues associated with their translation or their practicality and performance in clinical settings. In this perspective, I reflect on how the full potential of microfluidic technologies for fertility can be realized by considering regulatory and manufacturing considerations at the development stage and by redefining our developmental goals to directly target the ultimate clinical needs. I also challenge the common rationale around developing technologies for infertility treatment based on reducing cost and complexity in operation as the ultimate outcome is invaluable, human life.
Collapse
Affiliation(s)
- Reza Nosrati
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton Campus, VIC 3800, Australia.
| |
Collapse
|
11
|
Xie H, Ding X. The Intriguing Landscape of Single-Cell Protein Analysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105932. [PMID: 35199955 PMCID: PMC9036017 DOI: 10.1002/advs.202105932] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/27/2022] [Indexed: 05/15/2023]
Abstract
Profiling protein expression at single-cell resolution is essential for fundamental biological research (such as cell differentiation and tumor microenvironmental examination) and clinical precision medicine where only a limited number of primary cells are permitted. With the recent advances in engineering, chemistry, and biology, single-cell protein analysis methods are developed rapidly, which enable high-throughput and multiplexed protein measurements in thousands of individual cells. In combination with single cell RNA sequencing and mass spectrometry, single-cell multi-omics analysis can simultaneously measure multiple modalities including mRNAs, proteins, and metabolites in single cells, and obtain a more comprehensive exploration of cellular signaling processes, such as DNA modifications, chromatin accessibility, protein abundance, and gene perturbation. Here, the recent progress and applications of single-cell protein analysis technologies in the last decade are summarized. Current limitations, challenges, and possible future directions in this field are also discussed.
Collapse
Affiliation(s)
- Haiyang Xie
- State Key Laboratory of Oncogenes and Related GenesInstitute for Personalized MedicineSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Xianting Ding
- State Key Laboratory of Oncogenes and Related GenesInstitute for Personalized MedicineSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| |
Collapse
|
12
|
Bonner MG, Gudapati H, Mou X, Musah S. Microfluidic systems for modeling human development. Development 2022; 149:274363. [PMID: 35156682 PMCID: PMC8918817 DOI: 10.1242/dev.199463] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The proper development and patterning of organs rely on concerted signaling events emanating from intracellular and extracellular molecular and biophysical cues. The ability to model and understand how these microenvironmental factors contribute to cell fate decisions and physiological processes is crucial for uncovering the biology and mechanisms of life. Recent advances in microfluidic systems have provided novel tools and strategies for studying aspects of human tissue and organ development in ways that have previously been challenging to explore ex vivo. Here, we discuss how microfluidic systems and organs-on-chips provide new ways to understand how extracellular signals affect cell differentiation, how cells interact with each other, and how different tissues and organs are formed for specialized functions. We also highlight key advancements in the field that are contributing to a broad understanding of human embryogenesis, organogenesis and physiology. We conclude by summarizing the key advantages of using dynamic microfluidic or microphysiological platforms to study intricate developmental processes that cannot be accurately modeled by using traditional tissue culture vessels. We also suggest some exciting prospects and potential future applications of these emerging technologies.
Collapse
Affiliation(s)
- Makenzie G. Bonner
- Developmental and Stem Cell Biology Program, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA,Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA,Center for Biomolecular and Tissue Engineering, Duke University, Durham, NC 27708, USA
| | - Hemanth Gudapati
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Xingrui Mou
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Samira Musah
- Developmental and Stem Cell Biology Program, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA,Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA,Center for Biomolecular and Tissue Engineering, Duke University, Durham, NC 27708, USA,Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA,Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA,MEDx Investigator and Faculty Member at the Duke Regeneration Center, Duke University, Durham, NC 27710, USA,Author for correspondence ()
| |
Collapse
|
13
|
Abstract
Increased demand for in vitro fertilization (IVF) due to socio-demographic trends, and supply facilitated by new technologies, converged to transform the way a substantial proportion of humans reproduce. The purpose of this article is to describe the societal and demographic trends driving increased worldwide demand for IVF, as well as to provide an overview of emerging technologies that promise to greatly expand IVF utilization and lower its cost.
Collapse
|
14
|
Hennig S, Shu Z, Gutzweiler L, Koltay P, von Stetten F, Zengerle R, Früh SM. Paper-based open microfluidic platform for protein electrophoresis and immunoprobing. Electrophoresis 2021; 43:621-631. [PMID: 34902175 DOI: 10.1002/elps.202100327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 11/10/2022]
Abstract
Protein electrophoresis and immunoblotting are indispensable analytical tools for the characterization of proteins and posttranslational modifications in complex sample matrices. Owing to the lack of automation, commonly employed slab-gel systems suffer from high time demand, significant sample/antibody consumption, and limited reproducibility. To overcome these limitations, we developed a paper-based open microfluidic platform for electrophoretic protein separation and subsequent transfer to protein-binding membranes for immunoprobing. Electrophoresis microstructures were digitally printed into cellulose acetate membranes that provide mechanical stability while maintaining full accessibility of the microstructures for consecutive immunological analysis. As a proof-of-concept, we demonstrate separation of fluorescently labeled marker proteins in a wide molecular weight range (15-120 kDa) within only 15 min, reducing the time demand for the entire workflow (from sample preparation to immunoassay) to approximately one hour. Sample consumption was reduced 10- to 150-fold compared to slab-gel systems, owing to system miniaturization. Moreover, we successfully applied the paper-based approach to complex samples such as crude bacterial cell extracts. We envisage that this platform will find its use in protein analysis workflows for scarce and precious samples, providing a unique opportunity to extract profound immunological information from limited sample amounts in a fast fashion with minimal hands-on time.
Collapse
Affiliation(s)
| | - Zhe Shu
- Hahn-Schickard, Freiburg, Germany.,Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| | | | - Peter Koltay
- Hahn-Schickard, Freiburg, Germany.,Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| | - Felix von Stetten
- Hahn-Schickard, Freiburg, Germany.,Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| | - Roland Zengerle
- Hahn-Schickard, Freiburg, Germany.,Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| | - Susanna M Früh
- Hahn-Schickard, Freiburg, Germany.,Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| |
Collapse
|
15
|
Abstract
The natural world provides many examples of multiphase transport and reaction processes that have been optimized by evolution. These phenomena take place at multiple length and time scales and typically include gas-liquid-solid interfaces and capillary phenomena in porous media1,2. Many biological and living systems have evolved to optimize fluidic transport. However, living things are exceptionally complex and very difficult to replicate3-5, and human-made microfluidic devices (which are typically planar and enclosed) are highly limited for multiphase process engineering6-8. Here we introduce the concept of cellular fluidics: a platform of unit-cell-based, three-dimensional structures-enabled by emerging 3D printing methods9,10-for the deterministic control of multiphase flow, transport and reaction processes. We show that flow in these structures can be 'programmed' through architected design of cell type, size and relative density. We demonstrate gas-liquid transport processes such as transpiration and absorption, using evaporative cooling and CO2 capture as examples. We design and demonstrate preferential liquid and gas transport pathways in three-dimensional cellular fluidic devices with capillary-driven and actively pumped liquid flow, and present examples of selective metallization of pre-programmed patterns. Our results show that the design and fabrication of architected cellular materials, coupled with analytical and numerical predictions of steady-state and dynamic behaviour of multiphase interfaces, provide deterministic control of fluidic transport in three dimensions. Cellular fluidics may transform the design space for spatial and temporal control of multiphase transport and reaction processes.
Collapse
|
16
|
Rosàs-Canyelles E, Modzelewski AJ, Gomez Martinez AE, Geldert A, Gopal A, He L, Herr AE. Multimodal detection of protein isoforms and nucleic acids from low starting cell numbers. LAB ON A CHIP 2021; 21:2427-2436. [PMID: 33978041 PMCID: PMC8206029 DOI: 10.1039/d1lc00073j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Protein isoforms play a key role in disease progression and arise from mechanisms involving multiple molecular subtypes, including DNA, mRNA and protein. Recently introduced multimodal assays successfully link genomes and transcriptomes to protein expression landscapes. However, the specificity of the protein measurement relies on antibodies alone, leading to major challenges when measuring different isoforms of the same protein. Here we utilize microfluidic design to perform same-cell profiling of DNA, mRNA and protein isoforms (triBlot) on low starting cell numbers (1-100 s of cells). After fractionation lysis, cytoplasmic proteins are resolved by molecular mass during polyacrylamide gel electrophoresis (PAGE), adding a degree of specificity to the protein measurement, while nuclei are excised from the device in sections termed "gel pallets" for subsequent off-chip nucleic acid analysis. By assaying TurboGFP-transduced glioblastoma cells, we observe a strong correlation between protein expression prior to lysis and immunoprobed protein. We measure both mRNA and DNA from retrieved nuclei, and find that mRNA levels correlate with protein abundance in TurboGFP-expressing cells. Furthermore, we detect the presence of TurboGFP isoforms differing by an estimated <1 kDa in molecular mass, demonstrating the ability to discern different proteoforms with the same antibody probe. By directly relating nucleic acid modifications to protein isoform expression in 1-100 s of cells, the triBlot assay holds potential as a screening tool for novel biomarkers in diseases driven by protein isoform expression.
Collapse
Affiliation(s)
- Elisabet Rosàs-Canyelles
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA. and The UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, CA 94720, USA
| | - Andrew J Modzelewski
- Division of Cellular and Developmental Biology, Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ana E Gomez Martinez
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA. and The UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, CA 94720, USA
| | - Alisha Geldert
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA. and The UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, CA 94720, USA
| | - Anjali Gopal
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA. and The UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, CA 94720, USA
| | - Lin He
- Division of Cellular and Developmental Biology, Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Amy E Herr
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA. and The UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, CA 94720, USA and Chan Zuckerberg Biohub, 499 Illinois St, San Francisco, CA 94158, USA
| |
Collapse
|
17
|
Li S, Wen Z, Ghalandari B, Zhou T, Warden AR, Zhang T, Dai P, Yu Y, Guo W, Liu M, Xie H, Ding X. Single-Cell Immunoblotting based on a Photoclick Hydrogel Enables High-Throughput Screening and Accurate Profiling of Exogenous Gene Expression. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101108. [PMID: 33899289 DOI: 10.1002/adma.202101108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Fast and accurate profiling of exogenous gene expression in host cells is crucial for studying gene function in cellular and molecular biology, but still faces the challenge of incomplete co-expression of reporter genes and target genes. Here, a single-cell transfection analysis chip (scTAC) is presented, which is based on the in situ microchip immunoblotting method, for rapid and accurate analysis of exogenous gene expression in thousands of individual host cells. scTAC not only can assign information of exogenous gene activity to specific transfected cells, but enables the acquisition of continuous protein expression even in low co-expression scenarios. It is demonstrated that scTAC can reveal the relationship of expression level between reporter genes and target genes, which is helpful for evaluating transient transfection strategy efficiency. The advantages of this method for the study of fusion protein expression and downstream protein expression in signaling pathway in rare cells are shown. Empirically, an EGFP-TSPAN8 fusion plasmid is transfected into MCF-7 breast cancer cells and the expressions of two cancer stemness biomarkers (ALDHA1 and SOX2) are analyzed. The scTAC method clearly reveals an interesting phenomenon that transfected adherent MCF-7 cells exhibit some stem cell characteristics, but they do not have stem cell appearance.
Collapse
Affiliation(s)
- Shanhe Li
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Ze Wen
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Behafarid Ghalandari
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Tianhao Zhou
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Antony R Warden
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Ting Zhang
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Peng Dai
- Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Youyi Yu
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Wenke Guo
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Mofang Liu
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Haiyang Xie
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xianting Ding
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| |
Collapse
|